WO2020245982A1 - Heat exchanger and refrigeration cycle device - Google Patents

Heat exchanger and refrigeration cycle device Download PDF

Info

Publication number
WO2020245982A1
WO2020245982A1 PCT/JP2019/022556 JP2019022556W WO2020245982A1 WO 2020245982 A1 WO2020245982 A1 WO 2020245982A1 JP 2019022556 W JP2019022556 W JP 2019022556W WO 2020245982 A1 WO2020245982 A1 WO 2020245982A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
refrigerant
heat transfer
header
insertion space
Prior art date
Application number
PCT/JP2019/022556
Other languages
French (fr)
Japanese (ja)
Inventor
龍一 永田
真哉 東井上
前田 剛志
繁佳 松井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/022556 priority Critical patent/WO2020245982A1/en
Priority to JP2021524602A priority patent/JP7292389B2/en
Publication of WO2020245982A1 publication Critical patent/WO2020245982A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates

Definitions

  • the present invention relates to a heat exchanger and a refrigeration cycle device including the heat exchanger, and particularly to a header structure.
  • a heat exchanger that functions as a condenser mounted on an indoor unit in an air conditioner that is a refrigeration cycle device is known.
  • the liquid refrigerant condensed by this heat exchanger is depressurized by the expansion device, and becomes a gas-liquid two-phase state in which the gas refrigerant and the liquid refrigerant are mixed.
  • the refrigerant in the gas-liquid two-phase state is converted into a low-pressure gas refrigerant by evaporating the liquid refrigerant among the refrigerants in the gas-liquid two-phase state in a heat exchanger that functions as an evaporator mounted on the outdoor unit.
  • the refrigerating machine oil that lubricates the sliding part of the compressor is circulated together with the refrigerant.
  • the heat exchanger operates as a condenser
  • the gas refrigerant and the refrigerating machine oil flow into the upper header
  • the refrigerant flows through the heat transfer tube while changing the phase, and flows into the lower header as a liquid refrigerant.
  • the heat transfer tube has a flat multi-hole tube structure
  • the refrigeration mixed in the gas refrigerant is performed.
  • Machine oil is separated.
  • the separated refrigerating machine oil flows into the heat transfer tube together with the gas refrigerant.
  • the holes in the heat transfer tube are fine, it is difficult for the refrigerating machine oil to flow into the heat transfer tube, and there is a problem that the refrigerating machine oil stays in the header.
  • An object of the present invention is to solve the above problems, and an object of the present invention is to provide a heat exchanger capable of reducing the retention of refrigerating machine oil and improving the quality, and a refrigeration cycle apparatus including the heat exchanger. ..
  • the heat exchanger includes a plurality of heat transfer tubes whose tube shafts extend in the vertical direction and are arranged side by side in the horizontal direction, and a header for connecting the upper ends of the plurality of heat transfer tubes.
  • the header includes a partition member that partitions the inside into an insertion space into which the upper end of the plurality of heat transfer tubes is inserted and an upper space located above the insertion space, and the partition member is the insertion space. It is provided with a communication hole for communicating between the upper space and the upper space.
  • the refrigeration cycle device includes a refrigerant circuit having at least a compressor, a condenser, an expansion device and an evaporator, and is equipped with the heat exchanger as the condenser or the evaporator.
  • the header is partitioned up and down by a partition member and the partition member is provided with a communication hole
  • the flow velocity of the refrigerant passing through the communication hole in the header can be increased.
  • the refrigerant with increased flow velocity collides with the refrigerating machine oil staying inside the header, scatters the refrigerating machine oil, and winds it up to send the refrigerating machine oil to the downstream side of the refrigerant circuit along with the flow of the refrigerant, and the refrigeration stays in the heat exchanger.
  • Machine oil can be reduced.
  • FIG. 5 is an enlarged cross-sectional view of the upper header 20 of the heat exchanger 100 according to the first embodiment. This is a modification of the communication hole 22 provided in the upper header 20 of the heat exchanger 100 according to the first embodiment. It is an enlarged sectional view of the upper header 220 of the heat exchanger 200 which concerns on Embodiment 2.
  • FIG. 5 is an enlarged cross-sectional view of the upper header 20 of the heat exchanger 100 according to the first embodiment. This is a modification of the communication hole 22 provided in the upper header 20 of the heat exchanger 100 according to the first embodiment. It is an enlarged sectional view of the upper header 220 of the heat exchanger 200 which concerns on Embodiment 2.
  • FIG. 3 is an enlarged sectional view of the upper header 320 of the heat exchanger 300 which concerns on Embodiment 3.
  • FIG. 3 is a modification of the partition member 321 of the upper header 320 of the heat exchanger 300 according to the third embodiment.
  • This is a modification of the partition member 321 of the upper header 320 of the heat exchanger 300 according to the third embodiment.
  • It is a schematic diagram which shows an example of the heat exchanger 400 mounted on the air conditioner 1 which concerns on Embodiment 4.
  • FIG. is a schematic diagram which shows an example of the heat exchanger 500 mounted on the air conditioner 1 which concerns on Embodiment 5.
  • FIG. FIG. 5 is an enlarged cross-sectional view of the upper header 520 of the heat exchanger 500 according to the fifth embodiment. This is a modification of the communication hole 22 provided in the upper header 520 of the heat exchanger 500 according to the fifth embodiment.
  • Embodiment 1 ⁇ Configuration of air conditioner 1>
  • the air conditioner 1 as a refrigeration cycle device to which the heat exchanger 100 according to the first embodiment is applied will be described with reference to FIG.
  • the heat exchanger 100 according to the first embodiment is configured as at least one of the outdoor heat exchanger 12 and the indoor heat exchanger 14 of the air conditioner 1.
  • FIG. 1 is a schematic diagram showing a refrigerant circuit 5 of the air conditioner 1 according to the first embodiment.
  • the air conditioner 1 according to the first embodiment performs cooling or heating by transferring heat between the outside air and the indoor air via a refrigerant.
  • the air conditioner 1 is for air conditioning indoors, and has an indoor unit 2 and an outdoor unit 3.
  • Examples of the refrigerant flowing through the air conditioner 1 include various refrigerants such as R32 refrigerant, R290 refrigerant which is a low GWP refrigerant, the above-mentioned mixed refrigerant containing R32 refrigerant as a main component, and mixed refrigerant containing R290 refrigerant as a main component.
  • Refrigerant can be applied.
  • a refrigerant having a smaller gas density than an R32 refrigerant or an R410A refrigerant such as an olefin-based refrigerant, propane or DME (dimethyl ether) has a higher refrigerant flow velocity per capacity, and therefore has a great effect of improving performance by reducing pressure loss.
  • olefin-based refrigerant examples include HFO1234yf, HFO1234ze (E), and the like.
  • refrigerating machine oil is circulated together with the refrigerant in the refrigerant circuit 5 of the air conditioner 1.
  • the refrigerating machine oil is for lubricating the components of the compressor 10, and normally circulates inside the compressor 10, but a part of the refrigerating machine oil is discharged to the refrigerant circuit 5 together with the refrigerant.
  • the indoor unit 2 and the outdoor unit 3 are connected by pipes via the refrigerant pipes 4, 4a and 4b to form a refrigerant circuit 5 in which the refrigerant circulates.
  • the refrigerant circuit 5 is provided with a compressor 10, a flow path switching device 11, an outdoor heat exchanger 12, an expansion device 13, and an indoor heat exchanger 14, and these are connected via refrigerant pipes 4, 4a, and 4b. There is.
  • the outdoor unit 3 has a compressor 10, a flow path switching device 11, an outdoor heat exchanger 12, and an expansion device 13.
  • the compressor 10 compresses and discharges the sucked refrigerant.
  • the compressor 10 may include an inverter device. When the inverter device is provided, the operation frequency can be changed by the control unit 6 to change the capacity of the compressor 10.
  • the capacity of the compressor 10 is the amount of refrigerant delivered per unit time.
  • the flow path switching device 11 is, for example, a four-way valve, which switches the direction of the refrigerant flow path.
  • the air conditioner 1 can realize a heating operation or a cooling operation by switching the flow of the refrigerant by using the flow path switching device 11 based on the instruction from the control unit 6.
  • the outdoor heat exchanger 12 exchanges heat between the refrigerant and the outdoor air. Further, the outdoor heat exchanger 12 is provided with an outdoor blower 15 in order to improve the efficiency of heat exchange between the refrigerant and the outdoor air.
  • An inverter device may be attached to the outdoor blower 15. In this case, the inverter device changes the rotation speed of the fan by changing the operating frequency of the fan motor 16 which is the drive source of the outdoor blower 15.
  • the outdoor blower 15 is not limited to this as long as the same effect can be obtained.
  • the type of fan may be a sirocco fan or a plug fan.
  • the outdoor blower 15 may be a pushing type or a pulling type.
  • the outdoor heat exchanger 12 functions as an evaporator during the heating operation, and exchanges heat between the low-pressure refrigerant flowing in from the refrigerant pipe 4b side and the outdoor air to evaporate the refrigerant and vaporize it. And let it flow out to the refrigerant pipe 4a side. Further, the outdoor heat exchanger 12 functions as a condenser during the cooling operation, and the refrigerant compressed by the compressor 10 flowing in from the refrigerant pipe 4a side via the flow path switching device 11 and the outdoor air. Heat exchange is performed between the refrigerants to condense and liquefy the refrigerant, and the refrigerant flows out to the refrigerant pipe 4b side.
  • the outdoor air is used as the external fluid
  • the external fluid is not limited to the gas containing the outdoor air, and may be a liquid containing water.
  • the expansion device 13 is a throttle device that controls the flow rate of the refrigerant, and adjusts the pressure of the refrigerant by adjusting the flow rate of the refrigerant flowing through the refrigerant pipe 4 by changing the opening degree of the expansion device 13.
  • the expansion device 13 expands the high-pressure liquid state refrigerant into the low-pressure gas-liquid two-phase state refrigerant to reduce the pressure.
  • the expansion device 13 is not limited to this, and an electronic expansion valve, a capillary tube, or the like may be used as long as the same effect can be obtained.
  • the opening degree is adjusted based on the instruction of the control unit 6.
  • the indoor unit 2 includes an indoor heat exchanger 14 that exchanges heat between the refrigerant and the indoor air, and an indoor blower 17 that adjusts the flow of air that the indoor heat exchanger 14 exchanges heat with.
  • the indoor heat exchanger 14 acts as a condenser during the heating operation, exchanges heat between the refrigerant flowing in from the refrigerant pipe 4a side and the indoor air, condenses the refrigerant and liquefies it, and causes the refrigerant pipe. Let it flow out to the 4b side. Further, the indoor heat exchanger 14 functions as an evaporator during the cooling operation, and exchanges heat between the refrigerant brought into a low pressure state by the expansion device 13 flowing in from the refrigerant pipe 4b side and the indoor air. The refrigerant takes heat from the air, evaporates and vaporizes it, and flows out to the refrigerant pipe 4a side.
  • the indoor air is used as the external fluid
  • the external fluid is not limited to the gas containing the indoor air and may be a liquid containing water.
  • the operating speed of the indoor blower 17 is determined by the user's setting. It is preferable to attach an inverter device to the indoor blower 17 and change the operating frequency of the fan motor 18 to change the rotation speed of the fan.
  • the indoor blower 17 is not limited to this as long as the same effect can be obtained.
  • the type of fan may be a sirocco fan or a plug fan.
  • the indoor blower 17 may be a pushing type or a pulling type.
  • This gas-liquid two-phase refrigerant flows into the indoor heat exchanger 14 of the indoor unit 2, evaporates by heat exchange with the indoor air blown by the indoor blower 17, becomes a low-temperature low-pressure gas refrigerant, and becomes an indoor heat exchanger. Outflow from 14. At this time, the indoor air that has been endothermic and cooled by the refrigerant becomes harmonized air (blow-out air) and is blown out from the indoor unit 2 into the room that is the air-conditioning target space. The gas refrigerant flowing out of the indoor heat exchanger 14 is sucked into the compressor 10 via the flow path switching device 11 and is compressed again. In the cooling operation of the air conditioner 1, the above operation is repeated (indicated by the solid arrow in FIG. 1).
  • the high-temperature and high-pressure gas refrigerant compressed and discharged by the compressor 10 flows into the indoor heat exchanger 14 of the indoor unit 2 via the flow path switching device 11.
  • the gas refrigerant flowing into the indoor heat exchanger 14 is condensed by heat exchange with the indoor air blown by the indoor blower 17, becomes a low-temperature refrigerant, and flows out from the indoor heat exchanger 14.
  • the indoor air that has been warmed by receiving heat from the gas refrigerant becomes conditioned air (blown air) and is blown out from the indoor unit 2 into the room.
  • the refrigerant flowing out of the indoor heat exchanger 14 is expanded and depressurized by the expansion device 13 to become a low-temperature low-pressure gas-liquid two-phase refrigerant.
  • This gas-liquid two-phase refrigerant flows into the outdoor heat exchanger 12 of the outdoor unit 3, evaporates by heat exchange with the outside air blown by the outdoor blower 15, becomes a low-temperature low-pressure gas refrigerant, and becomes the outdoor heat exchanger 12.
  • the gas refrigerant flowing out of the outdoor heat exchanger 12 is sucked into the compressor 10 via the flow path switching device 11 and is compressed again. In the heating operation of the air conditioner 1, the above operation is repeated (indicated by the broken line arrow in FIG. 1).
  • the refrigerant flowing out from the outdoor heat exchanger 12 during the cooling operation or the indoor heat exchanger 14 during the heating operation is a gas refrigerant (single phase).
  • the moisture in the air is condensed and evaporated.
  • Water droplets form on the surface of the vessel.
  • the water droplets generated on the surface of the evaporator are dropped downward along the surfaces of the fins and the heat transfer tube, and are discharged as drain water below the evaporator.
  • the heat exchanger 100 mounted on the air conditioner 1 according to the first embodiment will be described.
  • the heat exchanger 100 is applied to at least one of the outdoor heat exchanger 12 and the indoor heat exchanger 14 shown in FIG. 1, but it is particularly preferable to apply the heat exchanger 100 to a heat exchanger used as a condenser.
  • FIG. 2 is a schematic view showing an example of the heat exchanger 100 mounted on the air conditioner 1 according to the first embodiment.
  • FIG. 2A is a front view of the heat exchanger 100.
  • FIG. 2B is a cross-sectional view of the heat exchanger 100, and shows a cross-sectional view of a portion AA of FIG. 2A.
  • FIG. 2C is a top view of the heat exchanger 100.
  • the x direction is the width direction of the heat exchanger 100, the extension direction of the header 20 of the heat exchanger 100, the thickness direction of the flat tube 50 which is a flat heat transfer tube, and the flat tube 50. It shows the direction of parallelization.
  • the y direction is the height direction of the heat exchanger 100, and indicates the pipe axis direction of the flat tube 50, that is, the direction in which the refrigerant is along the flow.
  • the x direction is the depth direction of the heat exchanger 100, and indicates the horizontal direction intersecting the x direction, which is the extension direction of the header 20, that is, the width direction of the flat tube 50.
  • the AF indicated by the white arrow indicates the ventilation direction of the air supplied from the outdoor blower 15 (see FIG. 1) to the outdoor heat exchanger 12, and the RF indicated by the arrow is supplied to the heat exchanger 100. It represents the flow direction of the refrigerant.
  • the heat exchanger 100 is configured by arranging a plurality of flat tubes 50 in a row in the horizontal direction.
  • the plurality of flat tubes 50 are arranged with their pipe axes oriented in the vertical direction, a header 20 is connected to an upper end portion, and a header 30 is connected to a lower end portion.
  • the header 20 connects the upper ends of the plurality of flat tubes 50 to each other, and the header 30 connects the lower ends of the plurality of flat tubes 50 to each other. That is, the plurality of flat tubes 50 are arranged between the header 20 and the header 30.
  • the header 20 may be referred to as an upper header, and the header 30 may be referred to as a lower header.
  • the plurality of flat tubes 50 are heat transfer tubes having a multi-hole tube structure having a flat cross section, and in the first embodiment, the tube axes are provided so as to rise in the vertical direction, that is, in the y direction.
  • the plurality of flat tubes 50 are arranged side by side in the horizontal direction, that is, in the x direction at preset intervals between the upper and lower headers 20 and 30.
  • the heat transfer member such as the corrugated fin that connects the side surfaces of the flat tubes 50 is not arranged in the gap 80 between the adjacent flat tubes 50.
  • the heat exchanger 100 may be provided with a heat transfer member as needed.
  • the heat exchanger 100 includes a flat tube 50, a heat transfer tube having a cross-sectional shape such as a circular cross section may be used instead.
  • the upper and lower headers 20 and 30 are each formed in a hollow rectangular parallelepiped shape, and are provided with insertion holes so that the ends of a plurality of flat tubes 50 can be inserted.
  • a plurality of upper end portions 51 of the flat tubes 50 are inserted from below.
  • the connection strength between the plurality of flat pipes 50 and the headers 20 and 30 is secured, and the brazing material used for the connection flows into the refrigerant flow path in the flat pipe 50.
  • the flat tube 50 is projected into the headers 20 and 30 by a predetermined size for the purpose of preventing quality deterioration.
  • the header 20 is provided with a partition member 21 inside, and the inside is partitioned into two upper and lower spaces.
  • the space in which the upper end 51 of the plurality of flat tubes 50 is inserted is referred to as an insertion space S1
  • the space located above the insertion space S1 is referred to as an upper space S2.
  • the upper surface 23 on the upper space side of the partition member 21 faces the upper space S2, and the lower surface 24 on the insertion space side of the partition member 21 faces the insertion space S1.
  • the insertion space S1 and the upper space S2 are communicated with each other by a communication hole 22 which is a through hole provided in the partition member 21.
  • the communication hole 22 is circular and is arranged between the plurality of flat tubes 50 in the top view, that is, from the viewpoint in the pipe axis direction.
  • FIG. 3 is a front view of the heat exchanger 1100, which is a comparative example of the heat exchanger 100 according to the first embodiment.
  • the upper header 120 is connected to the upper end 51 of the plurality of flat tubes 50 and the lower header 120 is connected to the lower end 52, similarly to the heat exchanger 100 according to the first embodiment. 30 is connected.
  • the internal structure of the upper header 20 is different from that of the heat exchanger 100 according to the first embodiment, and the upper header 120 of the heat exchanger 1100 of the comparative example is not divided into two internal spaces.
  • the refrigerant circulates in the refrigerant circuit 5 of the air conditioner 1 and the refrigerating machine oil 90 discharged from the compressor 10 circulates. Therefore, the refrigerating machine oil 90 flows into the upper header 120 of the heat exchanger 1100 together with the refrigerant from the outflow port. Then, the refrigerating machine oil 90 adheres to the inner wall of the upper header 120 and gradually stays in the lower part of the upper header 120.
  • the end face 53 through which the refrigerant flow paths of the plurality of flat pipes 50 are open is located at a position higher than the bottom surface 126 of the upper header 120 by a predetermined height.
  • the refrigerating machine oil 90 retained in the heat exchanger 1100 is not discharged from the upper header 120 unless it reaches the end faces 53 of the plurality of flat tubes 50. Therefore, in the heat exchanger 1100 of the comparative example, the refrigerating machine oil 90 continues to stay inside the upper header 120.
  • the heat exchanger 100 can discharge the refrigerating machine oil 90 staying in the upper header 20 by the action described below.
  • FIGS. 2A and 2B there is a refrigerating machine oil 90 staying in the header 20 in the lower region of the insertion space S1.
  • the refrigerant flows into the header 20.
  • the refrigerant that has flowed into the upper space S2 of the header 20 passes through the communication hole 22 of the partition member 21 and moves to the insertion space S1.
  • the refrigerating machine oil 90 stays in the lower part of the insertion space S1.
  • FIG. 4 is an enlarged cross-sectional view of the upper header 20 of the heat exchanger 100 according to the first embodiment.
  • FIG. 4 is an enlarged view of the periphery of the upper header 20 of FIG. 2 (b).
  • the white arrows shown in FIG. 4 schematically represent an example of the flow of the refrigerant.
  • a plurality of communication holes 22 are formed in the partition member 21 provided inside the upper header 20 of the heat exchanger 100.
  • the refrigerant that has flowed into the upper header 20 flows into the upper space S2 of the upper header 20 at a predetermined pressure. When the refrigerant moves from the upper space S2 to the insertion space S1, it passes through the communication hole 22 having a smaller cross-sectional area than the upper space S2.
  • the refrigerant passing through the communication hole 22 flows into the insertion space S1 in a state where the flow velocity is increased. That is, the communication hole 22 is a condensing hole that reduces the cross-sectional area of the flow of the passing fluid and increases the flow velocity.
  • the flow of the refrigerant accelerated by passing through the communication hole 22 collides with the liquid level of the refrigerating machine oil 90 staying in the lower part of the insertion space S1, and the refrigerating machine oil 90 is scattered in the insertion space S1 and wound up.
  • the scattered droplets of the refrigerating machine oil 90 flow into the flat pipe 50 from the end face 53 together with the refrigerant. As a result, the refrigerating machine oil 90 staying in the upper header 20 can be reduced.
  • a plurality of communication holes 22 are provided in the partition member 21. Therefore, in the refrigerating machine oil 90 located below the plurality of communication holes 22, the flow of the refrigerant collides with the liquid surface, and the refrigerating machine oil 90 is scattered in the insertion space S1 and wound up.
  • the communication hole 22 is arranged between the plurality of flat pipes 50, and is provided at one place for every two of the gaps 80 between the plurality of flat pipes 50.
  • the number of communication holes 22 installed is not limited to that shown in FIG.
  • FIG. 5 is a modified example of the communication hole 22 provided in the upper header 20 of the heat exchanger 100 according to the first embodiment.
  • the upper header 20 does not have to be in the form of providing one communication hole 22 for each of the gaps between the plurality of flat tubes 50 as shown in FIG. 2C.
  • the upper header 20a of the modified example is provided with, for example, a plurality of communication holes 22a having a cross-sectional area smaller than that of the communication holes 22 at positions corresponding to the gaps 80 of the plurality of flat pipes 50.
  • the communication hole 22a can be installed even when the distance between the plurality of flat tubes 50 is narrow.
  • the cross-sectional shape of the communication holes 22 and 22a is not limited to a circle, and may be an oval, an ellipse, a rectangle, or the like.
  • the insertion space S1 and the upper space S2 of the upper header 20 are limited to a form partitioned by a partition member 21 arranged perpendicularly to the pipe axis direction of the flat pipe 50, as shown in FIG. is not.
  • the partition member 21 may be installed at an angle in FIG. 4, and may be configured so that the flow of the refrigerant passing through the communication hole 22 collides with the liquid surface of the retained refrigerating machine oil 90.
  • the heat exchanger 100 When the heat exchanger 100 is used as a condenser in the refrigerant circuit 5 shown in FIG. 1, gas refrigerant flows in from the outflow port 29. In this case, since the refrigerating machine oil 90 of the compressor 10 flows into the upper header 20 together with the gas refrigerant, the refrigerating machine oil 90 tends to adhere to the inside of the upper header 20 and stay there. However, according to the heat exchanger 100, the refrigerating machine oil 90 can be scattered and flowed into the plurality of flat pipes 50 by the above configuration, so that the retention of the refrigerating machine oil 90 can be suppressed.
  • the heat exchanger 100 may be incorporated in the refrigerant circuit 5 so that the upper header 20 and the discharge side of the compressor 10 are connected when used as a condenser.
  • the air conditioner 1 to which the heat exchanger 100 is applied can prevent the compressor 10 from stopping due to seizure or the like by returning the discharged refrigerating machine oil 90 to the compressor 10, and the compressor 10 can be prevented from stopping. It is possible to suppress deterioration of quality such as shortening the life of the air conditioner. Thus, it is possible to realize the heat exchanger 100 and the air conditioner 1 using the heat exchanger 100, which can reduce the retention of the refrigerating machine oil 90 and improve the quality.
  • the heat exchanger 200 according to the second embodiment is a modification of the shape of the partition member 21 provided on the upper header 20 according to the first embodiment.
  • FIG. 6 is an enlarged cross-sectional view of the upper header 220 of the heat exchanger 200 according to the second embodiment.
  • the upper header 220 of the heat exchanger 200 according to the second embodiment includes a partition member 221.
  • the partition member 221 includes an inclined surface 223a inclined in the direction of gravity toward the communication hole 22 on the upper surface 223 on the upper space S2 side.
  • the partition member 221 is inclined so that both the left and right ends are high and the central part is low in the cross section shown in FIG.
  • the refrigerating machine oil 90 that has moved from the upper space S2 to the insertion space S1 is scattered by the flow of the refrigerant accelerated by the communication hole 22 and flows into the plurality of flat pipes 50 as described in the first embodiment.
  • the heat exchanger 200 according to the second embodiment has an advantage that the refrigerating machine oil 90 staying in the upper space S2 can be further reduced while obtaining the effect of the heat exchanger 100 according to the first embodiment.
  • the partition member 221 has the cross-sectional shape shown in FIG. 6 in each cross section in the x direction.
  • the shape of the partition member 221 is not limited to this, and an inclined surface inclined in the direction of gravity toward the communication hole 22 may be provided in a mortar shape around the communication hole 22.
  • the partition member 221 has different thicknesses at the left and right end portions and the central portion of the cross section shown in FIG. 6, but may be formed to have a uniform thickness.
  • the flat plate may be bent at the central portion where the communication hole 22 is provided to form the partition member 221.
  • the heat exchanger 300 according to the third embodiment is a modification of the shape of the partition member 21 provided on the upper header 20 according to the first embodiment.
  • FIG. 7 is an enlarged cross-sectional view of the upper header 320 of the heat exchanger 300 according to the third embodiment.
  • the upper header 320 of the heat exchanger 300 according to the third embodiment includes a partition member 321.
  • the partition member 321 is provided with a plurality of hemispherical protrusions 325 on the lower surface 324 on the insertion space S1 side.
  • the flow of the refrigerant through the communication hole 22 collides with the liquid level of the refrigerating machine oil 90 staying in the lower part of the upper header 320, and the refrigerating machine oil 90 scatters.
  • the scattered refrigerating machine oil 90 may not only flow into the plurality of flat pipes 50 together with the refrigerant, but may also adhere to the lower surface 324 of the partition member 321.
  • the lower surface 324 of the partition member 321 is provided with the plurality of protrusions 325, the refrigerating machine oil 90 adhering to the lower surface 324 is aggregated on the top of the protrusions 325 due to surface tension, and easily falls from the lower surface 324.
  • the refrigerating machine oil 90 that has fallen from the lower surface 324 stays in the lower part of the insertion space S1 and is scattered again by the refrigerant, or is scattered by the flow of the refrigerant during the fall and flows into the plurality of flat pipes 50 together with the refrigerant.
  • the heat exchanger 300 according to the third embodiment adheres to the lower surface 324 of the partition member 321 inside the upper header 320 while obtaining the effect of the heat exchanger 100 according to the first embodiment. There is an advantage that the refrigerating machine oil 90 is also reduced.
  • the partition member 321a according to the modified example has a protrusion 325a extending in the x direction and is formed as a ridge. Further, in the partition member 321b according to the modified example, hemispherical protrusions 325b are arranged side by side in two rows. As described above, the shape and arrangement position of the protrusion 325 may be changed. Further, when the protrusion 325 has a sharp tip, the agglutination of the refrigerating machine oil 90 is promoted. For example, the protrusion 325 may be formed in a conical shape.
  • the partition member 321 can aggregate and drop the refrigerating machine oil 90 by forming minute irregularities by roughening the surface of the lower surface 324.
  • the heat exchanger 400 according to the fourth embodiment is a modification of the shape of the communication hole 22 of the partition member 21 provided in the upper header 20 according to the first embodiment.
  • FIG. 10 is a schematic view showing an example of the heat exchanger 400 mounted on the air conditioner 1 according to the fourth embodiment.
  • FIG. 10A is a front view of the heat exchanger 400.
  • 10 (b) is a cross-sectional view of the heat exchanger 400, and shows a cross-sectional view of a portion AA of FIG. 10 (a).
  • FIG. 10 (c) is a top view of the heat exchanger 400.
  • the upper header 420 of the heat exchanger 400 according to the fourth embodiment includes a partition member 421.
  • the partition member 421 includes a communication hole 422 long in the x direction.
  • the communication holes 422 are arranged so as to straddle the plurality of flat tubes 50 in a plan view.
  • the distance between the plurality of flat tubes 50 may be narrow. In this case, it is difficult to provide the communication hole 22 provided in the partition member 21 at a position corresponding to the gap 80 of the plurality of flat pipes 50.
  • the communication hole 22 is located above the flat pipe 50, the refrigerant directly collides with the end surface 53 of the flat pipe 50 from the communication hole 22. In this case, there is a concern that the area where the flow of the refrigerant from the communication hole 22 collides with the liquid surface of the refrigerating machine oil 90 where it has accumulated becomes smaller, and the effect of scattering the refrigerating machine oil 90 becomes smaller.
  • the cross-sectional area s of the communication hole 422 may be set as small as possible with respect to the area S of the upper surface 423 of the partition member 421.
  • the length of the communication hole 422 in the x direction may be set larger than the distance between the communication holes 422 and the adjacent communication holes 422.
  • the heat exchanger 500 according to the fifth embodiment is a modification of the arrangement of the plurality of flat tubes 50 according to the first embodiment. Accordingly, the structure of the upper header 520 of the heat exchanger 500 is different from that of the upper header 20 of the heat exchanger 100.
  • FIG. 11 is a schematic view showing an example of the heat exchanger 500 mounted on the air conditioner 1 according to the fifth embodiment.
  • FIG. 11A is a front view of the heat exchanger 500.
  • 11 (b) is a cross-sectional view of the heat exchanger 500, and shows a cross-sectional view of a portion AA of FIG. 11 (a).
  • FIG. 11C is a top view of the heat exchanger 500.
  • the heat exchanger 500 according to the fifth embodiment includes a plurality of flat tube groups 550a and 550b.
  • the first flat tube group 550a and the second flat tube group 550b are arranged in series along the flow of a fluid such as air passing through the heat exchanger 500.
  • Each of the first flat tube group 550a and the second flat tube group 550b is arranged in parallel in the horizontal direction with the tube axes facing up and down like the plurality of flat tubes 50 of the heat exchanger 100 according to the first embodiment. ..
  • a lower header 30a is connected to the lower end 52 of the first flat tube group 550a.
  • a lower header 30b is connected to the lower end 52 of the second flat tube group 550b.
  • the lower header 30a is connected to the refrigerant circuit 5 and the refrigerant flows into the lower header 30a.
  • the inflowing refrigerant flows into the upper header 520 via the respective flat pipes 50a of the first flat pipe group 550a, and flows into the lower header 30b from the upper header 520 via the respective flat pipes 50b of the second flat pipe group 550b.
  • the lower header 30b is connected to the refrigerant circuit 5, and the refrigerant flows out from the outflow port.
  • the upper header 520 is divided into upper and lower internal spaces by a partition member 521 to form an upper space S2 and an insertion space S1.
  • the insertion space S1 is divided into a first insertion space S1a into which the upper end 51 of the first flat tube group 550a is inserted and a second insertion space S2b into which the upper end 51 of the second flat tube group 550b is inserted. It is partitioned.
  • a partition portion 526 is joined to the lower surface 524 of the partition member 521, and the partition portion 526 partitions the insertion space S1 in the direction in which a plurality of flat tube groups 550a and 550b are arranged.
  • FIG. 12 is an enlarged cross-sectional view of the upper header 520 of the heat exchanger 500 according to the fifth embodiment.
  • the heat exchanger 500 of the fifth embodiment scatters the stagnant refrigerating machine oil 90 as follows and sends it to the downstream side.
  • the flow of the refrigerant in the first insertion space S1a is indicated by a black arrow and a white arrow in the figure.
  • Refrigerant flows into the upper header 520 from the first flat tube group 550a.
  • the refrigerant R flowing out from the end surface 53 of the first flat tube group 550a hits the lower surface 524 of the partition member 521, changes the direction of flow, flows downward so as to convect in the first insertion space S1a in the vertical direction, and stays therethrough. It hits the liquid level of the refrigerating machine oil 90 and flows upward again.
  • the refrigerant scatters the refrigerating machine oil 90, passes through the communication hole 22, and flows into the upper space S2.
  • the refrigerant that has flowed into the upper space S2 from the first insertion space S1a flows into the second insertion space S1b from the communication hole 22 that communicates with the second insertion space S1b.
  • the communication hole 22 communicating with the second insertion space functions in the same manner as the communication hole 22 provided in the upper header 20 of the heat exchanger 100 according to the first embodiment, and the refrigerant flowing in from the communication hole 22 functions.
  • the refrigerating machine oil 90 staying in the lower part of the second insertion space S1b is scattered and flows into the second flat tube group 550b together with the refrigerant.
  • the heat exchanger 500 according to the fifth embodiment is used as a condenser in the air conditioner 1, the refrigerant that has passed through the first flat tube group 550a is condensed and used as a gas-liquid two-phase refrigerant in the first insertion space S1a. Inflow to. Therefore, not only the refrigerating machine oil 90 but also the liquid phase refrigerant may stay in the lower part of the first insertion space S1a and the second insertion space S2b of the upper header 520.
  • the staying liquid-phase refrigerant and the refrigerating machine oil 90 are sent downstream by the above action, and the staying liquid-phase refrigerant and the refrigerating machine oil 90 are sent to the inside of the upper header 520.
  • the effect of reducing is obtained. Even when the heat exchanger 500 is used as an evaporator, the effect of reducing the amount of the liquid phase refrigerant and the refrigerating machine oil 90 that stays due to the above action can be obtained.
  • FIG. 13 is a modified example of the communication hole 22 provided in the upper header 520 of the heat exchanger 500 according to the fifth embodiment.
  • the communication hole 22 provided in the partition member 521 of the upper header 520 can have the same shape as the communication hole 422 of the upper header 420 according to the fourth embodiment. Further, the communication hole 22 may be the communication hole 22a shown in FIG.
  • the present invention is not limited to the above-described embodiments.
  • each embodiment may be combined as appropriate.
  • the plurality of heat transfer tubes included in the heat exchangers 100, 200, 300, 400, and 500 have been described as flat tubes 50, but heat transfer tubes having a circular cross section may be used. good.
  • the flat tubes 50, 50a, 50b, the first flat tube group 550a, and the second flat tube group 55b may be referred to as a heat transfer tube, a first heat transfer tube group, and a second heat transfer tube group, respectively.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

Provided are a heat exchanger in which retention of refrigerator oil is reduced and with which it is possible to improve quality, and a refrigeration cycle device in which the heat exchanger is used. The heat exchanger and the refrigeration cycle device according to the present invention are provided with: a plurality of heat transfer tubes in which the tube axes extend in the vertical direction, the plurality of heat transfer tubes being arranged next to each other in the horizontal direction; and a header connecting the upper end parts of the plurality of heat transfer tubes to each other. The header is provided with a partition member that partitions the interior into an insertion space, into which the upper end parts of the plurality of heat transfer tubes are inserted, and an upper space located above the insertion space. The partition member is provided with through-holes via which the insertion space and the upper space communicate with each other.

Description

熱交換器及び冷凍サイクル装置Heat exchanger and refrigeration cycle equipment
 本発明は、熱交換器及びその熱交換器を備える冷凍サイクル装置に関し、特にヘッダの構造に関する。 The present invention relates to a heat exchanger and a refrigeration cycle device including the heat exchanger, and particularly to a header structure.
 冷凍サイクル装置である空気調和装置において室内機に搭載された凝縮器として機能する熱交換器が知られている。この熱交換器で凝縮された液冷媒は、膨張装置によって減圧され、ガス冷媒と液冷媒とが混在する気液二相状態となる。そして、気液二相状態の冷媒は、室外機に搭載された蒸発器として機能する熱交換器にて気液二相状態の冷媒のうち液冷媒が蒸発されて低圧のガス冷媒となる。この後、この熱交換器から送り出された低圧のガス冷媒は、室外機に搭載された圧縮機に流れ込み、圧縮されて高温高圧のガス冷媒となって、再び圧縮機から吐出する。以下、このサイクルが繰り返される(例えば、特許文献1参照)。 A heat exchanger that functions as a condenser mounted on an indoor unit in an air conditioner that is a refrigeration cycle device is known. The liquid refrigerant condensed by this heat exchanger is depressurized by the expansion device, and becomes a gas-liquid two-phase state in which the gas refrigerant and the liquid refrigerant are mixed. Then, the refrigerant in the gas-liquid two-phase state is converted into a low-pressure gas refrigerant by evaporating the liquid refrigerant among the refrigerants in the gas-liquid two-phase state in a heat exchanger that functions as an evaporator mounted on the outdoor unit. After that, the low-pressure gas refrigerant sent out from the heat exchanger flows into the compressor mounted on the outdoor unit, is compressed, becomes a high-temperature and high-pressure gas refrigerant, and is discharged from the compressor again. Hereinafter, this cycle is repeated (see, for example, Patent Document 1).
 このような空気調和装置、すなわち冷凍サイクル装置の冷媒回路には、冷媒と共に、圧縮機の摺動部などを潤滑する冷凍機油が混在した状態で循環される。例えば、熱交換器が凝縮器として動作する場合、上側のヘッダにガス冷媒と冷凍機油とが流入し、冷媒は相変化しながら伝熱管内を流れ、液冷媒として下側のヘッダへ流入する。 In such an air conditioner, that is, the refrigerant circuit of the refrigerating cycle device, the refrigerating machine oil that lubricates the sliding part of the compressor is circulated together with the refrigerant. For example, when the heat exchanger operates as a condenser, the gas refrigerant and the refrigerating machine oil flow into the upper header, the refrigerant flows through the heat transfer tube while changing the phase, and flows into the lower header as a liquid refrigerant.
 ここで、従来の熱交換器では、とりわけ伝熱管が扁平形状の多穴管構造である場合、冷凍機油が混じった状態のガス冷媒がヘッダ内に流入すると、当該ガス冷媒に混在していた冷凍機油が分離される。そして、分離された冷凍機油は、ガス冷媒と共に伝熱管内へ流入する。このとき、伝熱管の穴が微細であるため、冷凍機油が伝熱管内へ流入し難く、ヘッダ内に滞留する問題があった。 Here, in the conventional heat exchanger, especially when the heat transfer tube has a flat multi-hole tube structure, when the gas refrigerant mixed with the refrigerating machine oil flows into the header, the refrigeration mixed in the gas refrigerant is performed. Machine oil is separated. Then, the separated refrigerating machine oil flows into the heat transfer tube together with the gas refrigerant. At this time, since the holes in the heat transfer tube are fine, it is difficult for the refrigerating machine oil to flow into the heat transfer tube, and there is a problem that the refrigerating machine oil stays in the header.
 そのため、特許文献1に記載の熱交換器では、上側のヘッダ内に突出した伝熱管の突出長さよりも短い突出長さを有する配管を設けるようにした。これにより、上側のヘッダに設けた配管を介して、当該ヘッダ内の冷凍機油を下側のヘッダに戻し、上側のヘッダ内に冷凍機油が滞留するのを抑制していた。 Therefore, in the heat exchanger described in Patent Document 1, a pipe having a protruding length shorter than the protruding length of the heat transfer tube protruding in the upper header is provided. As a result, the refrigerating machine oil in the header is returned to the lower header via the pipe provided in the upper header, and the refrigerating machine oil is suppressed from staying in the upper header.
特開2005-24188号公報Japanese Unexamined Patent Publication No. 2005-24188
 しかしながら、特許文献1の熱交換器では、ヘッダ内に突出した隣り合う複数の伝熱管のうちの一部の間に、前述した配管が配置されている。したがって、配管が配置された両隣の伝熱管の間の領域に関しては、冷凍機油が配管から排出されるが、配管が配置されていない領域の隣り合う伝熱管の間では、冷凍機油が排出されることなく滞留する虞があった。 However, in the heat exchanger of Patent Document 1, the above-mentioned piping is arranged between a part of a plurality of adjacent heat transfer tubes protruding in the header. Therefore, the refrigerating machine oil is discharged from the pipes in the area between the heat transfer pipes on both sides where the pipes are arranged, but the refrigerating machine oil is discharged between the adjacent heat transfer pipes in the area where the pipes are not arranged. There was a risk of staying without.
 本発明は、上記課題を解決するためのものであり、冷凍機油の滞留を低減し、品質の改善が可能な熱交換器及びその熱交換器を備える冷凍サイクル装置を提供することを目的とする。 An object of the present invention is to solve the above problems, and an object of the present invention is to provide a heat exchanger capable of reducing the retention of refrigerating machine oil and improving the quality, and a refrigeration cycle apparatus including the heat exchanger. ..
 本発明に係る熱交換器は、管軸が上下方向に延び、水平方向に並んで配置された複数の伝熱管と、前記複数の伝熱管の上側端部同士を接続するヘッダと、を備え、前記ヘッダは、内部を前記複数の伝熱管の前記上側端部が挿入されている挿入空間と前記挿入空間の上側に位置する上側空間とに仕切る仕切部材を備え、前記仕切部材は、前記挿入空間と前記上側空間との間を連通する連通孔を備える、ものである。 The heat exchanger according to the present invention includes a plurality of heat transfer tubes whose tube shafts extend in the vertical direction and are arranged side by side in the horizontal direction, and a header for connecting the upper ends of the plurality of heat transfer tubes. The header includes a partition member that partitions the inside into an insertion space into which the upper end of the plurality of heat transfer tubes is inserted and an upper space located above the insertion space, and the partition member is the insertion space. It is provided with a communication hole for communicating between the upper space and the upper space.
 また、本発明に係る冷凍サイクル装置は、少なくとも圧縮機、凝縮器、膨張装置および蒸発器を有する冷媒回路を備え、前記凝縮器または前記蒸発器として上記熱交換器を搭載した、ものである。 Further, the refrigeration cycle device according to the present invention includes a refrigerant circuit having at least a compressor, a condenser, an expansion device and an evaporator, and is equipped with the heat exchanger as the condenser or the evaporator.
 本発明によれば、ヘッダを仕切部材により上下に仕切り、仕切部材に連通孔を備えるため、ヘッダ内において連通孔を通過する冷媒の流速を増加させることができる。流速が増加した冷媒は、ヘッダ内部に滞留する冷凍機油に衝突し、冷凍機油を飛散させ、巻き上げることにより、冷媒の流れと共に冷媒回路の下流側に冷凍機油を送り、熱交換器に滞留する冷凍機油を低減させることができる。 According to the present invention, since the header is partitioned up and down by a partition member and the partition member is provided with a communication hole, the flow velocity of the refrigerant passing through the communication hole in the header can be increased. The refrigerant with increased flow velocity collides with the refrigerating machine oil staying inside the header, scatters the refrigerating machine oil, and winds it up to send the refrigerating machine oil to the downstream side of the refrigerant circuit along with the flow of the refrigerant, and the refrigeration stays in the heat exchanger. Machine oil can be reduced.
実施の形態1に係る空気調和装置1の冷媒回路5を示す模式図である。It is a schematic diagram which shows the refrigerant circuit 5 of the air conditioner 1 which concerns on Embodiment 1. FIG. 実施の形態1に係る空気調和装置1に搭載される熱交換器100の一例を示す模式図である。It is a schematic diagram which shows an example of the heat exchanger 100 mounted on the air conditioner 1 which concerns on Embodiment 1. FIG. 実施の形態1に係る熱交換器100の比較例である熱交換器1100の正面図である。It is a front view of the heat exchanger 1100 which is a comparative example of the heat exchanger 100 which concerns on Embodiment 1. FIG. 実施の形態1に係る熱交換器100の上側ヘッダ20の拡大断面図である。FIG. 5 is an enlarged cross-sectional view of the upper header 20 of the heat exchanger 100 according to the first embodiment. 実施の形態1に係る熱交換器100の上側ヘッダ20に設けられた連通孔22の変形例である。This is a modification of the communication hole 22 provided in the upper header 20 of the heat exchanger 100 according to the first embodiment. 実施の形態2に係る熱交換器200の上側ヘッダ220の拡大断面図である。It is an enlarged sectional view of the upper header 220 of the heat exchanger 200 which concerns on Embodiment 2. FIG. 実施の形態3に係る熱交換器300の上側ヘッダ320の拡大断面図である。It is an enlarged sectional view of the upper header 320 of the heat exchanger 300 which concerns on Embodiment 3. FIG. 実施の形態3に係る熱交換器300の上側ヘッダ320の仕切部材321の変形例である。This is a modification of the partition member 321 of the upper header 320 of the heat exchanger 300 according to the third embodiment. 実施の形態3に係る熱交換器300の上側ヘッダ320の仕切部材321の変形例である。This is a modification of the partition member 321 of the upper header 320 of the heat exchanger 300 according to the third embodiment. 実施の形態4に係る空気調和装置1に搭載される熱交換器400の一例を示す模式図である。It is a schematic diagram which shows an example of the heat exchanger 400 mounted on the air conditioner 1 which concerns on Embodiment 4. FIG. 実施の形態5に係る空気調和装置1に搭載される熱交換器500の一例を示す模式図である。It is a schematic diagram which shows an example of the heat exchanger 500 mounted on the air conditioner 1 which concerns on Embodiment 5. FIG. 実施の形態5に係る熱交換器500の上側ヘッダ520の拡大断面図である。FIG. 5 is an enlarged cross-sectional view of the upper header 520 of the heat exchanger 500 according to the fifth embodiment. 実施の形態5に係る熱交換器500の上側ヘッダ520に設けられた連通孔22の変形例である。This is a modification of the communication hole 22 provided in the upper header 520 of the heat exchanger 500 according to the fifth embodiment.
 以下、図面に基づいて実施の形態について説明する。なお、各図において、同一の符号を付したものは、同一のまたはこれに相当するものであり、これは明細書の全文において共通している。また、明細書全文に示す構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。さらに、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。 Hereinafter, embodiments will be described based on the drawings. It should be noted that, in each figure, those having the same reference numerals are the same or equivalent thereof, which are common in the entire text of the specification. In addition, the forms of the components shown in the entire specification are merely examples, and are not limited to these descriptions. Further, in the drawings below, the relationship between the sizes of the constituent members may differ from the actual one.
 実施の形態1.
<空気調和装置1の構成>
 図1を参照しながら、実施の形態1に係る熱交換器100を適用した冷凍サイクル装置としての空気調和装置1について説明する。なお、実施の形態1に係る熱交換器100は、空気調和装置1の室外熱交換器12又は室内熱交換器14の少なくとも一方として構成されている。
Embodiment 1.
<Configuration of air conditioner 1>
The air conditioner 1 as a refrigeration cycle device to which the heat exchanger 100 according to the first embodiment is applied will be described with reference to FIG. The heat exchanger 100 according to the first embodiment is configured as at least one of the outdoor heat exchanger 12 and the indoor heat exchanger 14 of the air conditioner 1.
 図1は、実施の形態1に係る空気調和装置1の冷媒回路5を示す模式図である。図1に示すように、実施の形態1に係る空気調和装置1は、冷媒を介して外気と室内の空気との間で熱を移動させることにより、冷房又は暖房を行う。空気調和装置1は、室内の空気調和を行うものであり、室内機2と室外機3とを有している。 FIG. 1 is a schematic diagram showing a refrigerant circuit 5 of the air conditioner 1 according to the first embodiment. As shown in FIG. 1, the air conditioner 1 according to the first embodiment performs cooling or heating by transferring heat between the outside air and the indoor air via a refrigerant. The air conditioner 1 is for air conditioning indoors, and has an indoor unit 2 and an outdoor unit 3.
 空気調和装置1を流れる冷媒としては、例えば、R32冷媒、低GWP冷媒であるR290冷媒、前述のR32冷媒を主成分とする混合冷媒、または、R290冷媒を主成分とする混合冷媒等の種々の冷媒を適用できる。また、オレフィン系冷媒、プロパンまたはDME(ジメチルエーテル)等、R32冷媒またはR410A冷媒に対して、ガス密度の小さい冷媒は、能力当たりの冷媒流速が高くなるため、圧力損失低減による性能改善効果が大きい。なお、オレフィン系冷媒としては、HFO1234yf、もしくは、HFO1234ze(E)等が挙げられる。また、空気調和装置1の冷媒回路5には、冷媒と共に冷凍機油が循環している。冷凍機油は、圧縮機10の構成部品を潤滑するためのものであり、通常は圧縮機10の内部を循環するが、一部は冷媒と共に冷媒回路5に吐出される。 Examples of the refrigerant flowing through the air conditioner 1 include various refrigerants such as R32 refrigerant, R290 refrigerant which is a low GWP refrigerant, the above-mentioned mixed refrigerant containing R32 refrigerant as a main component, and mixed refrigerant containing R290 refrigerant as a main component. Refrigerant can be applied. Further, a refrigerant having a smaller gas density than an R32 refrigerant or an R410A refrigerant such as an olefin-based refrigerant, propane or DME (dimethyl ether) has a higher refrigerant flow velocity per capacity, and therefore has a great effect of improving performance by reducing pressure loss. Examples of the olefin-based refrigerant include HFO1234yf, HFO1234ze (E), and the like. Further, refrigerating machine oil is circulated together with the refrigerant in the refrigerant circuit 5 of the air conditioner 1. The refrigerating machine oil is for lubricating the components of the compressor 10, and normally circulates inside the compressor 10, but a part of the refrigerating machine oil is discharged to the refrigerant circuit 5 together with the refrigerant.
 空気調和装置1においては、室内機2と室外機3とが冷媒配管4、4a、4bを介して配管接続され、冷媒が循環する冷媒回路5を構成している。冷媒回路5には、圧縮機10、流路切替装置11、室外熱交換器12、膨張装置13および室内熱交換器14が設けられ、これらが冷媒配管4、4a、4bを介して接続されている。 In the air conditioner 1, the indoor unit 2 and the outdoor unit 3 are connected by pipes via the refrigerant pipes 4, 4a and 4b to form a refrigerant circuit 5 in which the refrigerant circulates. The refrigerant circuit 5 is provided with a compressor 10, a flow path switching device 11, an outdoor heat exchanger 12, an expansion device 13, and an indoor heat exchanger 14, and these are connected via refrigerant pipes 4, 4a, and 4b. There is.
 室外機3は、圧縮機10、流路切替装置11、室外熱交換器12および膨張装置13を有している。圧縮機10は、吸入した冷媒を圧縮して吐出する。ここで、圧縮機10は、インバータ装置を備えていてもよい。インバータ装置を備えた場合、制御部6によって運転周波数を変化させて、圧縮機10の容量を変更することができる。なお、圧縮機10の容量とは、単位時間当たりに送り出す冷媒の量である。 The outdoor unit 3 has a compressor 10, a flow path switching device 11, an outdoor heat exchanger 12, and an expansion device 13. The compressor 10 compresses and discharges the sucked refrigerant. Here, the compressor 10 may include an inverter device. When the inverter device is provided, the operation frequency can be changed by the control unit 6 to change the capacity of the compressor 10. The capacity of the compressor 10 is the amount of refrigerant delivered per unit time.
 流路切替装置11は、例えば四方弁であり、冷媒流路の方向の切り換えが行われる装置である。空気調和装置1は、制御部6からの指示に基づいて、流路切替装置11を用いて冷媒の流れを切り換えることで、暖房運転または冷房運転を実現することができる。室外熱交換器12は、冷媒と室外空気との熱交換を行う。また、室外熱交換器12には、冷媒と室外空気との間の熱交換の効率を高めるために、室外送風機15が設けられている。室外送風機15には、インバータ装置が取り付けられていてもよい。この場合、インバータ装置は、室外送風機15の駆動源であるファンモーター16の運転周波数を変化させてファンの回転速度を変更する。なお、室外送風機15は、同様の効果が得られるものであればこれに限らず、例えば、ファンの種類はシロッコファンでもよいし、プラグファンでもよい。また、室外送風機15は押し込み方式でもよいし、引っぱり方式でもよい。 The flow path switching device 11 is, for example, a four-way valve, which switches the direction of the refrigerant flow path. The air conditioner 1 can realize a heating operation or a cooling operation by switching the flow of the refrigerant by using the flow path switching device 11 based on the instruction from the control unit 6. The outdoor heat exchanger 12 exchanges heat between the refrigerant and the outdoor air. Further, the outdoor heat exchanger 12 is provided with an outdoor blower 15 in order to improve the efficiency of heat exchange between the refrigerant and the outdoor air. An inverter device may be attached to the outdoor blower 15. In this case, the inverter device changes the rotation speed of the fan by changing the operating frequency of the fan motor 16 which is the drive source of the outdoor blower 15. The outdoor blower 15 is not limited to this as long as the same effect can be obtained. For example, the type of fan may be a sirocco fan or a plug fan. Further, the outdoor blower 15 may be a pushing type or a pulling type.
 ここで、室外熱交換器12は、暖房運転時において蒸発器として機能し、冷媒配管4b側から流入した低圧の冷媒と、室外空気と、の間で熱交換を行って冷媒を蒸発させて気化させ、冷媒配管4a側に流出させる。また、室外熱交換器12は、冷房運転時において凝縮器として機能し、冷媒配管4a側から流路切替装置11を介して流入した圧縮機10にて圧縮済の冷媒と、室外空気と、の間で熱交換を行い、冷媒を凝縮させて液化させ、冷媒配管4b側に流出させる。なお、ここでは室外空気を外部流体として用いる場合を例に説明したが、外部流体は室外空気を含む気体に限らず、水を含む液体であってもよい。 Here, the outdoor heat exchanger 12 functions as an evaporator during the heating operation, and exchanges heat between the low-pressure refrigerant flowing in from the refrigerant pipe 4b side and the outdoor air to evaporate the refrigerant and vaporize it. And let it flow out to the refrigerant pipe 4a side. Further, the outdoor heat exchanger 12 functions as a condenser during the cooling operation, and the refrigerant compressed by the compressor 10 flowing in from the refrigerant pipe 4a side via the flow path switching device 11 and the outdoor air. Heat exchange is performed between the refrigerants to condense and liquefy the refrigerant, and the refrigerant flows out to the refrigerant pipe 4b side. Although the case where the outdoor air is used as the external fluid has been described here as an example, the external fluid is not limited to the gas containing the outdoor air, and may be a liquid containing water.
 膨張装置13は、冷媒の流量を制御する絞り装置であり、膨張装置13の開度を変化させることで冷媒配管4を流れる冷媒の流量を調節することにより、冷媒の圧力を調整する。膨張装置13は、冷房運転時において、高圧の液状態の冷媒を低圧の気液二相状態の冷媒へと膨張させ減圧させる。なお、膨張装置13としてはこれに限らず、同様の効果が得られるものであれば、電子膨張弁またはキャピラリーチューブ等でもよい。例えば、膨張装置13が、電子式膨張弁で構成された場合は、制御部6の指示に基づいて開度調整が行われる。 The expansion device 13 is a throttle device that controls the flow rate of the refrigerant, and adjusts the pressure of the refrigerant by adjusting the flow rate of the refrigerant flowing through the refrigerant pipe 4 by changing the opening degree of the expansion device 13. During the cooling operation, the expansion device 13 expands the high-pressure liquid state refrigerant into the low-pressure gas-liquid two-phase state refrigerant to reduce the pressure. The expansion device 13 is not limited to this, and an electronic expansion valve, a capillary tube, or the like may be used as long as the same effect can be obtained. For example, when the expansion device 13 is composed of an electronic expansion valve, the opening degree is adjusted based on the instruction of the control unit 6.
 室内機2は、冷媒と室内空気との間で熱交換を行う室内熱交換器14と、室内熱交換器14が熱交換を行う空気の流れを調整する室内送風機17と、を有する。 The indoor unit 2 includes an indoor heat exchanger 14 that exchanges heat between the refrigerant and the indoor air, and an indoor blower 17 that adjusts the flow of air that the indoor heat exchanger 14 exchanges heat with.
 室内熱交換器14は、暖房運転時において凝縮器の働きをし、冷媒配管4a側から流入した冷媒と、室内空気と、の間で熱交換を行い、冷媒を凝縮させて液化させ、冷媒配管4b側に流出させる。また、室内熱交換器14は、冷房運転時において蒸発器として機能し、冷媒配管4b側から流入した膨張装置13によって低圧状態にされた冷媒と、室内空気と、の間で熱交換を行い、冷媒に空気の熱を奪わせて蒸発させて気化させ、冷媒配管4a側に流出させる。なお、ここでは室内空気を外部流体として用いる場合を例に説明したが、外部流体は室内空気を含む気体に限らず、水を含む液体であってもよい。 The indoor heat exchanger 14 acts as a condenser during the heating operation, exchanges heat between the refrigerant flowing in from the refrigerant pipe 4a side and the indoor air, condenses the refrigerant and liquefies it, and causes the refrigerant pipe. Let it flow out to the 4b side. Further, the indoor heat exchanger 14 functions as an evaporator during the cooling operation, and exchanges heat between the refrigerant brought into a low pressure state by the expansion device 13 flowing in from the refrigerant pipe 4b side and the indoor air. The refrigerant takes heat from the air, evaporates and vaporizes it, and flows out to the refrigerant pipe 4a side. Although the case where the indoor air is used as the external fluid has been described here as an example, the external fluid is not limited to the gas containing the indoor air and may be a liquid containing water.
 室内送風機17の運転速度は、ユーザーの設定により決定される。室内送風機17には、インバータ装置を取り付け、ファンモーター18の運転周波数を変化させてファンの回転速度を変更することが好ましい。なお、室内送風機17は、同様の効果が得られるものであればこれに限らず、例えば、ファンの種類はシロッコファンでもよいし、プラグファンでもよい。また、室内送風機17は押し込み方式でもよいし、引っぱり方式でもよい。 The operating speed of the indoor blower 17 is determined by the user's setting. It is preferable to attach an inverter device to the indoor blower 17 and change the operating frequency of the fan motor 18 to change the rotation speed of the fan. The indoor blower 17 is not limited to this as long as the same effect can be obtained. For example, the type of fan may be a sirocco fan or a plug fan. Further, the indoor blower 17 may be a pushing type or a pulling type.
<空気調和装置1の冷房および暖房運転の動作例>
 次に、空気調和装置1の動作例として冷房運転の動作を説明する。圧縮機10によって圧縮され吐出された高温高圧のガス冷媒は、流路切替装置11を経由して、室外熱交換器12に流入する。室外熱交換器12に流入したガス冷媒は、室外送風機15により送風される外気との熱交換により凝縮し、低温の冷媒となって、室外熱交換器12から流出する。室外熱交換器12から流出した冷媒は、膨張装置13によって膨張および減圧され、低温低圧の気液二相冷媒となる。この気液二相冷媒は、室内機2の室内熱交換器14に流入し、室内送風機17により送風される室内空気との熱交換により蒸発し、低温低圧のガス冷媒となって室内熱交換器14から流出する。このとき、冷媒に吸熱されて冷却された室内空気は、調和空気(吹出風)となって、室内機2から空調対象空間である室内に吹き出される。室内熱交換器14から流出したガス冷媒は、流路切替装置11を経由して圧縮機10に吸入され、再び圧縮される。空気調和装置1の冷房運転は、以上の動作が繰り返される(図1中、実線の矢印で示す)。
<Operation example of cooling and heating operation of air conditioner 1>
Next, the operation of the cooling operation will be described as an operation example of the air conditioner 1. The high-temperature and high-pressure gas refrigerant compressed and discharged by the compressor 10 flows into the outdoor heat exchanger 12 via the flow path switching device 11. The gas refrigerant that has flowed into the outdoor heat exchanger 12 is condensed by heat exchange with the outside air blown by the outdoor blower 15, becomes a low-temperature refrigerant, and flows out of the outdoor heat exchanger 12. The refrigerant flowing out of the outdoor heat exchanger 12 is expanded and depressurized by the expansion device 13 to become a low-temperature low-pressure gas-liquid two-phase refrigerant. This gas-liquid two-phase refrigerant flows into the indoor heat exchanger 14 of the indoor unit 2, evaporates by heat exchange with the indoor air blown by the indoor blower 17, becomes a low-temperature low-pressure gas refrigerant, and becomes an indoor heat exchanger. Outflow from 14. At this time, the indoor air that has been endothermic and cooled by the refrigerant becomes harmonized air (blow-out air) and is blown out from the indoor unit 2 into the room that is the air-conditioning target space. The gas refrigerant flowing out of the indoor heat exchanger 14 is sucked into the compressor 10 via the flow path switching device 11 and is compressed again. In the cooling operation of the air conditioner 1, the above operation is repeated (indicated by the solid arrow in FIG. 1).
 次に、空気調和装置1の動作例として暖房運転の動作を説明する。圧縮機10によって圧縮され吐出された高温高圧のガス冷媒は、流路切替装置11を経由して、室内機2の室内熱交換器14に流入する。室内熱交換器14に流入したガス冷媒は、室内送風機17により送風される室内空気との熱交換により凝縮し、低温の冷媒となって、室内熱交換器14から流出する。このとき、ガス冷媒から熱を受け取り暖められた室内空気は、調和空気(吹出風)となって、室内機2から室内に吹き出される。室内熱交換器14から流出した冷媒は、膨張装置13によって膨張および減圧され、低温低圧の気液二相冷媒となる。この気液二相冷媒は、室外機3の室外熱交換器12に流入し、室外送風機15により送風される外気との熱交換により蒸発し、低温低圧のガス冷媒となって室外熱交換器12から流出する。室外熱交換器12から流出したガス冷媒は、流路切替装置11を経由して圧縮機10に吸入され、再び圧縮される。空気調和装置1の暖房運転は、以上の動作が繰り返される(図1中、破線の矢印で示す)。 Next, the operation of the heating operation will be described as an operation example of the air conditioner 1. The high-temperature and high-pressure gas refrigerant compressed and discharged by the compressor 10 flows into the indoor heat exchanger 14 of the indoor unit 2 via the flow path switching device 11. The gas refrigerant flowing into the indoor heat exchanger 14 is condensed by heat exchange with the indoor air blown by the indoor blower 17, becomes a low-temperature refrigerant, and flows out from the indoor heat exchanger 14. At this time, the indoor air that has been warmed by receiving heat from the gas refrigerant becomes conditioned air (blown air) and is blown out from the indoor unit 2 into the room. The refrigerant flowing out of the indoor heat exchanger 14 is expanded and depressurized by the expansion device 13 to become a low-temperature low-pressure gas-liquid two-phase refrigerant. This gas-liquid two-phase refrigerant flows into the outdoor heat exchanger 12 of the outdoor unit 3, evaporates by heat exchange with the outside air blown by the outdoor blower 15, becomes a low-temperature low-pressure gas refrigerant, and becomes the outdoor heat exchanger 12. Outflow from. The gas refrigerant flowing out of the outdoor heat exchanger 12 is sucked into the compressor 10 via the flow path switching device 11 and is compressed again. In the heating operation of the air conditioner 1, the above operation is repeated (indicated by the broken line arrow in FIG. 1).
 上述した冷房運転および暖房運転の際、圧縮機10に冷媒が液状態で流入すると、液圧縮を起こし、圧縮機10の故障の原因となってしまう。そのため、冷房運転時の室外熱交換器12、または、暖房運転時の室内熱交換器14から流出する冷媒は、ガス冷媒(単相)となっていることが望ましい。 If the refrigerant flows into the compressor 10 in a liquid state during the cooling operation and the heating operation described above, liquid compression occurs, which causes a failure of the compressor 10. Therefore, it is desirable that the refrigerant flowing out from the outdoor heat exchanger 12 during the cooling operation or the indoor heat exchanger 14 during the heating operation is a gas refrigerant (single phase).
 ここで、蒸発器では、ファンから供給される空気と、蒸発器を構成している伝熱管の内部を流動する冷媒との間で熱交換が行われる際に空気中の水分が凝縮し、蒸発器の表面に水滴が生ずる。蒸発器の表面に生じた水滴は、フィンおよび伝熱管の表面を伝って下方に滴下し、ドレン水として蒸発器の下方にて排出される。 Here, in the evaporator, when heat exchange is performed between the air supplied from the fan and the refrigerant flowing inside the heat transfer tube constituting the evaporator, the moisture in the air is condensed and evaporated. Water droplets form on the surface of the vessel. The water droplets generated on the surface of the evaporator are dropped downward along the surfaces of the fins and the heat transfer tube, and are discharged as drain water below the evaporator.
<熱交換器100について>
 次に、実施の形態1における空気調和装置1に搭載される熱交換器100について説明する。熱交換器100は、図1に示されている室外熱交換器12及び室内熱交換器14の少なくとも一方に適用されるものであるが、特に凝縮器として用いられる熱交換器に適用すると良い。
<About heat exchanger 100>
Next, the heat exchanger 100 mounted on the air conditioner 1 according to the first embodiment will be described. The heat exchanger 100 is applied to at least one of the outdoor heat exchanger 12 and the indoor heat exchanger 14 shown in FIG. 1, but it is particularly preferable to apply the heat exchanger 100 to a heat exchanger used as a condenser.
 図2は、実施の形態1に係る空気調和装置1に搭載される熱交換器100の一例を示す模式図である。図2(a)は、熱交換器100の正面図である。図2(b)は、熱交換器100の断面図であり、図2(a)のA-A部の断面を示している。図2(c)は、熱交換器100の上面図である。なお、図2以降において、x方向は熱交換器100の幅方向であり、熱交換器100のヘッダ20の伸長方向、扁平形状の伝熱管である扁平管50の厚み方向、及び扁平管50が並列される方向を示している。また、y方向は熱交換器100の高さ方向であり、扁平管50の管軸方向、即ち冷媒が流れに沿った方向を示している。さらに、x方向は熱交換器100の奥行方向であり、ヘッダ20の伸長方向であるx方向と交差する水平方向、即ち扁平管50の幅方向を示している。そして、白抜き矢印で示すAFは、室外送風機15(図1参照)から室外熱交換器12へと供給される空気の通風方向を表し、矢印で示すRFは、熱交換器100へ供給される冷媒の流通方向を表している。 FIG. 2 is a schematic view showing an example of the heat exchanger 100 mounted on the air conditioner 1 according to the first embodiment. FIG. 2A is a front view of the heat exchanger 100. FIG. 2B is a cross-sectional view of the heat exchanger 100, and shows a cross-sectional view of a portion AA of FIG. 2A. FIG. 2C is a top view of the heat exchanger 100. In FIGS. 2 and 2, the x direction is the width direction of the heat exchanger 100, the extension direction of the header 20 of the heat exchanger 100, the thickness direction of the flat tube 50 which is a flat heat transfer tube, and the flat tube 50. It shows the direction of parallelization. Further, the y direction is the height direction of the heat exchanger 100, and indicates the pipe axis direction of the flat tube 50, that is, the direction in which the refrigerant is along the flow. Further, the x direction is the depth direction of the heat exchanger 100, and indicates the horizontal direction intersecting the x direction, which is the extension direction of the header 20, that is, the width direction of the flat tube 50. The AF indicated by the white arrow indicates the ventilation direction of the air supplied from the outdoor blower 15 (see FIG. 1) to the outdoor heat exchanger 12, and the RF indicated by the arrow is supplied to the heat exchanger 100. It represents the flow direction of the refrigerant.
 図2に示すように、実施の形態1に係る熱交換器100は、複数の扁平管50を水平方向に一列に並べて構成されたものである。複数の扁平管50は、管軸を上下方向に向けて配置され、上側端部にヘッダ20が接続され、下側端部にヘッダ30が接続されている。ヘッダ20は複数の扁平管50の上側端部同士を接続し、ヘッダ30は、複数の扁平管50の下側端部同士を接続している。つまり、複数の扁平管50は、ヘッダ20とヘッダ30との間に配置されている。なお、ヘッダ20を上側ヘッダ、ヘッダ30を下側ヘッダと称する場合がある。 As shown in FIG. 2, the heat exchanger 100 according to the first embodiment is configured by arranging a plurality of flat tubes 50 in a row in the horizontal direction. The plurality of flat tubes 50 are arranged with their pipe axes oriented in the vertical direction, a header 20 is connected to an upper end portion, and a header 30 is connected to a lower end portion. The header 20 connects the upper ends of the plurality of flat tubes 50 to each other, and the header 30 connects the lower ends of the plurality of flat tubes 50 to each other. That is, the plurality of flat tubes 50 are arranged between the header 20 and the header 30. The header 20 may be referred to as an upper header, and the header 30 may be referred to as a lower header.
 複数の扁平管50は、断面が扁平形状の多穴管構造の伝熱管であり、実施の形態1においては管軸を鉛直方向、即ちy方向に立ち上げて設けられている。複数の扁平管50は、上下のヘッダ20および30の間において、水平方向、すなわちx方向に予め設定された間隔で並んで配置されている。また、実施の形態1の場合、隣合う扁平管50同士の間隙80には、扁平管50の側面同士を接続するコルゲートフィンなどの伝熱部材が配置されていない。しかし、熱交換器100は、必要に応じて伝熱部材が配置されていても良い。なお、熱交換器100は、扁平管50を備えているが、代わりに断面が円形などの断面形状を有する伝熱管を用いても良い。 The plurality of flat tubes 50 are heat transfer tubes having a multi-hole tube structure having a flat cross section, and in the first embodiment, the tube axes are provided so as to rise in the vertical direction, that is, in the y direction. The plurality of flat tubes 50 are arranged side by side in the horizontal direction, that is, in the x direction at preset intervals between the upper and lower headers 20 and 30. Further, in the case of the first embodiment, the heat transfer member such as the corrugated fin that connects the side surfaces of the flat tubes 50 is not arranged in the gap 80 between the adjacent flat tubes 50. However, the heat exchanger 100 may be provided with a heat transfer member as needed. Although the heat exchanger 100 includes a flat tube 50, a heat transfer tube having a cross-sectional shape such as a circular cross section may be used instead.
 上下のヘッダ20および30は、それぞれ中空の直方体形状に形成されており、複数の扁平管50の端部を挿入できる様に挿し込み孔を備える。上側ヘッダ20は、下方から複数の扁平管50の上側端部51が挿入されている。 The upper and lower headers 20 and 30 are each formed in a hollow rectangular parallelepiped shape, and are provided with insertion holes so that the ends of a plurality of flat tubes 50 can be inserted. In the upper header 20, a plurality of upper end portions 51 of the flat tubes 50 are inserted from below.
 ここで、上下のヘッダ20および30では、一般に、複数の扁平管50とヘッダ20及び30との接続強度の確保と、接続に用いるロウ材が扁平管50内の冷媒流路へ流入することによる品質低下の防止と、を目的に扁平管50をヘッダ20および30内へ所定の寸法だけ突き出した構造となっている。 Here, in the upper and lower headers 20 and 30, generally, the connection strength between the plurality of flat pipes 50 and the headers 20 and 30 is secured, and the brazing material used for the connection flows into the refrigerant flow path in the flat pipe 50. The flat tube 50 is projected into the headers 20 and 30 by a predetermined size for the purpose of preventing quality deterioration.
 また、ヘッダ20は、内部に仕切部材21を備え、内部が上下2つの空間に仕切られている。複数の扁平管50の上側端部51が挿入されている空間を挿入空間S1と称し、挿入空間S1の上側に位置する空間を上側空間S2と称する。仕切部材21の上側空間側の上面23は、上側空間S2に面しており、仕切部材21の挿入空間側の下面24は、挿入空間S1に面している。 Further, the header 20 is provided with a partition member 21 inside, and the inside is partitioned into two upper and lower spaces. The space in which the upper end 51 of the plurality of flat tubes 50 is inserted is referred to as an insertion space S1, and the space located above the insertion space S1 is referred to as an upper space S2. The upper surface 23 on the upper space side of the partition member 21 faces the upper space S2, and the lower surface 24 on the insertion space side of the partition member 21 faces the insertion space S1.
 挿入空間S1と上側空間S2とは、仕切部材21に設けられた貫通孔である連通孔22により連通されている。図2(c)に示される様に、連通孔22は、円形であり、上面図、即ち管軸方向視点において、複数の扁平管50の間に配置されている。 The insertion space S1 and the upper space S2 are communicated with each other by a communication hole 22 which is a through hole provided in the partition member 21. As shown in FIG. 2C, the communication hole 22 is circular and is arranged between the plurality of flat tubes 50 in the top view, that is, from the viewpoint in the pipe axis direction.
 (熱交換器100の作用)
 図3は、実施の形態1に係る熱交換器100の比較例である熱交換器1100の正面図である。比較例に係る熱交換器1100は、実施の形態1に係る熱交換器100と同様に複数の扁平管50の上側端部51に上側ヘッダ120が接続され、下側端部52に下側ヘッダ30が接続されている。しかし、実施の形態1に係る熱交換器100とは、上側ヘッダ20の内部構造が異なり、比較例の熱交換器1100の上側ヘッダ120は、内部の空間が2つに仕切られていない。
(Action of heat exchanger 100)
FIG. 3 is a front view of the heat exchanger 1100, which is a comparative example of the heat exchanger 100 according to the first embodiment. In the heat exchanger 1100 according to the comparative example, the upper header 120 is connected to the upper end 51 of the plurality of flat tubes 50 and the lower header 120 is connected to the lower end 52, similarly to the heat exchanger 100 according to the first embodiment. 30 is connected. However, the internal structure of the upper header 20 is different from that of the heat exchanger 100 according to the first embodiment, and the upper header 120 of the heat exchanger 1100 of the comparative example is not divided into two internal spaces.
 空気調和装置1の冷媒回路5には、冷媒が循環すると共に圧縮機10から吐出された冷凍機油90が循環する。従って、熱交換器1100の上側ヘッダ120は、流出入口から冷媒と共に冷凍機油90が流入する。そして、冷凍機油90は、上側ヘッダ120の内部の壁に付着し、徐々に上側ヘッダ120の下部に滞留する。複数の扁平管50の冷媒流路が開口している端面53は、上側ヘッダ120の底面126に対し所定の高さだけ高い位置にある。従って、熱交換器1100に滞留した冷凍機油90は、複数の扁平管50の端面53に達し無ければ上側ヘッダ120から排出されない。そのため、比較例の熱交換器1100においては、上側ヘッダ120の内部には冷凍機油90が滞留し続けることになる。 The refrigerant circulates in the refrigerant circuit 5 of the air conditioner 1 and the refrigerating machine oil 90 discharged from the compressor 10 circulates. Therefore, the refrigerating machine oil 90 flows into the upper header 120 of the heat exchanger 1100 together with the refrigerant from the outflow port. Then, the refrigerating machine oil 90 adheres to the inner wall of the upper header 120 and gradually stays in the lower part of the upper header 120. The end face 53 through which the refrigerant flow paths of the plurality of flat pipes 50 are open is located at a position higher than the bottom surface 126 of the upper header 120 by a predetermined height. Therefore, the refrigerating machine oil 90 retained in the heat exchanger 1100 is not discharged from the upper header 120 unless it reaches the end faces 53 of the plurality of flat tubes 50. Therefore, in the heat exchanger 1100 of the comparative example, the refrigerating machine oil 90 continues to stay inside the upper header 120.
 一方、実施の形態1に係る熱交換器100は、下記に説明する作用により上側ヘッダ20に滞留する冷凍機油90を排出することができる。図2(a)及び(b)に示されているように、挿入空間S1の下部の領域には、ヘッダ20内に滞留した状態の冷凍機油90がある。熱交換器100は、冷媒がヘッダ20に流入する。ヘッダ20の上側空間S2に流入した冷媒は、仕切部材21の連通孔22を通過し、挿入空間S1に移動する。このとき、冷媒と共に冷凍機油90が挿入空間S1に流入するため、挿入空間S1の下部には冷凍機油90が滞留する。 On the other hand, the heat exchanger 100 according to the first embodiment can discharge the refrigerating machine oil 90 staying in the upper header 20 by the action described below. As shown in FIGS. 2A and 2B, there is a refrigerating machine oil 90 staying in the header 20 in the lower region of the insertion space S1. In the heat exchanger 100, the refrigerant flows into the header 20. The refrigerant that has flowed into the upper space S2 of the header 20 passes through the communication hole 22 of the partition member 21 and moves to the insertion space S1. At this time, since the refrigerating machine oil 90 flows into the insertion space S1 together with the refrigerant, the refrigerating machine oil 90 stays in the lower part of the insertion space S1.
 図4は、実施の形態1に係る熱交換器100の上側ヘッダ20の拡大断面図である。図4は、図2(b)の上側ヘッダ20の周辺の拡大図である。図4に示されている白抜き矢印は、冷媒の流れの一例を模式的に表している。熱交換器100の上側ヘッダ20の内部に設けられた仕切部材21は、複数の連通孔22が形成されている。上側ヘッダ20に流入した冷媒は、所定の圧力で上側ヘッダ20の上側空間S2に流入する。冷媒は、上側空間S2から挿入空間S1に移動する際に上側空間S2と比較して断面積の小さい連通孔22を通過する。従って、連通孔22を通過する冷媒は、流速が増した状態で挿入空間S1に流入する。つまり、連通孔22は、通過した流体の流れの断面積を縮小させ流速を増加させる縮流孔である。連通孔22を通過することにより増速した冷媒の流れは、挿入空間S1の下部に滞留する冷凍機油90の液面に衝突し、冷凍機油90を挿入空間S1内に飛散させ、巻き上げる。飛散した冷凍機油90の液滴は、冷媒と共に端面53から扁平管50に流入する。これにより、上側ヘッダ20に滞留する冷凍機油90を減少させることができる。 FIG. 4 is an enlarged cross-sectional view of the upper header 20 of the heat exchanger 100 according to the first embodiment. FIG. 4 is an enlarged view of the periphery of the upper header 20 of FIG. 2 (b). The white arrows shown in FIG. 4 schematically represent an example of the flow of the refrigerant. A plurality of communication holes 22 are formed in the partition member 21 provided inside the upper header 20 of the heat exchanger 100. The refrigerant that has flowed into the upper header 20 flows into the upper space S2 of the upper header 20 at a predetermined pressure. When the refrigerant moves from the upper space S2 to the insertion space S1, it passes through the communication hole 22 having a smaller cross-sectional area than the upper space S2. Therefore, the refrigerant passing through the communication hole 22 flows into the insertion space S1 in a state where the flow velocity is increased. That is, the communication hole 22 is a condensing hole that reduces the cross-sectional area of the flow of the passing fluid and increases the flow velocity. The flow of the refrigerant accelerated by passing through the communication hole 22 collides with the liquid level of the refrigerating machine oil 90 staying in the lower part of the insertion space S1, and the refrigerating machine oil 90 is scattered in the insertion space S1 and wound up. The scattered droplets of the refrigerating machine oil 90 flow into the flat pipe 50 from the end face 53 together with the refrigerant. As a result, the refrigerating machine oil 90 staying in the upper header 20 can be reduced.
 図2(a)及び(c)に示されている様に、連通孔22は、仕切部材21に複数設けられている。よって、複数の連通孔22の下方に位置する冷凍機油90は、それぞれ冷媒の流れが液面に衝突し、冷凍機油90を挿入空間S1内に飛散させ巻き上げる。実施の形態1において、連通孔22は、複数の扁平管50の間に配置されており、複数の扁平管50同士の間隙80の2つにつき1箇所設けられている。ただし、連通孔22の設置数は、図2に示されたものに限定されるものではない。 As shown in FIGS. 2A and 2C, a plurality of communication holes 22 are provided in the partition member 21. Therefore, in the refrigerating machine oil 90 located below the plurality of communication holes 22, the flow of the refrigerant collides with the liquid surface, and the refrigerating machine oil 90 is scattered in the insertion space S1 and wound up. In the first embodiment, the communication hole 22 is arranged between the plurality of flat pipes 50, and is provided at one place for every two of the gaps 80 between the plurality of flat pipes 50. However, the number of communication holes 22 installed is not limited to that shown in FIG.
 図5は、実施の形態1に係る熱交換器100の上側ヘッダ20に設けられた連通孔22の変形例である。上側ヘッダ20は、図2(c)のように複数の扁平管50の間隙の1箇所当たりに連通孔22を1つ設けた形態でなくともよい。変形例の上側ヘッダ20aは、例えば、複数の扁平管50の間隙80に対応する位置に、連通孔22よりも断面積の小さい連通孔22aを複数設けている。このように構成されることにより、複数の扁平管50の間隔が狭い場合にも連通孔22aを設置することができる。また、連通孔22及び22aの断面形状は、円形のみに限定されず、長円形、楕円形、又は矩形等にしても良い。 FIG. 5 is a modified example of the communication hole 22 provided in the upper header 20 of the heat exchanger 100 according to the first embodiment. The upper header 20 does not have to be in the form of providing one communication hole 22 for each of the gaps between the plurality of flat tubes 50 as shown in FIG. 2C. The upper header 20a of the modified example is provided with, for example, a plurality of communication holes 22a having a cross-sectional area smaller than that of the communication holes 22 at positions corresponding to the gaps 80 of the plurality of flat pipes 50. With this configuration, the communication hole 22a can be installed even when the distance between the plurality of flat tubes 50 is narrow. Further, the cross-sectional shape of the communication holes 22 and 22a is not limited to a circle, and may be an oval, an ellipse, a rectangle, or the like.
 また、上側ヘッダ20の挿入空間S1と上側空間S2とは、図4に示される様に、扁平管50の管軸方向に垂直に配置された仕切部材21により仕切られた形態に限定されるものではない。例えば、仕切部材21は、図4において傾斜して設置されていても良く、滞留した冷凍機油90の液面に連通孔22を通過した冷媒の流れが衝突するように構成されていれば良い。 Further, the insertion space S1 and the upper space S2 of the upper header 20 are limited to a form partitioned by a partition member 21 arranged perpendicularly to the pipe axis direction of the flat pipe 50, as shown in FIG. is not. For example, the partition member 21 may be installed at an angle in FIG. 4, and may be configured so that the flow of the refrigerant passing through the communication hole 22 collides with the liquid surface of the retained refrigerating machine oil 90.
 熱交換器100は、図1に示される冷媒回路5において、凝縮器として用いられる場合は、流出入口29からガス冷媒が流入する。この場合、ガス冷媒と共に圧縮機10の冷凍機油90が上側ヘッダ20に流入するため、冷凍機油90は、上側ヘッダ20の内部に付着して滞留しやすい。しかし、熱交換器100によれば、上記の構成により、冷凍機油90を飛散させて複数の扁平管50に流入させることができるため、冷凍機油90の滞留を抑制させることができる。熱交換器100は、凝縮器として用いられたときに上側ヘッダ20と圧縮機10の吐出側とが接続されるように、冷媒回路5に組み込まれると良い。 When the heat exchanger 100 is used as a condenser in the refrigerant circuit 5 shown in FIG. 1, gas refrigerant flows in from the outflow port 29. In this case, since the refrigerating machine oil 90 of the compressor 10 flows into the upper header 20 together with the gas refrigerant, the refrigerating machine oil 90 tends to adhere to the inside of the upper header 20 and stay there. However, according to the heat exchanger 100, the refrigerating machine oil 90 can be scattered and flowed into the plurality of flat pipes 50 by the above configuration, so that the retention of the refrigerating machine oil 90 can be suppressed. The heat exchanger 100 may be incorporated in the refrigerant circuit 5 so that the upper header 20 and the discharge side of the compressor 10 are connected when used as a condenser.
 熱交換器100が適用された空気調和装置1は、排出した冷凍機油90を圧縮機10へと戻すことで、焼付きなどに起因して圧縮機10が停止することを回避でき、圧縮機10の寿命が短くなるなどといった品質の低下を抑制できる。かくして、冷凍機油90の滞留を低減し、品質の改善が可能な熱交換器100及びそれを用いた空気調和装置1を実現できる。 The air conditioner 1 to which the heat exchanger 100 is applied can prevent the compressor 10 from stopping due to seizure or the like by returning the discharged refrigerating machine oil 90 to the compressor 10, and the compressor 10 can be prevented from stopping. It is possible to suppress deterioration of quality such as shortening the life of the air conditioner. Thus, it is possible to realize the heat exchanger 100 and the air conditioner 1 using the heat exchanger 100, which can reduce the retention of the refrigerating machine oil 90 and improve the quality.
 実施の形態2.
 次に、実施の形態2に係る熱交換器200について説明する。実施の形態2に係る熱交換器200は、実施の形態1に係る上側ヘッダ20に設けられた仕切部材21の形状を変更したものである。
Embodiment 2.
Next, the heat exchanger 200 according to the second embodiment will be described. The heat exchanger 200 according to the second embodiment is a modification of the shape of the partition member 21 provided on the upper header 20 according to the first embodiment.
 図6は、実施の形態2に係る熱交換器200の上側ヘッダ220の拡大断面図である。実施の形態2に係る熱交換器200の上側ヘッダ220は、仕切部材221を備えている。仕切部材221は、上側空間S2側の上面223に連通孔22に向かって重力方向に傾斜する傾斜面223aを備える。 FIG. 6 is an enlarged cross-sectional view of the upper header 220 of the heat exchanger 200 according to the second embodiment. The upper header 220 of the heat exchanger 200 according to the second embodiment includes a partition member 221. The partition member 221 includes an inclined surface 223a inclined in the direction of gravity toward the communication hole 22 on the upper surface 223 on the upper space S2 side.
 仕切部材221は、図6に示される断面において、左右の両端部が高く、中央部が低くなるように傾斜している。これにより、上側空間S2に冷媒と共に流入した冷凍機油90が壁面又は上面223に付着して滞留した場合に、冷凍機油90は傾斜面に沿って連通孔22へ移動し、連通孔22から挿入空間S1に移動する。これにより、熱交換器200は、上側空間S2に滞留する冷凍機油90を低減させることができる。 The partition member 221 is inclined so that both the left and right ends are high and the central part is low in the cross section shown in FIG. As a result, when the refrigerating machine oil 90 that has flowed into the upper space S2 together with the refrigerant adheres to the wall surface or the upper surface 223 and stays there, the refrigerating machine oil 90 moves to the communication hole 22 along the inclined surface and is inserted through the communication hole 22. Move to S1. Thereby, the heat exchanger 200 can reduce the refrigerating machine oil 90 staying in the upper space S2.
 上側空間S2から挿入空間S1に移動した冷凍機油90は、実施の形態1において説明したように、連通孔22により増速された冷媒の流れにより飛散し、複数の扁平管50に流入する。実施の形態2に係る熱交換器200は、実施の形態1に係る熱交換器100の効果を得つつ、さらに上側空間S2に滞留する冷凍機油90を削減できるという利点がある。  The refrigerating machine oil 90 that has moved from the upper space S2 to the insertion space S1 is scattered by the flow of the refrigerant accelerated by the communication hole 22 and flows into the plurality of flat pipes 50 as described in the first embodiment. The heat exchanger 200 according to the second embodiment has an advantage that the refrigerating machine oil 90 staying in the upper space S2 can be further reduced while obtaining the effect of the heat exchanger 100 according to the first embodiment.
 実施の形態2において、仕切部材221は、x方向の各断面において図6に示される断面形状を有する。しかし、仕切部材221の形状は、これに限定されず、連通孔22に向かって重力方向に傾斜する傾斜面を連通孔22の周囲にすり鉢状に設けても良い。また、仕切部材221は、図6に示される断面の左右両端部と中央部とで厚さが異なるが、均一な厚みに形成しても良い。例えば、平板を連通孔22が設けられている中央部で折り曲げて仕切部材221を形成しても良い。 In the second embodiment, the partition member 221 has the cross-sectional shape shown in FIG. 6 in each cross section in the x direction. However, the shape of the partition member 221 is not limited to this, and an inclined surface inclined in the direction of gravity toward the communication hole 22 may be provided in a mortar shape around the communication hole 22. Further, the partition member 221 has different thicknesses at the left and right end portions and the central portion of the cross section shown in FIG. 6, but may be formed to have a uniform thickness. For example, the flat plate may be bent at the central portion where the communication hole 22 is provided to form the partition member 221.
 実施の形態3.
 次に、実施の形態3に係る熱交換器300について説明する。実施の形態3に係る熱交換器300は、実施の形態1に係る上側ヘッダ20に設けられた仕切部材21の形状を変更したものである。
Embodiment 3.
Next, the heat exchanger 300 according to the third embodiment will be described. The heat exchanger 300 according to the third embodiment is a modification of the shape of the partition member 21 provided on the upper header 20 according to the first embodiment.
 図7は、実施の形態3に係る熱交換器300の上側ヘッダ320の拡大断面図である。実施の形態3に係る熱交換器300の上側ヘッダ320は、仕切部材321を備えている。仕切部材321は、挿入空間S1側の下面324に半球形状の突起325が複数設けられている。 FIG. 7 is an enlarged cross-sectional view of the upper header 320 of the heat exchanger 300 according to the third embodiment. The upper header 320 of the heat exchanger 300 according to the third embodiment includes a partition member 321. The partition member 321 is provided with a plurality of hemispherical protrusions 325 on the lower surface 324 on the insertion space S1 side.
 実施の形態1において説明したように、連通孔22を経た冷媒の流れが、上側ヘッダ320の下部に滞留している冷凍機油90の液面に衝突し、冷凍機油90は飛散する。飛散した冷凍機油90は、複数の扁平管50に冷媒と共に流入するだけでなく、仕切部材321の下面324に付着する場合がある。しかし、仕切部材321の下面324に複数の突起325が設けられていることにより、下面324に付着した冷凍機油90は表面張力により突起325の頂部に凝集し、下面324から落下しやすくなる。下面324から落下した冷凍機油90は、挿入空間S1の下部に滞留し、再度冷媒により飛散されるか、又は落下する途中で冷媒の流れにより飛散され、冷媒と共に複数の扁平管50に流入する。 As described in the first embodiment, the flow of the refrigerant through the communication hole 22 collides with the liquid level of the refrigerating machine oil 90 staying in the lower part of the upper header 320, and the refrigerating machine oil 90 scatters. The scattered refrigerating machine oil 90 may not only flow into the plurality of flat pipes 50 together with the refrigerant, but may also adhere to the lower surface 324 of the partition member 321. However, since the lower surface 324 of the partition member 321 is provided with the plurality of protrusions 325, the refrigerating machine oil 90 adhering to the lower surface 324 is aggregated on the top of the protrusions 325 due to surface tension, and easily falls from the lower surface 324. The refrigerating machine oil 90 that has fallen from the lower surface 324 stays in the lower part of the insertion space S1 and is scattered again by the refrigerant, or is scattered by the flow of the refrigerant during the fall and flows into the plurality of flat pipes 50 together with the refrigerant.
 以上の様に、実施の形態3に係る熱交換器300によれば、実施の形態1に係る熱交換器100の効果を得つつ、上側ヘッダ320の内部の仕切部材321の下面324に付着する冷凍機油90も削減されるという利点がある。 As described above, the heat exchanger 300 according to the third embodiment adheres to the lower surface 324 of the partition member 321 inside the upper header 320 while obtaining the effect of the heat exchanger 100 according to the first embodiment. There is an advantage that the refrigerating machine oil 90 is also reduced.
 図8及び図9は、実施の形態3に係る熱交換器300の上側ヘッダ320の仕切部材321の変形例である。変形例に係る仕切部材321aは、突起325aがx方向に延び、突条として形成されている。また、変形例に係る仕切部材321bは、半球形状の突起325bが2列に並べて配置されている。以上のように突起325は、形状及び配置位置を変更しても良い。また、突起325は、先端が尖った形状にすると冷凍機油90の凝集が促進される。例えば、突起325は、円錐形状に形成されていても良い。 8 and 9 are modified examples of the partition member 321 of the upper header 320 of the heat exchanger 300 according to the third embodiment. The partition member 321a according to the modified example has a protrusion 325a extending in the x direction and is formed as a ridge. Further, in the partition member 321b according to the modified example, hemispherical protrusions 325b are arranged side by side in two rows. As described above, the shape and arrangement position of the protrusion 325 may be changed. Further, when the protrusion 325 has a sharp tip, the agglutination of the refrigerating machine oil 90 is promoted. For example, the protrusion 325 may be formed in a conical shape.
 また、仕切部材321は、下面324の表面を粗くすることにより微小な凹凸を形成することによっても冷凍機油90を凝集させて落下させることができる。 Further, the partition member 321 can aggregate and drop the refrigerating machine oil 90 by forming minute irregularities by roughening the surface of the lower surface 324.
 実施の形態4.
 次に、実施の形態4に係る熱交換器400について説明する。実施の形態4に係る熱交換器400は、実施の形態1に係る上側ヘッダ20に設けられた仕切部材21の連通孔22の形状を変更したものである。
Embodiment 4.
Next, the heat exchanger 400 according to the fourth embodiment will be described. The heat exchanger 400 according to the fourth embodiment is a modification of the shape of the communication hole 22 of the partition member 21 provided in the upper header 20 according to the first embodiment.
 図10は、実施の形態4に係る空気調和装置1に搭載される熱交換器400の一例を示す模式図である。図10(a)は、熱交換器400の正面図である。図10(b)は、熱交換器400の断面図であり、図10(a)のA-A部の断面を示している。図10(c)は、熱交換器400の上面図である。実施の形態4に係る熱交換器400の上側ヘッダ420は、仕切部材421を備えている。仕切部材421は、x方向に長い連通孔422を備える。そして、連通孔422は、平面視において複数の扁平管50に跨がるように配置されている。 FIG. 10 is a schematic view showing an example of the heat exchanger 400 mounted on the air conditioner 1 according to the fourth embodiment. FIG. 10A is a front view of the heat exchanger 400. 10 (b) is a cross-sectional view of the heat exchanger 400, and shows a cross-sectional view of a portion AA of FIG. 10 (a). FIG. 10 (c) is a top view of the heat exchanger 400. The upper header 420 of the heat exchanger 400 according to the fourth embodiment includes a partition member 421. The partition member 421 includes a communication hole 422 long in the x direction. The communication holes 422 are arranged so as to straddle the plurality of flat tubes 50 in a plan view.
 実施の形態1に係る熱交換器100は、複数の扁平管50同士の間隔が狭い場合がある。この場合、仕切部材21に設けられている連通孔22は、複数の扁平管50の間隙80に対応する位置に設けるのが困難である。連通孔22が扁平管50の上方に位置した場合、冷媒が連通孔22から直接扁平管50の端面53に衝突する。この場合、連通孔22からの冷媒の流れが滞留した冷凍機油90の液面に衝突する面積が小さくなり、冷凍機油90を飛散させる効果が小さくなる懸念がある。また、増速された冷媒の流れが扁平管50の端面53に直接衝突することにより、扁平管50の内部の複数の流路に均等に分配されにくくなり、熱交換器100の熱交換性能が低下する懸念がある。 In the heat exchanger 100 according to the first embodiment, the distance between the plurality of flat tubes 50 may be narrow. In this case, it is difficult to provide the communication hole 22 provided in the partition member 21 at a position corresponding to the gap 80 of the plurality of flat pipes 50. When the communication hole 22 is located above the flat pipe 50, the refrigerant directly collides with the end surface 53 of the flat pipe 50 from the communication hole 22. In this case, there is a concern that the area where the flow of the refrigerant from the communication hole 22 collides with the liquid surface of the refrigerating machine oil 90 where it has accumulated becomes smaller, and the effect of scattering the refrigerating machine oil 90 becomes smaller. Further, since the accelerated flow of the refrigerant directly collides with the end surface 53 of the flat pipe 50, it becomes difficult to evenly distribute it to a plurality of flow paths inside the flat pipe 50, and the heat exchange performance of the heat exchanger 100 is improved. There is a concern that it will decline.
 一方、実施の形態4に係る熱交換器400のように、平面視において連通孔422を扁平管50に跨がるように配置することにより、確実に複数の扁平管50の間に滞留する冷凍機油90の液面に連通孔422からの冷媒が衝突させることができる。このとき、連通孔422の断面積sは、仕切部材421の上面423の面積Sに対し出来るだけ小さく設定すると良い。断面積sを小さくすることにより、連通孔422を通過する冷媒の流速が増し、冷凍機油90を飛散させる効果が高くなる。 On the other hand, as in the heat exchanger 400 according to the fourth embodiment, by arranging the communication holes 422 so as to straddle the flat pipes 50 in a plan view, the freezing that reliably stays between the plurality of flat pipes 50. The refrigerant from the communication hole 422 can collide with the liquid surface of the machine oil 90. At this time, the cross-sectional area s of the communication hole 422 may be set as small as possible with respect to the area S of the upper surface 423 of the partition member 421. By reducing the cross-sectional area s, the flow velocity of the refrigerant passing through the communication hole 422 is increased, and the effect of scattering the refrigerating machine oil 90 is enhanced.
 図10(c)に示される様に、連通孔422のx方向の長さは、隣合う連通孔422との間隔よりも大きく設定すると良い。連通孔422のx方向の長さを長くすることにより、冷媒が連通孔422を通過するときの圧力損失を低減させつつ、冷媒の流速を増加させる効果が得られる。 As shown in FIG. 10C, the length of the communication hole 422 in the x direction may be set larger than the distance between the communication holes 422 and the adjacent communication holes 422. By increasing the length of the communication hole 422 in the x direction, the effect of increasing the flow velocity of the refrigerant can be obtained while reducing the pressure loss when the refrigerant passes through the communication hole 422.
 実施の形態5.
 次に、実施の形態5に係る熱交換器500について説明する。実施の形態5に係る熱交換器500は、実施の形態1に係る複数の扁平管50の配列を複数に変更したものである。それに伴い、熱交換器500は、上側ヘッダ520の構造が熱交換器100の上側ヘッダ20と異なる。
Embodiment 5.
Next, the heat exchanger 500 according to the fifth embodiment will be described. The heat exchanger 500 according to the fifth embodiment is a modification of the arrangement of the plurality of flat tubes 50 according to the first embodiment. Accordingly, the structure of the upper header 520 of the heat exchanger 500 is different from that of the upper header 20 of the heat exchanger 100.
 図11は、実施の形態5に係る空気調和装置1に搭載される熱交換器500の一例を示す模式図である。図11(a)は、熱交換器500の正面図である。図11(b)は、熱交換器500の断面図であり、図11(a)のA-A部の断面を示している。図11(c)は、熱交換器500の上面図である。実施の形態5に係る熱交換器500は、複数の扁平管群550a及び550bを備える。第1扁平管群550aと第2扁平管群550bとは、熱交換器500を通過する空気などの流体の流れに沿って直列に並べられている。第1扁平管群550a及び第2扁平管群550bのそれぞれは、実施の形態1に係る熱交換器100の複数の扁平管50と同様に管軸を上下に向けて水平方向に並列されている。 FIG. 11 is a schematic view showing an example of the heat exchanger 500 mounted on the air conditioner 1 according to the fifth embodiment. FIG. 11A is a front view of the heat exchanger 500. 11 (b) is a cross-sectional view of the heat exchanger 500, and shows a cross-sectional view of a portion AA of FIG. 11 (a). FIG. 11C is a top view of the heat exchanger 500. The heat exchanger 500 according to the fifth embodiment includes a plurality of flat tube groups 550a and 550b. The first flat tube group 550a and the second flat tube group 550b are arranged in series along the flow of a fluid such as air passing through the heat exchanger 500. Each of the first flat tube group 550a and the second flat tube group 550b is arranged in parallel in the horizontal direction with the tube axes facing up and down like the plurality of flat tubes 50 of the heat exchanger 100 according to the first embodiment. ..
 第1扁平管群550aの下側端部52には、下側ヘッダ30aが接続されている。第2扁平管群550bの下側端部52には、下側ヘッダ30bが接続されている。下側ヘッダ30aは、冷媒回路5に接続され、冷媒が流入する。流入した冷媒は、第1扁平管群550aのそれぞれの扁平管50aを経て上側ヘッダ520に流入し、上側ヘッダ520から第2扁平管群550bのそれぞれの扁平管50bを経て下側ヘッダ30bに流入する。下側ヘッダ30bは、冷媒回路5に接続されており、流出入口から冷媒が流出する。 A lower header 30a is connected to the lower end 52 of the first flat tube group 550a. A lower header 30b is connected to the lower end 52 of the second flat tube group 550b. The lower header 30a is connected to the refrigerant circuit 5 and the refrigerant flows into the lower header 30a. The inflowing refrigerant flows into the upper header 520 via the respective flat pipes 50a of the first flat pipe group 550a, and flows into the lower header 30b from the upper header 520 via the respective flat pipes 50b of the second flat pipe group 550b. To do. The lower header 30b is connected to the refrigerant circuit 5, and the refrigerant flows out from the outflow port.
 図11(b)に示される様に、上側ヘッダ520は、仕切部材521により内部の空間が上下に仕切られ、上側空間S2と挿入空間S1とを形成している。更に挿入空間S1は、第1扁平管群550aの上側端部51が挿し込まれる第1挿入空間S1aと、第2扁平管群550bの上側端部51が挿し込まれる第2挿入空間S2bとに仕切られている。仕切部材521の下面524には、仕切部526が接合されており、仕切部526は、挿入空間S1を複数の扁平管群550a及び550bが配列されている方向に仕切っている。 As shown in FIG. 11B, the upper header 520 is divided into upper and lower internal spaces by a partition member 521 to form an upper space S2 and an insertion space S1. Further, the insertion space S1 is divided into a first insertion space S1a into which the upper end 51 of the first flat tube group 550a is inserted and a second insertion space S2b into which the upper end 51 of the second flat tube group 550b is inserted. It is partitioned. A partition portion 526 is joined to the lower surface 524 of the partition member 521, and the partition portion 526 partitions the insertion space S1 in the direction in which a plurality of flat tube groups 550a and 550b are arranged.
 図12は、実施の形態5に係る熱交換器500の上側ヘッダ520の拡大断面図である。実施の形態5の熱交換器500は、以下のように滞留する冷凍機油90を飛散させ、下流側に送る。第1挿入空間S1aにおける冷媒の流れは、図中の黒矢印及び白抜き矢印で示されている。上側ヘッダ520には、第1扁平管群550aから冷媒が流入する。第1扁平管群550aの端面53から流出した冷媒Rは、仕切部材521の下面524に当たり、流れの向きを変え、第1挿入空間S1a内を上下方向に対流するように下方に流れ、滞留する冷凍機油90の液面に当たり、再度上方に向かって流れる。このときに、冷媒は、冷凍機油90を飛散させ、連通孔22を通過して上側空間S2に流入する。 FIG. 12 is an enlarged cross-sectional view of the upper header 520 of the heat exchanger 500 according to the fifth embodiment. The heat exchanger 500 of the fifth embodiment scatters the stagnant refrigerating machine oil 90 as follows and sends it to the downstream side. The flow of the refrigerant in the first insertion space S1a is indicated by a black arrow and a white arrow in the figure. Refrigerant flows into the upper header 520 from the first flat tube group 550a. The refrigerant R flowing out from the end surface 53 of the first flat tube group 550a hits the lower surface 524 of the partition member 521, changes the direction of flow, flows downward so as to convect in the first insertion space S1a in the vertical direction, and stays therethrough. It hits the liquid level of the refrigerating machine oil 90 and flows upward again. At this time, the refrigerant scatters the refrigerating machine oil 90, passes through the communication hole 22, and flows into the upper space S2.
 第1挿入空間S1aから上側空間S2に流入した冷媒は、第2挿入空間S1bに連通している連通孔22から第2挿入空間S1bに流入する。第2挿入空間に連通している連通孔22は、実施の形態1に係る熱交換器100の上側ヘッダ20に設けられている連通孔22と同様に機能し、連通孔22から流入した冷媒は、第2挿入空間S1bの下部に滞留する冷凍機油90を飛散させ、冷媒と共に第2扁平管群550bに流入させる。 The refrigerant that has flowed into the upper space S2 from the first insertion space S1a flows into the second insertion space S1b from the communication hole 22 that communicates with the second insertion space S1b. The communication hole 22 communicating with the second insertion space functions in the same manner as the communication hole 22 provided in the upper header 20 of the heat exchanger 100 according to the first embodiment, and the refrigerant flowing in from the communication hole 22 functions. , The refrigerating machine oil 90 staying in the lower part of the second insertion space S1b is scattered and flows into the second flat tube group 550b together with the refrigerant.
 なお、実施の形態5に係る熱交換器500が空気調和装置1において凝縮器として用いられるときに、第1扁平管群550aを経た冷媒は、凝縮し気液二相冷媒として第1挿入空間S1aに流入する。そのため、上側ヘッダ520の第1挿入空間S1a及び第2挿入空間S2bの下部には、冷凍機油90だけでなく液相の冷媒も滞留している場合がある。実施の形態5に係る熱交換器500においては、上記の作用により、滞留している液相冷媒及び冷凍機油90を下流に送り、上側ヘッダ520の内部に滞留する液相冷媒及び冷凍機油90を低減させる効果が得られる。なお、熱交換器500は、蒸発器として用いられている場合においても、上記の作用により滞留する液相冷媒及び冷凍機油90を低減させる効果が得られる。 When the heat exchanger 500 according to the fifth embodiment is used as a condenser in the air conditioner 1, the refrigerant that has passed through the first flat tube group 550a is condensed and used as a gas-liquid two-phase refrigerant in the first insertion space S1a. Inflow to. Therefore, not only the refrigerating machine oil 90 but also the liquid phase refrigerant may stay in the lower part of the first insertion space S1a and the second insertion space S2b of the upper header 520. In the heat exchanger 500 according to the fifth embodiment, the staying liquid-phase refrigerant and the refrigerating machine oil 90 are sent downstream by the above action, and the staying liquid-phase refrigerant and the refrigerating machine oil 90 are sent to the inside of the upper header 520. The effect of reducing is obtained. Even when the heat exchanger 500 is used as an evaporator, the effect of reducing the amount of the liquid phase refrigerant and the refrigerating machine oil 90 that stays due to the above action can be obtained.
 図13は、実施の形態5に係る熱交換器500の上側ヘッダ520に設けられた連通孔22の変形例である。上側ヘッダ520の仕切部材521に設けられた連通孔22は、実施の形態4に係る上側ヘッダ420の連通孔422と同じ形状にすることができる。また、連通孔22は、図5に示される連通孔22aにしても良い。 FIG. 13 is a modified example of the communication hole 22 provided in the upper header 520 of the heat exchanger 500 according to the fifth embodiment. The communication hole 22 provided in the partition member 521 of the upper header 520 can have the same shape as the communication hole 422 of the upper header 420 according to the fourth embodiment. Further, the communication hole 22 may be the communication hole 22a shown in FIG.
 以上に実施の形態について説明したが、本発明は、上述した実施の形態のみに限定されるものではない。例えば、各実施の形態を適宜組み合わせて構成されていても良い。また、実施の形態1~5においては、熱交換器100、200、300、400、500が備える複数の伝熱管は、扁平管50として説明したが、断面が円形などの伝熱管を用いても良い。扁平管50、50a、50b、第1扁平管群550a、及び第2扁平管群55bは、それぞれ、伝熱管、第1伝熱管群、及び第2伝熱管群と称される場合がある。 Although the embodiments have been described above, the present invention is not limited to the above-described embodiments. For example, each embodiment may be combined as appropriate. Further, in the first to fifth embodiments, the plurality of heat transfer tubes included in the heat exchangers 100, 200, 300, 400, and 500 have been described as flat tubes 50, but heat transfer tubes having a circular cross section may be used. good. The flat tubes 50, 50a, 50b, the first flat tube group 550a, and the second flat tube group 55b may be referred to as a heat transfer tube, a first heat transfer tube group, and a second heat transfer tube group, respectively.
 1 空気調和装置、2 室内機、3 室外機、4 冷媒配管、4a 冷媒配管、4b 冷媒配管、5 冷媒回路、6 制御部、10 圧縮機、11 流路切替装置、12 室外熱交換器、13 膨張装置、14 室内熱交換器、15 室外送風機、16 ファンモーター、17 室内送風機、18 ファンモーター、20 (上側)ヘッダ、20a 上側ヘッダ、21 仕切部材、22 連通孔、22a 連通孔、23 上面、24 下面、29 流出入口、30 (下側)ヘッダ、30a 下側ヘッダ、30b 下側ヘッダ、50 扁平管、50a 扁平管、50b 扁平管、51 上側端部、52 下側端部、53 端面、80 間隙、90 冷凍機油、100 熱交換器、120 上側ヘッダ、126 底面、200 熱交換器、220 上側ヘッダ、221 仕切部材、223 上面、300 熱交換器、320 上側ヘッダ、321 仕切部材、321a 仕切部材、321b 仕切部材、324 下面、325 突起、325a 突起、325b 突起、400 熱交換器、420 上側ヘッダ、421 仕切部材、422 連通孔、423 上面、500 熱交換器、520 上側ヘッダ、521 仕切部材、524 下面、526 仕切部、550a (第1)扁平管群、550b (第2)扁平管群、1100 熱交換器、R 冷媒、S 面積、S1 挿入空間、S1a 第1挿入空間、S1b 第2挿入空間、S2 上側空間、S2b 第2挿入空間、s 断面積。 1 air conditioner, 2 indoor unit, 3 outdoor unit, 4 refrigerant pipe, 4a refrigerant pipe, 4b refrigerant pipe, 5 refrigerant circuit, 6 control unit, 10 compressor, 11 flow path switching device, 12 outdoor heat exchanger, 13 Inflator, 14 indoor heat exchanger, 15 outdoor blower, 16 fan motor, 17 indoor blower, 18 fan motor, 20 (upper) header, 20a upper header, 21 partition member, 22 communication hole, 22a communication hole, 23 upper surface, 24 lower surface, 29 outflow port, 30 (lower) header, 30a lower header, 30b lower header, 50 flat tube, 50a flat tube, 50b flat tube, 51 upper end, 52 lower end, 53 end face, 80 gap, 90 refrigerating machine oil, 100 heat exchanger, 120 upper header, 126 bottom, 200 heat exchanger, 220 upper header, 221 partition member, 223 upper surface, 300 heat exchanger, 320 upper header, 321 partition member, 321a partition Member, 321b partition member, 324 lower surface, 325 protrusion, 325a protrusion, 325b protrusion, 400 heat exchanger, 420 upper header, 421 partition member, 422 communication hole, 423 upper surface, 500 heat exchanger, 520 upper header, 521 partition member , 524 lower surface, 526 partition, 550a (first) flat tube group, 550b (second) flat tube group, 1100 heat exchanger, R refrigerant, S area, S1 insertion space, S1a first insertion space, S1b second Insertion space, S2 upper space, S2b second insertion space, s cross-sectional area.

Claims (8)

  1.  管軸が上下方向に延び、水平方向に並んで配置された複数の伝熱管と、
     前記複数の伝熱管の上側端部同士を接続するヘッダと、を備え、
     前記ヘッダは、
     内部を前記複数の伝熱管の前記上側端部が挿入されている挿入空間と前記挿入空間の上側に位置する上側空間とに仕切る仕切部材を備え、
     前記仕切部材は、
     前記挿入空間と前記上側空間との間を連通する連通孔を備える、熱交換器。
    Multiple heat transfer tubes with tube axes extending in the vertical direction and arranged side by side in the horizontal direction,
    A header for connecting the upper ends of the plurality of heat transfer tubes is provided.
    The header is
    A partition member for partitioning the inside into an insertion space into which the upper end of the plurality of heat transfer tubes is inserted and an upper space located above the insertion space is provided.
    The partition member is
    A heat exchanger provided with a communication hole for communicating between the insertion space and the upper space.
  2.  前記仕切部材は、
     前記上側空間側の上面に前記連通孔に向かって重力方向に傾斜する傾斜面を備える、請求項1に記載の熱交換器。
    The partition member is
    The heat exchanger according to claim 1, wherein the upper surface on the upper space side is provided with an inclined surface that is inclined in the direction of gravity toward the communication hole.
  3.  前記仕切部材は、
     前記挿入空間側の下面に突起が設置されている、請求項1又は2に記載の熱交換器。
    The partition member is
    The heat exchanger according to claim 1 or 2, wherein a protrusion is provided on the lower surface on the insertion space side.
  4.  前記連通孔は、
     前記管軸に沿った方向の視点において前記複数の伝熱管の間に位置している、請求項1~3の何れか1項に記載の熱交換器。
    The communication hole is
    The heat exchanger according to any one of claims 1 to 3, which is located between the plurality of heat transfer tubes from a viewpoint in a direction along the tube axis.
  5.  前記連通孔は、
     前記管軸に沿った方向の視点において前記複数の伝熱管に跨がって位置している、請求項1~3の何れか1項に記載の熱交換器。
    The communication hole is
    The heat exchanger according to any one of claims 1 to 3, which is located across the plurality of heat transfer tubes from a viewpoint in a direction along the tube axis.
  6.  前記連通孔の長さは、
     隣合う前記連通孔との間隔よりも長い、請求項5に記載の熱交換器。
    The length of the communication hole is
    The heat exchanger according to claim 5, which is longer than the distance between the adjacent communication holes.
  7.  前記複数の伝熱管は、
     当該複数の伝熱管に流入する空気の流れの上流側に位置する第1伝熱管群と、
     下流側に位置する第2伝熱管群と、を備え、
     前記ヘッダは、
     前記挿入空間を、前記第1伝熱管群の前記上側端部が挿入されている第1挿入空間と前記第2伝熱管群の前記上側端部が挿入されている第2挿入空間とに仕切る仕切部を備え、
     前記第1伝熱管群及び前記第2伝熱管群のそれぞれは、
     前記複数の伝熱管の下側端部同士を下側ヘッダにより接続されており、
     前記下側ヘッダは、
     冷媒の流出入口を備える、請求項1~6の何れか1項に記載の熱交換器。
    The plurality of heat transfer tubes
    The first heat transfer tube group located on the upstream side of the flow of air flowing into the plurality of heat transfer tubes, and
    It is equipped with a second heat transfer tube group located on the downstream side.
    The header is
    The insertion space is divided into a first insertion space into which the upper end of the first heat transfer tube group is inserted and a second insertion space into which the upper end of the second heat transfer tube group is inserted. With a part
    Each of the first heat transfer tube group and the second heat transfer tube group
    The lower ends of the plurality of heat transfer tubes are connected to each other by a lower header.
    The lower header
    The heat exchanger according to any one of claims 1 to 6, further comprising an outflow port for a refrigerant.
  8.  少なくとも圧縮機、凝縮器、膨張装置及び蒸発器を有する冷媒回路を備え、前記凝縮器または前記蒸発器として請求項1~7の何れか1項に記載の熱交換器を搭載した、冷凍サイクル装置。 A refrigeration cycle apparatus including a refrigerant circuit having at least a compressor, a condenser, an expander, and an evaporator, and equipped with the heat exchanger according to any one of claims 1 to 7 as the condenser or the evaporator. ..
PCT/JP2019/022556 2019-06-06 2019-06-06 Heat exchanger and refrigeration cycle device WO2020245982A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/022556 WO2020245982A1 (en) 2019-06-06 2019-06-06 Heat exchanger and refrigeration cycle device
JP2021524602A JP7292389B2 (en) 2019-06-06 2019-06-06 Heat exchanger and refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/022556 WO2020245982A1 (en) 2019-06-06 2019-06-06 Heat exchanger and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2020245982A1 true WO2020245982A1 (en) 2020-12-10

Family

ID=73653088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022556 WO2020245982A1 (en) 2019-06-06 2019-06-06 Heat exchanger and refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP7292389B2 (en)
WO (1) WO2020245982A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022208727A1 (en) * 2021-03-31 2022-10-06 三菱電機株式会社 Refrigeration cycle device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001255096A (en) * 2000-03-15 2001-09-21 Zexel Valeo Climate Control Corp Heat exchanger
JP2008528945A (en) * 2005-02-02 2008-07-31 キャリア コーポレイション Heat exchanger with perforated plate in header
JP2008232456A (en) * 2007-03-16 2008-10-02 Showa Denko Kk Heat exchanger
US20100089095A1 (en) * 2006-10-13 2010-04-15 Carrier Corporation Multi-pass heat exchangers having return manifolds with distributing inserts
CN102384692A (en) * 2010-09-01 2012-03-21 珠海格力电器股份有限公司 Collecting pipe and heat exchanger with same
CN106482398A (en) * 2015-08-28 2017-03-08 杭州三花家电热管理系统有限公司 Micro-channel heat exchanger
CN106610151A (en) * 2015-10-22 2017-05-03 丹佛斯微通道换热器(嘉兴)有限公司 Heat exchanger
WO2018138972A1 (en) * 2017-01-25 2018-08-02 日立ジョンソンコントロールズ空調株式会社 Heat exchanger and air conditioning apparatus
JP2018169062A (en) * 2017-03-29 2018-11-01 日立ジョンソンコントロールズ空調株式会社 Air conditioner

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5486782B2 (en) 2008-08-05 2014-05-07 株式会社ケーヒン・サーマル・テクノロジー Evaporator
KR101932140B1 (en) * 2011-08-30 2018-12-24 한온시스템 주식회사 Evaporator
JP2016057036A (en) 2014-09-12 2016-04-21 株式会社ケーヒン・サーマル・テクノロジー Heat exchanger
JP2016118314A (en) 2014-12-19 2016-06-30 株式会社ケーヒン・サーマル・テクノロジー Evaporator

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001255096A (en) * 2000-03-15 2001-09-21 Zexel Valeo Climate Control Corp Heat exchanger
JP2008528945A (en) * 2005-02-02 2008-07-31 キャリア コーポレイション Heat exchanger with perforated plate in header
US20100089095A1 (en) * 2006-10-13 2010-04-15 Carrier Corporation Multi-pass heat exchangers having return manifolds with distributing inserts
JP2008232456A (en) * 2007-03-16 2008-10-02 Showa Denko Kk Heat exchanger
CN102384692A (en) * 2010-09-01 2012-03-21 珠海格力电器股份有限公司 Collecting pipe and heat exchanger with same
CN106482398A (en) * 2015-08-28 2017-03-08 杭州三花家电热管理系统有限公司 Micro-channel heat exchanger
CN106610151A (en) * 2015-10-22 2017-05-03 丹佛斯微通道换热器(嘉兴)有限公司 Heat exchanger
WO2018138972A1 (en) * 2017-01-25 2018-08-02 日立ジョンソンコントロールズ空調株式会社 Heat exchanger and air conditioning apparatus
JP2018169062A (en) * 2017-03-29 2018-11-01 日立ジョンソンコントロールズ空調株式会社 Air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022208727A1 (en) * 2021-03-31 2022-10-06 三菱電機株式会社 Refrigeration cycle device

Also Published As

Publication number Publication date
JPWO2020245982A1 (en) 2020-12-10
JP7292389B2 (en) 2023-06-16

Similar Documents

Publication Publication Date Title
US10386081B2 (en) Air-conditioning device
US10591192B2 (en) Heat exchange apparatus and air conditioner using same
CN112204312A (en) Outdoor unit of air conditioner and air conditioner
US11009300B2 (en) Heat exchanger and air-conditioning apparatus
US20170067697A1 (en) Air conditioner
KR102148724B1 (en) Heat exchanger and air conditional having the same
JP6351875B1 (en) Heat exchanger and refrigeration cycle apparatus
WO2020245982A1 (en) Heat exchanger and refrigeration cycle device
US20230128871A1 (en) Heat exchanger, outdoor unit, and refrigeration cycle device
JP5677220B2 (en) Refrigeration cycle equipment
US11913729B2 (en) Heat exchanger
JP7381909B2 (en) Heat exchanger tubes and heat exchangers
WO2020235030A1 (en) Heat exchanger and refrigeration cycle device using same
JP2000234813A (en) Refrigerating device
WO2019155571A1 (en) Heat exchanger and refrigeration cycle device
WO2023281655A1 (en) Heat exchanger and refrigeration cycle device
KR102148722B1 (en) Heat exchanger and air conditional having the same
CN114041037A (en) Heat exchanger and refrigeration cycle device
JPWO2020202492A1 (en) Air conditioner
WO2023281656A1 (en) Heat exchanger and refrigeration cycle device
KR102169284B1 (en) Heat exchanger and air conditional having the same
US11460228B2 (en) Heat exchanger, outdoor unit and refrigeration cycle apparatus
WO2023188421A1 (en) Outdoor unit and air conditioner equipped with same
WO2017072866A1 (en) Air conditioner and outdoor unit for air conditioner
US20230092584A1 (en) Heat exchanger, outdoor unit, and air-conditioning apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19931663

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021524602

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19931663

Country of ref document: EP

Kind code of ref document: A1