WO2016016999A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2016016999A1
WO2016016999A1 PCT/JP2014/070221 JP2014070221W WO2016016999A1 WO 2016016999 A1 WO2016016999 A1 WO 2016016999A1 JP 2014070221 W JP2014070221 W JP 2014070221W WO 2016016999 A1 WO2016016999 A1 WO 2016016999A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
heat
header
refrigeration cycle
Prior art date
Application number
PCT/JP2014/070221
Other languages
French (fr)
Japanese (ja)
Inventor
山下 浩司
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to GB1700157.9A priority Critical patent/GB2543206A/en
Priority to PCT/JP2014/070221 priority patent/WO2016016999A1/en
Priority to JP2016537680A priority patent/JPWO2016016999A1/en
Publication of WO2016016999A1 publication Critical patent/WO2016016999A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0243Header boxes having a circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2210/00Heat exchange conduits
    • F28F2210/02Heat exchange conduits with particular branching, e.g. fractal conduit arrangements

Definitions

  • the present invention relates to a refrigeration cycle apparatus such as an air conditioner applied to, for example, a building multi-air conditioner.
  • a refrigeration cycle apparatus that forms a refrigerant circuit that circulates refrigerant and performs air conditioning, such as a multi air conditioner for buildings, generally, R410A that is nonflammable, hydrogen and carbon such as propane that exhibits flammability
  • R410A that is nonflammable, hydrogen and carbon such as propane that exhibits flammability
  • a substance containing is used as a refrigerant. When these substances are released into the atmosphere, they have different lifetimes until they are decomposed in the atmosphere and changed to other substances. However, they are highly stable in the refrigeration cycle apparatus and have been used for a long period of several decades. It can be used as a refrigerant.
  • Disproportionation is the property that substances of the same type react to change to another substance. For example, when some strong energy is applied to the refrigerant in a state where the distance between adjacent substances such as a liquid state is very close, this energy causes a disproportionation reaction, and the adjacent substances react with each other, It changes to another substance. When a disproportionation reaction occurs, heat is generated and a rapid temperature rise occurs. As a result, the pressure may increase rapidly.
  • a substance that causes a disproportionation reaction is used as a refrigerant in a refrigeration cycle device and is enclosed in a pipe such as copper, the pipe cannot withstand the pressure rise of the internal refrigerant, and the pipe will burst. Accidents may occur.
  • substances having such a disproportionation reaction for example, 1,1,2-trifluoroethylene (HFO-1123), acetylene and the like are known.
  • thermal cycle system refrigeration cycle apparatus
  • HFO-1123 1,1,2-trifluoroethylene
  • Patent Document 1 describes that 1,1,2-trifluoroethylene (HFO-1123) is used as a working medium for a heat cycle in a refrigeration cycle apparatus such as a heat cycle system.
  • 1,1,2-trifluoroethylene (HFO-1123) is a substance having a disproportionation reaction. Therefore, when used as a refrigerant as it is, a disproportionation reaction may occur due to some energy at a place in the refrigerant circuit where a liquid substance such as a liquid or a two-phase adjacent substance flows very close. When adjacent substances disproportionate, they change to another substance and do not function as a refrigerant. In addition, in the refrigerant circuit, an accident such as a pipe rupture may occur due to a sudden pressure increase.
  • Patent Document 1 do not describe any method for realizing an apparatus that does not cause the disproportionation reaction.
  • the present invention has been made to solve the above-described problem, and a refrigeration cycle that can safely use a substance having a property of causing a disproportionation reaction by reducing energy received from the outside of the refrigerant as a refrigerant. Get the device.
  • a refrigeration cycle apparatus is composed of a substance having a property of causing a disproportionation reaction by connecting a compressor, a first heat exchanger, a throttling device, and a second heat exchanger with a refrigerant pipe.
  • a refrigerant circuit is formed by charging a single refrigerant or a mixed refrigerant containing a substance having a property of causing a disproportionation reaction and a refrigerating machine oil having compatibility with the refrigerant to form a first heat exchanger and a second heat exchanger.
  • At least one of the heat exchangers has a plurality of heat transfer tubes through which the refrigerant flows, and a header through which the refrigerant outlet side end of the heat transfer tubes is inserted, and the inner diameter of the header is that of the heat transfer tubes.
  • the end of the heat transfer tube on the side of the refrigerant outlet that is larger than the inner diameter is disposed so as to face the inner wall surface of the header, and from the center of the end of the heat transfer tube on the side of the refrigerant outlet, the end of the header corresponding to the center L is the distance to the wall surface, the inner diameter at the end of the heat transfer tube on the refrigerant outlet side, or The equivalent diameter corresponding to the diameter when the inner diameter d, the value of L / d is, at a position of 20 and less than 0, greater than one in which the ends of the refrigerant outlet side of the heat transfer tube is located.
  • a refrigerant circuit is formed using a substance having a property of causing a disproportionation reaction such as 1,1,2-trifluoroethylene (HFO-1123) as a refrigerant
  • a disproportionation reaction such as 1,1,2-trifluoroethylene (HFO-1123)
  • HFO-1123 1,1,2-trifluoroethylene
  • FIG. 1 Schematic which shows the example of installation of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention.
  • the circuit block diagram which shows an example of the circuit structure of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention.
  • the refrigerant circuit figure which shows the flow of the refrigerant
  • the refrigerant circuit figure which shows the flow of the refrigerant
  • FIG. Schematic of the structure of the heat exchanger used for the heat source side heat exchanger 12, the load side heat exchanger 15, etc. in Embodiment 1 of this invention.
  • Sectional drawing which shows the relationship between the header 47 used for the heat exchanger of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention, and the heat exchanger tube 43.
  • FIG. Schematic of another structure of the heat exchanger of the refrigeration cycle apparatus which concerns on Embodiment 1 of this invention.
  • the schematic diagram of the heat exchanger tube used for the heat exchanger of the refrigerating cycle device concerning Embodiment 1 of the present invention.
  • the circuit block diagram of the refrigerating-cycle apparatus which concerns on Embodiment 2 of this invention.
  • FIG. 1 and the following drawings the same reference numerals denote the same or corresponding parts, and are common to the whole text of the embodiments described below.
  • the form of the component represented to the whole text of specification is an illustration to the last, Comprising: It does not limit to the form described in the specification.
  • the combination of the components is not limited to the combination in each embodiment, and the components described in the other embodiments can be applied to another embodiment.
  • the subscripts may be omitted.
  • the size relationship of each component may be different from the actual one.
  • the level of temperature, pressure, etc. is not particularly determined in relation to absolute values, but is relatively determined in the state, operation, etc. of the system, apparatus, and the like.
  • FIG. Embodiment 1 of the present invention will be described with reference to the drawings.
  • FIG. 1 is a schematic diagram illustrating an installation example of a refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • the refrigeration cycle apparatus shown in FIG. 1 can select either a cooling mode or a heating mode as an operation mode by configuring a refrigerant circuit that circulates refrigerant and using the refrigerant refrigeration cycle.
  • the refrigeration cycle apparatus of the present embodiment will be described by taking an air conditioning apparatus that performs air conditioning of the air-conditioning target space (indoor space 7) as an example.
  • the refrigeration cycle apparatus has one outdoor unit 1 that is a heat source unit and a plurality of indoor units 2.
  • the outdoor unit 1 and the indoor unit 2 are connected by an extension pipe (refrigerant pipe) 4 that conducts the refrigerant, and the cold or warm heat generated in the outdoor unit 1 is delivered to the indoor unit 2 via the extension pipe 4. It is like that.
  • the outdoor unit 1 is usually arranged in an outdoor space 6 that is a space outside a building 9 such as a building (for example, a rooftop), and supplies cold or hot heat to the indoor unit 2.
  • the indoor unit 2 is disposed at a position where the temperature-adjusted air can be supplied to the indoor space 7 which is a space inside the building 9 (for example, a living room). Air is supplied.
  • an outdoor unit 1 and each indoor unit 2 are connected to each other using two extension pipes 4.
  • FIG. 1 shows an example in which the indoor unit 2 is a ceiling cassette type, but the present invention is not limited to this. Any type may be used as long as heating air or cooling air can be blown directly into the indoor space 7 by a duct or the like, such as a ceiling-embedded type or a ceiling-suspended type.
  • the outdoor unit 1 is installed in the outdoor space 6 as an example, but the present invention is not limited to this.
  • the outdoor unit 1 may be installed in an enclosed space such as a machine room with a ventilation opening. Further, if the waste heat can be exhausted outside the building 9 by the exhaust duct, it may be installed inside the building 9. Furthermore, you may make it install in the inside of the building 9 using the water-cooled outdoor unit 1. FIG. No matter what place the outdoor unit 1 is installed, no particular problem occurs.
  • the number of connected outdoor units 1 and indoor units 2 is not limited to the number shown in FIG. 1, and the number of units can be determined according to the building 9 in which the refrigeration cycle apparatus according to the present embodiment is installed. That's fine.
  • FIG. 2 is a circuit configuration diagram showing an example of a refrigerant circuit configuration of the refrigeration cycle apparatus (hereinafter referred to as the refrigeration cycle apparatus 100) according to the first embodiment. Based on FIG. 2, the detailed structure of the refrigerating-cycle apparatus 100 is demonstrated. As shown in FIG. 2, the outdoor unit 1 and the indoor unit 2 are connected by an extension pipe (refrigerant pipe) 4 through which a refrigerant flows.
  • extension pipe refrigerant pipe
  • Outdoor unit 1 The outdoor unit 1 is mounted with a compressor 10, a first refrigerant flow switching device 11 such as a four-way valve, a heat source side heat exchanger 12, and an accumulator 19 connected in series by a refrigerant pipe.
  • the compressor 10 sucks in the refrigerant, compresses the refrigerant, discharges it in a high temperature and high pressure state.
  • the compressor 10 has, for example, a low-pressure shell structure that has a compression chamber in a sealed container, the inside of the sealed container has a low-pressure refrigerant pressure atmosphere, and sucks and compresses the low-pressure refrigerant in the sealed container.
  • a high-pressure shell structure is used in which the inside of the sealed container becomes a high-pressure refrigerant pressure atmosphere and the high-pressure refrigerant compressed in the compression chamber is discharged into the sealed container.
  • the compressor 10 of this Embodiment it is good to comprise by the inverter compressor etc.
  • the first refrigerant flow switching device 11 switches the refrigerant flow during the heating operation and the refrigerant flow during the cooling operation.
  • the heat source side heat exchanger 12 serving as the first heat exchanger functions as an evaporator during heating operation and functions as a condenser (or radiator) during cooling operation.
  • the heat source side heat exchanger 12 exchanges heat between air supplied from a blower (not shown) and the refrigerant, and evaporates or condenses the refrigerant.
  • the heat source side heat exchanger 12 functions as a condenser in the operation of cooling the indoor space 7.
  • operation which heats the indoor space 7, it functions as an evaporator.
  • the accumulator 19 is provided on the suction side of the compressor 10 and stores excess refrigerant in the refrigerant circuit due to an operation mode change or the like.
  • the outdoor unit 1 is provided with a high pressure detection device 37, a low pressure detection device 38, and a control device 60.
  • the control device 60 controls devices based on detection information from various detection devices, instructions from a remote controller, and the like. For example, the driving frequency of the compressor 10, the rotation speed of the blower (including ON / OFF), the switching of the first refrigerant flow switching device 11 and the like are controlled, and each operation mode described later is executed.
  • the control device 60 of the present embodiment is constituted by a microcomputer having a control arithmetic processing means such as a CPU (Central Processing Unit). Moreover, it has a memory
  • the control arithmetic processing means executes processing based on the program data to realize control.
  • the high-pressure detection device 37 is installed in the discharge side piping of the compressor 10 that has a high pressure in the refrigerant circuit.
  • the low-pressure detection device 38 is installed in a pipe on the refrigerant inflow side of the accumulator 19 that has a low pressure in the refrigerant circuit.
  • the high pressure detection device 37 and the low pressure detection device 38 transmit a signal based on the detected pressure to the control device 60.
  • the control device 60 controls each device of the outdoor unit 1 based on the pressure detected by processing the transmitted signal.
  • the indoor unit 2 is equipped with a load-side heat exchanger 15 serving as a second heat exchanger.
  • the load side heat exchanger 15 is connected to the outdoor unit 1 by the extension pipe 4.
  • the load-side heat exchanger 15 performs heat exchange between air supplied from a blower (not shown) and the refrigerant, and generates heating air or cooling air to be supplied to the indoor space 7.
  • the load side heat exchanger 15 acts as a condenser in the case of an operation for heating the indoor space 7.
  • each indoor unit 2 has a control device that controls the devices in the indoor unit 2.
  • FIG. 2 shows an example in which four indoor units 2 are connected, and are illustrated as an indoor unit 2a, an indoor unit 2b, an indoor unit 2c, and an indoor unit 2d from the bottom of the page.
  • the load side heat exchanger 15 is also loaded from the lower side of the page with the load side heat exchanger 15a, the load side heat exchanger 15b, the load side heat exchanger 15c, and the load side heat exchange. It is shown as a container 15d.
  • the number of indoor units 2 connected is not limited to the four shown in FIG.
  • the refrigeration cycle apparatus 100 determines the operation mode of the outdoor unit 1 to be either the cooling operation mode or the heating operation mode based on an instruction from each indoor unit 2. That is, the refrigeration cycle apparatus 100 can perform the same operation (cooling operation or heating operation) for all of the indoor units 2 and adjusts the indoor temperature.
  • each indoor unit 2 can be operated / stopped freely.
  • the operation mode executed by the refrigeration cycle apparatus 100 includes a cooling operation mode in which all the driven indoor units 2 perform a cooling operation (including a stop), and all of the driven indoor units 2 are in a heating operation. There is a heating operation mode for executing (including stopping). Below, each operation mode is demonstrated with the flow of a refrigerant
  • FIG. 3 is a refrigerant circuit diagram illustrating a refrigerant flow when the refrigeration cycle apparatus 100 is in the cooling operation mode.
  • the cooling operation mode will be described by taking as an example a case where a cooling load is generated in all the load-side heat exchangers 15.
  • a pipe indicated by a thick line indicates a pipe through which the refrigerant flows, and a flow direction of the refrigerant is indicated by a solid line arrow.
  • the control device 60 switches the first refrigerant flow path so that the refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12. Switch the device 11.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the first refrigerant flow switching device 11.
  • the refrigerant that has flowed in is condensed and liquefied while dissipating heat to the outdoor air in the heat source side heat exchanger 12, becomes a high-pressure liquid refrigerant, and flows out of the outdoor unit 1.
  • the high-pressure liquid refrigerant that has flowed out of the outdoor unit 1 passes through the extension pipe 4 and flows into each of the indoor units 2 (2a to 2d).
  • the high-pressure liquid refrigerant that has flowed into the indoor unit 2 (2a to 2d) flows into the expansion device 16 (16a to 16d), and is throttled and decompressed by the expansion device 16 (16a to 16d). It flows out as a phase refrigerant.
  • the refrigerant that has passed through the expansion device 16 (16a to 16d) flows into each of the load side heat exchangers 15 (15a to 15d) acting as an evaporator, and absorbs heat from the air circulating around the load side heat exchanger 15. Thus, it becomes a low-temperature and low-pressure gas refrigerant.
  • the low-temperature and low-pressure gas refrigerant flows out of the indoor unit 2 (2a to 2d), flows into the outdoor unit 1 again through the extension pipe 4, passes through the first refrigerant flow switching device 11, and passes through the accumulator 19. Then, it is sucked into the compressor 10 again.
  • the opening degree (opening area) of the expansion devices 16a to 16d is determined based on the detected temperature of the load-side heat exchanger gas refrigerant temperature detection device 28 and the control device 60 of each outdoor unit 2 from the control device 60 of the outdoor unit 1 (FIG. It is controlled so that the temperature difference (superheat degree) between the evaporation temperature transmitted by communication to the target value (not shown) approaches the target value.
  • the indoor units 2 perform the cooling operation. However, when the cooling operation mode is executed, it is not necessary to flow the refrigerant to the load-side heat exchanger 15 (including the thermo-off) having no heat load. For this reason, the indoor unit 2 stops operation. At this time, the expansion device 16 corresponding to the stopped indoor unit 2 is fully closed or set to a small opening at which the refrigerant does not flow.
  • FIG. 4 is a refrigerant circuit diagram illustrating a refrigerant flow when the refrigeration cycle apparatus 100 is in the heating operation mode.
  • the heating operation mode will be described by taking as an example a case where a thermal load is generated in all the load-side heat exchangers 15.
  • a pipe indicated by a thick line indicates a pipe through which the refrigerant flows, and a flow direction of the refrigerant is indicated by a solid line arrow.
  • the control device 60 uses the first refrigerant flow switching device 11, the refrigerant discharged from the compressor 10, and the heat source side heat exchanger 12. It switches so that it may flow into indoor unit 2 without going through.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant, passes through the first refrigerant flow switching device 11, and flows out of the outdoor unit 1.
  • the high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 1 flows into each of the indoor units 2 (2a to 2d) through the extension pipe 4.
  • the high-temperature and high-pressure liquid refrigerant that has flowed out of the load-side heat exchanger 15 (15a to 15d) flows into the expansion device 16 (16a to 16d), is throttled and decompressed by the expansion device 16 (16a to 16d), It becomes a low-pressure two-phase refrigerant and flows out of the indoor unit 2 (2a to 2d).
  • the low-temperature and low-pressure two-phase refrigerant that has flowed out of the indoor unit 2 flows into the outdoor unit 1 again through the extension pipe 4.
  • the opening degree (opening area) of the expansion devices 16a to 16d is determined based on the condensation temperature transmitted from the control device 60 of the outdoor unit 1 to the control device (not shown) of each indoor unit 2 through communication, Control is performed such that the temperature difference (degree of supercooling) from the detected temperature of the heat exchanger liquid refrigerant temperature detecting device 27 approaches the target value.
  • the low-temperature and low-pressure two-phase refrigerant that has flowed into the outdoor unit 1 flows into the heat source side heat exchanger 12, absorbs heat from the air flowing around the heat source side heat exchanger 12, and evaporates to form a low-temperature and low-pressure gas refrigerant or low-temperature and low-pressure. It becomes a two-phase refrigerant with a large dryness.
  • the low-temperature and low-pressure gas refrigerant or the two-phase refrigerant is again sucked into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator 19.
  • the heating operation mode When the heating operation mode is executed, it is not necessary to flow the refrigerant to the load-side heat exchanger 15 (including the thermo-off) that has no heat load.
  • the heating operation mode if the expansion device 16 corresponding to the load-side heat exchanger 15 having no heating load is fully closed or has a small opening at which the refrigerant does not flow, the load-side heat exchanger of the indoor unit 2 that is not operating. In 15, the refrigerant is cooled and condensed by the ambient air, the refrigerant accumulates, and the refrigerant circuit as a whole may fall short of the refrigerant. Therefore, during heating operation, the opening degree (opening area) of the expansion device 16 corresponding to the load-side heat exchanger 15 having no heat load is set to a large opening degree such as full opening to prevent accumulation of refrigerant.
  • the heat source side heat exchanger 12 acts as a condenser, and the heat source side heat exchanger 12 has a high-temperature and high-pressure gas.
  • the refrigerant flows in and condenses, liquefies through a two-phase region, and flows out as a high-temperature and high-pressure liquid refrigerant.
  • the load side heat exchanger 15 acts as a condenser, and the load side heat exchanger 15 (15a to 15d)
  • the refrigerant flows in and condenses, liquefies through a two-phase region, and flows out as a high-temperature and high-pressure liquid refrigerant.
  • the refrigerant used in the refrigeration cycle apparatus 100 is a substance that is generally used as a refrigerant, such as R32, R410A, etc., a device for improving the stability of the refrigerant in the refrigerant circuit. It can be used as it is, without applying.
  • a disproportionation reaction such as 1,1,2-trifluoroethylene (HFO-1123) represented by C 2 H 1 F 3 and having one double bond in the molecular structure is performed.
  • the substance mixed with the substance having a disproportionation reaction is not limited to these.
  • HC-290 (propane) or the like may be mixed.
  • Any material having thermal performance that can be used as a refrigerant of the refrigeration cycle apparatus 100 may be used.
  • the mixing ratio may be any mixing ratio.
  • a substance that causes a disproportionation reaction is used as a refrigerant as it is, the following problems occur. For example, in a place where there is a substance in a liquid state where the distance between adjacent substances is very close, such as a liquid phase, two phases, etc., if some strong energy is applied, the adjacent substances react to each other and become It will change and will not function as a refrigerant. In addition, there is a possibility that an accident such as a pipe rupture may occur due to a rapid pressure rise due to heat generation.
  • the refrigerating machine oil filled in the refrigerant circuit is mainly composed of either polyol ester or polyvinyl ether, and a part of the refrigerating machine oil filled in the compressor 10 circulates in the refrigerant circuit together with the refrigerant.
  • Both the polyol ester and the polyvinyl ether are refrigerating machine oils that are easily soluble in a refrigerant having one double bond in the molecular structure.
  • HFO-1123 is dissolved to some extent in the refrigerating machine oil.
  • the refrigerating machine oil is not limited to this as long as it is compatible with the refrigerant, and another type of oil may be used.
  • FIG. 5 is a solubility diagram of the refrigerating machine oil of the refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • High solubility means that many refrigerants are dissolved in the refrigeration oil
  • low solubility means that only a small amount of refrigerant is dissolved in the refrigeration oil.
  • FIG. 5 shows the relationship between the solubility and the pressure for each of the refrigerant temperatures T1, T2, and T3.
  • T1, T2, and T3 are different temperatures, and the formula (1) is established.
  • the refrigerant temperature As shown in FIG. 5, under the same pressure condition, the lower the refrigerant temperature, the higher the solubility, and under the same temperature condition, the higher the refrigerant pressure, the higher the solubility.
  • the refrigerant When the refrigerant is dissolved in the refrigerating machine oil, the refrigerating machine oil molecules are present between the refrigerant molecules. Therefore, if the solubility of the refrigerant in the refrigerating machine oil is large, the refrigerating machine oil exists between many refrigerant molecules.
  • the refrigerant disproportionation reaction is a phenomenon in which adjacent refrigerant molecules react with each other. For this reason, if the refrigerating machine oil having compatibility with the refrigerant is used, the refrigerant oil molecules are present between the refrigerant molecules, so that the disproportionation reaction of the refrigerant hardly occurs.
  • solubility of the refrigerant in the refrigeration oil the greater the effect of suppressing the disproportionation reaction of the refrigerant. Practically, if the solubility is 50 wt% (weight%) or more, many refrigerants are dissolved in the refrigerating machine oil, so that the disproportionation reaction can be suppressed.
  • FIG. 6 is a diagram showing an outline of the configuration of a plate fin tube type heat exchanger used in the heat source side heat exchanger 12, the load side heat exchanger 15 (15a to 15d) and the like in the first embodiment of the present invention. is there.
  • a plate fin tube type heat source side heat exchanger 12 or load side heat exchanger 15 (here, referred to as heat exchanger 12 or 15) includes a first connection pipe 41, a second connection pipe 42, and a surrounding area. It has a heat transfer tube 43, fins 44, a first header 47, and a second header 48 for exchanging heat between air or the like as a heat medium and an internal refrigerant.
  • the configuration of the heat exchanger 12 or 15 will be described in more detail.
  • the heat exchanger 12 or 15 has a configuration in which a plurality of fins 44 are arranged at intervals, and a plurality of heat transfer tubes 43 are arranged through the plurality of fins 44.
  • One end of both ends of the plurality of heat transfer tubes 43 is connected to the first header 47, and the other end of the heat transfer tubes 43 is connected to the second header 48.
  • a first connection pipe 41 and a second connection pipe 42 that serve as refrigerant inlets and outlets from other devices in the refrigerant circuit are connected to the first header 47 and the second header 48, respectively.
  • the first header 47 or the second header 48 distributes the refrigerant flowing from the first connection pipe 41 or the second connection pipe 42 to each heat transfer pipe 43.
  • the refrigerant that flows in from the heat transfer tubes 43 is joined.
  • FIG. 6 shows a case where there is one first header 47 and one second header 48, and the same number of heat transfer tubes 43 are connected to each of the first header 47 and the second header 48.
  • the solid line arrow indicates the direction of refrigerant flow when the heat exchanger 12 or 15 acts as a condenser, and the broken line arrow indicates the case where the heat exchanger 12 or 15 acts as an evaporator.
  • the direction in which the refrigerant flows is shown. This also applies to FIGS. 8 and 9 described later.
  • a high-temperature and high-pressure gas refrigerant flows into the heat exchanger 12 or 15.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the heat exchanger 12 or 15 from the first connection pipe 41 is distributed by the first header 47 and flows into the heat transfer pipes 43.
  • the heat transfer tube 43 and the fins 44 are condensed by exchanging heat with surrounding air and the like, and liquefied through a two-phase region in which gas and liquid are mixed to become a high-temperature and high-pressure liquid refrigerant. From the second header 48, and flows into the second connection pipe 42.
  • a low-temperature and low-pressure two-phase refrigerant flows into the heat exchanger 12 or 15.
  • the low-temperature and low-pressure two-phase refrigerant that has flowed into the heat exchanger 12 or 15 from the second connection pipe 42 is distributed by the second header 48 and flows into the heat transfer pipes 43.
  • the heat transfer tubes 43 and fins 44 evaporate by exchanging heat with the surrounding air and the like, and the dryness of the two-phase refrigerant increases, resulting in a two-phase refrigerant or gas refrigerant with a low temperature and low pressure and high dryness. It flows out from the heat pipe 43, merges at the first header 47, and flows out to the first connection pipe 41.
  • the heat exchanger 12 or 15 when the flow rate of the refrigerant flowing inside the heat transfer tube 43 becomes too large, the pressure loss of the refrigerant in the heat transfer tube 43 becomes too large. For this reason, there is a limit to the flow rate of the refrigerant that can flow with respect to the inner diameter of one heat transfer tube 43. Therefore, when the heat transfer tube 43 is thin, it is necessary to increase the number of the heat transfer tubes 43 in order to flow the refrigerant at the same flow rate as when the heat transfer tube 43 is thick. In addition, the heat transfer tube 43 has a larger heat transfer area of the heat transfer tube 43 with respect to the flow rate of the refrigerant flowing inside, and the performance of the heat exchanger 12 or 15 is improved.
  • the heat transfer tube 43 having a thin outer diameter such as 7 mm or 5 mm is usually used.
  • the heat exchanger 12 or 15 is configured using the plurality of heat transfer tubes 43, and the first connection tube 41 or the second connection tube 42 (here, the connection tube 41 or 42) is required to be distributed or merged with the plurality of heat transfer tubes 43.
  • the first header 47 or the second header 48 (here, referred to as the header 47 or 48) is used. It is general because it can.
  • the header 47 or 48 is connected to a plurality of heat transfer tubes 43 and is distributed or merged.
  • the header 47 or 48 is often composed of a circular tube thicker than the heat transfer tubes 43.
  • the header 47 or 48 may have any structure as long as it can distribute or merge the refrigerant of the plurality of heat transfer tubes 43.
  • the cross section may be rectangular, elliptical, or the like.
  • the material may also be copper, aluminum or the like. What is necessary is just to have the intensity
  • FIG. 7 is a cross-sectional view showing the relationship between the header 47 or 48 and the heat transfer tube 43 used in the heat exchanger of the refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • a plurality of heat transfer tubes 43 are inserted into the header 47 or 48. Since FIG. 7 shows a cross section, the heat transfer tube 43 appears to be one, but the heat transfer tube 43 overlaps in a direction perpendicular to the paper surface. Actually, a plurality of heat transfer tubes 43 are connected to one header 47 or 48.
  • the heat exchanger 12 or 15 acts as a condenser, a high-pressure liquid refrigerant flows into the second header 48. Moreover, when the heat exchanger 12 or 15 acts as an evaporator, it may flow into the first header 47 of the low-pressure two-phase refrigerant.
  • the inner diameter of the header 47 or 48 is larger than the outer diameter of the heat transfer tube 43.
  • a hole is made in the side surface of the header 47 or 48 to insert the heat transfer tube 43, and the header 47 or 48 and the heat transfer tube 43 are fixed by brazing or the like.
  • the refrigerant flowing into the header 47 or 48 Since the refrigerant flowing into the header 47 or 48 has an inertial force, it collides with the pipe inner wall surface (inner surface) 50 of the header 47 or 48 facing the center 45 or 46 of the outlet 45 (refrigerant outlet) of the heat transfer tube 43. The direction of flow in a substantially perpendicular direction can be changed. If the refrigerant flowing into the header 47 or 48 collides with the inner surface 50 of the header 47 or 48 when the collision energy is large, the collision energy causes a disproportionation reaction for a substance that causes a disproportionation reaction. May be a factor. Therefore, in the present embodiment, conditions (use of compatible refrigerating machine oil) are provided for the refrigerant to be used so as to suppress the disproportionation reaction.
  • the collision energy between the inner surface 50 of the header 47 or 48 and the refrigerant is obtained by the equation (2).
  • the disproportionation reaction is a property in which the same type of substances react with each other and change into different substances. This disproportionation reaction is likely to occur when some strong energy is applied from the outside in a state where the distance between adjacent substances such as liquid components and two-phase liquid components is very close. On the other hand, in the gas state, the distance between the refrigerant molecules is considerably longer than in the liquid state. For this reason, in the gas state, even if a large amount of HFO-1123, which is a substance that causes a disproportionation reaction, is included, the disproportionation reaction is unlikely to occur.
  • the behavior of the jet of refrigerant flowing into the header 47 or 48 from the pipe will be examined.
  • the length of the inner diameter of the pipe is d (mm) and the distance from the outlet of the pipe to the collision surface of the jet flowing out from the outlet is L (mm)
  • the following points are generally known in fluid mechanics: Yes.
  • the turbulence component of the jet is large, and when the value of (L / d) is greater than or equal to the predetermined value, the turbulence of the jet The components disappear and the flow is completely stabilized.
  • the predetermined value is 20-30.
  • the inner diameter d and the distance L are applied to the heat transfer tube 43 and the inner surface 50 of the header 47 or 48 facing the heat transfer tube 43, the inner diameter d becomes the inner diameter of the heat transfer tube 43 as shown in FIG. Further, the distance L is the distance from the center 45 or 46 of the outlet of the heat transfer tube 43 to the inner surface 50 of the header 47 or 48 and the portion facing the center 45 or 46 of the outlet of the heat transfer tube 43.
  • the heat exchanger 12 or 15 acts as an evaporator and the two-phase refrigerant flowing out of the heat transfer tube 43 collides with the inner surface 50 of the first header 47. Therefore, if the refrigerant circuit is filled with compatible refrigerating machine oil, the turbulence of the jet remains, such as a position where the value of (L / d) is less than 20 and greater than 0 from the inner surface 50 of the header 47 or 48. Even if the center 45 or 46 of the outlet of the heat transfer tube 43 is installed at a certain position, the disproportionation reaction of the liquid refrigerant or the two-phase refrigerant due to the collision with the inner surface 50 hardly occurs.
  • the inner diameter of the header 47 or 48 is 17.05 mm
  • the inner diameter of the heat transfer tube 43 is 7.44 mm
  • the center 45 or 46 of the outlet of the heat transfer tube 43 is in contact with the inner surface of the header 47 or 48.
  • the distance L that is the inner diameter of the header 47 or 48 is d is the inner diameter of the heat transfer tube 43
  • the value of (L / d) is 2.3. Therefore, a turbulence component that is considerably smaller than 20 to 30 and considerably larger remains.
  • the condensation temperature which is the temperature of the refrigerant in the condenser
  • the expansion device 16 is controlled so that the degree of supercooling of the refrigerant at the outlet of the condenser is about 10 ° C. Therefore, if the condensation temperature is about 50 ° C., about 40 ° C. refrigerant flows out at the outlet of the condenser. Therefore, the refrigerant flowing into the second header 48 is in a saturated pressure state where the temperature is about 40 ° C. and the pressure is 50 ° C.
  • the refrigerant flowing into the second header 48 is in a state of a temperature between about 40-50 ° C. and a saturation pressure where the pressure is 50 ° C. . Therefore, if the solubility of the refrigerant in the refrigerating machine oil is high at these temperatures and pressures, the refrigerant disproportionation reaction hardly occurs. Practically, in the state where the refrigerant is at these temperatures and pressures, if the solubility of the refrigerant in the refrigerating machine oil is 50 wt% (weight percent) or more, many refrigerants are dissolved in the refrigerating machine oil, so disproportionation The reaction can be suppressed.
  • the value of (L / d) is less than 10 if the refrigerant flowing into the second header 48 has a solubility of 50 wt% (weight%) or more in the refrigeration oil and is dissolved in the refrigeration oil. Even when the refrigerant is ejected from such a relatively close position and collides with the inner surface 50 of the second header 48, the disproportionation reaction hardly occurs.
  • the refrigerant flowing into the second header 48 is a liquid refrigerant
  • the amount of refrigerant filled in the refrigerant circuit is small, for example, a two-phase refrigerant having a dryness greater than 0 and less than or equal to 0.2 may flow into the second header 48. Even in this case, the same effect is obtained.
  • the refrigerant disproportionation reaction is likely to occur when the distance between adjacent substances such as liquid refrigerant and two-phase refrigerant is very close.
  • the heat exchanger 12 or 15 acts as a condenser and the liquid refrigerant or the two-phase refrigerant flows into the second header 48 installed on the outlet side thereof has been described.
  • the heat source side heat exchanger 12 acts as an evaporator
  • the two-phase refrigerant flows out from the heat transfer tube 43 and the two-phase refrigerant flows into the first header 47. Even in such a case, the disproportionation reaction of the refrigerant is likely to occur.
  • the disproportionation reaction can be made difficult to occur. Even when the load side heat exchanger 15 acts as an evaporator during the cooling operation, the two-phase refrigerant may flow out from the load side heat exchanger 15 to the first header 47. In this case as well, the same structure as the heat source side heat exchanger 12 may be used.
  • the driving frequency of the compressor 10 and the rotational speed of a blower (not shown) attached to the heat source side heat exchanger 12 are controlled to adjust the refrigerant in the evaporator.
  • the evaporation temperature which is the temperature
  • the expansion device 16 is controlled so that the degree of superheat of the refrigerant at the outlet of the evaporator is about 0 to 5 ° C. Therefore, the refrigerant flowing into the first header 47 from the heat transfer tube 43 is in a saturated pressure state where the temperature is about 0 ° C. and the pressure is about 0 ° C.
  • the solubility of the refrigerant in the refrigerating machine oil is 50 wt% (weight%) or more, a large amount of refrigerant dissolves in the refrigerating machine oil, so that the disproportionation reaction can be made difficult to occur. Therefore, if the refrigerant flowing into the first header 47 has a solubility of 50 wt% (weight%) or more in the refrigeration oil and is dissolved in the refrigeration oil, the value of (L / d) is less than 10. Even when the refrigerant is ejected from such a relatively close position and collides with the inner surface 50 of the first header 47, the disproportionation reaction hardly occurs.
  • a two-phase refrigerant having a dryness of 0.8 or more and 0.99 or less flows into the first header 47, for example.
  • the center 45 or 46 of the outlet of the heat transfer tube 43 is illustrated as if it is oriented in the normal direction of the inner surface 50 of the header 47 or 48, but the direction is not limited thereto.
  • the outlet of the heat transfer tube 43 may be connected to the inner surface 50 of the header 47 or 48 in an inclined manner, and has the same effect.
  • the shape of the outlet of the heat transfer tube 43 is not particularly limited, and may be any shape. Although shown here as a circular tube, the outlet of the heat transfer tube 43 may have a long hole shape formed by cutting obliquely with respect to the tube axis of the heat transfer tube 43, or other shapes may be used. Have the same effect.
  • the equivalent diameter of the heat transfer tube 43 at this time is the inner diameter d.
  • a hole is formed in the side surface of the header 47 or 48 and the heat transfer tube 43 is inserted, and the header 47 or 48 and the heat transfer tube 43 are fixed by brazing or the like.
  • the center 45 or 46 of the outlet of the heat transfer tube 43 is often installed so as to protrude to the inner side of the position in contact with the inner surface of the header 47 or 48, and the amount of protrusion is 1 of the inner diameter of the header 47 or 48 / 3 or less in many cases. That is, the distance L is often smaller than the inner diameter of the header 47 or 48 and larger than 2/3 of the inner diameter of the header 47 or 48.
  • the path is divided into four, and the four heat transfer tubes 43 are connected to the header 47 or 48, but the number of the heat transfer tubes 43 is four. It is not limited to books.
  • FIG. 8 is a schematic diagram of another configuration of the heat exchanger of the refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • the heat exchanger 12 or 15 shown in FIG. 8 is configured to include a plurality of headers on the refrigerant inflow side and the refrigerant outflow side, respectively.
  • one end of the heat exchanger 12 or 15 has two first headers 47a and a first header 47b.
  • the first connection pipe 41 is the same number (two in this case) of branch pipes as the number of headers.
  • One of the branched pipes is connected to the first header 47a, and the other pipe is connected to the first header 47b.
  • the first header 47a and the first header 47b are connected to the two heat transfer tubes 43, respectively.
  • the other end of the heat exchanger 12 or 15 also has two second headers 48a and second headers 48b.
  • the second connection pipe 42 is branched into two as many as the number of headers, one pipe is connected to the second header 48a, and the other pipe is connected to the second header 48b.
  • the second header 48 a and the second header 48 b are connected to the two heat transfer tubes 43, respectively.
  • connection pipe 41 or 42 is a branch pipe, and a heat exchanger structure connected to a plurality of (here, two) headers 47 or 48 has the same effect.
  • FIG. 9 is a schematic diagram of another configuration of the heat exchanger of the refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • the heat exchanger 12 or 15 in FIG. 9 is a so-called 1-2-pass heat exchanger in which the number of passes (number of channels) changes in the middle of the channel.
  • the first connection pipe 41 is connected to the first header 47.
  • the first header 47 is branched into six paths, and the number of paths is halved by joining two paths along the way.
  • the second connection pipe 42 is connected to the second header 48, and the second header 48 is connected to the three heat transfer pipes 43. For this reason, the number of heat transfer tubes 43 connected to the first connection pipe 41 via the first header 47 is six, and the number of heat transfer tubes 43 connected to the second connection pipe 42 via the second header 48 is It becomes three.
  • the same effect can be obtained even in a heat exchanger structure in which the number of heat transfer tubes 43 connected to the first header 47 and the number of heat transfer tubes 43 connected to the second header 48 are different.
  • the configuration of the 1-2 path, the number of pipes, and the like are not limited thereto.
  • FIG. 10 is a schematic diagram of another heat transfer tube used in the heat exchanger of the refrigeration cycle apparatus according to Embodiment 1 of the present invention. So far, the description has been made on the assumption that the heat transfer tube 43 is a circular tube. However, the shape of the heat transfer tube 43 is not limited to a circular tube.
  • FIG. 10 shows a flat tube having a flat channel structure in which the inside is divided into a plurality of (here, four) channels (microchannels) 49.
  • the cross-sectional areas of the respective flow paths 49 inside one heat transfer tube 43 are summed up in considering the above-described configuration in which disproportionation reaction hardly occurs.
  • the total sectional area is treated as the inner sectional area of one heat transfer tube 43. A specific example will be described below.
  • the heat exchanger 12 or 15 of FIG. 6 is configured by a heat transfer tube 43 that is internally divided into four flow paths 49.
  • the four heat transfer tubes 43 are connected to the first connection pipe 41 via the first header 47, and the four heat transfer tubes 43 are connected to the first header pipe 48 via the second header 48. 2 connected to the connecting pipe 42. Therefore, when the inner cross-sectional areas of all the flow paths 49 in the heat transfer tube 43 are the same, the number of the flow paths 49 in one heat transfer pipe 43 (here, four), the inner cross-sectional area of the flow paths 49, and The value multiplied by is taken as the total inner cross-sectional area.
  • the value converted into an equivalent diameter based on the total inner cross-sectional area is treated as the inner diameter d.
  • the heat exchanger 12 or 15 with which disproportionation reaction hardly occurs can be comprised by making the relationship between the distance L and the internal diameter d into the same thing as the description mentioned above.
  • the case where the inner cross-sectional areas of all the flow paths 49 in the heat transfer tube 43 are the same has been described as an example, but the present invention is not limited to this, and the cross-sectional areas of the inner cross-sectional areas of some of the flow paths 49 are May be different.
  • the inner cross-sectional areas of the two flow paths 49 at both ends may be different from the inner cross-sectional areas of the other flow paths 49.
  • the number of the flow paths 49 of the heat transfer tubes 43 is not limited to four.
  • the heat transfer tube 43 has a flat tube shape, and when the heat transfer tube 43 is connected to the header 47 or 48, a flat tube shape hole is formed in the header 47 or 48 and the heat transfer tube 43 is formed in the header 47 or 48. You may connect directly. Further, a circular hole may be formed in the header 47 or 48, and the header 47 or 48 may be connected to the header 47 or 48 via a joint that is deformed from a flat tube shape to a circular tube shape.
  • the refrigeration cycle apparatus 100 has several operation modes. In these operation modes, the refrigerant flows through the extension pipe 4 that connects the outdoor unit 1 and the indoor unit 2.
  • the high pressure detection device 37 and the low pressure detection device 38 are installed to control the refrigeration cycle high pressure and low pressure to target values, but may be a temperature detection device that detects a saturation temperature.
  • coolant flow path switching device 11 was shown as if it were a four-way valve, it is not restricted to this, It uses the two-way flow path switching valve and the three-way flow path switching valve similarly, You may comprise so that a refrigerant
  • a heat blower is attached to the heat source side heat exchanger 12 and the load side heat exchangers 15a to 15d, and in many cases, condensation or evaporation is promoted by air blowing, but it is not limited to this.
  • the load side heat exchangers 15a to 15d a panel heater using radiation can be used, and as the heat source side heat exchanger 12, a water-cooled type that moves heat by water or antifreeze. Things can also be used. Any heat exchanger that can dissipate or absorb heat can be used.
  • the heat source side heat exchanger 12 or the load side heat exchangers 15a to 15d have fins 44 in order to improve the heat transfer performance, but sufficient heat transfer performance can be obtained by using only the heat transfer tube 43. May not have the fins 44.
  • the cooling / heating switching type refrigeration cycle apparatus 100 in which the indoor unit 2 performs only the cooling operation or the heating operation has been described as an example.
  • the present invention is not limited to this. Absent.
  • the indoor unit 2 can arbitrarily select one of a cooling operation and a heating operation, and the entire system can perform a mixed operation of the indoor unit 2 that performs the cooling operation and the indoor unit 2 that performs the heating operation.
  • the present invention can also be applied to a refrigeration cycle apparatus and has the same effect.
  • air conditioners such as room air conditioners, to which only one indoor unit 2 can be connected, refrigeration equipment to connect a showcase and a unit cooler, etc., constituting a refrigerant circuit and using a refrigeration cycle If it is a refrigeration cycle device that supplies heat, the same effect is obtained.
  • first header 47 and the second header 48 are connected to both ends of the heat source side heat exchanger 12 or the load side heat exchangers 15a to 15d
  • the present invention is not limited to this.
  • a refrigerant distributor and a capillary tube are connected to one end of the heat source side heat exchanger 12 or the load side heat exchangers 15a to 15d, and the other end of the heat source side heat exchanger 12 or the load side heat exchangers 15a to 15d. You may comprise so that a header may be connected to.
  • any other configuration may be used.
  • FIG. A second embodiment of the present invention will be described with reference to the drawings. In the following, the second embodiment will be described focusing on the differences from the first embodiment. Note that the modification applied in the configuration part of the first embodiment is also applied to the same configuration part of the second embodiment.
  • FIG. 11 is a circuit configuration diagram of the refrigeration cycle apparatus according to Embodiment 2 of the present invention.
  • a refrigeration cycle apparatus 100 shown in FIG. 11 includes a refrigerant circulation circuit A in which an outdoor unit 1 and a heat medium relay unit 3 that is a relay unit are connected by an extension pipe 4 to circulate refrigerant.
  • the refrigeration cycle apparatus 100 includes a heat medium circulation circuit B in which the heat medium converter 3 and the indoor unit 2 are connected by a pipe (heat medium pipe) 5 and a heat medium such as water or brine circulates.
  • the heat medium relay unit 3 includes a load side heat exchanger 15a and a load side heat exchanger 15b that perform heat exchange between the refrigerant circulating in the refrigerant circuit A and the heat medium circulating in the heat medium circuit B.
  • the heat medium relay unit 3 is located separately from the outdoor unit 1 and the indoor unit 2, for example, a ceiling that is inside the building 9 but separate from the indoor space 7 as shown in FIG. 1. It is installed in a space such as the back (hereinafter simply referred to as space 8).
  • the heat medium relay 3 can also be installed in a common space where there is an elevator or the like.
  • the operation mode executed by the refrigeration cycle apparatus 100 includes a cooling only operation mode in which all of the driven indoor units 2 execute a cooling operation and a heating operation in which all of the driven indoor units 2 execute a heating operation. There is an operation mode. Further, there are a cooling main operation mode executed when the cooling load is larger, and a heating main operation mode executed when the heating load is larger.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the first refrigerant flow switching device 11 and dissipates heat to the surrounding air. It condenses and becomes high-pressure liquid refrigerant and flows out of the outdoor unit 1 through the check valve 13a. Then, it flows into the heat medium relay unit 3 through the extension pipe 4. The refrigerant flowing into the heat medium relay unit 3 passes through the opening / closing device 17a, expands in the expansion device 16a and the expansion device 16b, and becomes a low-temperature and low-pressure two-phase refrigerant.
  • the two-phase refrigerant flows into each of the load side heat exchanger 15a and the load side heat exchanger 15b acting as an evaporator, absorbs heat from the heat medium circulating in the heat medium circuit B, and becomes a low-temperature and low-pressure gas refrigerant. .
  • the gas refrigerant flows out of the heat medium relay unit 3 through the second refrigerant flow switching device 18a and the second refrigerant flow switching device 18b. Then, it flows into the outdoor unit 1 again through the extension pipe 4.
  • the refrigerant that has flowed into the outdoor unit 1 passes through the check valve 13d, and is sucked into the compressor 10 again via the first refrigerant flow switching device 11 and the accumulator 19.
  • the heat medium is cooled by the refrigerant in both the load side heat exchanger 15a and the load side heat exchanger 15b.
  • the cooled heat medium flows through the pipe 5 by the pump 21a and the pump 21b.
  • the heat medium flowing into the use side heat exchangers 26a to 26d through the second heat medium flow switching devices 23a to 23d absorbs heat from the indoor air.
  • the indoor air is cooled to cool the indoor space 7.
  • the refrigerant that has flowed out of the use side heat exchangers 26a to 26d flows into the heat medium flow control devices 25a to 25d, passes through the first heat medium flow switching devices 22a to 22d, and passes through the load side heat exchanger 15a and the load side.
  • the heat medium flow control devices 25a to 25d corresponding to the use side heat exchangers 26a to 26d without heat load are fully closed. Further, the heat medium flow control devices 25a to 25d corresponding to the use side heat exchangers 26a to 26d having the heat load adjust the opening degree to adjust the heat load in the use side heat exchangers 26a to 26d.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows out of the outdoor unit 1 through the first refrigerant flow switching device 11 and the first connection pipe 4a and the check valve 13b. To do. Then, it flows into the heat medium relay unit 3 through the extension pipe 4. The refrigerant flowing into the heat medium relay unit 3 flows into the load side heat exchanger 15a and the load side heat exchanger 15b through the second refrigerant flow switching device 18a and the second refrigerant flow switching device 18b, respectively. The heat is radiated to the heat medium circulating in the heat medium circuit B, and becomes a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant expands in the expansion device 16a and the expansion device 16b to become a low-temperature and low-pressure two-phase refrigerant, and flows out of the heat medium relay unit 3 through the opening / closing device 17b. Then, it flows into the outdoor unit 1 again through the extension pipe 4.
  • the refrigerant flowing into the outdoor unit 1 passes through the second connection pipe 4b and the check valve 13c, flows into the heat source side heat exchanger 12 acting as an evaporator, absorbs heat from the surrounding air, and is a low-temperature and low-pressure gas refrigerant. It becomes.
  • the gas refrigerant is again sucked into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator 19.
  • the operation of the heat medium in the heat medium circuit B is the same as in the cooling only operation mode.
  • the heat medium is heated by the refrigerant, and is radiated to the indoor air in the use-side heat exchanger 26a and the use-side heat exchanger 26b.
  • the indoor space 7 is heated.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the first refrigerant flow switching device 11 and radiates and condenses to the surrounding air. Then, it becomes a two-phase refrigerant and flows out of the outdoor unit 1 through the check valve 13a. Then, it flows into the heat medium relay unit 3 through the extension pipe 4. The refrigerant flowing into the heat medium relay unit 3 flows into the load-side heat exchanger 15b acting as a condenser through the second refrigerant flow switching device 18b, and dissipates heat to the heat medium circulating in the heat medium circuit B. And high pressure liquid refrigerant.
  • the high-pressure liquid refrigerant expands in the expansion device 16b and becomes a low-temperature and low-pressure two-phase refrigerant.
  • the two-phase refrigerant flows into the load-side heat exchanger 15a acting as an evaporator through the expansion device 16a, absorbs heat from the heat medium circulating in the heat medium circuit B, and becomes a low-pressure gas refrigerant. It flows out of the heat medium relay unit 3 through the path switching device 18a. Then, it flows into the outdoor unit 1 again through the extension pipe 4.
  • the refrigerant that has flowed into the outdoor unit 1 passes through the check valve 13d, and is sucked into the compressor 10 again via the first refrigerant flow switching device 11 and the accumulator 19.
  • the heat of the refrigerant is transmitted to the heat medium by the load side heat exchanger 15b.
  • the heated heat medium flows in the pipe 5 by the pump 21b.
  • the heat medium that has flowed into the use side heat exchangers 26a to 26d for which heating is requested by operating the first heat medium flow switching devices 22a to 22d and the second heat medium flow switching devices 23a to 23d radiates heat to the indoor air.
  • the indoor air is heated to heat the indoor space 7.
  • the cold heat of the refrigerant is transmitted to the heat medium in the load side heat exchanger 15a.
  • the cooled heat medium flows through the pipe 5 by the pump 21a.
  • the heat medium that has flowed into the use side heat exchangers 26a to 26d for which cooling is requested by operating the first heat medium flow switching devices 22a to 22d and the second heat medium flow switching devices 23a to 23d absorbs heat from the indoor air. To do.
  • the indoor air is cooled to cool the indoor space 7.
  • the heat medium flow control devices 25a to 25d corresponding to the use side heat exchangers 26a to 26d without heat load are fully closed.
  • the heat medium flow control devices 25a to 25d corresponding to the use side heat exchangers 26a to 26d having the heat load adjust the opening degree to adjust the heat load in the use side heat exchangers 26a to 26d.
  • Heating main operation mode In the heating main operation mode, the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 passes through the first refrigerant flow switching device 11, passes through the first connection pipe 4 a and the check valve 13 b, and then the outdoor unit 1. Spill from. Then, it flows into the heat medium relay unit 3 through the extension pipe 4. The refrigerant flowing into the heat medium relay unit 3 flows into the load-side heat exchanger 15b acting as a condenser through the second refrigerant flow switching device 18b, and dissipates heat to the heat medium circulating in the heat medium circuit B. And high pressure liquid refrigerant.
  • the high-pressure liquid refrigerant expands in the expansion device 16b and becomes a low-temperature and low-pressure two-phase refrigerant.
  • the two-phase refrigerant flows into the load-side heat exchanger 15a acting as an evaporator via the expansion device 16a, absorbs heat from the heat medium circulating in the heat medium circuit B, and passes through the second refrigerant flow switching device 18a. And flows out of the heat medium relay unit 3. Then, it flows into the outdoor unit 1 again through the extension pipe 4.
  • the refrigerant flowing into the outdoor unit 1 passes through the second connection pipe 4b and the check valve 13c, flows into the heat source side heat exchanger 12 acting as an evaporator, absorbs heat from the surrounding air, and is a low-temperature and low-pressure gas. Becomes a refrigerant.
  • the gas refrigerant is again sucked into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator 19.
  • the operations of the heat exchangers 26a to 26d are the same as those in the cooling main operation mode.
  • the first heat medium flow switching device 22 corresponding to the use side heat exchanger 26 performing the heating operation and The second heat medium flow switching device 23 is switched to a flow path connected to the load side heat exchanger 15b for heating. Further, the first heat medium flow switching device 22 and the second heat medium flow switching device 23 corresponding to the use side heat exchanger 26 performing the cooling operation are connected to the cooling load side heat exchanger 15a. Switch to the flow path. For this reason, in each indoor unit 2, heating operation and cooling operation can be performed freely.
  • the first heat medium flow switching device 22 and the second heat medium flow switching device 23 can switch a three-way flow path such as a three-way valve, and can open and close a two-way flow path such as an on-off valve. What is necessary is just to be able to switch a flow path, such as combining two.
  • the first heat medium can be obtained by combining two things such as a stepping motor drive type mixing valve that can change the flow rate of the three-way flow path and two things that can change the flow rate of the two-way flow path such as an electronic expansion valve.
  • the flow path switching device 22 and the second heat medium flow path switching device 23 may be used.
  • the heat medium flow control device 25 may be installed as a control valve having a three-way flow path with a bypass pipe that bypasses the use-side heat exchanger 26 other than the two-way valve. Further, the heat medium flow control device 25 may be a stepping motor drive type that can control the flow rate flowing through the flow path, and may be a two-way valve or a device in which one end of the three-way valve is closed. Further, as the heat medium flow control device 25, a device that opens and closes a two-way flow path such as an open / close valve may be used, and the average flow rate may be controlled by repeating ON / OFF.
  • first refrigerant flow switching device 11 and the second refrigerant flow switching device 18 are shown as if they were four-way valves. However, the present invention is not limited to this, and a two-way flow switching valve or a three-way flow switching is possible. A plurality of valves may be used so that the refrigerant flows in the same manner.
  • the same is true even when only one use-side heat exchanger 26 and one heat medium flow control device 25 are connected, and the load-side heat exchanger 15 and the expansion device 16 are the same.
  • the heat medium flow control device 25 is not limited thereto, and may be built in the indoor unit 2. 3 and the indoor unit 2 may be configured separately.
  • the heat medium flow control device 25 may not be provided. Also good.
  • the heat medium for example, brine (antifreeze), water, a mixture of brine and water, a mixture of water and an additive having a high anticorrosive effect, or the like can be used. Therefore, in the refrigeration cycle apparatus 100, even if the heat medium leaks into the indoor space 7 through the indoor unit 2, a highly safe heat medium is used, which contributes to an improvement in safety. Become.
  • the heat source side heat exchanger 12 and the use side heat exchangers 26a to 26d are provided with a blower, and in many cases, condensation or evaporation is promoted by blowing, but this is not restrictive.
  • a blower for example, as the use side heat exchangers 26a to 26d, a panel heater using radiation can be used.
  • a water-cooled type that moves heat by water or antifreeze can also be used. Any structure that can dissipate or absorb heat can be used.
  • a plate-type heat exchanger is generally used as the load-side heat exchanger 15.
  • the load-side heat exchanger 15 is not limited to a plate type, but can be any type that can exchange heat between the refrigerant and the heat medium. It may be a thing.
  • the number of pumps 21a and 21b is not limited to one, and a plurality of small capacity pumps may be arranged in parallel.
  • the refrigeration cycle apparatus of the present embodiment accommodates the compressor 10, the four-way valve (first refrigerant flow switching device) 11, and the heat source side heat exchanger 12 in the outdoor unit 1, and air and refrigerant in the air-conditioning target space Are used in the indoor unit 2, and the load-side heat exchanger 15 and the expansion device 16 are accommodated in the heat medium converter 3.
  • the outdoor unit 1 and the heat medium converter 3 are connected by an extension pipe 4 to circulate the refrigerant
  • the indoor unit 2 and the heat medium converter 3 are connected by a set of two pipes 5 each.
  • the load-side heat exchanger 15 exchanges heat between the refrigerant and the heat medium.
  • the explanation has been given by taking as an example a system capable of mixed operation of the indoor unit 2 that performs the cooling operation and the indoor unit 2 that performs the heating operation.
  • the present invention is not limited to this.
  • the outdoor unit 1 and the heat medium relay unit 3 described in the first embodiment can be combined and applied to a system that performs only a cooling operation or a heating operation in the indoor unit 2 and has the same effect.
  • Embodiment 3 As shown in the first embodiment and the second embodiment, it is common to use a four-way valve as the first refrigerant flow switching device 11, but this is not a limitation. For example, a plurality of two-way flow switching valves and three-way flow switching valves may be used so that the refrigerant flows in the same manner as when a four-way valve is used.
  • the present invention is not limited to this.
  • the number of indoor units 2 is one, etc., there is no problem even if the accumulator 19 is not provided because the surplus refrigerant is small in the refrigerant circuit.
  • Heat source unit (outdoor unit), 2, 2a, 2b, 2c, 2d indoor unit, 3 heat medium converter (relay unit), 4 extension pipe (refrigerant pipe), 4a first connection pipe, 4b second connection pipe, 5 piping (heat medium piping), 6 outdoor space, 7 indoor space, 8 outdoor space such as the back of the ceiling and indoor space, 9 building, 10 compressor, 11 1st refrigerant flow switching device (Four-way valve), 12 heat source side heat exchanger (first heat exchanger), 13a, 13b, 13c, 13d check valve, 15, 15a, 15b, 15c, 15d load side heat exchanger (second heat Exchanger, 16, 16a, 16b, 16c, 16d throttle device, 17a, 17b switchgear, 18, 18a, 18b second refrigerant flow switching device, 19 accumulator, 21a, 21b pump, 22, 22a, 22b, 2 c, 22d First heat medium flow switching device, 23, 23a, 23b, 23c, 23d Second heat medium flow switching device, 25, 25a

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

This refrigeration cycle device (100) forms a coolant circuit by being filled with a coolant that comprises a substance having the property of causing a disproportional reaction, and a refrigerator oil that is compatible with the coolant. At least a first heat exchanger or a second heat exchanger comprises a plurality of heat-transfer pipes 43 and a header 47 or 48. The internal diameter of the header 47 or 48 is greater than the internal diameter of the heat-transfer pipe 43, and the end section on the coolant outlet side of the heat-transfer pipe 43 is disposed so as to face a pipe inner wall surface 50 of the header. The end section on the coolant outlet side of the heat-transfer pipe 43 is located at a position such that the value of L/d is less than 20 and greater than 0 if the distance from the center 45 or 46 of the end section on the coolant outlet side of the heat-transfer pipe 43 to the pipe inner wall surface 50 of the header corresponding to the center 45 or 46 is the distance L and the inner diameter or equivalent diameter at the end section on the coolant outlet side of the heat-transfer pipe 43 is the inner diameter d.

Description

冷凍サイクル装置Refrigeration cycle equipment
 本発明は、たとえばビル用マルチエアコン等に適用される空気調和装置等の冷凍サイクル装置に関するものである。 The present invention relates to a refrigeration cycle apparatus such as an air conditioner applied to, for example, a building multi-air conditioner.
 ビル用マルチエアコン等のように、冷媒を循環する冷媒回路を構成して空気調和等を行う冷凍サイクル装置においては、一般的に、不燃性であるR410A、可燃性を示すプロパン等の水素と炭素を含む物質が冷媒として用いられる。これらの物質は、大気中に放出された場合に、大気中で分解されて別の物質に変わるまでの寿命は異なるが、冷凍サイクル装置内においては、安定性が高く、数十年の長い間冷媒として使用することができる。 In a refrigeration cycle apparatus that forms a refrigerant circuit that circulates refrigerant and performs air conditioning, such as a multi air conditioner for buildings, generally, R410A that is nonflammable, hydrogen and carbon such as propane that exhibits flammability A substance containing is used as a refrigerant. When these substances are released into the atmosphere, they have different lifetimes until they are decomposed in the atmosphere and changed to other substances. However, they are highly stable in the refrigeration cycle apparatus and have been used for a long period of several decades. It can be used as a refrigerant.
 これに対して、水素と炭素とを含む物質の中には、冷凍サイクル装置内においても安定性が悪く、冷媒としては使用し難いものも存在する。これらの安定性が悪い物質としては、たとえば、不均化反応を起こす性質のものがある。不均化とは、同一種類の物質同士が反応して別の物質に変化する性質のことである。たとえば、液状態等の隣り合う物質同士の距離が非常に近い状態で、冷媒に対して何らかの強いエネルギーが加わると、このエネルギーによって、不均化反応が起き、隣り合う物質同士が反応して、別の物質に変化してしまう。不均化反応が起きると、発熱し、急激な温度上昇が起きる。そのため圧力が急激に上昇する可能性がある。たとえば、不均化反応を起こす性質の物質を冷凍サイクル装置の冷媒として用い、銅等の配管内に封入していると、配管が内部の冷媒の圧力上昇に耐え切れず、配管が破裂してしまう、等の事故が起きる可能性がある。この不均化反応を起こす性質の物質としては、たとえば、1,1,2-トリフルオロエチレン(HFO-1123)、アセチレン等が知られている。 On the other hand, some substances containing hydrogen and carbon have poor stability in the refrigeration cycle apparatus and are difficult to use as refrigerants. These substances having poor stability include, for example, substances that cause a disproportionation reaction. Disproportionation is the property that substances of the same type react to change to another substance. For example, when some strong energy is applied to the refrigerant in a state where the distance between adjacent substances such as a liquid state is very close, this energy causes a disproportionation reaction, and the adjacent substances react with each other, It changes to another substance. When a disproportionation reaction occurs, heat is generated and a rapid temperature rise occurs. As a result, the pressure may increase rapidly. For example, if a substance that causes a disproportionation reaction is used as a refrigerant in a refrigeration cycle device and is enclosed in a pipe such as copper, the pipe cannot withstand the pressure rise of the internal refrigerant, and the pipe will burst. Accidents may occur. As substances having such a disproportionation reaction, for example, 1,1,2-trifluoroethylene (HFO-1123), acetylene and the like are known.
 また、1,1,2-トリフルオロエチレン(HFO-1123)を熱サイクル用作動媒体として用いる熱サイクルシステム(冷凍サイクル装置)が存在している(たとえば、特許文献1)。 There is also a thermal cycle system (refrigeration cycle apparatus) using 1,1,2-trifluoroethylene (HFO-1123) as a working medium for thermal cycle (for example, Patent Document 1).
特開2014-098166号公報(図1等)JP 2014-098166 A (Fig. 1 etc.)
 特許文献1には、熱サイクルシステム等の冷凍サイクル装置において、熱サイクル用作動媒体として、1,1,2-トリフルオロエチレン(HFO-1123)を使用することが記載されている。1,1,2-トリフルオロエチレン(HFO-1123)は、不均化反応を起こす性質の物質である。したがって、そのまま冷媒として使用すると、液や二相等の隣り合う物質同士の距離が非常に近い液状態の物質が流れる冷媒回路内の場所において、何らかのエネルギーによって不均化反応が起きる可能性がある。隣り合う物質同士が不均化反応すると、別の物質に変化して、冷媒として機能しなくなる。そればかりか、冷媒回路において、急激な圧力上昇により配管破裂等の事故が起こる可能性がある。このため、不均化反応を起こす性質の物質を冷媒として使用するには、この不均化反応を起こさせないようにしなければならないという課題がある。そこで、この不均化反応を起こさせないための工夫が必要になるが、特許文献1等には、不均化反応を起こさせない装置等を実現する方法については、何ら記述されていない。 Patent Document 1 describes that 1,1,2-trifluoroethylene (HFO-1123) is used as a working medium for a heat cycle in a refrigeration cycle apparatus such as a heat cycle system. 1,1,2-trifluoroethylene (HFO-1123) is a substance having a disproportionation reaction. Therefore, when used as a refrigerant as it is, a disproportionation reaction may occur due to some energy at a place in the refrigerant circuit where a liquid substance such as a liquid or a two-phase adjacent substance flows very close. When adjacent substances disproportionate, they change to another substance and do not function as a refrigerant. In addition, in the refrigerant circuit, an accident such as a pipe rupture may occur due to a sudden pressure increase. For this reason, in order to use a substance having a disproportionation reaction as a refrigerant, there is a problem that the disproportionation reaction must not be caused. Thus, a device for preventing this disproportionation reaction is required, but Patent Document 1 and the like do not describe any method for realizing an apparatus that does not cause the disproportionation reaction.
 本発明は、上記の課題を解決するためになされたもので、冷媒が外部から受けるエネルギーを低減させ、不均化反応を起こす性質の物質を、安全に、冷媒として使用することができる冷凍サイクル装置を得るものである。 The present invention has been made to solve the above-described problem, and a refrigeration cycle that can safely use a substance having a property of causing a disproportionation reaction by reducing energy received from the outside of the refrigerant as a refrigerant. Get the device.
 本発明に係る冷凍サイクル装置は、圧縮機と、第一の熱交換器と、絞り装置と、第二の熱交換器とを冷媒配管で接続し、不均化反応を起こす性質の物質で構成した単一冷媒または不均化反応を起こす性質の物質を含む混合冷媒と、冷媒に対して相溶性を有する冷凍機油とを充填して冷媒回路を構成し、第一の熱交換器および第二の熱交換器の少なくとも一方は、冷媒が流れる複数の伝熱管と、伝熱管の冷媒出口側の端部が挿入され、管内を冷媒が通過するヘッダとを有し、ヘッダの内径は伝熱管の内径よりも大きく、かつ、伝熱管の冷媒出口側の端部は、ヘッダの管内壁面に対向するように設置され、伝熱管の冷媒出口側の端部の中心から、中心に対応するヘッダの管内壁面までの距離をL、伝熱管の冷媒出口側の端部における内径または内径に相当する相当直径を内径dとしたときに、L/dの値が、20未満および0超となる位置に、伝熱管の冷媒出口側の端部が位置するものである。 A refrigeration cycle apparatus according to the present invention is composed of a substance having a property of causing a disproportionation reaction by connecting a compressor, a first heat exchanger, a throttling device, and a second heat exchanger with a refrigerant pipe. A refrigerant circuit is formed by charging a single refrigerant or a mixed refrigerant containing a substance having a property of causing a disproportionation reaction and a refrigerating machine oil having compatibility with the refrigerant to form a first heat exchanger and a second heat exchanger. At least one of the heat exchangers has a plurality of heat transfer tubes through which the refrigerant flows, and a header through which the refrigerant outlet side end of the heat transfer tubes is inserted, and the inner diameter of the header is that of the heat transfer tubes. The end of the heat transfer tube on the side of the refrigerant outlet that is larger than the inner diameter is disposed so as to face the inner wall surface of the header, and from the center of the end of the heat transfer tube on the side of the refrigerant outlet, the end of the header corresponding to the center L is the distance to the wall surface, the inner diameter at the end of the heat transfer tube on the refrigerant outlet side, or The equivalent diameter corresponding to the diameter when the inner diameter d, the value of L / d is, at a position of 20 and less than 0, greater than one in which the ends of the refrigerant outlet side of the heat transfer tube is located.
 本発明の冷凍サイクル装置によれば、1,1,2-トリフルオロエチレン(HFO-1123)等の不均化反応を起こす性質の物質を冷媒として冷媒回路を構成したときに、伝熱管からヘッダの管内壁面に加わる衝撃を調整等することで、不均化反応を起こりにくくし、冷媒として使用できなくなったり、配管破裂等の事故が発生したりすることを防ぎ、安全に冷媒として使用することができる装置を得ることができる。 According to the refrigeration cycle apparatus of the present invention, when a refrigerant circuit is formed using a substance having a property of causing a disproportionation reaction such as 1,1,2-trifluoroethylene (HFO-1123) as a refrigerant, By adjusting the impact applied to the inner wall surface of the pipe, disproportionation reaction is less likely to occur, and it is impossible to use it as a refrigerant or to prevent accidents such as pipe rupture, and use it safely as a refrigerant Can be obtained.
本発明の実施の形態1に係る冷凍サイクル装置の設置例を示す概略図。Schematic which shows the example of installation of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置の回路構成の一例を示す回路構成図。The circuit block diagram which shows an example of the circuit structure of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置の冷房運転モード時における冷媒の流れを示す冷媒回路図。The refrigerant circuit figure which shows the flow of the refrigerant | coolant at the time of the air_conditionaing | cooling operation mode of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置の暖房運転モード時における冷媒の流れを示す冷媒回路図。The refrigerant circuit figure which shows the flow of the refrigerant | coolant at the time of the heating operation mode of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置の冷凍機油の溶解度線図。The solubility diagram of the refrigeration oil of the refrigeration cycle apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1における熱源側熱交換器12、負荷側熱交換器15等に用いられる熱交換器の構成の概略図。Schematic of the structure of the heat exchanger used for the heat source side heat exchanger 12, the load side heat exchanger 15, etc. in Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置の熱交換器に用いられるヘッダ47と伝熱管43との関係を示す断面図。Sectional drawing which shows the relationship between the header 47 used for the heat exchanger of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention, and the heat exchanger tube 43. FIG. 本発明の実施の形態1に係る冷凍サイクル装置の熱交換器の別の構成の概略図。Schematic of another structure of the heat exchanger of the refrigeration cycle apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置の熱交換器の別の構成の概略図。Schematic of another structure of the heat exchanger of the refrigeration cycle apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置の熱交換器に用いられる伝熱管の概略図。The schematic diagram of the heat exchanger tube used for the heat exchanger of the refrigerating cycle device concerning Embodiment 1 of the present invention. 本発明の実施の形態2に係る冷凍サイクル装置の回路構成図。The circuit block diagram of the refrigerating-cycle apparatus which concerns on Embodiment 2 of this invention.
 以下、発明の実施の形態に係る冷凍サイクル装置について図面等を参照しながら説明する。ここで、図1を含め、以下の図面において、同一の符号を付したものは、同一またはこれに相当するものであり、以下に記載する実施の形態の全文において共通することとする。そして、明細書全文に表されている構成要素の形態は、あくまでも例示であって、明細書に記載された形態に限定するものではない。特に構成要素の組み合わせは、各実施の形態における組み合わせのみに限定するものではなく、他の実施の形態に記載した構成要素を別の実施の形態に適用することができる。更に、添字で区別等している複数の同種の機器等について、特に区別したり、特定したりする必要がない場合には、添字を省略して記載する場合がある。また、図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。そして、温度、圧力等の高低については、特に絶対的な値との関係で高低等が定まっているものではなく、システム、装置等における状態、動作等において相対的に定まるものとする。 Hereinafter, a refrigeration cycle apparatus according to an embodiment of the invention will be described with reference to the drawings. Here, in FIG. 1 and the following drawings, the same reference numerals denote the same or corresponding parts, and are common to the whole text of the embodiments described below. And the form of the component represented to the whole text of specification is an illustration to the last, Comprising: It does not limit to the form described in the specification. In particular, the combination of the components is not limited to the combination in each embodiment, and the components described in the other embodiments can be applied to another embodiment. Further, when there is no need to particularly distinguish or identify a plurality of similar devices that are distinguished by subscripts, the subscripts may be omitted. In the drawings, the size relationship of each component may be different from the actual one. The level of temperature, pressure, etc. is not particularly determined in relation to absolute values, but is relatively determined in the state, operation, etc. of the system, apparatus, and the like.
実施の形態1.
 本発明の実施の形態1について、図面に基づいて説明する。図1は、本発明の実施の形態1に係る冷凍サイクル装置の設置例を示す概略図である。図1に示す冷凍サイクル装置は、冷媒を循環させる冷媒回路を構成して冷媒による冷凍サイクルを利用することで、運転モードとして冷房モードまたは暖房モードのいずれかを選択できるものである。ここで、本実施の形態の冷凍サイクル装置は、空調対象空間(室内空間7)の空気調和を行う空気調和装置を例として説明する。
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram illustrating an installation example of a refrigeration cycle apparatus according to Embodiment 1 of the present invention. The refrigeration cycle apparatus shown in FIG. 1 can select either a cooling mode or a heating mode as an operation mode by configuring a refrigerant circuit that circulates refrigerant and using the refrigerant refrigeration cycle. Here, the refrigeration cycle apparatus of the present embodiment will be described by taking an air conditioning apparatus that performs air conditioning of the air-conditioning target space (indoor space 7) as an example.
 図1において、本実施の形態に係る冷凍サイクル装置は、熱源機である1台の室外機1と、複数台の室内機2と、を有している。室外機1と室内機2とは、冷媒を導通する延長配管(冷媒配管)4で接続され、室外機1で生成された冷熱または温熱は、延長配管4を介して室内機2に配送されるようになっている。 1, the refrigeration cycle apparatus according to the present embodiment has one outdoor unit 1 that is a heat source unit and a plurality of indoor units 2. The outdoor unit 1 and the indoor unit 2 are connected by an extension pipe (refrigerant pipe) 4 that conducts the refrigerant, and the cold or warm heat generated in the outdoor unit 1 is delivered to the indoor unit 2 via the extension pipe 4. It is like that.
 室外機1は、通常、ビル等の建物9の外の空間(たとえば、屋上等)である室外空間6に配置され、室内機2に冷熱または温熱を供給するものである。室内機2は、建物9の内部の空間(たとえば、居室等)である室内空間7に温度調整した空気を供給できる位置に配置され、空調対象空間となる室内空間7に冷房用空気または暖房用空気を供給するものである。 The outdoor unit 1 is usually arranged in an outdoor space 6 that is a space outside a building 9 such as a building (for example, a rooftop), and supplies cold or hot heat to the indoor unit 2. The indoor unit 2 is disposed at a position where the temperature-adjusted air can be supplied to the indoor space 7 which is a space inside the building 9 (for example, a living room). Air is supplied.
 図1に示すように、本実施の形態に係る冷凍サイクル装置においては、室外機1と各室内機2とが2本の延長配管4を用いて、それぞれ接続されている。 As shown in FIG. 1, in the refrigeration cycle apparatus according to the present embodiment, an outdoor unit 1 and each indoor unit 2 are connected to each other using two extension pipes 4.
 ここで、図1においては、室内機2が天井カセット型である場合を例に示してあるが、これに限定するものではない。天井埋込型、天井吊下式等、室内空間7に直接またはダクト等により、暖房用空気または冷房用空気を吹き出せるようになっていればどんな種類のものでもよい。 Here, FIG. 1 shows an example in which the indoor unit 2 is a ceiling cassette type, but the present invention is not limited to this. Any type may be used as long as heating air or cooling air can be blown directly into the indoor space 7 by a duct or the like, such as a ceiling-embedded type or a ceiling-suspended type.
 また、図1においては、室外機1が室外空間6に設置されている場合を例に示しているが、これに限定するものではない。たとえば、室外機1は、換気口付の機械室等の囲まれた空間に設置してもよい。また、排気ダクトで廃熱を建物9の外に排気することができるのであれば建物9の内部に設置してもよい。更に、水冷式の室外機1を用いて建物9の内部に設置するようにしてもよい。どのような場所に室外機1を設置するとしても、特段の問題が発生することはない。 Further, in FIG. 1, the case where the outdoor unit 1 is installed in the outdoor space 6 is shown as an example, but the present invention is not limited to this. For example, the outdoor unit 1 may be installed in an enclosed space such as a machine room with a ventilation opening. Further, if the waste heat can be exhausted outside the building 9 by the exhaust duct, it may be installed inside the building 9. Furthermore, you may make it install in the inside of the building 9 using the water-cooled outdoor unit 1. FIG. No matter what place the outdoor unit 1 is installed, no particular problem occurs.
 また、室外機1および室内機2の接続台数を図1に図示してある台数に限定するものではなく、本実施の形態に係る冷凍サイクル装置が設置される建物9に応じて台数を決定すればよい。 Further, the number of connected outdoor units 1 and indoor units 2 is not limited to the number shown in FIG. 1, and the number of units can be determined according to the building 9 in which the refrigeration cycle apparatus according to the present embodiment is installed. That's fine.
 図2は、実施の形態1に係る冷凍サイクル装置(以下、冷凍サイクル装置100と称する)の冷媒回路構成の一例を示す回路構成図である。図2に基づいて、冷凍サイクル装置100の詳しい構成について説明する。図2に示すように、室外機1と室内機2とが、内部に冷媒が流れる延長配管(冷媒配管)4で接続されている。 FIG. 2 is a circuit configuration diagram showing an example of a refrigerant circuit configuration of the refrigeration cycle apparatus (hereinafter referred to as the refrigeration cycle apparatus 100) according to the first embodiment. Based on FIG. 2, the detailed structure of the refrigerating-cycle apparatus 100 is demonstrated. As shown in FIG. 2, the outdoor unit 1 and the indoor unit 2 are connected by an extension pipe (refrigerant pipe) 4 through which a refrigerant flows.
[室外機1]
 室外機1には、圧縮機10と、四方弁等の第1冷媒流路切替装置11と、熱源側熱交換器12と、アキュムレータ19とが冷媒配管で直列に接続されて搭載されている。
[Outdoor unit 1]
The outdoor unit 1 is mounted with a compressor 10, a first refrigerant flow switching device 11 such as a four-way valve, a heat source side heat exchanger 12, and an accumulator 19 connected in series by a refrigerant pipe.
 圧縮機10は、冷媒を吸入し、その冷媒を圧縮して高温高圧の状態にして吐出する。
また、圧縮機10は、たとえば、密閉容器内に圧縮室を有し、密閉容器内が低圧の冷媒圧雰囲気となり、密閉容器内の低圧冷媒を吸入して圧縮する低圧シェル構造のものを使用するか、または密閉容器内が高圧の冷媒圧雰囲気となり、圧縮室で圧縮された高圧冷媒を密閉容器内に吐出する高圧シェル構造のものを使用する。本実施の形態の圧縮機10については、たとえば容量制御可能なインバータ圧縮機等で構成するとよい。第1冷媒流路切替装置11は、暖房運転時における冷媒の流れと冷房運転時における冷媒の流れとを切り替えるものである。第1熱交換器となる熱源側熱交換器12は、暖房運転時には蒸発器として機能し、冷房運転時には凝縮器(または放熱器)として機能する。そして、熱源側熱交換器12は、図示省略の送風機から供給される空気と冷媒との間で熱交換を行い、その冷媒を蒸発ガス化または凝縮液化するものである。熱源側熱交換器12は、室内空間7を冷房する運転の場合には凝縮器として機能する。また、室内空間7を暖房する運転の場合には蒸発器として機能する。アキュムレータ19は、圧縮機10の吸入側に設けられており、運転モード変化等により冷媒回路中で余剰となる冷媒を貯留するものである。
The compressor 10 sucks in the refrigerant, compresses the refrigerant, discharges it in a high temperature and high pressure state.
The compressor 10 has, for example, a low-pressure shell structure that has a compression chamber in a sealed container, the inside of the sealed container has a low-pressure refrigerant pressure atmosphere, and sucks and compresses the low-pressure refrigerant in the sealed container. Alternatively, a high-pressure shell structure is used in which the inside of the sealed container becomes a high-pressure refrigerant pressure atmosphere and the high-pressure refrigerant compressed in the compression chamber is discharged into the sealed container. About the compressor 10 of this Embodiment, it is good to comprise by the inverter compressor etc. which can control capacity | capacitance, for example. The first refrigerant flow switching device 11 switches the refrigerant flow during the heating operation and the refrigerant flow during the cooling operation. The heat source side heat exchanger 12 serving as the first heat exchanger functions as an evaporator during heating operation and functions as a condenser (or radiator) during cooling operation. The heat source side heat exchanger 12 exchanges heat between air supplied from a blower (not shown) and the refrigerant, and evaporates or condenses the refrigerant. The heat source side heat exchanger 12 functions as a condenser in the operation of cooling the indoor space 7. Moreover, in the case of the driving | operation which heats the indoor space 7, it functions as an evaporator. The accumulator 19 is provided on the suction side of the compressor 10 and stores excess refrigerant in the refrigerant circuit due to an operation mode change or the like.
 また、室外機1には、高圧検出装置37、低圧検出装置38、および、制御装置60が備えられている。制御装置60は、各種検出装置での検出情報、リモコンからの指示等に基づいて、機器の制御を行う。たとえば、圧縮機10の駆動周波数、送風機の回転数(ON/OFF含む)、第1冷媒流路切替装置11の切り替え等を制御し、後述する各運転モードを実行するようになっている。ここで、本実施の形態の制御装置60は、たとえばCPU(Central Processing Unit)等の制御演算処理手段を有するマイクロコンピュータ等で構成されている。また、記憶手段(図示せず)を有しており、制御等に係る処理手順をプログラムとしたデータを有している。そして、制御演算処理手段がプログラムのデータに基づく処理を実行して制御を実現する。高圧検出装置37は、冷媒回路において高圧となる圧縮機10の吐出側配管に設置される。また、低圧検出装置38は、冷媒回路において低圧となるアキュムレータ19の冷媒流入側となる配管に設置される。高圧検出装置37および低圧検出装置38は、検出した圧力に基づく信号を制御装置60に送信する。制御装置60は、送られた信号を処理して検出された圧力に基づき、室外機1の各機器を制御する。 Further, the outdoor unit 1 is provided with a high pressure detection device 37, a low pressure detection device 38, and a control device 60. The control device 60 controls devices based on detection information from various detection devices, instructions from a remote controller, and the like. For example, the driving frequency of the compressor 10, the rotation speed of the blower (including ON / OFF), the switching of the first refrigerant flow switching device 11 and the like are controlled, and each operation mode described later is executed. Here, the control device 60 of the present embodiment is constituted by a microcomputer having a control arithmetic processing means such as a CPU (Central Processing Unit). Moreover, it has a memory | storage means (not shown) and has the data which made the process procedure regarding control etc. a program. Then, the control arithmetic processing means executes processing based on the program data to realize control. The high-pressure detection device 37 is installed in the discharge side piping of the compressor 10 that has a high pressure in the refrigerant circuit. Further, the low-pressure detection device 38 is installed in a pipe on the refrigerant inflow side of the accumulator 19 that has a low pressure in the refrigerant circuit. The high pressure detection device 37 and the low pressure detection device 38 transmit a signal based on the detected pressure to the control device 60. The control device 60 controls each device of the outdoor unit 1 based on the pressure detected by processing the transmitted signal.
[室内機2]
 室内機2には、それぞれ第二の熱交換器となる負荷側熱交換器15が搭載されている。負荷側熱交換器15は、延長配管4によって室外機1に接続するようになっている。負荷側熱交換器15は、図示省略の送風機から供給される空気と冷媒との間で熱交換を行い、室内空間7に供給するための暖房用空気または冷房用空気を生成するものである。負荷側熱交換器15は、室内空間7を暖房する運転の場合には凝縮器として作用する。また、室内空間7を冷房する運転の場合には蒸発器として作用する。ここで、図示はしていないが、各室内機2は、室内機2内の機器を制御する制御装置を有している。
[Indoor unit 2]
The indoor unit 2 is equipped with a load-side heat exchanger 15 serving as a second heat exchanger. The load side heat exchanger 15 is connected to the outdoor unit 1 by the extension pipe 4. The load-side heat exchanger 15 performs heat exchange between air supplied from a blower (not shown) and the refrigerant, and generates heating air or cooling air to be supplied to the indoor space 7. The load side heat exchanger 15 acts as a condenser in the case of an operation for heating the indoor space 7. Moreover, in the case of the driving | running which cools the indoor space 7, it acts as an evaporator. Here, although not illustrated, each indoor unit 2 has a control device that controls the devices in the indoor unit 2.
 図2では、4台の室内機2が接続されている場合を例に示しており、紙面下から室内機2a、室内機2b、室内機2c、室内機2dとして図示している。また、室内機2a~室内機2dに応じて、負荷側熱交換器15も、紙面下側から負荷側熱交換器15a、負荷側熱交換器15b、負荷側熱交換器15c、負荷側熱交換器15dとして図示している。ここで、図1と同様に、室内機2の接続台数は図2に示す4台に限定するものではない。 FIG. 2 shows an example in which four indoor units 2 are connected, and are illustrated as an indoor unit 2a, an indoor unit 2b, an indoor unit 2c, and an indoor unit 2d from the bottom of the page. Further, according to the indoor unit 2a to the indoor unit 2d, the load side heat exchanger 15 is also loaded from the lower side of the page with the load side heat exchanger 15a, the load side heat exchanger 15b, the load side heat exchanger 15c, and the load side heat exchange. It is shown as a container 15d. Here, as in FIG. 1, the number of indoor units 2 connected is not limited to the four shown in FIG.
 次に、冷凍サイクル装置100が実行する各運転モードについて説明する。この冷凍サイクル装置100は、各室内機2からの指示に基づいて、室外機1の運転モードを冷房運転モードか暖房運転モードかのいずれかに決定する。すなわち、冷凍サイクル装置100は、室内機2の全部で同一運転(冷房運転か暖房運転)をすることができ、室内の温度調節を行う。ここで、冷房運転モード、暖房運転モードのいずれにおいても、各室内機2の運転/停止は自由に行うことができる。 Next, each operation mode executed by the refrigeration cycle apparatus 100 will be described. The refrigeration cycle apparatus 100 determines the operation mode of the outdoor unit 1 to be either the cooling operation mode or the heating operation mode based on an instruction from each indoor unit 2. That is, the refrigeration cycle apparatus 100 can perform the same operation (cooling operation or heating operation) for all of the indoor units 2 and adjusts the indoor temperature. Here, in both the cooling operation mode and the heating operation mode, each indoor unit 2 can be operated / stopped freely.
 冷凍サイクル装置100が実行する運転モードには、駆動している室内機2の全てが冷房運転(停止も含む)を実行する冷房運転モード、および、駆動している室内機2の全てが暖房運転(停止も含む)を実行する暖房運転モードがある。以下に、各運転モードについて、冷媒の流れと共に説明する。 The operation mode executed by the refrigeration cycle apparatus 100 includes a cooling operation mode in which all the driven indoor units 2 perform a cooling operation (including a stop), and all of the driven indoor units 2 are in a heating operation. There is a heating operation mode for executing (including stopping). Below, each operation mode is demonstrated with the flow of a refrigerant | coolant.
[冷房運転モード]
 図3は、冷凍サイクル装置100の冷房運転モード時における冷媒の流れを示す冷媒回路図である。この図3では、全部の負荷側熱交換器15において冷熱負荷が発生している場合を例に冷房運転モードについて説明する。なお、図3では、太線で表された配管が冷媒の流れる配管を示しており、冷媒の流れ方向を実線矢印で示している。
[Cooling operation mode]
FIG. 3 is a refrigerant circuit diagram illustrating a refrigerant flow when the refrigeration cycle apparatus 100 is in the cooling operation mode. In FIG. 3, the cooling operation mode will be described by taking as an example a case where a cooling load is generated in all the load-side heat exchangers 15. In FIG. 3, a pipe indicated by a thick line indicates a pipe through which the refrigerant flows, and a flow direction of the refrigerant is indicated by a solid line arrow.
 図3に示す冷房運転モードでの運転を行う場合、室外機1において、制御装置60が、圧縮機10から吐出された冷媒が熱源側熱交換器12へ流入するように第1冷媒流路切替装置11を切り替える。そして、低温低圧の冷媒が圧縮機10によって圧縮され、高温高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温高圧のガス冷媒は、第1冷媒流路切替装置11を介して熱源側熱交換器12に流入する。そして、流入した冷媒は、熱源側熱交換器12で室外空気に放熱しながら凝縮液化し、高圧の液冷媒となり、室外機1から流出する。 When performing the operation in the cooling operation mode shown in FIG. 3, in the outdoor unit 1, the control device 60 switches the first refrigerant flow path so that the refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12. Switch the device 11. The low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the first refrigerant flow switching device 11. The refrigerant that has flowed in is condensed and liquefied while dissipating heat to the outdoor air in the heat source side heat exchanger 12, becomes a high-pressure liquid refrigerant, and flows out of the outdoor unit 1.
 室外機1を流出した高圧の液冷媒は、延長配管4を通って、室内機2(2a~2d)のそれぞれに流入する。室内機2(2a~2d)に流入した高圧の液冷媒は、絞り装置16(16a~16d)に流入して、絞り装置16(16a~16d)で絞られて、減圧され、低温低圧の二相冷媒となって流出する。絞り装置16(16a~16d)を通過した冷媒は、蒸発器として作用する負荷側熱交換器15(15a~15d)のそれぞれに流入し、負荷側熱交換器15の周囲を流通する空気から吸熱して、低温低圧のガス冷媒となる。そして、低温低圧のガス冷媒は、室内機2(2a~2d)から流出し、延長配管4を通って再び室外機1へ流入し、第1冷媒流路切替装置11を通り、アキュムレータ19を介して、圧縮機10へ再度吸入される。 The high-pressure liquid refrigerant that has flowed out of the outdoor unit 1 passes through the extension pipe 4 and flows into each of the indoor units 2 (2a to 2d). The high-pressure liquid refrigerant that has flowed into the indoor unit 2 (2a to 2d) flows into the expansion device 16 (16a to 16d), and is throttled and decompressed by the expansion device 16 (16a to 16d). It flows out as a phase refrigerant. The refrigerant that has passed through the expansion device 16 (16a to 16d) flows into each of the load side heat exchangers 15 (15a to 15d) acting as an evaporator, and absorbs heat from the air circulating around the load side heat exchanger 15. Thus, it becomes a low-temperature and low-pressure gas refrigerant. The low-temperature and low-pressure gas refrigerant flows out of the indoor unit 2 (2a to 2d), flows into the outdoor unit 1 again through the extension pipe 4, passes through the first refrigerant flow switching device 11, and passes through the accumulator 19. Then, it is sucked into the compressor 10 again.
 このとき、絞り装置16a~16dの開度(開口面積)は、負荷側熱交換器ガス冷媒温度検出装置28の検出温度と、室外機1の制御装置60から各室内機2の制御装置(図示せず)に通信で送信された蒸発温度と、の温度差(過熱度)が目標値に近づくように制御される。 At this time, the opening degree (opening area) of the expansion devices 16a to 16d is determined based on the detected temperature of the load-side heat exchanger gas refrigerant temperature detection device 28 and the control device 60 of each outdoor unit 2 from the control device 60 of the outdoor unit 1 (FIG. It is controlled so that the temperature difference (superheat degree) between the evaporation temperature transmitted by communication to the target value (not shown) approaches the target value.
 ここでは、全ての室内機2が冷房運転を行うものとしたが、冷房運転モードを実行する際、熱負荷のない負荷側熱交換器15(サーモオフを含む)へは冷媒を流す必要がない。このため、室内機2は運転を停止する。このとき、停止している室内機2に対応する絞り装置16は、全閉または冷媒が流れない小さい開度としておく。 Here, it is assumed that all the indoor units 2 perform the cooling operation. However, when the cooling operation mode is executed, it is not necessary to flow the refrigerant to the load-side heat exchanger 15 (including the thermo-off) having no heat load. For this reason, the indoor unit 2 stops operation. At this time, the expansion device 16 corresponding to the stopped indoor unit 2 is fully closed or set to a small opening at which the refrigerant does not flow.
[暖房運転モード]
 図4は、冷凍サイクル装置100の暖房運転モード時における冷媒の流れを示す冷媒回路図である。図4では、全部の負荷側熱交換器15において温熱負荷が発生している場合を例に暖房運転モードについて説明する。なお、図4では、太線で表された配管が冷媒の流れる配管を示しており、冷媒の流れ方向を実線矢印で示している。
[Heating operation mode]
FIG. 4 is a refrigerant circuit diagram illustrating a refrigerant flow when the refrigeration cycle apparatus 100 is in the heating operation mode. In FIG. 4, the heating operation mode will be described by taking as an example a case where a thermal load is generated in all the load-side heat exchangers 15. In FIG. 4, a pipe indicated by a thick line indicates a pipe through which the refrigerant flows, and a flow direction of the refrigerant is indicated by a solid line arrow.
 図4に示す暖房運転モードでの運転を行う場合、室外機1において、制御装置60が、第1冷媒流路切替装置11を、圧縮機10から吐出された冷媒を、熱源側熱交換器12を経由させずに室内機2へ流入させるように切り替える。そして、低温低圧の冷媒が圧縮機10によって圧縮され、高温高圧のガス冷媒となって吐出され、第1冷媒流路切替装置11を通り、室外機1から流出する。室外機1から流出した高温高圧のガス冷媒は、延長配管4を通って室内機2(2a~2d)のそれぞれに流入する。室内機2(2a~2d)に流入した高温高圧のガス冷媒は、負荷側熱交換器15(15a~15d)のそれぞれに流入し、負荷側熱交換器15(15a~15d)の周囲を流通する空気に放熱しながら凝縮液化し、高温高圧の液冷媒となる。負荷側熱交換器15(15a~15d)から流出した高温高圧の液冷媒は、絞り装置16(16a~16d)に流入し、絞り装置16(16a~16d)で絞られて、減圧され、低温低圧の二相冷媒となり、室内機2(2a~2d)から流出する。室内機2から流出した低温低圧の二相冷媒は、延長配管4を通って再び室外機1へ流入する。 When performing the operation in the heating operation mode shown in FIG. 4, in the outdoor unit 1, the control device 60 uses the first refrigerant flow switching device 11, the refrigerant discharged from the compressor 10, and the heat source side heat exchanger 12. It switches so that it may flow into indoor unit 2 without going through. The low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant, passes through the first refrigerant flow switching device 11, and flows out of the outdoor unit 1. The high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 1 flows into each of the indoor units 2 (2a to 2d) through the extension pipe 4. The high-temperature and high-pressure gas refrigerant that has flowed into the indoor unit 2 (2a to 2d) flows into the load-side heat exchanger 15 (15a to 15d) and circulates around the load-side heat exchanger 15 (15a to 15d). It liquefies while radiating heat to the air, and becomes a high-temperature and high-pressure liquid refrigerant. The high-temperature and high-pressure liquid refrigerant that has flowed out of the load-side heat exchanger 15 (15a to 15d) flows into the expansion device 16 (16a to 16d), is throttled and decompressed by the expansion device 16 (16a to 16d), It becomes a low-pressure two-phase refrigerant and flows out of the indoor unit 2 (2a to 2d). The low-temperature and low-pressure two-phase refrigerant that has flowed out of the indoor unit 2 flows into the outdoor unit 1 again through the extension pipe 4.
 このとき、絞り装置16a~16dの開度(開口面積)は、室外機1の制御装置60から各室内機2が有する制御装置(図示せず)に通信で送信された凝縮温度と、負荷側熱交換器液冷媒温度検出装置27の検出温度と、の温度差(過冷却度)が目標値に近づくように制御される。 At this time, the opening degree (opening area) of the expansion devices 16a to 16d is determined based on the condensation temperature transmitted from the control device 60 of the outdoor unit 1 to the control device (not shown) of each indoor unit 2 through communication, Control is performed such that the temperature difference (degree of supercooling) from the detected temperature of the heat exchanger liquid refrigerant temperature detecting device 27 approaches the target value.
 室外機1に流入した低温低圧の二相冷媒は、熱源側熱交換器12に流入し、熱源側熱交換器12の周囲に流れる空気から吸熱し、蒸発して低温低圧のガス冷媒または低温低圧の乾き度の大きい二相冷媒となる。低温低圧のガス冷媒または二相冷媒は、第1冷媒流路切替装置11およびアキュムレータ19を介して、再び圧縮機10に吸入される。 The low-temperature and low-pressure two-phase refrigerant that has flowed into the outdoor unit 1 flows into the heat source side heat exchanger 12, absorbs heat from the air flowing around the heat source side heat exchanger 12, and evaporates to form a low-temperature and low-pressure gas refrigerant or low-temperature and low-pressure. It becomes a two-phase refrigerant with a large dryness. The low-temperature and low-pressure gas refrigerant or the two-phase refrigerant is again sucked into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator 19.
 暖房運転モードを実行する際、熱負荷のない負荷側熱交換器15(サーモオフを含む)へは冷媒を流す必要がない。しかし、暖房運転モードにおいて、暖房負荷のない負荷側熱交換器15と対応する絞り装置16を全閉または冷媒が流れない小さい開度とすると、運転していない室内機2の負荷側熱交換器15の内部で冷媒が周囲空気によって冷やされて凝縮し、冷媒が溜まり込んでしまい、冷媒回路全体として冷媒不足に陥ってしまう可能性がある。そこで、暖房運転時においては、熱負荷のない負荷側熱交換器15と対応する絞り装置16の開度(開口面積)は全開等の大きい開度にし、冷媒の溜まり込みを防止する。 When the heating operation mode is executed, it is not necessary to flow the refrigerant to the load-side heat exchanger 15 (including the thermo-off) that has no heat load. However, in the heating operation mode, if the expansion device 16 corresponding to the load-side heat exchanger 15 having no heating load is fully closed or has a small opening at which the refrigerant does not flow, the load-side heat exchanger of the indoor unit 2 that is not operating. In 15, the refrigerant is cooled and condensed by the ambient air, the refrigerant accumulates, and the refrigerant circuit as a whole may fall short of the refrigerant. Therefore, during heating operation, the opening degree (opening area) of the expansion device 16 corresponding to the load-side heat exchanger 15 having no heat load is set to a large opening degree such as full opening to prevent accumulation of refrigerant.
 以上、説明した通り、冷凍サイクル装置100では、室内機2が冷房運転を行っているときは、熱源側熱交換器12が凝縮器として作用し、熱源側熱交換器12に、高温高圧のガス冷媒が流入して凝縮し、二相域を経て液化し、高温高圧の液冷媒となって流出する。また、室内機2が暖房運転を行っているときは、負荷側熱交換器15(15a~15d)が凝縮器として作用し、負荷側熱交換器15(15a~15d)に、高温高圧のガス冷媒が流入して凝縮し、二相域を経て液化し、高温高圧の液冷媒となって流出する。 As described above, in the refrigeration cycle apparatus 100, when the indoor unit 2 is performing the cooling operation, the heat source side heat exchanger 12 acts as a condenser, and the heat source side heat exchanger 12 has a high-temperature and high-pressure gas. The refrigerant flows in and condenses, liquefies through a two-phase region, and flows out as a high-temperature and high-pressure liquid refrigerant. Further, when the indoor unit 2 is performing the heating operation, the load side heat exchanger 15 (15a to 15d) acts as a condenser, and the load side heat exchanger 15 (15a to 15d) The refrigerant flows in and condenses, liquefies through a two-phase region, and flows out as a high-temperature and high-pressure liquid refrigerant.
[冷媒の種類]
 冷凍サイクル装置100で使用する冷媒として、R32、R410A等のように、冷媒として一般的に使用されている物質を冷媒とする場合は、冷媒回路内での冷媒の安定性を改善するための工夫を施すことなく、このまま普通に使用すればよい。しかし、ここでは、冷媒として、Cで表され、分子構造中に二重結合を1つ有する1,1,2-トリフルオロエチレン(HFO-1123)等の不均化反応を起こす性質の物質で構成した単一冷媒、または、不均化反応を起こす性質の物質に別の物質を混合させた混合冷媒を用いるものとする。なお、HFO-1123を含む冷媒だけを対象とするものではなく、不均化反応を起こす性質の物質を含む冷媒であれば、どのような冷媒も本発明に係る冷凍サイクル装置に用いる冷媒の対象となる。
[Type of refrigerant]
When the refrigerant used in the refrigeration cycle apparatus 100 is a substance that is generally used as a refrigerant, such as R32, R410A, etc., a device for improving the stability of the refrigerant in the refrigerant circuit. It can be used as it is, without applying. However, here, as a refrigerant, a disproportionation reaction such as 1,1,2-trifluoroethylene (HFO-1123) represented by C 2 H 1 F 3 and having one double bond in the molecular structure is performed. It is assumed that a single refrigerant composed of a substance having a property of generating or a mixed refrigerant obtained by mixing another substance with a substance having a property of causing a disproportionation reaction is used. It should be noted that not only the refrigerant containing HFO-1123 but also any refrigerant containing a substance having a property of causing a disproportionation reaction is applicable to the refrigerant used in the refrigeration cycle apparatus according to the present invention. It becomes.
 混合冷媒を生成させるために、不均化反応を起こす性質の物質に混合させる物質としては、たとえば、化学式がCで表されるテトラフルオロプロペン(CFCF=CHで表される2,3,3,3-テトラフルオロプロペンであるHFO-1234yf、CFCH=CHFで表される1,3,3,3-テトラフルオロ-1-プロペンであるHFO-1234ze等)、化学式がCHで表されるジフルオロメタン(HFC-32)等が用いられる。しかし、不均化反応を起こす性質の物質に混合させる物質は、これらに限るものではない。たとえば、HC-290(プロパン)等を混合させてもよい。冷凍サイクル装置100の冷媒として使用できる熱性能を有する物質であれば、どのようなものを用いてもよい。また、混合比は、どのような混合比としてもよい。 Table to generate a mixed refrigerant, as the material to be mixed to the material properties causing disproportionation reaction, for example, in tetrafluoropropene (CF 3 CF = CH 2 in which the chemical formula of C 3 H 2 F 4 HFO-1234yf which is 2,3,3,3-tetrafluoropropene, HFO-1234ze which is 1,3,3,3-tetrafluoro-1-propene represented by CF 3 CH═CHF), Difluoromethane (HFC-32) whose chemical formula is represented by CH 2 F 2 is used. However, the substance mixed with the substance having a disproportionation reaction is not limited to these. For example, HC-290 (propane) or the like may be mixed. Any material having thermal performance that can be used as a refrigerant of the refrigeration cycle apparatus 100 may be used. Further, the mixing ratio may be any mixing ratio.
 不均化反応を起こす性質の物質は、そのまま冷媒として使用すると、以下のような問題が生じる。たとえば、液相、二相等のように隣り合う物質同士の距離が非常に近い液状態の物質が存在する場所で、何らかの強いエネルギーが加わると、隣り合う物質同士が反応して、別の物質に変化し、冷媒として機能しなくなる。そればかりか、発熱による急激な圧力上昇のため、配管破裂等の事故が起こる可能性がある。そこで、不均化反応を起こす性質の物質を冷媒として使用するためには、冷媒回路において、液状の液冷媒が流れる液部、または、気体と液体との混合状態の気液二相冷媒が流れる二相部において、この不均化反応を起こさないような工夫が必要となる。ここで、冷媒と構造物とが衝突したときの衝突エネルギーも、冷媒の不均化反応を起こさせる要因になる。このため、冷媒回路の構成部品を、その衝突エネルギーが低減される構造にすると不均化反応が起き難くなる。 If a substance that causes a disproportionation reaction is used as a refrigerant as it is, the following problems occur. For example, in a place where there is a substance in a liquid state where the distance between adjacent substances is very close, such as a liquid phase, two phases, etc., if some strong energy is applied, the adjacent substances react to each other and become It will change and will not function as a refrigerant. In addition, there is a possibility that an accident such as a pipe rupture may occur due to a rapid pressure rise due to heat generation. Therefore, in order to use a substance having a disproportionation reaction as a refrigerant, in a refrigerant circuit, a liquid part in which a liquid liquid refrigerant flows or a gas-liquid two-phase refrigerant in a mixed state of gas and liquid flows. In the two-phase part, it is necessary to devise so as not to cause this disproportionation reaction. Here, the collision energy when the refrigerant and the structure collide also causes a disproportionation reaction of the refrigerant. For this reason, if the components of the refrigerant circuit have a structure in which the collision energy is reduced, disproportionation reaction hardly occurs.
[冷凍機油]
 冷媒回路中に充填される冷凍機油は、ポリオールエステルおよびポリビニルエーテルのうちいずれかを主成分とするものであり、圧縮機10に充填され冷凍機油の一部が冷媒と一緒に冷媒回路中を循環する。ポリオールエステルおよびポリビニルエーテルは、いずれも、分子構造中に二重結合を1個有する冷媒に対して溶解しやすい相溶性を有する冷凍機油である。そして、この冷凍機油と冷媒であるHFO-1123とを混合すると、HFO-1123が、冷凍機油に、ある程度溶解する。なお、冷凍機油は冷媒と相溶性を示すものであれば、これに限らず別の種類の油を使用してもよい。
[Refrigerator oil]
The refrigerating machine oil filled in the refrigerant circuit is mainly composed of either polyol ester or polyvinyl ether, and a part of the refrigerating machine oil filled in the compressor 10 circulates in the refrigerant circuit together with the refrigerant. To do. Both the polyol ester and the polyvinyl ether are refrigerating machine oils that are easily soluble in a refrigerant having one double bond in the molecular structure. When this refrigerating machine oil and HFO-1123 as a refrigerant are mixed, HFO-1123 is dissolved to some extent in the refrigerating machine oil. The refrigerating machine oil is not limited to this as long as it is compatible with the refrigerant, and another type of oil may be used.
 図5は、本発明の実施の形態1に係る冷凍サイクル装置の冷凍機油の溶解度線図である。溶解度が大きいとは、冷凍機油に多くの冷媒が溶けることを意味し、溶解度が小さいとは、冷凍機油に少しの冷媒しか溶けないことを意味する。図5には、溶解度と圧力との関係を、冷媒の温度T1、T2、T3毎に示している。ここで、図5において、T1、T2、T3は異なる温度であり、式(1)が成り立つ。 FIG. 5 is a solubility diagram of the refrigerating machine oil of the refrigeration cycle apparatus according to Embodiment 1 of the present invention. High solubility means that many refrigerants are dissolved in the refrigeration oil, and low solubility means that only a small amount of refrigerant is dissolved in the refrigeration oil. FIG. 5 shows the relationship between the solubility and the pressure for each of the refrigerant temperatures T1, T2, and T3. Here, in FIG. 5, T1, T2, and T3 are different temperatures, and the formula (1) is established.
[数1]
 T1<T2<T3  … (1)
[Equation 1]
T1 <T2 <T3 (1)
 図5に示すように、同一圧力条件では、冷媒の温度が低い方が溶解度が大きく、同一温度条件では、冷媒の圧力が高い方が溶解度が大きい。冷媒が冷凍機油に溶解すると、冷媒の分子と分子の間に冷凍機油の分子が溶け込んで存在するようになる。したがって、冷媒の冷凍機油に対する溶解度が大きいと、多くの冷媒の分子と分子の間に冷凍機油が存在することになる。冷媒の不均化反応は、上述したように、隣接する冷媒の分子同士が反応する現象である。このため、冷媒に対して相溶性を有する冷凍機油を使用すれば、冷媒の分子と分子の間に冷凍機油の分子が存在することから、冷媒の不均化反応が起き難くなる。 As shown in FIG. 5, under the same pressure condition, the lower the refrigerant temperature, the higher the solubility, and under the same temperature condition, the higher the refrigerant pressure, the higher the solubility. When the refrigerant is dissolved in the refrigerating machine oil, the refrigerating machine oil molecules are present between the refrigerant molecules. Therefore, if the solubility of the refrigerant in the refrigerating machine oil is large, the refrigerating machine oil exists between many refrigerant molecules. As described above, the refrigerant disproportionation reaction is a phenomenon in which adjacent refrigerant molecules react with each other. For this reason, if the refrigerating machine oil having compatibility with the refrigerant is used, the refrigerant oil molecules are present between the refrigerant molecules, so that the disproportionation reaction of the refrigerant hardly occurs.
 そして、冷媒の冷凍機油に対する溶解度が大きい方が冷媒の不均化反応を抑制する効果が大きい。実用的には、溶解度が50wt%(重量%)以上であれば、多くの冷媒が冷凍機油に溶解するため、不均化反応を抑制することができる。 And the greater the solubility of the refrigerant in the refrigeration oil, the greater the effect of suppressing the disproportionation reaction of the refrigerant. Practically, if the solubility is 50 wt% (weight%) or more, many refrigerants are dissolved in the refrigerating machine oil, so that the disproportionation reaction can be suppressed.
[熱源側熱交換器12または負荷側熱交換器15(15a~15d)]
 図6は、本発明の実施の形態1における熱源側熱交換器12、負荷側熱交換器15(15a~15d)等に用いられるプレートフィンチューブ式の熱交換器の構成の概略を示す図である。図6において、プレートフィンチューブ式の熱源側熱交換器12または負荷側熱交換器15(ここでは熱交換器12または15とする)は、第1接続管41、第2接続管42、周囲の熱媒体である空気等と内部の冷媒との熱交換をする伝熱管43、フィン44、第1ヘッダ47、および、第2ヘッダ48を有している。
[Heat source side heat exchanger 12 or load side heat exchanger 15 (15a to 15d)]
FIG. 6 is a diagram showing an outline of the configuration of a plate fin tube type heat exchanger used in the heat source side heat exchanger 12, the load side heat exchanger 15 (15a to 15d) and the like in the first embodiment of the present invention. is there. In FIG. 6, a plate fin tube type heat source side heat exchanger 12 or load side heat exchanger 15 (here, referred to as heat exchanger 12 or 15) includes a first connection pipe 41, a second connection pipe 42, and a surrounding area. It has a heat transfer tube 43, fins 44, a first header 47, and a second header 48 for exchanging heat between air or the like as a heat medium and an internal refrigerant.
 熱交換器12または15の構成についてさらに詳細に説明する。熱交換器12または15は、フィン44が間隔を空けて複数配置され、この複数のフィン44に複数の伝熱管43が貫通して配置された構成を有している。そして、複数の伝熱管43の両端のうちの一端が第1ヘッダ47に接続され、伝熱管43の他端が第2ヘッダ48に接続されている。また、冷媒回路の他の機器からの冷媒の出入口となる第1接続管41および第2接続管42が、それぞれ第1ヘッダ47および第2ヘッダ48に接続されている。 The configuration of the heat exchanger 12 or 15 will be described in more detail. The heat exchanger 12 or 15 has a configuration in which a plurality of fins 44 are arranged at intervals, and a plurality of heat transfer tubes 43 are arranged through the plurality of fins 44. One end of both ends of the plurality of heat transfer tubes 43 is connected to the first header 47, and the other end of the heat transfer tubes 43 is connected to the second header 48. In addition, a first connection pipe 41 and a second connection pipe 42 that serve as refrigerant inlets and outlets from other devices in the refrigerant circuit are connected to the first header 47 and the second header 48, respectively.
 第1ヘッダ47または第2ヘッダ48は、第1接続管41または第2接続管42から流入した冷媒を各伝熱管43に分配する。また、各伝熱管43から流入した冷媒を合流させる働きをする。図6は、第1ヘッダ47および第2ヘッダ48がそれぞれ1つであり、第1ヘッダ47および第2ヘッダ48のそれぞれに、同じ本数の伝熱管43が接続されている場合を示している。 The first header 47 or the second header 48 distributes the refrigerant flowing from the first connection pipe 41 or the second connection pipe 42 to each heat transfer pipe 43. In addition, the refrigerant that flows in from the heat transfer tubes 43 is joined. FIG. 6 shows a case where there is one first header 47 and one second header 48, and the same number of heat transfer tubes 43 are connected to each of the first header 47 and the second header 48.
 図6において、実線矢印は熱交換器12または15が凝縮器として作用している場合の冷媒が流れる向きを示しており、破線矢印は熱交換器12または15が蒸発器として作用している場合の冷媒が流れる向きを示している。この点は、後述の図8および図9においても同様である。 In FIG. 6, the solid line arrow indicates the direction of refrigerant flow when the heat exchanger 12 or 15 acts as a condenser, and the broken line arrow indicates the case where the heat exchanger 12 or 15 acts as an evaporator. The direction in which the refrigerant flows is shown. This also applies to FIGS. 8 and 9 described later.
 熱交換器12または15が凝縮器として作用する場合は、熱交換器12または15には高温高圧のガス冷媒が流入する。熱交換器12または15に、第1接続管41から流入した高温高圧のガス冷媒は、第1ヘッダ47で分配されて各伝熱管43に流入する。伝熱管43およびフィン44の作用で、周囲の空気等と熱交換をして凝縮し、気体と液体の混合状態である二相域を経て液化し、高温高圧の液冷媒となって伝熱管43から流出し、第2ヘッダ48において合流し、第2接続管42に流出する。 When the heat exchanger 12 or 15 acts as a condenser, a high-temperature and high-pressure gas refrigerant flows into the heat exchanger 12 or 15. The high-temperature and high-pressure gas refrigerant that has flowed into the heat exchanger 12 or 15 from the first connection pipe 41 is distributed by the first header 47 and flows into the heat transfer pipes 43. The heat transfer tube 43 and the fins 44 are condensed by exchanging heat with surrounding air and the like, and liquefied through a two-phase region in which gas and liquid are mixed to become a high-temperature and high-pressure liquid refrigerant. From the second header 48, and flows into the second connection pipe 42.
 一方、熱交換器12または15が蒸発器として作用する場合は、熱交換器12または15には低温低圧の二相冷媒が流入する。熱交換器12または15に、第2接続管42から流入した低温低圧の二相冷媒は、第2ヘッダ48で分配されて各伝熱管43に流入する。伝熱管43およびフィン44の作用で、周囲の空気等と熱交換をして蒸発し、二相冷媒の乾き度が大きくなり、低温低圧の乾き度の大きい二相冷媒またはガス冷媒になって伝熱管43から流出し、第1ヘッダ47において合流し、第1接続管41に流出する。 On the other hand, when the heat exchanger 12 or 15 acts as an evaporator, a low-temperature and low-pressure two-phase refrigerant flows into the heat exchanger 12 or 15. The low-temperature and low-pressure two-phase refrigerant that has flowed into the heat exchanger 12 or 15 from the second connection pipe 42 is distributed by the second header 48 and flows into the heat transfer pipes 43. The heat transfer tubes 43 and fins 44 evaporate by exchanging heat with the surrounding air and the like, and the dryness of the two-phase refrigerant increases, resulting in a two-phase refrigerant or gas refrigerant with a low temperature and low pressure and high dryness. It flows out from the heat pipe 43, merges at the first header 47, and flows out to the first connection pipe 41.
 熱交換器12または15において、伝熱管43の内部に流れる冷媒の流量が大きくなり過ぎると、伝熱管43での冷媒の圧力損失が大きくなりすぎる。このため、1本の伝熱管43の内径に対して、流せる冷媒の流量には限界がある。したがって、伝熱管43が細い場合に、伝熱管43が太い場合と同一の流量の冷媒を流すためには、伝熱管43の本数を増やす必要がある。また、細い伝熱管43の方が、内部を流れる冷媒の流量に対して伝熱管43の伝熱面積が大きくなり、熱交換器12または15の性能がよくなる。そのため、熱交換器12または15においては、通常は、7mm、5mm等の外径の細い伝熱管43を使用する。細い伝熱管43を使用する場合、複数の伝熱管43を使用して熱交換器12または15を構成することになり、第1接続管41または第2接続管42(ここでは、接続管41または42とする)から流入した冷媒を複数の伝熱管43に分配または合流させる必要がある。冷媒を分配または合流させる方法にはいくつかあるが、第1ヘッダ47または第2ヘッダ48(ここでは、ヘッダ47または48とする)を使用して行うのが、圧力損失も小さく、安価に構成できるため、一般的である。ヘッダ47または48は、複数の伝熱管43と接続され、分配または合流させるものであり、伝熱管43よりも太い円管等で構成されていることが多い。ただし、ヘッダ47または48は、複数の伝熱管43の冷媒を分配または合流させられるものであればどのような構造のものでもよい。たとえば、断面が矩形、楕円形等をしていてもよい。また、材質も銅、アルミ等でもよい。冷媒の流入出に係る圧力に耐えられる強度を持ったものであればよい。 In the heat exchanger 12 or 15, when the flow rate of the refrigerant flowing inside the heat transfer tube 43 becomes too large, the pressure loss of the refrigerant in the heat transfer tube 43 becomes too large. For this reason, there is a limit to the flow rate of the refrigerant that can flow with respect to the inner diameter of one heat transfer tube 43. Therefore, when the heat transfer tube 43 is thin, it is necessary to increase the number of the heat transfer tubes 43 in order to flow the refrigerant at the same flow rate as when the heat transfer tube 43 is thick. In addition, the heat transfer tube 43 has a larger heat transfer area of the heat transfer tube 43 with respect to the flow rate of the refrigerant flowing inside, and the performance of the heat exchanger 12 or 15 is improved. Therefore, in the heat exchanger 12 or 15, the heat transfer tube 43 having a thin outer diameter such as 7 mm or 5 mm is usually used. When the thin heat transfer tube 43 is used, the heat exchanger 12 or 15 is configured using the plurality of heat transfer tubes 43, and the first connection tube 41 or the second connection tube 42 (here, the connection tube 41 or 42) is required to be distributed or merged with the plurality of heat transfer tubes 43. Although there are several methods for distributing or joining the refrigerant, the first header 47 or the second header 48 (here, referred to as the header 47 or 48) is used. It is general because it can. The header 47 or 48 is connected to a plurality of heat transfer tubes 43 and is distributed or merged. The header 47 or 48 is often composed of a circular tube thicker than the heat transfer tubes 43. However, the header 47 or 48 may have any structure as long as it can distribute or merge the refrigerant of the plurality of heat transfer tubes 43. For example, the cross section may be rectangular, elliptical, or the like. The material may also be copper, aluminum or the like. What is necessary is just to have the intensity | strength which can endure the pressure concerning the inflow / outflow of a refrigerant | coolant.
 図7は、本発明の実施の形態1に係る冷凍サイクル装置の熱交換器に用いられるヘッダ47または48と伝熱管43との関係を示す断面図である。ヘッダ47または48には、複数の伝熱管43が挿入されている。図7は断面を示しているため、伝熱管43が1本に見えるが、伝熱管43は紙面に垂直な方向に重なっている。実際は1つのヘッダ47または48に複数の伝熱管43が接続されている。 FIG. 7 is a cross-sectional view showing the relationship between the header 47 or 48 and the heat transfer tube 43 used in the heat exchanger of the refrigeration cycle apparatus according to Embodiment 1 of the present invention. A plurality of heat transfer tubes 43 are inserted into the header 47 or 48. Since FIG. 7 shows a cross section, the heat transfer tube 43 appears to be one, but the heat transfer tube 43 overlaps in a direction perpendicular to the paper surface. Actually, a plurality of heat transfer tubes 43 are connected to one header 47 or 48.
 先に述べた通り、熱交換器12または15が凝縮器として作用する場合は、高圧の液状態の冷媒が第2ヘッダ48に流入する。また、熱交換器12または15が蒸発器として作用する場合は、低圧の二相状態の冷媒の第1ヘッダ47に流入することがある。ヘッダ47または48の内径は伝熱管43の外径よりも大きくなっている。ヘッダ47または48の側面に穴をあけて伝熱管43を挿入し、ヘッダ47または48と伝熱管43とをロウ付け等で固定する。ヘッダ47または48に流入した冷媒は、慣性力があるため、伝熱管43の出口(冷媒流出口)の中心45または46の対面側のヘッダ47または48の管内壁面(内面)50に衝突して、ほぼ直角方向に流れるの方向を変化させられる。ヘッダ47または48内に流入した冷媒が、ヘッダ47または48の内面50に衝突する際の衝突エネルギーが大きいと、不均化反応を起こす性質の物質にとっては、衝突エネルギーが不均化反応を起こさせる要因となる可能性がある。そこで、本実施の形態においては、使用する冷媒に条件(相溶性の冷凍機油の使用)を設け、不均化反応を抑えるようにする。 As described above, when the heat exchanger 12 or 15 acts as a condenser, a high-pressure liquid refrigerant flows into the second header 48. Moreover, when the heat exchanger 12 or 15 acts as an evaporator, it may flow into the first header 47 of the low-pressure two-phase refrigerant. The inner diameter of the header 47 or 48 is larger than the outer diameter of the heat transfer tube 43. A hole is made in the side surface of the header 47 or 48 to insert the heat transfer tube 43, and the header 47 or 48 and the heat transfer tube 43 are fixed by brazing or the like. Since the refrigerant flowing into the header 47 or 48 has an inertial force, it collides with the pipe inner wall surface (inner surface) 50 of the header 47 or 48 facing the center 45 or 46 of the outlet 45 (refrigerant outlet) of the heat transfer tube 43. The direction of flow in a substantially perpendicular direction can be changed. If the refrigerant flowing into the header 47 or 48 collides with the inner surface 50 of the header 47 or 48 when the collision energy is large, the collision energy causes a disproportionation reaction for a substance that causes a disproportionation reaction. May be a factor. Therefore, in the present embodiment, conditions (use of compatible refrigerating machine oil) are provided for the refrigerant to be used so as to suppress the disproportionation reaction.
 ヘッダ47または48の内面50と冷媒との衝突エネルギーは、式(2)で求められる。 The collision energy between the inner surface 50 of the header 47 or 48 and the refrigerant is obtained by the equation (2).
[数2]
 衝突エネルギー= 冷媒の質量×冷媒の速度変化
        =(冷媒の質量流量×単位時間)×冷媒の速度変化   …(2)
[Equation 2]
Collision energy = Refrigerant mass x Refrigerant speed change = (Refrigerant mass flow rate x Unit time) x Refrigerant speed change (2)
 不均化反応は、先に説明した通り、同一種類の物質同士が反応して別の物質に変化する性質のことである。この不均化反応は、液状態、二相状態の液成分等の隣り合う物質同士の距離が非常に近い状態で、外から何らかの強いエネルギーが加わると起こりやすい。一方、ガス状態では、冷媒分子同士の距離は液状態の場合よりもかなり離れている。このため、ガス状態では、不均化反応を起こす性質の物質であるHFO-1123が多く含まれていても、不均化反応は起きにくい。 As described above, the disproportionation reaction is a property in which the same type of substances react with each other and change into different substances. This disproportionation reaction is likely to occur when some strong energy is applied from the outside in a state where the distance between adjacent substances such as liquid components and two-phase liquid components is very close. On the other hand, in the gas state, the distance between the refrigerant molecules is considerably longer than in the liquid state. For this reason, in the gas state, even if a large amount of HFO-1123, which is a substance that causes a disproportionation reaction, is included, the disproportionation reaction is unlikely to occur.
 ここで、配管からヘッダ47または48に流入する冷媒の噴流の挙動について検討する。配管の内径の長さをd(mm)、配管の出口から、その出口から流出する噴流の衝突面までの距離をL(mm)とすると、流体力学では一般的に以下の点が知られている。たとえば、距離Lを内径dで除した(L/d)の値が所定値未満の場合には、噴流の乱れ成分が大きく、(L/d)の値が所定値以上となると、噴流の乱れ成分がなくなって、流れが完全に安定する。そして、所定値は、20~30であることも広く知られている。したがって、(L/d)の値が20未満である場合、噴流には乱れが残っている。内径dと距離Lとを伝熱管43と伝熱管43と対向するヘッダ47または48の内面50とに当てはめると、図7に図示したように、内径dが伝熱管43の内径となる。また、距離Lが伝熱管43の出口の中心45または46からヘッダ47または48の内面50であり、伝熱管43の出口の中心45または46に対向する部分までの距離となる。 Here, the behavior of the jet of refrigerant flowing into the header 47 or 48 from the pipe will be examined. When the length of the inner diameter of the pipe is d (mm) and the distance from the outlet of the pipe to the collision surface of the jet flowing out from the outlet is L (mm), the following points are generally known in fluid mechanics: Yes. For example, when the value of (L / d) obtained by dividing the distance L by the inner diameter d is less than a predetermined value, the turbulence component of the jet is large, and when the value of (L / d) is greater than or equal to the predetermined value, the turbulence of the jet The components disappear and the flow is completely stabilized. It is also widely known that the predetermined value is 20-30. Therefore, when the value of (L / d) is less than 20, turbulence remains in the jet. When the inner diameter d and the distance L are applied to the heat transfer tube 43 and the inner surface 50 of the header 47 or 48 facing the heat transfer tube 43, the inner diameter d becomes the inner diameter of the heat transfer tube 43 as shown in FIG. Further, the distance L is the distance from the center 45 or 46 of the outlet of the heat transfer tube 43 to the inner surface 50 of the header 47 or 48 and the portion facing the center 45 or 46 of the outlet of the heat transfer tube 43.
 先に述べた通り、不均化反応を起こす性質を有する冷媒と相溶性を示す冷凍機油とを混合させると、冷媒の分子と分子の間に冷凍機油の分子が存在するようになり、冷媒の不均化反応が起きにくい。このため、熱交換器12または15が凝縮器として作用する場合において、伝熱管43から流出した液状態の冷媒が第2ヘッダ48の内面50に衝突し、かつ、この内面50に衝突する際の冷媒に乱れがあっても、衝突による不均化反応は起きにくい。また、熱交換器12または15が蒸発器として作用する場合において、伝熱管43から流出した二相状態の冷媒が第1ヘッダ47の内面50に衝突する場合においても同様である。したがって、相溶性を示す冷凍機油を冷媒回路に充填すれば、ヘッダ47または48の内面50から(L/d)の値が20未満、0超となる位置のように、噴流の乱れが残っている位置に伝熱管43の出口の中心45または46を設置しても、内面50への衝突による液冷媒または二相冷媒の不均化反応は起きにくい。 As described above, when a refrigerant having the property of causing a disproportionation reaction and a refrigerating machine oil having compatibility are mixed, a refrigerating machine oil molecule exists between the refrigerant molecules. Disproportionation reaction is difficult to occur. For this reason, when the heat exchanger 12 or 15 acts as a condenser, the liquid refrigerant that has flowed out of the heat transfer tube 43 collides with the inner surface 50 of the second header 48, and the inner surface 50 collides with the inner surface 50. Even if the refrigerant is disturbed, the disproportionation reaction due to collision is unlikely to occur. The same applies to the case where the heat exchanger 12 or 15 acts as an evaporator and the two-phase refrigerant flowing out of the heat transfer tube 43 collides with the inner surface 50 of the first header 47. Therefore, if the refrigerant circuit is filled with compatible refrigerating machine oil, the turbulence of the jet remains, such as a position where the value of (L / d) is less than 20 and greater than 0 from the inner surface 50 of the header 47 or 48. Even if the center 45 or 46 of the outlet of the heat transfer tube 43 is installed at a certain position, the disproportionation reaction of the liquid refrigerant or the two-phase refrigerant due to the collision with the inner surface 50 hardly occurs.
 たとえば、ヘッダ47または48の内径が17.05mmであり、伝熱管43の内径が7.44mmであり、かつ、伝熱管43の出口の中心45または46がヘッダ47または48の内面に接する位置に接続されている場合を考える。この場合、ヘッダ47または48の内径である距離Lは、dは伝熱管43の内径であり、(L/d)の値は2.3となる。したがって、20~30よりもかなり小さく、かなり大きい乱れ成分が残っている状態である。 For example, the inner diameter of the header 47 or 48 is 17.05 mm, the inner diameter of the heat transfer tube 43 is 7.44 mm, and the center 45 or 46 of the outlet of the heat transfer tube 43 is in contact with the inner surface of the header 47 or 48. Consider the case of connection. In this case, the distance L that is the inner diameter of the header 47 or 48 is d is the inner diameter of the heat transfer tube 43, and the value of (L / d) is 2.3. Therefore, a turbulence component that is considerably smaller than 20 to 30 and considerably larger remains.
 通常、ビル用マルチエアコン等では、圧縮機10の周波数や熱源側熱交換器12に付属の送風機(図示せず)の回転数を制御して、凝縮器内の冷媒の温度である凝縮温度を約50℃に制御する。また、絞り装置16を制御して、凝縮器の出口の冷媒の過冷却度が約10℃になるように制御する。したがって、凝縮温度が約50℃であれば凝縮器の出口では、約40℃の冷媒が流出する。よって、第2ヘッダ48に流入する冷媒は、温度が約40℃、圧力が50℃の飽和圧力の状態になっている。 Usually, in a building multi-air conditioner or the like, the condensation temperature, which is the temperature of the refrigerant in the condenser, is controlled by controlling the frequency of the compressor 10 and the rotational speed of a blower (not shown) attached to the heat source side heat exchanger 12. Control at about 50 ° C. Further, the expansion device 16 is controlled so that the degree of supercooling of the refrigerant at the outlet of the condenser is about 10 ° C. Therefore, if the condensation temperature is about 50 ° C., about 40 ° C. refrigerant flows out at the outlet of the condenser. Therefore, the refrigerant flowing into the second header 48 is in a saturated pressure state where the temperature is about 40 ° C. and the pressure is 50 ° C.
 絞り装置16での制御性能(過渡特性)も考慮すると、第2ヘッダ48に流入する冷媒は、温度が約40~50℃の間の温度、圧力が50℃の飽和圧力の状態になっている。よって、これらの温度、圧力の状態で、冷媒の冷凍機油に対する溶解度が大きいと、冷媒の不均化反応が起き難い。実用的には、冷媒が、これらの温度、圧力にある状態において、冷媒の冷凍機油に対する溶解度が50wt%(重量パーセント)以上であれば、多くの冷媒が冷凍機油に溶解するため、不均化反応を抑制することができる。つまり、第2ヘッダ48に流入する冷媒が、冷凍機油に対して溶解度が50wt%(重量%)以上で冷凍機油に溶け込んでいる状態であれば、(L/d)の値が10未満であるようなかなり近い位置から冷媒が噴出され、第2ヘッダ48の内面50に衝突しても、不均化反応が起きにくい。 Considering the control performance (transient characteristics) in the expansion device 16, the refrigerant flowing into the second header 48 is in a state of a temperature between about 40-50 ° C. and a saturation pressure where the pressure is 50 ° C. . Therefore, if the solubility of the refrigerant in the refrigerating machine oil is high at these temperatures and pressures, the refrigerant disproportionation reaction hardly occurs. Practically, in the state where the refrigerant is at these temperatures and pressures, if the solubility of the refrigerant in the refrigerating machine oil is 50 wt% (weight percent) or more, many refrigerants are dissolved in the refrigerating machine oil, so disproportionation The reaction can be suppressed. That is, the value of (L / d) is less than 10 if the refrigerant flowing into the second header 48 has a solubility of 50 wt% (weight%) or more in the refrigeration oil and is dissolved in the refrigeration oil. Even when the refrigerant is ejected from such a relatively close position and collides with the inner surface 50 of the second header 48, the disproportionation reaction hardly occurs.
 ここでは、第2ヘッダ48に流入する冷媒が液冷媒である場合を例に説明した。しかし、冷媒回路内に充填する冷媒量が少ない場合等は、たとえば乾き度が0よりも大きく0.2以下である二相冷媒が第2ヘッダ48に流入する場合がある。この場合においても、同様の効果を奏する。 Here, the case where the refrigerant flowing into the second header 48 is a liquid refrigerant has been described as an example. However, when the amount of refrigerant filled in the refrigerant circuit is small, for example, a two-phase refrigerant having a dryness greater than 0 and less than or equal to 0.2 may flow into the second header 48. Even in this case, the same effect is obtained.
 冷媒の不均化反応は、液冷媒や二相冷媒等の隣り合う物質同士の距離が非常に近い状態で発生しやすい。ここでは、熱交換器12または15が凝縮器として作用し、その出口側に設置された第2ヘッダ48に、液冷媒または二相冷媒が流入する場合について説明した。暖房運転において熱源側熱交換器12が蒸発器として作用している場合、伝熱管43からは二相冷媒が流出し、第1ヘッダ47内に二相冷媒が流入する。このような場合においても、冷媒の不均化反応が起きやすい。そこで、第1ヘッダ47と伝熱管43との構造を、上述した第2ヘッダ48と伝熱管43との構造と同様にすると、不均化反応が起きにくくすることができる。また、冷房運転時において負荷側熱交換器15が蒸発器として作用してる場合においても、負荷側熱交換器15から二相冷媒が第1ヘッダ47に流出する場合がある。この場合においても、熱源側熱交換器12と同様の構造にするとよい。 The refrigerant disproportionation reaction is likely to occur when the distance between adjacent substances such as liquid refrigerant and two-phase refrigerant is very close. Here, the case where the heat exchanger 12 or 15 acts as a condenser and the liquid refrigerant or the two-phase refrigerant flows into the second header 48 installed on the outlet side thereof has been described. In the heating operation, when the heat source side heat exchanger 12 acts as an evaporator, the two-phase refrigerant flows out from the heat transfer tube 43 and the two-phase refrigerant flows into the first header 47. Even in such a case, the disproportionation reaction of the refrigerant is likely to occur. Therefore, if the structure of the first header 47 and the heat transfer tube 43 is the same as the structure of the second header 48 and the heat transfer tube 43 described above, the disproportionation reaction can be made difficult to occur. Even when the load side heat exchanger 15 acts as an evaporator during the cooling operation, the two-phase refrigerant may flow out from the load side heat exchanger 15 to the first header 47. In this case as well, the same structure as the heat source side heat exchanger 12 may be used.
 また、通常、ビル用マルチエアコン等では、たとえば、圧縮機10の駆動周波数、熱源側熱交換器12に付属の送風機(図示せず)の回転数等を制御して、蒸発器内の冷媒の温度である蒸発温度を約0℃に制御する。また、たとえば、絞り装置16を制御して、蒸発器の出口の冷媒の過熱度が約0~5℃になるように制御する。よって、伝熱管43から第1ヘッダ47に流入する冷媒は、温度が約0℃、圧力が約0℃の飽和圧力の状態になっている。この状態において、冷媒の冷凍機油に対する溶解度が50wt%(重量%)以上であれば、多くの冷媒が冷凍機油に溶解するため、不均化反応を起きにくくすることができる。したがって、第1ヘッダ47に流入する冷媒が、冷凍機油に対して溶解度が50wt%(重量%)以上で冷凍機油に溶け込んでいる状態であれば、(L/d)の値が10未満であるような、かなり近い位置から冷媒が噴出され、第1ヘッダ47の内面50に衝突しても、不均化反応が起きにくい。 In general, in a building multi-air conditioner, for example, the driving frequency of the compressor 10 and the rotational speed of a blower (not shown) attached to the heat source side heat exchanger 12 are controlled to adjust the refrigerant in the evaporator. The evaporation temperature, which is the temperature, is controlled to about 0 ° C. Further, for example, the expansion device 16 is controlled so that the degree of superheat of the refrigerant at the outlet of the evaporator is about 0 to 5 ° C. Therefore, the refrigerant flowing into the first header 47 from the heat transfer tube 43 is in a saturated pressure state where the temperature is about 0 ° C. and the pressure is about 0 ° C. In this state, if the solubility of the refrigerant in the refrigerating machine oil is 50 wt% (weight%) or more, a large amount of refrigerant dissolves in the refrigerating machine oil, so that the disproportionation reaction can be made difficult to occur. Therefore, if the refrigerant flowing into the first header 47 has a solubility of 50 wt% (weight%) or more in the refrigeration oil and is dissolved in the refrigeration oil, the value of (L / d) is less than 10. Even when the refrigerant is ejected from such a relatively close position and collides with the inner surface 50 of the first header 47, the disproportionation reaction hardly occurs.
 この場合、第1ヘッダ47には、たとえば乾き度が0.8以上かつ0.99以下である二相冷媒が流入する。 In this case, a two-phase refrigerant having a dryness of 0.8 or more and 0.99 or less flows into the first header 47, for example.
 ここで、図7では、伝熱管43の出口の中心45または46が、ヘッダ47または48の内面50の法線方向に向いているかのように図示しているが、その方向に限るものではなく、伝熱管43の出口はヘッダ47または48の内面50に対し、傾いて接続されていてもよく、同様の効果を奏する。 Here, in FIG. 7, the center 45 or 46 of the outlet of the heat transfer tube 43 is illustrated as if it is oriented in the normal direction of the inner surface 50 of the header 47 or 48, but the direction is not limited thereto. The outlet of the heat transfer tube 43 may be connected to the inner surface 50 of the header 47 or 48 in an inclined manner, and has the same effect.
 また、伝熱管43の出口の形状に関しては特に限定するものではなく、どのような形であってもよい。ここでは円管であるかのように示したが、伝熱管43の出口を、伝熱管43の管軸に対して斜めに切断して形成した長穴形状としてもよいし、その他の形状でもよく、同様の効果を奏する。このときの伝熱管43の相当直径が内径dとなる。 Further, the shape of the outlet of the heat transfer tube 43 is not particularly limited, and may be any shape. Although shown here as a circular tube, the outlet of the heat transfer tube 43 may have a long hole shape formed by cutting obliquely with respect to the tube axis of the heat transfer tube 43, or other shapes may be used. Have the same effect. The equivalent diameter of the heat transfer tube 43 at this time is the inner diameter d.
 また、先に述べた通り、ヘッダ47または48の側面に穴をあけて伝熱管43を挿入し、ヘッダ47または48と伝熱管43とはロウ付け等で固定されている。このとき、伝熱管43の出口の中心45または46は、ヘッダ47または48の内面に接する位置よりも内側まで突出させて設置する場合が多く、その突出量は、ヘッダ47または48の内径の1/3以下である場合が多い。すなわち、距離Lはヘッダ47または48の内径よりも小さく、かつ、ヘッダ47または48の内径の2/3よりも大きいことが多い。 Further, as described above, a hole is formed in the side surface of the header 47 or 48 and the heat transfer tube 43 is inserted, and the header 47 or 48 and the heat transfer tube 43 are fixed by brazing or the like. At this time, the center 45 or 46 of the outlet of the heat transfer tube 43 is often installed so as to protrude to the inner side of the position in contact with the inner surface of the header 47 or 48, and the amount of protrusion is 1 of the inner diameter of the header 47 or 48 / 3 or less in many cases. That is, the distance L is often smaller than the inner diameter of the header 47 or 48 and larger than 2/3 of the inner diameter of the header 47 or 48.
 ここで、図6の熱交換器12または15においては、パスは4つに別れており、4本の伝熱管43を、ヘッダ47または48に接続しているが、伝熱管43の本数は4本に限るものではない。 Here, in the heat exchanger 12 or 15 of FIG. 6, the path is divided into four, and the four heat transfer tubes 43 are connected to the header 47 or 48, but the number of the heat transfer tubes 43 is four. It is not limited to books.
 図8は、本発明の実施の形態1に係る冷凍サイクル装置の熱交換器の別の構成の概略図である。図8に示す熱交換器12または15は、冷媒流入側および冷媒流出側にそれぞれ複数のヘッダを備えた構成である。具体的には、熱交換器12または15の一端には、2つの第1ヘッダ47aおよび第1ヘッダ47bを有している。また、第1接続管41はヘッダ数と同数(ここでは2つ)の分岐配管である。分岐した配管の一方が第1ヘッダ47aに接続され、他方の配管が第1ヘッダ47bに接続されている。そして、第1ヘッダ47aと第1ヘッダ47bとは、それぞれ2本の伝熱管43に接続されている。 FIG. 8 is a schematic diagram of another configuration of the heat exchanger of the refrigeration cycle apparatus according to Embodiment 1 of the present invention. The heat exchanger 12 or 15 shown in FIG. 8 is configured to include a plurality of headers on the refrigerant inflow side and the refrigerant outflow side, respectively. Specifically, one end of the heat exchanger 12 or 15 has two first headers 47a and a first header 47b. The first connection pipe 41 is the same number (two in this case) of branch pipes as the number of headers. One of the branched pipes is connected to the first header 47a, and the other pipe is connected to the first header 47b. The first header 47a and the first header 47b are connected to the two heat transfer tubes 43, respectively.
 熱交換器12または15の他端にも、2つの第2ヘッダ48aおよび第2ヘッダ48bを有している。また、第2接続管42がヘッダ数と同数の2つに分岐されており、一方の配管が第2ヘッダ48aに接続され、他方の配管が第2ヘッダ48bに接続されている。そして、第2ヘッダ48aと第2ヘッダ48bとは、それぞれ2本の伝熱管43に接続されている。 The other end of the heat exchanger 12 or 15 also has two second headers 48a and second headers 48b. Further, the second connection pipe 42 is branched into two as many as the number of headers, one pipe is connected to the second header 48a, and the other pipe is connected to the second header 48b. The second header 48 a and the second header 48 b are connected to the two heat transfer tubes 43, respectively.
 図8の構成のように、接続管41または42が分岐配管となり、複数(ここでは2つ)のヘッダ47または48に接続された熱交換器構造であっても、同様の効果を奏する。 8, the connection pipe 41 or 42 is a branch pipe, and a heat exchanger structure connected to a plurality of (here, two) headers 47 or 48 has the same effect.
 図9は、本発明の実施の形態1に係る冷凍サイクル装置の熱交換器の別の構成の概略図である。図9の熱交換器12または15は、流路の途中でパス数(流路の数)が変わる、いわゆる1-2パスの熱交換器を示している。図9では、第1接続管41が第1ヘッダ47に接続される。第1ヘッダ47は6つのパスに分岐され、途中で2つのパス毎に合流することでパス数が半分になる。また、第2接続管42が第2ヘッダ48に接続され、第2ヘッダ48は3本の伝熱管43に接続されている。このため、第1ヘッダ47を介して第1接続管41に接続される伝熱管43の本数は6本、第2ヘッダ48を介して第2接続管42に接続される伝熱管43の本数は3本となる。 FIG. 9 is a schematic diagram of another configuration of the heat exchanger of the refrigeration cycle apparatus according to Embodiment 1 of the present invention. The heat exchanger 12 or 15 in FIG. 9 is a so-called 1-2-pass heat exchanger in which the number of passes (number of channels) changes in the middle of the channel. In FIG. 9, the first connection pipe 41 is connected to the first header 47. The first header 47 is branched into six paths, and the number of paths is halved by joining two paths along the way. The second connection pipe 42 is connected to the second header 48, and the second header 48 is connected to the three heat transfer pipes 43. For this reason, the number of heat transfer tubes 43 connected to the first connection pipe 41 via the first header 47 is six, and the number of heat transfer tubes 43 connected to the second connection pipe 42 via the second header 48 is It becomes three.
 以上の構成のように、第1ヘッダ47に接続される伝熱管43の本数と第2ヘッダ48に接続される伝熱管43の本数が異なる熱交換器構造であっても、同様の効果を奏する。
ここで、1-2パスの構成、配管本数等についてはこれに限るものではない。
As in the above configuration, the same effect can be obtained even in a heat exchanger structure in which the number of heat transfer tubes 43 connected to the first header 47 and the number of heat transfer tubes 43 connected to the second header 48 are different. .
Here, the configuration of the 1-2 path, the number of pipes, and the like are not limited thereto.
 図10は、本発明の実施の形態1に係る冷凍サイクル装置の熱交換器に用いられる別の伝熱管の概略図である。これまでは、伝熱管43が円管である場合を前提に説明を行った。しかし、伝熱管43の形状は円管に限るものではない。たとえば、図10は、内部が複数(ここでは4つ)の流路(マイクロチャネル)49に分かれている扁平流路構造をした扁平管を示している。このような扁平管を伝熱管43に使用する場合等においては、不均化反応が起きにくい上述の構成を考えるにあたり、1本の伝熱管43の内部の各流路49の断面積を合計した合計断面積を、1本の伝熱管43の内断面積として扱う。以下、具体例で説明する。 FIG. 10 is a schematic diagram of another heat transfer tube used in the heat exchanger of the refrigeration cycle apparatus according to Embodiment 1 of the present invention. So far, the description has been made on the assumption that the heat transfer tube 43 is a circular tube. However, the shape of the heat transfer tube 43 is not limited to a circular tube. For example, FIG. 10 shows a flat tube having a flat channel structure in which the inside is divided into a plurality of (here, four) channels (microchannels) 49. In the case where such a flat tube is used for the heat transfer tube 43, the cross-sectional areas of the respective flow paths 49 inside one heat transfer tube 43 are summed up in considering the above-described configuration in which disproportionation reaction hardly occurs. The total sectional area is treated as the inner sectional area of one heat transfer tube 43. A specific example will be described below.
 ここでは、図10に示すように、内部が4つの流路49に分かれた伝熱管43で図6の熱交換器12または15を構成している場合を考える。図6の熱交換器12または15では、4つの伝熱管43が、第1ヘッダ47を介して第1接続管41に接続され、また、4つの伝熱管43が第2ヘッダ48を介して第2接続管42に接続されている。よって、伝熱管43内のすべての流路49の内断面積が同じである場合、1つの伝熱管43内の流路49の数(ここでは4つ)と、流路49の内断面積とを乗じた値を合計内断面積とする。そして、合計内断面積に基づいて相当直径に換算した値を内径dとして扱う。そして、距離Lと内径dとの関係を、上述した説明と同様にすることで、不均化反応が起きにくい熱交換器12または15(冷凍サイクル装置)を構成することができる。 Here, as shown in FIG. 10, a case is considered in which the heat exchanger 12 or 15 of FIG. 6 is configured by a heat transfer tube 43 that is internally divided into four flow paths 49. In the heat exchanger 12 or 15 of FIG. 6, the four heat transfer tubes 43 are connected to the first connection pipe 41 via the first header 47, and the four heat transfer tubes 43 are connected to the first header pipe 48 via the second header 48. 2 connected to the connecting pipe 42. Therefore, when the inner cross-sectional areas of all the flow paths 49 in the heat transfer tube 43 are the same, the number of the flow paths 49 in one heat transfer pipe 43 (here, four), the inner cross-sectional area of the flow paths 49, and The value multiplied by is taken as the total inner cross-sectional area. And the value converted into an equivalent diameter based on the total inner cross-sectional area is treated as the inner diameter d. And the heat exchanger 12 or 15 (refrigeration cycle apparatus) with which disproportionation reaction hardly occurs can be comprised by making the relationship between the distance L and the internal diameter d into the same thing as the description mentioned above.
 ここでは、伝熱管43内のすべての流路49の内断面積が同じである場合を例に説明したが、これに限るものではなく、一部の流路49の内断面積の断面積が異なっていてもよい。たとえば、図10において、4つの流路49のうち、両端の2つの流路49の内断面積が、その他の流路49の内断面積と異なるように構成されていても構わない。また、伝熱管43の流路49も4つに限るものではない。 Here, the case where the inner cross-sectional areas of all the flow paths 49 in the heat transfer tube 43 are the same has been described as an example, but the present invention is not limited to this, and the cross-sectional areas of the inner cross-sectional areas of some of the flow paths 49 are May be different. For example, in FIG. 10, among the four flow paths 49, the inner cross-sectional areas of the two flow paths 49 at both ends may be different from the inner cross-sectional areas of the other flow paths 49. Further, the number of the flow paths 49 of the heat transfer tubes 43 is not limited to four.
 また、伝熱管43が扁平管形状をしており、この伝熱管43をヘッダ47または48に接続する場合、ヘッダ47または48に扁平管形状の穴をあけて伝熱管43をヘッダ47または48に直接接続してもよい。また、ヘッダ47または48には円形の穴をあけて、扁平管形状から円管形状に変形させる継手を介してヘッダ47または48に接続してもよい。 In addition, the heat transfer tube 43 has a flat tube shape, and when the heat transfer tube 43 is connected to the header 47 or 48, a flat tube shape hole is formed in the header 47 or 48 and the heat transfer tube 43 is formed in the header 47 or 48. You may connect directly. Further, a circular hole may be formed in the header 47 or 48, and the header 47 or 48 may be connected to the header 47 or 48 via a joint that is deformed from a flat tube shape to a circular tube shape.
[延長配管4]
 以上説明したように、本実施の形態に係る冷凍サイクル装置100は、幾つかの運転モードを具備している。これらの運転モードにおいては、室外機1と室内機2とを接続する延長配管4には冷媒が流れている。
[Extended piping 4]
As described above, the refrigeration cycle apparatus 100 according to the present embodiment has several operation modes. In these operation modes, the refrigerant flows through the extension pipe 4 that connects the outdoor unit 1 and the indoor unit 2.
 ここで、高圧検出装置37、低圧検出装置38は、冷凍サイクル高圧と低圧を目標値に制御するために設置されているが、飽和温度を検出する温度検出装置でもよい。 Here, the high pressure detection device 37 and the low pressure detection device 38 are installed to control the refrigeration cycle high pressure and low pressure to target values, but may be a temperature detection device that detects a saturation temperature.
 また、第1冷媒流路切替装置11は四方弁であるかのように示したが、これに限るものではなく、二方流路切替弁や三方流路切替弁を複数個用い、同じように冷媒が流れるように構成してもよい。 Moreover, although the 1st refrigerant | coolant flow path switching device 11 was shown as if it were a four-way valve, it is not restricted to this, It uses the two-way flow path switching valve and the three-way flow path switching valve similarly, You may comprise so that a refrigerant | coolant may flow.
 また、一般的に、熱源側熱交換器12および負荷側熱交換器15a~15dには、送風機が取り付けられており、送風により凝縮または蒸発を促進させる場合が多いが、これに限るものではない。たとえば負荷側熱交換器15a~15dとしては放射を利用したパネルヒータのようなものも用いることができるし、熱源側熱交換器12としては、水や不凍液により熱を移動させる水冷式のタイプのものも用いることができる。放熱または吸熱をできる構造のものであればどんな熱交換器でも用いることができる。 In general, a heat blower is attached to the heat source side heat exchanger 12 and the load side heat exchangers 15a to 15d, and in many cases, condensation or evaporation is promoted by air blowing, but it is not limited to this. . For example, as the load side heat exchangers 15a to 15d, a panel heater using radiation can be used, and as the heat source side heat exchanger 12, a water-cooled type that moves heat by water or antifreeze. Things can also be used. Any heat exchanger that can dissipate or absorb heat can be used.
 また、熱源側熱交換器12または負荷側熱交換器15a~15dは、通常は伝熱性能を向上させるために、フィン44を有するが、伝熱管43のみで十分な伝熱性能が得られる場合は、フィン44を備えていなくてもよい。 In addition, the heat source side heat exchanger 12 or the load side heat exchangers 15a to 15d have fins 44 in order to improve the heat transfer performance, but sufficient heat transfer performance can be obtained by using only the heat transfer tube 43. May not have the fins 44.
 また、ここでは、負荷側熱交換器15a~15dが4つである場合を例に説明を行ったが、幾つ接続してもよい。更に、室外機1が複数接続され、1つの冷凍サイクルを構成していてもよい。 In addition, here, the case where there are four load-side heat exchangers 15a to 15d has been described as an example, but any number may be connected. Further, a plurality of outdoor units 1 may be connected to constitute one refrigeration cycle.
 また、本実施の形態においては、室内機2が冷房運転か暖房運転のいずれかの運転のみを行う冷房暖房切替型の冷凍サイクル装置100を例に説明を行ったが、これに限定するものではない。たとえば、室内機2が冷房運転と暖房運転のいずれかの運転を任意に選択でき、システム全体として、冷房運転を行う室内機2と暖房運転を行う室内機2との混在運転を行うことができる冷凍サイクル装置にも適用することができ、同様の効果を奏する。 In the present embodiment, the cooling / heating switching type refrigeration cycle apparatus 100 in which the indoor unit 2 performs only the cooling operation or the heating operation has been described as an example. However, the present invention is not limited to this. Absent. For example, the indoor unit 2 can arbitrarily select one of a cooling operation and a heating operation, and the entire system can perform a mixed operation of the indoor unit 2 that performs the cooling operation and the indoor unit 2 that performs the heating operation. The present invention can also be applied to a refrigeration cycle apparatus and has the same effect.
 また、室内機2が1つだけ接続できるルームエアコン等の空気調和装置、ショーケースおよびユニットクーラを接続する冷凍装置等にも適用することができ、冷媒回路を構成し、冷凍サイクルを利用して熱供給を行う冷凍サイクル装置であれば、同様の効果を奏する。 It can also be applied to air conditioners such as room air conditioners, to which only one indoor unit 2 can be connected, refrigeration equipment to connect a showcase and a unit cooler, etc., constituting a refrigerant circuit and using a refrigeration cycle If it is a refrigeration cycle device that supplies heat, the same effect is obtained.
 また、熱源側熱交換器12または負荷側熱交換器15a~15dの両端に第1ヘッダ47及び第2ヘッダ48が接続されている場合を例に説明したが、これに限るものではない。たとえば、熱源側熱交換器12または負荷側熱交換器15a~15dの一端に冷媒の分配器とキャピラリチューブとが接続され、熱源側熱交換器12または負荷側熱交換器15a~15dの他端にヘッダが接続されるように構成してもよい。また、熱源側熱交換器12または負荷側熱交換器15a~15dに流入する冷媒の分配に関しては、その他どのような構成になっていても構わない。 Further, although the case where the first header 47 and the second header 48 are connected to both ends of the heat source side heat exchanger 12 or the load side heat exchangers 15a to 15d has been described as an example, the present invention is not limited to this. For example, a refrigerant distributor and a capillary tube are connected to one end of the heat source side heat exchanger 12 or the load side heat exchangers 15a to 15d, and the other end of the heat source side heat exchanger 12 or the load side heat exchangers 15a to 15d. You may comprise so that a header may be connected to. Further, regarding the distribution of the refrigerant flowing into the heat source side heat exchanger 12 or the load side heat exchangers 15a to 15d, any other configuration may be used.
実施の形態2.
 本発明の実施の形態2について、図面に基づいて説明する。以下、実施の形態2が実施の形態1と異なる部分を中心に説明する。なお、実施の形態1の構成部分において適用された変形例は、実施の形態2の同様の構成部分においても同様に適用される。
Embodiment 2. FIG.
A second embodiment of the present invention will be described with reference to the drawings. In the following, the second embodiment will be described focusing on the differences from the first embodiment. Note that the modification applied in the configuration part of the first embodiment is also applied to the same configuration part of the second embodiment.
 図11は、本発明の実施の形態2に係る冷凍サイクル装置の回路構成図である。図11に示す冷凍サイクル装置100は、室外機1と中継機である熱媒体変換機3とが延長配管4で接続されて冷媒が循環する冷媒循環回路Aを備えている。また、冷凍サイクル装置100は、熱媒体変換機3と室内機2とが配管(熱媒体配管)5で接続されて、水やブライン等の熱媒体が循環する熱媒体循環回路Bを備えている。熱媒体変換機3は冷媒循環回路Aを循環する冷媒と、熱媒体循環回路Bを循環する熱媒体との熱交換を行う負荷側熱交換器15aおよび負荷側熱交換器15bを備えている。 FIG. 11 is a circuit configuration diagram of the refrigeration cycle apparatus according to Embodiment 2 of the present invention. A refrigeration cycle apparatus 100 shown in FIG. 11 includes a refrigerant circulation circuit A in which an outdoor unit 1 and a heat medium relay unit 3 that is a relay unit are connected by an extension pipe 4 to circulate refrigerant. In addition, the refrigeration cycle apparatus 100 includes a heat medium circulation circuit B in which the heat medium converter 3 and the indoor unit 2 are connected by a pipe (heat medium pipe) 5 and a heat medium such as water or brine circulates. . The heat medium relay unit 3 includes a load side heat exchanger 15a and a load side heat exchanger 15b that perform heat exchange between the refrigerant circulating in the refrigerant circuit A and the heat medium circulating in the heat medium circuit B.
 熱媒体変換機3は、室外機1および室内機2とは別体で離れた位置、たとえば、図1に示したように建物9の内部ではあるが室内空間7とは別の空間である天井裏等の空間(以下、単に空間8と称する)に設置される。熱媒体変換機3は、その他、エレベーター等がある共用空間等に設置することも可能である。 The heat medium relay unit 3 is located separately from the outdoor unit 1 and the indoor unit 2, for example, a ceiling that is inside the building 9 but separate from the indoor space 7 as shown in FIG. 1. It is installed in a space such as the back (hereinafter simply referred to as space 8). The heat medium relay 3 can also be installed in a common space where there is an elevator or the like.
[冷媒の種類、熱交換器(12または15)]
 この冷凍サイクル装置100において、冷媒は実施の形態1と同様のものが使用でき、同様の効果を奏する。また、熱源側熱交換器12として、上記実施の形態1で説明したヘッダ47または48を使用している。
[Type of refrigerant, heat exchanger (12 or 15)]
In this refrigeration cycle apparatus 100, the same refrigerant as in the first embodiment can be used, and the same effect can be obtained. Further, the header 47 or 48 described in the first embodiment is used as the heat source side heat exchanger 12.
 この冷凍サイクル装置100が実行する運転モードには、駆動している室内機2の全てが冷房運転を実行する全冷房運転モードおよび駆動している室内機2の全てが暖房運転を実行する全暖房運転モードがある。また、冷房負荷の方が大きい場合に実行する冷房主体運転モード、および、暖房負荷の方が大きい場合に実行する暖房主体運転モードがある。 The operation mode executed by the refrigeration cycle apparatus 100 includes a cooling only operation mode in which all of the driven indoor units 2 execute a cooling operation and a heating operation in which all of the driven indoor units 2 execute a heating operation. There is an operation mode. Further, there are a cooling main operation mode executed when the cooling load is larger, and a heating main operation mode executed when the heating load is larger.
[全冷房運転モード]
 全冷房運転モードの場合、圧縮機10から吐出された高温高圧のガス冷媒は、第1冷媒流路切替装置11を介して、熱源側熱交換器12へ流入し、周囲の空気に放熱して凝縮液化し、高圧液冷媒となり、逆止弁13aを通って室外機1から流出する。そして、延長配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した冷媒は、開閉装置17aを通り、絞り装置16aおよび絞り装置16bで膨張して低温低圧の二相冷媒となる。二相冷媒は、蒸発器として作用する負荷側熱交換器15aおよび負荷側熱交換器15bのそれぞれに流入し、熱媒体循環回路Bを循環する熱媒体から吸熱し、低温低圧のガス冷媒となる。ガス冷媒は、第2冷媒流路切替装置18aおよび第2冷媒流路切替装置18bを介して熱媒体変換機3から流出する。そして、延長配管4を通って再び室外機1へ流入する。室外機1へ流入した冷媒は、逆止弁13dを通って、第1冷媒流路切替装置11およびアキュムレータ19を介して、圧縮機10へ再度吸入される。
[Cooling operation mode]
In the cooling only operation mode, the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the first refrigerant flow switching device 11 and dissipates heat to the surrounding air. It condenses and becomes high-pressure liquid refrigerant and flows out of the outdoor unit 1 through the check valve 13a. Then, it flows into the heat medium relay unit 3 through the extension pipe 4. The refrigerant flowing into the heat medium relay unit 3 passes through the opening / closing device 17a, expands in the expansion device 16a and the expansion device 16b, and becomes a low-temperature and low-pressure two-phase refrigerant. The two-phase refrigerant flows into each of the load side heat exchanger 15a and the load side heat exchanger 15b acting as an evaporator, absorbs heat from the heat medium circulating in the heat medium circuit B, and becomes a low-temperature and low-pressure gas refrigerant. . The gas refrigerant flows out of the heat medium relay unit 3 through the second refrigerant flow switching device 18a and the second refrigerant flow switching device 18b. Then, it flows into the outdoor unit 1 again through the extension pipe 4. The refrigerant that has flowed into the outdoor unit 1 passes through the check valve 13d, and is sucked into the compressor 10 again via the first refrigerant flow switching device 11 and the accumulator 19.
 熱媒体循環回路Bにおいては、熱媒体は、負荷側熱交換器15aおよび負荷側熱交換器15bの双方で冷媒により冷却される。冷却された熱媒体は、ポンプ21aおよびポンプ21bによって配管5内を流動する。第2熱媒体流路切替装置23a~23dを介して、利用側熱交換器26a~26dに流入した熱媒体は、室内空気から吸熱する。室内空気は冷却されて室内空間7の冷房を行う。利用側熱交換器26a~26dから流出した冷媒は、熱媒体流量調整装置25a~25dに流入し、第1熱媒体流路切替装置22a~22dを通って、負荷側熱交換器15aおよび負荷側熱交換器15bへ流入して冷却され、再びポンプ21aおよびポンプ21bへ吸い込まれる。なお、熱負荷のない利用側熱交換器26a~26dに対応する熱媒体流量調整装置25a~25dは全閉とする。また、熱負荷のある利用側熱交換器26a~26dに対応する熱媒体流量調整装置25a~25dは開度を調整し、利用側熱交換器26a~26dでの熱負荷を調節する。 In the heat medium circulation circuit B, the heat medium is cooled by the refrigerant in both the load side heat exchanger 15a and the load side heat exchanger 15b. The cooled heat medium flows through the pipe 5 by the pump 21a and the pump 21b. The heat medium flowing into the use side heat exchangers 26a to 26d through the second heat medium flow switching devices 23a to 23d absorbs heat from the indoor air. The indoor air is cooled to cool the indoor space 7. The refrigerant that has flowed out of the use side heat exchangers 26a to 26d flows into the heat medium flow control devices 25a to 25d, passes through the first heat medium flow switching devices 22a to 22d, and passes through the load side heat exchanger 15a and the load side. It flows into the heat exchanger 15b, is cooled, and is sucked into the pump 21a and the pump 21b again. Note that the heat medium flow control devices 25a to 25d corresponding to the use side heat exchangers 26a to 26d without heat load are fully closed. Further, the heat medium flow control devices 25a to 25d corresponding to the use side heat exchangers 26a to 26d having the heat load adjust the opening degree to adjust the heat load in the use side heat exchangers 26a to 26d.
[全暖房運転モード]
 全暖房運転モードの場合、圧縮機10から吐出された高温高圧のガス冷媒は、第1冷媒流路切替装置11を介して第1接続配管4a、逆止弁13bを通り、室外機1から流出する。そして、延長配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した冷媒は、第2冷媒流路切替装置18aおよび第2冷媒流路切替装置18bを通って、負荷側熱交換器15aおよび負荷側熱交換器15bのそれぞれに流入し、熱媒体循環回路Bを循環する熱媒体に放熱し、高圧の液冷媒となる。高圧の液冷媒は、絞り装置16aおよび絞り装置16bで膨張して低温低圧の二相冷媒となり、開閉装置17bを通って、熱媒体変換機3から流出する。そして、延長配管4を通って再び室外機1へ流入する。室外機1へ流入した冷媒は、第2接続配管4bおよび逆止弁13cを通り、蒸発器として作用する熱源側熱交換器12に流入し、周囲の空気から吸熱して、低温低圧のガス冷媒となる。ガス冷媒は、第1冷媒流路切替装置11およびアキュムレータ19を介して圧縮機10へ再度吸入される。なお、熱媒体循環回路Bにおける熱媒体の動作は、全冷房運転モードの場合と同じである。全暖房運転モードでは、負荷側熱交換器15aおよび負荷側熱交換器15bにおいて、熱媒体が冷媒によって加熱され、利用側熱交換器26aおよび利用側熱交換器26bで室内空気に放熱して、室内空間7の暖房を行う。
[Heating operation mode]
In the heating only operation mode, the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows out of the outdoor unit 1 through the first refrigerant flow switching device 11 and the first connection pipe 4a and the check valve 13b. To do. Then, it flows into the heat medium relay unit 3 through the extension pipe 4. The refrigerant flowing into the heat medium relay unit 3 flows into the load side heat exchanger 15a and the load side heat exchanger 15b through the second refrigerant flow switching device 18a and the second refrigerant flow switching device 18b, respectively. The heat is radiated to the heat medium circulating in the heat medium circuit B, and becomes a high-pressure liquid refrigerant. The high-pressure liquid refrigerant expands in the expansion device 16a and the expansion device 16b to become a low-temperature and low-pressure two-phase refrigerant, and flows out of the heat medium relay unit 3 through the opening / closing device 17b. Then, it flows into the outdoor unit 1 again through the extension pipe 4. The refrigerant flowing into the outdoor unit 1 passes through the second connection pipe 4b and the check valve 13c, flows into the heat source side heat exchanger 12 acting as an evaporator, absorbs heat from the surrounding air, and is a low-temperature and low-pressure gas refrigerant. It becomes. The gas refrigerant is again sucked into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator 19. Note that the operation of the heat medium in the heat medium circuit B is the same as in the cooling only operation mode. In the heating only operation mode, in the load-side heat exchanger 15a and the load-side heat exchanger 15b, the heat medium is heated by the refrigerant, and is radiated to the indoor air in the use-side heat exchanger 26a and the use-side heat exchanger 26b. The indoor space 7 is heated.
[冷房主体運転モード]
 冷房主体運転モードの場合、圧縮機10から吐出された高温高圧のガス冷媒は、第1冷媒流路切替装置11を介して熱源側熱交換器12に流入し、周囲の空気に放熱して凝縮し、二相冷媒となり、逆止弁13aを通って、室外機1から流出する。そして、延長配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した冷媒は、第2冷媒流路切替装置18bを通って凝縮器として作用する負荷側熱交換器15bに流入し、熱媒体循環回路Bを循環する熱媒体に放熱して高圧の液冷媒となる。高圧の液冷媒は、絞り装置16bで膨張して低温低圧の二相冷媒となる。二相冷媒は、絞り装置16aを介して蒸発器として作用する負荷側熱交換器15aに流入し、熱媒体循環回路Bを循環する熱媒体から吸熱して低圧のガス冷媒となり、第2冷媒流路切替装置18aを介して熱媒体変換機3から流出する。そして、延長配管4を通って再び室外機1へ流入する。室外機1へ流入した冷媒は、逆止弁13dを通って、第1冷媒流路切替装置11およびアキュムレータ19を介して、圧縮機10へ再度吸入される。
[Cooling operation mode]
In the cooling main operation mode, the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the first refrigerant flow switching device 11 and radiates and condenses to the surrounding air. Then, it becomes a two-phase refrigerant and flows out of the outdoor unit 1 through the check valve 13a. Then, it flows into the heat medium relay unit 3 through the extension pipe 4. The refrigerant flowing into the heat medium relay unit 3 flows into the load-side heat exchanger 15b acting as a condenser through the second refrigerant flow switching device 18b, and dissipates heat to the heat medium circulating in the heat medium circuit B. And high pressure liquid refrigerant. The high-pressure liquid refrigerant expands in the expansion device 16b and becomes a low-temperature and low-pressure two-phase refrigerant. The two-phase refrigerant flows into the load-side heat exchanger 15a acting as an evaporator through the expansion device 16a, absorbs heat from the heat medium circulating in the heat medium circuit B, and becomes a low-pressure gas refrigerant. It flows out of the heat medium relay unit 3 through the path switching device 18a. Then, it flows into the outdoor unit 1 again through the extension pipe 4. The refrigerant that has flowed into the outdoor unit 1 passes through the check valve 13d, and is sucked into the compressor 10 again via the first refrigerant flow switching device 11 and the accumulator 19.
 熱媒体循環回路Bにおいては、負荷側熱交換器15bで冷媒の温熱が熱媒体に伝えられる。そして、暖められた熱媒体はポンプ21bによって配管5内を流動する。第1熱媒体流路切替装置22a~22dおよび第2熱媒体流路切替装置23a~23dを操作して暖房要求のある利用側熱交換器26a~26dに流入した熱媒体は、室内空気に放熱する。室内空気は加熱されて室内空間7の暖房を行う。一方、負荷側熱交換器15aで冷媒の冷熱が熱媒体に伝えられる。そして、冷やされた熱媒体はポンプ21aによって配管5内を流動する。第1熱媒体流路切替装置22a~22dおよび第2熱媒体流路切替装置23a~23dを操作して冷房要求のある利用側熱交換器26a~26dに流入した熱媒体は、室内空気から吸熱する。室内空気は冷却されて室内空間7の冷房を行う。なお、熱負荷のない利用側熱交換器26a~26dに対応する熱媒体流量調整装置25a~25dは全閉とする。また、熱負荷のある利用側熱交換器26a~26dに対応する熱媒体流量調整装置25a~25dは開度を調整し、利用側熱交換器26a~26dでの熱負荷を調節する。 In the heat medium circulation circuit B, the heat of the refrigerant is transmitted to the heat medium by the load side heat exchanger 15b. The heated heat medium flows in the pipe 5 by the pump 21b. The heat medium that has flowed into the use side heat exchangers 26a to 26d for which heating is requested by operating the first heat medium flow switching devices 22a to 22d and the second heat medium flow switching devices 23a to 23d radiates heat to the indoor air. To do. The indoor air is heated to heat the indoor space 7. On the other hand, the cold heat of the refrigerant is transmitted to the heat medium in the load side heat exchanger 15a. The cooled heat medium flows through the pipe 5 by the pump 21a. The heat medium that has flowed into the use side heat exchangers 26a to 26d for which cooling is requested by operating the first heat medium flow switching devices 22a to 22d and the second heat medium flow switching devices 23a to 23d absorbs heat from the indoor air. To do. The indoor air is cooled to cool the indoor space 7. Note that the heat medium flow control devices 25a to 25d corresponding to the use side heat exchangers 26a to 26d without heat load are fully closed. Further, the heat medium flow control devices 25a to 25d corresponding to the use side heat exchangers 26a to 26d having the heat load adjust the opening degree to adjust the heat load in the use side heat exchangers 26a to 26d.
[暖房主体運転モード]
 暖房主体運転モードの場合、圧縮機10から吐出された高温高圧のガス冷媒は、第1冷媒流路切替装置11を介して、第1接続配管4aおよび逆止弁13bを通って、室外機1から流出する。そして、延長配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した冷媒は、第2冷媒流路切替装置18bを通って凝縮器として作用する負荷側熱交換器15bに流入し、熱媒体循環回路Bを循環する熱媒体に放熱して高圧の液冷媒となる。高圧の液冷媒は、絞り装置16bで膨張して低温低圧の二相冷媒となる。二相冷媒は、絞り装置16aを介して蒸発器として作用する負荷側熱交換器15aに流入し、熱媒体循環回路Bを循環する熱媒体から吸熱し、第2冷媒流路切替装置18aを介して熱媒体変換機3から流出する。そして、延長配管4を通って再び室外機1へ流入する。室外機1へ流入した冷媒は、第2接続配管4bおよび逆止弁13cを通って、蒸発器として作用する熱源側熱交換器12に流入し、周囲の空気から吸熱して、低温低圧のガス冷媒となる。ガス冷媒は、第1冷媒流路切替装置11およびアキュムレータ19を介して圧縮機10へ再度吸入される。なお、熱媒体循環回路Bにおける熱媒体の動作、第1熱媒体流路切替装置22a~22d、第2熱媒体流路切替装置23a~23d、熱媒体流量調整装置25a~25d、および、利用側熱交換器26a~26d、の動作は冷房主体運転モードと同一である。
[Heating main operation mode]
In the heating main operation mode, the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 passes through the first refrigerant flow switching device 11, passes through the first connection pipe 4 a and the check valve 13 b, and then the outdoor unit 1. Spill from. Then, it flows into the heat medium relay unit 3 through the extension pipe 4. The refrigerant flowing into the heat medium relay unit 3 flows into the load-side heat exchanger 15b acting as a condenser through the second refrigerant flow switching device 18b, and dissipates heat to the heat medium circulating in the heat medium circuit B. And high pressure liquid refrigerant. The high-pressure liquid refrigerant expands in the expansion device 16b and becomes a low-temperature and low-pressure two-phase refrigerant. The two-phase refrigerant flows into the load-side heat exchanger 15a acting as an evaporator via the expansion device 16a, absorbs heat from the heat medium circulating in the heat medium circuit B, and passes through the second refrigerant flow switching device 18a. And flows out of the heat medium relay unit 3. Then, it flows into the outdoor unit 1 again through the extension pipe 4. The refrigerant flowing into the outdoor unit 1 passes through the second connection pipe 4b and the check valve 13c, flows into the heat source side heat exchanger 12 acting as an evaporator, absorbs heat from the surrounding air, and is a low-temperature and low-pressure gas. Becomes a refrigerant. The gas refrigerant is again sucked into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator 19. The operation of the heat medium in the heat medium circuit B, the first heat medium flow switching devices 22a to 22d, the second heat medium flow switching devices 23a to 23d, the heat medium flow control devices 25a to 25d, and the use side The operations of the heat exchangers 26a to 26d are the same as those in the cooling main operation mode.
[延長配管4および配管5]
 本実施の形態における各運転モードにおいては、室外機1と熱媒体変換機3とを接続する延長配管4には冷媒が流れ、熱媒体変換機3と室内機2を接続する配管5には水や不凍液等の熱媒体が流れている。
[Extended piping 4 and piping 5]
In each operation mode in the present embodiment, the refrigerant flows through the extension pipe 4 that connects the outdoor unit 1 and the heat medium converter 3, and the pipe 5 that connects the heat medium converter 3 and the indoor unit 2 contains water. Heat medium such as antifreeze liquid is flowing.
 利用側熱交換器26にて暖房負荷と冷房負荷とが混在して発生している場合は、暖房運転を行っている利用側熱交換器26に対応する第1熱媒体流路切替装置22および第2熱媒体流路切替装置23を加熱用の負荷側熱交換器15bに接続される流路へ切り替える。また、冷房運転を行っている利用側熱交換器26に対応する第1熱媒体流路切替装置22および第2熱媒体流路切替装置23を冷却用の負荷側熱交換器15aに接続される流路へ切り替える。このため、各室内機2にて、暖房運転、冷房運転を自由に行うことができる。 When the heating load and the cooling load are mixed in the use side heat exchanger 26, the first heat medium flow switching device 22 corresponding to the use side heat exchanger 26 performing the heating operation and The second heat medium flow switching device 23 is switched to a flow path connected to the load side heat exchanger 15b for heating. Further, the first heat medium flow switching device 22 and the second heat medium flow switching device 23 corresponding to the use side heat exchanger 26 performing the cooling operation are connected to the cooling load side heat exchanger 15a. Switch to the flow path. For this reason, in each indoor unit 2, heating operation and cooling operation can be performed freely.
 ここで、第1熱媒体流路切替装置22および第2熱媒体流路切替装置23は、三方弁等の三方流路を切り替えられるもの、開閉弁等の二方流路の開閉を行うものを2つ組み合わせる等、流路を切り替えられるものであればよい。また、ステッピングモーター駆動式の混合弁等の三方流路の流量を変化させられるもの、電子式膨張弁等の二方流路の流量を変化させられるものを2つ組み合わせる等して第1熱媒体流路切替装置22および第2熱媒体流路切替装置23として用いてもよい。更に、熱媒体流量調整装置25は、二方弁以外でも、三方流路を持つ制御弁とし利用側熱交換器26をバイパスするバイパス管と共に設置するようにしてもよい。また、熱媒体流量調整装置25は、ステッピングモーター駆動式で流路を流れる流量を制御できるものを使用するとよく、二方弁でも三方弁の一端を閉止したものでもよい。また、熱媒体流量調整装置25として、開閉弁等の二方流路の開閉を行うものを用い、ON/OFFを繰り返して平均的な流量を制御するようにしてもよい。 Here, the first heat medium flow switching device 22 and the second heat medium flow switching device 23 can switch a three-way flow path such as a three-way valve, and can open and close a two-way flow path such as an on-off valve. What is necessary is just to be able to switch a flow path, such as combining two. In addition, the first heat medium can be obtained by combining two things such as a stepping motor drive type mixing valve that can change the flow rate of the three-way flow path and two things that can change the flow rate of the two-way flow path such as an electronic expansion valve. The flow path switching device 22 and the second heat medium flow path switching device 23 may be used. Furthermore, the heat medium flow control device 25 may be installed as a control valve having a three-way flow path with a bypass pipe that bypasses the use-side heat exchanger 26 other than the two-way valve. Further, the heat medium flow control device 25 may be a stepping motor drive type that can control the flow rate flowing through the flow path, and may be a two-way valve or a device in which one end of the three-way valve is closed. Further, as the heat medium flow control device 25, a device that opens and closes a two-way flow path such as an open / close valve may be used, and the average flow rate may be controlled by repeating ON / OFF.
 また、第1冷媒流路切替装置11および第2冷媒流路切替装置18は四方弁であるかのように示したが、これに限るものではなく、二方流路切替弁や三方流路切替弁を複数個用い、同じように冷媒が流れるように構成してもよい。 Further, the first refrigerant flow switching device 11 and the second refrigerant flow switching device 18 are shown as if they were four-way valves. However, the present invention is not limited to this, and a two-way flow switching valve or a three-way flow switching is possible. A plurality of valves may be used so that the refrigerant flows in the same manner.
 また、利用側熱交換器26と熱媒体流量調整装置25とが1つしか接続されていない場合でも同様のことが成り立つのは言うまでもなく、更に負荷側熱交換器15および絞り装置16として、同じ動きをするものが複数個設置されていても、当然問題ない。更に、熱媒体流量調整装置25は、熱媒体変換機3に内蔵されている場合を例に説明したが、これに限るものではなく、室内機2に内蔵されていてもよく、熱媒体変換機3と室内機2とは別体に構成されていてもよい。 Further, it goes without saying that the same is true even when only one use-side heat exchanger 26 and one heat medium flow control device 25 are connected, and the load-side heat exchanger 15 and the expansion device 16 are the same. Of course, there is no problem even if multiple moving objects are installed. Furthermore, although the case where the heat medium flow control device 25 is built in the heat medium converter 3 has been described as an example, the heat medium flow control device 25 is not limited thereto, and may be built in the indoor unit 2. 3 and the indoor unit 2 may be configured separately.
 また、第1熱媒体流路切替装置22または/および第2熱媒体流路切替装置23に熱媒体の流量を調整する機能を備えるように構成すれば、熱媒体流量調整装置25を備えなくてもよい。 Further, if the first heat medium flow switching device 22 and / or the second heat medium flow switching device 23 is configured to have a function of adjusting the flow rate of the heat medium, the heat medium flow control device 25 may not be provided. Also good.
 熱媒体としては、たとえばブライン(不凍液)や水、ブラインと水の混合液、水と防食効果が高い添加剤の混合液等を用いることができる。したがって、冷凍サイクル装置100においては、熱媒体が室内機2を介して室内空間7に漏洩したとしても、熱媒体に安全性の高いものを使用しているため安全性の向上に寄与することになる。 As the heat medium, for example, brine (antifreeze), water, a mixture of brine and water, a mixture of water and an additive having a high anticorrosive effect, or the like can be used. Therefore, in the refrigeration cycle apparatus 100, even if the heat medium leaks into the indoor space 7 through the indoor unit 2, a highly safe heat medium is used, which contributes to an improvement in safety. Become.
 また、一般的に、熱源側熱交換器12および利用側熱交換器26a~26dには、送風機が取り付けられており、送風により凝縮または蒸発を促進させる場合が多いが、これに限るものではない。たとえば利用側熱交換器26a~26dとしては放射を利用したパネルヒータのようなものも用いることができる。また、熱源側熱交換器12としては、水や不凍液により熱を移動させる水冷式のタイプのものも用いることができる。放熱または吸熱できる構造のものであればどんなものでも用いることができる。 In general, the heat source side heat exchanger 12 and the use side heat exchangers 26a to 26d are provided with a blower, and in many cases, condensation or evaporation is promoted by blowing, but this is not restrictive. . For example, as the use side heat exchangers 26a to 26d, a panel heater using radiation can be used. Moreover, as the heat source side heat exchanger 12, a water-cooled type that moves heat by water or antifreeze can also be used. Any structure that can dissipate or absorb heat can be used.
 また、ここでは、利用側熱交換器26a~26dが4つである場合を例に説明を行ったが、幾つ接続してもよい。更に、室外機1が複数接続され、1つの冷凍サイクルを構成していてもよい。 In addition, here, the case where there are four use-side heat exchangers 26a to 26d has been described as an example, but any number may be connected. Further, a plurality of outdoor units 1 may be connected to constitute one refrigeration cycle.
 また、負荷側熱交換器15a、15bが2つである場合を例に説明を行ったが、当然、これに限るものではなく、熱媒体を冷却または/および加熱できるように構成すれば、幾つ設置してもよい。 Further, the case where there are two load- side heat exchangers 15a and 15b has been described as an example, but of course, the present invention is not limited to this, and any number of configurations can be used as long as the heat medium can be cooled or / and heated. May be installed.
 また、負荷側熱交換器15としては、一般的にプレート式熱交換器が使用されるが、プレート式でなくても、冷媒と熱媒体とを熱交換できる形式ものであれば、どのようなものでもよい。 Further, a plate-type heat exchanger is generally used as the load-side heat exchanger 15. However, the load-side heat exchanger 15 is not limited to a plate type, but can be any type that can exchange heat between the refrigerant and the heat medium. It may be a thing.
 また、ポンプ21aおよび21bはそれぞれ一つとは限らず、複数の小容量のポンプを並列に並べてもよい。 Also, the number of pumps 21a and 21b is not limited to one, and a plurality of small capacity pumps may be arranged in parallel.
 また、本実施の形態の冷凍サイクル装置は、圧縮機10、四方弁(第1冷媒流路切替装置)11、熱源側熱交換器12を室外機1に収容し、空調対象空間の空気と冷媒とを熱交換させる利用側熱交換器26を室内機2に収容し、負荷側熱交換器15および絞り装置16を熱媒体変換機3に収容したものである。また、室外機1と熱媒体変換機3との間を延長配管4で接続して冷媒を循環させ、室内機2と熱媒体変換機3との間をそれぞれ2本一組の配管5で接続して熱媒体を循環させ、負荷側熱交換器15で冷媒と熱媒体とを熱交換させる装置である。このような装置において、本実施の形態では、冷房運転を行う室内機2と暖房運転を行う室内機2との混在運転が可能なシステムを例に説明を行ったが、これに限るものではない。たとえば、実施の形態1で説明した室外機1と熱媒体変換機3とを組み合わせて、室内機2で冷房運転または暖房運転のみを行うシステムにも適用することができ、同様の効果を奏する。 Further, the refrigeration cycle apparatus of the present embodiment accommodates the compressor 10, the four-way valve (first refrigerant flow switching device) 11, and the heat source side heat exchanger 12 in the outdoor unit 1, and air and refrigerant in the air-conditioning target space Are used in the indoor unit 2, and the load-side heat exchanger 15 and the expansion device 16 are accommodated in the heat medium converter 3. Further, the outdoor unit 1 and the heat medium converter 3 are connected by an extension pipe 4 to circulate the refrigerant, and the indoor unit 2 and the heat medium converter 3 are connected by a set of two pipes 5 each. Thus, the heat medium is circulated, and the load-side heat exchanger 15 exchanges heat between the refrigerant and the heat medium. In such an apparatus, in the present embodiment, the explanation has been given by taking as an example a system capable of mixed operation of the indoor unit 2 that performs the cooling operation and the indoor unit 2 that performs the heating operation. However, the present invention is not limited to this. . For example, the outdoor unit 1 and the heat medium relay unit 3 described in the first embodiment can be combined and applied to a system that performs only a cooling operation or a heating operation in the indoor unit 2 and has the same effect.
実施の形態3.
 実施の形態1および実施の形態2で示したように、第1冷媒流路切替装置11として、四方弁を用いるのが一般的であるが、これに限るものではない。たとえば、二方流路切替弁や三方流路切替弁を複数個用い、四方弁を用いた場合と同じような冷媒の流れになるように構成してもよい。
Embodiment 3 FIG.
As shown in the first embodiment and the second embodiment, it is common to use a four-way valve as the first refrigerant flow switching device 11, but this is not a limitation. For example, a plurality of two-way flow switching valves and three-way flow switching valves may be used so that the refrigerant flows in the same manner as when a four-way valve is used.
 また、実施の形態1および実施の形態2では、冷媒回路中に余剰冷媒を貯留するアキュムレータ19を備える場合について説明をしたが、これに限るものではない。たとえば、延長配管4が短い、室内機2の台数が1台である等の場合には、冷媒回路において余剰冷媒が少ないため、アキュムレータ19を備えていなくても問題はない。 In the first and second embodiments, the case where the accumulator 19 for storing the excess refrigerant is provided in the refrigerant circuit has been described. However, the present invention is not limited to this. For example, in the case where the extension pipe 4 is short, the number of indoor units 2 is one, etc., there is no problem even if the accumulator 19 is not provided because the surplus refrigerant is small in the refrigerant circuit.
 1 熱源機(室外機)、2,2a,2b,2c,2d 室内機、3 熱媒体変換機(中継機)、4 延長配管(冷媒配管)、4a 第1接続配管、4b 第2接続配管、5 配管(熱媒体配管)、6 室外空間、7 室内空間、8 天井裏等の室外空間および室内空間とは別の空間、9 ビル等の建物、10 圧縮機、11 第1冷媒流路切替装置(四方弁)、12 熱源側熱交換器(第一の熱交換器)、13a,13b,13c,13d 逆止弁、15,15a,15b,15c,15d 負荷側熱交換器(第二の熱交換器)、16,16a,16b,16c,16d 絞り装置、17a,17b 開閉装置、18,18a,18b 第2冷媒流路切替装置、19 アキュムレータ、21a,21b ポンプ、22,22a,22b,22c,22d 第1熱媒体流路切替装置、23,23a,23b,23c,23d 第2熱媒体流路切替装置、25,25a,25b,25c,25d 熱媒体流量調整装置、26,26a,26b,26c,26d 利用側熱交換器、27 負荷側熱交換器液冷媒温度検出装置、28 負荷側熱交換器ガス冷媒温度検出装置、37 高圧検出装置、38 低圧検出装置、41 第1接続管、42 第2接続管、43 伝熱管、44 フィン、45 (伝熱管43の一端の出口の)中心、46 (伝熱管43の他端の出口の)中心、47,47a,47b 第1ヘッダ、48,48a,48b 第2ヘッダ、49 流路、50 内面、60 制御装置、100 冷凍サイクル装置、A 冷媒循環回路、B 熱媒体循環回路。 1 Heat source unit (outdoor unit), 2, 2a, 2b, 2c, 2d indoor unit, 3 heat medium converter (relay unit), 4 extension pipe (refrigerant pipe), 4a first connection pipe, 4b second connection pipe, 5 piping (heat medium piping), 6 outdoor space, 7 indoor space, 8 outdoor space such as the back of the ceiling and indoor space, 9 building, 10 compressor, 11 1st refrigerant flow switching device (Four-way valve), 12 heat source side heat exchanger (first heat exchanger), 13a, 13b, 13c, 13d check valve, 15, 15a, 15b, 15c, 15d load side heat exchanger (second heat Exchanger, 16, 16a, 16b, 16c, 16d throttle device, 17a, 17b switchgear, 18, 18a, 18b second refrigerant flow switching device, 19 accumulator, 21a, 21b pump, 22, 22a, 22b, 2 c, 22d First heat medium flow switching device, 23, 23a, 23b, 23c, 23d Second heat medium flow switching device, 25, 25a, 25b, 25c, 25d Heat medium flow control device, 26, 26a, 26b , 26c, 26d, use side heat exchanger, 27 load side heat exchanger liquid refrigerant temperature detection device, 28 load side heat exchanger gas refrigerant temperature detection device, 37 high pressure detection device, 38 low pressure detection device, 41 first connecting pipe, 42, second connection pipe, 43 heat transfer pipe, 44 fin, 45, center (outlet at one end of heat transfer pipe 43), 46, center (outlet at the other end of heat transfer pipe 43), 47, 47a, 47b, first header, 48 48a, 48b, second header, 49 flow path, 50 inner surface, 60 control device, 100 refrigeration cycle device, A refrigerant circulation circuit, B heat medium circulation circuit.

Claims (14)

  1.  圧縮機と、第一の熱交換器と、絞り装置と、第二の熱交換器とを冷媒配管で接続し、不均化反応を起こす性質の物質で構成した単一冷媒または不均化反応を起こす性質の物質を含む混合冷媒と、前記冷媒に対して相溶性を有する冷凍機油とを充填して冷媒回路を構成し、
     前記第一の熱交換器および前記第二の熱交換器の少なくとも一方は、
     前記冷媒が流れる複数の伝熱管と、該伝熱管の冷媒出口側の端部が挿入され、管内を冷媒が通過するヘッダとを有し、
     前記ヘッダの内径は前記伝熱管の内径よりも大きく、かつ、前記伝熱管の冷媒出口側の端部は、前記ヘッダの管内壁面に対向するように設置され、
     前記伝熱管の冷媒出口側の端部の中心から、該中心に対応する前記ヘッダの管内壁面までの距離をL、前記伝熱管の冷媒出口側の端部における内径または内径に相当する相当直径を内径dとしたときに、L/dの値が、20未満および0超となる位置に、前記伝熱管の冷媒出口側の端部が位置する冷凍サイクル装置。
    A single refrigerant or disproportionation reaction composed of a substance having the property of causing a disproportionation reaction by connecting the compressor, the first heat exchanger, the expansion device, and the second heat exchanger with refrigerant piping. A refrigerant circuit is formed by filling a mixed refrigerant containing a substance having a property of causing a refrigerant and refrigerating machine oil compatible with the refrigerant,
    At least one of the first heat exchanger and the second heat exchanger is:
    A plurality of heat transfer tubes through which the refrigerant flows, and a header through which the end of the heat transfer tube on the refrigerant outlet side is inserted and the refrigerant passes through the tubes;
    The inner diameter of the header is larger than the inner diameter of the heat transfer tube, and the end portion on the refrigerant outlet side of the heat transfer tube is installed to face the inner wall surface of the header,
    The distance from the center of the end portion on the refrigerant outlet side of the heat transfer tube to the pipe inner wall surface of the header corresponding to the center is L, and the inner diameter or the equivalent diameter corresponding to the inner diameter at the end portion on the refrigerant outlet side of the heat transfer tube A refrigeration cycle apparatus in which the refrigerant outlet side end of the heat transfer tube is located at a position where the value of L / d is less than 20 and greater than 0 when the inner diameter is d.
  2.  前記冷媒の温度が50℃かつ前記冷媒の圧力が50℃の飽和圧力である状態において、前記冷媒の前記冷凍機油に対する溶解度が50重量パーセント以上となる前記冷凍機油を充填し、かつ、前記L/dの値が10未満および0超となる位置に、前記伝熱管の出口を設置する請求項1に記載の冷凍サイクル装置。 In a state where the temperature of the refrigerant is 50 ° C. and the pressure of the refrigerant is a saturation pressure of 50 ° C., the refrigerating machine oil having a solubility in the refrigerating machine oil of 50 weight percent or more is charged, and the L / The refrigeration cycle apparatus according to claim 1, wherein an outlet of the heat transfer tube is installed at a position where the value of d is less than 10 and more than 0.
  3.  前記冷媒の温度が40℃かつ前記冷媒の圧力が50℃の飽和圧力である状態において、前記冷媒の前記冷凍機油に対する溶解度が50重量パーセント以上となる前記冷凍機油を充填し、かつ、前記L/dの値が10未満および0超となる位置に、前記伝熱管の出口を設置する請求項1または請求項2に記載の冷凍サイクル装置。 In the state where the temperature of the refrigerant is 40 ° C. and the pressure of the refrigerant is a saturation pressure of 50 ° C., the refrigerating machine oil having a solubility in the refrigerating machine oil of 50 weight percent or more is charged, and the L / The refrigeration cycle apparatus according to claim 1 or 2, wherein an outlet of the heat transfer tube is installed at a position where the value of d is less than 10 and more than 0.
  4.  乾き度が0よりも大きくかつ0.2以下である二相状態の前記冷媒が前記ヘッダに流れるように、前記冷媒の循環を制御する運転を行う請求項1~請求項3のいずれか一項に記載の冷凍サイクル装置。 The operation for controlling circulation of the refrigerant is performed so that the refrigerant in a two-phase state having a dryness greater than 0 and less than or equal to 0.2 flows through the header. The refrigeration cycle apparatus described in 1.
  5.  前記冷凍機油として、前記冷媒の温度が0℃かつ前記冷媒の圧力が0℃の飽和圧力である状態において、前記冷媒の前記冷凍機油に対する溶解度が50重量パーセント以上となるものを充填し、かつ、前記L/dの値が10未満および0超となる位置に、前記伝熱管の出口を設置する請求項1に記載の冷凍サイクル装置。 The refrigerating machine oil is filled with a refrigerant having a solubility in the refrigerating machine oil of 50% by weight or more in a state where the temperature of the refrigerant is 0 ° C. and the pressure of the refrigerant is 0 ° C., and The refrigeration cycle apparatus according to claim 1, wherein an outlet of the heat transfer tube is installed at a position where the value of L / d is less than 10 and more than 0.
  6.  乾き度が0.8以上かつ0.99以下である二相状態の前記冷媒を、前記ヘッダに流れるように、前記冷媒の循環を制御する運転を行う請求項1または請求項5に記載の冷凍サイクル装置。 The refrigeration according to claim 1 or 5, wherein an operation for controlling circulation of the refrigerant is performed so that the two-phase refrigerant having a dryness of 0.8 or more and 0.99 or less flows in the header. Cycle equipment.
  7.  前記距離Lは、前記ヘッダの内径よりも小さく、かつ、前記ヘッダの内径の2/3よりも大きい請求項1~請求項6のいずれか一項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 6, wherein the distance L is smaller than an inner diameter of the header and larger than 2/3 of an inner diameter of the header.
  8.  前記第一の熱交換器または前記第二の熱交換器の一方を収容する室外機と、前記第一の熱交換器または前記第二の熱交換器の他方を収容する室内機とを有する請求項1~請求項7のいずれか一項に記載の冷凍サイクル装置。 An outdoor unit that houses one of the first heat exchanger or the second heat exchanger, and an indoor unit that houses the other of the first heat exchanger or the second heat exchanger. The refrigeration cycle apparatus according to any one of claims 1 to 7.
  9.  前記第一の熱交換器または前記第二の熱交換器の一方を収容する室外機と、
     負荷に対して熱を供給する室内機と、
     前記第一の熱交換器または前記第二の熱交換器の他方を収容し、前記室外機および前記室内機とは別体で離れた位置に設置可能な中継機と
    を有することを特徴とする請求項1~請求項8のいずれか一項に記載の冷凍サイクル装置。
    An outdoor unit that houses one of the first heat exchanger or the second heat exchanger;
    An indoor unit that supplies heat to the load;
    A relay unit that accommodates the other of the first heat exchanger or the second heat exchanger and that can be installed at a position separated from the outdoor unit and the indoor unit. The refrigeration cycle apparatus according to any one of claims 1 to 8.
  10.  前記中継機に収容された前記第一の熱交換器または前記第二の熱交換器となる熱交換器は、前記冷媒と、前記冷媒とは異なる熱媒体とを熱交換する請求項9に記載の冷凍サイクル装置。 The heat exchanger serving as the first heat exchanger or the second heat exchanger housed in the relay machine exchanges heat between the refrigerant and a heat medium different from the refrigerant. Refrigeration cycle equipment.
  11.  前記室外機に収容された前記第一の熱交換器または前記第二の熱交換器は、前記冷媒と熱媒体とを熱交換する熱交換器であることを特徴とする請求項8~請求項10のいずれか一項に記載の冷凍サイクル装置。 The first heat exchanger or the second heat exchanger housed in the outdoor unit is a heat exchanger that exchanges heat between the refrigerant and the heat medium. The refrigeration cycle apparatus according to any one of 10.
  12.  1または複数の前記室外機と、1または複数の前記室内機と備え、各室内機において、前記冷媒と熱交換した空気を負荷に対して供給可能に構成する請求項8~請求項11のいずれか一項に記載の冷凍サイクル装置。 12. The apparatus according to claim 8, comprising one or a plurality of the outdoor units and one or a plurality of the indoor units, wherein each of the indoor units is configured to be able to supply the heat exchanged with the refrigerant to the load. The refrigeration cycle apparatus according to claim 1.
  13.  冷媒の流路を切り替える冷媒流路切替装置をさらに備え、前記第一の熱交換器および前記第二の熱交換器の一方の熱交換器を凝縮器として作用させ、前記第一の熱交換器および前記第二の熱交換器の他方の熱交換器を蒸発器として作用させる第一の運転モードと、前記第一の熱交換器および前記第二の熱交換器の一方の熱交換器を蒸発器として作用させ、前記第一の熱交換器および前記第二の熱交換器の他方の熱交換器を凝縮器として作用させる第二の運転モードとを有する請求項1~請求項12のいずれか一項に記載の冷凍サイクル装置。 A refrigerant flow switching device for switching a flow path of the refrigerant, wherein one heat exchanger of the first heat exchanger and the second heat exchanger acts as a condenser, and the first heat exchanger And a first operation mode in which the other heat exchanger of the second heat exchanger acts as an evaporator, and one heat exchanger of the first heat exchanger and the second heat exchanger is evaporated. And a second operation mode in which the other heat exchanger of the first heat exchanger and the second heat exchanger acts as a condenser. The refrigeration cycle apparatus according to one item.
  14.  前記不均化反応を起こす性質の物質は、1,1,2-トリフルオロエチレンである請求項1~請求項13のいずれか一項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 13, wherein the substance causing the disproportionation reaction is 1,1,2-trifluoroethylene.
PCT/JP2014/070221 2014-07-31 2014-07-31 Refrigeration cycle device WO2016016999A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB1700157.9A GB2543206A (en) 2014-07-31 2014-07-31 Refrigeration cycle device
PCT/JP2014/070221 WO2016016999A1 (en) 2014-07-31 2014-07-31 Refrigeration cycle device
JP2016537680A JPWO2016016999A1 (en) 2014-07-31 2014-07-31 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/070221 WO2016016999A1 (en) 2014-07-31 2014-07-31 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2016016999A1 true WO2016016999A1 (en) 2016-02-04

Family

ID=55216939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070221 WO2016016999A1 (en) 2014-07-31 2014-07-31 Refrigeration cycle device

Country Status (3)

Country Link
JP (1) JPWO2016016999A1 (en)
GB (1) GB2543206A (en)
WO (1) WO2016016999A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016059698A1 (en) * 2014-10-16 2017-04-27 三菱電機株式会社 Refrigeration cycle equipment
WO2018047511A1 (en) * 2016-09-12 2018-03-15 三菱電機株式会社 Heat exchanger and air-conditioner

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009097838A (en) * 2007-10-19 2009-05-07 T Rad Co Ltd Manufacturing method for heat exchanger and heat exchanger
JP2009191212A (en) * 2008-02-15 2009-08-27 Idemitsu Kosan Co Ltd Lubricating oil composition for refrigerating machine
JP2010002098A (en) * 2008-06-19 2010-01-07 Mitsubishi Electric Corp Refrigerating cycle device
JP2012131994A (en) * 2010-11-30 2012-07-12 Jx Nippon Oil & Energy Corp Working fluid composition for refrigerator machine, and refrigerating machine oil
WO2012157764A1 (en) * 2011-05-19 2012-11-22 旭硝子株式会社 Working medium and heat-cycle system
JP5306449B2 (en) * 2009-03-26 2013-10-02 三菱電機株式会社 Air conditioner
JP2013210184A (en) * 2008-04-01 2013-10-10 Honeywell Internatl Inc Method for improving oil return rate to heat transfer circuit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05306449A (en) * 1992-04-30 1993-11-19 Nkk Corp Method for preventing sticking of molten metal splash to strip surface at the time of hot dip metal coating

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009097838A (en) * 2007-10-19 2009-05-07 T Rad Co Ltd Manufacturing method for heat exchanger and heat exchanger
JP2009191212A (en) * 2008-02-15 2009-08-27 Idemitsu Kosan Co Ltd Lubricating oil composition for refrigerating machine
JP2013210184A (en) * 2008-04-01 2013-10-10 Honeywell Internatl Inc Method for improving oil return rate to heat transfer circuit
JP2010002098A (en) * 2008-06-19 2010-01-07 Mitsubishi Electric Corp Refrigerating cycle device
JP5306449B2 (en) * 2009-03-26 2013-10-02 三菱電機株式会社 Air conditioner
JP2012131994A (en) * 2010-11-30 2012-07-12 Jx Nippon Oil & Energy Corp Working fluid composition for refrigerator machine, and refrigerating machine oil
WO2012157764A1 (en) * 2011-05-19 2012-11-22 旭硝子株式会社 Working medium and heat-cycle system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016059698A1 (en) * 2014-10-16 2017-04-27 三菱電機株式会社 Refrigeration cycle equipment
WO2018047511A1 (en) * 2016-09-12 2018-03-15 三菱電機株式会社 Heat exchanger and air-conditioner
CN109690211A (en) * 2016-09-12 2019-04-26 三菱电机株式会社 Heat exchanger and air-conditioning device
JPWO2018047511A1 (en) * 2016-09-12 2019-06-24 三菱電機株式会社 Heat exchanger and air conditioner
CN109690211B (en) * 2016-09-12 2020-10-30 三菱电机株式会社 Heat exchanger and air conditioner

Also Published As

Publication number Publication date
JPWO2016016999A1 (en) 2017-04-27
GB201700157D0 (en) 2017-02-22
GB2543206A (en) 2017-04-12

Similar Documents

Publication Publication Date Title
WO2015140886A1 (en) Refrigeration cycle apparatus
JP5188629B2 (en) Air conditioner
EP2246649B2 (en) Refrigerating apparatus
JP6072077B2 (en) Air conditioner
JP5730335B2 (en) Air conditioner
JP5236080B2 (en) Air conditioner
JP5602243B2 (en) Air conditioner
JP5921719B2 (en) Air conditioner
WO2011099065A1 (en) Air conditioner
WO2012104890A1 (en) Air-conditioning device
WO2015140887A1 (en) Refrigeration cycle apparatus
WO2011052042A1 (en) Air conditioning device
WO2013069043A1 (en) Air-conditioning apparatus
WO2016009565A1 (en) Refrigeration cycle device
WO2015140885A1 (en) Refrigeration cycle apparatus
WO2011052049A1 (en) Air conditioning device
WO2015140878A1 (en) Accumulator and refrigeration cycle apparatus
WO2016038659A1 (en) Refrigeration cycle apparatus
WO2016016999A1 (en) Refrigeration cycle device
WO2015140877A1 (en) Throttling device and refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14898433

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016537680

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 201700157

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20140731

NENP Non-entry into the national phase

Ref country code: DE

ENPC Correction to former announcement of entry into national phase, pct application did not enter into the national phase

Ref country code: GB

122 Ep: pct application non-entry in european phase

Ref document number: 14898433

Country of ref document: EP

Kind code of ref document: A1