WO2024042575A1 - Heat exchanger, and refrigeration cycle device - Google Patents

Heat exchanger, and refrigeration cycle device Download PDF

Info

Publication number
WO2024042575A1
WO2024042575A1 PCT/JP2022/031523 JP2022031523W WO2024042575A1 WO 2024042575 A1 WO2024042575 A1 WO 2024042575A1 JP 2022031523 W JP2022031523 W JP 2022031523W WO 2024042575 A1 WO2024042575 A1 WO 2024042575A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
tube
refrigerant distributor
outdoor heat
Prior art date
Application number
PCT/JP2022/031523
Other languages
French (fr)
Japanese (ja)
Inventor
伸吾 笠木
哲二 七種
洋次 尾中
祐基 中尾
理人 足立
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/031523 priority Critical patent/WO2024042575A1/en
Publication of WO2024042575A1 publication Critical patent/WO2024042575A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates

Definitions

  • the present disclosure relates to a heat exchanger and a refrigeration cycle device having a plurality of flat tubes.
  • Some conventional refrigeration cycle apparatuses having a plurality of heat exchangers are constructed from a plurality of heat exchangers, with one or more heat exchangers forming one set (for example, see Patent Document 1).
  • the heat exchanger is composed of an air heat exchanger, and includes an upper header pipe, a lower header pipe, a heat transfer tube, and fins.
  • the sets are connected in series, and a series refrigerant flow path is formed in which the refrigerant flows in series between the sets.
  • the refrigerant flows from top to bottom through the heat transfer tubes of all the heat exchangers.
  • the sets are connected in parallel, and a parallel refrigerant flow path is formed in which the refrigerant flows in parallel to each set.
  • the refrigerant flows from bottom to top through the heat transfer tubes of all the heat exchangers.
  • a refrigerant distributor having a double pipe structure including an inner pipe and an outer pipe is used as a lower header pipe, for example.
  • a plurality of outer tubes are provided, and a gap is formed between adjacent outer tubes among the plurality of outer tubes.
  • One inner tube is provided continuously for the plurality of outer tubes.
  • a plurality of heat transfer tubes are connected to the outer tube in the tube axis direction of the outer tube, and the refrigerant flowing between the inner tube and the outer tube is distributed to the plurality of heat transfer tubes.
  • a gas-liquid two-phase refrigerant in which gas refrigerant and liquid refrigerant are mixed flows into the heat exchanger.
  • a refrigerant distributor having a double pipe structure composed of an inner tube and an outer tube may be used as the refrigerant distributor on the inflow side of the heat exchanger.
  • a large number of refrigerant outlet holes are arranged in parallel in the inner pipe.
  • a refrigerant distributor having a double tube structure can reduce the volume of the refrigerant distributor while evenly distributing the refrigerant to a plurality of heat transfer tubes that constitute a heat exchanger.
  • a refrigerant distributor with a single-pipe structure is provided on the outflow side of the heat exchanger that functions as an evaporator.
  • the refrigerant distributor has a function of distributing refrigerant to a plurality of heat transfer tubes that constitute the heat exchanger when the heat exchanger functions as a condenser.
  • the gas refrigerant flows in a single phase into the heat exchanger located on the upstream side.
  • the downstream heat exchanger a part of the gas refrigerant condenses during heat exchange in the upstream heat exchanger, so a gas-liquid two-phase state where gas refrigerant and liquid refrigerant are mixed is generated.
  • Refrigerant will flow in.
  • the refrigerant distributor on the inflow side of the heat exchanger located downstream is a refrigerant distributor with a single-pipe structure. Therefore, in the heat exchanger located on the downstream side, the refrigerant flowing into the heat exchanger is not evenly distributed to the plurality of flat tubes that constitute the heat exchanger.
  • the amount of refrigerant distributed is uneven depending on the position of the flat tube, so the amount of heat exchange is insufficient near the flat tube where more refrigerant is distributed, and less refrigerant is distributed. There is a problem in that the amount of heat exchanged is excessive near the flat tubes, and the heat exchange efficiency decreases.
  • the present disclosure has been made to solve such problems, and is one heat exchanger among a plurality of heat exchangers that function as a condenser during cooling operation, the heat exchangers being connected in series.
  • the heat exchanger includes a plurality of first flat tubes arranged at intervals in a first direction and whose tube axis direction extends in a second direction intersecting the first direction. 1 heat exchanger, a first refrigerant distributor into which one end portion of the plurality of first flat tubes is inserted, and a second refrigerant distributor into which the other end portion of the plurality of first flat tubes is inserted.
  • the first refrigerant distributor includes a first outer tube extending in the first direction and into which the one ends of the plurality of first flat tubes are inserted; a first inner tube disposed inside the first outer tube, the first inner tube having a plurality of first refrigerant outflow holes spaced apart from each other in the first direction; and the first inner tube penetrating through the plate thickness. and a first partition plate joined to the inner wall of the first outer tube, the second refrigerant distributor extending in the first direction and connecting the plurality of first flat tubes. a second outer tube into which the other end is inserted; and a plurality of outer tubes extending in the first direction, disposed inside the second outer tube, and spaced apart from each other in the first direction. A second inner pipe having two refrigerant outflow holes, and a second partition plate joined to the inner wall of the second outer pipe with the second inner pipe penetrating the plate thickness. .
  • a refrigeration cycle device is a refrigeration cycle device including an outdoor unit, wherein the outdoor unit includes the above heat exchanger, a second heat exchanger, and the heat exchanger and the second heat exchanger.
  • refrigerant piping that connects the heat exchanger and the second heat exchanger; a box-shaped casing that houses the heat exchanger and the second heat exchanger; a blower that blows out the air that has passed through the heat exchanger and the second heat exchanger upward from the top surface of the housing,
  • the containers are arranged along some or all of the four sides of the housing.
  • the refrigerant distributor is configured with a double pipe structure, and a plurality of refrigerant outlet holes are arranged in parallel in the inner pipe of the refrigerant distributor. Therefore, even when refrigerant flows into a heat exchanger in a gas-liquid two-phase state, the provision of the refrigerant distributor prevents the situation where the refrigerant is unevenly distributed to multiple flat tubes. It can be suppressed. In addition, by uniformly distributing the refrigerant to the plurality of flat tubes, the required amount of heat exchange becomes uniform over the entire surface of the heat exchanger, and a decrease in heat exchange efficiency can be prevented.
  • FIG. 1 is a refrigerant circuit diagram showing the configuration of a refrigeration cycle device 100 according to Embodiment 1.
  • FIG. FIG. 2 is a perspective view showing a connected state of outdoor heat exchanger 3 and outdoor heat exchanger 4 in refrigeration cycle device 100 according to Embodiment 1.
  • FIG. 3 is a sectional view showing the configuration of the outdoor heat exchanger 3 shown in FIG. 2.
  • FIG. 3 is a sectional view showing the configuration of the outdoor heat exchanger 4 shown in FIG. 2.
  • FIG. 4 is a cross-sectional view showing the configuration of a refrigerant distributor 31 provided in the outdoor heat exchanger 3 shown in FIG. 3.
  • FIG. 4 is a cross-sectional view showing the configuration of a refrigerant distributor 32 provided in the outdoor heat exchanger 3 shown in FIG. 3.
  • FIG. 3 is a sectional view showing the configuration of a refrigerant distributor 31 provided in the outdoor heat exchanger 3 shown in FIG. 3.
  • FIG. 4 is a cross-sectional view showing the configuration of a ref
  • FIG. 5 is a cross-sectional view showing the configuration of a refrigerant distributor 41 provided in the outdoor heat exchanger 4 shown in FIG. 4.
  • FIG. 5 is a sectional view showing the configuration of a refrigerant distributor 42 provided in the outdoor heat exchanger 4 shown in FIG. 4.
  • FIG. FIG. 2 is a perspective view showing a connected state of outdoor heat exchanger 3 and outdoor heat exchanger 4 in a heating operation state in refrigeration cycle device 100 according to Embodiment 1.
  • FIG. FIG. 3 is a diagram schematically showing a refrigerant distribution operation in a refrigerant distributor 31 provided in the refrigeration cycle device 100 according to the first embodiment.
  • FIG. 3 is a diagram schematically showing a refrigerant distribution operation in refrigerant distributors 32, 41, and 42 provided in the refrigeration cycle device 100 according to the first embodiment.
  • FIG. 3 is a diagram schematically showing the state of liquid refrigerant in a refrigerant distributor 31 provided in the refrigeration cycle device 100 according to the first embodiment.
  • 3 is a diagram schematically showing the state of liquid refrigerant in refrigerant distributors 32, 41, and 42 provided in refrigeration cycle device 100 according to Embodiment 1.
  • FIG. 2 is a refrigerant circuit diagram showing the configuration of a refrigeration cycle device 100 according to a first modification of the first embodiment.
  • FIG. 2 is a refrigerant circuit diagram showing the configuration of a refrigeration cycle device 100 according to a first modification of the first embodiment.
  • FIG. 2 is a refrigerant circuit diagram showing the configuration of a refrigeration cycle device 100 according to a second modification of the first embodiment.
  • FIG. FIG. 7 is a diagram showing the flow of refrigerant when the refrigeration cycle device 100 according to the second modification of the first embodiment is in a cooling operation state. The flow of refrigerant is shown when the refrigeration cycle device 100 according to the second modification of the first embodiment is in a heating operation state.
  • FIG. 3 is a perspective view showing a connection state of an outdoor heat exchanger 3C and an outdoor heat exchanger 4C in a refrigeration cycle device 100 according to a second embodiment.
  • FIG. 7 is a perspective view showing the appearance of an outdoor unit 101 provided in a refrigeration cycle device 100 according to a third embodiment.
  • FIG. 7 is a plan view schematically showing an example of the configuration of an outdoor unit 101 provided in a refrigeration cycle device 100 according to Embodiment 3.
  • FIG. 7 is a perspective view showing the appearance of an outdoor unit 101 provided in a refrigeration cycle device 100 according to a modification of the third embodiment.
  • 7 is a plan view schematically showing an example of the configuration of an outdoor unit 101 provided in a refrigeration cycle device 100 according to Embodiment 3.
  • FIG. 7 is a plan view schematically showing an example of the configuration of an outdoor unit 101 provided in a refrigeration cycle device 100 according to Embodiment 3.
  • the width direction of each outdoor heat exchanger is called the X direction
  • the height direction is called the Z direction
  • the depth direction is called the Y direction.
  • the X direction and the Y direction are, for example, horizontal directions.
  • the Z direction is, for example, an up-down direction, and may be a vertical direction.
  • the X direction is the direction in which the plurality of flat tubes are stacked.
  • the Z direction is the axial direction of the flat tube, and is the direction in which the refrigerant flows.
  • the Y direction is the direction in which air flows.
  • the X direction is sometimes called a "first direction” or a "third direction.”
  • the Z direction is sometimes referred to as the "second direction.”
  • FIG. 1 is a refrigerant circuit diagram showing the configuration of a refrigeration cycle device 100 according to the first embodiment.
  • the refrigeration cycle device 100 has an outdoor unit 101 and an indoor unit 201, and a refrigeration cycle is configured by connecting the outdoor unit 101 and the indoor unit 201 with a refrigerant pipe 310.
  • the refrigerant pipe 310 includes a plurality of refrigerant pipes 300 to 308.
  • these refrigerant pipes 300 to 308 are collectively called a refrigerant pipe 310.
  • the outdoor unit 101 and the indoor unit 201 are connected through connection ports P1 and P2. Both the connection port P1 and the connection port P2 are configured from refrigerant piping 310.
  • connection port P1 is an inflow side connection port to the outdoor unit 101 in the cooling operation state of the refrigeration cycle device 100, and an outflow side connection port from the outdoor unit 101 in the heating operation state.
  • the connection port P2 is an outflow side connection port from the outdoor unit 101 in the cooling operation state of the refrigeration cycle device 100, and an inflow side connection port to the outdoor unit 101 in the heating operation state.
  • one outdoor unit 101 and one indoor unit 201 are installed, but the number of outdoor units 101 and the number of indoor units 201 are not limited to one. There may be a plurality of each.
  • a fluorocarbon refrigerant or an HFO refrigerant for example, is sealed as a refrigerant.
  • fluorocarbon refrigerants examples include HFC (fluorinated hydrocarbon, hydrofluorocarbon) refrigerants.
  • HFC refrigerants include difluoromethane (HFC-32, R32), pentafluoroethane (HFC-125, R125), 1,1,1-trifluoroethane (HFC-143a, R143a), 1,1, Examples include 1,2-tetrafluoroethane (HFC-134a, R134a).
  • other examples of the fluorocarbon refrigerant include a mixed refrigerant obtained by mixing the above-mentioned HFC refrigerants.
  • mixed refrigerants examples include “R410A” which is a mixed refrigerant of R32 and R125, “R407C” which is a mixed refrigerant of R32, R125 and R134a, and “R404A” which is a mixed refrigerant of R125, R143a and R134a. ” etc.
  • HFO (hydrofluoroolefin) refrigerant examples include HFO-1234yf, HFO-1234ze (E), and HFO-1234ze (Z).
  • the refrigerant sealed in the refrigerant circuit that constitutes the refrigeration cycle device 100 is not limited to the above example, and refrigerants used in vapor compression heat pumps can be used.
  • refrigerants used in vapor compression heat pumps can be used.
  • CO 2 refrigerant, HC refrigerant (eg, propane, isobutane refrigerant), ammonia refrigerant, etc. can be used as the refrigerant.
  • HC refrigerant eg, propane, isobutane refrigerant
  • ammonia refrigerant, etc. can be used as the refrigerant.
  • a mixed refrigerant of a fluorocarbon refrigerant and an HFO refrigerant such as a mixed refrigerant of R32 and HFO-1234yf, can also be used as the refrigerant.
  • the outdoor unit 101 includes a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, an outdoor heat exchanger 4, an expansion valve 5, an expansion valve 6, a solenoid valve 7, a solenoid valve 8, two outdoor blowers 9, an accumulator 10, It also has refrigerant pipes 300 to 306 that connect these components.
  • the compressor 1 is a fluid machine that compresses sucked low-pressure refrigerant and discharges it as high-pressure refrigerant.
  • the compressor 1 is configured, for example, as a rotary compressor or a scroll compressor.
  • the compressor 1 may be configured, for example, as a compressor with a constant rotational frequency, or may be configured as a compressor equipped with an inverter and whose rotational frequency can be controlled.
  • the four-way valve 2 is a flow path switching device that is provided on the discharge side of the compressor 1 and switches between the refrigerant circulation direction in the cooling operation state and the refrigerant circulation direction in the heating operation state.
  • the four connection ports 2a to 2d of the four-way valve 2 are connected to the compressor 1, the outdoor heat exchanger 3, the accumulator 10, and the connection port P1 that connects the outdoor unit 101 and the indoor unit 201.
  • the connection port 2a on the compressor 1 side is the connection port 2b on the outdoor heat exchanger 3 side, or the connection port 2d on the connection port P2 side of the outdoor unit 101. One of them is selected and connected.
  • connection port that is not selected among the connection ports 2b and 2d is connected to the connection port 2c that is connected to the accumulator 10.
  • the connection port 2a is connected to the connection port 2b
  • the connection port 2d is connected to the connection port 2c.
  • the connection port 2a is connected to the connection port 2d
  • the connection port 2b is connected to the connection port 2c.
  • the outdoor heat exchanger 3 is a heat exchanger that can exchange heat between the refrigerant flowing inside and air.
  • the outdoor heat exchanger 3 functions as a condenser during cooling operation, and functions as an evaporator during heating operation.
  • the outdoor heat exchanger 3 is connected to the four-way valve 2 by a refrigerant pipe 300, and the refrigerant pipe 300 branches into a refrigerant pipe 301 between the outdoor heat exchanger 3 and the four-way valve 2.
  • Refrigerant pipe 301 is connected to solenoid valve 8 .
  • the outdoor heat exchanger 3 has connection ports 3a and 3b connected to refrigerant piping.
  • the connection port 3a is connected to the four-way valve 2.
  • a connection port 3b on the opposite side that has passed through the inside from the connection port 3a is connected to the expansion valve 5 via a refrigerant pipe 302.
  • the refrigerant pipe 302 branches into a refrigerant pipe 303 between the outdoor heat exchanger 3 and the expansion valve 5.
  • Refrigerant pipe 303 is connected to solenoid valve 7 .
  • the outdoor blower 9 is configured as, for example, a centrifugal fan such as a sirocco fan or a turbo fan, a cross flow fan, a mixed flow fan, or a propeller fan. Note that the outdoor heat exchanger 3 corresponds to the "second heat exchanger" in the first embodiment.
  • the outdoor heat exchanger 4 is a heat exchanger that can exchange heat between the refrigerant flowing inside and air.
  • the outdoor heat exchanger 4 functions as a condenser during cooling operation, and functions as an evaporator during heating operation.
  • the outdoor heat exchanger 4 is connected to the solenoid valve 8 via a refrigerant pipe 301.
  • the refrigerant pipe 301 branches into the above-mentioned refrigerant pipe 303 between the outdoor heat exchanger 4 and the solenoid valve 8.
  • the outdoor heat exchanger 4 has connection ports 4a and 4b connected to refrigerant piping.
  • the connection port 4a is connected to the four-way valve 2 via a solenoid valve 8.
  • connection port 4 b on the opposite side that has passed through the inside from the connection port 4 a is connected to the expansion valve 6 via a refrigerant pipe 304 .
  • the refrigerant pipe 304 provided with the expansion valve 6 merges with the refrigerant pipe 302 provided with the expansion valve 5.
  • a confluence point between the refrigerant pipe 304 and the refrigerant pipe 302 is connected to the connection port P2.
  • the connection port P2 serves as a connection port on the outflow side from the outdoor unit 101 in the cooling operation state and on the inflow side to the outdoor unit 101 in the heating operation state.
  • the expansion valve 5 and the expansion valve 6 have a function as a pressure reducing valve or an expansion valve, and reduce the pressure of the refrigerant and expand it.
  • the expansion valve 5 and the expansion valve 6 are configured as a pressure reducing device such as a linear electronic expansion valve whose opening degree can be adjusted in multiple stages or continuously.
  • the solenoid valve 7 and the solenoid valve 8 have a function of opening and closing the flow path depending on whether or not a voltage is applied, and switch the flow path of the refrigerant by blocking and opening the flow of the refrigerant.
  • the accumulator 10 is provided in such a way that the outflow side of the accumulator 10 is connected to the suction side of the compressor 1.
  • the accumulator 10 has a function of separating liquid refrigerant and gas refrigerant and a function of storing surplus refrigerant.
  • the inflow side of the accumulator 10 is connected to the connection port 2c of the four-way valve 2 through a refrigerant pipe 306.
  • the outdoor unit 101 is provided with a control section 11.
  • the control unit 11 controls the operations of the compressor 1 , the four-way valve 2 , the expansion valve 5 , the expansion valve 6 , the solenoid valve 7 , the solenoid valve 8 , and the two outdoor blowers 9 .
  • the control unit 11 is composed of a processing circuit.
  • the processing circuitry consists of dedicated hardware or a processor.
  • the dedicated hardware is, for example, an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array).
  • a processor executes programs stored in memory.
  • the control section 11 has a storage section (not shown).
  • the storage unit is composed of memory.
  • Memory can be nonvolatile or volatile semiconductor memory such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, or EPROM (Erasable Programmable ROM), or disks such as magnetic disks, flexible disks, or optical disks. be.
  • the indoor unit 201 includes an indoor heat exchanger 21, an indoor blower 22, an expansion valve 23, and refrigerant pipes 307 and 308 that connect these components.
  • the indoor unit 201 and the outdoor unit 101 constitute a refrigeration cycle.
  • the indoor unit 201 supplies cold heat or heat from the outdoor unit 101 to a cooling load or a heating load.
  • the refrigerant load and the heating load are, for example, the indoor space in which the indoor unit 201 is installed.
  • the indoor heat exchanger 21 is a heat exchanger that can exchange heat between the refrigerant flowing inside and air.
  • the indoor heat exchanger 21 functions as an evaporator during cooling operation, and functions as a condenser during heating operation.
  • Indoor heat exchanger 21 has connection ports 21a and 21b connected to refrigerant piping.
  • the connection port 21a is connected to the expansion valve 23 via a refrigerant pipe 307.
  • a connection port 21b on the opposite side that has passed inside from the connection port 21a is connected to the connection port P1 via a refrigerant pipe 308.
  • the indoor blower 22 is configured as, for example, a centrifugal fan such as a sirocco fan or a turbo fan, a cross flow fan, a mixed flow fan, or a propeller fan.
  • the expansion valve 23 has a function as a pressure reducing valve or an expansion valve, and reduces the pressure of the refrigerant to expand it.
  • the expansion valve 23 is configured, for example, as a pressure reducing device such as a linear electronic expansion valve whose opening degree can be adjusted in multiple stages or continuously.
  • ⁇ Operation of refrigeration cycle device 100> ⁇ Cooling operation status (serial refrigerant flow path)>
  • the control unit 11 causes the expansion valve 5 to be in the fully closed state, the solenoid valve 7 to be in the open state, the solenoid valve 8 to be in the closed state, and the expansion valve 6 to be in the fully open state.
  • Compressor 1 sucks refrigerant from accumulator 10 and compresses the refrigerant.
  • the compressed refrigerant becomes a gas refrigerant and is discharged from the compressor 1, and flows into the outdoor heat exchanger 3 via the four-way valve 2.
  • the gas refrigerant As a part of the gas refrigerant is condensed in the outdoor heat exchanger 3, the gas refrigerant enters a gas-liquid two-phase state of gas refrigerant and liquid refrigerant.
  • the gas-liquid two-phase refrigerant passes through the solenoid valve 7 and flows into the outdoor heat exchanger 4 .
  • the refrigerant condensed in the outdoor heat exchanger 4 becomes a liquid refrigerant.
  • the liquid refrigerant passes through the expansion valve 6, flows out of the outdoor unit 101, and flows into the indoor unit 201. In the indoor unit 201, the refrigerant is depressurized by the expansion valve 23 and then evaporated in the indoor heat exchanger 21 to supply cold heat to the air.
  • the refrigerant flows out of the indoor unit 201, flows into the outdoor unit 101, passes through the refrigerant pipe 305, and flows into the four-way valve 2.
  • the refrigerant then flows out from the four-way valve 2, passes through the refrigerant pipe 306, and flows into the accumulator 10. Thereafter, the refrigerant is sucked into the compressor 1 again from the accumulator 10 and circulates through the refrigerant circuit. This results in a refrigerant circuit having a refrigerant flow path in which the outdoor heat exchanger 3 and the outdoor heat exchanger 4 are connected in series.
  • ⁇ Heating operation status (in case of serial refrigerant flow path)>
  • the control unit 11 controls the expansion valve 5 to be in the fully closed state, the solenoid valve 7 to be in the open state, the solenoid valve 8 to be in the closed state, and the expansion valve 6 to be in the fully open state, as in the case of the cooling operation state.
  • Compressor 1 sucks refrigerant from accumulator 10 and compresses the refrigerant.
  • the compressed refrigerant becomes a gas refrigerant and is discharged from the compressor 1, flows out from the outdoor unit 101 through the four-way valve 2, and flows into the indoor unit 201.
  • the indoor unit 201 heat exchange is performed in the indoor heat exchanger 21, and the refrigerant is condensed.
  • the refrigerant flows into the expansion valve 23 and is depressurized by the expansion valve 23. Thereafter, the refrigerant flows out of the indoor unit 201 and flows into the outdoor unit 101.
  • the outdoor unit 101 the refrigerant flows into the outdoor heat exchanger 4 via the expansion valve 6, and is evaporated by heat exchange. Thereafter, the refrigerant passes through the solenoid valve 7 and flows into the outdoor heat exchanger 3.
  • the refrigerant that has undergone further heat exchange in the outdoor heat exchanger 3 becomes a gaseous refrigerant.
  • the gaseous refrigerant flows into the four-way valve 2.
  • the refrigerant then flows out from the four-way valve 2, passes through the refrigerant pipe 306, and flows into the accumulator 10. Thereafter, the refrigerant is sucked into the compressor 1 again from the accumulator 10 and circulates through the refrigerant circuit. This results in a refrigerant circuit having a refrigerant flow path in which the outdoor heat exchanger 3 and the outdoor heat exchanger 4 are connected in series.
  • FIG. 2 is a perspective view showing the connection state of the outdoor heat exchanger 3 and the outdoor heat exchanger 4 in the refrigeration cycle device 100 according to the first embodiment.
  • the refrigeration cycle device 100 is shown in a cooling operation state.
  • a refrigerant flow path in which the outdoor heat exchanger 3 and the outdoor heat exchanger 4 are connected in series is expressed by a simple connection using refrigerant piping.
  • solid arrows indicate the direction in which the refrigerant flows
  • white arrows indicate the direction of the wind generated by the outdoor blower 9 (ie, the airflow direction).
  • FIG. 3 is a sectional view showing the configuration of the outdoor heat exchanger 3 shown in FIG. 2.
  • FIG. 4 is a sectional view showing the configuration of the outdoor heat exchanger 4 shown in FIG. 2. As shown in FIG.
  • the outdoor heat exchanger 3 includes a refrigerant distributor 31, a refrigerant distributor 32, a plurality of heat exchangers 33, and a folded header 34.
  • a refrigerant pipe 35 is connected to the refrigerant distributor 31, and a refrigerant pipe 36 is connected to the refrigerant distributor 32.
  • the plurality of heat exchange bodies 33 include a heat exchange body 33A and a heat exchange body 33B.
  • the heat exchanger 33A and the heat exchanger 33B are arranged side by side in the airflow direction and face each other.
  • the heat exchanger 33A and the heat exchanger 33B are arranged in two layers in a direction along the direction of the wind generated by the outdoor blower 9.
  • the heat exchange body 33 disposed on the windward side will be referred to as a heat exchange body 33B
  • the heat exchange body 33 disposed on the leeward side will be referred to as a heat exchange body 33A. Since the configurations of the heat exchange body 33A and the heat exchange body 33B are basically the same, they will be collectively described as the heat exchange body 33 below.
  • the heat exchange body 33 is composed of a plurality of flat tubes 37 and a plurality of fins 38.
  • the plurality of flat tubes 37 are arranged side by side in the horizontal direction (namely, the X direction) at intervals from each other. Thereby, the wind generated by the outdoor blower 9 flows between adjacent flat tubes 37 in the direction of the white arrow in FIG.
  • the tube axis direction of the plurality of flat tubes 37 is the Z direction.
  • the refrigerant flows in the Z direction within the flat tube 37. As the refrigerant flows through the flat tube 37, heat exchange is performed between the refrigerant and the air.
  • the fins 38 are arranged between adjacent flat tubes 37 in the X direction.
  • the fins 38 are joined to the side surfaces of the adjacent flat tubes 37 and conduct heat to the flat tubes 37 .
  • the fins 38 improve heat exchange efficiency between air and refrigerant, and are, for example, corrugated fins.
  • the fins 38 are not limited to corrugated fins, and may be flat fins, for example. Further, since heat exchange between the air and the refrigerant is performed on the surface of the flat tube 37, the fins 38 do not necessarily need to be provided.
  • the same fins 38 may be shared between the plurality of heat exchangers 33.
  • FIG. 5 is a sectional view showing the configuration of the refrigerant distributor 31 provided in the outdoor heat exchanger 3 shown in FIG. 3.
  • FIG. 6 is a sectional view showing the configuration of the refrigerant distributor 32 provided in the outdoor heat exchanger 3 shown in FIG.
  • the plurality of flat tubes 37 included in the heat exchanger 33A have tube end portions 37a and 37b at both ends in the tube axis direction.
  • a refrigerant distributor 31 is provided below the lower tube end 37a of the tube ends 37a and 37b.
  • the refrigerant distributor 31 is composed of an outer tube 51 and a connecting tube 52, as shown in FIG.
  • the refrigerant distributor 31 has a single pipe structure.
  • the outer tube 51 is composed of a circular tube, and the tube axis direction is the X direction.
  • a plurality of flat tube insertion holes 51e are provided in the upper surface of the outer tube 51.
  • the plurality of flat tube insertion holes 51e are arranged side by side in the X direction at intervals from each other.
  • the plurality of flat tube insertion holes 51e are through holes that penetrate the upper surface of the outer tube 51.
  • the tube end portion 37a of each flat tube 37 is directly inserted into the flat tube insertion hole 51e of the outer tube 51.
  • the outer tube 51 has tube ends 51a and 51b at both ends in the X direction.
  • a closing plate 51c is provided on the tube end 51a side
  • a closing plate 51d is provided on the tube end 51b side.
  • the tube ends 51a and 51b are closed by closing plates 51c and 51d, respectively, and are not open.
  • the connecting tube 52 is connected to the outer tube 51, as shown in FIG.
  • the tube axis direction of the connecting tube 52 is the Z direction.
  • a lower end portion 52a of the connecting tube 52 is inserted into the outer tube 51.
  • the internal space of the connecting tube 52 and the internal space of the outer tube 51 communicate with each other.
  • the refrigerant distributor 31 is connected to the refrigerant pipe 35, as shown in FIG.
  • the outer pipe 51 of the refrigerant distributor 31 is connected to the refrigerant pipe 35 via the connecting pipe 52.
  • the inside of the refrigerant distributor 31 is one space composed of an internal space of the connecting pipe 52 and an internal space of the outer pipe 51.
  • the refrigerant that has flowed into the internal space of the refrigerant distributor 31 from the refrigerant pipe 35 is directly distributed to the plurality of flat tubes 37 included in the heat exchanger 33A.
  • the outer tube 51 is shown here as a single cylinder with both ends covered with closing plates 51c and 51d, the cross-sectional shape of the outer tube 51 does not have to be circular, and may be rectangular or rectangular. It may be oval. Further, the outer tube 51 does not need to be formed from one cylindrical component.
  • the outer tube 51 is divided into two parts, for example, an upper half into which the flat tube 37 is inserted and an opposite (i.e., lower) half, and by joining the upper and lower parts, the outer tube 51 may be formed. The same applies to the outer tube 53, outer tube 57, and outer tube 61 described below.
  • a folded header 34 is provided above the tube end 37b of the flat tube 37 of the heat exchanger 33A and above the tube end 37b of the flat tube 37 of the heat exchanger 33B.
  • the heat exchange body 33A is connected to the heat exchange body 33B via the folded header 34.
  • the folded header 34 allows the refrigerant flowing from the plurality of flat tubes 37 of the heat exchanger 33A to flow out into the plurality of flat tubes 37 of the heat exchanger 33B, thereby controlling the flow of the refrigerant from the bottom to the top. It has the function of turning the flow downward. Specifically, the refrigerant flows from the bottom to the top in the Z direction in the plurality of flat tubes 37 included in the heat exchange body 33A.
  • the refrigerant flows from above to below in the Z direction in the plurality of flat tubes 37 included in the heat exchange body 33B.
  • the direction in which the refrigerant flows is switched by the folded header 34.
  • the flat tube 37 does not need to be divided into an upwind side and a leeward side, and may be composed of a single flat tube. The case where the flat tube 37 is composed of one flat tube will be described later in Embodiment 2 using FIG. 19.
  • a refrigerant distributor 32 is provided below the lower tube ends 37a of the plurality of flat tubes 37 included in the heat exchanger 33B.
  • the refrigerant distributor 32 includes an outer pipe 53, an inner pipe 54, and a connecting pipe 56.
  • the refrigerant distributor 32 has a double pipe structure.
  • the outer tube 53 is composed of a circular tube, and the tube axis direction is the X direction.
  • a plurality of flat tube insertion holes 53e are provided in the upper surface of the outer tube 53.
  • the plurality of flat tube insertion holes 53e are arranged side by side in the X direction at intervals.
  • the plurality of flat tube insertion holes 53e are through holes that penetrate the upper surface of the outer tube 53.
  • each flat tube 37 is directly inserted into the flat tube insertion hole 53e of the outer tube 53.
  • a closing plate 53c is provided on the tube end 53a side
  • a closing plate 53d is provided on the tube end 53b side.
  • the tube ends 53a and 53b are closed by closing plates 53c and 53d, respectively, and are not open.
  • the connecting pipe 56 is connected to the outer pipe 53, as shown in FIG.
  • the tube axis direction of the connecting tube 56 is the Z direction.
  • a lower end portion 56a of the connecting tube 56 is inserted into the outer tube 53.
  • the internal space of the connecting tube 56 and the first internal space 53g which is the internal space on the tube end 53a side of the outer tube 53, communicate with each other.
  • the cross-sectional shape of the first internal space 53g is circular.
  • the refrigerant distributor 32 is connected to the refrigerant pipe 36, as shown in FIG. Specifically, the outer pipe 53 of the refrigerant distributor 32 is connected to the refrigerant pipe 36 via a connecting pipe 56.
  • the refrigerant distributor 32 has a double pipe structure, and an inner pipe 54 is arranged inside the outer pipe 53. There is a gap between the inner wall 53f of the outer tube 53 and the outer wall 54f of the inner tube 54, and the gap forms a second internal space 53h of the outer tube 53.
  • the cross-sectional shape of the second internal space 53h is donut-shaped (that is, annular).
  • the inner tube 54 includes a plurality of refrigerant outlet holes 54c arranged in parallel on the side surface.
  • the inner tube 54 is joined to the outer tube 53 via a partition plate 55.
  • the partition plate 55 is arranged between the first internal space 53g of the outer tube 53 and the closing plate 53d.
  • the partition plate 55 divides the first internal space 53g and the second internal space 53h.
  • a through hole 55a is formed in the center of the partition plate 55.
  • the tube end 54a is fitted into the through hole 55a.
  • the tube end portion 54a opens toward the first internal space 53g. Therefore, the first internal space 53g and the internal space of the inner tube 54 are in communication with each other.
  • the tube end portion 54b of the inner tube 54 is joined to the closing plate 53d, and is in a closed state.
  • the outer peripheral portion of the partition plate 55 is joined to the inner wall 53f of the outer tube 53.
  • the partition plate 55 is joined to the inner wall 53f of the outer tube 53 and the outer wall 54f of the inner tube 54, as described above.
  • the refrigerant flowing inside the refrigerant distributor 32 flows between the first internal space 53g on the side of the pipe end 53a to which the connecting pipe 56 is connected and the closing plate 53d on the side of the opposite pipe end 53b. It is possible to pass between them only via the interior space of the inner tube 54.
  • the outdoor heat exchanger 4 includes a refrigerant distributor 41, a refrigerant distributor 42, a plurality of heat exchangers 43, and a folded header 44.
  • a refrigerant pipe 36 is connected to the refrigerant distributor 41, and a refrigerant pipe 45 is connected to the refrigerant distributor 42.
  • the plurality of heat exchange bodies 43 include a heat exchange body 43A and a heat exchange body 43B.
  • the heat exchange body 43A and the heat exchange body 43B are arranged side by side in the airflow direction and face each other.
  • the heat exchanger 43A and the heat exchanger 43B are arranged in two layers in a direction along the direction of the wind generated by the outdoor blower 9.
  • the heat exchange body 43 disposed on the windward side will be referred to as a heat exchange body 43B
  • the heat exchange body 43 disposed on the leeward side will be referred to as a heat exchange body 43A. Since the configurations of the heat exchange body 43A and the heat exchange body 43B are basically the same, they will be collectively described as the heat exchange body 43 below.
  • the heat exchange body 43 is composed of a plurality of flat tubes 47 and a plurality of fins 48.
  • the plurality of flat tubes 47 are arranged in parallel in the horizontal direction (that is, in the X direction) at intervals from each other. Thereby, the wind generated by the outdoor blower 9 flows between adjacent flat tubes 47 in the direction of the white arrow in FIG.
  • the tube axis direction of the plurality of flat tubes 47 is the Z direction.
  • the refrigerant flows in the Z direction within the flat tube 47. As the refrigerant flows through the flat tube 47, heat exchange is performed between the refrigerant and the air.
  • the fins 48 are arranged between adjacent flat tubes 47 in the X direction.
  • the fins 48 are joined to the side surfaces of the adjacent flat tubes 47 and conduct heat to the flat tubes 47 .
  • the fins 48 improve the heat exchange efficiency between the air and the refrigerant, and for example, corrugated fins are used.
  • the fins 48 are not limited to corrugated fins, and may be flat fins, for example.
  • the fins 48 do not necessarily need to be provided.
  • the same fins 48 may be shared between the plurality of heat exchangers 43.
  • FIG. 7 is a sectional view showing the configuration of the refrigerant distributor 41 provided in the outdoor heat exchanger 4 shown in FIG. 4.
  • FIG. 8 is a sectional view showing the configuration of the refrigerant distributor 42 provided in the outdoor heat exchanger 4 shown in FIG. 4.
  • a refrigerant distributor 41 is provided below the lower tube end 47a of the tube ends 47a and 47b of the plurality of flat tubes 47 included in the heat exchanger 43A.
  • the refrigerant distributor 41 is composed of an outer pipe 57, an inner pipe 58, and a connecting pipe 60, as shown in FIG.
  • the refrigerant distributor 41 has a double pipe structure.
  • the outer tube 57 is composed of a circular tube, and the tube axis direction is the X direction.
  • a plurality of flat tube insertion holes 57e are provided in the upper surface of the outer tube 57.
  • the plurality of flat tube insertion holes 57e are arranged side by side in the X direction at intervals from each other.
  • the plurality of flat tube insertion holes 57e are through holes that penetrate the upper surface of the outer tube 57.
  • the tube end portion 47a of each flat tube 47 is directly inserted into the flat tube insertion hole 57e of the outer tube 57.
  • a closing plate 57c is provided on the tube end 57a side
  • a closing plate 57d is provided on the tube end 57b side.
  • the tube ends 57a and 57b are closed by closing plates 57c and 57d, respectively, and are not open.
  • the connecting tube 60 is connected to the outer tube 57, as shown in FIG.
  • the tube axis direction of the connecting tube 60 is the Z direction.
  • a lower end 60a of the connecting tube 60 is inserted into the outer tube 57.
  • the internal space of the connecting tube 60 and the first internal space 57g which is the internal space on the tube end 57a side of the outer tube 57, communicate with each other.
  • the cross-sectional shape of the first internal space 57g is circular.
  • the refrigerant distributor 41 is connected to the refrigerant pipe 36, as shown in FIG. Specifically, the outer pipe 57 of the refrigerant distributor 41 is connected to the refrigerant pipe 36 via the connecting pipe 60.
  • the refrigerant distributor 41 has a double pipe structure, and an inner pipe 58 is arranged inside the outer pipe 57. There is a gap between the inner wall 57f of the outer tube 57 and the outer wall 58f of the inner tube 58, and the gap forms a second internal space 57h of the outer tube 57.
  • the cross-sectional shape of the second internal space 57h is donut-shaped (that is, annular).
  • the inner tube 58 includes a plurality of refrigerant outlet holes 58c arranged in parallel on the side surface.
  • the inner diameter of the coolant outlet hole 58c may be the same as or different from the inner diameter of the coolant outlet hole 54c shown in FIG. 6 and the inner diameter of the coolant outlet hole 62c shown in FIG. 8.
  • the inner tube 58 is joined to the outer tube 57 via a partition plate 59.
  • the partition plate 59 is arranged between the first internal space 57g of the outer tube 57 and the closing plate 57d.
  • the partition plate 59 divides the first internal space 57g and the second internal space 57h.
  • a through hole 59a is formed in the center of the partition plate 59.
  • the tube end 58a is fitted into the through hole 59a.
  • the tube end portion 58a opens toward the first internal space 57g. Therefore, the first internal space 57g and the internal space of the inner tube 58 are in communication with each other.
  • the tube end portion 58b of the inner tube 58 is joined to the closing plate 57d, and is in a closed state.
  • the outer peripheral portion of the partition plate 59 is joined to the inner wall 57f of the outer tube 57.
  • the partition plate 59 is joined to the inner wall 57f of the outer tube 57 and the outer wall 58f of the inner tube 58, as described above. Therefore, the refrigerant flowing inside the refrigerant distributor 41 flows between the first internal space 57g on the side of the pipe end 57a to which the connecting pipe 60 is connected and the closing plate 57d on the side of the opposite pipe end 58b. It is possible to pass between them only via the interior space of the inner tube 58.
  • a folded header 44 is provided above the upper tube end 47b of the flat tube 47 of the heat exchanger 43A and above the upper tube end 47b of the flat tube 47 of the heat exchanger 43B.
  • the heat exchange body 43A is connected to the heat exchange body 43B via the folded header 44.
  • the folded header 44 allows the refrigerant flowing from the plurality of flat tubes 47 of the heat exchanger 43A to flow out into the plurality of flat tubes 47 of the heat exchanger 43B, thereby controlling the flow of the refrigerant from the bottom to the top. It has the function of turning the flow downward. Specifically, the refrigerant flows from the bottom to the top in the Z direction in the plurality of flat tubes 47 included in the heat exchange body 43A.
  • the refrigerant flows from above to below in the Z direction in the plurality of flat tubes 47 included in the heat exchange body 43B.
  • the direction in which the refrigerant flows is switched by the folded header 44.
  • the flat tube 47 does not need to be divided into an upwind side and a leeward side, and may be composed of a single flat tube. The case where the flat tube 47 is composed of one flat tube will be described later in Embodiment 2 using FIG. 19.
  • a refrigerant distributor 42 is provided below the lower tube end 47a of the tube ends 47a and 47b of the plurality of flat tubes 47 included in the heat exchanger 43B.
  • the refrigerant distributor 42 is composed of an outer pipe 61, an inner pipe 62, and a connecting pipe 64, as shown in FIG.
  • the refrigerant distributor 42 has a double pipe structure.
  • the outer tube 61 is composed of a circular tube, and the tube axis direction is the X direction.
  • a plurality of flat tube insertion holes 61e are provided in the upper surface of the outer tube 61.
  • the plurality of flat tube insertion holes 61e are arranged side by side in the X direction at intervals from each other.
  • the plurality of flat tube insertion holes 61e are through holes that penetrate the upper surface of the outer tube 61.
  • the tube end portion 47a of each flat tube 47 is directly inserted into the flat tube insertion hole 61e of the outer tube 61.
  • a closing plate 61c is provided on the tube end 61a side
  • a closing plate 61d is provided on the tube end 61b side.
  • the tube ends 61a and 61b are closed by closing plates 61c and 61d, respectively, and are not open.
  • the connecting tube 64 is connected to the outer tube 61, as shown in FIG.
  • the tube axis direction of the connecting tube 64 is the Z direction.
  • a lower end 64a of the connecting tube 64 is inserted into the outer tube 61.
  • the internal space of the connecting tube 64 and the first internal space 61g which is the internal space on the tube end 61a side of the outer tube 61, communicate with each other.
  • the cross-sectional shape of the first internal space 61g is circular.
  • the refrigerant distributor 42 is connected to the refrigerant pipe 45, as shown in FIG. Specifically, the outer pipe 61 of the refrigerant distributor 42 is connected to the refrigerant pipe 45 via the connecting pipe 64.
  • the refrigerant distributor 42 has a double pipe structure, and an inner pipe 62 is arranged inside the outer pipe 61. There is a gap between the inner wall 61f of the outer tube 61 and the outer wall 62f of the inner tube 62, and the gap forms a second internal space 61h of the outer tube 61.
  • the cross-sectional shape of the second internal space 61h is donut-shaped (that is, annular).
  • the inner tube 62 includes a plurality of refrigerant outlet holes 62c arranged in parallel on the side surface.
  • the inner tube 62 is joined to the outer tube 61 via a partition plate 63.
  • the partition plate 63 is arranged between the first internal space 61g of the outer tube 61 and the closing plate 61d.
  • the partition plate 63 divides the first internal space 61g and the second internal space 61h.
  • a through hole 63a is formed in the center of the partition plate 63.
  • the tube end 62a is fitted into the through hole 63a.
  • the tube end portion 62a opens toward the first internal space 61g. Therefore, the first internal space 61g and the internal space of the inner tube 62 are in communication with each other. Further, the tube end portion 62b of the inner tube 62 is joined to the closing plate 61d, and is in a closed state.
  • the outer peripheral portion of the partition plate 63 is joined to the inner wall 61f of the outer tube 61.
  • the partition plate 63 is joined to the inner wall 61f of the outer tube 61 and the outer wall 62f of the inner tube 62, as described above. Therefore, the refrigerant flowing inside the refrigerant distributor 42 flows between the first internal space 61g on the side of the pipe end 61a to which the connecting pipe 64 is connected and the closing plate 61d on the side of the opposite pipe end 61b. It is possible to pass between them only through the interior space of the inner tube 62.
  • the configurations of the refrigerant distributors 41 and 42 are similar to the refrigerant distributor 32 shown in FIG. It consists of tubes 60 and 64.
  • a refrigerant pipe 36 is connected to the refrigerant distributor 41 via a connecting pipe 60, and a refrigerant pipe 45 is connected to the refrigerant distributor 42 via a connecting pipe 64.
  • the outdoor heat exchanger 4 is sometimes called a "heat exchanger".
  • the heat exchange body 43 is sometimes referred to as a "first heat exchange body.”
  • the flat tube 47 is sometimes called a "first flat tube.”
  • the flat tube 47 connected to the refrigerant distributor 41 is sometimes referred to as a "first flat tube on the leeward side”
  • the flat tube 47 connected to the refrigerant distributor 42 is sometimes referred to as a "first flat tube on the windward side”.
  • Refrigerant distributor 41 may be referred to as a "first refrigerant distributor,” and refrigerant distributor 42 may be referred to as a “second refrigerant distributor.”
  • the outer tube 57 is referred to as a “first outer tube”
  • the inner tube 58 is referred to as a “first inner tube”
  • the refrigerant outlet hole 58c is referred to as a “first refrigerant outlet hole”
  • the partition plate 59 is referred to as a "first partition plate.”
  • the outer tube 61 is referred to as a "second outer tube”
  • the inner tube 62 is referred to as a “second inner tube”
  • the refrigerant outlet hole 62c is referred to as a “second refrigerant outlet hole”
  • the partition plate 63 is referred to as a “second partition plate.”
  • the wrap header 44 is sometimes referred to as a "first wrap header.”
  • the tube end 47a of the flat tube 47 inserted into the refrigerant distributor 41 is sometimes referred to as "one end of the first flat tube”
  • the tube end 47a of the flat tube 47 inserted into the refrigerant distributor 42 is referred to as "one end of the first flat tube”. is sometimes referred to as "the other end of the first flat tube.”
  • the outdoor heat exchanger 3 is sometimes called a "second heat exchanger".
  • the heat exchange body 33 is sometimes referred to as a "second heat exchange body.”
  • the flat tube 37 is sometimes called a "second flat tube.”
  • the flat tube 37 connected to the refrigerant distributor 31 is sometimes referred to as a "second flat tube on the leeward side”
  • the flat tube 37 connected to the refrigerant distributor 32 is sometimes referred to as a "second flat tube on the windward side”.
  • the refrigerant distributor 31 is sometimes called a "third refrigerant distributor,” and the refrigerant distributor 32 is sometimes called a "fourth refrigerant distributor.”
  • the outer tube 51 is sometimes referred to as a "third outer tube.”
  • the outer pipe 53 is sometimes called a "fourth outer pipe”
  • the inner pipe 54 is sometimes called a “fourth inner pipe”
  • the refrigerant outlet hole 54c is sometimes called a “fourth refrigerant outlet hole”
  • the partition plate 55 is sometimes called a "fourth partition plate.” .
  • wrap header 34 is sometimes referred to as a "second wrap header.”
  • the tube end 37a of the flat tube 37 inserted into the refrigerant distributor 31 is sometimes referred to as "one end of the second flat tube”
  • the tube end 37a of the flat tube 37 inserted into the refrigerant distributor 32 is sometimes referred to as "one end of the second flat tube”. is sometimes referred to as "the other end of the second flat tube”.
  • FIG. 2 is a perspective view showing the connection state between the outdoor heat exchanger 3 and the outdoor heat exchanger 4 in the cooling operation state and the flow of refrigerant.
  • the connection pipe 52, the connection pipe 56, the connection pipe 60, and the connection pipe 64 the connection pipe 56 and The pipe 60 is connected to the refrigerant pipe 36 .
  • the refrigerant flowing from the refrigerant pipe 35 connected to the connecting pipe 52 is partially condensed in the outdoor heat exchanger 3 to become a gas-liquid two-phase state, and flows out into the refrigerant pipe 36 . Thereafter, the refrigerant flows into the outdoor heat exchanger 4 in a gas-liquid two-phase state.
  • the refrigerant first flows into the refrigerant distributor 41.
  • the refrigerant distributor 41 has a double pipe structure, and the inner pipe 58 thereof has a large number of refrigerant outlet holes 58c arranged in parallel.
  • the refrigerant that has flowed into the refrigerant distributor 41 flows out from the refrigerant outlet hole 58c into the second internal space 57h when passing through the interior of the inner tube 58. Thereafter, it is distributed to each flat tube 47 from the second internal space 57h. In this way, by providing the refrigerant outlet hole 58c in the inner tube 58, the refrigerant is evenly distributed to each flat tube 47 of the heat exchanger 43A.
  • the refrigerant condensed inside the heat exchanger 43A and the heat exchanger 43B flows out into the refrigerant pipe 45 through the refrigerant distributor 42.
  • the refrigerant distributor 41 on the inflow side of the outdoor heat exchanger 4 located on the downstream side among the plurality of outdoor heat exchangers 3 and outdoor heat exchangers 4 forming serial refrigerant flow paths during cooling operation. has a double tube structure.
  • the inner pipe 58 of the refrigerant distributor 41 has a large number of refrigerant outlet holes 58c arranged in parallel. Thereby, in the outdoor heat exchanger 4 located on the downstream side, it is possible to improve the uniformity of distribution of the gas-liquid two-phase refrigerant to the heat exchanger 43A.
  • the refrigerant distributor 41 the refrigerant flows into the first internal space 57g of the outer tube 57 via the connecting pipe 60. Thereafter, the refrigerant once enters the inner tube 58 from the first inner space 57g, and flows out from the inner tube 58's many juxtaposed refrigerant outlet holes 58c to the second inner space 57h of the outer tube 57. do. At this time, in the outer tube 57, the second internal space 57h is separated from the first internal space 57g by a partition plate 59.
  • the refrigerant that has flowed into the second internal space 57h of the outer tube 57 does not flow into the first internal space 57g, but instead passes through the flat tube insertion holes 57e into the plurality of flat tubes connected to the outer tube 57. It flows out into pipe 47.
  • FIG. 10 is a diagram schematically showing a refrigerant distribution operation in the refrigerant distributor 31 provided in the refrigeration cycle device 100 according to the first embodiment.
  • FIG. 11 is a diagram schematically showing a refrigerant distribution operation in the refrigerant distributors 32, 41, and 42 provided in the refrigeration cycle device 100 according to the first embodiment.
  • FIG. 10 and FIG. 11 in order to make it easy to understand, the case where the refrigerant outflow holes 54c, 58c, and 62c are opened directly downward is illustrated.
  • the refrigerant flows in from one location (i.e., the connecting pipe 52) and flows out from multiple locations (i.e., the flat tube insertion hole 51e). Therefore, there is a strong tendency for a large amount of the refrigerant to flow out from the flat tube insertion hole 51e located close to the connecting tube 52.
  • the refrigerant flows from multiple locations (i.e., refrigerant outlet holes 54c, 58c, 62c of the inner pipes 54, 58, 62) to the outer pipes 53, 57, 61 and flows out from multiple locations (ie, flat tube insertion holes 53e, 57e, and 61e). Therefore, even if the outflow from the inner tubes 54, 58, 62 is uneven, the uniformity of refrigerant distribution is improved compared to the case where the inner tubes 54, 58, 62 are not provided.
  • FIG. 12 is a diagram schematically showing the state of liquid refrigerant in the refrigerant distributor 31 provided in the refrigeration cycle device 100 according to the first embodiment.
  • FIG. 13 is a diagram schematically showing the state of liquid refrigerant in the refrigerant distributors 32, 41, and 42 provided in the refrigeration cycle device 100 according to the first embodiment.
  • the refrigerant outflow holes 54c, 58c, and 62c are opened directly downward is illustrated.
  • FIG. 12 and 13 show a case where gas-liquid two-phase refrigerant flows into the refrigerant distributors 31, 32, 41, and 42.
  • liquid refrigerant may accumulate under the outer tube 51, reducing the amount of refrigerant circulating in the refrigerant circuit.
  • the refrigerant is spouted from a plurality of refrigerant outlet holes 54c, 58c, and 62c provided in the inner pipes 54, 58, and 62.
  • FIGS. 12 and 13 show the case of separate flows in which the gas refrigerant and the liquid refrigerant flow separately, the way the refrigerant flows is not limited to the examples in FIGS. 12 and 13.
  • Another example of the flow of the refrigerant inside the refrigerant distributors 31, 32, 41, 42 is, for example, an annular flow.
  • the liquid refrigerant is annular and the annular liquid refrigerant flow covers the gas refrigerant.
  • the refrigerant that flows out from the refrigerant outlet holes 54c, 58c, and 62c provided in the inner tubes 54, 58, and 62 is mainly a gas refrigerant or a liquid refrigerant. Which refrigerant mainly flows out from the refrigerant outlet holes 54c, 58c, and 62c varies depending on the state of the refrigerant flowing inside the inner pipes 54, 58, and 62, and the arrangement and position of the refrigerant outlet holes 54c, 58c, and 62c. do.
  • the liquid refrigerant covers the refrigerant outflow holes 54c, 58c, and 62c, so that the liquid refrigerant mainly flows out from the refrigerant outflow holes 54c, 58c, and 62c.
  • the determination is made depending on whether the refrigerant outlet holes 54c, 58c, and 62c open upward or downward. That is, in the case of separated flows, when the refrigerant outflow holes 54c, 58c, and 62c are open upward, the gas refrigerant mainly flows out from the refrigerant outflow holes 54c, 58c, and 62c.
  • liquid refrigerant mainly flows out from the refrigerant outflow holes 54c, 58c, and 62c.
  • the refrigerant flowing out from each refrigerant outlet hole 54c, 58c, 62c may be gas refrigerant.
  • the liquid refrigerant changes. Even in the case of an annular flow, the liquid refrigerant mainly flows out closer to the inlet side of the inner pipes 54, 58, 62.
  • gas refrigerant becomes the main flow toward the back of the inner pipes 54, 58, and 62.
  • the gas refrigerant mainly flows out from the refrigerant outlet holes 54c, 58c, and 62c.
  • FIG. 9 is a perspective view showing the connection state of the outdoor heat exchanger 3 and the outdoor heat exchanger 4 in the heating operation state in the refrigeration cycle device 100 according to the first embodiment.
  • the refrigerant flow path connecting the outdoor heat exchanger 3 and the outdoor heat exchanger 4 is expressed by a simple connection using refrigerant piping.
  • solid arrows indicate the direction in which the refrigerant flows
  • white arrows indicate the direction of the wind generated by the outdoor blower 9.
  • the direction in which the refrigerant flows in the heating operation state is opposite to that in the cooling operation.
  • refrigerant flows into the outdoor heat exchanger 3 and the outdoor heat exchanger 4 through the refrigerant distributor 32 and the refrigerant distributor 42 .
  • Both the refrigerant distributor 32 and the refrigerant distributor 42 are refrigerant distributors having a double pipe structure.
  • the refrigerant flows into the first internal space 53g of the outer tube 53 via the connecting pipe 56. Thereafter, the refrigerant once enters the inner tube 54 from the first inner space 53g, and flows out from the inner tube 54's many juxtaposed refrigerant outlet holes 54c to the second inner space 53h of the outer tube 53. do.
  • the second internal space 53h is separated from the first internal space 53g by a partition plate 55. Therefore, the refrigerant that has flowed into the second internal space 53h of the outer tube 53 does not flow into the first internal space 53g, but instead passes through the flat tube insertion holes 53e into the plurality of flat tubes connected to the outer tube 53. It flows out into pipe 37.
  • the refrigerant distributor 42 the refrigerant flows into the first internal space 61g of the outer tube 61 via the connecting pipe 64. Thereafter, the refrigerant once enters the inner tube 62 from the first inner space 61g, and flows out from the inner tube 62's many juxtaposed refrigerant outlet holes 62c to the second inner space 61h of the outer tube 61. do. At this time, in the outer tube 61, the second internal space 61h is separated from the first internal space 61g by a partition plate 63.
  • the refrigerant that has flowed into the second internal space 61h of the outer tube 61 does not flow into the first internal space 61g, but instead passes through the flat tube insertion holes 53e into the plurality of flat tubes connected to the outer tube 61. It flows out into pipe 47.
  • the refrigerant distributor 31 When the refrigerant flows out from the outdoor heat exchanger 3 and the outdoor heat exchanger 4 during the heating operation state, it passes through the refrigerant distributor 31 and the refrigerant distributor 41. While the refrigerant distributor 31 is a refrigerant distributor having a single pipe structure, the refrigerant distributor 41 is a refrigerant distributor having a double pipe structure. The refrigerant flowing into the refrigerant distributor 31 from the flat tube 37 passes through the inside of the outer tube 51 and flows out via the connecting tube 52.
  • the refrigerant that has flowed into the refrigerant distributor 41 from the flat tube 47 first flows into the second internal space 61h of the outer tube 57, and then flows into the inner tube 58 from the refrigerant outlet hole 58c. Then, the refrigerant passes through the inside of the inner tube 58 and flows out from the inner tube 58 into the first internal space 57g partitioned by the partition plate 59. The refrigerant flows out of the refrigerant distributor 41 from the first internal space 57g via the connecting pipe 60.
  • the outdoor heat exchanger 3 and the outdoor heat exchanger 4 function as an evaporator.
  • the refrigerant distributor 41 provided on the outflow side of the outdoor heat exchanger 4 is configured with a double pipe, and has a large number of refrigerant outflow holes 58c arranged in parallel in the inner pipe 58. There is. Therefore, compared to the case where a refrigerant distributor 41 with a single-pipe structure is used as the refrigerant distributor 41, in the case of a refrigerant distributor 41 with a double-pipe structure, the pressure loss in the refrigerant flow path becomes higher, and the pressure loss of the compressor 1 increases. The pressure on the suction side decreases. This causes a problem in that the required amount of work of the compressor 1 increases and the performance of the refrigeration cycle device decreases.
  • the specifications of the refrigerant distributor 41 and the refrigerant distributor 42 included in the outdoor heat exchanger 4 are set such that the uniformity of refrigerant distribution in the cooling operation state and the uniformity of refrigerant distribution in the outdoor heat exchanger 4 in the heating operation state are determined. It is desirable to determine the balance by taking into account the pressure loss that occurs. In other words, part or all of the specifications in the refrigerant distributor 41 are the same as those in the refrigerant distributor 42 so that pressure loss can be suppressed in the heating operation state while ensuring uniformity of the refrigerant in the cooling operation state. Some or all of them may be designed differently.
  • Candidates for specifications of the refrigerant distributor 41 and the refrigerant distributor 42 to be changed here include the following items. - Diameter of refrigerant outlet holes 58c and 62c (i.e. hole diameter) - Arrangement interval of refrigerant outlet holes 58c and 62c - Arrangement position of refrigerant outlet holes 58c and 62c - Number of refrigerant outlet holes 58c and 62c - Diameter (inner diameter or outer diameter) of inner pipes 58 and 62 - Diameter of outer tubes 57 and 61 (inner diameter or outer diameter)
  • the refrigerant distributor 41 and the refrigerant distributor 42 When changing the specifications of the refrigerant distributor 41 and the refrigerant distributor 42, it is desirable to make decisions as appropriate based on data from simulations, prototype experiments, etc. Specifically, by increasing the diameter or number of the refrigerant outlet holes 58c and 62c, an increase in pressure loss can be suppressed and the refrigerant distribution characteristics change. In accordance with the changed characteristics, the spacing or position of the refrigerant outlet holes 58c and 62c is changed to suppress deterioration in uniformity of distribution during cooling operation. Furthermore, increasing the diameters of the inner tube 58 and the inner tube 62 and the diameters of the outer tube 57 and the outer tube 61 contributes to suppressing pressure loss. In this way, the specifications of the refrigerant distributor 41 and the refrigerant distributor 42 are convenient specifications considering the balance between the uniformity of refrigerant distribution in the cooling operation state and the pressure loss in the heating operation state. It is desirable to make adjustments accordingly.
  • the specifications of the refrigerant distributor 41 and the specifications of the refrigerant distributor 42 are related to the uniformity of refrigerant distribution when the outdoor heat exchangers 3 and 4 function as condensers, and the conditions regarding the uniformity of refrigerant distribution when the outdoor heat exchangers 3 and 4 function as condensers. It is determined based on the pressure loss that occurs when 4 functions as an evaporator.
  • part or all of the specifications of the refrigerant distributor 41 or 42 may be designed to be different from part or all of the specifications of the refrigerant distributor 32 of the outdoor heat exchanger 3.
  • the refrigerant distributor 41 and the refrigerant distributor 42 are arranged so that the total pressure loss of the refrigerant distributor 41 and the refrigerant distributor 42 is smaller than that of the refrigerant distributor 32 that the outdoor heat exchanger 3 has.
  • the above specifications may be changed.
  • the refrigerant distributor 42 on the inflow side of the outdoor heat exchanger 4 located on the upstream side and the refrigerant distributor 32 on the inflow side of the outdoor heat exchanger 3 located on the downstream side have a double pipe structure.
  • the inner pipe 62 of the refrigerant distributor 42 and the inner pipe 54 of the refrigerant distributor 32 each have a large number of refrigerant outflow holes 62c and refrigerant outflow holes 54c arranged in parallel.
  • the refrigerant in the gas-liquid two-phase state is evenly distributed to the heat exchanger 43B and the heat exchanger 33B. can improve sex.
  • FIG. 14 is a refrigerant circuit diagram showing the configuration of refrigeration cycle device 100 according to Modification 1 of Embodiment 1.
  • FIG. 14 shows the flow of refrigerant when the refrigeration cycle device 100 according to Modification Example 1 is in a cooling operation state.
  • FIG. 15 is a refrigerant circuit diagram showing the configuration of refrigeration cycle device 100 according to Modification 1 of Embodiment 1.
  • FIG. 15 shows the flow of refrigerant when the refrigeration cycle device 100 according to Modification 1 is in a heating operation state.
  • the compressed refrigerant becomes a gas refrigerant and is discharged from the compressor 1, flows out from the outdoor unit 101 via the four-way valve 2 and the refrigerant pipe 305, and flows into the indoor unit 201.
  • the refrigerant is condensed in the indoor heat exchanger 21 and supplies heat to the air.
  • the refrigerant then flows into the outdoor unit 101 after flowing out of the indoor unit 201.
  • the refrigerant branches into a refrigerant pipe 302 and a refrigerant pipe 304, and flows into the expansion valve 5 and the expansion valve 6, respectively.
  • the refrigerant that has been depressurized and expanded by the expansion valves 5 and 6 flows into the outdoor heat exchanger 3 and the outdoor heat exchanger 4, respectively, and evaporates.
  • the refrigerant flowing out from the outdoor heat exchanger 4 passes through the electromagnetic valve 8 and joins with the refrigerant flowing out from the outdoor heat exchanger 3.
  • the combined refrigerant flows into the accumulator 10 via the four-way valve 2 and the refrigerant pipe 306. It is sucked into the compressor 1 again from the accumulator 10 and circulates through the refrigerant circuit. This results in a refrigerant circuit having a refrigerant flow path in which the outdoor heat exchanger 3 and the outdoor heat exchanger 4 are connected in parallel.
  • the two outdoor heat exchangers 3 and 4 are connected in parallel during heating operation. Therefore, even if outdoor heat exchangers with similar specifications are used as the two outdoor heat exchangers 3 and 4, due to the difference in pressure loss due to the difference in the refrigerant distributors 32 and 42, the two outdoor heat exchangers 3 and 4 There is a possibility that the distribution of refrigerant to 4 may be biased. In that case, the uniformity of distribution to the outdoor heat exchangers 3 and 4 can be improved by adjusting the opening degrees of the expansion valves 5 and 6 by the control unit 11.
  • the opening degree of the expansion valve 5 or 6 on the side where more refrigerant flows is reduced, and the opening degree of the expansion valve 5 or 6 on the side where refrigerant is less likely to flow is reduced. Increase the opening.
  • Embodiment 2 By the way, in the above description of Embodiment 1, the case where the number of outdoor heat exchangers is two was described, but even if the number of outdoor heat exchangers is three or more, the structure of Embodiment 1 can be applied. is applicable. Specifically, when n outdoor heat exchangers can form a series refrigerant flow path by controlling the refrigerant circuit, the outdoor heat exchanger 3 and the upstream outdoor heat exchanger when functioning as a condenser are Using a similar configuration, a configuration similar to that of the outdoor heat exchanger 4 is used for the outdoor heat exchanger on the downstream side. It goes without saying that this provides the same effects as in the first embodiment.
  • n is a natural number of 3 or more.
  • FIG. 16 is a refrigerant circuit diagram showing the configuration of a refrigeration cycle device 100 according to a second modification of the first embodiment.
  • FIG. 17 is a diagram showing the flow of refrigerant when the refrigeration cycle device 100 according to the second modification of the first embodiment is in a cooling operation state.
  • FIG. 18 shows the flow of refrigerant when the refrigeration cycle device 100 according to the second modification of the first embodiment is in a heating operation state.
  • FIG. 16 The difference between the configuration in FIG. 16 and the configuration in FIG. 1 is that in FIG. 16, two outdoor heat exchangers 3A and 3B are provided instead of the outdoor heat exchanger 3 in FIG. Two outdoor heat exchangers 3A and 3B are connected in parallel. Both outdoor heat exchangers 3A and 3B have the same configuration as outdoor heat exchanger 3 in FIG. 1. Since the other configurations are the same as those in FIG. 1, their explanation will be omitted here.
  • control unit 11 controls the expansion valve 5 to be in a fully closed state, the solenoid valve 7 to be in an open state, the solenoid valve 8 to be in a closed state, and the expansion valve 6 to be in a fully open state.
  • the gas refrigerant discharged from the compressor 1 flows into the refrigerant distributor 31 of the outdoor heat exchangers 3A and 3B.
  • the gas refrigerant exchanges heat with air in the outdoor heat exchangers 3A and 3B, and a part of the gas refrigerant condenses to become a gas-liquid two-phase state.
  • the gas-liquid two-phase refrigerant flowing out from the outdoor heat exchanger 3A and the gas-liquid two-phase refrigerant flowing out from the outdoor heat exchanger 3B join on the upstream side of the solenoid valve 7.
  • the combined refrigerant then flows into the refrigerant distributor 41 of the outdoor heat exchanger 4 via the solenoid valve 7. As described using FIG.
  • the refrigerant distributor 41 has a double pipe structure, and the inner pipe 58 has a large number of refrigerant outlet holes 58c arranged in parallel.
  • the refrigerant that has flowed into the refrigerant distributor 41 flows out from the refrigerant outlet hole 58c into the second internal space 57h when passing through the interior of the inner tube 58.
  • the refrigerant is evenly distributed to each flat tube 47 of the heat exchanger 43A.
  • the refrigerant condensed inside the heat exchanger 43A and the heat exchanger 43B flows out into the refrigerant pipe 45 through the refrigerant distributor 42.
  • the refrigerant that has flowed out of the outdoor heat exchanger 4 flows into the indoor heat exchanger 21.
  • the refrigerant exchanges heat with air and evaporates. Thereafter, the refrigerant flows out of the indoor unit 201 and flows into the outdoor unit 101.
  • the refrigerant flows into the accumulator 10 via the four-way valve 2 and the refrigerant pipe 306. It is sucked into the compressor 1 again from the accumulator 10 and circulates through the refrigerant circuit.
  • the outdoor heat exchanger located on the downstream side has a double pipe structure.
  • the inner pipe 58 of the refrigerant distributor 41 has a large number of refrigerant outlet holes 58c arranged in parallel.
  • the refrigerant In the indoor unit 201, the refrigerant is condensed in the indoor heat exchanger 21 and supplies heat to the air. The refrigerant then flows into the outdoor unit 101 after flowing out of the indoor unit 201. In the outdoor unit 101, the refrigerant branches into a refrigerant pipe 302 and a refrigerant pipe 304, and flows into the expansion valve 5 and the expansion valve 6, respectively. The refrigerant that has been depressurized and expanded by the expansion valves 5 and 6 flows into the outdoor heat exchangers 3A, 3B and the outdoor heat exchanger 4, respectively, and evaporates.
  • the refrigerant flowing out from the outdoor heat exchanger 4 passes through the solenoid valve 8 and joins with the refrigerant flowing out from the outdoor heat exchangers 3A and 3B. Thereafter, the combined refrigerant flows into the accumulator 10 via the four-way valve 2 and the refrigerant pipe 306. It is sucked into the compressor 1 again from the accumulator 10 and circulates through the refrigerant circuit. This results in a refrigerant circuit having a refrigerant flow path in which the outdoor heat exchanger 3 and the outdoor heat exchanger 4 are connected in parallel.
  • the downstream outdoor heat exchanger When multiple outdoor heat exchangers are connected in series to function as condensers during cooling operation, the downstream outdoor heat exchanger will contain a mixture of gas and liquid refrigerants. Refrigerant may be introduced in a two-phase state.
  • the refrigeration cycle device 100 is configured to form a refrigerant flow path such that the outdoor heat exchanger 4 is located on the downstream side and the outdoor heat exchanger 3 is located on the upstream side during cooling operation. There is.
  • the refrigerant distributor 41 of the outdoor heat exchanger 4 disposed on the downstream side has a double pipe structure, and the inner pipe 58 is formed with a plurality of refrigerant outlet holes 58c.
  • the refrigerant flows into the outdoor heat exchanger 4 in a gas-liquid two-phase state
  • the refrigerant is biased toward the plurality of flat tubes 47 of the outdoor heat exchanger 4 due to the function of the refrigerant distributor 41.
  • the situation in which it is distributed can be controlled.
  • the required amount of heat exchange becomes uniform over the entire surface of the heat exchange body 43 included in the outdoor heat exchanger 4, and a decrease in heat exchange efficiency is prevented. be able to.
  • the outdoor heat exchanger 4 includes a refrigerant distributor 41 and a refrigerant distributor 42.
  • Both refrigerant distributors 41 and 42 have a double-pipe structure composed of an outer tube and an inner tube.
  • the inner tubes 58 and 62 are formed with refrigerant outlet holes 58c and 62c through which the refrigerant flows out from the inner tube into the outer tube.
  • a flat tube 47 is inserted into the outer tubes 57 and 61. Therefore, even when the gas-liquid two-phase refrigerant flows into the refrigerant distributor 41 or 42, the refrigerant is evenly distributed to all the flat tubes 47.
  • FIG. 19 is a perspective view showing the connection state of the outdoor heat exchanger 3C and the outdoor heat exchanger 4C in the refrigeration cycle device 100 according to the second embodiment.
  • the configuration of refrigeration cycle device 100 according to the second embodiment is basically the same as the configuration of refrigeration cycle device 100 according to the first embodiment.
  • the difference from the first embodiment is that in the second embodiment, outdoor heat exchangers 3C and 4C are provided in place of the outdoor heat exchangers 3 and 4 of the first embodiment, respectively. Since the other configurations are the same as those in Embodiment 1, the description thereof will be omitted here.
  • the heat exchange body 33 constituting the outdoor heat exchanger 3 and the heat exchange body 43 constituting the outdoor heat exchanger 4 are Two layers are arranged in the direction along the direction of the wind generated by the blower 9.
  • Embodiment 2 as shown in FIG. One layer is arranged in the direction along the direction of the wind generated by the outdoor blower 9.
  • the refrigerant flow path in which the outdoor heat exchanger 3C and the outdoor heat exchanger 4C are connected in series is expressed by a simple connection using refrigerant piping.
  • the white arrow indicates the direction of the wind generated by the outdoor blower 9.
  • the arrows written near the refrigerant pipes 35A, 36A, and 45A represent the flow of refrigerant, with solid arrows representing the flow of refrigerant during cooling operation, and dashed arrows representing refrigerant flow during heating operation. It represents the flow of
  • the outdoor heat exchanger 3C includes a refrigerant distributor 31, a refrigerant distributor 32, and a heat exchanger 33.
  • the heat exchanger 33 is composed of a plurality of flat tubes 37 and a plurality of fins 38.
  • the configuration of the heat exchanger 33 is the same as described in Embodiment 1, so a description thereof will be omitted here.
  • a refrigerant distributor 31 having a single-pipe structure is provided above the heat exchanger 33, and a refrigerant distributor 32 having a double-pipe structure is provided below the heat exchanger 33.
  • a refrigerant pipe 35A is connected to the refrigerant distributor 31 via a connecting pipe 52, and a refrigerant pipe 36A is connected to the refrigerant distributor 32 via a connecting pipe 56.
  • the outdoor heat exchanger 4C includes a refrigerant distributor 41, a refrigerant distributor 42, and a heat exchanger 43.
  • the heat exchanger 43 is composed of a plurality of flat tubes 47 and a plurality of fins 48.
  • the configuration of the heat exchanger 43 is the same as described in Embodiment 1, so a description thereof will be omitted here.
  • a refrigerant distributor 41 with a double tube structure is provided above the heat exchanger 43, and a refrigerant distributor 42 with a double tube structure is provided below the heat exchanger 43. .
  • a refrigerant pipe 36A is connected to the refrigerant distributor 41 via a connecting pipe 60
  • a refrigerant pipe 45A is connected to the refrigerant distributor 42 via a connecting pipe 64.
  • the outdoor heat exchanger 4C is sometimes called a "heat exchanger".
  • the heat exchange body 43 is sometimes referred to as a "first heat exchange body.”
  • the flat tube 47 is sometimes called a "first flat tube.”
  • Refrigerant distributor 41 may be referred to as a "first refrigerant distributor,” and refrigerant distributor 42 may be referred to as a "second refrigerant distributor.”
  • the outer tube 57 is sometimes called a "first outer tube”
  • the inner tube 58 is sometimes called a "first inner tube”
  • the partition plate 59 is sometimes called a "first partition plate.”
  • the outer tube 61 is sometimes called a "second outer tube”
  • the inner tube 62 is sometimes called a “second inner tube”
  • the partition plate 63 is sometimes called a "second partition plate.”
  • the tube end 47c of the flat tube 47 inserted into the refrigerant distributor 41 is sometimes referred to as "one end of the first flat tube”
  • the outdoor heat exchanger 3C is sometimes referred to as a "second heat exchanger".
  • Heat exchange body 33 is sometimes referred to as a "second heat exchange body.”
  • the flat tube 37 is sometimes called a "second flat tube.”
  • the refrigerant distributor 31 is sometimes called a “third refrigerant distributor,” and the refrigerant distributor 32 is sometimes called a "fourth refrigerant distributor.”
  • the outer tube 51 is sometimes referred to as a "third outer tube.”
  • the outer tube 53 is sometimes called a "fourth outer tube”
  • the inner tube 54 is sometimes called a "fourth inner tube”
  • the partition plate 55 is sometimes called a "fourth partition plate.”
  • the tube end 37c of the flat tube 37 inserted into the refrigerant distributor 31 is sometimes referred to as "one end of the second flat tube”
  • the tube end 37d of the flat tube 37 inserted into the refrigerant distributor 32 is referred to as "one end of the second flat tube”. is sometimes referred to as "the other end
  • the refrigerant distributor 41 has a double pipe structure, and the inner pipe 58 thereof has a large number of refrigerant outlet holes 58c arranged in parallel.
  • the refrigerant that has flowed into the refrigerant distributor 41 passes through the interior of the inner tube 58, it flows out from the refrigerant outlet hole 58c into the second internal space 57h of the outer tube 57.
  • the refrigerant outlet hole 58c in the inner tube 58 the refrigerant is evenly distributed to each flat tube 47 of the heat exchanger 43A.
  • the refrigerant condensed inside the heat exchanger 43 flows out from the refrigerant distributor 42 to the refrigerant pipe 45A via the connecting pipe 64.
  • the refrigerant distributor 41 on the inflow side of the outdoor heat exchanger 4C located on the downstream side among the plurality of outdoor heat exchangers 3C and the outdoor heat exchanger 4C forming a serial refrigerant flow path during refrigerant operation. has a double tube structure.
  • the inner pipe 58 of the refrigerant distributor 41 has a large number of refrigerant outlet holes 58c arranged in parallel. Thereby, in the outdoor heat exchanger 4C located on the downstream side, it is possible to improve the uniformity of distribution of the gas-liquid two-phase refrigerant to the heat exchanger 43.
  • the refrigerant distributor 42 on the inflow side of the outdoor heat exchanger 4C located on the upstream side and the refrigerant distributor 32 on the inflow side of the outdoor heat exchanger 3C located on the downstream side have a double pipe structure.
  • the inner pipe 62 of the refrigerant distributor 42 and the inner pipe 54 of the refrigerant distributor 32 each have a large number of refrigerant outflow holes 62c and refrigerant outflow holes 54c arranged in parallel.
  • the refrigerant in the gas-liquid two-phase state is uniformly distributed to the heat exchanger 43 and the heat exchanger 33. can improve sex.
  • the refrigerant distributor 41 of the outdoor heat exchanger 4C on the downstream side during cooling operation is configured with a double pipe structure, so that the same structure as in the first embodiment is achieved. Effects can be obtained.
  • FIG. 20 is a perspective view showing the external appearance of the outdoor unit 101 provided in the refrigeration cycle device 100 according to the third embodiment.
  • FIG. 21 is a plan view schematically showing an example of the configuration of the outdoor unit 101 provided in the refrigeration cycle device 100 according to the third embodiment.
  • the outdoor unit 101 includes outdoor heat exchangers 3 and 4, refrigerant pipes 35, 36, 45 (see FIG. 2) connecting the outdoor heat exchangers 3 and 4, and a housing. 101a, and an outdoor blower 9.
  • the housing 101a has a box shape, as shown in FIG. 20.
  • outdoor heat exchangers 3 and 4 are housed inside the housing 101a.
  • inside the housing 101a are the compressor 1, the four-way valve 2, the expansion valves 5 and 6, the solenoid valves 7 and 8, and the control unit 11 shown in FIG.
  • a control box (not shown) containing a control board constituting the controller is further housed.
  • an outdoor blower 9 is arranged in the upper part 101b of the housing 101a. When the outdoor blower 9 is driven to rotate, air flows as shown by the white arrows in FIG. 20 are generated. The air is sucked into the housing 101a from at least two of the four sides of the housing 101a. Further, after passing through the outdoor heat exchangers 3 and 4, the air is blown upward from an air outlet provided in the upper part 101b of the housing 101a.
  • the outdoor heat exchanger 3 and the outdoor heat exchanger 4 each have a rectangular shape in plan view.
  • the outdoor heat exchanger 3 and the outdoor heat exchanger 4 are arranged to face each other.
  • the outdoor heat exchanger 3 and the outdoor heat exchanger 4 are arranged along a part of the side surface of the housing 101a. That is, the outdoor heat exchanger 3 and the outdoor heat exchanger 4 are arranged along two of the four side surfaces of the housing 101a.
  • the outdoor heat exchanger 3 and the outdoor heat exchanger 4 each have an L-shape in plan view.
  • the outdoor heat exchanger 3 and the outdoor heat exchanger 4 are arranged at point-symmetrical positions.
  • the outdoor heat exchanger 3 and the outdoor heat exchanger 4 are arranged along the entire side surface of the housing 101a. That is, the outdoor heat exchanger 3 and the outdoor heat exchanger 4 are arranged along the four side surfaces of the housing 101a.
  • FIG. 21(c) shows a case where there are three outdoor heat exchangers, as in the second modification of the first embodiment shown in FIGS. 16 to 18.
  • the outdoor heat exchangers 3A, 3B, and 4 are arranged in a U-shape when viewed from above.
  • the outdoor heat exchangers 3A, 3B, and 4 are arranged along part of the side surface of the housing 101a. That is, the outdoor heat exchangers 3A, 3B, and 4 are arranged along three side surfaces of the housing 101a.
  • FIG. 22 is a perspective view showing the appearance of an outdoor unit 101 provided in a refrigeration cycle device 100 according to a modification of the third embodiment.
  • FIG. 23 is a plan view schematically showing an example of the configuration of the outdoor unit 101 provided in the refrigeration cycle device 100 according to the third embodiment.
  • one outdoor blower 9 is arranged at the upper part 101b of the housing 101a.
  • the number of outdoor blowers 9 may be one as shown in FIG. 21, or two as shown in FIG. 1 in the first embodiment.
  • FIG. 22 shows a case where two outdoor blowers 9 are provided in the upper part 101b of the housing 101a.
  • the outdoor heat exchanger 3 and the outdoor heat exchanger 4 each have an L-shape in plan view.
  • the outdoor heat exchanger 3 and the outdoor heat exchanger 4 are arranged in line-symmetrical positions.
  • the outdoor heat exchanger 3 and the outdoor heat exchanger 4 are arranged along three side surfaces among the four side surfaces of the housing 101a.
  • 1 Compressor 2 Four-way valve, 2a connection port, 2b connection port, 2c connection port, 2d connection port, 3 outdoor heat exchanger, 3A outdoor heat exchanger, 3B outdoor heat exchanger, 3C outdoor heat exchanger, 3a connection Port, 3b connection port, 4 outdoor heat exchanger, 4C outdoor heat exchanger, 4a connection port, 4b connection port, 5 expansion valve, 6 expansion valve, 7 solenoid valve, 8 solenoid valve, 9 outdoor blower, 10 accumulator, 11 Control unit, 21 indoor heat exchanger, 21a connection port, 21b connection port, 22 indoor blower, 23 expansion valve, 31 refrigerant distributor, 32 refrigerant distributor, 33 heat exchange body, 33A heat exchange body, 33B heat exchange body, 34 Folded header, 35 Refrigerant pipe, 35A Refrigerant pipe, 36 Refrigerant pipe, 36A Refrigerant pipe, 37 Flat tube, 37a Pipe end, 37b Pipe end, 37c Pipe end, 37d Pipe end, 38 Fin, 41 Refrigerant distribution

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

This heat exchanger comprises a first heat exchanging body including a plurality of first flat tubes disposed spaced apart from one another in a first direction and having a tube axial direction extending in a second direction intersecting the first direction, a first refrigerant distributor into which one end portion of each of the plurality of first flat tubes is inserted, and a second refrigerant distributor into which the other end of each of the first flat tubes is inserted, wherein: the first refrigerant distributor includes a first outer tube which is disposed extending in the first direction and into which said one end portion of each of the plurality of first flat tubes is inserted, a first inner tube which is disposed extending in the first direction, is arranged inside the first outer tube, and which includes a plurality of first refrigerant outflow holes arranged spaced apart from one another in the first direction, and a first dividing plate which is joined to an inner wall of the first outer tube with the first inner tube penetrating through in a plate thickness; and the second refrigerant distributor includes a second outer tube which is disposed extending in the first direction and into which said other end portion of each of the plurality of first flat tubes is inserted, a second inner tube which is disposed extending in the first direction, is arranged inside the second outer tube, and which includes a plurality of second refrigerant outflow holes arranged spaced apart from one another in the first direction, and a second dividing plate which is joined to an inner wall of the second outer tube with the second inner tube penetrating through in a plate thickness.

Description

熱交換器および冷凍サイクル装置Heat exchanger and refrigeration cycle equipment
 本開示は、複数の扁平管を有する熱交換器および冷凍サイクル装置に関するものである。 The present disclosure relates to a heat exchanger and a refrigeration cycle device having a plurality of flat tubes.
 複数の熱交換器を有する従来の冷凍サイクル装置では、1以上の熱交換器を1組とし、複数組の熱交換器から構成されているものがある(例えば特許文献1参照)。複数組のそれぞれにおいて、熱交換器は、空気熱交換器から構成されており、上部ヘッダ管と下部ヘッダ管と伝熱管とフィンとを有している。 Some conventional refrigeration cycle apparatuses having a plurality of heat exchangers are constructed from a plurality of heat exchangers, with one or more heat exchangers forming one set (for example, see Patent Document 1). In each of the plurality of sets, the heat exchanger is composed of an air heat exchanger, and includes an upper header pipe, a lower header pipe, a heat transfer tube, and fins.
 冷房運転時には、組と組とを直列に接続し、組と組との間で直列に冷媒を流通させる直列冷媒流路が形成される。直列冷媒流路では、全ての熱交換器において、それらの熱交換器が有する伝熱管に上から下に冷媒を流通させる。 During cooling operation, the sets are connected in series, and a series refrigerant flow path is formed in which the refrigerant flows in series between the sets. In the serial refrigerant flow path, the refrigerant flows from top to bottom through the heat transfer tubes of all the heat exchangers.
 暖房運転時には、組と組とを並列に接続し、各組に対して並列に冷媒を流通させる並列冷媒流路が形成される。並列冷媒流路では、全ての熱交換器において、それらの熱交換器が有する伝熱管に下から上に冷媒を流通させる。 During heating operation, the sets are connected in parallel, and a parallel refrigerant flow path is formed in which the refrigerant flows in parallel to each set. In the parallel refrigerant flow paths, the refrigerant flows from bottom to top through the heat transfer tubes of all the heat exchangers.
 また、従来の熱交換器においては、例えば下部ヘッダ管として、内管と外管とを備える2重管構造の冷媒分配器が用いられる。外管は、複数設けられ、複数の外管のうち隣り合う外管の間には、間隔が形成される。内管は、複数の外管に対して連続して1つ設けられる。外管には、外管の管軸方向に複数の伝熱管が接続され、内管と外管との間に流入した冷媒を複数の伝熱管に分配する。 Furthermore, in conventional heat exchangers, a refrigerant distributor having a double pipe structure including an inner pipe and an outer pipe is used as a lower header pipe, for example. A plurality of outer tubes are provided, and a gap is formed between adjacent outer tubes among the plurality of outer tubes. One inner tube is provided continuously for the plurality of outer tubes. A plurality of heat transfer tubes are connected to the outer tube in the tube axis direction of the outer tube, and the refrigerant flowing between the inner tube and the outer tube is distributed to the plurality of heat transfer tubes.
国際公開第2019/008664号International Publication No. 2019/008664
 一般的に、熱交換器が蒸発器として機能する場合、ガス冷媒と液冷媒とが混在する気液二相状態の冷媒が、熱交換器に流入する。その際に、熱交換器の流入側の冷媒分配器として、内管と外管とから構成された二重管構造の冷媒分配器を用いることがある。二重管構造の冷媒分配器においては、内管に多数の冷媒流出孔が並設されている。二重管構造の冷媒分配器は、熱交換器を構成する複数の伝熱管へ冷媒を均等に分配しつつ、冷媒分配器の容積を削減することができる。 Generally, when a heat exchanger functions as an evaporator, a gas-liquid two-phase refrigerant in which gas refrigerant and liquid refrigerant are mixed flows into the heat exchanger. In this case, a refrigerant distributor having a double pipe structure composed of an inner tube and an outer tube may be used as the refrigerant distributor on the inflow side of the heat exchanger. In a refrigerant distributor having a double pipe structure, a large number of refrigerant outlet holes are arranged in parallel in the inner pipe. A refrigerant distributor having a double tube structure can reduce the volume of the refrigerant distributor while evenly distributing the refrigerant to a plurality of heat transfer tubes that constitute a heat exchanger.
 蒸発器として機能する熱交換器の流出側には、一重管構造の冷媒分配器が設けられている。当該冷媒分配器は、熱交換器が凝縮器として機能する場合に熱交換器を構成する複数の伝熱管へ冷媒を分配させる機能を有する。 A refrigerant distributor with a single-pipe structure is provided on the outflow side of the heat exchanger that functions as an evaporator. The refrigerant distributor has a function of distributing refrigerant to a plurality of heat transfer tubes that constitute the heat exchanger when the heat exchanger functions as a condenser.
 しかしながら、上記の特許文献1のように、1つの室外機に複数の熱交換器が搭載されている場合、複数の熱交換器同士の接続状態は、直列冷媒流路を形成する場合と、並列冷媒流路を形成する場合と、に区別される。冷房運転の為に室外機に搭載される複数の熱交換器が凝縮器として機能する際に、複数の熱交換器同士が直列冷媒流路を形成する場合には、流路の上流側に存在する熱交換器と下流に存在する熱交換器では、流入する冷媒の状態が異なる。すなわち、上流側に存在する熱交換器にはガス冷媒が単相で流入する。一方、下流側に存在する熱交換器には、上流側に存在する熱交換器における熱交換でガス冷媒の一部が凝縮するため、ガス冷媒と液冷媒とが混在する気液二相状態の冷媒が流入することになる。しかしながら、この場合の下流側に存在する熱交換器の流入側の冷媒分配器は、一重管構造の冷媒分配器である。そのため、下流側に存在する熱交換器においては、流入される冷媒が、熱交換器を構成する複数の扁平管に対して均等に分配されない。下流側に存在する熱交換器においては、扁平管の位置によって、分配される冷媒の量が偏ることで、冷媒が多く分配される扁平管付近では熱交換量が不足し、冷媒が少なく分配される扁平管付近では熱交換量が過多となり、熱交換効率が低下するという課題がある。 However, as in Patent Document 1 mentioned above, when multiple heat exchangers are installed in one outdoor unit, the connection state of the multiple heat exchangers is different from forming a series refrigerant flow path to parallel refrigerant flow paths. A distinction is made between the case where a refrigerant flow path is formed and the case where a refrigerant flow path is formed. When multiple heat exchangers installed in an outdoor unit for cooling operation function as condensers, if the multiple heat exchangers form a serial refrigerant flow path, a refrigerant is present on the upstream side of the flow path. The state of the refrigerant flowing into the heat exchanger and the heat exchanger located downstream are different. That is, the gas refrigerant flows in a single phase into the heat exchanger located on the upstream side. On the other hand, in the downstream heat exchanger, a part of the gas refrigerant condenses during heat exchange in the upstream heat exchanger, so a gas-liquid two-phase state where gas refrigerant and liquid refrigerant are mixed is generated. Refrigerant will flow in. However, in this case, the refrigerant distributor on the inflow side of the heat exchanger located downstream is a refrigerant distributor with a single-pipe structure. Therefore, in the heat exchanger located on the downstream side, the refrigerant flowing into the heat exchanger is not evenly distributed to the plurality of flat tubes that constitute the heat exchanger. In the heat exchanger located on the downstream side, the amount of refrigerant distributed is uneven depending on the position of the flat tube, so the amount of heat exchange is insufficient near the flat tube where more refrigerant is distributed, and less refrigerant is distributed. There is a problem in that the amount of heat exchanged is excessive near the flat tubes, and the heat exchange efficiency decreases.
 本開示は、かかる課題を解決するためになされたものであり、冷房運転時に凝縮器として機能する複数の熱交換器のうちの1つの熱交換器であって、それらの熱交換器を直列に接続して直列冷媒流路を形成するときに、冷媒の流れる方向において下流側に配置された場合においても、複数の扁平管に均等に冷媒を分配できる冷媒分配器を備えた、熱交換器、および、冷凍サイクル装置を提供することを目的とする。 The present disclosure has been made to solve such problems, and is one heat exchanger among a plurality of heat exchangers that function as a condenser during cooling operation, the heat exchangers being connected in series. A heat exchanger equipped with a refrigerant distributor that can evenly distribute refrigerant to a plurality of flat tubes even when disposed on the downstream side in the flow direction of the refrigerant when connected to form a series refrigerant flow path; And, the purpose is to provide a refrigeration cycle device.
 本開示に係る熱交換器は、第1方向に互いに間隔を空けて配置されて、前記第1方向に交差する第2方向に管軸方向が延びた、複数の第1扁平管を有する、第1熱交換体と、複数の前記第1扁平管の一端部が挿入された第1冷媒分配器と、複数の前記第1扁平管の他端部が挿入された第2冷媒分配器と、を備え、前記第1冷媒分配器は、前記第1方向に延設され、複数の前記第1扁平管の前記一端部が挿入された第1外管と、前記第1方向に延設され、前記第1外管の内部に配置され、前記第1方向に互いに間隔を空けて配置された複数の第1冷媒流出孔を有する、第1内管と、前記第1内管が板厚を貫通した状態で、前記第1外管の内壁に接合された、第1仕切り板と、を有し、前記第2冷媒分配器は、前記第1方向に延設され、複数の前記第1扁平管の前記他端部が挿入された第2外管と、前記第1方向に延設され、前記第2外管の内部に配置され、前記第1方向に互いに間隔を空けて配置された複数の第2冷媒流出孔を有する、第2内管と、前記第2内管が板厚を貫通した状態で、前記第2外管の内壁に接合された、第2仕切り板と、を有するものである。 The heat exchanger according to the present disclosure includes a plurality of first flat tubes arranged at intervals in a first direction and whose tube axis direction extends in a second direction intersecting the first direction. 1 heat exchanger, a first refrigerant distributor into which one end portion of the plurality of first flat tubes is inserted, and a second refrigerant distributor into which the other end portion of the plurality of first flat tubes is inserted. The first refrigerant distributor includes a first outer tube extending in the first direction and into which the one ends of the plurality of first flat tubes are inserted; a first inner tube disposed inside the first outer tube, the first inner tube having a plurality of first refrigerant outflow holes spaced apart from each other in the first direction; and the first inner tube penetrating through the plate thickness. and a first partition plate joined to the inner wall of the first outer tube, the second refrigerant distributor extending in the first direction and connecting the plurality of first flat tubes. a second outer tube into which the other end is inserted; and a plurality of outer tubes extending in the first direction, disposed inside the second outer tube, and spaced apart from each other in the first direction. A second inner pipe having two refrigerant outflow holes, and a second partition plate joined to the inner wall of the second outer pipe with the second inner pipe penetrating the plate thickness. .
 本開示に係る冷凍サイクル装置は、室外機を備えた冷凍サイクル装置であって、前記室外機は、上記の熱交換器と、第2熱交換器と、前記熱交換器と前記第2熱交換器とを接続する冷媒配管と、前記熱交換器および前記第2熱交換器を内部に収容する箱状に形成された筐体と、前記筐体の上部に配置され、回転駆動することによって空気の流れを形成し、前記熱交換器および前記第2熱交換器を通過した前記空気を、前記筐体の上面から上向きに吹き出す、送風機と、を備え、前記熱交換器および前記第2熱交換器が、前記筐体の4つの側面のうちの一部または全部に沿って配置されるものである。 A refrigeration cycle device according to the present disclosure is a refrigeration cycle device including an outdoor unit, wherein the outdoor unit includes the above heat exchanger, a second heat exchanger, and the heat exchanger and the second heat exchanger. refrigerant piping that connects the heat exchanger and the second heat exchanger; a box-shaped casing that houses the heat exchanger and the second heat exchanger; a blower that blows out the air that has passed through the heat exchanger and the second heat exchanger upward from the top surface of the housing, The containers are arranged along some or all of the four sides of the housing.
 本開示に係る熱交換器および冷凍サイクル装置によれば、冷媒分配器を二重管構造で構成して、冷媒分配器の内管に複数の冷媒流出孔を並設している。そのため、熱交換器に対して例えば気液二相状態で冷媒が流入される場合においても、当該冷媒分配器を設けたことで、複数の扁平管に対して冷媒が偏って分配される状況を抑制できる。また、複数の扁平管に冷媒が均等に分配されることで、熱交換体の全面で、必要となる熱交換量が均一になり、熱交換効率の低下を防止することができる。 According to the heat exchanger and refrigeration cycle device according to the present disclosure, the refrigerant distributor is configured with a double pipe structure, and a plurality of refrigerant outlet holes are arranged in parallel in the inner pipe of the refrigerant distributor. Therefore, even when refrigerant flows into a heat exchanger in a gas-liquid two-phase state, the provision of the refrigerant distributor prevents the situation where the refrigerant is unevenly distributed to multiple flat tubes. It can be suppressed. In addition, by uniformly distributing the refrigerant to the plurality of flat tubes, the required amount of heat exchange becomes uniform over the entire surface of the heat exchanger, and a decrease in heat exchange efficiency can be prevented.
実施の形態1に係る冷凍サイクル装置100の構成を示す冷媒回路図である。1 is a refrigerant circuit diagram showing the configuration of a refrigeration cycle device 100 according to Embodiment 1. FIG. 実施の形態1に係る冷凍サイクル装置100における室外熱交換器3および室外熱交換器4の接続状態を示した斜視図である。FIG. 2 is a perspective view showing a connected state of outdoor heat exchanger 3 and outdoor heat exchanger 4 in refrigeration cycle device 100 according to Embodiment 1. FIG. 図2に示す室外熱交換器3の構成を示す断面図である。3 is a sectional view showing the configuration of the outdoor heat exchanger 3 shown in FIG. 2. FIG. 図2に示す室外熱交換器4の構成を示す断面図である。3 is a sectional view showing the configuration of the outdoor heat exchanger 4 shown in FIG. 2. FIG. 図3に示す室外熱交換器3に設けられた冷媒分配器31の構成を示す断面図である。4 is a cross-sectional view showing the configuration of a refrigerant distributor 31 provided in the outdoor heat exchanger 3 shown in FIG. 3. FIG. 図3に示す室外熱交換器3に設けられた冷媒分配器32の構成を示す断面図である。4 is a cross-sectional view showing the configuration of a refrigerant distributor 32 provided in the outdoor heat exchanger 3 shown in FIG. 3. FIG. 図4に示す室外熱交換器4に設けられた冷媒分配器41の構成を示す断面図である。5 is a cross-sectional view showing the configuration of a refrigerant distributor 41 provided in the outdoor heat exchanger 4 shown in FIG. 4. FIG. 図4に示す室外熱交換器4に設けられた冷媒分配器42の構成を示す断面図である。5 is a sectional view showing the configuration of a refrigerant distributor 42 provided in the outdoor heat exchanger 4 shown in FIG. 4. FIG. 実施の形態1に係る冷凍サイクル装置100における暖房運転状態の室外熱交換器3および室外熱交換器4の接続状態を示した斜視図である。FIG. 2 is a perspective view showing a connected state of outdoor heat exchanger 3 and outdoor heat exchanger 4 in a heating operation state in refrigeration cycle device 100 according to Embodiment 1. FIG. 実施の形態1に係る冷凍サイクル装置100に設けられた冷媒分配器31における冷媒の分配動作を模式的に示す図である。FIG. 3 is a diagram schematically showing a refrigerant distribution operation in a refrigerant distributor 31 provided in the refrigeration cycle device 100 according to the first embodiment. 実施の形態1に係る冷凍サイクル装置100に設けられた冷媒分配器32、41、42における冷媒の分配動作を模式的に示す図である。FIG. 3 is a diagram schematically showing a refrigerant distribution operation in refrigerant distributors 32, 41, and 42 provided in the refrigeration cycle device 100 according to the first embodiment. 実施の形態1に係る冷凍サイクル装置100に設けられた冷媒分配器31における液冷媒の状態を模式的に示す図である。FIG. 3 is a diagram schematically showing the state of liquid refrigerant in a refrigerant distributor 31 provided in the refrigeration cycle device 100 according to the first embodiment. 実施の形態1に係る冷凍サイクル装置100に設けられた冷媒分配器32、41、42における液冷媒の状態を模式的に示す図である。3 is a diagram schematically showing the state of liquid refrigerant in refrigerant distributors 32, 41, and 42 provided in refrigeration cycle device 100 according to Embodiment 1. FIG. 実施の形態1の変形例1に係る冷凍サイクル装置100の構成を示す冷媒回路図である。2 is a refrigerant circuit diagram showing the configuration of a refrigeration cycle device 100 according to a first modification of the first embodiment. FIG. 実施の形態1の変形例1に係る冷凍サイクル装置100の構成を示す冷媒回路図である。2 is a refrigerant circuit diagram showing the configuration of a refrigeration cycle device 100 according to a first modification of the first embodiment. FIG. 実施の形態1の変形例2に係る冷凍サイクル装置100の構成を示す冷媒回路図である。2 is a refrigerant circuit diagram showing the configuration of a refrigeration cycle device 100 according to a second modification of the first embodiment. FIG. 実施の形態1の変形例2に係る冷凍サイクル装置100が冷房運転状態の場合の冷媒の流れを示す図である。FIG. 7 is a diagram showing the flow of refrigerant when the refrigeration cycle device 100 according to the second modification of the first embodiment is in a cooling operation state. 実施の形態1の変形例2に係る冷凍サイクル装置100が暖房運転状態の場合の冷媒の流れを示している。The flow of refrigerant is shown when the refrigeration cycle device 100 according to the second modification of the first embodiment is in a heating operation state. 実施の形態2に係る冷凍サイクル装置100における室外熱交換器3Cおよび室外熱交換器4Cの接続状態を示した斜視図である。FIG. 3 is a perspective view showing a connection state of an outdoor heat exchanger 3C and an outdoor heat exchanger 4C in a refrigeration cycle device 100 according to a second embodiment. 実施の形態3に係る冷凍サイクル装置100に設けられた室外機101の外観を示す斜視図である。FIG. 7 is a perspective view showing the appearance of an outdoor unit 101 provided in a refrigeration cycle device 100 according to a third embodiment. 実施の形態3に係る冷凍サイクル装置100に設けられた室外機101の構成の例を模式的に示す平面図である。7 is a plan view schematically showing an example of the configuration of an outdoor unit 101 provided in a refrigeration cycle device 100 according to Embodiment 3. FIG. 実施の形態3の変形例に係る冷凍サイクル装置100に設けられた室外機101の外観を示す斜視図である。FIG. 7 is a perspective view showing the appearance of an outdoor unit 101 provided in a refrigeration cycle device 100 according to a modification of the third embodiment. 実施の形態3に係る冷凍サイクル装置100に設けられた室外機101の構成の例を模式的に示す平面図である。7 is a plan view schematically showing an example of the configuration of an outdoor unit 101 provided in a refrigeration cycle device 100 according to Embodiment 3. FIG.
 以下、本開示に係る熱交換器および冷凍サイクル装置の実施の形態について図面を参照して説明する。本開示は、以下の実施の形態に限定されるものではなく、本開示の主旨を逸脱しない範囲で種々に変形することが可能である。また、本開示は、以下の実施の形態およびその変形例に示す構成のうち、組み合わせ可能な構成のあらゆる組み合わせを含むものである。また、各図において、同一または相当する部分には、同一の符号を付してその説明を適宜省略または簡略化する。さらに、添字(符号の末尾のアルファベットの大文字)で区別等している複数の同種の機器等について、特に区別したり、特定したりする必要がない場合には、添字を省略して記載する場合がある。なお、各図面では、各構成部材の相対的な寸法関係、形状等が実際のものとは異なる場合がある。各図面に記載の構成部材について、その形状、大きさ及び配置などは、本開示の範囲内で適宜変更することができる。 Hereinafter, embodiments of a heat exchanger and a refrigeration cycle device according to the present disclosure will be described with reference to the drawings. The present disclosure is not limited to the following embodiments, and can be variously modified without departing from the gist of the present disclosure. Furthermore, the present disclosure includes all combinations of configurations that can be combined among the configurations shown in the following embodiments and modifications thereof. Further, in each figure, the same or corresponding parts are given the same reference numerals, and the description thereof will be omitted or simplified as appropriate. Furthermore, regarding multiple devices of the same type that are distinguished by a subscript (capital letter at the end of the code), if there is no need to distinguish or specify them, the subscript may be omitted. There is. Note that in each drawing, the relative dimensional relationship, shape, etc. of each component may differ from the actual one. The shape, size, arrangement, etc. of the constituent members shown in each drawing can be changed as appropriate within the scope of the present disclosure.
 また、各図において、各室外熱交換器の幅方向をX方向と呼び、高さ方向をZ方向と呼び、奥行き方向をY方向と呼ぶ。X方向およびY方向は、例えば水平方向である。Z方向は、例えば上下方向であり、鉛直方向の場合がある。X方向は、複数の扁平管の積層方向である。Z方向は扁平官の管軸方向であり、冷媒の流れる方向である。Y方向は空気の流れる方向である。X方向は「第1方向」または「第3方向」と呼ばれることがある。Z方向は「第2方向」と呼ばれることがある。 In each figure, the width direction of each outdoor heat exchanger is called the X direction, the height direction is called the Z direction, and the depth direction is called the Y direction. The X direction and the Y direction are, for example, horizontal directions. The Z direction is, for example, an up-down direction, and may be a vertical direction. The X direction is the direction in which the plurality of flat tubes are stacked. The Z direction is the axial direction of the flat tube, and is the direction in which the refrigerant flows. The Y direction is the direction in which air flows. The X direction is sometimes called a "first direction" or a "third direction." The Z direction is sometimes referred to as the "second direction."
 実施の形態1.
 <冷凍サイクル装置100の構成>
 図1は、実施の形態1に係る冷凍サイクル装置100の構成を示す冷媒回路図である。冷凍サイクル装置100は室外機101と室内機201とを有し、室外機101と室内機201とを冷媒配管310で接続することで、冷凍サイクルを構成している。なお、冷媒配管310には、複数の冷媒配管300~308が含まれる。ここでは、それらの冷媒配管300~308を纏めて呼ぶ場合には、冷媒配管310と呼ぶこととする。室外機101と室内機201とは、接続口P1とP2とで接続されている。接続口P1および接続口P2は、共に、冷媒配管310から構成される。接続口P1は、冷凍サイクル装置100の冷房運転状態における室外機101への流入側の接続口、並びに、暖房運転状態における室外機101からの流出側の接続口である。接続口P2は、冷凍サイクル装置100の冷房運転状態における室外機101からの流出側の接続口、並びに、暖房運転状態における室外機101への流入側の接続口である。なお、実施の形態1では、室外機101および室内機201は共に1台ずつが設置されているが、室外機101の台数および室内機201の台数は、1台に限定されるものではなく、それぞれ、複数台であってもよい。
Embodiment 1.
<Configuration of refrigeration cycle device 100>
FIG. 1 is a refrigerant circuit diagram showing the configuration of a refrigeration cycle device 100 according to the first embodiment. The refrigeration cycle device 100 has an outdoor unit 101 and an indoor unit 201, and a refrigeration cycle is configured by connecting the outdoor unit 101 and the indoor unit 201 with a refrigerant pipe 310. Note that the refrigerant pipe 310 includes a plurality of refrigerant pipes 300 to 308. Here, when these refrigerant pipes 300 to 308 are collectively called a refrigerant pipe 310. The outdoor unit 101 and the indoor unit 201 are connected through connection ports P1 and P2. Both the connection port P1 and the connection port P2 are configured from refrigerant piping 310. The connection port P1 is an inflow side connection port to the outdoor unit 101 in the cooling operation state of the refrigeration cycle device 100, and an outflow side connection port from the outdoor unit 101 in the heating operation state. The connection port P2 is an outflow side connection port from the outdoor unit 101 in the cooling operation state of the refrigeration cycle device 100, and an inflow side connection port to the outdoor unit 101 in the heating operation state. In the first embodiment, one outdoor unit 101 and one indoor unit 201 are installed, but the number of outdoor units 101 and the number of indoor units 201 are not limited to one. There may be a plurality of each.
 冷凍サイクル装置100を構成する冷媒回路内には、冷媒として、例えば、フロン冷媒またはHFO冷媒が封入されている。 In the refrigerant circuit that constitutes the refrigeration cycle device 100, a fluorocarbon refrigerant or an HFO refrigerant, for example, is sealed as a refrigerant.
 フロン冷媒としては、例えば、HFC(フッ素化炭化水素、ハイドロフルオロカーボン)系冷媒が挙げられる。HFC系冷媒には、例えば、ジフルオロメタン(HFC-32、R32)、ペンタフルオロエタン(HFC-125、R125)、1,1,1-トリフルオロエタン(HFC-143a、R143a)、1,1,1,2-テトラフルオロエタン(HFC-134a、R134a)などがある。さらに、フロン冷媒の他の例としては、例えば、上記のHFC系冷媒を混合させた混合冷媒も挙げられる。混合冷媒の例としては、例えば、R32とR125との混合冷媒である「R410A」、R32とR125とR134aとの混合冷媒である「R407C」、R125とR143aとR134aとの混合冷媒である「R404A」などが挙げられる。 Examples of fluorocarbon refrigerants include HFC (fluorinated hydrocarbon, hydrofluorocarbon) refrigerants. Examples of HFC refrigerants include difluoromethane (HFC-32, R32), pentafluoroethane (HFC-125, R125), 1,1,1-trifluoroethane (HFC-143a, R143a), 1,1, Examples include 1,2-tetrafluoroethane (HFC-134a, R134a). Further, other examples of the fluorocarbon refrigerant include a mixed refrigerant obtained by mixing the above-mentioned HFC refrigerants. Examples of mixed refrigerants include "R410A" which is a mixed refrigerant of R32 and R125, "R407C" which is a mixed refrigerant of R32, R125 and R134a, and "R404A" which is a mixed refrigerant of R125, R143a and R134a. ” etc.
 HFO(ハイドロフルオロオレフィン)冷媒としては、例えば、HFO-1234yf、HFO-1234ze(E)、HFO-1234ze(Z)などが挙げられる。 Examples of the HFO (hydrofluoroolefin) refrigerant include HFO-1234yf, HFO-1234ze (E), and HFO-1234ze (Z).
 冷凍サイクル装置100を構成する冷媒回路内に封入される冷媒としては、上記の例に限定されず、蒸気圧縮式のヒートポンプに用いられる冷媒が使用可能である。具体的には、例えば、CO冷媒、HC冷媒(例えばプロパン、イソブタン冷媒)、アンモニア冷媒などが、冷媒として使用可能である。さらに、R32とHFO-1234yfとの混合冷媒のように、フロン冷媒とHFO冷媒との混合冷媒も、冷媒として使用可能である。 The refrigerant sealed in the refrigerant circuit that constitutes the refrigeration cycle device 100 is not limited to the above example, and refrigerants used in vapor compression heat pumps can be used. Specifically, for example, CO 2 refrigerant, HC refrigerant (eg, propane, isobutane refrigerant), ammonia refrigerant, etc. can be used as the refrigerant. Furthermore, a mixed refrigerant of a fluorocarbon refrigerant and an HFO refrigerant, such as a mixed refrigerant of R32 and HFO-1234yf, can also be used as the refrigerant.
 (室外機101)
 室外機101は、圧縮機1、四方弁2、室外熱交換器3、室外熱交換器4、膨張弁5、膨張弁6、電磁弁7、電磁弁8、2つの室外送風機9、アキュムレータ10、および、これらの構成要素を接続する冷媒配管300~306を有している。
(Outdoor unit 101)
The outdoor unit 101 includes a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, an outdoor heat exchanger 4, an expansion valve 5, an expansion valve 6, a solenoid valve 7, a solenoid valve 8, two outdoor blowers 9, an accumulator 10, It also has refrigerant pipes 300 to 306 that connect these components.
 圧縮機1は、吸入した低圧冷媒を圧縮し、高圧冷媒として吐出する流体機械である。圧縮機1は、例えば、ロータリ圧縮機またはスクロール圧縮機として構成される。なお、圧縮機1は、例えば、回転周波数が一定の圧縮機として構成してもよいし、インバータを搭載した回転周波数を制御可能な圧縮機として構成してもよい。 The compressor 1 is a fluid machine that compresses sucked low-pressure refrigerant and discharges it as high-pressure refrigerant. The compressor 1 is configured, for example, as a rotary compressor or a scroll compressor. The compressor 1 may be configured, for example, as a compressor with a constant rotational frequency, or may be configured as a compressor equipped with an inverter and whose rotational frequency can be controlled.
 四方弁2は、圧縮機1の吐出側に設けられ、冷房運転状態における冷媒の循環方向と暖房運転状態における冷媒の循環方向とを切り替えるための流路切替装置である。四方弁2が有する4つの接続口2a~2dは、圧縮機1、室外熱交換器3、アキュムレータ10、および、室外機101と室内機201との間を接続する接続口P1に接続される。四方弁2の4つの接続口2a~2dのうち、圧縮機1側の接続口2aは、室外熱交換器3側の接続口2b、または、室外機101の接続口P2側の接続口2dのどちらかが選択されて接続される。また、接続口2bおよび2dのうち、選択されなかった方の接続口は、アキュムレータ10に接続されている接続口2cに接続される。具体的には、冷房運転状態のときは、接続口2aは接続口2bに接続され、接続口2dは接続口2cに接続される。暖房運転状態のときは、接続口2aは接続口2dに接続され、接続口2bは接続口2cに接続される。 The four-way valve 2 is a flow path switching device that is provided on the discharge side of the compressor 1 and switches between the refrigerant circulation direction in the cooling operation state and the refrigerant circulation direction in the heating operation state. The four connection ports 2a to 2d of the four-way valve 2 are connected to the compressor 1, the outdoor heat exchanger 3, the accumulator 10, and the connection port P1 that connects the outdoor unit 101 and the indoor unit 201. Of the four connection ports 2a to 2d of the four-way valve 2, the connection port 2a on the compressor 1 side is the connection port 2b on the outdoor heat exchanger 3 side, or the connection port 2d on the connection port P2 side of the outdoor unit 101. One of them is selected and connected. Furthermore, the connection port that is not selected among the connection ports 2b and 2d is connected to the connection port 2c that is connected to the accumulator 10. Specifically, during the cooling operation state, the connection port 2a is connected to the connection port 2b, and the connection port 2d is connected to the connection port 2c. In the heating operation state, the connection port 2a is connected to the connection port 2d, and the connection port 2b is connected to the connection port 2c.
 室外熱交換器3は、内部に流れる冷媒と空気との間で熱交換を行うことが可能な熱交換器である。室外熱交換器3は、冷房運転状態には凝縮器として機能し、暖房運転状態には蒸発器として機能する。室外熱交換器3は、四方弁2と冷媒配管300によって接続されており、この冷媒配管300は、室外熱交換器3と四方弁2との間で、冷媒配管301に分岐する。冷媒配管301は、電磁弁8に接続している。室外熱交換器3は、冷媒配管と接続される接続口3aおよび3bを有している。接続口3aは四方弁2に接続されている。接続口3aから内部を通過した反対側の接続口3bは、冷媒配管302を介して膨張弁5に接続されている。冷媒配管302は、室外熱交換器3と膨張弁5との間で、冷媒配管303に分岐する。冷媒配管303は、電磁弁7に接続している。室外熱交換器3は、室外送風機9によって発生する風が通過する際に、通過する空気と内部を流れる冷媒との間で熱交換する。室外送風機9は、例えば、シロッコファン若しくはターボファン等の遠心ファン、クロスフローファン、斜流ファン、またはプロペラファンとして構成される。なお、室外熱交換器3は、実施の形態1における「第2熱交換器」に対応する。 The outdoor heat exchanger 3 is a heat exchanger that can exchange heat between the refrigerant flowing inside and air. The outdoor heat exchanger 3 functions as a condenser during cooling operation, and functions as an evaporator during heating operation. The outdoor heat exchanger 3 is connected to the four-way valve 2 by a refrigerant pipe 300, and the refrigerant pipe 300 branches into a refrigerant pipe 301 between the outdoor heat exchanger 3 and the four-way valve 2. Refrigerant pipe 301 is connected to solenoid valve 8 . The outdoor heat exchanger 3 has connection ports 3a and 3b connected to refrigerant piping. The connection port 3a is connected to the four-way valve 2. A connection port 3b on the opposite side that has passed through the inside from the connection port 3a is connected to the expansion valve 5 via a refrigerant pipe 302. The refrigerant pipe 302 branches into a refrigerant pipe 303 between the outdoor heat exchanger 3 and the expansion valve 5. Refrigerant pipe 303 is connected to solenoid valve 7 . When the wind generated by the outdoor blower 9 passes through the outdoor heat exchanger 3, heat is exchanged between the air passing therethrough and the refrigerant flowing therein. The outdoor blower 9 is configured as, for example, a centrifugal fan such as a sirocco fan or a turbo fan, a cross flow fan, a mixed flow fan, or a propeller fan. Note that the outdoor heat exchanger 3 corresponds to the "second heat exchanger" in the first embodiment.
 室外熱交換器4は、内部に流れる冷媒と空気との間で熱交換を行うことが可能な熱交換器である。室外熱交換器4は、冷房運転状態のときには凝縮器として機能し、暖房運転状態のときには蒸発器として機能する。室外熱交換器4は、冷媒配管301を介して電磁弁8に接続されている。冷媒配管301は、室外熱交換器4と電磁弁8との間で、上述した冷媒配管303に分岐する。室外熱交換器4は、冷媒配管と接続される接続口4aおよび4bを有している。接続口4aは、電磁弁8を介して、四方弁2に接続されている。接続口4aから内部を通過した反対側の接続口4bは、冷媒配管304を介して、膨張弁6に接続されている。室外熱交換器4は、室外送風機9によって発生する風が通過する際に、通過する空気と内部を流れる冷媒との間で熱交換する。なお、室外熱交換器4は、実施の形態1における「熱交換器」に対応する。膨張弁6が設けられた冷媒配管304は、膨張弁5が設けられた冷媒配管302と合流する。冷媒配管304と冷媒配管302との合流点は、接続口P2に接続される。接続口P2は、冷房運転状態における室外機101からの流出側、暖房運転状態における室外機101への流入側の接続口となる。 The outdoor heat exchanger 4 is a heat exchanger that can exchange heat between the refrigerant flowing inside and air. The outdoor heat exchanger 4 functions as a condenser during cooling operation, and functions as an evaporator during heating operation. The outdoor heat exchanger 4 is connected to the solenoid valve 8 via a refrigerant pipe 301. The refrigerant pipe 301 branches into the above-mentioned refrigerant pipe 303 between the outdoor heat exchanger 4 and the solenoid valve 8. The outdoor heat exchanger 4 has connection ports 4a and 4b connected to refrigerant piping. The connection port 4a is connected to the four-way valve 2 via a solenoid valve 8. A connection port 4 b on the opposite side that has passed through the inside from the connection port 4 a is connected to the expansion valve 6 via a refrigerant pipe 304 . When the wind generated by the outdoor blower 9 passes through the outdoor heat exchanger 4, heat is exchanged between the air passing therethrough and the refrigerant flowing therein. Note that the outdoor heat exchanger 4 corresponds to the "heat exchanger" in the first embodiment. The refrigerant pipe 304 provided with the expansion valve 6 merges with the refrigerant pipe 302 provided with the expansion valve 5. A confluence point between the refrigerant pipe 304 and the refrigerant pipe 302 is connected to the connection port P2. The connection port P2 serves as a connection port on the outflow side from the outdoor unit 101 in the cooling operation state and on the inflow side to the outdoor unit 101 in the heating operation state.
 膨張弁5および膨張弁6は、減圧弁または膨張弁としての機能を有し、冷媒を減圧して膨張させるものである。膨張弁5および膨張弁6は、例えば、多段階若しくは連続的に開度を調節可能なリニア電子膨張弁等の減圧装置として構成される。 The expansion valve 5 and the expansion valve 6 have a function as a pressure reducing valve or an expansion valve, and reduce the pressure of the refrigerant and expand it. The expansion valve 5 and the expansion valve 6 are configured as a pressure reducing device such as a linear electronic expansion valve whose opening degree can be adjusted in multiple stages or continuously.
 電磁弁7および電磁弁8は、電圧の印加有無により流路を開閉する機能を有し、冷媒の流れを遮断および開通させて、冷媒の流路を切り替えるものである。 The solenoid valve 7 and the solenoid valve 8 have a function of opening and closing the flow path depending on whether or not a voltage is applied, and switch the flow path of the refrigerant by blocking and opening the flow of the refrigerant.
 アキュムレータ10は、圧縮機1の吸入側にアキュムレータ10の流出側を接続する形で設けられる。アキュムレータ10は、液冷媒とガス冷媒とを分離する機能と余剰冷媒を貯留する機能とを有している。アキュムレータ10の流入側は、冷媒配管306によって四方弁2の接続口2cに接続される。 The accumulator 10 is provided in such a way that the outflow side of the accumulator 10 is connected to the suction side of the compressor 1. The accumulator 10 has a function of separating liquid refrigerant and gas refrigerant and a function of storing surplus refrigerant. The inflow side of the accumulator 10 is connected to the connection port 2c of the four-way valve 2 through a refrigerant pipe 306.
 室外機101には、制御部11が設けられている。制御部11は、圧縮機1、四方弁2、膨張弁5、膨張弁6、電磁弁7、電磁弁8、および、2つの室外送風機9の動作を制御する。 The outdoor unit 101 is provided with a control section 11. The control unit 11 controls the operations of the compressor 1 , the four-way valve 2 , the expansion valve 5 , the expansion valve 6 , the solenoid valve 7 , the solenoid valve 8 , and the two outdoor blowers 9 .
 制御部11のハードウェア構成について説明する。制御部11は処理回路から構成される。処理回路は、専用のハードウェア、または、プロセッサから構成される。専用のハードウェアは、例えば、ASIC(Application Specific Integrated Circuit)またはFPGA(Field Programmable Gate Array)などである。プロセッサは、メモリに記憶されるプログラムを実行する。制御部11は、記憶部(図示せず)を有している。記憶部はメモリから構成される。メモリは、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)などの不揮発性または揮発性の半導体メモリ、もしくは、磁気ディスク、フレキシブルディスク、光ディスクなどのディスクである。 The hardware configuration of the control unit 11 will be explained. The control unit 11 is composed of a processing circuit. The processing circuitry consists of dedicated hardware or a processor. The dedicated hardware is, for example, an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array). A processor executes programs stored in memory. The control section 11 has a storage section (not shown). The storage unit is composed of memory. Memory can be nonvolatile or volatile semiconductor memory such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, or EPROM (Erasable Programmable ROM), or disks such as magnetic disks, flexible disks, or optical disks. be.
 (室内機201)
 室内機201は、室内熱交換器21と、室内送風機22、膨張弁23、および、これらの構成要素を接続する冷媒配管307および308から構成されている。室内機201は、室外機101と共に、冷凍サイクルを構成している。室内機201は、冷房負荷または暖房負荷に対し、室外機101からの冷熱または温熱を供給する。なお、冷媒負荷および暖房負荷は、例えば、室内機201が設置されている室内空間である。
(Indoor unit 201)
The indoor unit 201 includes an indoor heat exchanger 21, an indoor blower 22, an expansion valve 23, and refrigerant pipes 307 and 308 that connect these components. The indoor unit 201 and the outdoor unit 101 constitute a refrigeration cycle. The indoor unit 201 supplies cold heat or heat from the outdoor unit 101 to a cooling load or a heating load. Note that the refrigerant load and the heating load are, for example, the indoor space in which the indoor unit 201 is installed.
 室内熱交換器21は、内部に流れる冷媒と空気との間で熱交換を行うことが可能な熱交換器である。室内熱交換器21は、冷房運転状態のときには蒸発器として機能し、暖房運転状態のときには凝縮器として機能する。室内熱交換器21は、冷媒配管と接続される接続口21aおよび21bを有している。接続口21aは、冷媒配管307を介して膨張弁23に接続されている。接続口21aから内部を通過した反対側の接続口21bは、冷媒配管308を介して接続口P1に接続されている。室内熱交換器21は、室内送風機22によって発生する風が通過する際に、通過する空気と内部を流れる冷媒との間で熱交換する。室内送風機22は、例えば、シロッコファン若しくはターボファン等の遠心ファン、クロスフローファン、斜流ファン、またはプロペラファンとして構成される。 The indoor heat exchanger 21 is a heat exchanger that can exchange heat between the refrigerant flowing inside and air. The indoor heat exchanger 21 functions as an evaporator during cooling operation, and functions as a condenser during heating operation. Indoor heat exchanger 21 has connection ports 21a and 21b connected to refrigerant piping. The connection port 21a is connected to the expansion valve 23 via a refrigerant pipe 307. A connection port 21b on the opposite side that has passed inside from the connection port 21a is connected to the connection port P1 via a refrigerant pipe 308. When the wind generated by the indoor blower 22 passes through the indoor heat exchanger 21, heat is exchanged between the air passing therethrough and the refrigerant flowing therein. The indoor blower 22 is configured as, for example, a centrifugal fan such as a sirocco fan or a turbo fan, a cross flow fan, a mixed flow fan, or a propeller fan.
 膨張弁23は、減圧弁または膨張弁としての機能を有し、冷媒を減圧して膨張させるものである。膨張弁23は、例えば、多段階若しくは連続的に開度を調節可能なリニア電子膨張弁等の減圧装置として構成される。 The expansion valve 23 has a function as a pressure reducing valve or an expansion valve, and reduces the pressure of the refrigerant to expand it. The expansion valve 23 is configured, for example, as a pressure reducing device such as a linear electronic expansion valve whose opening degree can be adjusted in multiple stages or continuously.
 <冷凍サイクル装置100の動作>
 <冷房運転状態(直列冷媒流路)>
 冷凍サイクル装置100が冷房運転状態となるとき、制御部11は、膨張弁5は全閉状態、電磁弁7は開状態、電磁弁8は閉状態、膨張弁6は全開状態、となるように制御する。圧縮機1は、アキュムレータ10から冷媒を吸入し、当該冷媒を圧縮する。圧縮された冷媒はガス冷媒となって圧縮機1から吐出され、四方弁2を介して室外熱交換器3に流入する。室外熱交換器3でガス冷媒の一部が凝縮することで、当該ガス冷媒は、ガス冷媒と液冷媒との気液二相状態となる。気液二相状態の冷媒は、電磁弁7を通過して、室外熱交換器4に流入する。室外熱交換器4で凝縮された冷媒は、液状態の冷媒となる。液状態の冷媒は、膨張弁6を通過して、室外機101から流出して室内機201に流入する。室内機201では、冷媒は膨張弁23で減圧された後に、室内熱交換器21で蒸発して、空気に冷熱を供給する。当該冷媒は室内機201から流出し、室外機101に流入し、冷媒配管305を通って、四方弁2に流入する。そして、冷媒は、四方弁2から流出し、冷媒配管306を通って、アキュムレータ10に流入する。その後、冷媒は、アキュムレータ10から圧縮機1に再び吸入され、冷媒回路を循環する。これによって、室外熱交換器3および室外熱交換器4が直列に接続された冷媒流路を有する冷媒回路となる。
<Operation of refrigeration cycle device 100>
<Cooling operation status (serial refrigerant flow path)>
When the refrigeration cycle device 100 enters the cooling operation state, the control unit 11 causes the expansion valve 5 to be in the fully closed state, the solenoid valve 7 to be in the open state, the solenoid valve 8 to be in the closed state, and the expansion valve 6 to be in the fully open state. Control. Compressor 1 sucks refrigerant from accumulator 10 and compresses the refrigerant. The compressed refrigerant becomes a gas refrigerant and is discharged from the compressor 1, and flows into the outdoor heat exchanger 3 via the four-way valve 2. As a part of the gas refrigerant is condensed in the outdoor heat exchanger 3, the gas refrigerant enters a gas-liquid two-phase state of gas refrigerant and liquid refrigerant. The gas-liquid two-phase refrigerant passes through the solenoid valve 7 and flows into the outdoor heat exchanger 4 . The refrigerant condensed in the outdoor heat exchanger 4 becomes a liquid refrigerant. The liquid refrigerant passes through the expansion valve 6, flows out of the outdoor unit 101, and flows into the indoor unit 201. In the indoor unit 201, the refrigerant is depressurized by the expansion valve 23 and then evaporated in the indoor heat exchanger 21 to supply cold heat to the air. The refrigerant flows out of the indoor unit 201, flows into the outdoor unit 101, passes through the refrigerant pipe 305, and flows into the four-way valve 2. The refrigerant then flows out from the four-way valve 2, passes through the refrigerant pipe 306, and flows into the accumulator 10. Thereafter, the refrigerant is sucked into the compressor 1 again from the accumulator 10 and circulates through the refrigerant circuit. This results in a refrigerant circuit having a refrigerant flow path in which the outdoor heat exchanger 3 and the outdoor heat exchanger 4 are connected in series.
 <暖房運転状態(直列冷媒流路の場合)>
 冷凍サイクル装置100が暖房運転状態となるとき、冷媒の流れる方向は、冷房運転状態のときの逆向きになる。制御部11は、冷房運転状態のときと同様に、膨張弁5は全閉状態、電磁弁7は開状態、電磁弁8は閉状態、膨張弁6は全開状態、となるように制御する。圧縮機1は、アキュムレータ10から冷媒を吸入し、当該冷媒を圧縮する。圧縮された冷媒はガス冷媒となって圧縮機1から吐出され、四方弁2を介して、室外機101から流出して室内機201に流入する。室内機201では、室内熱交換器21で熱交換が行われ、冷媒が凝縮する。当該冷媒は、膨張弁23に流入し、膨張弁23で減圧される。その後、当該冷媒は、室内機201から流出して、室外機101に流入する。室外機101では、冷媒が、膨張弁6を介して、室外熱交換器4に流入され、熱交換により蒸発する。その後、冷媒は、電磁弁7を通過して、室外熱交換器3に流入する。室外熱交換器3でさらに熱交換された冷媒は、ガス状態の冷媒となる。ガス状態の冷媒は、四方弁2に流入する。そして、冷媒は、四方弁2から流出し、冷媒配管306を通って、アキュムレータ10に流入する。その後、冷媒は、アキュムレータ10から圧縮機1に再び吸入され、冷媒回路を循環する。これによって、室外熱交換器3および室外熱交換器4が直列に接続された冷媒流路を有する冷媒回路となる。
<Heating operation status (in case of serial refrigerant flow path)>
When the refrigeration cycle device 100 is in the heating operation state, the direction in which the refrigerant flows is opposite to that in the cooling operation state. The control unit 11 controls the expansion valve 5 to be in the fully closed state, the solenoid valve 7 to be in the open state, the solenoid valve 8 to be in the closed state, and the expansion valve 6 to be in the fully open state, as in the case of the cooling operation state. Compressor 1 sucks refrigerant from accumulator 10 and compresses the refrigerant. The compressed refrigerant becomes a gas refrigerant and is discharged from the compressor 1, flows out from the outdoor unit 101 through the four-way valve 2, and flows into the indoor unit 201. In the indoor unit 201, heat exchange is performed in the indoor heat exchanger 21, and the refrigerant is condensed. The refrigerant flows into the expansion valve 23 and is depressurized by the expansion valve 23. Thereafter, the refrigerant flows out of the indoor unit 201 and flows into the outdoor unit 101. In the outdoor unit 101, the refrigerant flows into the outdoor heat exchanger 4 via the expansion valve 6, and is evaporated by heat exchange. Thereafter, the refrigerant passes through the solenoid valve 7 and flows into the outdoor heat exchanger 3. The refrigerant that has undergone further heat exchange in the outdoor heat exchanger 3 becomes a gaseous refrigerant. The gaseous refrigerant flows into the four-way valve 2. The refrigerant then flows out from the four-way valve 2, passes through the refrigerant pipe 306, and flows into the accumulator 10. Thereafter, the refrigerant is sucked into the compressor 1 again from the accumulator 10 and circulates through the refrigerant circuit. This results in a refrigerant circuit having a refrigerant flow path in which the outdoor heat exchanger 3 and the outdoor heat exchanger 4 are connected in series.
 <暖房運転状態(並列冷媒流路の場合)>
 上記の<暖房運転状態(直列冷媒流路の場合)>においては、室外熱交換器3および室外熱交換器4が直列に接続された直列冷媒流路を形成する場合について説明したが、その場合に限定されない。すなわち、冷凍サイクル装置100の運転状態に応じて、室外熱交換器3および室外熱交換器4の接続を、直列冷媒流路と並列冷媒流路とに切り替えることができるように構成してもよい。そして、暖房運転状態には、室外熱交換器3および室外熱交換器4が並列に接続された並列冷媒流路を形成してもよい。その場合については、図14および図15を用いて後述する。
<Heating operation status (in case of parallel refrigerant flow path)>
In the above <Heating operation state (in case of serial refrigerant flow path)>, the case where the outdoor heat exchanger 3 and the outdoor heat exchanger 4 are connected in series to form a serial refrigerant flow path has been explained. but not limited to. That is, depending on the operating state of the refrigeration cycle device 100, the connection of the outdoor heat exchanger 3 and the outdoor heat exchanger 4 may be configured to be able to be switched between a serial refrigerant flow path and a parallel refrigerant flow path. . In the heating operation state, a parallel refrigerant flow path may be formed in which the outdoor heat exchanger 3 and the outdoor heat exchanger 4 are connected in parallel. This case will be described later using FIGS. 14 and 15.
 <室外熱交換器3および室外熱交換器4>
 図2は、実施の形態1に係る冷凍サイクル装置100における室外熱交換器3および室外熱交換器4の接続状態を示した斜視図である。図2においては、冷凍サイクル装置100が冷房運転状態のときを示している。図2では、室外熱交換器3と室外熱交換器4とを直列に接続した冷媒流路を、冷媒配管による単純な接続によって表現したものである。図2において、実線矢印は冷媒の流れる方向を示し、白抜き矢印は室外送風機9によって発生する風の向き(すなわち、気流方向)を示している。図3は、図2に示す室外熱交換器3の構成を示す断面図である。図4は、図2に示す室外熱交換器4の構成を示す断面図である。
<Outdoor heat exchanger 3 and outdoor heat exchanger 4>
FIG. 2 is a perspective view showing the connection state of the outdoor heat exchanger 3 and the outdoor heat exchanger 4 in the refrigeration cycle device 100 according to the first embodiment. In FIG. 2, the refrigeration cycle device 100 is shown in a cooling operation state. In FIG. 2, a refrigerant flow path in which the outdoor heat exchanger 3 and the outdoor heat exchanger 4 are connected in series is expressed by a simple connection using refrigerant piping. In FIG. 2, solid arrows indicate the direction in which the refrigerant flows, and white arrows indicate the direction of the wind generated by the outdoor blower 9 (ie, the airflow direction). FIG. 3 is a sectional view showing the configuration of the outdoor heat exchanger 3 shown in FIG. 2. FIG. 4 is a sectional view showing the configuration of the outdoor heat exchanger 4 shown in FIG. 2. As shown in FIG.
 <室外熱交換器3の構成>
 まず、室外熱交換器3の構成について説明する。図2および図3に示すように、室外熱交換器3は、冷媒分配器31、冷媒分配器32、複数の熱交換体33、折り返しヘッダ34によって構成されている。図2に示すように、冷媒分配器31には冷媒配管35が接続され、冷媒分配器32には冷媒配管36が接続されている。
<Configuration of outdoor heat exchanger 3>
First, the configuration of the outdoor heat exchanger 3 will be explained. As shown in FIGS. 2 and 3, the outdoor heat exchanger 3 includes a refrigerant distributor 31, a refrigerant distributor 32, a plurality of heat exchangers 33, and a folded header 34. As shown in FIG. 2, a refrigerant pipe 35 is connected to the refrigerant distributor 31, and a refrigerant pipe 36 is connected to the refrigerant distributor 32.
 複数の熱交換体33は、図3に示すように、熱交換体33Aと熱交換体33Bとを含んでいる。熱交換体33Aと熱交換体33Bとは、気流方向に並んで配置され、互いに対向している。言い換えると、熱交換体33Aと熱交換体33Bとは、室外送風機9によって発生する風の向きに沿う方向に、層をなすように2つ配置されている。以降、風上側に配置された熱交換体33を熱交換体33B、風下側に配置された熱交換体33を熱交換体33Aと呼称する。熱交換体33Aおよび熱交換体33Bの構成は基本的に同じであるため、以下では、熱交換体33として纏めて説明する。 As shown in FIG. 3, the plurality of heat exchange bodies 33 include a heat exchange body 33A and a heat exchange body 33B. The heat exchanger 33A and the heat exchanger 33B are arranged side by side in the airflow direction and face each other. In other words, the heat exchanger 33A and the heat exchanger 33B are arranged in two layers in a direction along the direction of the wind generated by the outdoor blower 9. Hereinafter, the heat exchange body 33 disposed on the windward side will be referred to as a heat exchange body 33B, and the heat exchange body 33 disposed on the leeward side will be referred to as a heat exchange body 33A. Since the configurations of the heat exchange body 33A and the heat exchange body 33B are basically the same, they will be collectively described as the heat exchange body 33 below.
 熱交換体33は、複数の扁平管37および複数のフィン38から構成されている。複数の扁平管37は、互いに間隔を空けて、水平方向(すなわち、X方向)に並んで配置されている。これにより、室外送風機9によって発生した風が、図2の白抜き矢印の方向に、隣り合う扁平管37の間を流れる。複数の扁平管37の管軸方向はZ方向である。冷媒は、扁平管37内でZ方向に流れる。扁平管37内を冷媒が流れることによって、冷媒と空気との間で熱交換が行われる。 The heat exchange body 33 is composed of a plurality of flat tubes 37 and a plurality of fins 38. The plurality of flat tubes 37 are arranged side by side in the horizontal direction (namely, the X direction) at intervals from each other. Thereby, the wind generated by the outdoor blower 9 flows between adjacent flat tubes 37 in the direction of the white arrow in FIG. The tube axis direction of the plurality of flat tubes 37 is the Z direction. The refrigerant flows in the Z direction within the flat tube 37. As the refrigerant flows through the flat tube 37, heat exchange is performed between the refrigerant and the air.
 フィン38は、X方向に隣り合う扁平管37の間に配置されている。フィン38は、それらの隣り合う扁平管37の側面部に接合され、扁平管37に伝熱する。なお、フィン38は、空気と冷媒との熱交換効率を向上させるものであり、たとえばコルゲートフィンが用いられる。しかし、フィン38は、コルゲートフィンに限定されるものではなく、例えば平板状のフィンでもよい。また、扁平管37の表面で空気と冷媒との熱交換が行われるため、フィン38は必ずしも設けなくてもよい。複数の熱交換体33がフィン38を有する場合、それらの複数の熱交換体33の間で、同じフィン38を共有しても良い。 The fins 38 are arranged between adjacent flat tubes 37 in the X direction. The fins 38 are joined to the side surfaces of the adjacent flat tubes 37 and conduct heat to the flat tubes 37 . Note that the fins 38 improve heat exchange efficiency between air and refrigerant, and are, for example, corrugated fins. However, the fins 38 are not limited to corrugated fins, and may be flat fins, for example. Further, since heat exchange between the air and the refrigerant is performed on the surface of the flat tube 37, the fins 38 do not necessarily need to be provided. When a plurality of heat exchangers 33 have fins 38, the same fins 38 may be shared between the plurality of heat exchangers 33.
 図5は、図3に示す室外熱交換器3に設けられた冷媒分配器31の構成を示す断面図である。図6は、図3に示す室外熱交換器3に設けられた冷媒分配器32の構成を示す断面図である。 FIG. 5 is a sectional view showing the configuration of the refrigerant distributor 31 provided in the outdoor heat exchanger 3 shown in FIG. 3. FIG. 6 is a sectional view showing the configuration of the refrigerant distributor 32 provided in the outdoor heat exchanger 3 shown in FIG.
 図3に示すように、熱交換体33Aが有する複数の扁平管37は、管軸方向の両端に、管端部37aおよび37bを有している。管端部37aおよび37bのうち、下側の管端部37aの下方には、冷媒分配器31が設けられている。冷媒分配器31は、図5に示すように、外管51および接続管52から構成されている。冷媒分配器31は、一重管構造を有している。外管51は、円管から構成され、管軸方向はX方向である。外管51の上面部には、複数の扁平管挿入孔51eが設けられている。複数の扁平管挿入孔51eは、互いに間隔を空けて、X方向に並んで配置されている。複数の扁平管挿入孔51eは、外管51の上面部を貫通する貫通孔である。各扁平管37の管端部37aは、直接、外管51の扁平管挿入孔51eに挿入されている。外管51は、X方向の両端に、管端部51aおよび51bを有している。管端部51aおよび51bのうち、管端部51a側には閉止板51cが設けられ、管端部51b側には閉止板51dが設けられている。管端部51aおよび51bは、それぞれ、閉止板51cおよび51dにより閉状態となっており、開口していない。 As shown in FIG. 3, the plurality of flat tubes 37 included in the heat exchanger 33A have tube end portions 37a and 37b at both ends in the tube axis direction. A refrigerant distributor 31 is provided below the lower tube end 37a of the tube ends 37a and 37b. The refrigerant distributor 31 is composed of an outer tube 51 and a connecting tube 52, as shown in FIG. The refrigerant distributor 31 has a single pipe structure. The outer tube 51 is composed of a circular tube, and the tube axis direction is the X direction. A plurality of flat tube insertion holes 51e are provided in the upper surface of the outer tube 51. The plurality of flat tube insertion holes 51e are arranged side by side in the X direction at intervals from each other. The plurality of flat tube insertion holes 51e are through holes that penetrate the upper surface of the outer tube 51. The tube end portion 37a of each flat tube 37 is directly inserted into the flat tube insertion hole 51e of the outer tube 51. The outer tube 51 has tube ends 51a and 51b at both ends in the X direction. Of the tube ends 51a and 51b, a closing plate 51c is provided on the tube end 51a side, and a closing plate 51d is provided on the tube end 51b side. The tube ends 51a and 51b are closed by closing plates 51c and 51d, respectively, and are not open.
 接続管52は、図5に示すように、外管51に接続されている。接続管52の管軸方向はZ方向である。接続管52の下端部52aは、外管51に挿入されている。接続管52の内部空間と、外管51の内部空間と、は、互いに連通している。上述したように、冷媒分配器31は、図2に示すように、冷媒配管35に接続されている。具体的には、冷媒分配器31の外管51は、接続管52を介して、冷媒配管35に接続されている。冷媒分配器31の内部は、図5に示すように、接続管52の内部空間と外管51の内部空間とから構成された、1つの空間になっている。冷媒配管35から冷媒分配器31の内部の空間に流入した冷媒は、直接、熱交換体33Aが有する複数の扁平管37に分配される。 The connecting tube 52 is connected to the outer tube 51, as shown in FIG. The tube axis direction of the connecting tube 52 is the Z direction. A lower end portion 52a of the connecting tube 52 is inserted into the outer tube 51. The internal space of the connecting tube 52 and the internal space of the outer tube 51 communicate with each other. As mentioned above, the refrigerant distributor 31 is connected to the refrigerant pipe 35, as shown in FIG. Specifically, the outer pipe 51 of the refrigerant distributor 31 is connected to the refrigerant pipe 35 via the connecting pipe 52. As shown in FIG. 5, the inside of the refrigerant distributor 31 is one space composed of an internal space of the connecting pipe 52 and an internal space of the outer pipe 51. The refrigerant that has flowed into the internal space of the refrigerant distributor 31 from the refrigerant pipe 35 is directly distributed to the plurality of flat tubes 37 included in the heat exchanger 33A.
 なお、ここでは、外管51を1本の円筒の両端に閉止板51cおよび51dで蓋をした形状で図示しているが、外管51の断面形状は、円形である必要は無く、矩形または楕円形であっても良い。また、外管51は、1つの筒状の部品で形成する必要は無い。外管51は、例えば、扁平管37が挿入される上側の半分と、反対側(すなわち、下側)の半分と、で2分割されていて、上下の部品を接合することで、外管51を形成しても良い。以降に記載する外管53、外管57、外管61についても同様である。 Although the outer tube 51 is shown here as a single cylinder with both ends covered with closing plates 51c and 51d, the cross-sectional shape of the outer tube 51 does not have to be circular, and may be rectangular or rectangular. It may be oval. Further, the outer tube 51 does not need to be formed from one cylindrical component. The outer tube 51 is divided into two parts, for example, an upper half into which the flat tube 37 is inserted and an opposite (i.e., lower) half, and by joining the upper and lower parts, the outer tube 51 may be formed. The same applies to the outer tube 53, outer tube 57, and outer tube 61 described below.
 熱交換体33Aの扁平管37の管端部37bの上方、および、熱交換体33Bの扁平管37の管端部37bの上方には、折り返しヘッダ34が設けられている。このように、熱交換体33Aは、折り返しヘッダ34を介して、熱交換体33Bに接続されている。折り返しヘッダ34は、熱交換体33Aが有する複数の扁平管37から流入した冷媒を、熱交換体33Bが有する複数の扁平管37に流出させることで、冷媒の下方から上方への流れを上方から下方への流れへと折り返させる機能を持つ。具体的には、冷媒は、熱交換体33Aが有する複数の扁平管37においては、Z方向の下方から上方に向かって流れる。一方、冷媒は、熱交換体33Bが有する複数の扁平管37においては、Z方向の上方から下方に向かって流れる。このように、折り返しヘッダ34によって、冷媒の流れる方向が切り替えられる。ここでは、風下側の扁平管37と風上側の扁平管37とが折り返しヘッダ34によって接続されている例を示しているが、その場合に限定されない。扁平管37は、風上側と風下側とに分かれていなくてもよく、1本の扁平管から構成されていてもよい。扁平管37が1本の扁平管から構成されている場合については、図19を用いて、実施の形態2で後述する。 A folded header 34 is provided above the tube end 37b of the flat tube 37 of the heat exchanger 33A and above the tube end 37b of the flat tube 37 of the heat exchanger 33B. In this way, the heat exchange body 33A is connected to the heat exchange body 33B via the folded header 34. The folded header 34 allows the refrigerant flowing from the plurality of flat tubes 37 of the heat exchanger 33A to flow out into the plurality of flat tubes 37 of the heat exchanger 33B, thereby controlling the flow of the refrigerant from the bottom to the top. It has the function of turning the flow downward. Specifically, the refrigerant flows from the bottom to the top in the Z direction in the plurality of flat tubes 37 included in the heat exchange body 33A. On the other hand, the refrigerant flows from above to below in the Z direction in the plurality of flat tubes 37 included in the heat exchange body 33B. In this way, the direction in which the refrigerant flows is switched by the folded header 34. Although an example is shown here in which the flat tube 37 on the leeward side and the flat tube 37 on the windward side are connected by the folded header 34, the present invention is not limited to that case. The flat tube 37 does not need to be divided into an upwind side and a leeward side, and may be composed of a single flat tube. The case where the flat tube 37 is composed of one flat tube will be described later in Embodiment 2 using FIG. 19.
 図3に示すように、熱交換体33Bが有する複数の扁平管37の下側の管端部37aの下方には、冷媒分配器32が設けられている。冷媒分配器32は、図6に示すように、外管53、内管54、および、接続管56から構成されている。冷媒分配器32は、二重管構造を有している。外管53は、円管から構成され、管軸方向はX方向である。外管53の上面部には、複数の扁平管挿入孔53eが設けられている。複数の扁平管挿入孔53eは、互いに間隔を空けて、X方向に並んで配置されている。複数の扁平管挿入孔53eは、外管53の上面部を貫通する貫通孔である。各扁平管37の管端部37aは、直接、外管53の扁平管挿入孔53eに挿入されている。外管53の管端部53aおよび53bのうち、管端部53a側には閉止板53cが設けられ、管端部53b側には閉止板53dが設けられている。管端部53aおよび53bは、それぞれ、閉止板53cおよび53dにより閉状態となっており、開口していない。 As shown in FIG. 3, a refrigerant distributor 32 is provided below the lower tube ends 37a of the plurality of flat tubes 37 included in the heat exchanger 33B. As shown in FIG. 6, the refrigerant distributor 32 includes an outer pipe 53, an inner pipe 54, and a connecting pipe 56. The refrigerant distributor 32 has a double pipe structure. The outer tube 53 is composed of a circular tube, and the tube axis direction is the X direction. A plurality of flat tube insertion holes 53e are provided in the upper surface of the outer tube 53. The plurality of flat tube insertion holes 53e are arranged side by side in the X direction at intervals. The plurality of flat tube insertion holes 53e are through holes that penetrate the upper surface of the outer tube 53. The tube end portion 37a of each flat tube 37 is directly inserted into the flat tube insertion hole 53e of the outer tube 53. Of the tube ends 53a and 53b of the outer tube 53, a closing plate 53c is provided on the tube end 53a side, and a closing plate 53d is provided on the tube end 53b side. The tube ends 53a and 53b are closed by closing plates 53c and 53d, respectively, and are not open.
 接続管56は、図6に示すように、外管53に接続されている。接続管56の管軸方向はZ方向である。接続管56の下端部56aは、外管53に挿入されている。接続管56の内部空間と、外管53の管端部53a側の内部空間である第1の内部空間53gと、は、互いに連通している。第1の内部空間53gの断面形状は、円形である。上述したように、冷媒分配器32は、図2に示すように、冷媒配管36に接続されている。具体的には、冷媒分配器32の外管53は、接続管56を介して、冷媒配管36に接続されている。 The connecting pipe 56 is connected to the outer pipe 53, as shown in FIG. The tube axis direction of the connecting tube 56 is the Z direction. A lower end portion 56a of the connecting tube 56 is inserted into the outer tube 53. The internal space of the connecting tube 56 and the first internal space 53g, which is the internal space on the tube end 53a side of the outer tube 53, communicate with each other. The cross-sectional shape of the first internal space 53g is circular. As mentioned above, the refrigerant distributor 32 is connected to the refrigerant pipe 36, as shown in FIG. Specifically, the outer pipe 53 of the refrigerant distributor 32 is connected to the refrigerant pipe 36 via a connecting pipe 56.
 また、冷媒分配器32は二重管構造となっており、外管53の内側には、内管54が配置されている。外管53の内壁53fと、内管54の外壁54fと、の間には、空隙があり、当該空隙は、外管53の第2の内部空間53hを形成している。第2の内部空間53hの断面形状は、ドーナツ状(すなわち、円環状)である。内管54は、側面部に、複数並設された冷媒流出孔54cを備えている。内管54は、仕切り板55を介して、外管53と接合されている。仕切り板55は、外管53の第1の内部空間53gと、閉止板53dと、の間に配置されている。仕切り板55は、第1の内部空間53gと第2の内部空間53hとを区分している。仕切り板55には、中央部に、貫通孔55aが形成されている。内管54の管端部54aおよび54bのうち、管端部54aが貫通孔55aに嵌合されている。管端部54aは、第1の内部空間53gに向かって開口している。そのため、第1の内部空間53gと、内管54の内部空間と、は、互いに連通している。また、内管54の管端部54bは、閉止板53dに接合されていて、閉状態になっている。仕切り板55の外周部は、外管53の内壁53fに接合されている。仕切り板55は、上述したように、外管53の内壁53fおよび内管54の外壁54fに接合されている。そのため、冷媒分配器32の内部を流れる冷媒は、接続管56が接続されている管端部53a側の第1の内部空間53gと、反対側の管端部53b側の閉止板53dと、の間を、内管54の内部空間を介してのみ、通過することができる。 Furthermore, the refrigerant distributor 32 has a double pipe structure, and an inner pipe 54 is arranged inside the outer pipe 53. There is a gap between the inner wall 53f of the outer tube 53 and the outer wall 54f of the inner tube 54, and the gap forms a second internal space 53h of the outer tube 53. The cross-sectional shape of the second internal space 53h is donut-shaped (that is, annular). The inner tube 54 includes a plurality of refrigerant outlet holes 54c arranged in parallel on the side surface. The inner tube 54 is joined to the outer tube 53 via a partition plate 55. The partition plate 55 is arranged between the first internal space 53g of the outer tube 53 and the closing plate 53d. The partition plate 55 divides the first internal space 53g and the second internal space 53h. A through hole 55a is formed in the center of the partition plate 55. Of the tube ends 54a and 54b of the inner tube 54, the tube end 54a is fitted into the through hole 55a. The tube end portion 54a opens toward the first internal space 53g. Therefore, the first internal space 53g and the internal space of the inner tube 54 are in communication with each other. Further, the tube end portion 54b of the inner tube 54 is joined to the closing plate 53d, and is in a closed state. The outer peripheral portion of the partition plate 55 is joined to the inner wall 53f of the outer tube 53. The partition plate 55 is joined to the inner wall 53f of the outer tube 53 and the outer wall 54f of the inner tube 54, as described above. Therefore, the refrigerant flowing inside the refrigerant distributor 32 flows between the first internal space 53g on the side of the pipe end 53a to which the connecting pipe 56 is connected and the closing plate 53d on the side of the opposite pipe end 53b. It is possible to pass between them only via the interior space of the inner tube 54.
 <室外熱交換器4の構成>
 次に、室外熱交換器4の構成について説明する。図2および図4に示すように、室外熱交換器4は、冷媒分配器41、冷媒分配器42、複数の熱交換体43、折り返しヘッダ44によって構成されている。図2に示すように、冷媒分配器41には冷媒配管36が接続され、冷媒分配器42には冷媒配管45が接続されている。
<Configuration of outdoor heat exchanger 4>
Next, the configuration of the outdoor heat exchanger 4 will be explained. As shown in FIGS. 2 and 4, the outdoor heat exchanger 4 includes a refrigerant distributor 41, a refrigerant distributor 42, a plurality of heat exchangers 43, and a folded header 44. As shown in FIG. 2, a refrigerant pipe 36 is connected to the refrigerant distributor 41, and a refrigerant pipe 45 is connected to the refrigerant distributor 42.
 複数の熱交換体43は、図4に示すように、熱交換体43Aと熱交換体43Bとを含んでいる。熱交換体43Aと熱交換体43Bとは、気流方向に並んで配置され、互いに対向している。言い換えると、熱交換体43Aと熱交換体43Bとは、室外送風機9によって発生する風の向きに沿う方向に、層をなすように2つ配置されている。以降、風上側に配置された熱交換体43を熱交換体43B、風下側に配置された熱交換体43を熱交換体43Aと呼称する。熱交換体43Aおよび熱交換体43Bの構成は基本的に同じであるため、以下では、熱交換体43として纏めて説明する。 As shown in FIG. 4, the plurality of heat exchange bodies 43 include a heat exchange body 43A and a heat exchange body 43B. The heat exchange body 43A and the heat exchange body 43B are arranged side by side in the airflow direction and face each other. In other words, the heat exchanger 43A and the heat exchanger 43B are arranged in two layers in a direction along the direction of the wind generated by the outdoor blower 9. Hereinafter, the heat exchange body 43 disposed on the windward side will be referred to as a heat exchange body 43B, and the heat exchange body 43 disposed on the leeward side will be referred to as a heat exchange body 43A. Since the configurations of the heat exchange body 43A and the heat exchange body 43B are basically the same, they will be collectively described as the heat exchange body 43 below.
 熱交換体43は、複数の扁平管47および複数のフィン48から構成されている。複数の扁平管47は、互いに間隔を空けて、水平方向(すなわち、X方向)に並んで配置されている。これにより、室外送風機9によって発生した風が、図2の白抜き矢印の方向に、隣り合う扁平管47の間を流れる。複数の扁平管47の管軸方向はZ方向である。冷媒は、扁平管47内でZ方向に流れる。扁平管47内を冷媒が流れることによって、冷媒と空気との間で熱交換が行われる。 The heat exchange body 43 is composed of a plurality of flat tubes 47 and a plurality of fins 48. The plurality of flat tubes 47 are arranged in parallel in the horizontal direction (that is, in the X direction) at intervals from each other. Thereby, the wind generated by the outdoor blower 9 flows between adjacent flat tubes 47 in the direction of the white arrow in FIG. The tube axis direction of the plurality of flat tubes 47 is the Z direction. The refrigerant flows in the Z direction within the flat tube 47. As the refrigerant flows through the flat tube 47, heat exchange is performed between the refrigerant and the air.
 フィン48は、X方向に隣り合う扁平管47の間に配置されている。フィン48は、それらの隣り合う扁平管47の側面部に接合され、扁平管47に伝熱する。なお、フィン48は、空気と冷媒との熱交換効率を向上させるものであり、たとえばコルゲートフィンが用いられる。しかし、フィン48は、コルゲートフィンに限定されるものではなく、例えば平板状のフィンでもよい。また、扁平管47の表面で空気と冷媒との熱交換が行われるため、フィン48は必ずしも設けなくてもよい。複数の熱交換体43がフィン48を有する場合、それらの複数の熱交換体43の間で、同じフィン48を共有しても良い。 The fins 48 are arranged between adjacent flat tubes 47 in the X direction. The fins 48 are joined to the side surfaces of the adjacent flat tubes 47 and conduct heat to the flat tubes 47 . Note that the fins 48 improve the heat exchange efficiency between the air and the refrigerant, and for example, corrugated fins are used. However, the fins 48 are not limited to corrugated fins, and may be flat fins, for example. Furthermore, since heat exchange between the air and the refrigerant is performed on the surface of the flat tube 47, the fins 48 do not necessarily need to be provided. When a plurality of heat exchangers 43 have fins 48, the same fins 48 may be shared between the plurality of heat exchangers 43.
 図7は、図4に示す室外熱交換器4に設けられた冷媒分配器41の構成を示す断面図である。図8は、図4に示す室外熱交換器4に設けられた冷媒分配器42の構成を示す断面図である。 FIG. 7 is a sectional view showing the configuration of the refrigerant distributor 41 provided in the outdoor heat exchanger 4 shown in FIG. 4. FIG. 8 is a sectional view showing the configuration of the refrigerant distributor 42 provided in the outdoor heat exchanger 4 shown in FIG. 4.
 図4に示すように、熱交換体43Aが有する複数の扁平管47の管端部47aおよび47bのうち、下側の管端部47aの下方には、冷媒分配器41が設けられている。冷媒分配器41は、図7に示すように、外管57、内管58、および、接続管60から構成されている。冷媒分配器41は、二重管構造を有している。外管57は、円管から構成され、管軸方向はX方向である。外管57の上面部には、複数の扁平管挿入孔57eが設けられている。複数の扁平管挿入孔57eは、互いに間隔を空けて、X方向に並んで配置されている。複数の扁平管挿入孔57eは、外管57の上面部を貫通する貫通孔である。各扁平管47の管端部47aは、直接、外管57の扁平管挿入孔57eに挿入されている。外管57の管端部57aおよび57bのうち、管端部57a側には閉止板57cが設けられ、管端部57b側には閉止板57dが設けられている。管端部57aおよび57bは、それぞれ、閉止板57cおよび57dにより閉状態となっており、開口していない。 As shown in FIG. 4, a refrigerant distributor 41 is provided below the lower tube end 47a of the tube ends 47a and 47b of the plurality of flat tubes 47 included in the heat exchanger 43A. The refrigerant distributor 41 is composed of an outer pipe 57, an inner pipe 58, and a connecting pipe 60, as shown in FIG. The refrigerant distributor 41 has a double pipe structure. The outer tube 57 is composed of a circular tube, and the tube axis direction is the X direction. A plurality of flat tube insertion holes 57e are provided in the upper surface of the outer tube 57. The plurality of flat tube insertion holes 57e are arranged side by side in the X direction at intervals from each other. The plurality of flat tube insertion holes 57e are through holes that penetrate the upper surface of the outer tube 57. The tube end portion 47a of each flat tube 47 is directly inserted into the flat tube insertion hole 57e of the outer tube 57. Of the tube ends 57a and 57b of the outer tube 57, a closing plate 57c is provided on the tube end 57a side, and a closing plate 57d is provided on the tube end 57b side. The tube ends 57a and 57b are closed by closing plates 57c and 57d, respectively, and are not open.
 接続管60は、図7に示すように、外管57に接続されている。接続管60の管軸方向はZ方向である。接続管60の下端部60aは、外管57に挿入されている。接続管60の内部空間と、外管57の管端部57a側の内部空間である第1の内部空間57gと、は、互いに連通している。第1の内部空間57gの断面形状は、円形である。上述したように、冷媒分配器41は、図2に示すように、冷媒配管36に接続されている。具体的には、冷媒分配器41の外管57は、接続管60を介して、冷媒配管36に接続されている。 The connecting tube 60 is connected to the outer tube 57, as shown in FIG. The tube axis direction of the connecting tube 60 is the Z direction. A lower end 60a of the connecting tube 60 is inserted into the outer tube 57. The internal space of the connecting tube 60 and the first internal space 57g, which is the internal space on the tube end 57a side of the outer tube 57, communicate with each other. The cross-sectional shape of the first internal space 57g is circular. As described above, the refrigerant distributor 41 is connected to the refrigerant pipe 36, as shown in FIG. Specifically, the outer pipe 57 of the refrigerant distributor 41 is connected to the refrigerant pipe 36 via the connecting pipe 60.
 また、冷媒分配器41は二重管構造となっており、外管57の内側には、内管58が配置されている。外管57の内壁57fと、内管58の外壁58fと、の間には、空隙があり、当該空隙は、外管57の第2の内部空間57hを形成している。第2の内部空間57hの断面形状は、ドーナツ状(すなわち、円環状)である。内管58は、側面部に、複数並設された冷媒流出孔58cを備えている。冷媒流出孔58cの内径は、図6に示す冷媒流出孔54cの内径および図8に示す冷媒流出孔62cの内径と同じであっても、異なっていてもよい。内管58は、仕切り板59を介して、外管57と接合されている。仕切り板59は、外管57の第1の内部空間57gと、閉止板57dと、の間に配置されている。仕切り板59は、第1の内部空間57gと第2の内部空間57hとを区分している。仕切り板59には、中央部に、貫通孔59aが形成されている。内管58の管端部58aおよび58bのうち、管端部58aが貫通孔59aに嵌合されている。管端部58aは、第1の内部空間57gに向かって開口している。そのため、第1の内部空間57gと、内管58の内部空間と、は、互いに連通している。また、内管58の管端部58bは、閉止板57dに接合されていて、閉状態になっている。仕切り板59の外周部は、外管57の内壁57fに接合されている。仕切り板59は、上述したように、外管57の内壁57fおよび内管58の外壁58fに接合されている。そのため、冷媒分配器41の内部を流れる冷媒は、接続管60が接続されている管端部57a側の第1の内部空間57gと、反対側の管端部58b側の閉止板57dと、の間を、内管58の内部空間を介してのみ、通過することができる。 Further, the refrigerant distributor 41 has a double pipe structure, and an inner pipe 58 is arranged inside the outer pipe 57. There is a gap between the inner wall 57f of the outer tube 57 and the outer wall 58f of the inner tube 58, and the gap forms a second internal space 57h of the outer tube 57. The cross-sectional shape of the second internal space 57h is donut-shaped (that is, annular). The inner tube 58 includes a plurality of refrigerant outlet holes 58c arranged in parallel on the side surface. The inner diameter of the coolant outlet hole 58c may be the same as or different from the inner diameter of the coolant outlet hole 54c shown in FIG. 6 and the inner diameter of the coolant outlet hole 62c shown in FIG. 8. The inner tube 58 is joined to the outer tube 57 via a partition plate 59. The partition plate 59 is arranged between the first internal space 57g of the outer tube 57 and the closing plate 57d. The partition plate 59 divides the first internal space 57g and the second internal space 57h. A through hole 59a is formed in the center of the partition plate 59. Of the tube ends 58a and 58b of the inner tube 58, the tube end 58a is fitted into the through hole 59a. The tube end portion 58a opens toward the first internal space 57g. Therefore, the first internal space 57g and the internal space of the inner tube 58 are in communication with each other. Further, the tube end portion 58b of the inner tube 58 is joined to the closing plate 57d, and is in a closed state. The outer peripheral portion of the partition plate 59 is joined to the inner wall 57f of the outer tube 57. The partition plate 59 is joined to the inner wall 57f of the outer tube 57 and the outer wall 58f of the inner tube 58, as described above. Therefore, the refrigerant flowing inside the refrigerant distributor 41 flows between the first internal space 57g on the side of the pipe end 57a to which the connecting pipe 60 is connected and the closing plate 57d on the side of the opposite pipe end 58b. It is possible to pass between them only via the interior space of the inner tube 58.
 熱交換体43Aの扁平管47の上側の管端部47bの上方、および、熱交換体43Bの扁平管47の上側の管端部47bの上方には、折り返しヘッダ44が設けられている。このように、熱交換体43Aは、折り返しヘッダ44を介して、熱交換体43Bに接続されている。折り返しヘッダ44は、熱交換体43Aが有する複数の扁平管47から流入した冷媒を、熱交換体43Bが有する複数の扁平管47に流出させることで、冷媒の下方から上方への流れを上方から下方への流れへと折り返させる機能を持つ。具体的には、冷媒は、熱交換体43Aが有する複数の扁平管47においては、Z方向の下方から上方に向かって流れる。一方、冷媒は、熱交換体43Bが有する複数の扁平管47においては、Z方向の上方から下方に向かって流れる。このように、折り返しヘッダ44によって、冷媒の流れる方向が切り替えられる。ここでは、風下側の扁平管47と風上側の扁平管47とが折り返しヘッダ44によって接続されている例を示しているが、その場合に限定されない。扁平管47は、風上側と風下側とに分かれていなくてもよく、1本の扁平管から構成されていてもよい。扁平管47が1本の扁平管から構成されている場合については、図19を用いて、実施の形態2で後述する。 A folded header 44 is provided above the upper tube end 47b of the flat tube 47 of the heat exchanger 43A and above the upper tube end 47b of the flat tube 47 of the heat exchanger 43B. In this way, the heat exchange body 43A is connected to the heat exchange body 43B via the folded header 44. The folded header 44 allows the refrigerant flowing from the plurality of flat tubes 47 of the heat exchanger 43A to flow out into the plurality of flat tubes 47 of the heat exchanger 43B, thereby controlling the flow of the refrigerant from the bottom to the top. It has the function of turning the flow downward. Specifically, the refrigerant flows from the bottom to the top in the Z direction in the plurality of flat tubes 47 included in the heat exchange body 43A. On the other hand, the refrigerant flows from above to below in the Z direction in the plurality of flat tubes 47 included in the heat exchange body 43B. In this way, the direction in which the refrigerant flows is switched by the folded header 44. Although an example is shown here in which the flat tube 47 on the leeward side and the flat tube 47 on the windward side are connected by the folded header 44, the present invention is not limited to that case. The flat tube 47 does not need to be divided into an upwind side and a leeward side, and may be composed of a single flat tube. The case where the flat tube 47 is composed of one flat tube will be described later in Embodiment 2 using FIG. 19.
 図4に示すように、熱交換体43Bが有する複数の扁平管47の管端部47aおよび47bのうち、下側の管端部47aの下方には、冷媒分配器42が設けられている。冷媒分配器42は、図8に示すように、外管61、内管62、および、接続管64から構成されている。冷媒分配器42は、二重管構造を有している。外管61は、円管から構成され、管軸方向はX方向である。外管61の上面部には、複数の扁平管挿入孔61eが設けられている。複数の扁平管挿入孔61eは、互いに間隔を空けて、X方向に並んで配置されている。複数の扁平管挿入孔61eは、外管61の上面部を貫通する貫通孔である。各扁平管47の管端部47aは、直接、外管61の扁平管挿入孔61eに挿入されている。外管61の管端部61aおよび61bのうち、管端部61a側には閉止板61cが設けられ、管端部61b側には閉止板61dが設けられている。管端部61aおよび61bは、それぞれ、閉止板61cおよび61dにより閉状態となっており、開口していない。 As shown in FIG. 4, a refrigerant distributor 42 is provided below the lower tube end 47a of the tube ends 47a and 47b of the plurality of flat tubes 47 included in the heat exchanger 43B. The refrigerant distributor 42 is composed of an outer pipe 61, an inner pipe 62, and a connecting pipe 64, as shown in FIG. The refrigerant distributor 42 has a double pipe structure. The outer tube 61 is composed of a circular tube, and the tube axis direction is the X direction. A plurality of flat tube insertion holes 61e are provided in the upper surface of the outer tube 61. The plurality of flat tube insertion holes 61e are arranged side by side in the X direction at intervals from each other. The plurality of flat tube insertion holes 61e are through holes that penetrate the upper surface of the outer tube 61. The tube end portion 47a of each flat tube 47 is directly inserted into the flat tube insertion hole 61e of the outer tube 61. Of the tube ends 61a and 61b of the outer tube 61, a closing plate 61c is provided on the tube end 61a side, and a closing plate 61d is provided on the tube end 61b side. The tube ends 61a and 61b are closed by closing plates 61c and 61d, respectively, and are not open.
 接続管64は、図8に示すように、外管61に接続されている。接続管64の管軸方向はZ方向である。接続管64の下端部64aは、外管61に挿入されている。接続管64の内部空間と、外管61の管端部61a側の内部空間である第1の内部空間61gと、は、互いに連通している。第1の内部空間61gの断面形状は、円形である。上述したように、冷媒分配器42は、図2に示すように、冷媒配管45に接続されている。具体的には、冷媒分配器42の外管61は、接続管64を介して、冷媒配管45に接続されている。 The connecting tube 64 is connected to the outer tube 61, as shown in FIG. The tube axis direction of the connecting tube 64 is the Z direction. A lower end 64a of the connecting tube 64 is inserted into the outer tube 61. The internal space of the connecting tube 64 and the first internal space 61g, which is the internal space on the tube end 61a side of the outer tube 61, communicate with each other. The cross-sectional shape of the first internal space 61g is circular. As described above, the refrigerant distributor 42 is connected to the refrigerant pipe 45, as shown in FIG. Specifically, the outer pipe 61 of the refrigerant distributor 42 is connected to the refrigerant pipe 45 via the connecting pipe 64.
 また、冷媒分配器42は二重管構造となっており、外管61の内側には、内管62が配置されている。外管61の内壁61fと、内管62の外壁62fと、の間には、空隙があり、当該空隙は、外管61の第2の内部空間61hを形成している。第2の内部空間61hの断面形状は、ドーナツ状(すなわち、円環状)である。内管62は、側面部に、複数並設された冷媒流出孔62cを備えている。内管62は、仕切り板63を介して、外管61と接合されている。仕切り板63は、外管61の第1の内部空間61gと、閉止板61dと、の間に配置されている。仕切り板63は、第1の内部空間61gと第2の内部空間61hとを区分している。仕切り板63には、中央部に、貫通孔63aが形成されている。内管62の管端部62aおよび62bのうち、管端部62aが貫通孔63aに嵌合されている。管端部62aは、第1の内部空間61gに向かって開口している。そのため、第1の内部空間61gと、内管62の内部空間と、は、互いに連通している。また、内管62の管端部62bは、閉止板61dに接合されていて、閉状態になっている。仕切り板63の外周部は、外管61の内壁61fに接合されている。仕切り板63は、上述したように、外管61の内壁61fおよび内管62の外壁62fに接合されている。そのため、冷媒分配器42の内部を流れる冷媒は、接続管64が接続されている管端部61a側の第1の内部空間61gと、反対側の管端部61b側の閉止板61dと、の間を、内管62の内部空間を介してのみ、通過することができる。 Furthermore, the refrigerant distributor 42 has a double pipe structure, and an inner pipe 62 is arranged inside the outer pipe 61. There is a gap between the inner wall 61f of the outer tube 61 and the outer wall 62f of the inner tube 62, and the gap forms a second internal space 61h of the outer tube 61. The cross-sectional shape of the second internal space 61h is donut-shaped (that is, annular). The inner tube 62 includes a plurality of refrigerant outlet holes 62c arranged in parallel on the side surface. The inner tube 62 is joined to the outer tube 61 via a partition plate 63. The partition plate 63 is arranged between the first internal space 61g of the outer tube 61 and the closing plate 61d. The partition plate 63 divides the first internal space 61g and the second internal space 61h. A through hole 63a is formed in the center of the partition plate 63. Of the tube ends 62a and 62b of the inner tube 62, the tube end 62a is fitted into the through hole 63a. The tube end portion 62a opens toward the first internal space 61g. Therefore, the first internal space 61g and the internal space of the inner tube 62 are in communication with each other. Further, the tube end portion 62b of the inner tube 62 is joined to the closing plate 61d, and is in a closed state. The outer peripheral portion of the partition plate 63 is joined to the inner wall 61f of the outer tube 61. The partition plate 63 is joined to the inner wall 61f of the outer tube 61 and the outer wall 62f of the inner tube 62, as described above. Therefore, the refrigerant flowing inside the refrigerant distributor 42 flows between the first internal space 61g on the side of the pipe end 61a to which the connecting pipe 64 is connected and the closing plate 61d on the side of the opposite pipe end 61b. It is possible to pass between them only through the interior space of the inner tube 62.
 このように、冷媒分配器41および42の構成は、図6に示す冷媒分配器32と同様であり、それぞれ、外管57および61、内管58および62、仕切り板59および63、および、接続管60および64から構成されている。冷媒分配器41には、冷媒配管36が接続管60を介して接続され、冷媒分配器42には、冷媒配管45が接続管64を介して接続されている。 In this way, the configurations of the refrigerant distributors 41 and 42 are similar to the refrigerant distributor 32 shown in FIG. It consists of tubes 60 and 64. A refrigerant pipe 36 is connected to the refrigerant distributor 41 via a connecting pipe 60, and a refrigerant pipe 45 is connected to the refrigerant distributor 42 via a connecting pipe 64.
 なお、室外熱交換器4は「熱交換器」と呼ばれることがある。熱交換体43は「第1熱交換体」と呼ばれることがある。扁平管47は「第1扁平管」と呼ばれることがある。さらに、冷媒分配器41に接続された扁平管47は「風下側第1扁平管」と呼ばれることがあり、冷媒分配器42に接続された扁平管47は「風上側第1扁平管」と呼ばれることがある。冷媒分配器41は「第1冷媒分配器」と呼ばれることがあり、冷媒分配器42は「第2冷媒分配器」と呼ばれることがある。また、外管57は「第1外管」、内管58は「第1内管」、冷媒流出孔58cは「第1冷媒流出孔」、仕切り板59は「第1仕切り板」と呼ばれることがある。また、外管61は「第2外管」、内管62は「第2内管」、冷媒流出孔62cは「第2冷媒流出孔」、仕切り板63は「第2仕切り板」と呼ばれることがある。さらに、折り返しヘッダ44は「第1折り返しヘッダ」と呼ばれることがある。また、冷媒分配器41に挿入された扁平管47の管端部47aは「第1扁平管の一端部」と呼ばれることがあり、冷媒分配器42に挿入された扁平管47の管端部47aは「第1扁平管の他端部」と呼ばれることがある。 Note that the outdoor heat exchanger 4 is sometimes called a "heat exchanger". The heat exchange body 43 is sometimes referred to as a "first heat exchange body." The flat tube 47 is sometimes called a "first flat tube." Further, the flat tube 47 connected to the refrigerant distributor 41 is sometimes referred to as a "first flat tube on the leeward side", and the flat tube 47 connected to the refrigerant distributor 42 is sometimes referred to as a "first flat tube on the windward side". Sometimes. Refrigerant distributor 41 may be referred to as a "first refrigerant distributor," and refrigerant distributor 42 may be referred to as a "second refrigerant distributor." Further, the outer tube 57 is referred to as a "first outer tube," the inner tube 58 is referred to as a "first inner tube," the refrigerant outlet hole 58c is referred to as a "first refrigerant outlet hole," and the partition plate 59 is referred to as a "first partition plate." There is. Further, the outer tube 61 is referred to as a "second outer tube," the inner tube 62 is referred to as a "second inner tube," the refrigerant outlet hole 62c is referred to as a "second refrigerant outlet hole," and the partition plate 63 is referred to as a "second partition plate." There is. Further, the wrap header 44 is sometimes referred to as a "first wrap header." Furthermore, the tube end 47a of the flat tube 47 inserted into the refrigerant distributor 41 is sometimes referred to as "one end of the first flat tube", and the tube end 47a of the flat tube 47 inserted into the refrigerant distributor 42 is referred to as "one end of the first flat tube". is sometimes referred to as "the other end of the first flat tube."
 また、室外熱交換器3は「第2熱交換器」と呼ばれることがある。熱交換体33は「第2熱交換体」と呼ばれることがある。扁平管37は、「第2扁平管」と呼ばれることがある。さらに、冷媒分配器31に接続された扁平管37は「風下側第2扁平管」と呼ばれることがあり、冷媒分配器32に接続された扁平管37は「風上側第2扁平管」と呼ばれることがある。冷媒分配器31は「第3冷媒分配器」と呼ばれることがあり、冷媒分配器32は「第4冷媒分配器」と呼ばれることがある。また、外管51は「第3外管」と呼ばれることがある。外管53は「第4外管」、内管54は「第4内管」、冷媒流出孔54cは「第4冷媒流出孔」、仕切り板55は「第4仕切り板」と呼ばれることがある。さらに、折り返しヘッダ34は「第2折り返しヘッダ」と呼ばれることがある。また、冷媒分配器31に挿入された扁平管37の管端部37aは「第2扁平管の一端部」と呼ばれることがあり、冷媒分配器32に挿入された扁平管37の管端部37aは「第2扁平管の他端部」と呼ばれることがある。 Additionally, the outdoor heat exchanger 3 is sometimes called a "second heat exchanger". The heat exchange body 33 is sometimes referred to as a "second heat exchange body." The flat tube 37 is sometimes called a "second flat tube." Further, the flat tube 37 connected to the refrigerant distributor 31 is sometimes referred to as a "second flat tube on the leeward side", and the flat tube 37 connected to the refrigerant distributor 32 is sometimes referred to as a "second flat tube on the windward side". Sometimes. The refrigerant distributor 31 is sometimes called a "third refrigerant distributor," and the refrigerant distributor 32 is sometimes called a "fourth refrigerant distributor." Further, the outer tube 51 is sometimes referred to as a "third outer tube." The outer pipe 53 is sometimes called a "fourth outer pipe," the inner pipe 54 is sometimes called a "fourth inner pipe," the refrigerant outlet hole 54c is sometimes called a "fourth refrigerant outlet hole," and the partition plate 55 is sometimes called a "fourth partition plate." . Further, the wrap header 34 is sometimes referred to as a "second wrap header." Further, the tube end 37a of the flat tube 37 inserted into the refrigerant distributor 31 is sometimes referred to as "one end of the second flat tube", and the tube end 37a of the flat tube 37 inserted into the refrigerant distributor 32 is sometimes referred to as "one end of the second flat tube". is sometimes referred to as "the other end of the second flat tube".
 <室外熱交換器3および室外熱交換器4の冷媒の流れ>
 次に室外熱交換器3および室外熱交換器4の冷媒の流れについて説明する。
<Flow of refrigerant in outdoor heat exchanger 3 and outdoor heat exchanger 4>
Next, the flow of refrigerant in the outdoor heat exchanger 3 and the outdoor heat exchanger 4 will be explained.
 <冷房運転状態の冷媒の流れ>
 まず、冷房運転状態における冷媒の流れを説明する。図2においては、上述したように、冷房運転状態の室外熱交換器3と室外熱交換器4との接続状態および冷媒の流れを表す斜視図を示している。図2に示すように、室外熱交換器3および室外熱交換器4が備える4つの接続管、すなわち、接続管52、接続管56、接続管60、接続管64のうち、接続管56と接続管60とが冷媒配管36によって接続されている。接続管52に接続されている冷媒配管35から流入した冷媒は、室外熱交換器3で一部凝縮することで気液二相状態になって、冷媒配管36に流出する。その後、当該冷媒は、気液二相状態で室外熱交換器4に流入する。室外熱交換器4では、はじめに、冷媒分配器41に流入される。冷媒分配器41は二重管構造を持ち、その内管58には、多数の冷媒流出孔58cが並設されている。冷媒分配器41に流入した冷媒は、内管58の内部を通る際に、冷媒流出孔58cから第2の内部空間57hに流出される。その後、第2の内部空間57hから、各扁平管47に分配される。このように、内管58に冷媒流出孔58cを設けたことで、熱交換体43Aの各扁平管47に冷媒が均等に分配される。熱交換体43Aおよび熱交換体43Bの内部で凝縮した冷媒は、冷媒分配器42を通って冷媒配管45に流出する。
<Refrigerant flow during cooling operation>
First, the flow of refrigerant in the cooling operation state will be explained. As described above, FIG. 2 is a perspective view showing the connection state between the outdoor heat exchanger 3 and the outdoor heat exchanger 4 in the cooling operation state and the flow of refrigerant. As shown in FIG. 2, among the four connection pipes provided in the outdoor heat exchanger 3 and the outdoor heat exchanger 4, that is, the connection pipe 52, the connection pipe 56, the connection pipe 60, and the connection pipe 64, the connection pipe 56 and The pipe 60 is connected to the refrigerant pipe 36 . The refrigerant flowing from the refrigerant pipe 35 connected to the connecting pipe 52 is partially condensed in the outdoor heat exchanger 3 to become a gas-liquid two-phase state, and flows out into the refrigerant pipe 36 . Thereafter, the refrigerant flows into the outdoor heat exchanger 4 in a gas-liquid two-phase state. In the outdoor heat exchanger 4, the refrigerant first flows into the refrigerant distributor 41. The refrigerant distributor 41 has a double pipe structure, and the inner pipe 58 thereof has a large number of refrigerant outlet holes 58c arranged in parallel. The refrigerant that has flowed into the refrigerant distributor 41 flows out from the refrigerant outlet hole 58c into the second internal space 57h when passing through the interior of the inner tube 58. Thereafter, it is distributed to each flat tube 47 from the second internal space 57h. In this way, by providing the refrigerant outlet hole 58c in the inner tube 58, the refrigerant is evenly distributed to each flat tube 47 of the heat exchanger 43A. The refrigerant condensed inside the heat exchanger 43A and the heat exchanger 43B flows out into the refrigerant pipe 45 through the refrigerant distributor 42.
 以上のように、冷房運転時において直列冷媒流路を形成した複数の室外熱交換器3および室外熱交換器4のうち、下流側に位置する室外熱交換器4の流入側の冷媒分配器41が二重管構造を有している。冷媒分配器41の内管58は、多数並設された冷媒流出孔58cを有している。これにより、下流側に位置する室外熱交換器4において、気液二相状態の冷媒の熱交換体43Aへの分配の均一性を向上させることができる。 As described above, the refrigerant distributor 41 on the inflow side of the outdoor heat exchanger 4 located on the downstream side among the plurality of outdoor heat exchangers 3 and outdoor heat exchangers 4 forming serial refrigerant flow paths during cooling operation. has a double tube structure. The inner pipe 58 of the refrigerant distributor 41 has a large number of refrigerant outlet holes 58c arranged in parallel. Thereby, in the outdoor heat exchanger 4 located on the downstream side, it is possible to improve the uniformity of distribution of the gas-liquid two-phase refrigerant to the heat exchanger 43A.
 具体的には、冷媒分配器41において、接続管60を介して、外管57の第1の内部空間57gに冷媒が流入する。その後、冷媒は、一旦、第1の内部空間57gから内管58の内部に入り、内管58が有する多数並設された冷媒流出孔58cから外管57の第2の内部空間57hへと流出する。このとき、外管57において、第2の内部空間57hは、第1の内部空間57gに対して仕切り板59によって分離されている。そのため、外管57の第2の内部空間57hに流入した冷媒は、第1の内部空間57g側へは流れずに、扁平管挿入孔57eを介して、外管57に接続された複数の扁平管47に流出する。 Specifically, in the refrigerant distributor 41, the refrigerant flows into the first internal space 57g of the outer tube 57 via the connecting pipe 60. Thereafter, the refrigerant once enters the inner tube 58 from the first inner space 57g, and flows out from the inner tube 58's many juxtaposed refrigerant outlet holes 58c to the second inner space 57h of the outer tube 57. do. At this time, in the outer tube 57, the second internal space 57h is separated from the first internal space 57g by a partition plate 59. Therefore, the refrigerant that has flowed into the second internal space 57h of the outer tube 57 does not flow into the first internal space 57g, but instead passes through the flat tube insertion holes 57e into the plurality of flat tubes connected to the outer tube 57. It flows out into pipe 47.
 ここで、一重管構造と二重管構造とにおける冷媒の分配動作について説明する。図10は、実施の形態1に係る冷凍サイクル装置100に設けられた冷媒分配器31における冷媒の分配動作を模式的に示す図である。図11は、実施の形態1に係る冷凍サイクル装置100に設けられた冷媒分配器32、41、42における冷媒の分配動作を模式的に示す図である。なお、図10および図11においては、分かり易くするために、冷媒流出孔54c、58c、62cが真下に向けて開口している場合を図示している。 Here, the refrigerant distribution operation in the single-pipe structure and the double-pipe structure will be explained. FIG. 10 is a diagram schematically showing a refrigerant distribution operation in the refrigerant distributor 31 provided in the refrigeration cycle device 100 according to the first embodiment. FIG. 11 is a diagram schematically showing a refrigerant distribution operation in the refrigerant distributors 32, 41, and 42 provided in the refrigeration cycle device 100 according to the first embodiment. In addition, in FIG. 10 and FIG. 11, in order to make it easy to understand, the case where the refrigerant outflow holes 54c, 58c, and 62c are opened directly downward is illustrated.
 図10に示すように、一重管構造の場合には、冷媒は、1箇所(すなわち、接続管52)から流入して、複数箇所(すなわち、扁平管挿入孔51e)から流出する。そのため、冷媒は、接続管52に近い位置に配置された扁平管挿入孔51eから多く流出する傾向が強い。 As shown in FIG. 10, in the case of a single-pipe structure, the refrigerant flows in from one location (i.e., the connecting pipe 52) and flows out from multiple locations (i.e., the flat tube insertion hole 51e). Therefore, there is a strong tendency for a large amount of the refrigerant to flow out from the flat tube insertion hole 51e located close to the connecting tube 52.
 一方、図11に示すように、二重管構造の場合には、冷媒は、複数箇所(すなわち、内管54、58、62の冷媒流出孔54c、58c、62c)から外管53、57、61に流入して、複数箇所(すなわち、扁平管挿入孔53e、57e、61e)から流出する。そのため、たとえ内管54、58、62からの流出が不均一であった場合でも、内管54、58、62が無い場合に比べると、冷媒の分配の均一性が向上される。 On the other hand, as shown in FIG. 11, in the case of a double-pipe structure, the refrigerant flows from multiple locations (i.e., refrigerant outlet holes 54c, 58c, 62c of the inner pipes 54, 58, 62) to the outer pipes 53, 57, 61 and flows out from multiple locations (ie, flat tube insertion holes 53e, 57e, and 61e). Therefore, even if the outflow from the inner tubes 54, 58, 62 is uneven, the uniformity of refrigerant distribution is improved compared to the case where the inner tubes 54, 58, 62 are not provided.
 図12は、実施の形態1に係る冷凍サイクル装置100に設けられた冷媒分配器31における液冷媒の状態を模式的に示す図である。図13は、実施の形態1に係る冷凍サイクル装置100に設けられた冷媒分配器32、41、42における液冷媒の状態を模式的に示す図である。なお、図12および図13においては、分かり易くするために、冷媒流出孔54c、58c、62cが真下に向けて開口している場合を図示している。 FIG. 12 is a diagram schematically showing the state of liquid refrigerant in the refrigerant distributor 31 provided in the refrigeration cycle device 100 according to the first embodiment. FIG. 13 is a diagram schematically showing the state of liquid refrigerant in the refrigerant distributors 32, 41, and 42 provided in the refrigeration cycle device 100 according to the first embodiment. In addition, in FIG. 12 and FIG. 13, in order to make it easy to understand, the case where the refrigerant outflow holes 54c, 58c, and 62c are opened directly downward is illustrated.
 図12および図13においては、冷媒分配器31、32、41、42に対して、気液二相冷媒が流入した場合を示している。一重管構造の場合には、図12に示すように、冷媒は、外管51の下側に液冷媒が滞留し、冷媒回路内を循環する冷媒量が減少する可能性がある。一方、二重管構造の場合には、図13に示すように、内管54、58、62に設けられた複数の冷媒流出孔54c、58c、62cから冷媒が噴き出す。これにより、外管53、57、61の内部に滞留している液冷媒がかき乱されるため、外管51の下側に液冷媒が滞留することを抑制できる。その結果、外管51に滞留する液冷媒の量が減るため、効率的に冷媒を冷媒回路内に循環させることができる。 12 and 13 show a case where gas-liquid two-phase refrigerant flows into the refrigerant distributors 31, 32, 41, and 42. In the case of a single-pipe structure, as shown in FIG. 12, liquid refrigerant may accumulate under the outer tube 51, reducing the amount of refrigerant circulating in the refrigerant circuit. On the other hand, in the case of a double pipe structure, as shown in FIG. 13, the refrigerant is spouted from a plurality of refrigerant outlet holes 54c, 58c, and 62c provided in the inner pipes 54, 58, and 62. This disturbs the liquid refrigerant staying inside the outer tubes 53, 57, and 61, so that it is possible to suppress the liquid refrigerant from staying below the outer tube 51. As a result, the amount of liquid refrigerant remaining in the outer tube 51 is reduced, so that the refrigerant can be efficiently circulated within the refrigerant circuit.
 なお、図12および図13の例では、ガス冷媒と液冷媒とが分離して流れる分離流の場合を示しているが、冷媒の流れ方は、図12および図13の例に限定されない。冷媒分配器31、32、41、42の内部を流れる冷媒の流れの他の例として、例えば、環状流の場合がある。環状流として冷媒が流れる場合は、液冷媒が環状となって、環状の液冷媒の流れがガス冷媒を覆っている。 Note that although the examples in FIGS. 12 and 13 show the case of separate flows in which the gas refrigerant and the liquid refrigerant flow separately, the way the refrigerant flows is not limited to the examples in FIGS. 12 and 13. Another example of the flow of the refrigerant inside the refrigerant distributors 31, 32, 41, 42 is, for example, an annular flow. When the refrigerant flows in an annular flow, the liquid refrigerant is annular and the annular liquid refrigerant flow covers the gas refrigerant.
 内管54、58、62に設けられた冷媒流出孔54c、58c、62cから流出する冷媒が、主に、ガス冷媒の場合と、液冷媒の場合と、がある。どちらの冷媒が主に冷媒流出孔54c、58c、62cから流出するかについては、内管54、58、62の内部を流れる冷媒の状態、冷媒流出孔54c、58c、62cの配置および位置によって変化する。例えば環状流として冷媒が流れる場合は、液冷媒が冷媒流出孔54c、58c、62cを覆うため、主に液冷媒が冷媒流出孔54c、58c、62cから流出する。一方、分離流として冷媒が流れる場合は、冷媒流出孔54c、58c、62cが上向きに開口しているか下向きに開口しているかによって決定する。すなわち、分離流の場合、冷媒流出孔54c、58c、62cが上向きに開口しているときは、冷媒流出孔54c、58c、62cからガス冷媒が主に流出する。分離流の場合で、冷媒流出孔54c、58c、62cが下向きに開口しているときは、冷媒流出孔54c、58c、62cから液冷媒が主に流出する。また、各冷媒流出孔54c、58c、62cの位置が、内管54、58、62の入口側か奥側かによっても、各冷媒流出孔54c、58c、62cから流出する冷媒が、ガス冷媒か液冷媒かが変化する。環状流の場合であっても、内管54、58、62の入口側に近いほど、液冷媒がメインで流出する。液冷媒が多く流出すれば、冷媒の乾き度が変化するため、内管54、58、62の奥側に向かうにつれて、ガス冷媒がメインの流れとなる。そして、環状流を維持できなくなるほど、液冷媒が減少すると、ガス冷媒が冷媒流出孔54c、58c、62cからメインで流出するようになる。 The refrigerant that flows out from the refrigerant outlet holes 54c, 58c, and 62c provided in the inner tubes 54, 58, and 62 is mainly a gas refrigerant or a liquid refrigerant. Which refrigerant mainly flows out from the refrigerant outlet holes 54c, 58c, and 62c varies depending on the state of the refrigerant flowing inside the inner pipes 54, 58, and 62, and the arrangement and position of the refrigerant outlet holes 54c, 58c, and 62c. do. For example, when the refrigerant flows in an annular flow, the liquid refrigerant covers the refrigerant outflow holes 54c, 58c, and 62c, so that the liquid refrigerant mainly flows out from the refrigerant outflow holes 54c, 58c, and 62c. On the other hand, when the refrigerant flows as a separated flow, the determination is made depending on whether the refrigerant outlet holes 54c, 58c, and 62c open upward or downward. That is, in the case of separated flows, when the refrigerant outflow holes 54c, 58c, and 62c are open upward, the gas refrigerant mainly flows out from the refrigerant outflow holes 54c, 58c, and 62c. In the case of separated flow, when the refrigerant outflow holes 54c, 58c, and 62c open downward, liquid refrigerant mainly flows out from the refrigerant outflow holes 54c, 58c, and 62c. Also, depending on whether the position of each refrigerant outlet hole 54c, 58c, 62c is on the inlet side or the back side of the inner pipe 54, 58, 62, the refrigerant flowing out from each refrigerant outlet hole 54c, 58c, 62c may be gas refrigerant. The liquid refrigerant changes. Even in the case of an annular flow, the liquid refrigerant mainly flows out closer to the inlet side of the inner pipes 54, 58, 62. If more liquid refrigerant flows out, the degree of dryness of the refrigerant will change, so gas refrigerant becomes the main flow toward the back of the inner pipes 54, 58, and 62. When the liquid refrigerant decreases to such an extent that the annular flow cannot be maintained, the gas refrigerant mainly flows out from the refrigerant outlet holes 54c, 58c, and 62c.
 <暖房運転状態の冷媒の流れ>
 次に、暖房運転状態における冷媒の流れを説明する。図9は、実施の形態1に係る冷凍サイクル装置100における暖房運転状態の室外熱交換器3および室外熱交換器4の接続状態を示した斜視図である。図9では、室外熱交換器3と室外熱交換器4とを接続した冷媒流路を、冷媒配管による単純な接続によって表現したものである。図9において、実線矢印は冷媒の流れる方向を示し、白抜き矢印は室外送風機9によって発生する風の向きを示している。
<Refrigerant flow during heating operation>
Next, the flow of refrigerant in the heating operation state will be explained. FIG. 9 is a perspective view showing the connection state of the outdoor heat exchanger 3 and the outdoor heat exchanger 4 in the heating operation state in the refrigeration cycle device 100 according to the first embodiment. In FIG. 9, the refrigerant flow path connecting the outdoor heat exchanger 3 and the outdoor heat exchanger 4 is expressed by a simple connection using refrigerant piping. In FIG. 9, solid arrows indicate the direction in which the refrigerant flows, and white arrows indicate the direction of the wind generated by the outdoor blower 9.
 図2と図9とを比較すると分かるように、暖房運転状態においては冷房運転時とは冷媒が流れる方向が逆になる。暖房運転状態には、室外熱交換器3および室外熱交換器4への冷媒の流入は、冷媒分配器32および冷媒分配器42を介することになる。冷媒分配器32および冷媒分配器42は、共に、二重管構造を備える冷媒分配器である。 As can be seen by comparing FIG. 2 and FIG. 9, the direction in which the refrigerant flows in the heating operation state is opposite to that in the cooling operation. In the heating operation state, refrigerant flows into the outdoor heat exchanger 3 and the outdoor heat exchanger 4 through the refrigerant distributor 32 and the refrigerant distributor 42 . Both the refrigerant distributor 32 and the refrigerant distributor 42 are refrigerant distributors having a double pipe structure.
 冷媒分配器32においては、接続管56を介して、外管53の第1の内部空間53gに冷媒が流入する。その後、冷媒は、一旦、第1の内部空間53gから内管54の内部に入り、内管54が有する多数並設された冷媒流出孔54cから外管53の第2の内部空間53hへと流出する。このとき、外管53において、第2の内部空間53hは、第1の内部空間53gに対して仕切り板55によって分離されている。そのため、外管53の第2の内部空間53hに流入した冷媒は、第1の内部空間53g側へは流れずに、扁平管挿入孔53eを介して、外管53に接続された複数の扁平管37に流出する。 In the refrigerant distributor 32, the refrigerant flows into the first internal space 53g of the outer tube 53 via the connecting pipe 56. Thereafter, the refrigerant once enters the inner tube 54 from the first inner space 53g, and flows out from the inner tube 54's many juxtaposed refrigerant outlet holes 54c to the second inner space 53h of the outer tube 53. do. At this time, in the outer tube 53, the second internal space 53h is separated from the first internal space 53g by a partition plate 55. Therefore, the refrigerant that has flowed into the second internal space 53h of the outer tube 53 does not flow into the first internal space 53g, but instead passes through the flat tube insertion holes 53e into the plurality of flat tubes connected to the outer tube 53. It flows out into pipe 37.
 冷媒分配器42においては、接続管64を介して、外管61の第1の内部空間61gに冷媒が流入する。その後、冷媒は、一旦、第1の内部空間61gから内管62の内部に入り、内管62が有する多数並設された冷媒流出孔62cから外管61の第2の内部空間61hへと流出する。このとき、外管61において、第2の内部空間61hは、第1の内部空間61gに対して仕切り板63によって分離されている。そのため、外管61の第2の内部空間61hに流入した冷媒は、第1の内部空間61g側へは流れずに、扁平管挿入孔53eを介して、外管61に接続された複数の扁平管47に流出する。 In the refrigerant distributor 42, the refrigerant flows into the first internal space 61g of the outer tube 61 via the connecting pipe 64. Thereafter, the refrigerant once enters the inner tube 62 from the first inner space 61g, and flows out from the inner tube 62's many juxtaposed refrigerant outlet holes 62c to the second inner space 61h of the outer tube 61. do. At this time, in the outer tube 61, the second internal space 61h is separated from the first internal space 61g by a partition plate 63. Therefore, the refrigerant that has flowed into the second internal space 61h of the outer tube 61 does not flow into the first internal space 61g, but instead passes through the flat tube insertion holes 53e into the plurality of flat tubes connected to the outer tube 61. It flows out into pipe 47.
 暖房運転状態に、室外熱交換器3および室外熱交換器4から冷媒が流出する際には、冷媒分配器31および冷媒分配器41を介することになる。冷媒分配器31が一重管構造を有する冷媒分配器であるのに対して、冷媒分配器41は二重管構造を有する冷媒分配器である。冷媒分配器31に扁平管37から流入した冷媒は、外管51の内部を通り、接続管52を介して流出する。一方、冷媒分配器41に扁平管47から流入した冷媒は、まず、外管57の第2の内部空間61hに流入した後、冷媒流出孔58cから内管58の内部に流入する。そして、当該冷媒は、内管58の内部を通り、内管58から、仕切り板59で仕切られた第1の内部空間57gに流出する。当該冷媒は、第1の内部空間57gから、接続管60を介して、冷媒分配器41の外部に流出する。 When the refrigerant flows out from the outdoor heat exchanger 3 and the outdoor heat exchanger 4 during the heating operation state, it passes through the refrigerant distributor 31 and the refrigerant distributor 41. While the refrigerant distributor 31 is a refrigerant distributor having a single pipe structure, the refrigerant distributor 41 is a refrigerant distributor having a double pipe structure. The refrigerant flowing into the refrigerant distributor 31 from the flat tube 37 passes through the inside of the outer tube 51 and flows out via the connecting tube 52. On the other hand, the refrigerant that has flowed into the refrigerant distributor 41 from the flat tube 47 first flows into the second internal space 61h of the outer tube 57, and then flows into the inner tube 58 from the refrigerant outlet hole 58c. Then, the refrigerant passes through the inside of the inner tube 58 and flows out from the inner tube 58 into the first internal space 57g partitioned by the partition plate 59. The refrigerant flows out of the refrigerant distributor 41 from the first internal space 57g via the connecting pipe 60.
 暖房運転時には、室外熱交換器3および室外熱交換器4は蒸発器として機能する。上述した通り、室外熱交換器4の流出側に設けられた冷媒分配器41は、二重管によって構成され、内管58に多数の冷媒流出孔58cが並設された冷媒分配器となっている。そのため、冷媒分配器41に一重管構造の冷媒分配器を用いた場合と比して、二重管構造の冷媒分配器41の場合は、冷媒流路の圧力損失が高くなり、圧縮機1の吸入側の圧力が低下する。これにより、必要な圧縮機1の仕事量が増大し、冷凍サイクル装置としての性能が低下するという問題が発生する。 During heating operation, the outdoor heat exchanger 3 and the outdoor heat exchanger 4 function as an evaporator. As described above, the refrigerant distributor 41 provided on the outflow side of the outdoor heat exchanger 4 is configured with a double pipe, and has a large number of refrigerant outflow holes 58c arranged in parallel in the inner pipe 58. There is. Therefore, compared to the case where a refrigerant distributor 41 with a single-pipe structure is used as the refrigerant distributor 41, in the case of a refrigerant distributor 41 with a double-pipe structure, the pressure loss in the refrigerant flow path becomes higher, and the pressure loss of the compressor 1 increases. The pressure on the suction side decreases. This causes a problem in that the required amount of work of the compressor 1 increases and the performance of the refrigeration cycle device decreases.
 上記問題に対応するために、室外熱交換器4が有する冷媒分配器41および冷媒分配器42の仕様は、冷房運転状態における冷媒の分配の均一性と、暖房運転状態における室外熱交換器4で発生する圧力損失と、のバランスを考慮して決定されることが望ましい。すなわち、冷房運転状態での冷媒の均一性を確保しながら、暖房運転状態での圧力損失の抑制ができるように、冷媒分配器41における仕様の一部またはすべてが、冷媒分配器42における仕様の一部またはすべてと異なるように設計してもよい。 In order to deal with the above problem, the specifications of the refrigerant distributor 41 and the refrigerant distributor 42 included in the outdoor heat exchanger 4 are set such that the uniformity of refrigerant distribution in the cooling operation state and the uniformity of refrigerant distribution in the outdoor heat exchanger 4 in the heating operation state are determined. It is desirable to determine the balance by taking into account the pressure loss that occurs. In other words, part or all of the specifications in the refrigerant distributor 41 are the same as those in the refrigerant distributor 42 so that pressure loss can be suppressed in the heating operation state while ensuring uniformity of the refrigerant in the cooling operation state. Some or all of them may be designed differently.
 ここで変更される冷媒分配器41および冷媒分配器42の仕様の項目の候補としては、以下の項目が挙げられる。
 ・冷媒流出孔58cおよび62cの直径(すなわち、穴径)
 ・冷媒流出孔58cおよび62cの配置間隔
 ・冷媒流出孔58cおよび62cの配置位置
 ・冷媒流出孔58cおよび62cの個数
 ・内管58および62の直径(内径または外径)
 ・外管57および61の直径(内径または外径)
Candidates for specifications of the refrigerant distributor 41 and the refrigerant distributor 42 to be changed here include the following items.
- Diameter of refrigerant outlet holes 58c and 62c (i.e. hole diameter)
- Arrangement interval of refrigerant outlet holes 58c and 62c - Arrangement position of refrigerant outlet holes 58c and 62c - Number of refrigerant outlet holes 58c and 62c - Diameter (inner diameter or outer diameter) of inner pipes 58 and 62
- Diameter of outer tubes 57 and 61 (inner diameter or outer diameter)
 冷媒分配器41および冷媒分配器42の仕様を変更する際には、シミュレーションまたは試作品の実験等のデータに基づいて、適宜、決定することが望ましい。具体的には、冷媒流出孔58cおよび冷媒流出孔62cの直径または個数を増大させることで、圧力損失の増加が抑制でき、冷媒の分配の特性が変化する。変化した特性に合わせて、冷媒流出孔58cおよび冷媒流出孔62cの配置間隔または配置位置を変更して、冷房運転時の分配の均一性の低下を抑制する。また、内管58および内管62の直径、並びに、外管57および外管61の直径については、それらの直径を増大させることで、圧力損失の抑制に寄与する。このように、冷媒分配器41および冷媒分配器42の仕様は、冷房運転状態における冷媒の分配の均一性と、暖房運転状態における圧力損失と、のバランスを考慮して、都合の良い仕様になるように、調整していくことが望ましい。 When changing the specifications of the refrigerant distributor 41 and the refrigerant distributor 42, it is desirable to make decisions as appropriate based on data from simulations, prototype experiments, etc. Specifically, by increasing the diameter or number of the refrigerant outlet holes 58c and 62c, an increase in pressure loss can be suppressed and the refrigerant distribution characteristics change. In accordance with the changed characteristics, the spacing or position of the refrigerant outlet holes 58c and 62c is changed to suppress deterioration in uniformity of distribution during cooling operation. Furthermore, increasing the diameters of the inner tube 58 and the inner tube 62 and the diameters of the outer tube 57 and the outer tube 61 contributes to suppressing pressure loss. In this way, the specifications of the refrigerant distributor 41 and the refrigerant distributor 42 are convenient specifications considering the balance between the uniformity of refrigerant distribution in the cooling operation state and the pressure loss in the heating operation state. It is desirable to make adjustments accordingly.
 このように、冷媒分配器41の仕様および冷媒分配器42の仕様は、室外熱交換器3および4が凝縮器として機能するときの冷媒の分配の均一性に関する状態と、室外熱交換器3および4が蒸発器として機能するときに発生する圧力損失と、に基づいて決定される。 In this way, the specifications of the refrigerant distributor 41 and the specifications of the refrigerant distributor 42 are related to the uniformity of refrigerant distribution when the outdoor heat exchangers 3 and 4 function as condensers, and the conditions regarding the uniformity of refrigerant distribution when the outdoor heat exchangers 3 and 4 function as condensers. It is determined based on the pressure loss that occurs when 4 functions as an evaporator.
 さらに、冷媒分配器41または冷媒分配器42における仕様の一部またはすべてが、室外熱交換器3が有する冷媒分配器32における仕様の一部またはすべてと異なるように設計してもよい。その場合、例えば、室外熱交換器3が有する冷媒分配器32に比して、冷媒分配器41および冷媒分配器42の合計の圧力損失が小さくなるように、冷媒分配器41および冷媒分配器42の上記仕様を変更してもよい。 Further, part or all of the specifications of the refrigerant distributor 41 or 42 may be designed to be different from part or all of the specifications of the refrigerant distributor 32 of the outdoor heat exchanger 3. In that case, for example, the refrigerant distributor 41 and the refrigerant distributor 42 are arranged so that the total pressure loss of the refrigerant distributor 41 and the refrigerant distributor 42 is smaller than that of the refrigerant distributor 32 that the outdoor heat exchanger 3 has. The above specifications may be changed.
 このように、冷媒分配器41および冷媒分配器42の仕様を調整することで、先に述べた冷房運転時の熱交換体43Aおよび43Bへの冷媒の分配の均一性の向上の効果を大きく損なうことなく、前段で述べた暖房時の圧力損失の増大を抑制することができる。 In this way, by adjusting the specifications of the refrigerant distributor 41 and the refrigerant distributor 42, the effect of improving the uniformity of refrigerant distribution to the heat exchangers 43A and 43B during cooling operation described above is greatly impaired. Without this, it is possible to suppress the increase in pressure loss during heating described in the previous section.
 以上のように、暖房運転時において直列冷媒流路を形成した複数の室外熱交換器3および室外熱交換器4は、共に、蒸発器として機能する。そのため、上流側に位置する室外熱交換器4の流入側の冷媒分配器42、および、下流側に位置する室外熱交換器3の流入側の冷媒分配器32が二重管構造を有している。冷媒分配器42の内管62および冷媒分配器32の内管54は、それぞれ、多数並設された冷媒流出孔62cおよび冷媒流出孔54cを有している。これにより、上流側に位置する室外熱交換器4および下流側に位置する室外熱交換器3において、気液二相状態の冷媒の熱交換体43Bおよび熱交換体33Bへの冷媒の分配の均一性を向上させることができる。 As described above, during heating operation, the plurality of outdoor heat exchangers 3 and outdoor heat exchangers 4 that form serial refrigerant flow paths both function as an evaporator. Therefore, the refrigerant distributor 42 on the inflow side of the outdoor heat exchanger 4 located on the upstream side and the refrigerant distributor 32 on the inflow side of the outdoor heat exchanger 3 located on the downstream side have a double pipe structure. There is. The inner pipe 62 of the refrigerant distributor 42 and the inner pipe 54 of the refrigerant distributor 32 each have a large number of refrigerant outflow holes 62c and refrigerant outflow holes 54c arranged in parallel. As a result, in the outdoor heat exchanger 4 located on the upstream side and the outdoor heat exchanger 3 located on the downstream side, the refrigerant in the gas-liquid two-phase state is evenly distributed to the heat exchanger 43B and the heat exchanger 33B. can improve sex.
 <変形例1>
 上記説明では、冷房運転時および暖房運転時の両方において、室外熱交換器3と室外熱交換器4とが直列冷媒流路を形成する場合について説明した。しかしながら、その場合に限定されない。2つの室外熱交換器3および4が運転状態によって、直列冷媒流路と並列冷媒流路とに切り替えることができるように回路を構成し、冷房運転時には直列冷媒流路を形成し、暖房運転時には並列冷媒流路を形成するようにしてもよい。
<Modification 1>
In the above description, a case has been described in which the outdoor heat exchanger 3 and the outdoor heat exchanger 4 form a serial refrigerant flow path in both the cooling operation and the heating operation. However, it is not limited to that case. The circuit is configured such that the two outdoor heat exchangers 3 and 4 can be switched between a series refrigerant flow path and a parallel refrigerant flow path depending on the operating state, forming a serial refrigerant flow path during cooling operation and forming a serial refrigerant flow path during heating operation. Parallel refrigerant flow paths may be formed.
 図14は、実施の形態1の変形例1に係る冷凍サイクル装置100の構成を示す冷媒回路図である。図14においては、変形例1に係る冷凍サイクル装置100が冷房運転状態の場合の冷媒の流れを示している。図15は、実施の形態1の変形例1に係る冷凍サイクル装置100の構成を示す冷媒回路図である。図15においては、変形例1に係る冷凍サイクル装置100が暖房運転状態の場合の冷媒の流れを示している。 FIG. 14 is a refrigerant circuit diagram showing the configuration of refrigeration cycle device 100 according to Modification 1 of Embodiment 1. FIG. 14 shows the flow of refrigerant when the refrigeration cycle device 100 according to Modification Example 1 is in a cooling operation state. FIG. 15 is a refrigerant circuit diagram showing the configuration of refrigeration cycle device 100 according to Modification 1 of Embodiment 1. FIG. 15 shows the flow of refrigerant when the refrigeration cycle device 100 according to Modification 1 is in a heating operation state.
 <冷房運転状態(直列冷媒流路の場合)>
 変形例1において、冷凍サイクル装置100が冷房運転状態となるときは、図14に示すように、冷媒の流れは、図1を用いて上述した冷房運転状態のときと同じになる。そのため、ここでは、その説明を省略する。このように、変形例1において、冷房運転状態のときには、実施の形態1と同じように、室外熱交換器3および室外熱交換器4が、直列冷媒流路を形成している。
<Cooling operation status (in case of serial refrigerant flow path)>
In Modification 1, when the refrigeration cycle device 100 is in the cooling operation state, as shown in FIG. 14, the flow of the refrigerant is the same as in the cooling operation state described above using FIG. Therefore, the explanation thereof will be omitted here. In this manner, in the first modification, during the cooling operation state, the outdoor heat exchanger 3 and the outdoor heat exchanger 4 form a series refrigerant flow path, as in the first embodiment.
 <暖房運転状態(並列冷媒流路の場合)>
 変形例1において、冷凍サイクル装置100が暖房運転状態となるときは、図15に示すように、室外熱交換器3および室外熱交換器4が並列に接続された並列冷媒流路を形成する。その場合、制御部11は、膨張弁5および膨張弁6は開状態、電磁弁7は閉状態、電磁弁8は開状態となるように制御する。圧縮機1は、アキュムレータ10から冷媒を吸入し、当該冷媒を圧縮する。圧縮された冷媒は、ガス冷媒となって圧縮機1から吐出され、四方弁2および冷媒配管305を介して、室外機101から流出して、室内機201に流入する。室内機201では、当該冷媒は、室内熱交換器21で凝縮して、空気に温熱を供給する。そして、当該冷媒は、室内機201を流出後、室外機101に流入する。室外機101では、当該冷媒は、冷媒配管302と冷媒配管304とに分岐して、それぞれ、膨張弁5および膨張弁6に流入する。膨張弁5および膨張弁6により減圧されて膨張された冷媒は、室外熱交換器3および室外熱交換器4にそれぞれ流入して蒸発する。室外熱交換器4から流出した冷媒は、電磁弁8を通過して、室外熱交換器3から流出した冷媒と合流する。その後、合流した当該冷媒は、四方弁2および冷媒配管306を介して、アキュムレータ10に流入する。アキュムレータ10から圧縮機1に再び吸入され、冷媒回路を循環する。これによって、室外熱交換器3および室外熱交換器4が並列に接続された冷媒流路を有する冷媒回路となる。
<Heating operation status (in case of parallel refrigerant flow path)>
In Modification 1, when the refrigeration cycle device 100 enters the heating operation state, as shown in FIG. 15, the outdoor heat exchanger 3 and the outdoor heat exchanger 4 form a parallel refrigerant flow path connected in parallel. In that case, the control unit 11 controls the expansion valves 5 and 6 to be in the open state, the solenoid valve 7 to be in the closed state, and the solenoid valve 8 to be in the open state. Compressor 1 sucks refrigerant from accumulator 10 and compresses the refrigerant. The compressed refrigerant becomes a gas refrigerant and is discharged from the compressor 1, flows out from the outdoor unit 101 via the four-way valve 2 and the refrigerant pipe 305, and flows into the indoor unit 201. In the indoor unit 201, the refrigerant is condensed in the indoor heat exchanger 21 and supplies heat to the air. The refrigerant then flows into the outdoor unit 101 after flowing out of the indoor unit 201. In the outdoor unit 101, the refrigerant branches into a refrigerant pipe 302 and a refrigerant pipe 304, and flows into the expansion valve 5 and the expansion valve 6, respectively. The refrigerant that has been depressurized and expanded by the expansion valves 5 and 6 flows into the outdoor heat exchanger 3 and the outdoor heat exchanger 4, respectively, and evaporates. The refrigerant flowing out from the outdoor heat exchanger 4 passes through the electromagnetic valve 8 and joins with the refrigerant flowing out from the outdoor heat exchanger 3. Thereafter, the combined refrigerant flows into the accumulator 10 via the four-way valve 2 and the refrigerant pipe 306. It is sucked into the compressor 1 again from the accumulator 10 and circulates through the refrigerant circuit. This results in a refrigerant circuit having a refrigerant flow path in which the outdoor heat exchanger 3 and the outdoor heat exchanger 4 are connected in parallel.
 変形例1の場合、暖房運転時においては、2つの室外熱交換器3および4が並列に接続される。そのため、2つの室外熱交換器3および4に同様の仕様を持つ室外熱交換器を使用したとしても、冷媒分配器32および42の違いによる圧力損失の違いから、2つの室外熱交換器3および4への冷媒の分配が偏る可能性がある。その場合は、制御部11による膨張弁5および膨張弁6の開度の調整により、室外熱交換器3および4に対する分配の均一性を高めることができる。具体的には、膨張弁5および膨張弁6のうち、冷媒が多く流れやすい側の膨張弁5または膨張弁6の開度を小さくし、冷媒が流れにくい側の膨張弁5または膨張弁6の開度を大きくする。 In the case of Modification 1, the two outdoor heat exchangers 3 and 4 are connected in parallel during heating operation. Therefore, even if outdoor heat exchangers with similar specifications are used as the two outdoor heat exchangers 3 and 4, due to the difference in pressure loss due to the difference in the refrigerant distributors 32 and 42, the two outdoor heat exchangers 3 and 4 There is a possibility that the distribution of refrigerant to 4 may be biased. In that case, the uniformity of distribution to the outdoor heat exchangers 3 and 4 can be improved by adjusting the opening degrees of the expansion valves 5 and 6 by the control unit 11. Specifically, among the expansion valves 5 and 6, the opening degree of the expansion valve 5 or 6 on the side where more refrigerant flows is reduced, and the opening degree of the expansion valve 5 or 6 on the side where refrigerant is less likely to flow is reduced. Increase the opening.
 <変形例2>
 ところで、上記の実施の形態1の説明では、室外熱交換器の個数が2つである場合を述べたが、室外熱交換器の個数が3つ以上であっても、実施の形態1の構成は適用可能である。具体的には、冷媒回路の制御によりn個の室外熱交換器が直列冷媒流路を形成しうる場合に、凝縮器として機能する際の上流側の室外熱交換器に室外熱交換器3と同様の構成を用いて、下流側の室外熱交換器に室外熱交換器4と同様の構成を用いる。これにより、実施の形態1と同様の効果が得られることは言うまでもない。ここで、nは3以上の自然数である。また、実施の形態1は、n=2の場合である。従って、実施の形態1およびその変形例を纏めると、nは2以上の自然数である。
<Modification 2>
By the way, in the above description of Embodiment 1, the case where the number of outdoor heat exchangers is two was described, but even if the number of outdoor heat exchangers is three or more, the structure of Embodiment 1 can be applied. is applicable. Specifically, when n outdoor heat exchangers can form a series refrigerant flow path by controlling the refrigerant circuit, the outdoor heat exchanger 3 and the upstream outdoor heat exchanger when functioning as a condenser are Using a similar configuration, a configuration similar to that of the outdoor heat exchanger 4 is used for the outdoor heat exchanger on the downstream side. It goes without saying that this provides the same effects as in the first embodiment. Here, n is a natural number of 3 or more. Furthermore, the first embodiment is a case where n=2. Therefore, to summarize the first embodiment and its modifications, n is a natural number of 2 or more.
 図16は、実施の形態1の変形例2に係る冷凍サイクル装置100の構成を示す冷媒回路図である。図17は、実施の形態1の変形例2に係る冷凍サイクル装置100が冷房運転状態の場合の冷媒の流れを示す図である。図18は、実施の形態1の変形例2に係る冷凍サイクル装置100が暖房運転状態の場合の冷媒の流れを示している。 FIG. 16 is a refrigerant circuit diagram showing the configuration of a refrigeration cycle device 100 according to a second modification of the first embodiment. FIG. 17 is a diagram showing the flow of refrigerant when the refrigeration cycle device 100 according to the second modification of the first embodiment is in a cooling operation state. FIG. 18 shows the flow of refrigerant when the refrigeration cycle device 100 according to the second modification of the first embodiment is in a heating operation state.
 図16の構成と図1の構成との違いは、図16においては、図1の室外熱交換器3の代わりに、2つの室外熱交換器3Aおよび3Bが設けられている点である。2つの室外熱交換器3Aおよび3Bは並列に接続されている。室外熱交換器3Aおよび3Bは、共に、図1の室外熱交換器3と同じ構成を有している。他の構成は、図1と同じであるため、ここでは、その説明を省略する。 The difference between the configuration in FIG. 16 and the configuration in FIG. 1 is that in FIG. 16, two outdoor heat exchangers 3A and 3B are provided instead of the outdoor heat exchanger 3 in FIG. Two outdoor heat exchangers 3A and 3B are connected in parallel. Both outdoor heat exchangers 3A and 3B have the same configuration as outdoor heat exchanger 3 in FIG. 1. Since the other configurations are the same as those in FIG. 1, their explanation will be omitted here.
 <室外熱交換器3および室外熱交換器4の冷媒の流れ>
 次に、変形例2における、室外熱交換器3および室外熱交換器4の冷媒の流れについて説明する。
<Flow of refrigerant in outdoor heat exchanger 3 and outdoor heat exchanger 4>
Next, the flow of refrigerant in the outdoor heat exchanger 3 and the outdoor heat exchanger 4 in Modification 2 will be described.
 <冷房運転状態の冷媒の流れ>
 まず、冷房運転状態における冷媒の流れを説明する。変形例2においては、室外熱交換器3Aおよび3Bが上流側の室外熱交換器となり、室外熱交換器4が下流側の室外熱交換器となる。図3に示すように、室外熱交換器3Aおよび3Bの冷媒分配器31は一重管構造を有し、室外熱交換器3Aおよび3Bの冷媒分配器32は二重管構造を有している。
<Refrigerant flow during cooling operation>
First, the flow of refrigerant in the cooling operation state will be explained. In Modification 2, outdoor heat exchangers 3A and 3B serve as upstream outdoor heat exchangers, and outdoor heat exchanger 4 serves as a downstream outdoor heat exchanger. As shown in FIG. 3, the refrigerant distributor 31 of the outdoor heat exchangers 3A and 3B has a single pipe structure, and the refrigerant distributor 32 of the outdoor heat exchangers 3A and 3B has a double pipe structure.
 変形例2において、冷凍サイクル装置100が冷房運転状態となるとき、図17に示すように、室外熱交換器3A、3Bと、室外熱交換器4と、が直列に接続された直列冷媒流路を形成する。ただし、室外熱交換器3Aと室外熱交換器3Bとは並列に接続されている。この場合、制御部11は、膨張弁5は全閉状態、電磁弁7は開状態、電磁弁8は閉状態、膨張弁6は全開状態、となるように制御する。 In modification example 2, when the refrigeration cycle device 100 enters the cooling operation state, as shown in FIG. form. However, the outdoor heat exchanger 3A and the outdoor heat exchanger 3B are connected in parallel. In this case, the control unit 11 controls the expansion valve 5 to be in a fully closed state, the solenoid valve 7 to be in an open state, the solenoid valve 8 to be in a closed state, and the expansion valve 6 to be in a fully open state.
 そして、図17に示すように、圧縮機1から吐出されたガス冷媒が、室外熱交換器3Aおよび3Bの冷媒分配器31に流入する。当該ガス冷媒は、室外熱交換器3Aおよび3Bで空気と熱交換され、ガス冷媒の一部が凝縮することで気液二相状態になる。室外熱交換器3Aから流出した気液二相冷媒と、室外熱交換器3Bから流出した気液二相冷媒とは、電磁弁7の上流側で合流する。そして、合流した当該冷媒は、電磁弁7を介して、室外熱交換器4の冷媒分配器41に流入される。図7を用いて説明したように、冷媒分配器41は二重管構造を持ち、その内管58には、多数の冷媒流出孔58cが並設されている。冷媒分配器41に流入した冷媒は、内管58の内部を通る際に、冷媒流出孔58cから第2の内部空間57hに流出される。このように、内管58に冷媒流出孔58cを設けたことで、熱交換体43Aの各扁平管47に冷媒が均等に分配される。熱交換体43Aおよび熱交換体43Bの内部で凝縮した冷媒は、冷媒分配器42を通って冷媒配管45に流出する。室外熱交換器4を流出した冷媒は、室内熱交換器21に流入する。室内熱交換器21で、当該冷媒は空気と熱交換し、蒸発する。その後、当該冷媒は、室内機201から流出して、室外機101に流入する。室外機101では、当該冷媒は、四方弁2および冷媒配管306を介して、アキュムレータ10に流入する。アキュムレータ10から圧縮機1に再び吸入され、冷媒回路を循環する。 Then, as shown in FIG. 17, the gas refrigerant discharged from the compressor 1 flows into the refrigerant distributor 31 of the outdoor heat exchangers 3A and 3B. The gas refrigerant exchanges heat with air in the outdoor heat exchangers 3A and 3B, and a part of the gas refrigerant condenses to become a gas-liquid two-phase state. The gas-liquid two-phase refrigerant flowing out from the outdoor heat exchanger 3A and the gas-liquid two-phase refrigerant flowing out from the outdoor heat exchanger 3B join on the upstream side of the solenoid valve 7. The combined refrigerant then flows into the refrigerant distributor 41 of the outdoor heat exchanger 4 via the solenoid valve 7. As described using FIG. 7, the refrigerant distributor 41 has a double pipe structure, and the inner pipe 58 has a large number of refrigerant outlet holes 58c arranged in parallel. The refrigerant that has flowed into the refrigerant distributor 41 flows out from the refrigerant outlet hole 58c into the second internal space 57h when passing through the interior of the inner tube 58. In this way, by providing the refrigerant outlet hole 58c in the inner tube 58, the refrigerant is evenly distributed to each flat tube 47 of the heat exchanger 43A. The refrigerant condensed inside the heat exchanger 43A and the heat exchanger 43B flows out into the refrigerant pipe 45 through the refrigerant distributor 42. The refrigerant that has flowed out of the outdoor heat exchanger 4 flows into the indoor heat exchanger 21. In the indoor heat exchanger 21, the refrigerant exchanges heat with air and evaporates. Thereafter, the refrigerant flows out of the indoor unit 201 and flows into the outdoor unit 101. In the outdoor unit 101, the refrigerant flows into the accumulator 10 via the four-way valve 2 and the refrigerant pipe 306. It is sucked into the compressor 1 again from the accumulator 10 and circulates through the refrigerant circuit.
 以上のように、変形例2においても、冷媒運転時において直列冷媒流路を形成した複数の室外熱交換器3A、3Bと室外熱交換器4とのうち、下流側に位置する室外熱交換器4の流入側の冷媒分配器41が二重管構造を有している。冷媒分配器41の内管58は、多数並設された冷媒流出孔58cを有している。これにより、下流側に位置する室外熱交換器4において、気液二相状態の冷媒の熱交換体43Aへの分配の均一性を向上させることができる。 As described above, in Modification 2, among the outdoor heat exchangers 3A and 3B and the outdoor heat exchanger 4 that form a serial refrigerant flow path during refrigerant operation, the outdoor heat exchanger located on the downstream side The refrigerant distributor 41 on the inflow side of No. 4 has a double pipe structure. The inner pipe 58 of the refrigerant distributor 41 has a large number of refrigerant outlet holes 58c arranged in parallel. Thereby, in the outdoor heat exchanger 4 located on the downstream side, it is possible to improve the uniformity of distribution of the gas-liquid two-phase refrigerant to the heat exchanger 43A.
 <暖房運転状態(並列冷媒流路の場合)>
 変形例2において、冷凍サイクル装置100が暖房運転状態となるときは、図18に示すように、室外熱交換器3A、3Bと、室外熱交換器4と、が並列に接続された並列冷媒流路を形成する。この場合、制御部11は、膨張弁5および膨張弁6は開状態、電磁弁7は閉状態、電磁弁8は開状態となるように制御する。圧縮機1は、アキュムレータ10から冷媒を吸入し、当該冷媒を圧縮する。圧縮された冷媒は、ガス冷媒となって圧縮機1から吐出され、四方弁2および冷媒配管305を介して、室外機101から流出して、室内機201に流入する。室内機201では、当該冷媒は、室内熱交換器21で凝縮して、空気に温熱を供給する。そして、当該冷媒は、室内機201を流出後、室外機101に流入する。室外機101では、当該冷媒は、冷媒配管302と冷媒配管304とに分岐して、それぞれ、膨張弁5および膨張弁6に流入する。膨張弁5および膨張弁6により減圧されて膨張された冷媒は、室外熱交換器3A、3Bと、室外熱交換器4と、にそれぞれ流入して蒸発する。室外熱交換器4から流出した冷媒は、電磁弁8を通過して、室外熱交換器3A、3Bから流出した冷媒と合流する。その後、合流した当該冷媒は、四方弁2および冷媒配管306を介して、アキュムレータ10に流入する。アキュムレータ10から圧縮機1に再び吸入され、冷媒回路を循環する。これによって、室外熱交換器3および室外熱交換器4が並列に接続された冷媒流路を有する冷媒回路となる。
<Heating operation status (in case of parallel refrigerant flow path)>
In Modified Example 2, when the refrigeration cycle device 100 is in the heating operation state, as shown in FIG. form a road. In this case, the control unit 11 controls the expansion valves 5 and 6 to be in the open state, the solenoid valve 7 to be in the closed state, and the solenoid valve 8 to be in the open state. Compressor 1 sucks refrigerant from accumulator 10 and compresses the refrigerant. The compressed refrigerant becomes a gas refrigerant and is discharged from the compressor 1, flows out from the outdoor unit 101 via the four-way valve 2 and the refrigerant pipe 305, and flows into the indoor unit 201. In the indoor unit 201, the refrigerant is condensed in the indoor heat exchanger 21 and supplies heat to the air. The refrigerant then flows into the outdoor unit 101 after flowing out of the indoor unit 201. In the outdoor unit 101, the refrigerant branches into a refrigerant pipe 302 and a refrigerant pipe 304, and flows into the expansion valve 5 and the expansion valve 6, respectively. The refrigerant that has been depressurized and expanded by the expansion valves 5 and 6 flows into the outdoor heat exchangers 3A, 3B and the outdoor heat exchanger 4, respectively, and evaporates. The refrigerant flowing out from the outdoor heat exchanger 4 passes through the solenoid valve 8 and joins with the refrigerant flowing out from the outdoor heat exchangers 3A and 3B. Thereafter, the combined refrigerant flows into the accumulator 10 via the four-way valve 2 and the refrigerant pipe 306. It is sucked into the compressor 1 again from the accumulator 10 and circulates through the refrigerant circuit. This results in a refrigerant circuit having a refrigerant flow path in which the outdoor heat exchanger 3 and the outdoor heat exchanger 4 are connected in parallel.
 <暖房運転状態(直列冷媒流路の場合)>
 変形例2において、冷凍サイクル装置100が暖房運転状態となるときに、室外熱交換器3A、3Bと、室外熱交換器4と、が直列に接続された直列冷媒流路を形成してもよい。この場合の冷媒の流れは、図17を用いて上述した冷房運転状態のときの逆向きになる。そのため、ここでは、その説明を省略する。
<Heating operation status (in case of serial refrigerant flow path)>
In modification 2, when the refrigeration cycle device 100 enters the heating operation state, the outdoor heat exchangers 3A, 3B and the outdoor heat exchanger 4 may be connected in series to form a series refrigerant flow path. . In this case, the flow of the refrigerant is opposite to that in the cooling operation state described above with reference to FIG. Therefore, the explanation thereof will be omitted here.
 以上のように、実施の形態1並びにその変形例によれば、以下の効果が得られる。 As described above, according to the first embodiment and its modifications, the following effects can be obtained.
 冷房運転状態のときに、複数の室外熱交換器を直列に接続して凝縮器として機能させると、下流側に配置された室外熱交換器には、ガス冷媒と液冷媒とが混在する気液二相状態で冷媒が流入されることがある。実施の形態1においては、冷房運転時に、室外熱交換器4が下流側、室外熱交換器3が上流側に位置するように冷媒流路を形成するように、冷凍サイクル装置100を構成している。下流側に配置される室外熱交換器4の冷媒分配器41は、二重管構造を有しており、内管58には複数の冷媒流出孔58cが形成されている。そのため、室外熱交換器4に対して気液二相状態で冷媒が流入する際には、冷媒分配器41の機能により、室外熱交換器4の複数の扁平管47に対して冷媒が偏って分配される状況が抑制できる。複数の扁平管47に冷媒が均等に分配されることで、室外熱交換器4が有する熱交換体43の全面で、必要となる熱交換量が均一になり、熱交換効率の低下を防止することができる。 When multiple outdoor heat exchangers are connected in series to function as condensers during cooling operation, the downstream outdoor heat exchanger will contain a mixture of gas and liquid refrigerants. Refrigerant may be introduced in a two-phase state. In the first embodiment, the refrigeration cycle device 100 is configured to form a refrigerant flow path such that the outdoor heat exchanger 4 is located on the downstream side and the outdoor heat exchanger 3 is located on the upstream side during cooling operation. There is. The refrigerant distributor 41 of the outdoor heat exchanger 4 disposed on the downstream side has a double pipe structure, and the inner pipe 58 is formed with a plurality of refrigerant outlet holes 58c. Therefore, when the refrigerant flows into the outdoor heat exchanger 4 in a gas-liquid two-phase state, the refrigerant is biased toward the plurality of flat tubes 47 of the outdoor heat exchanger 4 due to the function of the refrigerant distributor 41. The situation in which it is distributed can be controlled. By evenly distributing the refrigerant to the plurality of flat tubes 47, the required amount of heat exchange becomes uniform over the entire surface of the heat exchange body 43 included in the outdoor heat exchanger 4, and a decrease in heat exchange efficiency is prevented. be able to.
 具体的には、室外熱交換器4が、冷媒分配器41と、冷媒分配器42と、を有している。冷媒分配器41および42は、共に、外管と内管とで構成された二重管構造を有している。また、内管58および62には、冷媒が内管から外管の内部に流出する冷媒流出孔58cおよび62cが形成されている。外管57および61には、扁平管47が挿入されている。そのため、冷媒分配器41または42に気液二相冷媒が流入された場合においても、すべての扁平管47に対して冷媒が均等に分配される。 Specifically, the outdoor heat exchanger 4 includes a refrigerant distributor 41 and a refrigerant distributor 42. Both refrigerant distributors 41 and 42 have a double-pipe structure composed of an outer tube and an inner tube. Further, the inner tubes 58 and 62 are formed with refrigerant outlet holes 58c and 62c through which the refrigerant flows out from the inner tube into the outer tube. A flat tube 47 is inserted into the outer tubes 57 and 61. Therefore, even when the gas-liquid two-phase refrigerant flows into the refrigerant distributor 41 or 42, the refrigerant is evenly distributed to all the flat tubes 47.
 凝縮器として機能する複数の室外熱交換器3および4を直列冷媒流路を形成するように接続した場合においても、下流側に存在する室外熱交換器4に流入する気液二相冷媒を均等に分配することができる。 Even when a plurality of outdoor heat exchangers 3 and 4 functioning as condensers are connected to form a serial refrigerant flow path, the gas-liquid two-phase refrigerant flowing into the outdoor heat exchanger 4 located on the downstream side is distributed evenly. can be distributed to.
 室外熱交換器3に設けられた冷媒分配器31は一重管構造であるため、冷房運転時も暖房運転時も圧力損失を小さく抑えることができる。 Since the refrigerant distributor 31 provided in the outdoor heat exchanger 3 has a single-pipe structure, pressure loss can be kept small during both cooling and heating operations.
 実施の形態2.
 図19は、実施の形態2に係る冷凍サイクル装置100における室外熱交換器3Cおよび室外熱交換器4Cの接続状態を示した斜視図である。実施の形態2に係る冷凍サイクル装置100の構成は、基本的に、実施の形態1に係る冷凍サイクル装置100の構成と同じである。実施の形態1と異なる点は、実施の形態2においては、実施の形態1の室外熱交換器3、4の代わりに、それぞれ、室外熱交換器3C、4Cが設けられている点である。他の構成は、実施の形態1と同じであるため、ここでは、その説明を省略する。
Embodiment 2.
FIG. 19 is a perspective view showing the connection state of the outdoor heat exchanger 3C and the outdoor heat exchanger 4C in the refrigeration cycle device 100 according to the second embodiment. The configuration of refrigeration cycle device 100 according to the second embodiment is basically the same as the configuration of refrigeration cycle device 100 according to the first embodiment. The difference from the first embodiment is that in the second embodiment, outdoor heat exchangers 3C and 4C are provided in place of the outdoor heat exchangers 3 and 4 of the first embodiment, respectively. Since the other configurations are the same as those in Embodiment 1, the description thereof will be omitted here.
 上記の実施の形態1では、図3および図4に示すように、室外熱交換器3を構成する熱交換体33、および、室外熱交換器4を構成する熱交換体43が、それぞれ、室外送風機9によって発生した風の向きに沿う方向に2層配置されている。これに対して、実施の形態2においては、図19に示すように、室外熱交換器3を構成する熱交換体33、および、室外熱交換器4を構成する熱交換体43が、それぞれ、室外送風機9によって発生した風の向きに沿う方向に1層配置されている。 In the first embodiment described above, as shown in FIGS. 3 and 4, the heat exchange body 33 constituting the outdoor heat exchanger 3 and the heat exchange body 43 constituting the outdoor heat exchanger 4 are Two layers are arranged in the direction along the direction of the wind generated by the blower 9. On the other hand, in Embodiment 2, as shown in FIG. One layer is arranged in the direction along the direction of the wind generated by the outdoor blower 9.
 図19においては、室外熱交換器3Cと室外熱交換器4Cとを直列に接続した冷媒流路を、冷媒配管による単純な接続によって表現したものである。白抜き矢印は室外送風機9によって発生する風の向きを示している。また、冷媒配管35A、冷媒配管36A、冷媒配管45Aのそばに記載してある矢印は冷媒の流れを表しており、実線矢印が冷房運転時の冷媒の流れを、破線矢印が暖房運転時の冷媒の流れを表している。 In FIG. 19, the refrigerant flow path in which the outdoor heat exchanger 3C and the outdoor heat exchanger 4C are connected in series is expressed by a simple connection using refrigerant piping. The white arrow indicates the direction of the wind generated by the outdoor blower 9. Also, the arrows written near the refrigerant pipes 35A, 36A, and 45A represent the flow of refrigerant, with solid arrows representing the flow of refrigerant during cooling operation, and dashed arrows representing refrigerant flow during heating operation. It represents the flow of
 <室外熱交換器3Cの構成>
 まず、室外熱交換器3Cの構成について説明する。図19に示すように、室外熱交換器3Cは、冷媒分配器31、冷媒分配器32、熱交換体33によって構成されている。熱交換体33は、複数の扁平管37および複数のフィン38から構成されている。熱交換体33の構成は、実施の形態1で述べた通りであるため、ここでは、説明を省略する。実施の形態2においては、熱交換体33の上方に、一重管構造の冷媒分配器31が設けられ、熱交換体33の下方に、二重管構造の冷媒分配器32が設けられている。冷媒分配器31および冷媒分配器32の構成は、実施の形態1で述べた通りであるため、ここでは、説明を省略する。図19に示すように、冷媒分配器31には接続管52を介して冷媒配管35Aが接続され、冷媒分配器32には接続管56を介して冷媒配管36Aが接続されている。
<Configuration of outdoor heat exchanger 3C>
First, the configuration of the outdoor heat exchanger 3C will be explained. As shown in FIG. 19, the outdoor heat exchanger 3C includes a refrigerant distributor 31, a refrigerant distributor 32, and a heat exchanger 33. The heat exchanger 33 is composed of a plurality of flat tubes 37 and a plurality of fins 38. The configuration of the heat exchanger 33 is the same as described in Embodiment 1, so a description thereof will be omitted here. In the second embodiment, a refrigerant distributor 31 having a single-pipe structure is provided above the heat exchanger 33, and a refrigerant distributor 32 having a double-pipe structure is provided below the heat exchanger 33. The configurations of the refrigerant distributor 31 and the refrigerant distributor 32 are as described in Embodiment 1, so the description thereof will be omitted here. As shown in FIG. 19, a refrigerant pipe 35A is connected to the refrigerant distributor 31 via a connecting pipe 52, and a refrigerant pipe 36A is connected to the refrigerant distributor 32 via a connecting pipe 56.
 <室外熱交換器4Cの構成>
 次に、室外熱交換器4Cの構成について説明する。図19に示すように、室外熱交換器4Cは、冷媒分配器41、冷媒分配器42、熱交換体43によって構成されている。熱交換体43は、複数の扁平管47および複数のフィン48から構成されている。熱交換体43の構成は、実施の形態1で述べた通りであるため、ここでは、説明を省略する。実施の形態2においては、熱交換体43の上方に、二重管構造の冷媒分配器41が設けられ、熱交換体43の下方に、二重管構造の冷媒分配器42が設けられている。冷媒分配器41および冷媒分配器42の構成は、実施の形態1で述べた通りであるため、ここでは、説明を省略する。図19に示すように、冷媒分配器41には接続管60を介して冷媒配管36Aが接続され、冷媒分配器42には接続管64を介して冷媒配管45Aが接続されている。
<Configuration of outdoor heat exchanger 4C>
Next, the configuration of the outdoor heat exchanger 4C will be explained. As shown in FIG. 19, the outdoor heat exchanger 4C includes a refrigerant distributor 41, a refrigerant distributor 42, and a heat exchanger 43. The heat exchanger 43 is composed of a plurality of flat tubes 47 and a plurality of fins 48. The configuration of the heat exchanger 43 is the same as described in Embodiment 1, so a description thereof will be omitted here. In the second embodiment, a refrigerant distributor 41 with a double tube structure is provided above the heat exchanger 43, and a refrigerant distributor 42 with a double tube structure is provided below the heat exchanger 43. . The configurations of the refrigerant distributor 41 and the refrigerant distributor 42 are as described in Embodiment 1, so the description thereof will be omitted here. As shown in FIG. 19, a refrigerant pipe 36A is connected to the refrigerant distributor 41 via a connecting pipe 60, and a refrigerant pipe 45A is connected to the refrigerant distributor 42 via a connecting pipe 64.
 なお、室外熱交換器4Cは「熱交換器」と呼ばれることがある。熱交換体43は「第1熱交換体」と呼ばれることがある。扁平管47は、「第1扁平管」と呼ばれることがある。冷媒分配器41は「第1冷媒分配器」と呼ばれることがあり、冷媒分配器42は「第2冷媒分配器」と呼ばれることがある。また、外管57は「第1外管」、内管58は「第1内管」、仕切り板59は「第1仕切り板」と呼ばれることがある。また、外管61は「第2外管」、内管62は「第2内管」、仕切り板63は「第2仕切り板」と呼ばれることがある。また、冷媒分配器41に挿入された扁平管47の管端部47cは「第1扁平管の一端部」と呼ばれることがあり、冷媒分配器42に挿入された扁平管47の管端部47dは「第1扁平管の他端部」と呼ばれることがある。 Note that the outdoor heat exchanger 4C is sometimes called a "heat exchanger". The heat exchange body 43 is sometimes referred to as a "first heat exchange body." The flat tube 47 is sometimes called a "first flat tube." Refrigerant distributor 41 may be referred to as a "first refrigerant distributor," and refrigerant distributor 42 may be referred to as a "second refrigerant distributor." Further, the outer tube 57 is sometimes called a "first outer tube," the inner tube 58 is sometimes called a "first inner tube," and the partition plate 59 is sometimes called a "first partition plate." Further, the outer tube 61 is sometimes called a "second outer tube," the inner tube 62 is sometimes called a "second inner tube," and the partition plate 63 is sometimes called a "second partition plate." Further, the tube end 47c of the flat tube 47 inserted into the refrigerant distributor 41 is sometimes referred to as "one end of the first flat tube", and the tube end 47d of the flat tube 47 inserted into the refrigerant distributor 42 is referred to as "one end of the first flat tube". is sometimes referred to as "the other end of the first flat tube".
 また、室外熱交換器3Cは「第2の熱交換器」と呼ばれることがある。熱交換体33は「第2の熱交換体」と呼ばれることがある。扁平管37は、「第2扁平管」と呼ばれることがある。冷媒分配器31は「第3冷媒分配器」と呼ばれることがあり、冷媒分配器32は「第4冷媒分配器」と呼ばれることがある。また、外管51は「第3外管」と呼ばれることがある。外管53は「第4外管」、内管54は「第4内管」、仕切り板55は「第4仕切り板」と呼ばれることがある。また、冷媒分配器31に挿入された扁平管37の管端部37cは「第2扁平管の一端部」と呼ばれることがあり、冷媒分配器32に挿入された扁平管37の管端部37dは「第2扁平管の他端部」と呼ばれることがある。 Additionally, the outdoor heat exchanger 3C is sometimes referred to as a "second heat exchanger". Heat exchange body 33 is sometimes referred to as a "second heat exchange body." The flat tube 37 is sometimes called a "second flat tube." The refrigerant distributor 31 is sometimes called a "third refrigerant distributor," and the refrigerant distributor 32 is sometimes called a "fourth refrigerant distributor." Further, the outer tube 51 is sometimes referred to as a "third outer tube." The outer tube 53 is sometimes called a "fourth outer tube," the inner tube 54 is sometimes called a "fourth inner tube," and the partition plate 55 is sometimes called a "fourth partition plate." Further, the tube end 37c of the flat tube 37 inserted into the refrigerant distributor 31 is sometimes referred to as "one end of the second flat tube", and the tube end 37d of the flat tube 37 inserted into the refrigerant distributor 32 is referred to as "one end of the second flat tube". is sometimes referred to as "the other end of the second flat tube".
 <冷房運転状態の冷媒の流れ>
 まず、冷房運転状態における冷媒の流れを説明する。図19に示すように、圧縮機1(図1参照)から吐出されたガス冷媒が、冷媒配管35Aから接続管52を介して冷媒分配器31に流入する。流入した冷媒は、室外熱交換器3で一部凝縮することで気液二相状態になって、冷媒分配器32を介して冷媒配管36Aに流出する。その後、当該冷媒は、気液二相状態で室外熱交換器4に流入する。室外熱交換器4では、はじめに、接続管60を介して冷媒分配器41に流入される。冷媒分配器41は二重管構造を持ち、その内管58には、多数の冷媒流出孔58cが並設されている。冷媒分配器41に流入した冷媒は、内管58の内部を通る際に、冷媒流出孔58cから、外管57の第2の内部空間57hに流出される。このように、内管58に冷媒流出孔58cを設けたことで、熱交換体43Aの各扁平管47に冷媒が均等に分配される。熱交換体43の内部で凝縮した冷媒は、冷媒分配器42から接続管64を介して冷媒配管45Aに流出する。
<Refrigerant flow during cooling operation>
First, the flow of refrigerant in the cooling operation state will be explained. As shown in FIG. 19, gas refrigerant discharged from the compressor 1 (see FIG. 1) flows into the refrigerant distributor 31 from the refrigerant pipe 35A via the connecting pipe 52. The inflowing refrigerant is partially condensed in the outdoor heat exchanger 3 to become a gas-liquid two-phase state, and flows out to the refrigerant pipe 36A via the refrigerant distributor 32. Thereafter, the refrigerant flows into the outdoor heat exchanger 4 in a gas-liquid two-phase state. In the outdoor heat exchanger 4, the refrigerant first flows into the refrigerant distributor 41 via the connecting pipe 60. The refrigerant distributor 41 has a double pipe structure, and the inner pipe 58 thereof has a large number of refrigerant outlet holes 58c arranged in parallel. When the refrigerant that has flowed into the refrigerant distributor 41 passes through the interior of the inner tube 58, it flows out from the refrigerant outlet hole 58c into the second internal space 57h of the outer tube 57. In this way, by providing the refrigerant outlet hole 58c in the inner tube 58, the refrigerant is evenly distributed to each flat tube 47 of the heat exchanger 43A. The refrigerant condensed inside the heat exchanger 43 flows out from the refrigerant distributor 42 to the refrigerant pipe 45A via the connecting pipe 64.
 以上のように、冷媒運転時において直列冷媒流路を形成した複数の室外熱交換器3Cおよび室外熱交換器4Cのうち、下流側に位置する室外熱交換器4Cの流入側の冷媒分配器41が二重管構造を有している。冷媒分配器41の内管58は、多数並設された冷媒流出孔58cを有している。これにより、下流側に位置する室外熱交換器4Cにおいて、気液二相状態の冷媒の熱交換体43への分配の均一性を向上させることができる。 As described above, the refrigerant distributor 41 on the inflow side of the outdoor heat exchanger 4C located on the downstream side among the plurality of outdoor heat exchangers 3C and the outdoor heat exchanger 4C forming a serial refrigerant flow path during refrigerant operation. has a double tube structure. The inner pipe 58 of the refrigerant distributor 41 has a large number of refrigerant outlet holes 58c arranged in parallel. Thereby, in the outdoor heat exchanger 4C located on the downstream side, it is possible to improve the uniformity of distribution of the gas-liquid two-phase refrigerant to the heat exchanger 43.
 <暖房運転状態の冷媒の流れ>
 次に、暖房運転状態における冷媒の流れを説明する。図19の実線矢印と破線矢印とを比較すると分かるように、暖房運転状態においては冷房運転状態とは冷媒が流れる方向が逆になる。暖房運転状態には、室外熱交換器3Cおよび室外熱交換器4Cへの冷媒の流入は、冷媒分配器32および冷媒分配器42を介することになる。冷媒分配器32および冷媒分配器42は、共に、二重管構造を備える冷媒分配器である。
<Refrigerant flow during heating operation>
Next, the flow of refrigerant in the heating operation state will be explained. As can be seen by comparing the solid line arrow and the broken line arrow in FIG. 19, the direction in which the refrigerant flows in the heating operation state is opposite to that in the cooling operation state. In the heating operation state, the refrigerant flows into the outdoor heat exchanger 3C and the outdoor heat exchanger 4C through the refrigerant distributor 32 and the refrigerant distributor 42. Both the refrigerant distributor 32 and the refrigerant distributor 42 are refrigerant distributors having a double pipe structure.
 以上のように、暖房運転状態において直列冷媒流路を形成した複数の室外熱交換器3Cおよび室外熱交換器4Cは、共に、蒸発器として機能する。そのため、上流側に位置する室外熱交換器4Cの流入側の冷媒分配器42、および、下流側に位置する室外熱交換器3Cの流入側の冷媒分配器32が二重管構造を有している。冷媒分配器42の内管62および冷媒分配器32の内管54は、それぞれ、多数並設された冷媒流出孔62cおよび冷媒流出孔54cを有している。これにより、上流側に位置する室外熱交換器4Cおよび下流側に位置する室外熱交換器3Cにおいて、気液二相状態の冷媒の熱交換体43および熱交換体33への冷媒の分配の均一性を向上させることができる。 As described above, in the heating operation state, the plurality of outdoor heat exchangers 3C and the outdoor heat exchanger 4C, which form serial refrigerant flow paths, both function as an evaporator. Therefore, the refrigerant distributor 42 on the inflow side of the outdoor heat exchanger 4C located on the upstream side and the refrigerant distributor 32 on the inflow side of the outdoor heat exchanger 3C located on the downstream side have a double pipe structure. There is. The inner pipe 62 of the refrigerant distributor 42 and the inner pipe 54 of the refrigerant distributor 32 each have a large number of refrigerant outflow holes 62c and refrigerant outflow holes 54c arranged in parallel. As a result, in the outdoor heat exchanger 4C located on the upstream side and the outdoor heat exchanger 3C located on the downstream side, the refrigerant in the gas-liquid two-phase state is uniformly distributed to the heat exchanger 43 and the heat exchanger 33. can improve sex.
 以上のように、実施の形態2においても、冷房運転状態のときに下流側になる室外熱交換器4Cの冷媒分配器41を二重管構造で構成したため、上記の実施の形態1と同様の効果が得られる。 As described above, in the second embodiment as well, the refrigerant distributor 41 of the outdoor heat exchanger 4C on the downstream side during cooling operation is configured with a double pipe structure, so that the same structure as in the first embodiment is achieved. Effects can be obtained.
 実施の形態3.
 図20は、実施の形態3に係る冷凍サイクル装置100に設けられた室外機101の外観を示す斜視図である。図21は、実施の形態3に係る冷凍サイクル装置100に設けられた室外機101の構成の例を模式的に示す平面図である。
Embodiment 3.
FIG. 20 is a perspective view showing the external appearance of the outdoor unit 101 provided in the refrigeration cycle device 100 according to the third embodiment. FIG. 21 is a plan view schematically showing an example of the configuration of the outdoor unit 101 provided in the refrigeration cycle device 100 according to the third embodiment.
 図20および図21に示すように、室外機101は、室外熱交換器3および4と、室外熱交換器3および4を接続する冷媒配管35、36、45(図2参照)と、筐体101aと、室外送風機9と、を有している。 As shown in FIGS. 20 and 21, the outdoor unit 101 includes outdoor heat exchangers 3 and 4, refrigerant pipes 35, 36, 45 (see FIG. 2) connecting the outdoor heat exchangers 3 and 4, and a housing. 101a, and an outdoor blower 9.
 筐体101aは、図20に示すように、箱型形状を有している。筐体101aの内部には、図21に示すように、室外熱交換器3および4が収容されている。なお、図21では、図示を省略しているが、筐体101aの内部には、図1に示す、圧縮機1、四方弁2、膨張弁5および6、電磁弁7および8、制御部11を構成する制御基板を収容した制御箱(図示せず)等が、さらに収容されている。また、筐体101aの上部101bには、室外送風機9が配置されている。室外送風機9が回転駆動することによって、図20の白抜き矢印で示すような空気の流れが発生する。当該空気は、筐体101aの4つの側面のうち、少なくとも2つの側面から、筐体101a内に吸い込まれる。また、当該空気は、室外熱交換器3および4を通過した後、筐体101aの上部101bに設けられた吹出口から上向きに吹き出される。 The housing 101a has a box shape, as shown in FIG. 20. As shown in FIG. 21, outdoor heat exchangers 3 and 4 are housed inside the housing 101a. Although not shown in FIG. 21, inside the housing 101a are the compressor 1, the four-way valve 2, the expansion valves 5 and 6, the solenoid valves 7 and 8, and the control unit 11 shown in FIG. A control box (not shown) containing a control board constituting the controller is further housed. Furthermore, an outdoor blower 9 is arranged in the upper part 101b of the housing 101a. When the outdoor blower 9 is driven to rotate, air flows as shown by the white arrows in FIG. 20 are generated. The air is sucked into the housing 101a from at least two of the four sides of the housing 101a. Further, after passing through the outdoor heat exchangers 3 and 4, the air is blown upward from an air outlet provided in the upper part 101b of the housing 101a.
 図21(a)の例では、室外熱交換器3および室外熱交換器4は、それぞれ、平面視で矩形形状を有している。図21(a)の例では、室外熱交換器3および室外熱交換器4は、互いに、対向して配置されている。また、図21(a)の例では、室外熱交換器3および室外熱交換器4は、筐体101aの側面の一部に沿って配置されている。すなわち、室外熱交換器3および室外熱交換器4は、筐体101aの4つの側面のうち、2つの側面に沿って配置されている。 In the example of FIG. 21(a), the outdoor heat exchanger 3 and the outdoor heat exchanger 4 each have a rectangular shape in plan view. In the example of FIG. 21(a), the outdoor heat exchanger 3 and the outdoor heat exchanger 4 are arranged to face each other. Moreover, in the example of FIG. 21(a), the outdoor heat exchanger 3 and the outdoor heat exchanger 4 are arranged along a part of the side surface of the housing 101a. That is, the outdoor heat exchanger 3 and the outdoor heat exchanger 4 are arranged along two of the four side surfaces of the housing 101a.
 図21(b)の例では、室外熱交換器3および室外熱交換器4は、それぞれ、平面視でL字形状を有している。図21(b)の例では、室外熱交換器3および室外熱交換器4は、点対称の位置に配置されている。また、図21(b)の例では、室外熱交換器3および室外熱交換器4は、筐体101aの側面の全部に沿って配置されている。すなわち、室外熱交換器3および室外熱交換器4は、筐体101aの4つの側面に沿って配置されている。 In the example of FIG. 21(b), the outdoor heat exchanger 3 and the outdoor heat exchanger 4 each have an L-shape in plan view. In the example of FIG. 21(b), the outdoor heat exchanger 3 and the outdoor heat exchanger 4 are arranged at point-symmetrical positions. Moreover, in the example of FIG. 21(b), the outdoor heat exchanger 3 and the outdoor heat exchanger 4 are arranged along the entire side surface of the housing 101a. That is, the outdoor heat exchanger 3 and the outdoor heat exchanger 4 are arranged along the four side surfaces of the housing 101a.
 図21(c)の例では、図16~図18に示す実施の形態1の変形例2のように、室外熱交換器が3個の場合を示している。図21(c)の例では、室外熱交換器3A、3B、4は、平面視でU字形状に配置されている。図21(c)の例では、室外熱交換器3A、3B、4は、筐体101aの側面の一部に沿って配置されている。すなわち、室外熱交換器3A、3B、4は、筐体101aの3つの側面に沿って配置されている。 The example in FIG. 21(c) shows a case where there are three outdoor heat exchangers, as in the second modification of the first embodiment shown in FIGS. 16 to 18. In the example of FIG. 21(c), the outdoor heat exchangers 3A, 3B, and 4 are arranged in a U-shape when viewed from above. In the example of FIG. 21(c), the outdoor heat exchangers 3A, 3B, and 4 are arranged along part of the side surface of the housing 101a. That is, the outdoor heat exchangers 3A, 3B, and 4 are arranged along three side surfaces of the housing 101a.
 <変形例>
 図22は、実施の形態3の変形例に係る冷凍サイクル装置100に設けられた室外機101の外観を示す斜視図である。図23は、実施の形態3に係る冷凍サイクル装置100に設けられた室外機101の構成の例を模式的に示す平面図である。
<Modified example>
FIG. 22 is a perspective view showing the appearance of an outdoor unit 101 provided in a refrigeration cycle device 100 according to a modification of the third embodiment. FIG. 23 is a plan view schematically showing an example of the configuration of the outdoor unit 101 provided in the refrigeration cycle device 100 according to the third embodiment.
 図21の例では、1つの室外送風機9が、筐体101aの上部101bに配置されている。しかしながら、この場合に限定されない。室外送風機9の個数は、図21に示すように1つでもよいが、実施の形態1で示した図1のように、2つでもよい。図22では、2つの室外送風機9が、筐体101aの上部101bに設けられている場合を示している。 In the example of FIG. 21, one outdoor blower 9 is arranged at the upper part 101b of the housing 101a. However, it is not limited to this case. The number of outdoor blowers 9 may be one as shown in FIG. 21, or two as shown in FIG. 1 in the first embodiment. FIG. 22 shows a case where two outdoor blowers 9 are provided in the upper part 101b of the housing 101a.
 図23の例では、室外熱交換器3および室外熱交換器4は、それぞれ、平面視でL字形状を有している。図23の例では、室外熱交換器3および室外熱交換器4は、線対称の位置に配置されている。また、図23の例では、室外熱交換器3および室外熱交換器4は、筐体101aの4つの側面のうち、3つの側面に沿って配置されている。 In the example of FIG. 23, the outdoor heat exchanger 3 and the outdoor heat exchanger 4 each have an L-shape in plan view. In the example of FIG. 23, the outdoor heat exchanger 3 and the outdoor heat exchanger 4 are arranged in line-symmetrical positions. Moreover, in the example of FIG. 23, the outdoor heat exchanger 3 and the outdoor heat exchanger 4 are arranged along three side surfaces among the four side surfaces of the housing 101a.
 1 圧縮機、2 四方弁、2a 接続口、2b 接続口、2c 接続口、2d 接続口、3 室外熱交換器、3A 室外熱交換器、3B 室外熱交換器、3C 室外熱交換器、3a 接続口、3b 接続口、4 室外熱交換器、4C 室外熱交換器、4a 接続口、4b 接続口、5 膨張弁、6 膨張弁、7 電磁弁、8 電磁弁、9 室外送風機、10 アキュムレータ、11 制御部、21 室内熱交換器、21a 接続口、21b 接続口、22 室内送風機、23 膨張弁、31 冷媒分配器、32 冷媒分配器、33 熱交換体、33A 熱交換体、33B 熱交換体、34 折り返しヘッダ、35 冷媒配管、35A 冷媒配管、36 冷媒配管、36A 冷媒配管、37 扁平管、37a 管端部、37b 管端部、37c 管端部、37d 管端部、38 フィン、41 冷媒分配器、42 冷媒分配器、43 熱交換体、43A 熱交換体、43B 熱交換体、44 折り返しヘッダ、45 冷媒配管、45A 冷媒配管、47 扁平管、47a 管端部、47b 管端部、47c 管端部、47d 管端部、48 フィン、51 外管、51a 管端部、51b 管端部、51c 閉止板、51d 閉止板、51e 扁平管挿入孔、52 接続管、52a 下端部、53 外管、53a 管端部、53b 管端部、53c 閉止板、53d 閉止板、53e 扁平管挿入孔、53f 内壁、53g 第1の内部空間、53h 第2の内部空間、54 内管、54a 管端部、54b 管端部、54c 冷媒流出孔、54f 外壁、55 仕切り板、55a 貫通孔、56 接続管、56a 下端部、57 外管、57a 管端部、57b 管端部、57c 閉止板、57d 閉止板、57e 扁平管挿入孔、57f 内壁、57g 第1の内部空間、57h 第2の内部空間、58 内管、58a 管端部、58b 管端部、58c 冷媒流出孔、58f 外壁、59 仕切り板、59a 貫通孔、60 接続管、60a 下端部、61 外管、61a 管端部、61b 管端部、61c 閉止板、61d 閉止板、61e 扁平管挿入孔、61f 内壁、61g 第1の内部空間、61h 第2の内部空間、62 内管、62a 管端部、62b 管端部、62c 冷媒流出孔、62f 外壁、63 仕切り板、63a 貫通孔、64 接続管、100 冷凍サイクル装置、101 室外機、101a 筐体、101b 上部、201 室内機、300 冷媒配管、301 冷媒配管、302 冷媒配管、303 冷媒配管、304 冷媒配管、305 冷媒配管、306 冷媒配管、307 冷媒配管、308 冷媒配管、310 冷媒配管、P1 接続口、P2 接続口。 1 Compressor, 2 Four-way valve, 2a connection port, 2b connection port, 2c connection port, 2d connection port, 3 outdoor heat exchanger, 3A outdoor heat exchanger, 3B outdoor heat exchanger, 3C outdoor heat exchanger, 3a connection Port, 3b connection port, 4 outdoor heat exchanger, 4C outdoor heat exchanger, 4a connection port, 4b connection port, 5 expansion valve, 6 expansion valve, 7 solenoid valve, 8 solenoid valve, 9 outdoor blower, 10 accumulator, 11 Control unit, 21 indoor heat exchanger, 21a connection port, 21b connection port, 22 indoor blower, 23 expansion valve, 31 refrigerant distributor, 32 refrigerant distributor, 33 heat exchange body, 33A heat exchange body, 33B heat exchange body, 34 Folded header, 35 Refrigerant pipe, 35A Refrigerant pipe, 36 Refrigerant pipe, 36A Refrigerant pipe, 37 Flat tube, 37a Pipe end, 37b Pipe end, 37c Pipe end, 37d Pipe end, 38 Fin, 41 Refrigerant distribution 42 Refrigerant distributor, 43 Heat exchanger, 43A Heat exchanger, 43B Heat exchanger, 44 Folded header, 45 Refrigerant piping, 45A Refrigerant piping, 47 Flat tube, 47a Pipe end, 47b Pipe end, 47c Pipe End, 47d Tube end, 48 Fin, 51 Outer tube, 51a Tube end, 51b Tube end, 51c Closing plate, 51d Closing plate, 51e Flat tube insertion hole, 52 Connecting tube, 52a Lower end, 53 Outer tube , 53a tube end, 53b tube end, 53c closing plate, 53d closing plate, 53e flat tube insertion hole, 53f inner wall, 53g first internal space, 53h second internal space, 54 inner tube, 54a tube end , 54b pipe end, 54c refrigerant outflow hole, 54f outer wall, 55 partition plate, 55a through hole, 56 connecting pipe, 56a lower end, 57 outer pipe, 57a pipe end, 57b pipe end, 57c closing plate, 57d closing Plate, 57e flat tube insertion hole, 57f inner wall, 57g first internal space, 57h second internal space, 58 inner tube, 58a tube end, 58b tube end, 58c refrigerant outflow hole, 58f outer wall, 59 partition plate , 59a through hole, 60 connecting tube, 60a lower end, 61 outer tube, 61a tube end, 61b tube end, 61c closing plate, 61d closing plate, 61e flat tube insertion hole, 61f inner wall, 61g first internal space , 61h second internal space, 62 inner tube, 62a tube end, 62b tube end, 62c refrigerant outflow hole, 62f outer wall, 63 partition plate, 63a through hole, 64 connecting tube, 100 refrigeration cycle device, 101 outdoor unit , 101a housing, 101b upper part, 201 indoor unit, 300 refrigerant piping, 301 refrigerant piping, 302 refrigerant piping, 303 refrigerant piping, 304 refrigerant piping, 305 refrigerant piping, 306 refrigerant piping, 307 refrigerant piping, 308 refrigerant piping, 31 0 Refrigerant Piping, P1 connection port, P2 connection port.

Claims (11)

  1.  第1方向に互いに間隔を空けて配置されて、前記第1方向に交差する第2方向に管軸方向が延びた、複数の第1扁平管を有する、第1熱交換体と、
     複数の前記第1扁平管の一端部が挿入された第1冷媒分配器と、
     複数の前記第1扁平管の他端部が挿入された第2冷媒分配器と、
     を備え、
     前記第1冷媒分配器は、
     前記第1方向に延設され、複数の前記第1扁平管の前記一端部が挿入された第1外管と、
     前記第1方向に延設され、前記第1外管の内部に配置され、前記第1方向に互いに間隔を空けて配置された複数の第1冷媒流出孔を有する、第1内管と、
     前記第1内管が板厚を貫通した状態で、前記第1外管の内壁に接合された、第1仕切り板と、
     を有し、
     前記第2冷媒分配器は、
     前記第1方向に延設され、複数の前記第1扁平管の前記他端部が挿入された第2外管と、
     前記第1方向に延設され、前記第2外管の内部に配置され、前記第1方向に互いに間隔を空けて配置された複数の第2冷媒流出孔を有する、第2内管と、
     前記第2内管が板厚を貫通した状態で、前記第2外管の内壁に接合された、第2仕切り板と、
     を有する、
     熱交換器。
    a first heat exchange body having a plurality of first flat tubes arranged at intervals in a first direction and whose tube axis direction extends in a second direction intersecting the first direction;
    a first refrigerant distributor into which one end portions of the plurality of first flat tubes are inserted;
    a second refrigerant distributor into which the other end portions of the plurality of first flat tubes are inserted;
    Equipped with
    The first refrigerant distributor includes:
    a first outer tube extending in the first direction and into which the one end portions of the plurality of first flat tubes are inserted;
    a first inner tube extending in the first direction, disposed inside the first outer tube, and having a plurality of first refrigerant outlet holes spaced apart from each other in the first direction;
    a first partition plate joined to the inner wall of the first outer tube with the first inner tube penetrating through the plate thickness;
    has
    The second refrigerant distributor includes:
    a second outer tube extending in the first direction and into which the other end portions of the plurality of first flat tubes are inserted;
    a second inner tube extending in the first direction, disposed inside the second outer tube, and having a plurality of second refrigerant outlet holes spaced apart from each other in the first direction;
    a second partition plate joined to the inner wall of the second outer tube with the second inner tube penetrating through the plate thickness;
    has,
    Heat exchanger.
  2.  前記熱交換器が凝縮器として機能するときに、
     冷媒は、前記第1冷媒分配器から前記第1扁平管の前記一端部に流入し、前記第1扁平管の内部を流れ、前記第1扁平管の前記他端部から前記第2冷媒分配器に流出する、
     請求項1に記載の熱交換器。
    When the heat exchanger functions as a condenser,
    The refrigerant flows into the one end of the first flat tube from the first refrigerant distributor, flows inside the first flat tube, and flows from the other end of the first flat tube into the second refrigerant distributor. leaks into
    The heat exchanger according to claim 1.
  3.  前記第1冷媒分配器から前記第1扁平管の前記一端部に流入する前記冷媒は気液二相状態である、
     請求項2に記載の熱交換器。
    The refrigerant flowing from the first refrigerant distributor into the one end of the first flat tube is in a gas-liquid two-phase state.
    The heat exchanger according to claim 2.
  4.  前記第1冷媒分配器の仕様の一部またはすべては、前記第2冷媒分配器の仕様の一部またはすべてと異なり、
     前記第1冷媒分配器の仕様および前記第2冷媒分配器の仕様は、前記熱交換器が凝縮器として機能するときの前記第1冷媒分配器および前記第2冷媒分配器における前記冷媒の分配の均一性に関する状態と、前記熱交換器が蒸発器として機能するときの前記第1冷媒分配器および前記第2冷媒分配器で発生する圧力損失と、に基づいて決定される、
     請求項1~3のいずれか1項に記載の熱交換器。
    Some or all of the specifications of the first refrigerant distributor are different from some or all of the specifications of the second refrigerant distributor,
    The specifications of the first refrigerant distributor and the specifications of the second refrigerant distributor are based on the distribution of the refrigerant in the first refrigerant distributor and the second refrigerant distributor when the heat exchanger functions as a condenser. Determined based on the state regarding uniformity and the pressure loss occurring in the first refrigerant distributor and the second refrigerant distributor when the heat exchanger functions as an evaporator.
    The heat exchanger according to any one of claims 1 to 3.
  5.  前記第1扁平管は、
     空気の流れる方向において風下側に配置され、前記第1扁平管の前記一端部を有する、風下側第1扁平管と、
     前記空気の流れる方向において風上側に配置され、前記第1扁平管の前記他端部を有する、風上側第1扁平管と、
     を含み、
     前記風下側第1扁平管の前記一端部と反対側の端部と、前記風上側第1扁平管の前記他端部と反対側の端部と、は、第1折り返しヘッダを介して接続されている、
     請求項1~4のいずれか1項に記載の熱交換器。
    The first flat tube is
    a leeward-side first flat tube that is disposed on the leeward side in the direction of air flow and has the one end portion of the first flat tube;
    a windward-side first flat tube that is disposed on the windward side in the air flow direction and has the other end of the first flat tube;
    including;
    An end opposite to the one end of the first flat tube on the leeward side and an end opposite to the other end of the first flat tube on the windward side are connected via a first folded header. ing,
    The heat exchanger according to any one of claims 1 to 4.
  6.  前記熱交換器が凝縮器として機能するときに、前記熱交換器は、凝縮器として機能する第2熱交換器に直列に接続されるものであって、
     前記第2熱交換器は、前記冷媒の流れる方向において、前記熱交換器の上流側に配置される、
     請求項1~5のいずれか1項に記載の熱交換器。
    When the heat exchanger functions as a condenser, the heat exchanger is connected in series to a second heat exchanger that functions as a condenser,
    The second heat exchanger is arranged upstream of the heat exchanger in the direction in which the refrigerant flows.
    The heat exchanger according to any one of claims 1 to 5.
  7.  前記第2熱交換器は、
     第3方向に互いに間隔を空けて配置されて、前記第3方向に交差する前記第2方向に管軸方向が延びた、複数の第2扁平管を有する、第2熱交換体と、
     複数の前記第2扁平管の一端部が挿入された第3冷媒分配器と、
     複数の前記第2扁平管の他端部が挿入された第4冷媒分配器と、
     を備え、
     前記第3冷媒分配器は、
     前記第3方向に延設され、複数の前記第2扁平管の前記一端部が挿入された第3外管
     を有し、
     前記第4冷媒分配器は、
     前記第3方向に延設され、複数の前記第2扁平管の前記他端部が挿入された第4外管と、
     前記第3方向に延設され、前記第4外管の内部に配置され、前記第3方向に互いに間隔を空けて配置された複数の第4冷媒流出孔を有する、第4内管と、
     前記第4内管が板厚を貫通した状態で、前記第4外管の内壁に接合された、第4仕切り板と、
     を有する、
     請求項6に記載の熱交換器。
    The second heat exchanger is
    a second heat exchanger having a plurality of second flat tubes arranged at intervals in a third direction and whose tube axis direction extends in the second direction intersecting the third direction;
    a third refrigerant distributor into which one end portion of the plurality of second flat tubes is inserted;
    a fourth refrigerant distributor into which the other end portions of the plurality of second flat tubes are inserted;
    Equipped with
    The third refrigerant distributor is
    a third outer tube extending in the third direction and into which the one ends of the plurality of second flat tubes are inserted;
    The fourth refrigerant distributor is
    a fourth outer tube extending in the third direction and into which the other end portions of the plurality of second flat tubes are inserted;
    a fourth inner pipe extending in the third direction, disposed inside the fourth outer pipe, and having a plurality of fourth refrigerant outlet holes spaced apart from each other in the third direction;
    a fourth partition plate joined to the inner wall of the fourth outer tube with the fourth inner tube penetrating through the plate thickness;
    has,
    The heat exchanger according to claim 6.
  8.  前記第2熱交換器が凝縮器として機能するときに、
     冷媒は、前記第3冷媒分配器から前記第2扁平管の前記一端部に流入し、前記第2扁平管の内部を流れ、前記第2扁平管の前記他端部から前記第4冷媒分配器に流出する、
     請求項7に記載の熱交換器。
    When the second heat exchanger functions as a condenser,
    The refrigerant flows from the third refrigerant distributor into the one end of the second flat tube, flows inside the second flat tube, and flows from the other end of the second flat tube into the fourth refrigerant distributor. leaks into
    The heat exchanger according to claim 7.
  9.  前記第3冷媒分配器から前記第2扁平管の前記一端部に流入する前記冷媒はガス状態である、
     請求項8に記載の熱交換器。
    The refrigerant flowing from the third refrigerant distributor into the one end of the second flat tube is in a gas state.
    The heat exchanger according to claim 8.
  10.  前記第2扁平管は、
     空気の流れる方向において風下側に配置され、前記第2扁平管の前記一端部を有する、風下側第2扁平管と、
     前記空気の流れる方向において風上側に配置され、前記第2扁平管の前記他端部を有する、風上側第2扁平管と、
     を含み、
     前記風下側第2扁平管の前記一端部と反対側の端部と、前記風上側第2扁平管の前記他端部と反対側の端部と、は、第2折り返しヘッダを介して接続されている、
     請求項7~9のいずれか1項に記載の熱交換器。
    The second flat tube is
    a second leeward flat tube that is disposed on the leeward side in the direction of air flow and has the one end of the second flat tube;
    a second windward flat tube that is disposed on the windward side in the air flow direction and has the other end of the second flat tube;
    including;
    An end opposite to the one end of the second flat tube on the leeward side and an end opposite to the other end of the second flat tube on the windward side are connected via a second folded header. ing,
    The heat exchanger according to any one of claims 7 to 9.
  11.  室外機を備えた冷凍サイクル装置であって、
     前記室外機は、
     請求項1~5のいずれか1項に記載の熱交換器と、
     請求項6~10のいずれか1項に記載の第2熱交換器と、
     前記熱交換器と前記第2熱交換器とを接続する冷媒配管と、
     前記熱交換器および前記第2熱交換器を内部に収容する箱状に形成された筐体と、
     前記筐体の上部に配置され、回転駆動することによって空気の流れを形成し、前記熱交換器および前記第2熱交換器を通過した前記空気を、前記筐体の上面から上向きに吹き出す、送風機と、
     を備え、
     前記熱交換器および前記第2熱交換器が、前記筐体の4つの側面のうちの一部または全部に沿って配置される、
     冷凍サイクル装置。
    A refrigeration cycle device equipped with an outdoor unit,
    The outdoor unit is
    The heat exchanger according to any one of claims 1 to 5,
    The second heat exchanger according to any one of claims 6 to 10,
    refrigerant piping connecting the heat exchanger and the second heat exchanger;
    a box-shaped casing that houses the heat exchanger and the second heat exchanger therein;
    an air blower that is disposed at the top of the casing, forms an air flow by rotationally driving, and blows the air that has passed through the heat exchanger and the second heat exchanger upward from the top surface of the casing; and,
    Equipped with
    the heat exchanger and the second heat exchanger are arranged along some or all of the four sides of the housing;
    Refrigeration cycle equipment.
PCT/JP2022/031523 2022-08-22 2022-08-22 Heat exchanger, and refrigeration cycle device WO2024042575A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/031523 WO2024042575A1 (en) 2022-08-22 2022-08-22 Heat exchanger, and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/031523 WO2024042575A1 (en) 2022-08-22 2022-08-22 Heat exchanger, and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2024042575A1 true WO2024042575A1 (en) 2024-02-29

Family

ID=90012807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031523 WO2024042575A1 (en) 2022-08-22 2022-08-22 Heat exchanger, and refrigeration cycle device

Country Status (1)

Country Link
WO (1) WO2024042575A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012102992A (en) * 2010-11-11 2012-05-31 Atsuo Morikawa Parallel flow multi-stage condensation subcooler for outdoor unit
JP2014533819A (en) * 2011-11-18 2014-12-15 エルジー エレクトロニクス インコーポレイティド Heat exchanger
WO2019008664A1 (en) * 2017-07-04 2019-01-10 三菱電機株式会社 Refrigeration cycle device
WO2019239446A1 (en) * 2018-06-11 2019-12-19 三菱電機株式会社 Air conditioner outdoor unit and air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012102992A (en) * 2010-11-11 2012-05-31 Atsuo Morikawa Parallel flow multi-stage condensation subcooler for outdoor unit
JP2014533819A (en) * 2011-11-18 2014-12-15 エルジー エレクトロニクス インコーポレイティド Heat exchanger
WO2019008664A1 (en) * 2017-07-04 2019-01-10 三菱電機株式会社 Refrigeration cycle device
WO2019239446A1 (en) * 2018-06-11 2019-12-19 三菱電機株式会社 Air conditioner outdoor unit and air conditioner

Similar Documents

Publication Publication Date Title
AU766695B2 (en) Refrigerating device
JP4715561B2 (en) Refrigeration equipment
CN109477669B (en) Heat exchanger and refrigeration cycle device provided with same
WO2015140886A1 (en) Refrigeration cycle apparatus
JP5936785B1 (en) Air conditioner
WO2015063989A1 (en) Outdoor unit for air-conditioning device
JP2007240025A (en) Refrigerating device
JP2018162900A (en) Heat exchanger and air conditioner including the same
WO2018138770A1 (en) Heat source-side unit and refrigeration cycle device
JP5975971B2 (en) Heat exchanger and refrigeration cycle apparatus
WO2021234956A1 (en) Heat exchanger, outdoor unit, and refrigeration cycle device
JP6906141B2 (en) Heat exchanger shunt
US20170089616A1 (en) Refrigeration cycle apparatus
JP2006308207A (en) Refrigerating device
JP7460550B2 (en) Refrigeration cycle equipment
WO2024042575A1 (en) Heat exchanger, and refrigeration cycle device
JP6169199B2 (en) Heat exchanger and refrigeration cycle apparatus
US11371758B2 (en) Refrigeration cycle apparatus
EP4134601A1 (en) Refrigeration cycle device
JP6925508B2 (en) Heat exchanger, refrigeration cycle device and air conditioner
WO2020148826A1 (en) Air conditioner
WO2015125525A1 (en) Heat exchanger and refrigerating cycle device
JP2014081170A (en) Air conditioner
JP7418551B2 (en) Heat exchangers, outdoor units, and air conditioners
JP2000266426A (en) Heat exchanger and cooling system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956403

Country of ref document: EP

Kind code of ref document: A1