JP2014081170A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2014081170A
JP2014081170A JP2012230506A JP2012230506A JP2014081170A JP 2014081170 A JP2014081170 A JP 2014081170A JP 2012230506 A JP2012230506 A JP 2012230506A JP 2012230506 A JP2012230506 A JP 2012230506A JP 2014081170 A JP2014081170 A JP 2014081170A
Authority
JP
Japan
Prior art keywords
refrigerant
storage container
heat exchanger
passage member
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012230506A
Other languages
Japanese (ja)
Inventor
Keisuke Tanimoto
啓介 谷本
Takayuki Setoguchi
隆之 瀬戸口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2012230506A priority Critical patent/JP2014081170A/en
Publication of JP2014081170A publication Critical patent/JP2014081170A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce an amount of a gas refrigerant flowing out from a refrigerant storage vessel with a liquid refrigerant and thereby inhibit the performance deterioration of an air conditioner without using a partition plate of the refrigerant storage vessel which is connected with a refrigerant circuit in the air conditioner including the refrigerant circuit which is formed so that a circulation direction of the refrigerant is reversible.SOLUTION: A refrigerant storage vessel (10) is provided with: a vessel body (11) having one internal space; a first pipeline (1) which is connected with a first expansion valve (33) and in which a lower end opening (3) positioned at the lower side of a liquid surface placed during heating operation is formed; and a second pipeline (2) which is connected with a second expansion valve (34) and in which a lower end opening (4) positioned between a liquid surface placed during cooling operation and a liquid surface placed during the heating operation is formed.

Description

本発明は、冷媒貯留容器が接続された冷媒回路を備えた空気調和装置に関するものである。     The present invention relates to an air conditioner including a refrigerant circuit to which a refrigerant storage container is connected.

従来より、冷媒の循環方向が可逆に構成された冷媒回路を備える空気調和装置が知られている。そして、これらの空気調和装置の中には、特許文献1に示すように、余剰冷媒を貯留する冷媒貯留容器が冷媒回路に接続されるものがある。     2. Description of the Related Art Conventionally, an air conditioner including a refrigerant circuit in which the refrigerant circulation direction is configured to be reversible is known. And among these air conditioning apparatuses, as shown in Patent Document 1, there is one in which a refrigerant storage container for storing excess refrigerant is connected to a refrigerant circuit.

前記冷媒貯留容器は、容器本体と、該容器本体の内外を連通する第1配管及び第2配管とを備えている。この冷媒貯留容器は、冷媒回路の循環方向が順方向のときに第1配管が入口配管となり且つ第2配管が出口配管となる。冷媒回路の循環方向が逆方向のときに第1配管が出口配管となり且つ第2配管が入口配管となる。     The said refrigerant | coolant storage container is equipped with the container main body and the 1st piping and 2nd piping which connect the inside and outside of this container main body. In this refrigerant storage container, when the circulation direction of the refrigerant circuit is the forward direction, the first pipe is an inlet pipe and the second pipe is an outlet pipe. When the circulation direction of the refrigerant circuit is reverse, the first pipe is an outlet pipe and the second pipe is an inlet pipe.

この冷媒貯留容器では、第1配管及び第2配管の端部を同じ高さで冷媒貯留容器の下部空間に開口させることにより、冷媒回路の冷媒の循環方向にかかわらず、冷媒貯留容器の下部空間に溜まった液冷媒を流出することができるように構成されている。     In this refrigerant storage container, by opening the end portions of the first pipe and the second pipe to the lower space of the refrigerant storage container at the same height, the lower space of the refrigerant storage container regardless of the refrigerant circulation direction of the refrigerant circuit. The liquid refrigerant accumulated in the tank can be discharged.

ここで、冷媒貯留容器の第1配管及び第2配管の端部が同じ高さで隣り合うため、第1配管及び第2配管の一方の配管から流出した気液二相状態のガス冷媒が他方の配管へ吸い込まることにより、冷媒貯留容器から液冷媒とともにガス冷媒が流出してしまい、空気調和装置の性能が低下する。この性能の低下を防ぐため、隣り合う第1配管及び第2配管の間に仕切板が設けられている。     Here, since the ends of the first pipe and the second pipe of the refrigerant storage container are adjacent to each other at the same height, the gas refrigerant in the gas-liquid two-phase state that flows out from one pipe of the first pipe and the second pipe is the other. As a result, the gas refrigerant flows out of the refrigerant storage container together with the liquid refrigerant, and the performance of the air conditioner decreases. In order to prevent this performance degradation, a partition plate is provided between the adjacent first pipe and second pipe.

特開2002−81803号公報JP 2002-81803 A

しかしながら、冷媒貯留容器の内部に仕切板を設けると、冷媒貯留容器の構成部品が多くなって冷媒貯留容器の製作コストが増加してしまうので好ましくない。     However, providing a partition plate inside the refrigerant storage container is not preferable because the number of components of the refrigerant storage container increases and the manufacturing cost of the refrigerant storage container increases.

本発明は、かかる点に鑑みてなされたものであり、その目的は、冷媒の循環方向が可逆に構成された冷媒回路を備える空気調和装置において、この冷媒回路に接続される冷媒貯留容器の仕切板を利用しなくても、冷媒貯留容器から液冷媒とともに流出するガス冷媒の量を抑えて、空気調和装置の性能低下を抑制することにある。     The present invention has been made in view of such a point, and an object of the present invention is to partition a refrigerant storage container connected to the refrigerant circuit in an air conditioner including a refrigerant circuit in which the circulation direction of the refrigerant is reversibly configured. Even if the plate is not used, the amount of the gas refrigerant flowing out of the refrigerant storage container together with the liquid refrigerant is suppressed to suppress the performance degradation of the air conditioner.

第1の発明は、圧縮機(30)と、第1熱交換器(32)と、第1膨張機構(33)と、冷媒貯留容器(10)と、第2膨張機構(34)と、第2熱交換器(35)とが順に接続されて冷媒の循環方向が可逆に構成された蒸気圧縮式冷凍サイクルの冷媒回路(20)を備え、前記冷媒回路(20)の冷媒の循環方向を切り換えることによって、前記第1熱交換器(32)が凝縮器となり且つ前記第2熱交換器(35)が蒸発器となる第1運転と、前記第2熱交換器(35)が凝縮器となり且つ前記第1熱交換器(32)が蒸発器となる第2運転とを行う空気調和装置である。     The first invention includes a compressor (30), a first heat exchanger (32), a first expansion mechanism (33), a refrigerant storage container (10), a second expansion mechanism (34), A refrigerant circuit (20) of a vapor compression refrigeration cycle, which is connected in sequence with two heat exchangers (35) to reversibly recirculate the refrigerant, and switches the refrigerant circulation direction of the refrigerant circuit (20) Thus, the first operation in which the first heat exchanger (32) serves as a condenser and the second heat exchanger (35) serves as an evaporator, and the second heat exchanger (35) serves as a condenser and It is an air conditioner that performs the second operation in which the first heat exchanger (32) serves as an evaporator.

この空気調和装置において、前記第1熱交換器(32)は、該第1熱交換器(32)の内容積が前記第2熱交換器(35)の内容積よりも小さく構成される一方、前記冷媒貯留容器(10)は、1つの内部空間を有する容器本体(11)と、前記第1膨張機構(33)に接続され且つ前記第2運転時の容器本体(11)の内部空間の液面の下側に位置する開口部(3)が形成された第1通路部材(1)と、前記第2膨張機構(34)に接続され且つ前記第1運転時の容器本体(11)の内部空間の液面と前記第2運転時の容器本体(11)の内部空間の液面との間に位置する開口部(4)が形成された第2通路部材(2)とを備えている。     In this air conditioner, the first heat exchanger (32) is configured such that the internal volume of the first heat exchanger (32) is smaller than the internal volume of the second heat exchanger (35), The refrigerant storage container (10) includes a container main body (11) having one internal space, and a liquid in the internal space of the container main body (11) connected to the first expansion mechanism (33) and in the second operation. A first passage member (1) in which an opening (3) located on the lower side of the surface is formed, and an interior of the container body (11) connected to the second expansion mechanism (34) and in the first operation A second passage member (2) having an opening (4) located between the liquid level in the space and the liquid level in the internal space of the container body (11) during the second operation.

第1の発明では、第1熱交換器(32)の内容積を第2熱交換器(35)の内容積よりも小さくしたので、空気調和装置の第1運転時(第1熱交換器(32)が凝縮器となる運転)の冷媒貯留容器(10)の液面が、空気調和装置の第2運転時(第2熱交換器(35)が凝縮器となる運転)の冷媒貯留容器(10)の液面よりも高くなる。これは、冷媒回路(20)の凝縮器で溜めきれなかった液冷媒が冷媒貯留容器(10)に溜まるため、凝縮器となる熱交換器の内容積に応じて冷媒貯留容器(10)に溜まる液冷媒の量が変わるからである。     In the first invention, since the internal volume of the first heat exchanger (32) is made smaller than the internal volume of the second heat exchanger (35), the air conditioner during the first operation (the first heat exchanger ( The liquid level of the refrigerant storage container (10) in the operation in which 32) is a condenser) is the refrigerant storage container in the second operation of the air conditioner (operation in which the second heat exchanger (35) is a condenser). It becomes higher than the liquid level of 10). This is because liquid refrigerant that could not be stored in the condenser of the refrigerant circuit (20) is accumulated in the refrigerant storage container (10), and therefore is accumulated in the refrigerant storage container (10) according to the internal volume of the heat exchanger that becomes the condenser. This is because the amount of liquid refrigerant changes.

第1運転時の凝縮器(第1熱交換器(32))の内容積が第2運転時の凝縮器(第2熱交換器(35))の内容積よりも小さい場合、その小さくなった内容積に起因して冷媒貯留容器(10)に溜まる液冷媒の量が増え、第1運転時の液面が第2運転時の液面よりも高くなる。そして、第1運転時の液面が高くなることによって、第1運転時の液面の下側の範囲内で冷媒貯留容器(10)の第2通路部材(2)の開口部(4)を第1通路部材(1)の開口部(3)よりも高い位置にすることが可能となる。第1運転時の液面の上側に第2通路部材(2)の開口部(4)が位置してしまうと、第2通路部材(2)の開口部(4)から容器本体(11)内の上部に溜まったガス冷媒が流出してしまい、好ましくないからである。     When the internal volume of the condenser (first heat exchanger (32)) during the first operation is smaller than the internal volume of the condenser (second heat exchanger (35)) during the second operation, the volume is reduced. The amount of liquid refrigerant that accumulates in the refrigerant storage container (10) due to the internal volume increases, and the liquid level during the first operation becomes higher than the liquid level during the second operation. Then, by increasing the liquid level during the first operation, the opening (4) of the second passage member (2) of the refrigerant storage container (10) is within the range below the liquid level during the first operation. It becomes possible to make it a position higher than the opening part (3) of a 1st channel | path member (1). When the opening (4) of the second passage member (2) is positioned above the liquid level during the first operation, the opening (4) of the second passage member (2) enters the container body (11). This is because the gas refrigerant accumulated in the upper part of the gas flows out, which is not preferable.

空気調和装置の第2運転時において、第2熱交換器(35)で凝縮した冷媒は第2膨張機構(34)で膨脹して気液二相状態となり、冷媒貯留容器(10)の第2通路部材(2)を通じて該冷媒貯留容器(10)へ流入する。第2運転時の冷媒貯留容器(10)の液面は第1通路部材(1)の開口部(3)と第2通路部材(2)の開口部(4)との間に位置しているので、第2通路部材(2)の開口部(4)から冷媒貯留容器(10)の液面の上側へ気液二相状態の冷媒が噴出される。第1通路部材(1)の開口部(3)は冷媒貯留容器(10)の液中にあるので、第1通路部材(1)の開口部(3)に第2通路部材(2)のガス冷媒が侵入することはない。冷媒貯留容器(10)の液冷媒は、第1通路部材(1)を通過して第1膨張機構(33)で膨脹した後に第1熱交換器(32)で蒸発する。     During the second operation of the air conditioner, the refrigerant condensed in the second heat exchanger (35) is expanded in the second expansion mechanism (34) to be in a gas-liquid two-phase state, and the second refrigerant storage container (10) is second. It flows into the refrigerant storage container (10) through the passage member (2). The liquid level of the refrigerant storage container (10) during the second operation is located between the opening (3) of the first passage member (1) and the opening (4) of the second passage member (2). Therefore, the gas-liquid two-phase refrigerant is ejected from the opening (4) of the second passage member (2) to the upper side of the liquid surface of the refrigerant storage container (10). Since the opening (3) of the first passage member (1) is in the liquid of the refrigerant storage container (10), the gas of the second passage member (2) is placed in the opening (3) of the first passage member (1). The refrigerant will not enter. The liquid refrigerant in the refrigerant storage container (10) passes through the first passage member (1), expands in the first expansion mechanism (33), and evaporates in the first heat exchanger (32).

また、空気調和装置の第1運転時において、第1熱交換器(32)で凝縮した冷媒は第1膨張機構(33)で膨脹して気液二相状態となり、冷媒貯留容器(10)の第1通路部材(1)を通じて該冷媒貯留容器(10)へ流入する。第1運転時の冷媒貯留容器(10)の液面は第2通路部材(2)の開口部(4)の上側に位置しているため、第1通路部材(1)の開口部(3)から冷媒貯留容器(10)の液中に気液二相状態の冷媒が噴出される。第2通路部材(2)の開口部(4)は、第1通路部材(1)の開口部(3)と同様に冷媒貯留容器(10)の液中にあるが、両方の開口部(3,4)の位置は上下にずれているので、両方の開口部(3,4)が同じ高さで隣接して配置される場合に比べて、両方の開口部(3,4)の距離が長くなり、第1通路部材(1)から流出したガス冷媒が第2通路部材(2)へ吸い込まれにくくなる。冷媒貯留容器(10)の液冷媒は、第2通路部材(2)を通過して第2膨張機構(34)で膨脹した後に第2熱交換器(35)で蒸発する。     Further, during the first operation of the air conditioner, the refrigerant condensed in the first heat exchanger (32) expands in the first expansion mechanism (33) to become a gas-liquid two-phase state, and the refrigerant storage container (10) It flows into the refrigerant storage container (10) through the first passage member (1). Since the liquid level of the refrigerant storage container (10) during the first operation is located above the opening (4) of the second passage member (2), the opening (3) of the first passage member (1) The gas-liquid two-phase refrigerant is ejected from the liquid into the refrigerant storage container (10). The opening (4) of the second passage member (2) is in the liquid of the refrigerant storage container (10), like the opening (3) of the first passage member (1), but both openings (3 , 4) is shifted up and down, the distance between both openings (3, 4) is smaller than when both openings (3, 4) are placed adjacent to each other at the same height. The gas refrigerant that has flowed out from the first passage member (1) becomes difficult to be sucked into the second passage member (2). The liquid refrigerant in the refrigerant storage container (10) passes through the second passage member (2), expands in the second expansion mechanism (34), and then evaporates in the second heat exchanger (35).

第2の発明は、第1の発明において、前記冷媒貯留容器(10)の第1通路部材(1)及び第2通路部材(2)は、該第1通路部材(1)の開口部(3)を前記容器本体(11)の中心から外向きに開口させて、該第1通路部材(1)の開口部(3)と該第2通路部材(2)の開口部(4)とが互いに非対向となるように配置されている。     According to a second aspect of the present invention, in the first aspect, the first passage member (1) and the second passage member (2) of the refrigerant storage container (10) are provided with an opening (3) of the first passage member (1). ) Are opened outward from the center of the container body (11), and the opening (3) of the first passage member (1) and the opening (4) of the second passage member (2) are mutually connected. It arrange | positions so that it may become non-opposing.

第2の発明では、空気調和装置の第1運転において、第1膨張機構(33)で膨脹して気液二相状態となった冷媒が冷媒貯留容器(10)の第1通路部材(1)へ流入する。この冷媒は第1通路部材(1)の開口部(3)から冷媒貯留容器(10)内の液中へ噴出される。液中に噴出された冷媒のうちガス冷媒は気泡となって上昇する。     In the second invention, in the first operation of the air conditioner, the refrigerant that has been expanded by the first expansion mechanism (33) into a gas-liquid two-phase state is the first passage member (1) of the refrigerant storage container (10). Flow into. This refrigerant is ejected from the opening (3) of the first passage member (1) into the liquid in the refrigerant storage container (10). Of the refrigerant jetted into the liquid, the gas refrigerant rises as bubbles.

ここで、冷媒貯留容器(10)の第1通路部材(1)の開口部(3)は、冷媒貯留容器(10)の中心から外向きに開口しているので、両方の開口部(3,4)が向き合わず、第1通路部材(1)の開口部(3)から第2通路部材(2)の開口部(4)の方へガス冷媒の気泡が行きにくくなる。     Here, since the opening part (3) of the 1st channel | path member (1) of a refrigerant | coolant storage container (10) is opened outward from the center of a refrigerant | coolant storage container (10), both opening part (3, 4) does not face each other, and it is difficult for bubbles of gas refrigerant to go from the opening (3) of the first passage member (1) to the opening (4) of the second passage member (2).

第3の発明は、第2の発明において、前記冷媒貯留容器(10)の第2通路部材(2)は、該第2通路部材(2)の開口部(4)が前記容器本体(11)の中心から外向きに開口するように配置されている。     According to a third aspect, in the second aspect, the second passage member (2) of the refrigerant storage container (10) has an opening (4) of the second passage member (2), the container body (11). It arrange | positions so that it may open outward from the center of.

第3の発明では、空気調和装置の第1運転において、冷媒貯留容器(10)内の冷媒が第2通路部材(2)の開口部(4)へ吸い込まれる。ここで、第2通路部材(2)の開口部(4)は、冷媒貯留容器(10)の中心から外向きに開口しているので、両方の開口部(3,4)が向き合わず、第1通路部材(1)の開口部(3)から流出した気泡が第1通路部材(1)の開口部(3)へ吸い込まれにくくなる。     In the third invention, in the first operation of the air conditioner, the refrigerant in the refrigerant storage container (10) is sucked into the opening (4) of the second passage member (2). Here, since the opening (4) of the second passage member (2) opens outward from the center of the refrigerant storage container (10), both the openings (3,4) do not face each other. Air bubbles flowing out from the opening (3) of the one passage member (1) are less likely to be sucked into the opening (3) of the first passage member (1).

本発明によれば、第1熱交換器(32)の内容積を第2熱交換器(35)の内容積よりも小さくしたので、空気調和装置の第1運転時の冷媒貯留容器(10)の液面が、第2運転時の冷媒貯留容器(10)の液面よりも高くなり、冷媒貯留容器(10)の第2通路部材(2)の開口部(4)の位置を第1通路部材(1)の開口部(3)の位置よりも高くして、両方の開口部(3,4)の位置を上下方向にずらして間隔を広げることができる。両方の開口部(3,4)の間隔を広げることによって、一方の開口部(3)から他方の開口部(4)へのガス冷媒の侵入を抑えることができる。     According to the present invention, since the internal volume of the first heat exchanger (32) is smaller than the internal volume of the second heat exchanger (35), the refrigerant storage container (10) during the first operation of the air conditioner. The liquid level of the refrigerant storage container (10) during the second operation becomes higher than the liquid level, and the position of the opening (4) of the second passage member (2) of the refrigerant storage container (10) is changed to the first passage. It is possible to increase the distance by shifting the positions of both openings (3, 4) in the vertical direction by making the position higher than the position of the opening (3) of the member (1). By widening the gap between the two openings (3, 4), the intrusion of the gas refrigerant from one opening (3) to the other opening (4) can be suppressed.

これにより、従来の冷媒貯留容器(10)に用いられる仕切板を利用しなくても、冷媒貯留容器(10)から液冷媒とともに流出するガス冷媒の量を抑えることができ、空気調和装置の性能低下を抑制することができる。     As a result, the amount of gas refrigerant flowing out of the refrigerant storage container (10) together with the liquid refrigerant can be suppressed without using the partition plate used in the conventional refrigerant storage container (10), and the performance of the air conditioner The decrease can be suppressed.

また、前記第2の発明によれば、第1通路部材(1)の開口部(3)を前記容器本体(11)の中心から外向きに開口させて、両方の開口部(3,4)が向き合わないようにしたので、第1通路部材(1)の開口部(3)から第2通路部材(2)の開口部(4)の方へガス冷媒の気泡が行きにくくなる。これにより、冷媒貯留容器(10)から液冷媒とともに流出するガス冷媒の量をさらに抑えることができ、空気調和装置の性能低下を抑制することができる。     According to the second aspect of the invention, the opening (3) of the first passage member (1) is opened outward from the center of the container body (11), and both openings (3,4) Therefore, the bubbles of the gas refrigerant are less likely to go from the opening (3) of the first passage member (1) toward the opening (4) of the second passage member (2). Thereby, the quantity of the gas refrigerant | coolant which flows out with a liquid refrigerant from a refrigerant | coolant storage container (10) can further be suppressed, and the performance fall of an air conditioning apparatus can be suppressed.

また、前記第3の発明によれば、第2通路部材(2)の開口部(4)を容器本体(11)の中心から外向きに開口するようにしたので、両方の開口部(3,4)が向き合わず、第1通路部材(1)の開口部(3)から流出した気泡が第1通路部材(1)の開口部(3)へ吸い込まれにくくなる。これにより、冷媒貯留容器(10)から液冷媒とともに流出するガス冷媒の量をより一層抑えることができ、空気調和装置の性能低下を抑制することができる。     According to the third aspect of the invention, since the opening (4) of the second passage member (2) is opened outward from the center of the container body (11), both openings (3, 4) does not face each other, and bubbles flowing out from the opening (3) of the first passage member (1) are less likely to be sucked into the opening (3) of the first passage member (1). Thereby, the quantity of the gas refrigerant | coolant which flows out with a liquid refrigerant from a refrigerant | coolant storage container (10) can be suppressed further, and the performance fall of an air conditioning apparatus can be suppressed.

図1は、本実施形態に係る空気調和装置の冷媒回路図である。FIG. 1 is a refrigerant circuit diagram of the air-conditioning apparatus according to the present embodiment. 図2は、本実施形態に係る空気調和装置の冷媒貯留容器の縦断面図である。FIG. 2 is a longitudinal sectional view of the refrigerant storage container of the air-conditioning apparatus according to the present embodiment. 図3は、本実施形態の変形例に係る冷媒貯留容器の縦断面図である。FIG. 3 is a longitudinal sectional view of a refrigerant storage container according to a modification of the present embodiment.

以下、本発明の実施形態を図面に基づいて詳細に説明する。     Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本実施形態の空気調和装置(50)は、室内ユニット(21)と室外ユニット(22)を備えている。室内ユニット(21)は室内回路(23)及び室内ファン(37)を収容している。室外ユニット(22)は室外回路(24)及び室外ファン(38)を収容している。空気調和装置(50)の冷媒回路(20)は、図1に示すように、室内ユニット(21)の室内回路(23)と室外ユニット(22)の室外回路(24)とが接続されることによって構成されている。     The air conditioner (50) of the present embodiment includes an indoor unit (21) and an outdoor unit (22). The indoor unit (21) accommodates an indoor circuit (23) and an indoor fan (37). The outdoor unit (22) accommodates an outdoor circuit (24) and an outdoor fan (38). As shown in FIG. 1, the refrigerant circuit (20) of the air conditioner (50) is connected to the indoor circuit (23) of the indoor unit (21) and the outdoor circuit (24) of the outdoor unit (22). It is constituted by.

室内ユニット(21)の室内回路(23)は、室内側の空気熱交換器(35)が接続されている。室内側の空気熱交換器(35)が本発明の第2熱交換器を構成する。室内側の空気熱交換器(35)はクロスフィン型のフィン・アンド・チューブ熱交換器で構成されている。室内ユニット(21)の室内ファン(37)は、室内側の空気熱交換器(35)の近傍に配置されている。     The indoor circuit (23) of the indoor unit (21) is connected to an indoor air heat exchanger (35). The indoor air heat exchanger (35) constitutes the second heat exchanger of the present invention. The indoor air heat exchanger (35) is a cross-fin type fin-and-tube heat exchanger. The indoor fan (37) of the indoor unit (21) is disposed in the vicinity of the indoor air heat exchanger (35).

室外ユニット(22)の室外回路(24)は、圧縮機(30)、アキュムレータ(39)、四路切換弁(31)、室外側の空気熱交換器(32)、第1膨張弁(33)、第2膨張弁(34)、ガス調整弁(36)及び冷媒貯留容器(10)が接続されている。室外側の空気熱交換器(32)が本発明の第1熱交換器を構成する。また、第1膨張弁(33)が本発明の第1膨脹機構を構成し、第2膨張弁(34)が本発明の第2膨脹機構を構成する。     The outdoor circuit (24) of the outdoor unit (22) includes a compressor (30), an accumulator (39), a four-way switching valve (31), an outdoor air heat exchanger (32), and a first expansion valve (33). The second expansion valve (34), the gas regulating valve (36), and the refrigerant storage container (10) are connected. The outdoor air heat exchanger (32) constitutes the first heat exchanger of the present invention. The first expansion valve (33) constitutes the first expansion mechanism of the present invention, and the second expansion valve (34) constitutes the second expansion mechanism of the present invention.

圧縮機(30)は、密閉型圧縮機で構成されている。圧縮機(30)の吸入側にアキュムレータ(39)が接続されている。     The compressor (30) is a hermetic compressor. An accumulator (39) is connected to the suction side of the compressor (30).

四路切換弁(31)は、空気調和装置(50)の冷媒回路(20)の冷媒循環方向を可逆に構成するものである。四路切換弁(31)は、4つのポートを備えている。第1ポート(P1)と第2ポート(P2)とが連通し且つ第3ポート(P3)と第4ポート(P4)とが連通する冷房位置(図1に破線で示す状態)と、第1ポート(P1)と第4ポート(P4)とが連通し且つ第2ポート(P2)と第3ポート(P3)とが連通する暖房位置(図1に実線で示す状態)とに切換可能になっている。第1ポート(P1)に圧縮機(30)の吐出口が接続され、第2ポート(P2)に室外側の空気熱交換器(32)の一端が接続され、第3ポート(P3)にアキュムレータ(39)の流入口が接続され、第4ポート(P4)に室内側の空気熱交換器(35)の一端が接続されている。     The four-way switching valve (31) reversibly configures the refrigerant circulation direction of the refrigerant circuit (20) of the air conditioner (50). The four-way selector valve (31) has four ports. A cooling position where the first port (P1) and the second port (P2) communicate with each other and the third port (P3) and the fourth port (P4) communicate with each other (a state indicated by a broken line in FIG. 1); It is possible to switch to a heating position (state indicated by a solid line in FIG. 1) in which the port (P1) and the fourth port (P4) communicate with each other and the second port (P2) and the third port (P3) communicate with each other. ing. The outlet of the compressor (30) is connected to the first port (P1), one end of the outdoor air heat exchanger (32) is connected to the second port (P2), and the accumulator is connected to the third port (P3). The inlet of (39) is connected, and one end of the indoor air heat exchanger (35) is connected to the fourth port (P4).

室外側の空気熱交換器(32)は、複数の扁平管と第1ヘッダと第2ヘッダと波形の伝熱フィンとを備えた積層型熱交換器で構成されている。複数の扁平管の一端が第1ヘッダに接続され、複数の扁平管の他端が第2ヘッダに接続されている。複数の扁平管には波形の伝熱フィンが接合されている。本実施形態の空気調和装置(50)では、室外側の空気熱交換器(32)をクロスフィン型のフィン・アンド・チューブ熱交換器から積層型熱交換器へ変更することによって、熱交換器の伝熱性能の向上を図っている。これにより、室外側の空気熱交換器(32)は室内側の空気熱交換器(35)よりもコンパクトになり、室外側の空気熱交換器(32)の内容積(冷媒が存在する空間の容積)が室内側の空気熱交換器(35)の内容積よりも小さくなっている。     The outdoor air heat exchanger (32) is composed of a laminated heat exchanger having a plurality of flat tubes, a first header, a second header, and corrugated heat transfer fins. One end of the plurality of flat tubes is connected to the first header, and the other end of the plurality of flat tubes is connected to the second header. Corrugated heat transfer fins are joined to the plurality of flat tubes. In the air conditioner (50) of the present embodiment, the outdoor air heat exchanger (32) is changed from a cross fin type fin-and-tube heat exchanger to a stacked heat exchanger, whereby a heat exchanger is obtained. The heat transfer performance is improved. As a result, the outdoor air heat exchanger (32) is more compact than the indoor air heat exchanger (35), and the inner volume of the outdoor air heat exchanger (32) (the space in which the refrigerant exists) Volume) is smaller than the internal volume of the indoor air heat exchanger (35).

第1膨張弁(33)と第2膨張弁(34)とガス調整弁(36)は電動弁で構成されている。第1膨張弁(33)の一端は室外側の空気熱交換器(32)の他端に接続され、第1膨張弁(33)の他端は後述する冷媒貯留容器(10)の第1配管(1)に接続されている。第2膨張弁(34)の一端は後述する冷媒貯留容器(10)の第2配管(2)に接続され、第2膨張弁(34)の他端は室内側の空気熱交換器(35)の他端に接続されている。ガス調整弁(36)の一端は後述する冷媒貯留容器(10)のガス抜き管(17)に接続され、ガス調整弁(36)の他端は、四路切換弁(31)の第3ポート(P3)とアキュムレータ(39)との間の冷媒配管に接続されている。これらの弁(33,34,36)の開度が、空気調和装置(50)の運転状態に応じて変更される。     The first expansion valve (33), the second expansion valve (34), and the gas regulating valve (36) are constituted by motorized valves. One end of the first expansion valve (33) is connected to the other end of the outdoor air heat exchanger (32), and the other end of the first expansion valve (33) is a first pipe of the refrigerant storage container (10) described later. Connected to (1). One end of the second expansion valve (34) is connected to a second pipe (2) of a refrigerant storage container (10) described later, and the other end of the second expansion valve (34) is an indoor air heat exchanger (35). Is connected to the other end. One end of the gas regulating valve (36) is connected to a gas vent pipe (17) of the refrigerant storage container (10) described later, and the other end of the gas regulating valve (36) is the third port of the four-way switching valve (31). (P3) and the refrigerant pipe between the accumulator (39). The opening degree of these valves (33, 34, 36) is changed according to the operating state of the air conditioner (50).

冷媒貯留容器(10)は、図2に示すように、胴部(12)と上蓋部(13)と下蓋部(14)とを有する容器本体(11)を備えている。冷媒貯留容器(10)の胴部(12)は、鉛直方向へ延びる円筒状に形成されている。また、冷媒貯留容器(10)の上蓋部(13)及び下蓋部(14)は椀状に形成されている。この胴部(12)の上端開口部が上蓋部(13)で閉塞され、この胴部(12)の下端開口部が下蓋部(14)で閉塞されている。冷媒貯留容器(10)は、該冷媒貯留容器(10)の内部空間を区画する仕切板はない。この冷媒貯留容器(10)の内部空間は、胴部(12)の円筒状の内周面と、上蓋部(13)及び下蓋部(14)の椀状の内曲面とで囲まれている。     As shown in FIG. 2, the refrigerant storage container (10) includes a container body (11) having a body part (12), an upper cover part (13), and a lower cover part (14). The trunk | drum (12) of a refrigerant | coolant storage container (10) is formed in the cylindrical shape extended in a perpendicular direction. Moreover, the upper cover part (13) and the lower cover part (14) of the refrigerant storage container (10) are formed in a bowl shape. The upper end opening of the trunk (12) is closed by the upper lid (13), and the lower end opening of the trunk (12) is closed by the lower lid (14). The refrigerant storage container (10) has no partition plate that partitions the internal space of the refrigerant storage container (10). The internal space of the refrigerant storage container (10) is surrounded by the cylindrical inner peripheral surface of the trunk portion (12) and the bowl-shaped inner curved surfaces of the upper lid portion (13) and the lower lid portion (14). .

また、この冷媒貯留容器(10)は、第1配管(1)と第2配管(2)とガス抜き管(17)とを備えている。第1配管(1)は本発明の第1通路部材を構成し、第2配管(2)は本発明の第2通路部材を構成する。これら3つの配管(1,2,17)は、冷媒貯留容器(10)の上蓋部(13)を上下に貫通固定される3つのスリーブ(15)にそれぞれ挿通固定される。     The refrigerant storage container (10) includes a first pipe (1), a second pipe (2), and a gas vent pipe (17). The first pipe (1) constitutes the first passage member of the present invention, and the second pipe (2) constitutes the second passage member of the present invention. These three pipes (1, 2, 17) are inserted into and fixed to three sleeves (15) that are vertically fixed through the upper lid (13) of the refrigerant storage container (10).

3つのスリーブ(15)のうちの1つは、容器本体(11)の軸心に配置されている。この軸心のスリーブ(15)にガス抜き管(17)が固定される。残りの2つのスリーブ(15)は、容器本体(11)の軸心に対して周方向に180°の間隔を空けて配置されている。残りの2つのスリーブ(15)の一方に第1配管(1)が固定され、他方に第2配管(2)が固定される。     One of the three sleeves (15) is disposed on the axis of the container body (11). A gas vent pipe (17) is fixed to the sleeve (15) of the shaft center. The remaining two sleeves (15) are arranged at an interval of 180 ° in the circumferential direction with respect to the axis of the container body (11). The first pipe (1) is fixed to one of the remaining two sleeves (15), and the second pipe (2) is fixed to the other.

冷媒貯留容器(10)の第1配管(1)は直管で構成されている。第1配管(1)は鉛直方向へ延びている。第1配管(1)の上端は冷媒回路(20)の第1膨張弁(33)に接続されている。第1配管(1)の下端は、図2に示すように、下蓋部(14)の椀状の内曲面の最下面からh1の高さに位置して下向きに開口している。この第1配管(1)の下端開口部(3)が本発明の第1通路部材(1)の開口部(3)を構成する。     The first pipe (1) of the refrigerant storage container (10) is a straight pipe. The first pipe (1) extends in the vertical direction. The upper end of the first pipe (1) is connected to the first expansion valve (33) of the refrigerant circuit (20). As shown in FIG. 2, the lower end of the first pipe (1) opens downward from the bottom surface of the bowl-shaped inner curved surface of the lower lid (14) at a height of h1. The lower end opening (3) of the first pipe (1) constitutes the opening (3) of the first passage member (1) of the present invention.

冷媒貯留容器(10)の第2配管(2)は直管で構成されている。第2配管(2)は鉛直方向へ延びている。第2配管(2)の上端は冷媒回路(20)の第2膨張弁(34)に接続されている。第2配管(2)の下端は、下蓋部(14)の椀状の内曲面の最下面からh2の高さに位置して下向きに開口している。この第2配管(2)の下端開口部(4)が本発明の第2通路部材(1)の開口部(4)を構成する。     The second pipe (2) of the refrigerant storage container (10) is a straight pipe. The second pipe (2) extends in the vertical direction. The upper end of the second pipe (2) is connected to the second expansion valve (34) of the refrigerant circuit (20). The lower end of the second pipe (2) is located downward from the lowermost surface of the bowl-shaped inner curved surface of the lower lid part (14) and is open downward. The lower end opening (4) of the second pipe (2) constitutes the opening (4) of the second passage member (1) of the present invention.

第1配管(1)は第2配管(2)よりも長く形成され、第1配管(1)の下端開口部(3)は、第2配管(2)の下端開口部(4)よりも低い位置にある。また、両方の下端開口部(3,4)は、容器本体(11)の中心に対して周方向に180°の間隔を空けて位置している。     The first pipe (1) is formed longer than the second pipe (2), and the lower end opening (3) of the first pipe (1) is lower than the lower end opening (4) of the second pipe (2). In position. Both lower end openings (3, 4) are positioned at an interval of 180 ° in the circumferential direction with respect to the center of the container body (11).

−運転動作−
本実施形態の空気調和装置(50)は、冷媒回路(20)の四路切換弁(31)が冷房位置のときに冷媒回路(20)の冷媒循環方向が順方向となって冷房運転を行い、四路切換弁(31)が暖房位置のときに冷媒回路(20)の冷媒循環方向が逆方向となって暖房運転を行う。この冷房運転が本発明の空気調和装置(50)の第1運転を構成し、暖房運転が本発明の空気調和装置(50)の第2運転を構成する。
-Driving action-
The air conditioner (50) of the present embodiment performs the cooling operation with the refrigerant circulation direction of the refrigerant circuit (20) as the forward direction when the four-way switching valve (31) of the refrigerant circuit (20) is in the cooling position. When the four-way selector valve (31) is in the heating position, the refrigerant circulation direction of the refrigerant circuit (20) is reversed and the heating operation is performed. This cooling operation constitutes the first operation of the air conditioner (50) of the present invention, and the heating operation constitutes the second operation of the air conditioner (50) of the present invention.

空気調和装置(50)の暖房運転では、圧縮機(30)、室内側の空気熱交換器(35)、第2膨張弁(34)、冷媒貯留容器(10)、第1膨張弁(33)、室外側の空気熱交換器(32)、及びアキュムレータ(39)の順で冷媒が循環して蒸気圧縮式の冷凍サイクルが行われる。この暖房運転では、室内側の空気熱交換器(35)が凝縮器として機能し、室外側の空気熱交換器(32)が蒸発器として機能する。     In the heating operation of the air conditioner (50), the compressor (30), the indoor air heat exchanger (35), the second expansion valve (34), the refrigerant storage container (10), the first expansion valve (33) The refrigerant circulates in the order of the outdoor air heat exchanger (32) and the accumulator (39), and a vapor compression refrigeration cycle is performed. In this heating operation, the indoor air heat exchanger (35) functions as a condenser, and the outdoor air heat exchanger (32) functions as an evaporator.

空気調和装置(50)の圧縮機(30)から吐出された高圧のガス冷媒は、室内側の空気熱交換器(35)へ流入し、室内ファン(37)から送られる室内空気と熱交換する。この熱交換によって冷媒が室内空気へ放熱して凝縮する。この冷媒の凝縮に伴って室内空気が加熱される。これにより、室内空間が暖房される。室内側の空気熱交換器(35)で凝縮した冷媒は第2膨張弁(34)で膨脹して中間圧の気液二相冷媒となり、この気液二相冷媒が冷媒貯留容器(10)の第2配管(2)を通じて冷媒貯留容器(10)の容器本体(11)へ流入する。     The high-pressure gas refrigerant discharged from the compressor (30) of the air conditioner (50) flows into the indoor air heat exchanger (35) and exchanges heat with the indoor air sent from the indoor fan (37). . By this heat exchange, the refrigerant dissipates heat to the indoor air and condenses. The indoor air is heated as the refrigerant condenses. Thereby, the indoor space is heated. The refrigerant condensed in the indoor air heat exchanger (35) is expanded in the second expansion valve (34) to become an intermediate-pressure gas-liquid two-phase refrigerant, and this gas-liquid two-phase refrigerant is stored in the refrigerant storage container (10). It flows into the container main body (11) of the refrigerant storage container (10) through the second pipe (2).

冷媒貯留容器(10)の容器本体(11)では、気液二相冷媒が液冷媒とガス冷媒とに分離し、液冷媒が容器本体(11)の下部に貯留してガス冷媒が容器本体(11)の上部に貯留する。このとき、冷媒貯留容器(10)の容器本体(11)の液面は、冷媒貯留容器(10)の第2配管(2)の下端開口部(4)と第1配管(1)の下端開口部(3)との間に位置している(図2を参照)。     In the container main body (11) of the refrigerant storage container (10), the gas-liquid two-phase refrigerant is separated into the liquid refrigerant and the gas refrigerant, the liquid refrigerant is stored in the lower part of the container main body (11), and the gas refrigerant is stored in the container main body ( 11) Store at the top. At this time, the liquid level of the container body (11) of the refrigerant storage container (10) is the lower end opening (4) of the second pipe (2) of the refrigerant storage container (10) and the lower end opening of the first pipe (1). (Refer to FIG. 2).

第2配管(2)から流出した気液二相冷媒は、容器本体(11)の液面の上側へ噴出される。ここで、第1配管(1)の下端開口部(3)は冷媒貯留容器(10)の液中に浸漬しているので、第1配管(1)の下端開口部(3)からガス冷媒が流入することがない。冷媒貯留容器(10)は、内部で気液二相冷媒を気液分離するとともに液冷媒のみを確実に外側へ流出させることができる。     The gas-liquid two-phase refrigerant that has flowed out of the second pipe (2) is ejected to the upper side of the liquid surface of the container body (11). Here, since the lower end opening (3) of the first pipe (1) is immersed in the liquid in the refrigerant storage container (10), the gas refrigerant flows from the lower end opening (3) of the first pipe (1). There is no inflow. The refrigerant storage container (10) is capable of gas-liquid separation of the gas-liquid two-phase refrigerant inside and reliably allows only the liquid refrigerant to flow outside.

冷媒貯留容器(10)の第1配管(1)を通じて冷媒貯留容器(10)の容器本体(11)から流出した中間圧の冷媒は第1膨張弁(33)でさらに膨脹して低圧の冷媒となる。この低圧の冷媒が室外側の空気熱交換器(32)へ流入し、室外ファン(38)から送られる室外空気と熱交換する。この熱交換によって冷媒が室外空気から吸熱して蒸発する。室外側の空気熱交換器(32)から流出した低圧の冷媒は、ガス調整弁(36)で必要に応じて減圧された冷媒貯留容器(10)のガス冷媒と合流した後にアキュムレータ(39)へ流入する。アキュムレータ(39)へ流入した冷媒は、該アキュムレータ(39)内で気液分離され、ガス冷媒のみが圧縮機(30)へ吸入される。圧縮機(30)に吸入された冷媒は、所定の圧力まで圧縮された後に、再び室内側の空気熱交換器(35)へ向けて吐出される。このようにして、空気調和装置(50)の冷媒回路(20)を冷媒が循環することにより、暖房運転が行われる。     The intermediate-pressure refrigerant flowing out from the container body (11) of the refrigerant storage container (10) through the first pipe (1) of the refrigerant storage container (10) is further expanded by the first expansion valve (33) to form a low-pressure refrigerant. Become. This low-pressure refrigerant flows into the outdoor air heat exchanger (32), and exchanges heat with outdoor air sent from the outdoor fan (38). By this heat exchange, the refrigerant absorbs heat from the outdoor air and evaporates. The low-pressure refrigerant flowing out of the outdoor air heat exchanger (32) joins the gas refrigerant in the refrigerant storage container (10), which is decompressed as necessary by the gas regulating valve (36), and then to the accumulator (39). Inflow. The refrigerant flowing into the accumulator (39) is gas-liquid separated in the accumulator (39), and only the gas refrigerant is sucked into the compressor (30). The refrigerant sucked into the compressor (30) is compressed to a predetermined pressure and then discharged again toward the indoor air heat exchanger (35). In this way, the heating operation is performed by circulating the refrigerant through the refrigerant circuit (20) of the air conditioner (50).

一方、空気調和装置(50)の冷房運転では、圧縮機(30)、室外側の空気熱交換器(32)、第1膨張弁(33)、冷媒貯留容器(10)、第2膨張弁(34)、室内側の空気熱交換器(35)、及びアキュムレータ(39)の順で冷媒が循環して蒸気圧縮式の冷凍サイクルが行われる。この冷房運転では、室外側の空気熱交換器(32)が凝縮器として機能し、室内側の空気熱交換器(35)が蒸発器として機能する。     On the other hand, in the cooling operation of the air conditioner (50), the compressor (30), the outdoor air heat exchanger (32), the first expansion valve (33), the refrigerant storage container (10), the second expansion valve ( 34), the refrigerant circulates in the order of the indoor air heat exchanger (35) and the accumulator (39), and a vapor compression refrigeration cycle is performed. In this cooling operation, the outdoor air heat exchanger (32) functions as a condenser, and the indoor air heat exchanger (35) functions as an evaporator.

空気調和装置(50)の圧縮機(30)から吐出された高圧のガス冷媒は、室外側の空気熱交換器(32)へ流入し、室外ファン(38)から室外側の空気熱交換器(32)へ送られる室外空気と熱交換する。この熱交換によってガス冷媒が室外空気に放熱して凝縮する。凝縮した冷媒は第1膨張弁(33)で膨脹して中間圧の気液二相冷媒となり、この気液二相冷媒が冷媒貯留容器(10)の第1配管(1)を通じて冷媒貯留容器(10)の容器本体(11)へ流入する。     The high-pressure gas refrigerant discharged from the compressor (30) of the air conditioner (50) flows into the outdoor air heat exchanger (32), and from the outdoor fan (38) to the outdoor air heat exchanger ( Exchange heat with outdoor air sent to 32). By this heat exchange, the gas refrigerant dissipates heat to the outdoor air and condenses. The condensed refrigerant is expanded by the first expansion valve (33) to become a gas-liquid two-phase refrigerant having an intermediate pressure, and the gas-liquid two-phase refrigerant passes through the first pipe (1) of the refrigerant storage container (10). 10) into the container body (11).

冷媒貯留容器(10)の容器本体(11)では、気液二相冷媒が液冷媒とガス冷媒とに分離し、液冷媒が容器本体(11)の下部に貯留してガス冷媒が容器本体(11)の上部に貯留する。このとき、冷媒貯留容器(10)の容器本体(11)の液面は、暖房運転時の液面よりも上がって第2配管(2)の下端開口部(4)よりも上側に位置する。つまり、第1配管(1)と第2配管(2)の下端開口部(3,4)は、両方とも液冷媒に浸漬する(図2を参照)。     In the container main body (11) of the refrigerant storage container (10), the gas-liquid two-phase refrigerant is separated into the liquid refrigerant and the gas refrigerant, the liquid refrigerant is stored in the lower part of the container main body (11), and the gas refrigerant is stored in the container main body ( 11) Store at the top. At this time, the liquid level of the container main body (11) of the refrigerant storage container (10) is higher than the liquid level during the heating operation and is positioned above the lower end opening (4) of the second pipe (2). That is, the lower end openings (3, 4) of the first pipe (1) and the second pipe (2) are both immersed in the liquid refrigerant (see FIG. 2).

本実施形態の空気調和装置(50)では、上述したように、暖房運転時は室内側の空気熱交換器(35)が凝縮器となり、冷房運転時は室外側の空気熱交換器(32)が凝縮器となる。室外側の空気熱交換器(32)の内容積は室内側の空気熱交換器(35)の内容積よりも小さいことから、冷房運転時と暖房運転時とで凝縮器の内容積を比較すると、冷房運転時の方が凝縮器の内容積が小さい。冷房運転時において、凝縮器となる空気熱交換器の内容積が小さくなったことに起因して、その凝縮器では溜めきれなかった余剰冷媒が冷媒貯留容器(10)に溜まり、容器本体(11)の冷房運転時の液面が暖房運転時の液面よりも高くなる。     In the air conditioner (50) of the present embodiment, as described above, the indoor air heat exchanger (35) serves as a condenser during heating operation, and the outdoor air heat exchanger (32) during cooling operation. Becomes a condenser. Since the internal volume of the outdoor air heat exchanger (32) is smaller than the internal volume of the indoor air heat exchanger (35), the internal volume of the condenser is compared between the cooling operation and the heating operation. The internal volume of the condenser is smaller during the cooling operation. During the cooling operation, due to the decrease in the internal volume of the air heat exchanger serving as a condenser, surplus refrigerant that could not be stored in the condenser is accumulated in the refrigerant storage container (10), and the container body (11 The liquid level during cooling operation becomes higher than the liquid level during heating operation.

冷媒貯留容器(10)の第1配管(1)を通じて冷媒貯留容器(10)の容器本体(11)へ流出した気液二相冷媒は、容器本体(11)の液冷媒中へ噴出される。ここで、第1配管(1)と第2配管(2)の下端開口部(3,4)の位置は、上下方向にずれているので、両方の下端開口部(3,4)が同じ高さで隣接している場合に比べて、両方の下端開口部(3,4)の距離が長くなり、第1配管(1)から流出したガス冷媒が第2配管(2)へ吸い込まれにくくなる。     The gas-liquid two-phase refrigerant that has flowed into the container main body (11) of the refrigerant storage container (10) through the first pipe (1) of the refrigerant storage container (10) is jetted into the liquid refrigerant of the container main body (11). Here, since the positions of the lower end openings (3,4) of the first pipe (1) and the second pipe (2) are shifted in the vertical direction, both the lower end openings (3,4) have the same height. Compared with the case where they are adjacent to each other, the distance between both lower end openings (3,4) becomes longer, and the gas refrigerant flowing out from the first pipe (1) is less likely to be sucked into the second pipe (2). .

冷媒貯留容器(10)の第2配管(2)を通じて冷媒貯留容器(10)の容器本体(11)から流出した中間圧の冷媒は第2膨張弁(34)でさらに膨脹して低圧の冷媒となる。この低圧の冷媒が室内側の空気熱交換器(35)へ流入し、室内ファン(37)から送られる室内空気と熱交換する。この熱交換によって冷媒が室内空気から吸熱して蒸発する。冷媒の蒸発に伴って室内空気が冷却される。これにより、室内空間が冷房される。室内側の空気熱交換器(35)から流出した低圧の冷媒は、ガス調整弁(36)で必要に応じて減圧された冷媒貯留容器(10)のガス冷媒と合流してアキュムレータ(39)へ流入する。アキュムレータ(39)へ流入した冷媒は、該アキュムレータ(39)内で気液分離され、ガス冷媒のみが圧縮機(30)へ吸入される。圧縮機(30)に吸入された冷媒は、所定の圧力まで圧縮された後に、再び室外側の空気熱交換器(32)へ向けて吐出される。このようにして、空気調和装置(50)の冷媒回路(20)を冷媒が循環することにより、冷房運転が行われる。     The intermediate-pressure refrigerant flowing out from the container body (11) of the refrigerant storage container (10) through the second pipe (2) of the refrigerant storage container (10) is further expanded by the second expansion valve (34) and becomes a low-pressure refrigerant. Become. This low-pressure refrigerant flows into the indoor air heat exchanger (35) and exchanges heat with the indoor air sent from the indoor fan (37). By this heat exchange, the refrigerant absorbs heat from the indoor air and evaporates. As the refrigerant evaporates, the room air is cooled. Thereby, the indoor space is cooled. The low-pressure refrigerant that has flowed out of the indoor air heat exchanger (35) joins the gas refrigerant in the refrigerant storage container (10), which is decompressed as necessary by the gas regulating valve (36), to the accumulator (39). Inflow. The refrigerant flowing into the accumulator (39) is gas-liquid separated in the accumulator (39), and only the gas refrigerant is sucked into the compressor (30). The refrigerant sucked into the compressor (30) is compressed to a predetermined pressure and then discharged again toward the outdoor air heat exchanger (32). In this way, the cooling operation is performed by circulating the refrigerant through the refrigerant circuit (20) of the air conditioner (50).

−実施形態の効果−
本実施形態によれば、室外側の空気熱交換器(32)の内容積を室内側の空気熱交換器(35)の内容積よりも小さくしたので、空気調和装置の冷房運転時の冷媒貯留容器(10)の液面が、暖房運転時の液面よりも高くなり、冷媒貯留容器(10)の第2配管(2)の下端開口部(4)の位置を第1配管(1)の下端開口部(3)の位置よりも高くして、両方の開口部(3,4)の位置を上下方向にずらして間隔を広げることができる。両方の下端開口部(3,4)の間隔を広げることによって、一方の下端開口部(3)から他方の下端開口部(4)へのガス冷媒の侵入を抑えることができる。
-Effect of the embodiment-
According to this embodiment, since the internal volume of the outdoor air heat exchanger (32) is smaller than the internal volume of the indoor air heat exchanger (35), the refrigerant is stored during the cooling operation of the air conditioner. The liquid level of the container (10) becomes higher than the liquid level during heating operation, and the position of the lower end opening (4) of the second pipe (2) of the refrigerant storage container (10) is set to the position of the first pipe (1). It is possible to widen the gap by shifting the positions of both openings (3, 4) up and down by making the position higher than the position of the lower end opening (3). By widening the distance between both the lower end openings (3, 4), the intrusion of the gas refrigerant from one lower end opening (3) to the other lower end opening (4) can be suppressed.

これにより、従来の冷媒貯留容器(10)に用いられる仕切板を利用しなくても、冷媒貯留容器(10)から液冷媒とともに流出するガス冷媒の量を抑えることができ、空気調和装置の性能低下を抑制することができる。     As a result, the amount of gas refrigerant flowing out of the refrigerant storage container (10) together with the liquid refrigerant can be suppressed without using the partition plate used in the conventional refrigerant storage container (10), and the performance of the air conditioner The decrease can be suppressed.

−実施形態の変形例−
図3に示す本実施形態の変形例では、上記実施形態とは違い、冷媒貯留容器(10)の第1配管(1)と第2配管(2)の下端部を斜めに切り欠いている。これにより、第1配管(1)と第2配管(2)の下端開口部(3,4)は、共に冷媒貯留容器(10)の容器本体(11)の中心から外向きに開口している。具体的には、第1配管(1)と第2配管(2)の下端開口部(3,4)は、共に斜め下向きに開口している。これにより、両方の下端開口部(3,4)が向き合わなくなるので、空気調和装置の冷房運転時に、第1配管(1)の下端開口部(3)から第2配管(2)の下端開口部(4)へ向かってガス冷媒の気泡が行きにくくなり、冷媒貯留容器(10)から液冷媒とともに流出するガス冷媒の量をさらに抑えることができ、空気調和装置の性能低下を抑制することができる。
-Modification of the embodiment-
In the modification of this embodiment shown in FIG. 3, unlike the said embodiment, the lower end part of the 1st piping (1) and 2nd piping (2) of a refrigerant | coolant storage container (10) is notched diagonally. Thereby, both the lower end openings (3,4) of the first pipe (1) and the second pipe (2) are opened outward from the center of the container body (11) of the refrigerant storage container (10). . Specifically, the lower end openings (3,4) of the first pipe (1) and the second pipe (2) are both opened obliquely downward. Thereby, since both lower end openings (3, 4) do not face each other, the lower end opening of the second pipe (2) from the lower end opening (3) of the first pipe (1) during the cooling operation of the air conditioner. It becomes difficult for the gas refrigerant bubbles to go to (4), the amount of gas refrigerant flowing out of the refrigerant storage container (10) together with the liquid refrigerant can be further suppressed, and the performance degradation of the air conditioner can be suppressed. .

また、変形例の冷媒貯留容器(10)では、第1配管(1)の下端開口部(3)が下蓋部(14)の椀状の内曲面の最下面よりもやや上側に向かって開口している。これにより、第1配管(1)の下端開口部(3)から流出したガス冷媒の気泡が、下蓋部(14)の椀状の内曲面の最下面よりもやや上側に衝突した後に、下蓋部(14)の椀状の内曲面から胴部(12)の内周面に沿ってスムーズに上昇する。このように、第1配管(1)に近い側の冷媒貯留容器(10)の内面付近に気泡領域を形成することができる。第2配管(2)の下端開口部(4)がその気泡領域の外側に開口するように、両方の下端開口部(3,4)は、容器本体(11)の中心に対して周方向に180°の間隔を空けて位置している。     Moreover, in the refrigerant | coolant storage container (10) of a modification, lower end opening part (3) of 1st piping (1) is opened toward the upper side rather than the lowermost surface of the bowl-shaped inner curved surface of lower cover part (14). doing. As a result, after the bubble of the gas refrigerant flowing out from the lower end opening (3) of the first pipe (1) collides slightly above the lowermost surface of the bowl-shaped inner curved surface of the lower lid (14), Ascending smoothly from the bowl-shaped inner curved surface of the lid (14) along the inner peripheral surface of the trunk (12). Thus, a bubble region can be formed in the vicinity of the inner surface of the refrigerant storage container (10) on the side close to the first pipe (1). Both lower end openings (3, 4) are circumferential with respect to the center of the container body (11) so that the lower end opening (4) of the second pipe (2) opens outside the bubble region. They are located 180 ° apart.

これにより、第1配管(1)の下端開口部(3)から第2配管(2)の下端開口部(4)へ向かってガス冷媒の気泡が行きにくくなり、冷媒貯留容器(10)から液冷媒とともに流出するガス冷媒の量をさらに抑えることができ、空気調和装置の性能低下を抑制することができる。     This makes it difficult for gas refrigerant bubbles to flow from the lower end opening (3) of the first pipe (1) toward the lower end opening (4) of the second pipe (2), and the liquid from the refrigerant storage container (10). The amount of the gas refrigerant flowing out together with the refrigerant can be further suppressed, and the performance deterioration of the air conditioner can be suppressed.

《その他の実施形態》
前記実施形態については、以下のような構成としてもよい。
<< Other Embodiments >>
About the said embodiment, it is good also as following structures.

前記実施形態では、冷媒貯留容器(10)に中間圧の冷媒を貯留していたが、これに限定されず、暖房運転時には第2膨張弁(34)を全開とし、冷房運転時には第1膨張弁(33)を全開とし、冷媒貯留容器(10)に高圧の冷媒を貯留してもよい。この場合においても本発明と同様の効果を得ることができる。     In the above embodiment, the intermediate pressure refrigerant is stored in the refrigerant storage container (10). However, the present invention is not limited to this, and the second expansion valve (34) is fully opened during the heating operation, and the first expansion valve is used during the cooling operation. (33) may be fully opened, and a high-pressure refrigerant may be stored in the refrigerant storage container (10). Even in this case, the same effect as the present invention can be obtained.

また、前記実施形態の変形例では、第1配管(1)と第2配管(2)の下端開口部(3,4)を、共に冷媒貯留容器(10)の容器本体(11)の中心から外向きに開口させたが、これに限定されず、第1配管(1)の下端開口部(3)のみを外向きに開口させてもよい。この場合であっても、両方の下端開口部(3,4)が向き合わないので、空気調和装置の冷房運転時に、第1配管(1)の下端開口部(3)から第2配管(2)の下端開口部(4)へ向かってガス冷媒の気泡が行きにくくなり、冷媒貯留容器(10)から液冷媒とともに流出するガス冷媒の量を抑えることができ、空気調和装置の性能低下を抑制することができる。     In the modification of the embodiment, the lower end openings (3, 4) of the first pipe (1) and the second pipe (2) are both from the center of the container body (11) of the refrigerant storage container (10). Although it opened to outward, it is not limited to this, You may open only the lower end opening part (3) of 1st piping (1) outward. Even in this case, since both the lower end openings (3, 4) do not face each other, during the cooling operation of the air conditioner, the lower end opening (3) of the first pipe (1) to the second pipe (2) It becomes difficult for bubbles of gas refrigerant to go toward the lower end opening (4) of the gas, and the amount of gas refrigerant flowing out of the refrigerant storage container (10) together with the liquid refrigerant can be suppressed, and the performance deterioration of the air conditioner is suppressed. be able to.

なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。     In addition, the above embodiment is an essentially preferable illustration, Comprising: It does not intend restrict | limiting the range of this invention, its application thing, or its use.

以上説明したように、本発明は、冷媒貯留容器が接続された冷媒回路を備えた空気調和装置について有用である。   As described above, the present invention is useful for an air conditioner including a refrigerant circuit to which a refrigerant storage container is connected.

1 第1配管(第1通路部材)
2 第2配管(第2通路部材)
3 第1配管の下端開口部(第1通路部材の開口部)
4 第2配管の下端開口部(第2通路部材の開口部)
10 冷媒貯留容器
11 容器本体
20 冷媒回路
50 空気調和装置
1 First pipe (first passage member)
2 Second piping (second passage member)
3 Lower end opening of the first pipe (opening of the first passage member)
4 Lower end opening of the second pipe (opening of the second passage member)
10 Refrigerant storage container
11 Container body
20 Refrigerant circuit
50 Air conditioner

Claims (3)

圧縮機(30)と、第1熱交換器(32)と、第1膨張機構(33)と、冷媒貯留容器(10)と、第2膨張機構(34)と、第2熱交換器(35)とが順に接続されて冷媒の循環方向が可逆に構成された蒸気圧縮式冷凍サイクルの冷媒回路(20)を備え、前記冷媒回路(20)の冷媒の循環方向を切り換えることによって、前記第1熱交換器(32)が凝縮器となり且つ前記第2熱交換器(35)が蒸発器となる第1運転と、前記第2熱交換器(35)が凝縮器となり且つ前記第1熱交換器(32)が蒸発器となる第2運転とを行う空気調和装置(50)であって、
前記第1熱交換器(32)は、該第1熱交換器(32)の内容積が前記第2熱交換器(35)の内容積よりも小さく構成される一方、
前記冷媒貯留容器(10)は、1つの内部空間を有する容器本体(11)と、前記第1膨張機構(33)に接続され且つ前記第2運転時の容器本体(11)の内部空間の液面の下側に位置する開口部(3)が形成された第1通路部材(1)と、前記第2膨張機構(34)に接続され且つ前記第1運転時の容器本体(11)の内部空間の液面と前記第2運転時の容器本体(11)の内部空間の液面との間に位置する開口部(4)が形成された第2通路部材(2)とを備えていることを特徴とする空気調和装置。
Compressor (30), first heat exchanger (32), first expansion mechanism (33), refrigerant storage container (10), second expansion mechanism (34), and second heat exchanger (35 ) Are sequentially connected, and the refrigerant circuit (20) of the vapor compression refrigeration cycle in which the refrigerant circulation direction is configured to be reversible is provided, and by switching the refrigerant circulation direction of the refrigerant circuit (20), the first A first operation in which the heat exchanger (32) serves as a condenser and the second heat exchanger (35) serves as an evaporator; and the second heat exchanger (35) serves as a condenser and the first heat exchanger. (32) is an air conditioner (50) that performs the second operation to be an evaporator,
The first heat exchanger (32) is configured such that the internal volume of the first heat exchanger (32) is smaller than the internal volume of the second heat exchanger (35),
The refrigerant storage container (10) includes a container main body (11) having one internal space, and a liquid in the internal space of the container main body (11) connected to the first expansion mechanism (33) and in the second operation. A first passage member (1) in which an opening (3) located on the lower side of the surface is formed, and an interior of the container body (11) connected to the second expansion mechanism (34) and in the first operation A second passage member (2) having an opening (4) located between the liquid level in the space and the liquid level in the internal space of the container body (11) during the second operation; An air conditioner characterized by.
請求項1において、
前記冷媒貯留容器(10)の第1通路部材(1)及び第2通路部材(2)は、該第1通路部材(1)の開口部(3)を前記容器本体(11)の中心から外向きに開口させて、該第1通路部材(1)の開口部(3)と該第2通路部材(2)の開口部(4)とが互いに非対向となるように配置されていることを特徴とする空気調和装置。
In claim 1,
The first passage member (1) and the second passage member (2) of the refrigerant storage container (10) have the opening (3) of the first passage member (1) outside the center of the container body (11). The opening (3) of the first passage member (1) and the opening (4) of the second passage member (2) are arranged so as not to face each other. An air conditioner characterized.
請求項2において、
前記冷媒貯留容器(10)の第2通路部材(2)は、該第2通路部材(2)の開口部(4)が前記容器本体(11)の中心から外向きに開口するように配置されていることを特徴とする空気調和装置。
In claim 2,
The second passage member (2) of the refrigerant storage container (10) is disposed such that the opening (4) of the second passage member (2) opens outward from the center of the container body (11). An air conditioner characterized by that.
JP2012230506A 2012-10-18 2012-10-18 Air conditioner Pending JP2014081170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012230506A JP2014081170A (en) 2012-10-18 2012-10-18 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012230506A JP2014081170A (en) 2012-10-18 2012-10-18 Air conditioner

Publications (1)

Publication Number Publication Date
JP2014081170A true JP2014081170A (en) 2014-05-08

Family

ID=50785507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012230506A Pending JP2014081170A (en) 2012-10-18 2012-10-18 Air conditioner

Country Status (1)

Country Link
JP (1) JP2014081170A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017061009A1 (en) * 2015-10-08 2018-06-07 三菱電機株式会社 Refrigeration cycle equipment
JP2020173045A (en) * 2019-04-09 2020-10-22 パナソニックIpマネジメント株式会社 Air conditioner

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60108966U (en) * 1983-12-27 1985-07-24 ダイキン工業株式会社 Air conditioning equipment using mixed refrigerant
JPH11190559A (en) * 1997-12-26 1999-07-13 Daikin Ind Ltd Gas-liquid separator and refrigerating machine
JP2001263859A (en) * 2000-03-17 2001-09-26 Hitachi Ltd Air conditioner
JP2002081803A (en) * 2000-09-08 2002-03-22 Hitachi Ltd Air conditioner
JP2002372345A (en) * 2001-06-15 2002-12-26 Hitachi Ltd Air conditioner
JP2011179394A (en) * 2010-03-01 2011-09-15 Panasonic Corp Multicylinder compressor
JP2012077984A (en) * 2010-09-30 2012-04-19 Daikin Industries Ltd Refrigerating circuit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60108966U (en) * 1983-12-27 1985-07-24 ダイキン工業株式会社 Air conditioning equipment using mixed refrigerant
JPH11190559A (en) * 1997-12-26 1999-07-13 Daikin Ind Ltd Gas-liquid separator and refrigerating machine
JP2001263859A (en) * 2000-03-17 2001-09-26 Hitachi Ltd Air conditioner
JP2002081803A (en) * 2000-09-08 2002-03-22 Hitachi Ltd Air conditioner
JP2002372345A (en) * 2001-06-15 2002-12-26 Hitachi Ltd Air conditioner
JP2011179394A (en) * 2010-03-01 2011-09-15 Panasonic Corp Multicylinder compressor
JP2012077984A (en) * 2010-09-30 2012-04-19 Daikin Industries Ltd Refrigerating circuit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017061009A1 (en) * 2015-10-08 2018-06-07 三菱電機株式会社 Refrigeration cycle equipment
CN108139119A (en) * 2015-10-08 2018-06-08 三菱电机株式会社 Refrigerating circulatory device
CN108139119B (en) * 2015-10-08 2020-06-05 三菱电机株式会社 Refrigeration cycle device
JP2020173045A (en) * 2019-04-09 2020-10-22 パナソニックIpマネジメント株式会社 Air conditioner

Similar Documents

Publication Publication Date Title
JP6070685B2 (en) Heat exchanger and air conditioner
WO2012043377A1 (en) Refrigeration circuit
JP3985831B2 (en) Heat exchanger for outdoor unit
KR101617574B1 (en) Refrigeration device
JP2014142165A (en) Heat exchanger
JP2018162900A (en) Heat exchanger and air conditioner including the same
JP7097986B2 (en) Heat exchanger and refrigeration cycle equipment
JP2018091503A (en) Heat exchanger
WO2018062519A1 (en) Heat exchanger and air conditioner
JP5962033B2 (en) Heat exchanger and air conditioner equipped with the same
JP2014081170A (en) Air conditioner
JP6169199B2 (en) Heat exchanger and refrigeration cycle apparatus
JP2015052439A (en) Heat exchanger
WO2019151217A1 (en) Heat exchanger
JP2014109416A (en) Air conditioner
JP2008116135A (en) Heat exchanger and refrigeration device
JP7086264B2 (en) Heat exchanger, outdoor unit, and refrigeration cycle device
KR101382055B1 (en) An air conditioner
JP7210744B2 (en) Heat exchanger and refrigeration cycle equipment
KR20130027287A (en) An air conditioner
JP2018048766A (en) Parallel flow heat exchanger and refrigeration cycle device
JP7006028B2 (en) Heat exchanger
JP5310243B2 (en) Shunt
JP2008051374A (en) Gas-liquid separator
JP2012167912A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161206