JP2015052439A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2015052439A
JP2015052439A JP2013186417A JP2013186417A JP2015052439A JP 2015052439 A JP2015052439 A JP 2015052439A JP 2013186417 A JP2013186417 A JP 2013186417A JP 2013186417 A JP2013186417 A JP 2013186417A JP 2015052439 A JP2015052439 A JP 2015052439A
Authority
JP
Japan
Prior art keywords
heat exchange
header
main
auxiliary
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013186417A
Other languages
Japanese (ja)
Inventor
正憲 神藤
Masanori Shindo
正憲 神藤
好男 織谷
Yoshio Oritani
好男 織谷
拓也 上総
Takuya Kamifusa
拓也 上総
潤一 濱舘
Junichi Hamadate
潤一 濱舘
康介 森本
Kosuke Morimoto
康介 森本
智彦 坂巻
Tomohiko Sakamaki
智彦 坂巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2013186417A priority Critical patent/JP2015052439A/en
Publication of JP2015052439A publication Critical patent/JP2015052439A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat exchanger which includes a flat tube and a header collection tube, and, when operating in a function as an evaporator, secures more circulation amount of liquid refrigerant into a plurality of flat tubes positioned in a lower part of a heat exchange region of a bottom stage of a main heat exchange part.SOLUTION: In a second header collection tube (70) of a heat exchanger (23) to which one end of a main heat exchange part (51) and one end of an auxiliary heat exchange part (52) are connected, a plurality of header spaces (71a-71c) of a main header part (71) corresponding to a plurality of main heat exchange regions (51a-51c) of the main heat exchange part (51) and a plurality of header spaces (72a-72c) of an auxiliary header part (72) corresponding to a plurality of auxiliary heat exchange regions (52a-52c) of the auxiliary heat exchange part (52) are connected to each other through connection tubes (76-78), respectively. The connection tubes (76-78) are horizontally opened in respective lower portions of the plurality of header spaces (71a-71c) of the main header part (71).

Description

本発明は、複数の扁平管と一対のヘッダ集合管とを備え、冷凍サイクルを行う冷媒回路に接続されて冷媒と空気を熱交換させる熱交換器に関する。   The present invention relates to a heat exchanger that includes a plurality of flat tubes and a pair of header collecting tubes and is connected to a refrigerant circuit that performs a refrigeration cycle to exchange heat between the refrigerant and air.

従来より、複数の扁平管と一対のヘッダ集合管とを備えた熱交換器が知られている。例えば特許文献1や特許文献2には、この種の熱交換器が開示されている。これら各特許文献の熱交換器では、熱交換器の左端と右端にヘッダ集合管が1本ずつ立設され、第1のヘッダ集合管から第2のヘッダ集合管に亘って複数の扁平管が配置されている。そして、これら各特許文献の熱交換器は、扁平管の内部を流れる流体を、扁平管の外部を流れる空気と熱交換させる。また、この種の熱交換器は、冷凍サイクルを行う冷媒回路に接続され、蒸発器又は凝縮器として機能する。   Conventionally, a heat exchanger having a plurality of flat tubes and a pair of header collecting tubes is known. For example, Patent Document 1 and Patent Document 2 disclose this type of heat exchanger. In the heat exchangers of each of these patent documents, one header collecting pipe is erected on each of the left end and the right end of the heat exchanger, and a plurality of flat tubes extends from the first header collecting pipe to the second header collecting pipe. Has been placed. And the heat exchanger of each of these patent documents heat-exchanges the fluid which flows the inside of a flat tube with the air which flows the outside of a flat tube. In addition, this type of heat exchanger is connected to a refrigerant circuit that performs a refrigeration cycle, and functions as an evaporator or a condenser.

特開2005−003223号公報JP 2005-003223 A 特開2006−105545号公報JP 2006-105545 A

ところで、蒸発器として機能する熱交換器には、空気中の水分が霜となって付着する場合がある。熱交換器に付着した霜は、空気と冷媒の熱交換を阻害する。そのため、熱交換器は、そこに付着した霜を高圧ガス冷媒によって融かすように、凝縮器として機能させて、除霜動作を行う。その際、熱交換器の構造によっては、熱交換器に付着した全ての霜を融かすのに多大な時間を要するおそれがある。ここでは、その問題点について、図9を参照しながら説明する。   By the way, in the heat exchanger functioning as an evaporator, moisture in the air may adhere as frost. The frost adhering to the heat exchanger hinders heat exchange between the air and the refrigerant. Therefore, the heat exchanger performs a defrosting operation by functioning as a condenser so that the frost attached thereto is melted by the high-pressure gas refrigerant. At that time, depending on the structure of the heat exchanger, it may take a long time to melt all the frost adhered to the heat exchanger. Here, the problem will be described with reference to FIG.

図9に示す熱交換器(900)は、多数の扁平管と、各扁平管に接続する1つのヘッダ集合管(903,906)と、フィンとを備えている。尚、図9において、扁平管とフィンの図示は省略する。   The heat exchanger (900) shown in FIG. 9 includes a large number of flat tubes, one header collecting tube (903, 906) connected to each flat tube, and fins. In addition, in FIG. 9, illustration of a flat tube and a fin is abbreviate | omitted.

熱交換器(900)は、3つの主熱交換領域(901a〜901c)を有する主熱交換部(901)と3つの補助熱交換領域(902a〜902c)を有する補助熱交換部(902)とに区分されている。第1ヘッダ集合部(903)には、主熱交換部(901)の各主熱交換領域(901a〜901c)の扁平管の一端が接続される主ヘッダ部(904)と、補助熱交換部(902)の各補助熱交換領域(902a〜902c)の扁平管の一端が接続される補助ヘッダ部(905)とが形成される。第2ヘッダ集合部(906)には、主熱交換部(901)の各主熱交換領域(901a〜901c)の扁平管の他端が接続される3つの主部分空間(907a,907b,907c)を有する主ヘッダ部(907)と、補助熱交換部(902)の各補助熱交換領域(902a〜902c)の扁平管の他端が接続される3つの補助部分空間(908a,908b,908c)を有する補助ヘッダ部(908)とが形成される。上記主ヘッダ部(907)の第1主部分空間(907a)は第2ヘッダ集合部(906)の内部でその下方の第3補助部分空間(908c)に連通していると共に、第2主部分空間(907b)は第1補助部分空間(908a)に接続用配管(910)で接続され、第3主部分空間(907c)は第2補助部分空間(908b)に接続用配管(911)で接続されている。   The heat exchanger (900) includes a main heat exchange section (901) having three main heat exchange areas (901a to 901c) and an auxiliary heat exchange section (902) having three auxiliary heat exchange areas (902a to 902c). It is divided into. The first header assembly portion (903) has a main header portion (904) to which one end of a flat tube of each main heat exchange region (901a to 901c) of the main heat exchange portion (901) is connected, and an auxiliary heat exchange portion An auxiliary header portion (905) to which one end of the flat tube of each auxiliary heat exchange region (902a to 902c) of (902) is connected is formed. Three main partial spaces (907a, 907b, 907c) to which the other ends of the flat tubes of the main heat exchange regions (901a to 901c) of the main heat exchange unit (901) are connected to the second header assembly (906). ) And three auxiliary partial spaces (908a, 908b, 908c) to which the other ends of the flat tubes of the auxiliary heat exchange regions (902a to 902c) of the auxiliary heat exchange unit (902) are connected. ) Having an auxiliary header portion (908). The first main partial space (907a) of the main header portion (907) communicates with the third auxiliary partial space (908c) below the second header assembly portion (906) and the second main portion. The space (907b) is connected to the first auxiliary partial space (908a) by a connecting pipe (910), and the third main partial space (907c) is connected to the second auxiliary partial space (908b) by a connecting pipe (911). Has been.

従って、この熱交換器(900)では、主熱交換部(901)の第1主熱交換領域(901a)が補助熱交換部(902)の第3補助熱交換領域(902c)と直列に接続され、主熱交換部(901)の第2主熱交換領域(901b)が補助熱交換部(902)の第1補助熱交換領域(902a)と直列に接続され、主熱交換部(901)の第3主熱交換領域(901c)が補助熱交換部(902)の第2補助熱交換領域(902b)と直列に接続される。   Therefore, in this heat exchanger (900), the first main heat exchange area (901a) of the main heat exchange section (901) is connected in series with the third auxiliary heat exchange area (902c) of the auxiliary heat exchange section (902). The second main heat exchange area (901b) of the main heat exchange section (901) is connected in series with the first auxiliary heat exchange area (902a) of the auxiliary heat exchange section (902), and the main heat exchange section (901) The third main heat exchange area (901c) is connected in series with the second auxiliary heat exchange area (902b) of the auxiliary heat exchange section (902).

熱交換器(900)が蒸発器として機能する場合、第1ヘッダ集合部(903)の補助ヘッダ部(905)へ流入した冷媒は、補助熱交換部(902)の補助熱交換領域(902a〜902c)を流通し、その後、第2ヘッダ集合部(906)の補助ヘッダ部(908)から主ヘッダ部(907)を経て主熱交換部(901)の各主熱交換領域(901a〜901c)に流入し、更に第1ヘッダ集合部(903)の主ヘッダ部(904)に流れ込む。そして、補助熱交換部(902)の補助熱交換領域(902a〜902c)と主熱交換部(901)の主熱交換領域(901a〜901c)を順に通過する間に空気から吸熱して蒸発する。熱交換器(900)がこのような蒸発器として機能する間には、熱交換器(900)の表面に霜が付着する場合がある。   When the heat exchanger (900) functions as an evaporator, the refrigerant that has flowed into the auxiliary header part (905) of the first header assembly part (903) passes through the auxiliary heat exchange region (902a to 902a) of the auxiliary heat exchange part (902). 902c) and then the main heat exchanging regions (901a to 901c) of the main heat exchanging portion (901) from the auxiliary header portion (908) of the second header collecting portion (906) through the main header portion (907). And then flows into the main header part (904) of the first header assembly part (903). Then, while passing through the auxiliary heat exchange region (902a to 902c) of the auxiliary heat exchange unit (902) and the main heat exchange region (901a to 901c) of the main heat exchange unit (901) in order, the heat is absorbed from the air and evaporated. . While the heat exchanger (900) functions as such an evaporator, frost may adhere to the surface of the heat exchanger (900).

除霜動作が開始されると、冷媒流れが上記とは逆方向となり、圧縮機から吐出された高温高圧のガス冷媒が第1ヘッダ集合部(903)の主ヘッダ部(904)へ流入し、次いで主熱交換部(901)の主熱交換領域(901a〜901c)の扁平管へ流入する。この扁平管へ流入したガス冷媒は、霜に対して放熱して凝縮し、このガス冷媒の放熱によって熱交換器(900)に付着した霜は暖められて融解する。   When the defrosting operation is started, the refrigerant flow is in the reverse direction, and the high-temperature and high-pressure gas refrigerant discharged from the compressor flows into the main header part (904) of the first header assembly part (903), Subsequently, it flows into the flat tube in the main heat exchange area (901a to 901c) of the main heat exchange section (901). The gas refrigerant flowing into the flat tube dissipates heat and condenses with respect to the frost, and the frost attached to the heat exchanger (900) is heated and melted by the heat release of the gas refrigerant.

しかしながら、熱交換器を有する冷凍装置では、圧縮機を潤滑する冷凍機油が冷媒中に含まれて冷媒回路を循環している。この構成上、本願発明者等は、次の問題点があることが判った。   However, in a refrigeration apparatus having a heat exchanger, refrigeration oil that lubricates the compressor is included in the refrigerant and circulates in the refrigerant circuit. From this configuration, the inventors of the present application have found the following problems.

すなわち、冷媒中に含まれる冷凍機油は、その性質として、液冷媒中には溶け込み易いが、ガス冷媒中には溶け込み難い。また、上記図9に示した熱交換器(900)では、この熱交換器(900)が蒸発器として機能している際に、補助熱交換部(902)の各補助熱交換領域(902a〜902c)に流入した液冷媒が第2ヘッダ集合部(906)の各補助部分空間(908a〜908c)に流入する。ここで、最上部の第3補助部分空間(908c)に流入した液冷媒については、その上方に位置する第1の主部分空間(907a)に向って直上方に上がり、その後、この第1の主部分空間(907a)内に水平方向に開口する複数の扁平管に流入する。その構成上、第1の主部分空間(907a)に流入した液冷媒は、その多くが第1の主部分空間(907a)内の上部空間に開口する複数の扁平管に流れ込み、その第1の主部分空間(907a)内の下部空間に開口する複数の扁平管には流れ込み難く、主熱交換部(901)の第1の主熱交換領域(901a)の下部に位置する扁平管での液冷媒の流通量は少ない。その結果、第1の主熱交換領域(901a)の下部に位置する扁平管での液冷媒のほとんどはガス冷媒となって過熱状態となり、そのガス冷媒中に含まれる冷凍機油がその第1の主熱交換領域(901a)の下部に位置する複数の扁平管内に溜まり込むことになる。   That is, the refrigerating machine oil contained in the refrigerant is easy to dissolve in the liquid refrigerant, but difficult to dissolve in the gas refrigerant. Further, in the heat exchanger (900) shown in FIG. 9, when the heat exchanger (900) functions as an evaporator, each auxiliary heat exchange region (902a to 902a) of the auxiliary heat exchange unit (902) is used. The liquid refrigerant that has flowed into 902c) flows into the auxiliary partial spaces (908a to 908c) of the second header assembly portion (906). Here, the liquid refrigerant that has flowed into the uppermost third auxiliary partial space (908c) rises directly upward toward the first main partial space (907a) located above the third auxiliary partial space (908c). It flows into a plurality of flat tubes that open horizontally in the main partial space (907a). Due to the configuration, most of the liquid refrigerant flowing into the first main partial space (907a) flows into a plurality of flat tubes opened in the upper space in the first main partial space (907a). The liquid in the flat tube located below the first main heat exchange region (901a) of the main heat exchange section (901) is difficult to flow into the plurality of flat tubes that open to the lower space in the main partial space (907a). The circulation volume of the refrigerant is small. As a result, most of the liquid refrigerant in the flat tube located below the first main heat exchange region (901a) becomes a gas refrigerant and becomes overheated, and the refrigerating machine oil contained in the gas refrigerant becomes the first refrigerant heat. It accumulates in a plurality of flat tubes located below the main heat exchange region (901a).

このように、第1の主熱交換領域(901a)では、その下部に冷凍機油が多く溜まり込み、その中部及び上部には溜まり込み量が少ない状況であり、この状況では、除霜動作を開始すると、冷媒配管(909)から第1ヘッダ集合部(903)の主ヘッダ部(903)に流入したガス冷媒は、第1の主熱交換領域(901a)の下部での溜込み冷凍機油が大きな抵抗となって、第1の主熱交換領域(901a)の下部へは流れ込み難く、その中部及び上部に多く流れ込む。その結果、第1の主熱交換領域(901a)下部での除霜の進行が遅く、中部及び上部での除霜が完了していても、第1の主熱交換領域(901a)下部での除霜が完了するまで除霜運転を終了することができず、除霜運転時間が長くなる欠点がある。   Thus, in the first main heat exchange region (901a), a large amount of refrigerating machine oil is accumulated in the lower part and the amount of accumulation is small in the middle and upper part. In this situation, the defrosting operation is started. Then, the refrigerant gas flowing into the main header portion (903) of the first header assembly portion (903) from the refrigerant pipe (909) has a large amount of refrigerating machine oil accumulated in the lower portion of the first main heat exchange region (901a). It becomes a resistance and hardly flows into the lower part of the first main heat exchange region (901a), but flows into the middle part and the upper part thereof. As a result, the progress of defrosting in the lower part of the first main heat exchange region (901a) is slow, and even if defrosting in the middle part and upper part is completed, the defrosting in the lower part of the first main heat exchange region (901a) There is a drawback that the defrosting operation cannot be completed until the defrosting is completed, and the defrosting operation time becomes long.

本発明は、このような問題点に鑑みてなされたものであり、その目的は、扁平管とヘッダ集合部とを備えた熱交換器において、主熱交換部の最下部の熱交換領域の下部に位置する扁平管への冷凍機油の溜まり込み量を少なく制限して、除霜運転を早期に完了することにある。   The present invention has been made in view of such problems, and the object thereof is a lower part of the lowermost heat exchange region of the main heat exchange part in a heat exchanger having a flat tube and a header assembly part. The defrosting operation is completed early by limiting the amount of refrigerating machine oil that accumulates in the flat tube located at a small amount.

上記目的を達成するため、本発明では、蒸発器として機能している際には、ヘッダ集合部から主熱交換部の最下部に位置する熱交換領域の下部の複数の扁平管に対して流入する液冷媒の量を多く確保できる構成を採用する。   In order to achieve the above object, in the present invention, when functioning as an evaporator, it flows from the header assembly portion to the plurality of flat tubes below the heat exchange region located at the bottom of the main heat exchange portion. A configuration that can secure a large amount of liquid refrigerant to be used is adopted.

具体的に、第1の発明の熱交換器は、内部に冷媒通路が形成された複数の扁平管(33)が上下に区分された主熱交換部(51)及び補助熱交換部(52)と、上記両熱交換部(51)、(52)の端部が接続される主ヘッダ部(71)及び補助ヘッダ部(72)を有するヘッダ集合部(70)とを備え、上記主熱交換部(51)及び補助熱交換部(52)は、各々、上下に複数の熱交換領域(51a〜51c)、(52a〜52c)に分割され、蒸発器としての運転時に冷媒が上記補助熱交換部(52)の複数の熱交換領域(52a〜52c)からヘッダ集合部(70)の補助ヘッダ部(72)を経て上記ヘッダ集合部(70)の主ヘッダ部(71)から上記主熱交換部(51)の複数の熱交換領域(51a〜51c)に流通する冷媒流通経路を持つ熱交換器であって、上記ヘッダ集合部(70)の補助ヘッダ部(72)の上記補助熱交換部(52)の複数の熱交換領域(52a〜52c)に対応するヘッダ空間(72a〜72c)と主ヘッダ部(71)の上記主熱交換部(51)の複数の熱交換領域(51a〜51c)に対応するヘッダ空間(71a〜71c)とを各々連結する連結配管(76〜78)を備え、上記複数の連結配管(76〜78)は、各々、上記ヘッダ集合部(70)の主ヘッダ部(71)の対応するヘッダ空間(72a〜72c)において、上記主熱交換部(51)の対応する熱交換領域(51a〜51c)の下部に水平方向に開口することを特徴とする。   Specifically, the heat exchanger according to the first aspect of the present invention includes a main heat exchange section (51) and an auxiliary heat exchange section (52) in which a plurality of flat tubes (33) each having a refrigerant passage formed therein are vertically divided. And a header assembly part (70) having a main header part (71) and an auxiliary header part (72) to which ends of both the heat exchange parts (51), (52) are connected, and the main heat exchange Section (51) and auxiliary heat exchanging section (52) are each divided into a plurality of heat exchanging regions (51a to 51c) and (52a to 52c) in the upper and lower directions, and the refrigerant performs the auxiliary heat exchanging during operation as an evaporator. The main heat exchange from the main header part (71) of the header assembly part (70) through the auxiliary header part (72) of the header assembly part (70) from the plurality of heat exchange regions (52a to 52c) of the part (52) A heat exchanger having a refrigerant flow path that circulates in a plurality of heat exchange regions (51a to 51c) of the section (51), the auxiliary heat exchange section of the auxiliary header section (72) of the header assembly section (70) Header empty corresponding to multiple heat exchange areas (52a-52c) in (52) (72a to 72c) and a connecting pipe for connecting the header space (71a to 71c) corresponding to the plurality of heat exchange regions (51a to 51c) of the main heat exchange section (51) of the main header section (71) ( 76 to 78), and the plurality of connecting pipes (76 to 78) are respectively connected to the main heat in the header space (72a to 72c) corresponding to the main header portion (71) of the header assembly portion (70). The heat exchanger region (51a to 51c) corresponding to the exchanger (51) has a horizontal opening at the bottom.

上記第1の発明の熱交換器では、本熱交換器が蒸発器として機能している際には、液冷媒は補助熱交換器の複数の熱交換領域からヘッダ集合部の補助ヘッダ部の複数のヘッダ空間に流入した後、各々、連絡配管を経て主ヘッダ部の複数のヘッダ空間の下部に水平方向から流入するので、主熱交換部の複数の熱交換領域では、各々、下部に位置する扁平管にも十分に液冷媒が流入することになる。従って、これら扁平管での冷媒の過熱状態が抑制されて、これ等扁平管に溜まり込む冷凍機油の量が減少し、主熱交換器の各熱交換領域に溜まり込む冷凍機油の量が相互に均等化する。よって、その後に行われる除霜運転時には、主熱交換器の各熱交換領域に流入するガス冷媒は、その各流通抵抗がほぼ等量の冷凍機油によって同程度になるため、各熱交換領域相互間でほぼ等量ずつ流れて、各熱交換領域での除霜が同程度に進行して、除霜運転が早期に完了することになる。   In the heat exchanger of the first invention, when the present heat exchanger functions as an evaporator, the liquid refrigerant is supplied from the plurality of heat exchange regions of the auxiliary heat exchanger to the plurality of auxiliary header portions of the header assembly portion. After flowing into the header space, each flows into the lower part of the plurality of header spaces of the main header part from the horizontal direction through the connecting pipes, so that the plurality of heat exchange regions of the main heat exchange part are respectively located at the lower part A sufficient amount of liquid refrigerant will also flow into the flat tube. Therefore, the overheating state of the refrigerant in these flat tubes is suppressed, the amount of refrigerating machine oil that accumulates in these flat tubes decreases, and the amount of refrigerating machine oil that accumulates in each heat exchange region of the main heat exchanger mutually Equalize. Therefore, during the subsequent defrosting operation, the gas refrigerant flowing into each heat exchange region of the main heat exchanger has the same flow resistance due to almost the same amount of refrigeration oil. The defrosting operation is completed at an early stage as the defrosting in each heat exchange region progresses to the same degree.

第2の発明は、上記熱交換器において、上記複数の連結配管(76〜78)の端面開口部は、各々、上記主熱交換部(51)の対応する熱交換領域(51a〜51c)の下部に位置する扁平管(33a)の端面開口部と対向することを特徴とする。   According to a second aspect of the present invention, in the heat exchanger, the end surface openings of the plurality of connecting pipes (76 to 78) are respectively in the corresponding heat exchange regions (51a to 51c) of the main heat exchange unit (51). It is characterized by facing the end surface opening of the flat tube (33a) located in the lower part.

上記第2の発明の熱交換器では、主熱交換部の各熱交換領域の下部では、連絡配管の端面開口部がそれら熱交換領域の下部に位置する扁平管の端面開口部と対向しているので、本熱交換器が蒸発器として機能する運転時には、各連絡配管から流入してきた冷媒は対応する熱交換領域の下部の扁平管により流れ込み易くなる。従って、これら扁平管での冷媒の過熱状態がより一層に抑制されて、これ等扁平管に溜まり込む冷凍機油の量がより減少するので、除霜運転をより早期に完了させることになる。   In the heat exchanger according to the second aspect of the invention, at the lower part of each heat exchange region of the main heat exchange part, the end face opening of the connecting pipe faces the end face opening of the flat tube located below the heat exchange region. Therefore, during operation in which the present heat exchanger functions as an evaporator, the refrigerant that has flowed in from each communication pipe is likely to flow through the flat tube below the corresponding heat exchange region. Therefore, the overheating state of the refrigerant in these flat tubes is further suppressed, and the amount of refrigerating machine oil that accumulates in these flat tubes is further reduced, so that the defrosting operation is completed earlier.

第3の発明は、上記熱交換器において、上記ヘッダ集合部(70)の補助ヘッダ部(72)の上記補助熱交換部(52)の最下段の熱交換領域(52a)に対応するヘッダ空間(72a)と、主ヘッダ部(71)の上記主熱交換部(51)の最下段の熱交換領域(51a)に対応するヘッダ空間(71a)とが連結配管(78)で連結されていることを特徴とする。   According to a third aspect of the present invention, in the heat exchanger, a header space corresponding to a lowermost heat exchange area (52a) of the auxiliary heat exchange section (52) of the auxiliary header section (72) of the header assembly section (70). (72a) and the header space (71a) corresponding to the lowermost heat exchange area (51a) of the main heat exchange part (51) of the main header part (71) are connected by a connection pipe (78). It is characterized by that.

第3の発明の熱交換器では、本熱交換器が蒸発器として機能する運転時には、補助熱交換部の上下に位置する複数の熱交換領域に液冷媒が流入する際、その液冷媒に作用する重力によって最下段の熱交換領域には多くの液冷媒が流れ易く、その最下段の熱交換領域では液リッチの状況となる。このような液リッチの液冷媒がヘッダ集合部の補助ヘッダ部の最下段のヘッダ空間から連絡配管を介して主ヘッダ部の最下段のヘッダ空間の下部に水平方向から流入して、主熱交換部の最下段の熱交換領域の下部に位置する扁平管には十分な量の液リッチの冷媒が流れ込むので、これら扁平管に溜まり込む冷凍機油の量がより減少して、除霜運転がより早期に完了すことになる。   In the heat exchanger of the third invention, when the heat exchanger functions as an evaporator, when the liquid refrigerant flows into a plurality of heat exchange regions located above and below the auxiliary heat exchange section, it acts on the liquid refrigerant. Due to the gravity, a large amount of liquid refrigerant easily flows in the lowermost heat exchange area, and the lowermost heat exchange area becomes liquid-rich. Such a liquid-rich liquid refrigerant flows from the lowermost header space of the auxiliary header portion of the header assembly portion into the lower portion of the lowermost header space of the main header portion from the horizontal direction via the connecting pipe, and main heat exchange Since a sufficient amount of liquid-rich refrigerant flows into the flat tubes located in the lower part of the heat exchange area at the bottom of the section, the amount of refrigeration oil that accumulates in these flat tubes is further reduced, and the defrosting operation is further reduced. It will be completed early.

第4の発明は、上記熱交換器において、上記ヘッダ集合部(70)の補助ヘッダ部(72)の上記補助熱交換部(52)の最上段の熱交換領域(52c)に対応するヘッダ空間(72c)と、主ヘッダ部(71)の上記主熱交換部(51)の最下段の熱交換領域(51a)に対応するヘッダ空間(71a)とが連結配管(78)で連結されていることを特徴とする。   According to a fourth aspect of the present invention, in the heat exchanger, a header space corresponding to the uppermost heat exchange area (52c) of the auxiliary heat exchange section (52) of the auxiliary header section (72) of the header assembly section (70). (72c) and the header space (71a) corresponding to the lowermost heat exchange area (51a) of the main heat exchange part (51) of the main header part (71) are connected by a connection pipe (78). It is characterized by that.

第4の発明の熱交換器では、本熱交換器が蒸発器として機能する運転時には、液冷媒は補助熱交換部の上下に位置する複数の熱交換領域に流入する際、上記の通り液冷媒に作用する重力によって最下段の熱交換領域に多くの液冷媒が流れ易いため、最上段の熱交換領域ではガスリッチの状況となる。しかし、この最上段の熱交換領域に流入したガスリッチの冷媒は、ヘッダ集合部の補助ヘッダ部の最上段のヘッダ空間に流入した後、連絡配管を介して、主ヘッダ部の最下段のヘッダ空間の下部に水平方向から流入するので、図9に示した従来の熱交換器の構成(すなわち、ヘッダ集合部の下側ヘッダ部の最上段のヘッダ空間とその上方の上側ヘッダ部の最下段のヘッダ空間とを、連絡配管で接続せずに、該ヘッダ集合部の内部で連通する構成)と比較して、比較的多くの液冷媒が主熱交換部の最下段の熱交換領域の下部の扁平管に流れ込んで、これら扁平管に溜まり込む冷凍機油の量が減少し、除霜運転がより早期に完了すことになる。   In the heat exchanger according to the fourth aspect of the present invention, when the heat exchanger functions as an evaporator, the liquid refrigerant flows into the plurality of heat exchange regions located above and below the auxiliary heat exchange unit as described above. Since a large amount of liquid refrigerant tends to flow in the lowermost heat exchange region due to gravity acting on the uppermost heat exchange region, a gas-rich state occurs in the uppermost heat exchange region. However, the gas-rich refrigerant that has flowed into the uppermost heat exchange region flows into the uppermost header space of the auxiliary header portion of the header assembly portion, and then via the connecting pipe, the lowermost header space of the main header portion. 9 from the horizontal direction, the configuration of the conventional heat exchanger shown in FIG. 9 (that is, the uppermost header space of the lower header portion of the header assembly portion and the lowermost portion of the upper header portion above it) Compared to the configuration in which the header space is not connected to the header pipe and communicated inside the header assembly portion), a relatively large amount of liquid refrigerant is present in the lower portion of the lowermost heat exchange region of the main heat exchange portion. The amount of refrigerating machine oil that flows into the flat tubes and accumulates in these flat tubes decreases, and the defrosting operation is completed earlier.

上記第1の発明の熱交換器によれば、蒸発器として機能している際には、主熱交換部の複数の熱交換領域の下部に位置する扁平管にも十分に液冷媒を流入させたので、主熱交換器の各熱交換領域に溜まり込む冷凍機油の量を相互に均等化して、除霜運転時には各熱交換領域での除霜を同程度に進行させることができ、除霜運転が早期に完了させることが可能である。   According to the heat exchanger of the first aspect of the invention, when functioning as an evaporator, the liquid refrigerant is sufficiently allowed to flow into the flat tubes located below the plurality of heat exchange regions of the main heat exchange section. Therefore, the amount of refrigerating machine oil that accumulates in each heat exchange area of the main heat exchanger can be equalized, and defrosting in each heat exchange area can proceed to the same extent during the defrosting operation. Operation can be completed early.

第2〜第4の発明によれば、蒸発器として機能する運転時に主熱交換部の各熱交換領域の下部の扁平管に溜まり込む冷凍機油の量をより減少させることができるので、除霜運転をより早期に完了させることができる。   According to the 2nd-4th invention, since the quantity of the refrigerating machine oil which accumulates in the flat tube of the lower part of each heat exchange area | region of the main heat exchange part at the time of the operation | movement which functions as an evaporator can be reduced more, defrosting Driving can be completed earlier.

図1は第1の実施形態の室外熱交換器を備えた空気調和機の概略構成を示す冷媒回路図である。FIG. 1 is a refrigerant circuit diagram illustrating a schematic configuration of an air conditioner including the outdoor heat exchanger according to the first embodiment. 図2は同室外熱交換器の概略構成を示す正面図である。FIG. 2 is a front view showing a schematic configuration of the outdoor heat exchanger. 図3は同室外熱交換器の正面を示す一部断面図である。FIG. 3 is a partial cross-sectional view showing the front of the outdoor heat exchanger. 図4は図3のA−A断面の一部を拡大して示す室外熱交換器の断面図である。FIG. 4 is a cross-sectional view of the outdoor heat exchanger showing a part of the AA cross section of FIG. 3 in an enlarged manner. 図5は同室外熱交換器の正面の一部を拡大して示す断面図である。FIG. 5 is an enlarged cross-sectional view showing a part of the front surface of the outdoor heat exchanger. 図6は第2の実施形態の室外熱交換器の正面を示す一部断面図である。FIG. 6 is a partial cross-sectional view showing the front of the outdoor heat exchanger of the second embodiment. 図7は第3の実施形態の室外熱交換器の概略構成を示す正面図である。FIG. 7 is a front view showing a schematic configuration of the outdoor heat exchanger of the third embodiment. 図8は同室外熱交換器の正面を示す一部断面図である。FIG. 8 is a partial cross-sectional view showing the front of the outdoor heat exchanger. 図9は従来の熱交換器の概略構成を示す図である。FIG. 9 is a diagram showing a schematic configuration of a conventional heat exchanger.

以下、本発明の実施形態を図面に基づいて詳細に説明する。尚、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、又はその用途の範囲を制限することを意図するものではない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The following embodiments are essentially preferable examples, and are not intended to limit the scope of the present invention, its application, or its use.

(第1の実施形態)
本発明の第1の実施形態について説明する。本実施形態の熱交換器は、空気調和機(10)に設けられた室外熱交換器(23)である。以下では、先ず空気調和機(10)について説明し、その後に室外熱交換器(23)について詳細に説明する。
(First embodiment)
A first embodiment of the present invention will be described. The heat exchanger of the present embodiment is an outdoor heat exchanger (23) provided in the air conditioner (10). Hereinafter, the air conditioner (10) will be described first, and then the outdoor heat exchanger (23) will be described in detail.

−空気調和機−
空気調和機(10)について、図1を参照しながら説明する。
-Air conditioner-
The air conditioner (10) will be described with reference to FIG.

〈空気調和機の構成〉
空気調和機(10)は、室外ユニット(11)及び室内ユニット(12)を備えている。室外ユニット(11)と室内ユニット(12)は、液側連絡配管(13)及びガス側連絡配管(14)を介して互いに接続されている。空気調和機(10)では、室外ユニット(11)、室内ユニット(12)、液側連絡配管(13)及びガス側連絡配管(14)によって、冷媒回路(20)が形成されている。
<Configuration of air conditioner>
The air conditioner (10) includes an outdoor unit (11) and an indoor unit (12). The outdoor unit (11) and the indoor unit (12) are connected to each other via a liquid side connecting pipe (13) and a gas side connecting pipe (14). In the air conditioner (10), the refrigerant circuit (20) is formed by the outdoor unit (11), the indoor unit (12), the liquid side communication pipe (13), and the gas side communication pipe (14).

冷媒回路(20)には、圧縮機(21)と、四方切換弁(22)と、室外熱交換器(23)と、膨張弁(24)と、室内熱交換器(25)とが設けられている。圧縮機(21)、四方切換弁(22)、室外熱交換器(23)、及び膨張弁(24)は、室外ユニット(11)に収容されている。室外ユニット(11)には、室外熱交換器(23)へ室外空気を供給するための室外ファン(15)が設けられている。一方、室内熱交換器(25)は、室内ユニット(12)に収容されている。室内ユニット(12)には、室内熱交換器(25)へ室内空気を供給するための室内ファン(16)が設けられている。   The refrigerant circuit (20) is provided with a compressor (21), a four-way switching valve (22), an outdoor heat exchanger (23), an expansion valve (24), and an indoor heat exchanger (25). ing. The compressor (21), the four-way switching valve (22), the outdoor heat exchanger (23), and the expansion valve (24) are accommodated in the outdoor unit (11). The outdoor unit (11) is provided with an outdoor fan (15) for supplying outdoor air to the outdoor heat exchanger (23). On the other hand, the indoor heat exchanger (25) is accommodated in the indoor unit (12). The indoor unit (12) is provided with an indoor fan (16) for supplying room air to the indoor heat exchanger (25).

冷媒回路(20)は、冷媒が充填された閉回路である。冷媒回路(20)において、圧縮機(21)は、その吐出管が四方切換弁(22)の第1のポートに、その吸入管が四方切換弁(22)の第2のポートに、各々接続されている。また、冷媒回路(20)では、四方切換弁(22)の第3のポートから第4のポートへ向かって順に、室外熱交換器(23)と、膨張弁(24)と、室内熱交換器(25)とが配置されている。   The refrigerant circuit (20) is a closed circuit filled with a refrigerant. In the refrigerant circuit (20), the compressor (21) has its discharge pipe connected to the first port of the four-way switching valve (22) and its suction pipe connected to the second port of the four-way switching valve (22). Has been. In the refrigerant circuit (20), the outdoor heat exchanger (23), the expansion valve (24), and the indoor heat exchanger are sequentially arranged from the third port to the fourth port of the four-way switching valve (22). (25) and are arranged.

圧縮機(21)は、スクロール型又はロータリ型の全密閉型圧縮機である。四方切換弁(22)は、第1のポートが第3のポートと連通し且つ第2のポートが第4のポートと連通する第1状態(図1に実線で示す状態)と、第1のポートが第4のポートと連通し且つ第2のポートが第3のポートと連通する第2状態(図1に破線で示す状態)とに切り換わる。膨張弁(24)は、いわゆる電子膨張弁である。   The compressor (21) is a scroll type or rotary type hermetic compressor. The four-way switching valve (22) includes a first state (state indicated by a solid line in FIG. 1) in which the first port communicates with the third port and the second port communicates with the fourth port; The port is switched to a second state (state indicated by a broken line in FIG. 1) in which the port communicates with the fourth port and the second port communicates with the third port. The expansion valve (24) is a so-called electronic expansion valve.

室外熱交換器(23)は、室外空気を冷媒と熱交換させる。室外熱交換器(23)については後述する。一方、室内熱交換器(25)は、室内空気を冷媒と熱交換させる。室内熱交換器(25)は、円管である伝熱管を備えたいわゆるクロスフィン型のフィン・アンド・チューブ熱交換器によって構成されている。   The outdoor heat exchanger (23) exchanges heat between the outdoor air and the refrigerant. The outdoor heat exchanger (23) will be described later. On the other hand, the indoor heat exchanger (25) exchanges heat between the indoor air and the refrigerant. The indoor heat exchanger (25) is constituted by a so-called cross fin type fin-and-tube heat exchanger provided with a heat transfer tube which is a circular tube.

〈空気調和機の運転動作〉
空気調和機(10)は、冷房運転と暖房運転と除霜運転を選択的に行う。
<Operation of air conditioner>
The air conditioner (10) selectively performs a cooling operation, a heating operation, and a defrosting operation.

冷房運転中及び暖房運転中の空気調和機(10)では、室外ファン(15)及び室内ファン(16)が作動する。室外ファン(15)は室外熱交換器(23)へ室外空気を供給し、室内ファン(16)は室内熱交換器(25)へ室内空気を供給する。   In the air conditioner (10) during the cooling operation and the heating operation, the outdoor fan (15) and the indoor fan (16) operate. The outdoor fan (15) supplies outdoor air to the outdoor heat exchanger (23), and the indoor fan (16) supplies indoor air to the indoor heat exchanger (25).

冷房運転中の冷媒回路(20)では、四方切換弁(22)を第1状態に設定した状態で、冷凍サイクルが行われる。この状態では、室外熱交換器(23)、膨張弁(24)、室内熱交換器(25)の順に冷媒が循環し、室外熱交換器(23)が凝縮器として機能し、室内熱交換器(25)が蒸発器として機能する。室外熱交換器(23)では、圧縮機(21)から流入したガス冷媒が室外空気へ放熱して凝縮し、凝縮後の冷媒が膨張弁(24)へ向けて流出してゆく。室内ユニット(12)は、室内熱交換器(25)において冷却された空気を室内へ吹き出す。   In the refrigerant circuit (20) during the cooling operation, the refrigeration cycle is performed with the four-way switching valve (22) set to the first state. In this state, the refrigerant circulates in the order of the outdoor heat exchanger (23), the expansion valve (24), and the indoor heat exchanger (25), and the outdoor heat exchanger (23) functions as a condenser. (25) functions as an evaporator. In the outdoor heat exchanger (23), the gas refrigerant flowing from the compressor (21) dissipates heat to the outdoor air and condenses, and the condensed refrigerant flows out toward the expansion valve (24). The indoor unit (12) blows out the air cooled in the indoor heat exchanger (25) into the room.

暖房運転中の冷媒回路(20)では、四方切換弁(22)を第2状態に設定した状態で、冷凍サイクルが行われる。この状態では、室内熱交換器(25)、膨張弁(24)、室外熱交換器(23)の順に冷媒が循環し、室内熱交換器(25)が凝縮器として機能し、室外熱交換器(23)が蒸発器として機能する。室外熱交換器(23)には、膨張弁(24)を通過する際に膨張して気液二相状態となった冷媒が流入する。室外熱交換器(23)へ流入した冷媒は、室外空気から吸熱して蒸発し、その後に圧縮機(21)へ向けて流出してゆく。室内ユニット(12)は、室内熱交換器(25)において加熱された空気を室内へ吹き出す。   In the refrigerant circuit (20) during the heating operation, the refrigeration cycle is performed with the four-way switching valve (22) set to the second state. In this state, the refrigerant circulates in the order of the indoor heat exchanger (25), the expansion valve (24), and the outdoor heat exchanger (23), and the indoor heat exchanger (25) functions as a condenser, and the outdoor heat exchanger (23) functions as an evaporator. The refrigerant that has expanded into a gas-liquid two-phase state when passing through the expansion valve (24) flows into the outdoor heat exchanger (23). The refrigerant flowing into the outdoor heat exchanger (23) absorbs heat from the outdoor air and evaporates, and then flows out toward the compressor (21). The indoor unit (12) blows out the air heated in the indoor heat exchanger (25) into the room.

室外熱交換器(23)が蒸発器として機能する暖房運転中には、室外空気中の水分が霜となって室外熱交換器(23)の表面に付着する場合がある。室外熱交換器(23)に霜が付着すると、冷媒と室外空気の熱交換が霜によって阻害され、空気調和機(10)の暖房能力が低下する。そこで、空気調和機(10)は、室外熱交換器(23)にある程度以上の霜が付着していることを示す除霜開始条件が成立すると、暖房運転を一時的に休止して除霜運転を行う。   During the heating operation in which the outdoor heat exchanger (23) functions as an evaporator, moisture in the outdoor air may become frost and adhere to the surface of the outdoor heat exchanger (23). When frost adheres to the outdoor heat exchanger (23), heat exchange between the refrigerant and the outdoor air is hindered by the frost, and the heating capacity of the air conditioner (10) decreases. Therefore, the air conditioner (10) temporarily stops the heating operation and performs the defrosting operation when the defrosting start condition indicating that a certain amount of frost is attached to the outdoor heat exchanger (23) is satisfied. I do.

除霜運転中の空気調和機(10)では、室外ファン(15)及び室内ファン(16)が停止する。除霜運転中の冷媒回路(20)では、四方切換弁(22)が第1状態に設定され、圧縮機(21)が作動する。また、除霜運転中は、圧縮機(21)の回転速度が下限値に設定される。除霜運転中の冷媒回路(20)では、冷房運転中と同様に冷媒が循環する。つまり、室外熱交換器(23)へは、圧縮機(21)から吐出された高温高圧のガス冷媒が供給される。室外熱交換器(23)に付着した霜は、このガス冷媒によって暖められて融解する。室外熱交換器(23)を通過した冷媒は、膨張弁(24)と室内熱交換器(25)を順に通過し、その後に圧縮機(21)へ吸い込まれて圧縮される。   In the air conditioner (10) during the defrosting operation, the outdoor fan (15) and the indoor fan (16) are stopped. In the refrigerant circuit (20) during the defrosting operation, the four-way switching valve (22) is set to the first state, and the compressor (21) is operated. Further, during the defrosting operation, the rotation speed of the compressor (21) is set to the lower limit value. In the refrigerant circuit (20) during the defrosting operation, the refrigerant circulates as in the cooling operation. That is, the high-temperature and high-pressure gas refrigerant discharged from the compressor (21) is supplied to the outdoor heat exchanger (23). The frost adhering to the outdoor heat exchanger (23) is heated and melted by the gas refrigerant. The refrigerant that has passed through the outdoor heat exchanger (23) sequentially passes through the expansion valve (24) and the indoor heat exchanger (25), and is then sucked into the compressor (21) and compressed.

−室外熱交換器−
室外熱交換器(23)について、図2〜図4を適宜参照しながら説明する。尚、以下の説明に示す扁平管(33)の本数と、主熱交換領域(51a〜51c)及び補助熱交換部(52a〜52c)の数は、何れも単なる一例である。
-Outdoor heat exchanger-
The outdoor heat exchanger (23) will be described with reference to FIGS. Note that the number of flat tubes (33) and the number of main heat exchange regions (51a to 51c) and auxiliary heat exchange units (52a to 52c) shown in the following description are merely examples.

〈室外熱交換器の構成〉
図2及び図3に示すように、室外熱交換器(23)は、1つの第1ヘッダ集合管(第1ヘッダ集合部)(60)と、1つの第2ヘッダ集合管(第2ヘッダ集合部)(70)と、多数の扁平管(33)と、多数のフィン(36)とを備えている。第1ヘッダ集合管(60)、第2ヘッダ集合管(70)、扁平管(33)及びフィン(35)は、何れもアルミニウム合金製の部材であって、互いにロウ付けによって接合されている。
<Configuration of outdoor heat exchanger>
As shown in FIGS. 2 and 3, the outdoor heat exchanger (23) includes one first header collecting pipe (first header collecting section) (60) and one second header collecting pipe (second header collecting pipe). Part) (70), a number of flat tubes (33), and a number of fins (36). The first header collecting pipe (60), the second header collecting pipe (70), the flat pipe (33) and the fin (35) are all made of an aluminum alloy and are joined to each other by brazing.

尚、詳しくは後述するが、室外熱交換器(23)は、主熱交換部(51)と補助熱交換部(52)に区分されている。この室外熱交換器(23)では、一部の扁平管(33b)が補助熱交換部(52)を構成し、残りの扁平管(33a)が主熱交換部(51)を構成している。   As will be described in detail later, the outdoor heat exchanger (23) is divided into a main heat exchange section (51) and an auxiliary heat exchange section (52). In this outdoor heat exchanger (23), a part of flat tubes (33b) constitutes an auxiliary heat exchange part (52), and the remaining flat tubes (33a) constitute a main heat exchange part (51). .

第1ヘッダ集合管(60)と第2ヘッダ集合管(70)は、何れも両端が閉塞された細長い円筒状に形成されている。図2及び図3において、第1ヘッダ集合管(60)は室外熱交換器(23)の左端に、第2ヘッダ集合管(70)は室外熱交換器(23)の右端に、各々起立した状態で設置されている。   Both the first header collecting pipe (60) and the second header collecting pipe (70) are formed in an elongated cylindrical shape with both ends closed. 2 and 3, the first header collecting pipe (60) is erected at the left end of the outdoor heat exchanger (23), and the second header collecting pipe (70) is erected at the right end of the outdoor heat exchanger (23). It is installed in a state.

図4に示すように、扁平管(33)は、その断面形状が扁平な長円形となった伝熱管である。図3に示すように、室外熱交換器(23)において、複数の扁平管(33)は、その伸長方向が左右方向となり、各々の平坦な側面が対向する状態で配置されている。また、複数の扁平管(33)は、互いに一定の間隔をおいて上下に並んで配置され、互いに実質的に平行となっている。各扁平管(33)は、その一端が第1ヘッダ集合管(60)に挿入され、その他端が第2ヘッダ集合管(70)に挿入されている。   As shown in FIG. 4, the flat tube (33) is a heat transfer tube whose cross-sectional shape is a flat oval. As shown in FIG. 3, in the outdoor heat exchanger (23), the plurality of flat tubes (33) are arranged in a state in which the extending direction is the left-right direction and the flat side surfaces face each other. Further, the plurality of flat tubes (33) are arranged side by side at regular intervals and are substantially parallel to each other. Each flat tube (33) has one end inserted into the first header collecting tube (60) and the other end inserted into the second header collecting tube (70).

図4に示すように、各扁平管(33)には、複数の流体通路(34)が形成されている。各流体通路(34)は、扁平管(33)の伸長方向に延びる通路である。各扁平管(33)において、複数の流体通路(34)は、扁平管(33)の幅方向(即ち、長手方向と直交する方向)に一列に並んでいる。各扁平管(33)に形成された複数の流体通路(34)は、各々の一端が第1ヘッダ集合管(60)の内部空間に連通し、各々の他端が第2ヘッダ集合管(70)の内部空間に連通している。室外熱交換器(23)へ供給された冷媒は、扁平管(33)の流体通路(34)を流れる間に空気と熱交換する。   As shown in FIG. 4, each flat tube (33) is formed with a plurality of fluid passages (34). Each fluid passage (34) is a passage extending in the extending direction of the flat tube (33). In each flat tube (33), the plurality of fluid passages (34) are arranged in a line in the width direction of the flat tube (33) (that is, the direction orthogonal to the longitudinal direction). One end of each of the plurality of fluid passages (34) formed in each flat pipe (33) communicates with the internal space of the first header collecting pipe (60), and the other end of each of the plurality of fluid passages (34) is a second header collecting pipe (70). ). The refrigerant supplied to the outdoor heat exchanger (23) exchanges heat with air while flowing through the fluid passage (34) of the flat tube (33).

図4に示すように、フィン(36)は、金属板をプレス加工することによって形成された縦長の板状フィンである。フィン(36)には、フィン(36)の前縁(即ち、風主の縁部)からフィン(36)の幅方向に延びる細長い切り欠き部(45)が、多数形成されている。フィン(36)では、多数の切り欠き部(45)が、フィン(36)の長手方向(上下方向)に一定の間隔で形成されている。切り欠き部(45)の風下寄りの部分は、管挿入部(46)を構成している。管挿入部(46)は、上下方向の幅が扁平管(33)の厚さと実質的に等しく、長さが扁平管(33)の幅と実質的に等しい。扁平管(33)は、フィン(36)の管挿入部(46)に挿入され、管挿入部(46)の周縁部とロウ付けによって接合される。また、フィン(36)には、伝熱を促進するためのルーバー(40)が形成されている。そして、複数のフィン(36)は、扁平管(33)の伸長方向に配列されることで、隣り合う扁平管(33)の間を空気が流れる複数の通風路(38)に区画している。   As shown in FIG. 4, the fin (36) is a vertically long plate-like fin formed by pressing a metal plate. The fin (36) has a number of elongated notches (45) extending in the width direction of the fin (36) from the front edge of the fin (36) (that is, the edge of the wind main). In the fin (36), a large number of notches (45) are formed at regular intervals in the longitudinal direction (vertical direction) of the fin (36). The portion closer to the lee of the notch (45) forms a tube insertion portion (46). The tube insertion portion (46) has a vertical width substantially equal to the thickness of the flat tube (33) and a length substantially equal to the width of the flat tube (33). The flat tube (33) is inserted into the tube insertion portion (46) of the fin (36) and joined to the peripheral portion of the tube insertion portion (46) by brazing. The fin (36) is formed with a louver (40) for promoting heat transfer. The plurality of fins (36) are arranged in the extending direction of the flat tube (33), thereby partitioning between the adjacent flat tubes (33) into a plurality of ventilation paths (38) through which air flows. .

図2及び図3に示すように、室外熱交換器(23)は、上下に2つの熱交換部(51,52)に区分されている。室外熱交換器(23)では、上の熱交換部が主熱交換部(51)となり、下の熱交換部が補助熱交換部(52)となっている。   As shown in FIG.2 and FIG.3, the outdoor heat exchanger (23) is divided into two heat exchange parts (51,52) up and down. In the outdoor heat exchanger (23), the upper heat exchange part is the main heat exchange part (51), and the lower heat exchange part is the auxiliary heat exchange part (52).

各熱交換部(51,52)は、上下に3つずつの熱交換領域(51a〜51c,52a〜52c)に区分されている。つまり、室外熱交換器(23)では、主熱交換部(51)と補助熱交換部(52)の各々が、複数且つ互いに同数の熱交換領域(51a〜51c,52a〜52c)に区分されている。尚、各熱交換部(51,52)に形成される熱交換領域(51a〜51c,52a〜52c)の数は、2つであってもよいし、4つ以上であってもよい。   Each heat exchange section (51, 52) is divided into three heat exchange regions (51a to 51c, 52a to 52c). That is, in the outdoor heat exchanger (23), each of the main heat exchanger (51) and the auxiliary heat exchanger (52) is divided into a plurality of heat exchange regions (51a to 51c, 52a to 52c). ing. In addition, the number of heat exchange regions (51a to 51c, 52a to 52c) formed in each heat exchange section (51, 52) may be two, or may be four or more.

主熱交換部(51)には、下から上に向かって順に、第1主熱交換領域(51a)と、第2主熱交換領域(51b)と、第3主熱交換領域(51c)とが形成されている。   The main heat exchange section (51) includes, in order from bottom to top, a first main heat exchange region (51a), a second main heat exchange region (51b), and a third main heat exchange region (51c). Is formed.

補助熱交換部(52)には、下から上に向かって順に、第1補助熱交換領域(52a)と、第2補助熱交換領域(52b)と、第3補助熱交換領域(52c)とが形成されている。   The auxiliary heat exchange section (52) includes, in order from the bottom to the top, a first auxiliary heat exchange region (52a), a second auxiliary heat exchange region (52b), and a third auxiliary heat exchange region (52c). Is formed.

図2及び図3に示すように、第1ヘッダ集合管(60)の内部空間は、仕切板(39a)によって上下に仕切られている。第1ヘッダ集合管(60)では、仕切板(39a)の主の空間が主ヘッダ部(61)となり、仕切板(39a)の補助の空間が補助ヘッダ部(62)となっている。   As shown in FIGS. 2 and 3, the internal space of the first header collecting pipe (60) is partitioned vertically by a partition plate (39a). In the first header collecting pipe (60), the main space of the partition plate (39a) is the main header portion (61), and the auxiliary space of the partition plate (39a) is the auxiliary header portion (62).

主ヘッダ部(61)は、主熱交換部(51)に対応した連通空間を構成している。主ヘッダ部(61)は、主熱交換部(51)を構成する扁平管(33a)の全てと連通する単一の空間である。つまり、主ヘッダ部(61)は、各主熱交換領域(51a〜51c)の扁平管(33a)と連通している。   The main header part (61) constitutes a communication space corresponding to the main heat exchange part (51). The main header part (61) is a single space communicating with all of the flat tubes (33a) constituting the main heat exchange part (51). That is, the main header portion (61) communicates with the flat tube (33a) of each main heat exchange region (51a to 51c).

また、図2及び図3に示すように、上記第1ヘッダ集合管(60)の主ヘッダ部(61)は、第1主熱交換領域(51a)に対応した第1部分空間(61a)と、第2主熱交換領域(51b)に対応した第2部分空間(61b)と、第3主熱交換領域(51c)に対応した第3部分空間(61c)とを有する。   2 and 3, the main header portion (61) of the first header collecting pipe (60) has a first partial space (61a) corresponding to the first main heat exchange area (51a). The second partial space (61b) corresponding to the second main heat exchange region (51b) and the third partial space (61c) corresponding to the third main heat exchange region (51c).

更に、図2及び図3に示すように、上記第1ヘッダ集合管(60)の主ヘッダ部(61)には、ガス側接続管(57)が接続されている。このガス側接続管(57)の一端は、第1ヘッダ集合管(60)における主ヘッダ部(61)の上下方向のほぼ中央に接続され、主ヘッダ部(61)の第2主熱交換領域(51b)に対応した部分空間(61b)に連通している。ガス側接続管(57)の他端は、室外熱交換器(23)と四方切換弁(22)の第3のポートを繋ぐ銅製の配管(18)に、継手(図示せず)を介して接続されている。ガス側接続管(57)は、円管状に形成されたアルミニウム合金製の部材である。   Further, as shown in FIGS. 2 and 3, a gas side connection pipe (57) is connected to the main header portion (61) of the first header collecting pipe (60). One end of the gas side connection pipe (57) is connected to the substantially vertical center of the main header section (61) in the first header collecting pipe (60), and the second main heat exchange area of the main header section (61). It communicates with the partial space (61b) corresponding to (51b). The other end of the gas side connection pipe (57) is connected to a copper pipe (18) connecting the outdoor heat exchanger (23) and the third port of the four-way switching valve (22) via a joint (not shown). It is connected. The gas side connection pipe (57) is an aluminum alloy member formed in a circular tube shape.

補助ヘッダ部(62)は、補助熱交換部(52)に対応した補助連通空間を構成している。補助ヘッダ部(62)は、補助熱交換領域(52a〜52c)と同数(本実施形態では3つ)の連通室(62a〜62c)に区画されている。最も下方に位置する第1連通室(62a)は、第1補助熱交換領域(52a)を構成する全ての扁平管(33b)と連通する。第1連通室(62a)の上方に位置する第2連通室(62b)は、第2補助熱交換領域(52b)を構成する全ての扁平管(33b)と連通する。最も上方に位置する第3連通室(62c)は、第3補助熱交換領域(52c)を構成する全ての扁平管(33b)と連通する。   The auxiliary header part (62) constitutes an auxiliary communication space corresponding to the auxiliary heat exchange part (52). The auxiliary header part (62) is divided into the same number (three in this embodiment) of communication chambers (62a to 62c) as the auxiliary heat exchange regions (52a to 52c). The lowermost first communication chamber (62a) communicates with all the flat tubes (33b) constituting the first auxiliary heat exchange region (52a). The second communication chamber (62b) located above the first communication chamber (62a) communicates with all the flat tubes (33b) constituting the second auxiliary heat exchange region (52b). The uppermost third communication chamber (62c) communicates with all the flat tubes (33b) constituting the third auxiliary heat exchange region (52c).

また、補助ヘッダ部(62)には、主横仕切板(80)と、補助横仕切板(85)と、縦仕切板(90)とが配置されていて、これ等の3つの仕切板(80)、(85)、(90)により、上記3つの連通室(62a)〜(62c)と混合室(63)とが形成されている。上記混合室(63)は、詳示しないが、上記3つの仕切板(80)、(85)、(90)に形成した連通用貫通孔を介して上記3つの連通室(62a)〜(62c)に連通している。また、上記混合室(63)には、後述するように、液側接続管(55)の一端が開口している。   The auxiliary header section (62) includes a main horizontal partition plate (80), an auxiliary horizontal partition plate (85), and a vertical partition plate (90). These three partition plates ( The three communication chambers (62a) to (62c) and the mixing chamber (63) are formed by 80), (85), and (90). The mixing chamber (63) is not shown in detail, but the three communication chambers (62a) to (62c) are connected through through holes formed in the three partition plates (80), (85), and (90). ). In addition, one end of the liquid side connecting pipe (55) is opened in the mixing chamber (63), as will be described later.

上記第1ヘッダ集合管(60)の補助ヘッダ部(62)には、液側接続管(55)が設けられている。液側接続管(55)の一端は、第1ヘッダ集合管(60)の下部に接続され、補助ヘッダ部(62)の混合室(63)に連通している。液側接続管(55)の他端は、室外熱交換器(23)と膨張弁(24)を繋ぐ銅製の配管(17)に、継手(図示せず)を介して接続されている。液側接続管(55)は、第1ヘッダ集合管(60)とロウ付けによって接合されている。   The auxiliary header portion (62) of the first header collecting pipe (60) is provided with a liquid side connection pipe (55). One end of the liquid side connecting pipe (55) is connected to the lower part of the first header collecting pipe (60) and communicates with the mixing chamber (63) of the auxiliary header section (62). The other end of the liquid side connection pipe (55) is connected to a copper pipe (17) connecting the outdoor heat exchanger (23) and the expansion valve (24) via a joint (not shown). The liquid side connection pipe (55) is joined to the first header collecting pipe (60) by brazing.

第2ヘッダ集合管(70)の内部空間は、仕切板(39b)によって、主熱交換部(51)に対応した主ヘッダ部としての主連通空間(71)と、補助熱交換部(52)に対応した補助ヘッダ部としての補助連通空間(72)とに区分されている。   The internal space of the second header collecting pipe (70) is divided into a main communication space (71) as a main header corresponding to the main heat exchange part (51) and an auxiliary heat exchange part (52) by a partition plate (39b). And an auxiliary communication space (72) as an auxiliary header portion corresponding to the above.

主連通空間(71)は、2枚の仕切板(39c)によって上下に仕切られている。この仕切板(39c)は、主連通空間(71)を、主熱交換領域(51a〜51c)と同数(本実施形態では3つ)の部分空間(ヘッダ空間)(71a〜71c)に区画している。最も下方に位置する第1部分空間(71a)は、第1主熱交換領域(51a)を構成する全ての扁平管(33a)と連通する。第1部分空間(71a)の上方に位置する第2部分空間(71b)は、第2主熱交換領域(51b)を構成する全ての扁平管(33a)と連通する。最も上方に位置する第3部分空間(71c)は、第3主熱交換領域(51c)を構成する全ての扁平管(33a)と連通する。   The main communication space (71) is partitioned up and down by two partition plates (39c). The partition plate (39c) divides the main communication space (71) into the same number (three in this embodiment) of partial spaces (header spaces) (71a to 71c) as the main heat exchange regions (51a to 51c). ing. The lowermost first partial space (71a) communicates with all the flat tubes (33a) constituting the first main heat exchange region (51a). The second partial space (71b) located above the first partial space (71a) communicates with all the flat tubes (33a) constituting the second main heat exchange region (51b). The uppermost third partial space (71c) communicates with all the flat tubes (33a) constituting the third main heat exchange region (51c).

補助連通空間(72)は、2枚の仕切板(39d)によって上下に仕切られている。この仕切板(39d)は、補助連通空間(72)を、補助熱交換領域(52a〜52c)と同数(本実施形態では3つ)の部分空間(ヘッダ空間)(72a〜72c)に区画している。最も下方に位置する第4部分空間(72a)は、第1補助熱交換領域(52a)を構成する全ての扁平管(33b)と連通する。第4部分空間(72a)の上方に位置する第5部分空間(72b)は、第2補助熱交換領域(52b)を構成する全ての扁平管(33b)と連通する。最も上方に位置する第6部分空間(72c)は、第3補助熱交換領域(52c)を構成する全ての扁平管(33b)と連通する。   The auxiliary communication space (72) is vertically partitioned by two partition plates (39d). The partition plate (39d) divides the auxiliary communication space (72) into the same number (three in this embodiment) of partial spaces (header spaces) (72a to 72c) as the auxiliary heat exchange regions (52a to 52c). ing. The lowermost fourth partial space (72a) communicates with all the flat tubes (33b) constituting the first auxiliary heat exchange region (52a). The fifth partial space (72b) located above the fourth partial space (72a) communicates with all the flat tubes (33b) constituting the second auxiliary heat exchange region (52b). The uppermost sixth partial space (72c) communicates with all the flat tubes (33b) constituting the third auxiliary heat exchange region (52c).

第2ヘッダ集合管(70)には、3本の接続用配管(連絡配管)(76,77,78)が取り付けられている。第1接続用配管(76)は、その一端が第2主熱交換領域(51b)に対応する第2部分空間(71b)の下部に接続され、その他端が第3補助熱交換領域(52c)に対応する第6部分空間(72c)に接続される。第2接続用配管(77)は、その一端が第3主熱交換領域(51c)に対応する第3部分空間(71c)の下部に接続され、その他端が第2補助熱交換領域(52b)に対応する第5部分空間(72b)に接続される。また、第3接続用配管(78)は、その一端が第1主熱交換領域(51a)に対応する第1部分空間(71a)の下部に接続され、その他端が第1補助熱交換領域(52a)に対応する第4部分空間(72a)に接続される。   Three connecting pipes (connecting pipes) (76, 77, 78) are attached to the second header collecting pipe (70). One end of the first connection pipe (76) is connected to the lower part of the second partial space (71b) corresponding to the second main heat exchange region (51b), and the other end is connected to the third auxiliary heat exchange region (52c). Are connected to the sixth partial space (72c). The second connection pipe (77) has one end connected to the lower part of the third partial space (71c) corresponding to the third main heat exchange region (51c), and the other end connected to the second auxiliary heat exchange region (52b). Are connected to the fifth partial space (72b). The third connection pipe (78) has one end connected to the lower part of the first partial space (71a) corresponding to the first main heat exchange region (51a) and the other end connected to the first auxiliary heat exchange region ( 52a) is connected to the fourth partial space (72a).

そして、図5の要部拡大図から判るように、第1〜第3接続用配管(76,77,78)は、何れも、第2ヘッダ集合管(70)の主ヘッダ部(71)の第1〜第3部分空間(71a〜71c)の下部への開口端近傍が水平方向に延びる水平部(76h,77h,78h)を有し、この水平部(76h,77h,78h)が第1〜第3部分空間(71a〜71c)の下部に接続されている。   As can be seen from the enlarged view of the main part of FIG. 5, the first to third connection pipes (76, 77, 78) are all the main header part (71) of the second header collecting pipe (70). The vicinity of the opening end to the lower part of the first to third partial spaces (71a to 71c) has a horizontal portion (76h, 77h, 78h) extending in the horizontal direction, and this horizontal portion (76h, 77h, 78h) is the first. -It is connected to the lower part of the third partial space (71a-71c).

更に、上記第1〜第3接続用配管(76,77,78)の水平部(76h,77h,78h)は、対応する部分空間(71a,71b,71c)内において、各々、主熱交換部(51)の対応する主熱交換領域(51a〜51c)の下部に位置する扁平管(33a)の端面開口部と対向している。   Further, the horizontal portions (76h, 77h, 78h) of the first to third connection pipes (76, 77, 78) are respectively connected to the main heat exchange portions in the corresponding partial spaces (71a, 71b, 71c). It faces the opening of the end face of the flat tube (33a) located in the lower part of the corresponding main heat exchange area (51a-51c) of (51).

このように、本実施形態の室外熱交換器(23)では、第1主熱交換領域(51a)と第1補助熱交換領域(52a)とが第3接続用配管(78)で直列に接続され、第2主熱交換領域(51b)と第3補助熱交換領域(52c)とが第1接続用配管(76)で直列に接続され、第3主熱交換領域(51c)と第2補助熱交換領域(52b)とが第2接続用配管(77)で直列に接続されている。つまり、本実施形態の室外熱交換器(23)では、第1補助熱交換領域(52a)が第1主熱交換領域(51a)に対応し、第2補助熱交換領域(52b)が第3熱交換領域(51c)に対応し、第3補助熱交換領域(52c)が第2主熱交換領域(51b)に対応する。   Thus, in the outdoor heat exchanger (23) of the present embodiment, the first main heat exchange region (51a) and the first auxiliary heat exchange region (52a) are connected in series by the third connection pipe (78). The second main heat exchange area (51b) and the third auxiliary heat exchange area (52c) are connected in series by the first connection pipe (76), and the third main heat exchange area (51c) and the second auxiliary heat exchange area (52c) are connected in series. The heat exchange region (52b) is connected in series with the second connection pipe (77). That is, in the outdoor heat exchanger (23) of the present embodiment, the first auxiliary heat exchange region (52a) corresponds to the first main heat exchange region (51a), and the second auxiliary heat exchange region (52b) is the third. The third auxiliary heat exchange region (52c) corresponds to the second main heat exchange region (51b), corresponding to the heat exchange region (51c).

以上の構成から、本実施形態では、本室外熱交換器(23)が蒸発器として作用する運転時には、液側接続管(55)から第1ヘッダ集合管(60)の下側ヘッダ部(62)に流入した冷媒は、補助熱交換部(52)の3つの補助熱交換領域(52a〜52c)から第2ヘッダ集合管(70)の補助連通空間(72)を経て主連通空間(71)に流れ込んだ後、主熱交換部(51)の3つの主熱交換領域(51a〜51c)に流通し、ガス側接続管(57)に流出する冷媒流通経路となる。   From the above configuration, in the present embodiment, during the operation in which the outdoor heat exchanger (23) acts as an evaporator, the lower header portion (62) from the liquid side connection pipe (55) to the first header collecting pipe (60) is provided. ) Flows into the main communication space (71) from the three auxiliary heat exchange regions (52a to 52c) of the auxiliary heat exchange section (52) through the auxiliary communication space (72) of the second header collecting pipe (70). Then, the refrigerant flows through the three main heat exchange regions (51a to 51c) of the main heat exchange section (51) and flows out to the gas side connection pipe (57).

〈室外熱交換器における冷媒の流れ/凝縮器の場合〉
空気調和機(10)の冷房運転中には、室外熱交換器(23)が凝縮器として機能する。冷房運転中における室外熱交換器(23)での冷媒の流れを説明する。
<Refrigerant flow in outdoor heat exchanger / condenser>
During the cooling operation of the air conditioner (10), the outdoor heat exchanger (23) functions as a condenser. The flow of the refrigerant in the outdoor heat exchanger (23) during the cooling operation will be described.

室外熱交換器(23)には、圧縮機(21)から吐出されたガス冷媒が供給される。圧縮機(21)から送られたガス冷媒は、ガス側接続管(57)を通って第1ヘッダ集合管(60)の主ヘッダ部(61)へ流入した後、主熱交換部(51)の各扁平管(33a)へ分配される。主熱交換部(51)の各主熱交換領域(51a〜51c)において、扁平管(33a)の流体通路(34)へ流入した冷媒は、流体通路(34)を流れる間に室外空気へ放熱して凝縮し、その後に第2ヘッダ集合管(70)の対応する各部分空間(71a〜71c)へ流入する。   Gas refrigerant discharged from the compressor (21) is supplied to the outdoor heat exchanger (23). The gas refrigerant sent from the compressor (21) flows into the main header part (61) of the first header collecting pipe (60) through the gas side connection pipe (57), and then the main heat exchange part (51). Are distributed to each flat tube (33a). In each main heat exchange area (51a to 51c) of the main heat exchange section (51), the refrigerant flowing into the fluid passage (34) of the flat tube (33a) dissipates heat to the outdoor air while flowing through the fluid passage (34). Then, it condenses and then flows into the corresponding partial spaces (71a to 71c) of the second header collecting pipe (70).

主連通空間(71)の各部分空間(71a〜71c)へ流入した冷媒は、補助連通空間(72)の対応する部分空間(72a〜72c)へ送られる。具体的に、主連通空間(71)の第1部分空間(71a)へ流入した冷媒は、第3接続用配管(78)を通って補助連通空間(72)の第4部分空間(72a)へ流れ込む。主連通空間(71)の第2部分空間(71b)へ流入した冷媒は、第1接続用配管(76)を通って補助連通空間(72)の第6部分空間(72c)へ流入する。主連通空間(71)の第3部分空間(71c)へ流入した冷媒は、第2接続用配管(77)を通って補助連通空間(72)の第5部分空間(72b)へ流入する。   The refrigerant that has flowed into the partial spaces (71a to 71c) of the main communication space (71) is sent to the corresponding partial spaces (72a to 72c) of the auxiliary communication space (72). Specifically, the refrigerant that has flowed into the first partial space (71a) of the main communication space (71) passes through the third connection pipe (78) to the fourth partial space (72a) of the auxiliary communication space (72). Flows in. The refrigerant flowing into the second partial space (71b) of the main communication space (71) flows into the sixth partial space (72c) of the auxiliary communication space (72) through the first connection pipe (76). The refrigerant flowing into the third partial space (71c) of the main communication space (71) flows into the fifth partial space (72b) of the auxiliary communication space (72) through the second connection pipe (77).

補助連通空間(72)の各部分空間(72a〜72c)へ流入した冷媒は、対応する補助熱交換領域(52a〜52c)の各扁平管(33b)へ分配される。各扁平管(33b)の流体通路(34)を流れる冷媒は、室外空気へ放熱して過冷却液となり、その後に第1ヘッダ集合管(60)の補助ヘッダ部(62)の対応する連通室(62a〜62c)へ流入する。その後、冷媒は、混合室(63)を経て液側接続管(55)へ流れ込み、室外熱交換器(23)から流出して行く。   The refrigerant flowing into the partial spaces (72a to 72c) of the auxiliary communication space (72) is distributed to the flat tubes (33b) in the corresponding auxiliary heat exchange regions (52a to 52c). The refrigerant flowing through the fluid passage (34) of each flat tube (33b) dissipates heat to the outdoor air and becomes supercooled liquid, and then the corresponding communication chamber of the auxiliary header portion (62) of the first header collecting pipe (60). (62a to 62c). Thereafter, the refrigerant flows into the liquid side connecting pipe (55) through the mixing chamber (63) and flows out of the outdoor heat exchanger (23).

〈室外熱交換器における冷媒の流れ/蒸発器の場合〉
空気調和機(10)の暖房運転中には、室外熱交換器(23)が蒸発器として機能する。暖房運転中における室外熱交換器(23)での冷媒の流れを説明する。
<Flow of refrigerant in outdoor heat exchanger / Evaporator>
During the heating operation of the air conditioner (10), the outdoor heat exchanger (23) functions as an evaporator. The flow of the refrigerant in the outdoor heat exchanger (23) during the heating operation will be described.

室外熱交換器(23)には、膨張弁(24)を通過する際に膨張して気液二相状態となった冷媒が供給される。膨張弁(24)を通過した冷媒は、液側接続管(55)を通って第1ヘッダ集合管(60)の補助ヘッダ部(62)内の混合室(63)へ流入する。その際、混合室(63)では、流入した気液二相状態の冷媒が縦仕切板(90)に衝突し、その冷媒中のガス冷媒と液冷媒が混合される。この混合された液冷媒は、混合室(63)から補助ヘッダ部(62)内の各連通室(62a〜62c)へ分配される。   The outdoor heat exchanger (23) is supplied with the refrigerant that has expanded into a gas-liquid two-phase state when passing through the expansion valve (24). The refrigerant that has passed through the expansion valve (24) flows into the mixing chamber (63) in the auxiliary header portion (62) of the first header collecting pipe (60) through the liquid side connecting pipe (55). At that time, in the mixing chamber (63), the flowing refrigerant in the two-phase state collides with the vertical partition plate (90), and the gas refrigerant and the liquid refrigerant in the refrigerant are mixed. The mixed liquid refrigerant is distributed from the mixing chamber (63) to the communication chambers (62a to 62c) in the auxiliary header section (62).

第1ヘッダ集合管(60)の補助ヘッダ部(62)内の各連通室(62a〜62c)へ流入した冷媒は、対応する補助熱交換領域(52a〜52c)の各扁平管(33b)へ分配される。各扁平管(33b)の流体通路(34)へ流入した冷媒は、流体通路(34)を流れる間に室外空気から吸熱し、一部の液冷媒が蒸発する。扁平管(33b)の流体通路(34)を通過した冷媒は、第2ヘッダ集合管(70)の補助連通空間(72)の対応する部分空間(72a〜72c)へ流入する。   The refrigerant that has flowed into the communication chambers (62a to 62c) in the auxiliary header portion (62) of the first header collecting pipe (60) flows to the flat tubes (33b) in the corresponding auxiliary heat exchange regions (52a to 52c). Distributed. The refrigerant flowing into the fluid passage (34) of each flat tube (33b) absorbs heat from the outdoor air while flowing through the fluid passage (34), and a part of the liquid refrigerant evaporates. The refrigerant that has passed through the fluid passage (34) of the flat tube (33b) flows into the corresponding partial spaces (72a to 72c) of the auxiliary communication space (72) of the second header collecting pipe (70).

補助連通空間(72)の各部分空間(72a〜72c)へ流入した冷媒は、主連通空間(71)の対応する部分空間(71a〜71c)へ送られる。具体的に、補助連通空間(72)の第4部分空間(72a)へ流入した冷媒は、第3接続用配管(78)の水平部(78h)を通って主連通空間(71)の第1部分空間(71a)の下部へ水平方向に流入する。補助連通空間(72)の第5部分空間(72b)へ流入した冷媒は、第2接続用配管(77)の水平部(77h)を通って主連通空間(71)の第3部分空間(71c)の下部へ水平方向に流入する。補助連通空間(72)の第6部分空間(72c)へ流入した冷媒は、第1接続用配管(76)の水平部(76h)を通って主連通空間(71)の第2部分空間(71b)の下部へ水平方向に流入する。   The refrigerant flowing into the partial spaces (72a to 72c) of the auxiliary communication space (72) is sent to the corresponding partial spaces (71a to 71c) of the main communication space (71). Specifically, the refrigerant that has flowed into the fourth partial space (72a) of the auxiliary communication space (72) passes through the horizontal portion (78h) of the third connection pipe (78) and enters the first communication space (71). It flows horizontally into the lower part of the partial space (71a). The refrigerant flowing into the fifth partial space (72b) of the auxiliary communication space (72) passes through the horizontal portion (77h) of the second connection pipe (77) and passes through the third partial space (71c) of the main communication space (71). ) In the horizontal direction. The refrigerant that has flowed into the sixth partial space (72c) of the auxiliary communication space (72) passes through the horizontal portion (76h) of the first connection pipe (76) and passes through the second partial space (71b) of the main communication space (71). ) In the horizontal direction.

そして、上記第1〜第3接続用配管(76,77,78)の水平部(76h,77h,78h)から第1〜第3部分空間(71a〜71c)の下部に水平方向に流入した冷媒は、更にこの第1〜第3部分空間(71a〜71c)の下部側部に水平方向に開口する主熱交換部(61)の第1〜第3の主熱交換領域(51a〜51c)の各扁平管(33a)の端面開口部から流通方向を変えることなくこれ等の扁平管(33a)内にそのまま水平方向に流れ込む。   And the refrigerant | coolant which flowed in the horizontal direction to the lower part of the 1st-3rd partial space (71a-71c) from the horizontal part (76h, 77h, 78h) of the said 1st-3rd connection pipe (76,77,78). Of the first to third main heat exchanging regions (51a to 51c) of the main heat exchanging portion (61) that opens horizontally in the lower side of the first to third subspaces (71a to 71c). The flat tube (33a) flows in the horizontal direction as it is into the flat tube (33a) without changing the flow direction from the end face opening of the flat tube (33a).

その後、上記主熱交換部(51)の対応する第1〜第3の主熱交換領域(51a〜51c)の各扁平管(33a)の流体通路(34)を水平方向に流れた冷媒は、室外空気から吸熱して蒸発し、実質的にガス単相状態となった後に、第1ヘッダ集合管(60)の主ヘッダ部(61)へ流入する。その後、冷媒は、ガス側接続管(57)を通って室外熱交換器(23)から流出して行く。   Thereafter, the refrigerant flowing in the horizontal direction through the fluid passage (34) of each flat tube (33a) in the corresponding first to third main heat exchange regions (51a to 51c) of the main heat exchange section (51) It absorbs heat from the outdoor air and evaporates to substantially enter a gas single phase state, and then flows into the main header portion (61) of the first header collecting pipe (60). Thereafter, the refrigerant flows out of the outdoor heat exchanger (23) through the gas side connection pipe (57).

ここで、液冷媒が混合室(63)から上下に位置する3つの連通室(62a〜62c)に分配される際、その液冷媒に作用する重力によって、最下段に位置する連通室(62a)に流れ易く、最上段に位置する連通室(62c)に流れ難い。従って、この最下段に位置する連通室(62a)から補助熱交換部(52)の最下段の補助熱交換領域(52a)に流入した冷媒は液リッチとなり、入口乾き度は小さい状況である。   Here, when the liquid refrigerant is distributed from the mixing chamber (63) to the three communication chambers (62a to 62c) positioned above and below, the communication chamber (62a) positioned at the bottom is caused by the gravity acting on the liquid refrigerant. It is difficult to flow into the communication chamber (62c) located at the uppermost stage. Therefore, the refrigerant that has flowed from the communication chamber (62a) located at the lowermost stage into the lowermost auxiliary heat exchange region (52a) of the auxiliary heat exchange section (52) becomes liquid rich, and the dryness of the inlet is small.

そして、この液リッチの冷媒は、第2ヘッダ集合管(70)の補助ヘッダ部(72)の第4部分空間(72a)に流入した後、第3接続用配管(78)の水平部(78h)を通って主ヘッダ部(71)の最下段の第1部分空間(71a)の下部に水平方向に流れ込むので、この液リッチの冷媒の多くが主熱交換部(51)の最下段の第1主熱交換部(51a)の下部側部に開口する扁平管(33a)に流れ込んで、これ等扁平管(33a)の冷媒の出口乾き度を小さくして、これら扁平管(33a)内に冷凍機油が溜まり込むのが抑制される。その結果、主熱交換部(51)の第1〜第3主熱交換領域(51a)〜(51c)に溜まり込む冷凍機油の量がほぼ等量になる。   The liquid-rich refrigerant flows into the fourth partial space (72a) of the auxiliary header portion (72) of the second header collecting pipe (70), and then the horizontal portion (78h) of the third connection pipe (78). ) Through the lower portion of the first partial space (71a) in the lowermost stage of the main header section (71), so that most of the liquid-rich refrigerant flows in the lowermost stage of the main heat exchange section (51). 1 Flow into the flat tubes (33a) that open to the lower side of the main heat exchanger (51a), and reduce the dryness of the outlet of the refrigerant in these flat tubes (33a). Refrigerating machine oil is prevented from accumulating. As a result, the amount of refrigerating machine oil accumulated in the first to third main heat exchange regions (51a) to (51c) of the main heat exchange section (51) becomes substantially equal.

しかも、第3接続用配管(78)の水平部(78h)の端面開口部は、主熱交換部(51)の第1主熱交換領域(51a)の下部に水平方向に配置された扁平管(33)の端面開口部と対向しているので、第3接続用配管(78)から第1部分空間(71a)の下部に水平方向に流入した冷媒は、第1主熱交換領域(51a)の下部に位置する扁平管(33)にそのまま水平方向に流入して、これら扁平管(33)に流れる液冷媒の流量が多く確保される。従って、これら扁平管(33)を流れる冷媒の過熱状態が一層に抑制されて、これ等扁平管に溜まり込む冷凍機油の量をより一層減少させることができる。   In addition, the end face opening of the horizontal portion (78h) of the third connection pipe (78) is a flat tube disposed horizontally below the first main heat exchange region (51a) of the main heat exchange portion (51). Since it faces the end surface opening of (33), the refrigerant flowing in the horizontal direction from the third connection pipe (78) into the lower portion of the first partial space (71a) flows into the first main heat exchange region (51a). The flow rate of the liquid refrigerant flowing into the flat tubes (33) located in the lower part of the flat tubes (33) as they flow in the horizontal direction is ensured. Therefore, the superheated state of the refrigerant flowing through these flat tubes (33) is further suppressed, and the amount of refrigerating machine oil accumulated in these flat tubes can be further reduced.

〈室外熱交換器における冷媒の流れ/除霜動作中の場合〉
空気調和機(10)は、暖房運転中に所定の除霜開始条件が成立すると、暖房運転を一時的に休止して除霜運転を行う。空気調和機(10)の除霜運転中には、室外熱交換器(23)が除霜動作を行う。
<Flow of refrigerant in outdoor heat exchanger / During defrosting operation>
When a predetermined defrosting start condition is satisfied during the heating operation, the air conditioner (10) temporarily stops the heating operation and performs the defrosting operation. During the defrosting operation of the air conditioner (10), the outdoor heat exchanger (23) performs a defrosting operation.

空気調和機(10)の除霜運転が開始されると、圧縮機(21)から吐出された高温高圧のガス冷媒が、ガス側接続管(57)を通って第1ヘッダ集合管(60)の主ヘッダ部(61)へ流入する。主ヘッダ部(61)から主熱交換領域(51a〜51c)の扁平管(33a)へ流入したガス冷媒は、霜に対して放熱して凝縮する。室外熱交換器(23)に付着した霜は、ガス冷媒によって暖められて融解する。   When the defrosting operation of the air conditioner (10) is started, the high-temperature and high-pressure gas refrigerant discharged from the compressor (21) passes through the gas side connection pipe (57) and the first header collecting pipe (60). Into the main header section (61). The gas refrigerant that has flowed from the main header portion (61) into the flat tube (33a) of the main heat exchange region (51a to 51c) dissipates heat and condenses. The frost adhering to the outdoor heat exchanger (23) is heated and melted by the gas refrigerant.

その際、上記の通り、主熱交換部(51)の第1〜第3主熱交換領域(51a)〜(51c)に溜まり込む冷凍機油の量はほぼ等量であるので、これら主熱交換領域(51a)〜(51c)の扁平管(33a)に溜まり込んだ冷凍機油が冷媒の流通抵抗となる程度が同程度となって、各主熱交換領域(51a)〜(51c)には相互のほぼ等量のガス冷媒が流通する。その結果、これら主熱交換領域(51a)〜(51c)の除霜が同程度で進行して、全ての主熱交換領域(51a)〜(51c)で除霜がほぼ同時に完了し、除霜運転が早期に完了することになる。   At this time, as described above, since the amount of refrigerating machine oil accumulated in the first to third main heat exchange regions (51a) to (51c) of the main heat exchange section (51) is substantially equal, these main heat exchanges The refrigerating machine oil accumulated in the flat tubes (33a) in the regions (51a) to (51c) has the same degree of refrigerant flow resistance, and the main heat exchange regions (51a) to (51c) are mutually connected. An almost equal amount of gas refrigerant flows. As a result, the defrosting of these main heat exchange areas (51a) to (51c) proceeds at the same level, and the defrosting is completed almost simultaneously in all the main heat exchange areas (51a) to (51c). Driving will be completed early.

<本実施形態の効果>
従って、本実施形態では、第2ヘッダ集合管(70)において、主連通空間(71)の最下段の第1部分空間(71a)と補助連通空間(72)の最下段の第4部分空間(72a)とが第3接続用配管(78)で接続され、更にこの第3接続用配管(78)が、主連通空間(71)の最下段の第1部分空間(71a)の下部に水平方向に開口しているので、補助熱交換部(52)の最下段の第1補助熱交換領域(52a)に流入した液リッチの冷媒を主熱交換部(51)の最下段の第1主熱交換領域(51a)の下部に位置する扁平管(33a)に多く流れ込ませることが可能である。従って、これら扁平管(33a)内に流れる冷媒の過熱状態を抑制して、それ等扁平管(33a)への冷凍機油の溜り込み量を少なく制限できるので、その後に行う除霜運転を早期に終了させることができる。
<Effect of this embodiment>
Therefore, in the present embodiment, in the second header collecting pipe (70), the first partial space (71a) at the lowest level of the main communication space (71) and the fourth partial space at the lowest level of the auxiliary communication space (72) ( 72a) is connected to the third connecting pipe (78), and this third connecting pipe (78) is horizontally connected to the lower part of the first partial space (71a) at the lowest stage of the main communication space (71). The liquid-rich refrigerant that has flowed into the first auxiliary heat exchange region (52a) at the lowermost stage of the auxiliary heat exchanger (52) is used as the first main heat at the lowermost stage of the main heat exchanger (51). It is possible to flow a large amount into the flat tube (33a) located at the lower part of the exchange region (51a). Therefore, the overheating state of the refrigerant flowing in these flat tubes (33a) can be suppressed, and the amount of refrigeration oil accumulated in these flat tubes (33a) can be limited to a small amount. Can be terminated.

しかも、第3接続用配管(78)の水平部(78h)の端面開口部が、第1主熱交換領域(51a)の下部に位置する扁平管(33a)の端面開口部と対向しているので、これら扁平管(33)に流れる液冷媒の流量を多く確保できて、これ等扁平管に溜まり込む冷凍機油の量をより一層減少させること可能である。   Moreover, the end surface opening of the horizontal portion (78h) of the third connection pipe (78) is opposed to the end surface opening of the flat tube (33a) located under the first main heat exchange region (51a). Therefore, it is possible to secure a large flow rate of the liquid refrigerant flowing through these flat tubes (33), and to further reduce the amount of refrigerating machine oil accumulated in these flat tubes.

<第2の実施形態>
次に、本発明の第2の実施形態を図6に基づいて説明する。
<Second Embodiment>
Next, a second embodiment of the present invention will be described with reference to FIG.

上記第1の実施形態では、第2ヘッダ集合管(70)の主ヘッダ部(71)の最下段の第1部分空間(71a)を第3の接続用配管(78)を介して補助ヘッダ部(72)の最下段の第4部分空間(72a)に接続し、主ヘッダ部(71)の第2部分空間(71b)を第1の接続用配管(76)を介して補助ヘッダ部(72)の第6部分空間(72c)に接続したが、本実施形態では、主ヘッダ部(71)の最下段の第1部分空間(71a)を第3の接続用配管(78)を介して補助ヘッダ部(72)の最上段の第6部分空間(72c)に接続し、主ヘッダ部(71)の第2部分空間(71b)を第1の接続用配管(76)を介して補助ヘッダ部(72)の最下段の第4部分空間(72a)に接続したものである。その他の構成は上記第1の実施形態と同一である。   In the first embodiment, the auxiliary header portion is connected to the lowermost first partial space (71a) of the main header portion (71) of the second header collecting pipe (70) via the third connection pipe (78). The second partial space (71b) of the main header portion (71) is connected to the lowermost fourth partial space (72a) of (72) through the first connection pipe (76) and the auxiliary header portion (72 In this embodiment, the lowermost first partial space (71a) of the main header portion (71) is assisted through the third connection pipe (78). The auxiliary header portion is connected to the sixth partial space (72c) at the uppermost stage of the header portion (72), and the second partial space (71b) of the main header portion (71) is connected via the first connection pipe (76). It is connected to the lowermost fourth partial space (72a) of (72). Other configurations are the same as those in the first embodiment.

本実施形態では、既述の通り、液冷媒が混合室(63)から上下に位置する3つの連通室(62a〜62c)に分配される際、その液冷媒に作用する重力によって、最下段に位置する連通室(62a)に流れ易く、最上段に位置する連通室(62c)に流れ難い。従って、最上段に位置する連通室(62c)から補助熱交換部(52)の最上段の補助熱交換領域(52c)に流入した冷媒はガスリッチとなり、入口乾き度が大きい状況となる。しかし、この冷媒は、第2ヘッダ集合管(70)の補助ヘッダ部(72)の第6部分空間(72c)に流入した後、第3接続用配管(78)の水平部(78h)を通って主ヘッダ部(71)の第1部分空間(71a)の下部に水平方向に流れ込むので、ガスリッチの冷媒に含まれる液冷媒が主熱交換部(51)の第1主熱交換部(51a)の下部側部に開口する扁平管(33a)に多く流れ込んで、これ等扁平管(33a)の冷媒の出口乾き度が小さくなって、これら扁平管(33a)内に冷凍機油が溜まり込むのが抑制される。その結果、主熱交換部(51)の第1〜第3主熱交換領域(51a)〜(51c)に溜まり込む冷凍機油の量がほぼ等量になって、その後に行われる除霜運転を早期に完了させることができる。   In the present embodiment, as described above, when the liquid refrigerant is distributed from the mixing chamber (63) to the three communication chambers (62a to 62c) positioned above and below, the liquid refrigerant is moved to the lowermost stage by the gravity acting on the liquid refrigerant. It is easy to flow into the communication chamber (62a) located and difficult to flow into the communication chamber (62c) located at the uppermost stage. Accordingly, the refrigerant that has flowed from the communication chamber (62c) located at the uppermost stage into the uppermost auxiliary heat exchange region (52c) of the auxiliary heat exchanging section (52) becomes gas-rich, and the degree of dryness of the inlet is large. However, this refrigerant flows into the sixth partial space (72c) of the auxiliary header part (72) of the second header collecting pipe (70) and then passes through the horizontal part (78h) of the third connection pipe (78). Since the liquid flows in the horizontal direction into the lower part of the first partial space (71a) of the main header part (71), the liquid refrigerant contained in the gas-rich refrigerant is the first main heat exchange part (51a) of the main heat exchange part (51). A large amount of fluid flows into the flat tubes (33a) that open to the lower side of the refrigerant, and the refrigerant dryness of these flat tubes (33a) decreases, and refrigeration oil accumulates in these flat tubes (33a). It is suppressed. As a result, the amount of refrigerating machine oil accumulated in the first to third main heat exchange regions (51a) to (51c) of the main heat exchange section (51) becomes substantially equal, and the defrosting operation performed thereafter is performed. It can be completed early.

<第3の実施形態>
次に、本発明の第3の実施形態を図7及び図8に基づいて説明する。
<Third Embodiment>
Next, a third embodiment of the present invention will be described with reference to FIGS.

上記第1の実施形態では、室外熱交換器(23)において、3つの主熱交換領域(51a〜51c)を有する主熱交換部(51)と、3つの補助熱交換領域(52a〜52c)を有する補助熱交換部(52)とを上下に配置したが、本実施形態では、主熱交換部(51)と補助熱交換部(52)とを各々3つの熱交換領域(51a〜51c)、(52a〜52c)に分割する構成は上記第1の実施形態と同様であるが、主熱交換部(51)の3つの主熱交換領域(51a〜51c)の各々の下方に補助熱交換部(52)の対応する補助熱交換領域(52a〜52c)を配置した構成、具体的には、主熱交換部(51)の第1の主熱交換領域(51a)の下方に補助熱交換部(52)の第1の補助熱交換領域(52a)が配置され、上記第1の主熱交換領域(51a)の上方に位置する第2の主熱交換領域(51b)の下方に補助熱交換部(52)の第2の補助熱交換領域(52b)が配置され、上記第2の主熱交換領域(52b)の上方に位置する第3の主熱交換領域(51c)の下方に補助熱交換部(52)の第3の補助熱交換領域(52c)が配置される構成に本発明を適用したものである。   In the said 1st Embodiment, in the outdoor heat exchanger (23), the main heat exchange part (51) which has three main heat exchange area | regions (51a-51c), and three auxiliary heat exchange area | regions (52a-52c) However, in this embodiment, the main heat exchanging part (51) and the auxiliary heat exchanging part (52) are each divided into three heat exchanging regions (51a to 51c). , (52a to 52c) is the same as that of the first embodiment, but auxiliary heat exchange is provided below each of the three main heat exchange regions (51a to 51c) of the main heat exchange section (51). The structure which arrange | positioned the corresponding auxiliary heat exchange area | region (52a-52c) of a part (52), specifically, auxiliary heat exchange below the 1st main heat exchange area | region (51a) of a main heat exchange part (51). The first auxiliary heat exchange region (52a) of the section (52) is disposed, and the auxiliary heat is located below the second main heat exchange region (51b) located above the first main heat exchange region (51a). A second auxiliary heat exchange area (52b) of the exchange section (52) is disposed, and the second main heat exchange area (52b) is arranged. The present invention is configured such that the third auxiliary heat exchange region (52c) of the auxiliary heat exchange section (52) is disposed below the third main heat exchange region (51c) located above the exchange region (52b). It is applied.

すなわち、本実施形態では、図7及び図8に示したように、第2のヘッダ集合管(70)では、主熱交換部(51)の3つの主熱交換領域(51a〜51c)に対応するヘッダ空間と補助熱交換部(52)の3つの熱交換領域(52a〜52c)に対応するヘッダ空間とが、5枚の仕切り板(39e)で仕切られて、第1〜第6の部分空間(71a〜71c)、(72a〜72c)が形成されていると共に、主熱交換部(51)の第1の主熱交換領域(51a)に対応する第1の部分空間(71a)と補助熱交換部(52)の第1の補助熱交換領域(52a)に対応する第4の部分空間(72a)とが第3の接続用配管(78)で接続され、主熱交換部(51)の第2の主熱交換領域(51b)に対応する第2の部分空間(71b)と補助熱交換部(52)の第2の補助熱交換領域(52b)に対応する第5の部分空間(72b)とが第2の接続用配管(76)で接続され、主熱交換部(51)の第3の主熱交換領域(51c)に対応する第3の部分空間(71c)と補助熱交換部(52)の第3の補助熱交換領域(52c)に対応する第6の部分空間(72c)とが第2の接続用配管(77)で接続されている。   That is, in this embodiment, as shown in FIGS. 7 and 8, the second header collecting pipe (70) corresponds to the three main heat exchange regions (51a to 51c) of the main heat exchange section (51). The header space corresponding to the three heat exchange regions (52a to 52c) of the auxiliary heat exchange section (52) is partitioned by five partition plates (39e), and the first to sixth portions Spaces (71a to 71c) and (72a to 72c) are formed, and the first partial space (71a) corresponding to the first main heat exchange region (51a) of the main heat exchange section (51) and the auxiliary The fourth partial space (72a) corresponding to the first auxiliary heat exchange region (52a) of the heat exchange part (52) is connected by the third connection pipe (78), and the main heat exchange part (51) The second partial space (71b) corresponding to the second main heat exchange area (51b) and the fifth partial space (52b) corresponding to the second auxiliary heat exchange area (52b) of the auxiliary heat exchange section (52) 72b) is connected to the second connection pipe (76), and the third main heat exchange section of the main heat exchange section (51) The third partial space (71c) corresponding to (51c) and the sixth partial space (72c) corresponding to the third auxiliary heat exchange region (52c) of the auxiliary heat exchanging portion (52) are in the second connection. Connected with pipe (77).

そして、上記第1の実施形態と同様に、第1〜第3の接続用配管(76)〜(78)は、各々、第2ヘッダ集合管(70)の主ヘッダ部(71)の第1〜第3部分空間(71a〜71c)の下部への開口端近傍が水平方向に延びる水平部(76h,77h,78h)を有しており、これらの水平部(76h,77h,78h)が対応する部分空間(71a〜71c)の下部に水平方向から接続されている。   Similarly to the first embodiment, the first to third connecting pipes (76) to (78) are respectively the first header section (71) of the main header section (71) of the second header collecting pipe (70). ~ The open end to the lower part of the third partial space (71a-71c) has a horizontal part (76h, 77h, 78h) extending in the horizontal direction, and these horizontal parts (76h, 77h, 78h) correspond Are connected to the lower part of the partial spaces (71a to 71c) to be connected from the horizontal direction.

更に、上記第1〜第3の接続用配管(76,77,78)の水平部(76h,77h,78h)の端面開口部は、対応する部分空間(71a,71b,71c)内において、各々、主熱交換部(51)の対応する主熱交換領域(51a〜51c)の下部に位置する扁平管(33a)の端面開口部と対向している。   Furthermore, the end surface openings of the horizontal portions (76h, 77h, 78h) of the first to third connection pipes (76, 77, 78) are respectively in the corresponding partial spaces (71a, 71b, 71c). , Facing the end face opening of the flat tube (33a) located in the lower part of the corresponding main heat exchange area (51a to 51c) of the main heat exchange part (51).

従って、本実施形態においては、上記第1の実施形態と同様に、主熱交換部(51)の第1の主熱交換部(51a)の下部側部に開口する扁平管(33a)に液冷媒を多く流し込んで、これら扁平管(33a)内に溜まり込む冷凍機油の量を少なく制限できるので、その後に行われる除霜運転を早期に完了させることができると共に、第1〜第3の接続用配管(76,77,78)の長さを等長にできるので、第1の主熱交換領域(51a)と第1の補助熱交換領域(52a)との組と、第2の主熱交換領域(51b)と第2の補助熱交換領域(52b)との組と、第3の主熱交換領域(51c)と第3の補助熱交換領域(52c)との組との相互間で、冷媒の通路長をほぼ等長にできる。   Therefore, in the present embodiment, as in the first embodiment, liquid is applied to the flat tube (33a) that opens at the lower side of the first main heat exchange part (51a) of the main heat exchange part (51). Since it is possible to limit the amount of refrigerating machine oil that flows in a large amount of refrigerant and accumulates in these flat tubes (33a), the defrosting operation performed thereafter can be completed at an early stage, and the first to third connections Since the length of the piping (76, 77, 78) can be made equal, the set of the first main heat exchange area (51a) and the first auxiliary heat exchange area (52a) and the second main heat Between the pair of the exchange area (51b) and the second auxiliary heat exchange area (52b) and the pair of the third main heat exchange area (51c) and the third auxiliary heat exchange area (52c) The passage length of the refrigerant can be made substantially equal.

(その他の実施形態)
本発明は、上記第1〜第3の実施形態について、以下のような構成としてもよい。
(Other embodiments)
The present invention may be configured as follows for the first to third embodiments.

上記実施形態では、主熱交換部(51)を3つの主熱交換領域(51a)〜(51c)に分割し、補助熱交換部(52)も3つの補助熱交換領域(52a)〜(52c)に分割したが、本発明はこれに限定されず、2つ又は4つ以上に分割しても良いのは勿論である。この場合であっても、主熱交換部の各主熱交換領域を補助熱交換部の対応する補助熱交換領域に接続用配管を介して接続する。   In the above embodiment, the main heat exchanging section (51) is divided into three main heat exchanging areas (51a) to (51c), and the auxiliary heat exchanging section (52) is also divided into three auxiliary heat exchanging areas (52a) to (52c). However, the present invention is not limited to this, and may be divided into two or four or more. Even in this case, each main heat exchange area of the main heat exchange section is connected to a corresponding auxiliary heat exchange area of the auxiliary heat exchange section via a connection pipe.

また、上記実施形態では、例えば蒸発器として機能する運転時に、液側接続管(55)から第1ヘッダ集合管(60)の下側ヘッダ部(62)を経て補助熱交換部(52)の3つの補助熱交換領域(52a〜52c)に流入した冷媒を、図2右方に流して第2ヘッダ集合管(70)に流し込んだ後、この第2ヘッダ集合管(70)で冷媒流通方向を左方に折り返して主熱交換部(51)の3つの主熱交換領域(51a〜51c)に流通させて、ガス側接続管(57)に流出させる1回折り返し型の構成を採用したが、本発明はこの構成に限定されず、冷媒流通方向が例えば2回折り返す型の構成などを採用しても良い。例えば、主熱交換部及び補助熱交換部を各々2つずつ設けて、蒸発器として機能する運転時に第1の補助熱交換部から第2ヘッダ集合管(70)に流し込んだ冷媒を該第2ヘッダ集合管(70)で折り返して第1の主熱交換部を経て第1ヘッダ集合管(60)に流し込み、その後、更に該第1ヘッダ集合管(60)で折り返して第2の補助熱交換部を経て第2ヘッダ集合管(60)に流し込み、該第2ヘッダ集合管(60)で折り返して第2の主熱交換部に流し込む構成を採用しても良い。   Further, in the above-described embodiment, for example, during operation that functions as an evaporator, the auxiliary heat exchange unit (52) is passed from the liquid side connection pipe (55) through the lower header part (62) of the first header collecting pipe (60). The refrigerant flowing into the three auxiliary heat exchange regions (52a to 52c) flows to the right in FIG. 2 and into the second header collecting pipe (70), and then flows through the second header collecting pipe (70). Is folded in the left direction and is passed through the three main heat exchange regions (51a to 51c) of the main heat exchange section (51), and then flows out to the gas side connection pipe (57). The present invention is not limited to this configuration, and a configuration in which the refrigerant flow direction is folded twice, for example, may be employed. For example, two main heat exchange sections and two auxiliary heat exchange sections are provided, and the refrigerant flowing from the first auxiliary heat exchange section into the second header collecting pipe (70) during the operation of functioning as an evaporator is supplied to the second header collecting pipe (70). Folded at the header collecting pipe (70) and flowed into the first header collecting pipe (60) through the first main heat exchange section, and then turned back at the first header collecting pipe (60) and second auxiliary heat exchange. It is also possible to adopt a configuration in which the air is poured into the second header collecting pipe (60) through the section, folded back at the second header collecting pipe (60), and poured into the second main heat exchange section.

更に、上記実施形態では、液側接続管(55)及びガス側接続管(57)を第1ヘッダ集合管(60)に接続する構成を採用したが、その他、液側接続管(55)及びガス側接続管(57)の何れか一方を第1ヘッダ集合管(60)に接続し、他方を第2ヘッダ集合管(70)に接続する構成を採用しても良い。   Furthermore, in the above embodiment, the liquid side connecting pipe (55) and the gas side connecting pipe (57) are connected to the first header collecting pipe (60), but in addition, the liquid side connecting pipe (55) and A configuration may be adopted in which any one of the gas side connection pipes (57) is connected to the first header collecting pipe (60) and the other is connected to the second header collecting pipe (70).

以上説明したように、本発明は、扁平管とヘッダ集合管とを備えて冷媒を空気と熱交換させる熱交換器に適用して、有用である。   As described above, the present invention is useful when applied to a heat exchanger that includes a flat tube and a header collecting tube and exchanges heat between the refrigerant and air.

20 冷媒回路
23 室外熱交換器
33 扁平管
33a 主熱交換部を構成する扁平管
33b 補助熱交換部を構成する扁平管
36 フィン
51 主熱交換部
51a 第1主熱交換領域
51b 第2主熱交換領域
51c 第3主熱交換領域
52 補助熱交換部
52a 第1補助熱交換領域
52b 第2補助熱交換領域
52c 第3補助熱交換領域
60 第1ヘッダ集合管
70 第2ヘッダ集合管
71 主連通空間(主ヘッダ部)
71a 第1部分空間(第1ヘッダ空間)
71b 第2部分空間(第2ヘッダ空間)
71c 第3部分空間(第3ヘッダ空間)
72 補助連通空間(補助ヘッダ部)
72a 第4部分空間(第4ヘッダ空間)
72b 第5部分空間(第5ヘッダ空間)
72c 第6部分空間(第6ヘッダ空間)
76 第1接続用配管(連絡配管)
77 第2接続用配管(連絡配管)
78 第3接続用配管(連絡配管)
20 refrigerant circuit 23 outdoor heat exchanger 33 flat tube 33a flat tube 33b constituting the main heat exchange portion flat tube 36 constituting the auxiliary heat exchange portion Fin 51 main heat exchange portion 51a first main heat exchange region 51b second main heat Exchange area 51c Third main heat exchange area 52 Auxiliary heat exchange part 52a First auxiliary heat exchange area 52b Second auxiliary heat exchange area 52c Third auxiliary heat exchange area 60 First header collecting pipe 70 Second header collecting pipe 71 Main communication Space (main header part)
71a First partial space (first header space)
71b Second partial space (second header space)
71c Third partial space (third header space)
72 Auxiliary communication space (auxiliary header)
72a Fourth partial space (fourth header space)
72b 5th partial space (5th header space)
72c Sixth partial space (sixth header space)
76 First connection piping (communication piping)
77 Second connection piping (communication piping)
78 Third connection piping (communication piping)

Claims (4)

内部に冷媒通路が形成された複数の扁平管(33)が上下に区分された主熱交換部(51)及び補助熱交換部(52)と、上記両熱交換部(51)、(52)の端部が接続される主ヘッダ部(71)及び補助ヘッダ部(72)を有するヘッダ集合部(70)とを備え、上記主熱交換部(51)及び補助熱交換部(52)は、各々、上下に複数の熱交換領域(51a〜51c)、(52a〜52c)に分割され、
蒸発器としての運転時に冷媒が上記補助熱交換部(52)の複数の熱交換領域(52a〜52c)からヘッダ集合部(70)の補助ヘッダ部(72)を経て上記ヘッダ集合部(70)の主ヘッダ部(71)から上記主熱交換部(51)の複数の熱交換領域(51a〜51c)に流通する冷媒流通経路を持つ熱交換器であって、
上記ヘッダ集合部(70)の補助ヘッダ部(72)の上記補助熱交換部(52)の複数の熱交換領域(52a〜52c)に対応するヘッダ空間(72a〜72c)と主ヘッダ部(71)の上記主熱交換部(51)の複数の熱交換領域(51a〜51c)に対応するヘッダ空間(71a〜71c)とを各々連結する連結配管(76〜78)を備え、
上記複数の連結配管(76〜78)は、各々、上記ヘッダ集合部(70)の主ヘッダ部(71)の対応するヘッダ空間(72a〜72c)において、上記主熱交換部(51)の対応する熱交換領域(51a〜51c)の下部に水平方向に開口する
ことを特徴とする熱交換器。
A main heat exchange section (51) and an auxiliary heat exchange section (52) in which a plurality of flat tubes (33) each having a refrigerant passage formed therein are vertically divided, and both the heat exchange sections (51), (52) A header assembly part (70) having a main header part (71) and an auxiliary header part (72) to which the ends of the main heat exchange part (71) are connected, Each is divided into a plurality of heat exchange regions (51a-51c), (52a-52c) in the upper and lower sides,
When operating as an evaporator, the refrigerant passes through the auxiliary header section (72) of the header assembly section (70) from the plurality of heat exchange regions (52a to 52c) of the auxiliary heat exchange section (52), and the header assembly section (70). A heat exchanger having a refrigerant flow path that circulates from the main header portion (71) to the plurality of heat exchange regions (51a to 51c) of the main heat exchange portion (51),
The header space (72a to 72c) and the main header portion (71) corresponding to the plurality of heat exchange regions (52a to 52c) of the auxiliary heat exchange portion (52) of the auxiliary header portion (72) of the header assembly portion (70). ) Of the main heat exchanging part (51) of the plurality of heat exchanging regions (51a-51c) corresponding to the header space (71a-71c) respectively connecting pipes (76-78),
The plurality of connecting pipes (76 to 78) are respectively corresponding to the main heat exchange section (51) in the corresponding header space (72a to 72c) of the main header section (71) of the header assembly section (70). A heat exchanger having a horizontal opening at a lower portion of the heat exchange area (51a to 51c).
上記請求項1記載の熱交換器において、
上記複数の連結配管(76〜78)の端面開口部は、各々、上記主熱交換部(51)の対応する熱交換領域(51a〜51c)の下部に位置する扁平管(33a)の端面開口部と対向する
ことを特徴とする熱交換器。
The heat exchanger according to claim 1,
The end face openings of the plurality of connecting pipes (76 to 78) are respectively the end face openings of the flat tubes (33a) located below the corresponding heat exchange regions (51a to 51c) of the main heat exchange section (51). Heat exchanger characterized by facing the part.
上記請求項1又は2記載の熱交換器において、
上記ヘッダ集合部(70)の補助ヘッダ部(72)の上記補助熱交換部(52)の最下段の熱交換領域(52a)に対応するヘッダ空間(72a)と、主ヘッダ部(71)の上記主熱交換部(51)の最下段の熱交換領域(51a)に対応するヘッダ空間(71a)とが連結配管(78)で連結されている
ことを特徴とする熱交換器。
In the heat exchanger according to claim 1 or 2,
The header space (72a) corresponding to the lowermost heat exchange area (52a) of the auxiliary heat exchange part (52) of the auxiliary header part (72) of the header assembly part (70), and the main header part (71) A heat exchanger, characterized in that a header space (71a) corresponding to the lowermost heat exchange region (51a) of the main heat exchange part (51) is connected by a connecting pipe (78).
上記請求項1又は2記載の熱交換器において、
上記ヘッダ集合部(70)の補助ヘッダ部(72)の上記補助熱交換部(52)の最上段の熱交換領域(52c)に対応するヘッダ空間(72c)と、主ヘッダ部(71)の上記主熱交換部(51)の最下段の熱交換領域(51a)に対応するヘッダ空間(71a)とが連結配管(78)で連結されている
ことを特徴とする熱交換器。
In the heat exchanger according to claim 1 or 2,
The header space (72c) corresponding to the uppermost heat exchange area (52c) of the auxiliary heat exchange section (52) of the auxiliary header section (72) of the header assembly section (70), and the main header section (71) A heat exchanger, characterized in that a header space (71a) corresponding to the lowermost heat exchange region (51a) of the main heat exchange part (51) is connected by a connecting pipe (78).
JP2013186417A 2013-09-09 2013-09-09 Heat exchanger Pending JP2015052439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013186417A JP2015052439A (en) 2013-09-09 2013-09-09 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013186417A JP2015052439A (en) 2013-09-09 2013-09-09 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2015052439A true JP2015052439A (en) 2015-03-19

Family

ID=52701587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013186417A Pending JP2015052439A (en) 2013-09-09 2013-09-09 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2015052439A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018048780A (en) * 2016-09-23 2018-03-29 ダイキン工業株式会社 Heat exchanger and outdoor unit having the same
JPWO2017199393A1 (en) * 2016-05-19 2019-01-24 三菱電機株式会社 Outdoor unit and refrigeration cycle apparatus including the same
JP2019132534A (en) * 2018-01-31 2019-08-08 ダイキン工業株式会社 Heat exchanger
JPWO2019003385A1 (en) * 2017-06-29 2019-11-07 三菱電機株式会社 Outdoor unit and refrigeration cycle apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017199393A1 (en) * 2016-05-19 2019-01-24 三菱電機株式会社 Outdoor unit and refrigeration cycle apparatus including the same
US10914499B2 (en) 2016-05-19 2021-02-09 Mitsubishi Electric Corporation Outdoor unit and refrigeration cycle apparatus including the same
EP3783280A1 (en) * 2016-05-19 2021-02-24 Mitsubishi Electric Corporation Outdoor unit and refrigeration cycle apparatus including the same
JP2018048780A (en) * 2016-09-23 2018-03-29 ダイキン工業株式会社 Heat exchanger and outdoor unit having the same
JPWO2019003385A1 (en) * 2017-06-29 2019-11-07 三菱電機株式会社 Outdoor unit and refrigeration cycle apparatus
JP2019132534A (en) * 2018-01-31 2019-08-08 ダイキン工業株式会社 Heat exchanger
WO2019151217A1 (en) * 2018-01-31 2019-08-08 ダイキン工業株式会社 Heat exchanger

Similar Documents

Publication Publication Date Title
JP5609916B2 (en) Heat exchanger
US9651317B2 (en) Heat exchanger and air conditioner
JP6115111B2 (en) Heat exchanger
WO2012043377A1 (en) Refrigeration circuit
JP5617860B2 (en) Refrigeration equipment
JP2014142165A (en) Heat exchanger
US10041710B2 (en) Heat exchanger and air conditioner
JP2013083419A (en) Heat exchanger and air conditioner
JP6098451B2 (en) Heat exchanger and air conditioner
JP5403095B2 (en) Refrigeration equipment
JP2012163313A (en) Heat exchanger, and air conditioner
JP6120978B2 (en) Heat exchanger and air conditioner using the same
JPWO2020089966A1 (en) Heat exchanger and refrigeration cycle equipment
JP2015052439A (en) Heat exchanger
JP5716496B2 (en) Heat exchanger and air conditioner
JP5962033B2 (en) Heat exchanger and air conditioner equipped with the same
JP2015052444A (en) Heat exchanger
JP2014137177A (en) Heat exchanger and refrigerator
JP2014109416A (en) Air conditioner
JP6102724B2 (en) Heat exchanger
JP2014137172A (en) Heat exchanger and refrigerator
JP2015052440A (en) Heat exchanger
JP2018048766A (en) Parallel flow heat exchanger and refrigeration cycle device
WO2021095439A1 (en) Heat exchanger
JP2015052445A (en) Heat exchanger