WO2012043377A1 - Refrigeration circuit - Google Patents

Refrigeration circuit Download PDF

Info

Publication number
WO2012043377A1
WO2012043377A1 PCT/JP2011/071612 JP2011071612W WO2012043377A1 WO 2012043377 A1 WO2012043377 A1 WO 2012043377A1 JP 2011071612 W JP2011071612 W JP 2011071612W WO 2012043377 A1 WO2012043377 A1 WO 2012043377A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
refrigerant
outdoor heat
refrigeration circuit
compressor
Prior art date
Application number
PCT/JP2011/071612
Other languages
French (fr)
Japanese (ja)
Inventor
奥田 則之
瀬戸口 隆之
谷本 啓介
隆宗 奥井
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN2011800469860A priority Critical patent/CN103140728A/en
Priority to AU2011309326A priority patent/AU2011309326A1/en
Priority to EP11828934.7A priority patent/EP2623894A4/en
Priority to KR1020137010694A priority patent/KR20130059450A/en
Priority to US13/824,709 priority patent/US20130174595A1/en
Publication of WO2012043377A1 publication Critical patent/WO2012043377A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/19Pumping down refrigerant from one part of the cycle to another part of the cycle, e.g. when the cycle is changed from cooling to heating, or before a defrost cycle is started
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles

Definitions

  • the present invention relates to a refrigeration circuit, and more particularly to a refrigeration circuit used in an air conditioner.
  • the optimum refrigerant amount during cooling operation and the optimum refrigerant amount during heating operation are different, so the capacity of the outdoor heat exchanger that functions as a condenser during cooling operation and the condenser during heating operation
  • the capacity of the functioning indoor heat exchanger is different.
  • the capacity of the outdoor heat exchanger is larger than the capacity of the indoor heat exchanger, and refrigerant that cannot be accommodated by the indoor heat exchanger during heating operation is temporarily stored in an accumulator or the like.
  • Patent Document 1 Japanese Patent Laid-Open No. 6-143991
  • Patent Document 1 Japanese Patent Laid-Open No. 6-143991
  • the capacity of the cooler becomes smaller than the capacity of the indoor heat exchanger, and this time, refrigerant (surplus refrigerant) that cannot be accommodated by the outdoor heat exchanger during cooling operation is generated, and the amount of the refrigerant can be stored in the accumulator. It will exceed.
  • the subject of this invention is providing the refrigerating circuit which can accommodate the excess refrigerant
  • the refrigerant flows in the order of the compressor, the outdoor heat exchanger, the expansion valve, and the indoor heat exchanger during the cooling operation, and the compressor, the indoor heat exchanger, the expansion valve, and the It is a refrigeration circuit through which refrigerant flows in the order of the outdoor heat exchanger, where the indoor heat exchanger is a cross-fin heat exchanger and the outdoor heat exchanger is a stacked heat exchanger.
  • a refrigerant storage tank is provided between the outdoor heat exchanger and the expansion valve.
  • the volume of the stacked heat exchanger is smaller than the volume of the cross fin type heat exchanger having the same heat exchange performance.
  • the outdoor heat exchanger and the indoor heat exchanger are both cross-fin type heat exchangers and the outdoor heat exchanger is replaced with a stacked heat exchanger having equivalent heat exchange performance.
  • the capacity of the stacked heat exchanger is not only smaller than the volume of the cross fin type outdoor heat exchanger, but also smaller than the capacity of the cross fin type indoor heat exchanger connected thereto.
  • the refrigerant flows in the order of the compressor, the outdoor heat exchanger, the expansion valve, and the indoor heat exchanger during the cooling operation, and the compressor, the indoor heat exchanger, the expansion valve, and the It is a refrigeration circuit through which refrigerant flows in the order of the outdoor heat exchanger, and the volume of the outdoor heat exchanger is 100% or less of the volume of the indoor heat exchanger.
  • a refrigerant storage tank is provided between the outdoor heat exchanger and the expansion valve.
  • a refrigeration circuit according to a third aspect of the present invention is the refrigeration circuit according to the first aspect or the second aspect, wherein the outdoor heat exchanger is a stacked heat exchanger having a plurality of flat tubes and fins.
  • the plurality of flat tubes are arranged so as to be stacked at intervals.
  • the fin is sandwiched between adjacent flat tubes.
  • the capacity of the outdoor heat exchanger is smaller than the capacity of the indoor heat exchanger, so the amount of refrigerant in the refrigeration circuit is reduced.
  • the refrigeration circuit according to the fourth aspect of the present invention is the refrigeration circuit according to the first aspect or the second aspect, wherein the outdoor heat exchanger is a stacked heat exchanger having flat tubes and fins.
  • the flat tube is formed in a meandering shape.
  • the fin is sandwiched between adjacent surfaces of the flat tube.
  • the capacity of the outdoor heat exchanger is smaller than the capacity of the indoor heat exchanger, so the amount of refrigerant in the refrigeration circuit is reduced.
  • produces at the time of air_conditionaing
  • a refrigeration circuit according to a fifth aspect of the present invention is the refrigeration circuit according to the second aspect, wherein both the outdoor heat exchanger and the indoor heat exchanger are cross-fin heat exchangers.
  • the heat transfer tube diameter of the outdoor heat exchanger is smaller than the heat transfer tube diameter of the indoor heat exchanger.
  • the capacity of the outdoor heat exchanger is smaller than the capacity of the indoor heat exchanger, so the amount of refrigerant in the refrigeration circuit is reduced.
  • the refrigeration circuit according to the sixth aspect of the present invention is the refrigeration circuit according to the first aspect or the second aspect, and is further provided with a bypass.
  • the bypass channel guides the gas component of the refrigerant accumulated in the refrigerant storage tank to the compressor or the refrigerant pipe on the suction side of the compressor.
  • the refrigerant is separated into liquid and gas in the refrigerant storage tank in front of the inlet of the outdoor heat exchanger, and the gas component goes to the bypass path. Head over.
  • a refrigeration circuit according to a seventh aspect of the present invention is the refrigeration circuit according to the sixth aspect, wherein the bypass path has a flow rate adjusting mechanism.
  • the bypass path has a flow rate adjusting mechanism.
  • the refrigerant that has passed through the flow rate adjustment mechanism is evaporated by the outdoor heat exchanger and merged with the refrigerant that is directed to the compressor. Therefore, when the flow rate adjustment mechanism is an electric expansion valve, the valve opening degree is controlled. By doing so, the refrigerant state immediately before being sucked into the compressor can be adjusted more optimally. Furthermore, in this refrigeration circuit, when the flow rate adjustment mechanism is an electric expansion valve, the amount of refrigerant returning to the compressor can be increased or decreased by controlling the valve opening, so that the amount of refrigerant returning to the compressor can be increased or decreased. It is also possible to control the amount of refrigerant circulating in the refrigeration circuit.
  • the refrigeration circuit according to the eighth aspect of the present invention is the refrigeration circuit according to the first aspect or the second aspect, and the refrigerant storage tank is a gas-liquid separator.
  • the gas-liquid separator has a function of separating the liquid refrigerant and the gas refrigerant in addition to the refrigerant storage function for storing the liquid refrigerant, so that there is no need to install a refrigerant storage container and a gas-liquid separator.
  • the circuit is simplified.
  • the surplus refrigerant is accommodated in the refrigerant storage tank, so that the refrigerant control is prevented from being hindered.
  • gas components that do not contribute to evaporation do not enter the outdoor heat exchanger, and accordingly, the amount of refrigerant flowing through the outdoor heat exchanger decreases, and the refrigerant in the outdoor heat exchanger decreases. Pressure loss is suppressed.
  • the liquid component is prevented from returning to the refrigerant piping on the suction side of the compressor.
  • the refrigerant state immediately before being sucked into the compressor can be adjusted more optimally.
  • the gas-liquid separator has a function of separating the liquid refrigerant and the gas refrigerant in addition to the refrigerant storage function of storing the liquid refrigerant, the refrigerant storage container, the gas-liquid separator,
  • the refrigeration circuit is simplified.
  • the block diagram of the air conditioning apparatus which uses the refrigerating circuit which concerns on one Embodiment of this invention The front view of an indoor heat exchanger.
  • FIG. 1 is a configuration diagram of an air conditioner using a refrigeration circuit according to an embodiment of the present invention.
  • an air conditioner 1 is an air conditioner capable of cooling operation and heating operation, and communicates liquid refrigerant for connecting the outdoor unit 3, the indoor unit 5, and the outdoor unit 3 and the indoor unit 5.
  • a pipe 7 and a gas refrigerant communication pipe 9 are provided.
  • the indoor unit 5 includes an indoor heat exchanger 51 and an indoor fan 53.
  • the indoor heat exchanger 51 is a cross-fin type heat exchanger, and can evaporate or condense the refrigerant flowing in the interior by heat exchange with indoor air, thereby cooling or heating indoor air.
  • FIG. 2 is a front view of the indoor heat exchanger.
  • the indoor heat exchanger 51 includes heat transfer fins 511 and heat transfer tubes 513.
  • the heat transfer fins 511 are thin aluminum flat plates, and one heat transfer fin 511 has a plurality of through holes.
  • the heat transfer tube 513 includes a straight tube 513a inserted into a through hole of the heat transfer fin 511, and a first U-shaped tube 513b and a second U-shaped tube 513c that connect ends of adjacent straight tubes 513a.
  • the straight pipe 513a is inserted into the through-holes of the heat transfer fins 511, and then is expanded by a pipe expander to be in close contact with the heat transfer fins 511.
  • the straight pipe 513a and the first U-shaped pipe 513b are integrally formed, and the second U-shaped pipe 513c is straightened by welding after the straight pipe 513a is inserted into the through hole of the heat transfer fin 511 and expanded. It is connected to the end of 513a.
  • the outdoor unit 3 mainly includes a compressor 21, a four-way switching valve 23, an outdoor heat exchanger 25, a refrigerant storage tank 27, an expansion valve 29, a liquid side closing valve 37, A gas side closing valve 39, an accumulator 31, and a bypass passage 33 are provided. Furthermore, the outdoor unit 3 also has an outdoor fan 41.
  • (1-3-1) Compressor, four-way switching valve and accumulator The compressor 21 sucks and compresses the gas refrigerant.
  • An accumulator 31 is arranged in front of the suction port of the compressor 21 so that liquid refrigerant is not directly sucked into the compressor 21.
  • the four-way switching valve 23 switches the direction of the refrigerant flow when switching between the cooling operation and the heating operation.
  • the four-way switching valve 23 connects the discharge side of the compressor 21 and the gas side of the outdoor heat exchanger 25 and connects the suction side of the compressor 21 and the gas side closing valve 39. That is, this is the state indicated by the solid line in the four-way selector valve 23 in FIG.
  • the four-way switching valve 23 connects the discharge side of the compressor 21 and the gas side shut-off valve 39 and connects the suction side of the compressor 21 and the gas side of the outdoor heat exchanger 25. That is, this is the state indicated by the dotted line in the four-way selector valve 23 of FIG.
  • the outdoor heat exchanger 25 is a stacked heat exchanger, and can condense or evaporate the refrigerant flowing inside through heat exchange with outdoor air.
  • the outdoor fan 41 is arrange
  • FIG. 3 is an external perspective view of the outdoor heat exchanger.
  • the outdoor heat exchanger 25 includes a flat tube 251, a corrugated fin 253, and a header 255.
  • the flat tube 251 is formed of aluminum or an aluminum alloy, and has a flat portion 251a serving as a heat transfer surface and a plurality of internal flow paths (not shown) through which a refrigerant flows.
  • the flat tubes 251 are arranged in a plurality of stages with the flat portion 251a facing up and down.
  • the corrugated fins 253 are aluminum or aluminum alloy fins bent into a corrugated shape.
  • the corrugated fins 253 are arranged in a ventilation space sandwiched between upper and lower flat tubes 251, and a valley portion and a mountain portion are in contact with a flat portion 251 a of the flat tube 251.
  • the trough part, the peak part, and the plane part 251a are brazed and welded.
  • the header 255 is connected to both ends of the flat tubes 251 arranged in a plurality of stages in the vertical direction.
  • the header 255 has a function of supporting the flat tube 251, a function of guiding the refrigerant to the internal flow path of the flat tube 251, and a function of collecting the refrigerant that has come out of the internal flow path.
  • the refrigerant flowing in from the inlet 255a of the right header 255 (hereinafter referred to as the first header) is distributed almost evenly to each internal flow path of the uppermost flat tube 251 and left header 255 ( Hereinafter, it flows toward the second header).
  • the refrigerant that has reached the second header is evenly distributed to the internal flow paths of the second-stage flat tube 251 and flows toward the first header. Thereafter, the refrigerant in the odd-numbered flat tubes 251 flows toward the second header, and the refrigerant in the even-numbered flat tubes 251 flows toward the first header.
  • the refrigerant in the flat tube 251 at the lowest level and the even numbered level flows toward the first header, collects at the first header, and flows out from the outlet 255b.
  • the outdoor heat exchanger 25 functions as an evaporator
  • the refrigerant flowing through the flat tube 251 absorbs heat from the air flow flowing through the ventilation space via the corrugated fins 253.
  • the outdoor heat exchanger 25 functions as a condenser
  • the refrigerant flowing in the flat tube 251 radiates heat to the air flow flowing in the ventilation space via the corrugated fins 253.
  • the capacity of the outdoor heat exchanger 25 is smaller than the capacity of the indoor heat exchanger 51.
  • FIG. 4 is a graph showing the outdoor heat exchanger volume / indoor heat exchanger volume ratio in the refrigeration circuit according to capacity.
  • is a normal type of packaged air conditioner (cross fin type outdoor heat exchanger)
  • is an outdoor heat exchanger of package air conditioner small diameter type (stacked type outdoor heat exchanger)
  • is a normal type of room air conditioner ( Cross fin type outdoor heat exchanger)
  • indicate outdoor heat exchanger small diameter type (stacked type outdoor heat exchanger) of room air conditioner.
  • the outdoor heat exchanger and the indoor heat exchanger are both cross-fin type heat exchangers, only the outdoor heat exchanger has a heat exchange performance equivalent to that of the stacked heat exchanger.
  • the outdoor heat exchanger capacity / indoor heat exchanger volume ratio is below 1.0. This is because not only the capacity of the laminated heat exchanger is smaller than the volume of the cross fin type outdoor heat exchanger, but also the capacity of the cross fin type indoor heat exchanger connected thereto, It means that. Therefore, surplus refrigerant is generated during the cooling operation. Therefore, in the refrigeration circuit 11 of the present embodiment, the excess refrigerant is stored in the refrigerant storage tank 27.
  • the refrigerant storage tank 27 is a container that can store excess refrigerant.
  • the amount of liquid refrigerant that can be accommodated in the indoor heat exchanger 51 during the heating operation in which the indoor heat exchanger 51 functions as a condenser is 1100 cc
  • the outdoor heat exchange in the cooling operation in which the outdoor heat exchanger 25 functions as a condenser is 1100 cc
  • the amount of liquid refrigerant that can be stored in the cooler 25 is 800 cc
  • the remaining 300 cc of liquid refrigerant that cannot be stored in the outdoor heat exchanger 25 during the cooling operation is temporarily stored in the refrigerant storage tank 27.
  • the refrigerant immediately before entering the refrigerant storage tank 27 during the heating operation includes a gas component generated when passing through the expansion valve 29.
  • the refrigerant is separated into the gas refrigerant, the liquid refrigerant is stored on the lower side, and the gas refrigerant is stored on the upper side.
  • (1-3-4) Expansion Valve The expansion valve 29 is connected to a pipe between the refrigerant storage tank 27 and the liquid side shut-off valve 37 in order to adjust the refrigerant pressure and the refrigerant flow rate. At any time, it has the function of expanding the refrigerant.
  • the gas refrigerant separated in the refrigerant storage tank 27 flows through the bypass path 33 to the suction side of the compressor 21. Further, the liquid refrigerant separated in the refrigerant storage tank 27 flows to the outdoor heat exchanger 25.
  • a flow rate adjustment valve 35 is connected in the middle of the bypass path 33. In the present embodiment, the flow rate adjustment valve 35 is an electric expansion valve.
  • the liquid side closing valve 37 and the gas side closing valve 39 are connected to the liquid refrigerant communication pipe 7 and the gas refrigerant communication pipe 9, respectively.
  • the liquid refrigerant communication pipe 7 connects between the liquid side of the indoor heat exchanger 51 of the indoor unit 5 and the liquid side closing valve 37 of the outdoor unit 3.
  • the gas refrigerant communication pipe 9 connects between the gas side of the indoor heat exchanger 51 of the indoor unit 5 and the gas side closing valve 39 of the outdoor unit 3.
  • the refrigerant flows in the order of the compressor 21, the outdoor heat exchanger 25, the expansion valve 29, and the indoor heat exchanger 51 during the cooling operation, and the compressor 21, the indoor heat exchanger 51, the expansion valve 29, and the outdoor heat during the heating operation.
  • a refrigeration circuit 11 through which refrigerant flows is formed in the order of the exchanger 25.
  • the low-pressure refrigerant is sucked into the compressor 21 and is discharged after being compressed to a high pressure.
  • the high-pressure refrigerant discharged from the compressor 21 enters the indoor heat exchanger 51 through the four-way switching valve 23, the gas side closing valve 39 and the gas refrigerant communication pipe 9.
  • the high-pressure refrigerant that has entered the indoor heat exchanger 51 condenses by exchanging heat with the indoor air. Thereby, indoor air is heated.
  • capacitance of the indoor heat exchanger 51 is larger than the capacity
  • the high-pressure refrigerant condensed in the indoor heat exchanger 51 reaches the expansion valve 29 through the liquid refrigerant communication pipe 7 and the liquid side closing valve 37.
  • the refrigerant is decompressed to a low pressure by the expansion valve 29 and then enters the refrigerant storage tank 27.
  • the refrigerant immediately before entering the refrigerant storage tank 27 contains gas components generated when passing through the expansion valve 29, but after entering the refrigerant storage tank 27, it is separated into liquid refrigerant and gas refrigerant, Liquid refrigerant is stored on the lower side, and gas refrigerant is stored on the upper side.
  • the gas refrigerant passes through the bypass passage 33 and moves toward the suction side of the compressor 21.
  • the liquid refrigerant is sent to the outdoor heat exchanger 25, where it evaporates by exchanging heat with outdoor air supplied by the outdoor fan 41. Since almost no gas refrigerant enters from the inlet of the outdoor heat exchanger 25, the amount of refrigerant flowing through the outdoor heat exchanger 25 is reduced, and the pressure loss is suppressed accordingly.
  • the low-pressure refrigerant evaporated in the outdoor heat exchanger 25 is again sucked into the compressor 21 through the four-way switching valve 23.
  • the four-way switching valve 23 connects the discharge side of the compressor 21 and the gas side of the outdoor heat exchanger 25 and sucks the compressor 21. And the gas side closing valve 39 are connected. In addition, the opening of the expansion valve 29 is reduced. As a result, the outdoor heat exchanger 25 functions as a refrigerant condenser, and the indoor heat exchanger 51 functions as a refrigerant evaporator.
  • the low-pressure refrigerant is sucked into the compressor 21 and is discharged after being compressed to a high pressure.
  • the high-pressure refrigerant discharged from the compressor 21 is sent to the outdoor heat exchanger 25 through the four-way switching valve 23.
  • the high-pressure refrigerant sent to the outdoor heat exchanger 25 exchanges heat with outdoor air and condenses there.
  • the high-pressure refrigerant condensed in the outdoor heat exchanger 25 is sent to the refrigerant storage tank 27.
  • the liquid refrigerant that has exited the refrigerant storage tank 27 is sent to the expansion valve 29 and decompressed to a low pressure.
  • the low-pressure refrigerant depressurized by the expansion valve 29 enters the indoor heat exchanger 51 through the liquid side closing valve 37 and the liquid refrigerant communication pipe 7.
  • the low-pressure refrigerant that has entered the indoor heat exchanger 51 evaporates by exchanging heat with the indoor air. Thereby, indoor air is cooled.
  • the low-pressure refrigerant evaporated in the indoor heat exchanger 51 is again sucked into the compressor 21 through the gas refrigerant communication pipe 9, the gas side closing valve 39 and the four-way switching valve 23.
  • the indoor heat exchanger 51 is a cross-fin heat exchanger
  • the outdoor heat exchanger 25 is a stacked heat exchanger.
  • a refrigerant storage tank 27 is provided between the outdoor heat exchanger 25 and the expansion valve 29. Since the capacity of the outdoor heat exchanger 25 is smaller than the capacity of the indoor heat exchanger 51, surplus refrigerant is generated during the cooling operation. However, in this refrigeration circuit, the surplus refrigerant is stored in the refrigerant storage tank 27. It is prevented that the control is disturbed.
  • the volume of the outdoor heat exchanger 25 is 100% or less of the volume of the indoor heat exchanger 51.
  • a refrigerant storage tank 27 is provided between the outdoor heat exchanger 25 and the expansion valve 29.
  • surplus refrigerant is generated during the cooling operation.
  • the refrigerant control is hindered. This is prevented.
  • a bypass path 33 is provided. The bypass path 33 guides the refrigerant gas component stored in the refrigerant storage tank 27 to the compressor 21 or the refrigerant pipe on the suction side of the compressor 21.
  • the refrigerant is separated into liquid and gas in the refrigerant storage tank 27 in front of the inlet of the outdoor heat exchanger 25, and the gas component goes to the bypass path.
  • gas components that do not contribute to evaporation do not enter the outdoor heat exchanger 25, and accordingly, the amount of refrigerant flowing through the outdoor heat exchanger 25 decreases, and the pressure loss of refrigerant in the outdoor heat exchanger 25 is suppressed. .
  • the gas-liquid mixed refrigerant may return from the refrigerant storage tank 27 via the bypass passage 33 to the suction side of the compressor 21 and be sucked into the compressor 21. Since the flow rate adjusting valve 35 is provided, the liquid component of the gas-liquid mixed refrigerant is depressurized and evaporated. As a result, the liquid component is prevented from returning to the refrigerant pipe on the suction side of the compressor 21. (4-5) In addition, since the refrigerant that has passed through the flow rate adjustment valve 35 evaporates in the outdoor heat exchanger 25 and merges with the refrigerant that is directed to the compressor 21, the valve opening degree is controlled when the flow rate adjustment valve 35 is an electric expansion valve. As a result, the refrigerant state immediately before being sucked into the compressor 21 can be adjusted more optimally.
  • FIG. 5 is a simplified cross-sectional view of the gas-liquid separator.
  • the gas-liquid separator is of a cyclone type and includes a cylindrical container 271, a first connection pipe 273, a second connection pipe 275, and a third connection pipe 277.
  • the first connecting pipe 273 is connected in the tangential direction of the circumferential side wall of the cylindrical container 271, and communicates the inside of the cylindrical container 271 and the expansion valve 29.
  • the second connection pipe 275 is connected to the bottom wall of the cylindrical container 271 and connects the inside of the cylindrical container 271 and the outdoor heat exchanger 25.
  • the third connecting pipe 277 is connected to the ceiling wall of the cylindrical container 271 and connects the inside of the cylindrical container 271 and the bypass path 33.
  • the refrigerant that has been decompressed by the expansion valve 29 and is in a gas-liquid mixed state flows into the cylindrical container 271 from the first connection pipe 273 and vortexes along the inner peripheral surface 271b of the circumferential side wall.
  • the liquid refrigerant adheres to the inner peripheral surface 271b, and the liquid refrigerant and the gas refrigerant are efficiently separated.
  • the liquid refrigerant descends due to gravity and accumulates in the lower part, passes through the second connection pipe 275, and moves toward the outdoor heat exchanger 25.
  • the gas refrigerant rises while turning, and flows to the bypass path 33 through the third connection pipe 277.
  • the high-pressure refrigerant that has condensed into the saturated liquid in the outdoor heat exchanger 25 flows into the cylindrical container 271 from the second connection pipe 275, and the cylindrical container 271 is filled with the liquid refrigerant.
  • the liquid refrigerant passes through the first connection pipe 273 toward the expansion valve 29.
  • a part of the liquid refrigerant in the cylindrical container 271 flows to the bypass path 33 through the third connection pipe 277.
  • the refrigerant storage tank 27 is a cyclone type gas-liquid separator
  • the refrigerant is swirled along the inner peripheral surface 271b of the gas-liquid separator. Liquid refrigerant adheres to the peripheral surface, and gas-liquid separation is performed efficiently.
  • the gas-liquid separator has the function of separating liquid refrigerant and gas refrigerant, so there is no need to install a refrigerant storage container and gas-liquid separator, and the refrigeration circuit is simple. It becomes.
  • the outdoor heat exchanger 25 is a stacked heat exchanger having a plurality of flat tubes 251 and corrugated fins 253, and the plurality of flat tubes 251 are arranged so as to be stacked at intervals. Fins 253 are sandwiched between adjacent flat tubes 251.
  • the outdoor heat exchanger 25 is not limited to the above-described configuration.
  • the flat tube is formed in a meandering shape, and the fins are sandwiched between adjacent surfaces of the flat tube. Even with this configuration, the same effect as the above embodiment can be obtained.
  • both the outdoor heat exchanger 25 and the indoor heat exchanger 51 are cross-fin heat exchangers, and the outdoor heat exchanger 25 Even if the heat transfer tube diameter is smaller than the heat transfer tube diameter of the indoor heat exchanger 51, the same effect as in the above embodiment can be obtained.

Abstract

Provided is a refrigeration circuit that is capable of storing excess coolant arising during a cooling operation when the capacity of an outdoor heat exchanger is less than the capacity of an indoor heat exchanger. In the refrigeration circuit (11), the indoor heat exchanger (51) is a cross-fin heat exchanger and the outdoor heat exchanger (25) is a stacked heat exchanger. Also, a coolant reservoir tank (27) is provided between the outdoor heat exchanger (25) and an expansion valve (29). The capacity of the outdoor heat exchanger (25) becomes less than the capacity of the indoor heat exchanger (51) and so excess coolant arises during the cooling operation, but in this refrigeration circuit (11), the excess coolant is stored in the coolant reservoir tank (27), and so the occurrence of obstacles to coolant control is prevented.

Description

冷凍回路Refrigeration circuit
 本発明は、冷凍回路に関し、特に、空気調和機に用いられる冷凍回路に関する。 The present invention relates to a refrigeration circuit, and more particularly to a refrigeration circuit used in an air conditioner.
 空気調和装置の冷凍回路では、冷房運転時に最適な冷媒量と暖房運転時に最適な冷媒量とが異なるため、冷房運転時に凝縮器として機能する室外熱交換器の容量と、暖房運転時に凝縮器として機能する室内熱交換器の容量とが異なる。通常は、室外熱交換器の容量が室内熱交換器の容量よりも大きく、暖房運転時に室内熱交換器で収容しきれない冷媒はアキュームなどに一時的に貯留される。 In the refrigeration circuit of the air conditioner, the optimum refrigerant amount during cooling operation and the optimum refrigerant amount during heating operation are different, so the capacity of the outdoor heat exchanger that functions as a condenser during cooling operation and the condenser during heating operation The capacity of the functioning indoor heat exchanger is different. Usually, the capacity of the outdoor heat exchanger is larger than the capacity of the indoor heat exchanger, and refrigerant that cannot be accommodated by the indoor heat exchanger during heating operation is temporarily stored in an accumulator or the like.
 しかしながら、特許文献1(特開平6-143991号公報)に開示されているような小型で高性能なコンデンサが空気調和装置の冷凍回路の室外熱交換器に使用されるようになると、室外熱交換器の容量が室内熱交換器の容量よりも小さくなり、今度は、冷房運転時に室外熱交換器で収容しきれない冷媒(余剰冷媒)が発生し、その量はアキュームなどに貯留可能な量を超えてしまう。
 本発明の課題は、室外熱交換器の容量が室内熱交換器の容量よりも小さいときに、冷房運転時に生じる余剰冷媒を収容することができる冷凍回路を提供することにある。
However, when a small and high-performance condenser disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 6-143991) is used in an outdoor heat exchanger of a refrigeration circuit of an air conditioner, outdoor heat exchange is performed. The capacity of the cooler becomes smaller than the capacity of the indoor heat exchanger, and this time, refrigerant (surplus refrigerant) that cannot be accommodated by the outdoor heat exchanger during cooling operation is generated, and the amount of the refrigerant can be stored in the accumulator. It will exceed.
The subject of this invention is providing the refrigerating circuit which can accommodate the excess refrigerant | coolant produced at the time of air_conditionaing | cooling operation, when the capacity | capacitance of an outdoor heat exchanger is smaller than the capacity | capacitance of an indoor heat exchanger.
 本発明の第1観点に係る冷凍回路は、冷房運転時に圧縮機、室外熱交換器、膨張弁および室内熱交換器の順に冷媒が流れ、暖房運転時に圧縮機、室内熱交換器、膨張弁および室外熱交換器の順に冷媒が流れる冷凍回路であって、室内熱交換器がクロスフィン型熱交換器、室外熱交換器が積層型熱交換器である。また、室外熱交換器と膨張弁との間に、冷媒貯留タンクが設けられている。
 積層型熱交換器の容積は、同等の熱交換性能を有するクロスフィン型熱交換器の容積に比べて小さい。例えば、室外熱交換器と室内熱交換器とが共にクロスフィン型熱交換器である冷凍回路に対して、室外熱交換器だけを同等の熱交換性能を有する積層型熱交換器に替えたとき、その積層型熱交換器の容量は、クロスフィン型の室外熱交換器の容積に比べて小さくなるだけでなく、それに接続されているクロスフィン型の室内熱交換器の容量よりも小さくなる。
In the refrigeration circuit according to the first aspect of the present invention, the refrigerant flows in the order of the compressor, the outdoor heat exchanger, the expansion valve, and the indoor heat exchanger during the cooling operation, and the compressor, the indoor heat exchanger, the expansion valve, and the It is a refrigeration circuit through which refrigerant flows in the order of the outdoor heat exchanger, where the indoor heat exchanger is a cross-fin heat exchanger and the outdoor heat exchanger is a stacked heat exchanger. A refrigerant storage tank is provided between the outdoor heat exchanger and the expansion valve.
The volume of the stacked heat exchanger is smaller than the volume of the cross fin type heat exchanger having the same heat exchange performance. For example, when the outdoor heat exchanger and the indoor heat exchanger are both cross-fin type heat exchangers and the outdoor heat exchanger is replaced with a stacked heat exchanger having equivalent heat exchange performance. The capacity of the stacked heat exchanger is not only smaller than the volume of the cross fin type outdoor heat exchanger, but also smaller than the capacity of the cross fin type indoor heat exchanger connected thereto.
 室外熱交換器の容量が室内熱交換器の容量より小さくなることにより、冷房運転時に余剰冷媒が発生するが、この冷凍回路では、その余剰冷媒が冷媒貯留タンクに収容されるので、冷媒制御に支障をきたすことは防止される。 Since the capacity of the outdoor heat exchanger is smaller than the capacity of the indoor heat exchanger, surplus refrigerant is generated during cooling operation. In this refrigeration circuit, the surplus refrigerant is stored in the refrigerant storage tank, so that refrigerant control is performed. It is prevented from causing trouble.
 本発明の第2観点に係る冷凍回路は、冷房運転時に圧縮機、室外熱交換器、膨張弁および室内熱交換器の順に冷媒が流れ、暖房運転時に圧縮機、室内熱交換器、膨張弁および室外熱交換器の順に冷媒が流れる冷凍回路であって、室外熱交換器の容積は、室内熱交換器の容積の100%以下である。また、室外熱交換器と膨張弁との間に、冷媒貯留タンクが設けられている。
 この冷凍回路では、室外熱交換器の容量が室内熱交換器の容量以下となることにより、冷房運転時に余剰冷媒が発生するが、その余剰冷媒が冷媒貯留タンクに収容されるので、冷媒制御に支障をきたすことは防止される。
In the refrigeration circuit according to the second aspect of the present invention, the refrigerant flows in the order of the compressor, the outdoor heat exchanger, the expansion valve, and the indoor heat exchanger during the cooling operation, and the compressor, the indoor heat exchanger, the expansion valve, and the It is a refrigeration circuit through which refrigerant flows in the order of the outdoor heat exchanger, and the volume of the outdoor heat exchanger is 100% or less of the volume of the indoor heat exchanger. A refrigerant storage tank is provided between the outdoor heat exchanger and the expansion valve.
In this refrigeration circuit, when the capacity of the outdoor heat exchanger is equal to or less than the capacity of the indoor heat exchanger, surplus refrigerant is generated during cooling operation, but the surplus refrigerant is stored in the refrigerant storage tank. It is prevented from causing trouble.
 本発明の第3観点に係る冷凍回路は、第1観点または第2観点に係る冷凍回路であって、室外熱交換器が、複数の扁平管とフィンとを有する積層型熱交換器である。複数の扁平管は、間隔をあけて積み重なるように配列されている。フィンは、隣接する扁平管に挟まれている。
 この冷凍回路では、第1観点または第2観点に係る冷凍回路と同様に、室外熱交換器の容量が室内熱交換器の容量よりも小さくなるので、冷凍回路内の冷媒量が低減される。なお、冷房運転時に余剰冷媒が発生するが、その余剰冷媒は冷媒貯留タンクに収容されるので、冷媒制御に支障をきたすことは防止される。
A refrigeration circuit according to a third aspect of the present invention is the refrigeration circuit according to the first aspect or the second aspect, wherein the outdoor heat exchanger is a stacked heat exchanger having a plurality of flat tubes and fins. The plurality of flat tubes are arranged so as to be stacked at intervals. The fin is sandwiched between adjacent flat tubes.
In this refrigeration circuit, similarly to the refrigeration circuit according to the first aspect or the second aspect, the capacity of the outdoor heat exchanger is smaller than the capacity of the indoor heat exchanger, so the amount of refrigerant in the refrigeration circuit is reduced. In addition, although an excessive refrigerant | coolant generate | occur | produces at the time of air_conditionaing | cooling driving | operation, since the excessive refrigerant | coolant is accommodated in a refrigerant | coolant storage tank, it will be prevented that it will interfere with refrigerant control.
 本発明の第4観点に係る冷凍回路は、第1観点または第2観点に係る冷凍回路であって、室外熱交換器が、扁平管とフィンとを有する積層型熱交換器である。扁平管は、蛇行形状に成形されている。フィンは、扁平管の互いに隣接する面の間に挟まれている。 The refrigeration circuit according to the fourth aspect of the present invention is the refrigeration circuit according to the first aspect or the second aspect, wherein the outdoor heat exchanger is a stacked heat exchanger having flat tubes and fins. The flat tube is formed in a meandering shape. The fin is sandwiched between adjacent surfaces of the flat tube.
 この冷凍回路では、第1観点または第2観点に係る冷凍回路と同様に、室外熱交換器の容量が室内熱交換器の容量よりも小さくなるので、冷凍回路内の冷媒量が低減される。なお、冷房運転時に余剰冷媒が発生するが、その余剰冷媒は冷媒貯留タンクに収容されるので、冷媒制御に支障をきたすことは防止される。 In this refrigeration circuit, similarly to the refrigeration circuit according to the first aspect or the second aspect, the capacity of the outdoor heat exchanger is smaller than the capacity of the indoor heat exchanger, so the amount of refrigerant in the refrigeration circuit is reduced. In addition, although an excessive refrigerant | coolant generate | occur | produces at the time of air_conditionaing | cooling driving | operation, since the excessive refrigerant | coolant is accommodated in a refrigerant | coolant storage tank, it will be prevented that it will interfere with refrigerant control.
 本発明の第5観点に係る冷凍回路は、第2観点に係る冷凍回路であって、室外熱交換器および室内熱交換器がともにクロスフィン型熱交換器である。室外熱交換器の伝熱管径は、室内熱交換器の伝熱管径よりも細い。
 この冷凍回路では、第2観点に係る冷凍回路と同様に、室外熱交換器の容量が室内熱交換器の容量よりも小さくなるので、冷凍回路内の冷媒量が低減される。なお、冷房運転時に余剰冷媒が発生するが、その余剰冷媒は冷媒貯留タンクに収容されるので、冷媒制御に支障をきたすことは防止される。
A refrigeration circuit according to a fifth aspect of the present invention is the refrigeration circuit according to the second aspect, wherein both the outdoor heat exchanger and the indoor heat exchanger are cross-fin heat exchangers. The heat transfer tube diameter of the outdoor heat exchanger is smaller than the heat transfer tube diameter of the indoor heat exchanger.
In this refrigeration circuit, similarly to the refrigeration circuit according to the second aspect, the capacity of the outdoor heat exchanger is smaller than the capacity of the indoor heat exchanger, so the amount of refrigerant in the refrigeration circuit is reduced. In addition, although an excessive refrigerant | coolant generate | occur | produces at the time of air_conditionaing | cooling driving | operation, since the excessive refrigerant | coolant is accommodated in a refrigerant | coolant storage tank, it will be prevented that it will interfere with refrigerant control.
 本発明の第6観点に係る冷凍回路は、第1観点または第2観点に係る冷凍回路であって、バイパス路がさらに設けられている。バイパス路は、冷媒貯留タンク内に溜まる冷媒のガス成分を圧縮機、或いは、圧縮機の吸込側の冷媒配管へ導く。
 この冷凍回路では、暖房運転時、つまり室外熱交換器が蒸発器として機能するとき、冷媒が室外熱交換器の入口手前の冷媒貯留タンクで液とガスとに分離され、ガス成分はバイパス路へ向う。その結果、蒸発に寄与しないガス成分は室外熱交換器に入らなくなり、その分、室外熱交換器を流れる冷媒量が減少し、室外熱交換器での冷媒の圧力損失が抑制される。
The refrigeration circuit according to the sixth aspect of the present invention is the refrigeration circuit according to the first aspect or the second aspect, and is further provided with a bypass. The bypass channel guides the gas component of the refrigerant accumulated in the refrigerant storage tank to the compressor or the refrigerant pipe on the suction side of the compressor.
In this refrigeration circuit, during heating operation, that is, when the outdoor heat exchanger functions as an evaporator, the refrigerant is separated into liquid and gas in the refrigerant storage tank in front of the inlet of the outdoor heat exchanger, and the gas component goes to the bypass path. Head over. As a result, gas components that do not contribute to evaporation do not enter the outdoor heat exchanger, the amount of refrigerant flowing through the outdoor heat exchanger is reduced correspondingly, and the pressure loss of refrigerant in the outdoor heat exchanger is suppressed.
 本発明の第7観点に係る冷凍回路は、第6観点に係る冷凍回路であって、バイパス路が流量調整機構を有している。
 圧縮機の運転周波数が高いときには、冷媒貯留タンクから気液混合冷媒がバイパス路を経て圧縮機の吸込側に戻り、圧縮機に吸い込まれる可能性がある。しかし、この冷凍回路では、バイパス路に流量調整機構が設けられているので、気液混合冷媒の液成分が減圧されて蒸発する。その結果、圧縮機の吸込側の冷媒配管に液成分が戻ることは防止される。
 また、この冷凍回路では、流量調整機構を通った冷媒が、室外熱交換器で蒸発して圧縮機に向う冷媒と合流するので、流量調整機構が電動膨張弁である場合、弁開度を制御することによって圧縮機に吸い込まれる直前の冷媒状態を、より最適に調整することが可能になる。さらに、この冷凍回路では、流量調整機構が電動膨張弁である場合、弁開度を制御することによって圧縮機に戻る冷媒量を増減させることができるので、室内熱交換器側の負荷に応じて冷凍回路の冷媒循環量を制御することも可能である。
A refrigeration circuit according to a seventh aspect of the present invention is the refrigeration circuit according to the sixth aspect, wherein the bypass path has a flow rate adjusting mechanism.
When the operating frequency of the compressor is high, there is a possibility that the gas-liquid mixed refrigerant returns from the refrigerant storage tank to the suction side of the compressor through the bypass and is sucked into the compressor. However, in this refrigeration circuit, since the flow rate adjusting mechanism is provided in the bypass passage, the liquid component of the gas-liquid mixed refrigerant is decompressed and evaporated. As a result, the liquid component is prevented from returning to the refrigerant piping on the suction side of the compressor.
In this refrigeration circuit, the refrigerant that has passed through the flow rate adjustment mechanism is evaporated by the outdoor heat exchanger and merged with the refrigerant that is directed to the compressor. Therefore, when the flow rate adjustment mechanism is an electric expansion valve, the valve opening degree is controlled. By doing so, the refrigerant state immediately before being sucked into the compressor can be adjusted more optimally. Furthermore, in this refrigeration circuit, when the flow rate adjustment mechanism is an electric expansion valve, the amount of refrigerant returning to the compressor can be increased or decreased by controlling the valve opening, so that the amount of refrigerant returning to the compressor can be increased or decreased. It is also possible to control the amount of refrigerant circulating in the refrigeration circuit.
 本発明の第8観点に係る冷凍回路は、第1観点または第2観点に係る冷凍回路であって、冷媒貯留タンクが、気液分離器である。この冷凍回路では、気液分離器が液冷媒を溜める冷媒貯留機能に加えて、液冷媒とガス冷媒を分離する機能を担うので、冷媒貯留容器と気液分離器とを併設する必要がなく冷凍回路が簡素化される。 The refrigeration circuit according to the eighth aspect of the present invention is the refrigeration circuit according to the first aspect or the second aspect, and the refrigerant storage tank is a gas-liquid separator. In this refrigeration circuit, the gas-liquid separator has a function of separating the liquid refrigerant and the gas refrigerant in addition to the refrigerant storage function for storing the liquid refrigerant, so that there is no need to install a refrigerant storage container and a gas-liquid separator. The circuit is simplified.
 本発明の第1観点から第5観点のいずれか1つに係る冷凍回路では、その余剰冷媒が冷媒貯留タンクに収容されるので、冷媒制御に支障をきたすことは防止される。
 本発明の第6観点に係る冷凍回路では、蒸発に寄与しないガス成分が室外熱交換器に入らなくなり、その分、室外熱交換器を流れる冷媒量が減少し、室外熱交換器での冷媒の圧力損失が抑制される。
In the refrigeration circuit according to any one of the first to fifth aspects of the present invention, the surplus refrigerant is accommodated in the refrigerant storage tank, so that the refrigerant control is prevented from being hindered.
In the refrigeration circuit according to the sixth aspect of the present invention, gas components that do not contribute to evaporation do not enter the outdoor heat exchanger, and accordingly, the amount of refrigerant flowing through the outdoor heat exchanger decreases, and the refrigerant in the outdoor heat exchanger decreases. Pressure loss is suppressed.
 本発明の第7観点に係る冷凍回路では、圧縮機の吸込側の冷媒配管に液成分が戻ることは防止される。また、圧縮機に吸い込まれる直前の冷媒状態をより最適に調整することが可能になる。さらに、室内熱交換器側の負荷に応じて冷凍回路の冷媒循環量を制御することも可能である。 In the refrigeration circuit according to the seventh aspect of the present invention, the liquid component is prevented from returning to the refrigerant piping on the suction side of the compressor. In addition, the refrigerant state immediately before being sucked into the compressor can be adjusted more optimally. Furthermore, it is also possible to control the refrigerant circulation amount of the refrigeration circuit according to the load on the indoor heat exchanger side.
 本発明の第8観点に係る冷凍回路では、気液分離器が液冷媒を溜める冷媒貯留機能に加えて、液冷媒とガス冷媒を分離する機能を担うので、冷媒貯留容器と気液分離器とを併設する必要がなく冷凍回路が簡素化される。 In the refrigeration circuit according to the eighth aspect of the present invention, since the gas-liquid separator has a function of separating the liquid refrigerant and the gas refrigerant in addition to the refrigerant storage function of storing the liquid refrigerant, the refrigerant storage container, the gas-liquid separator, The refrigeration circuit is simplified.
本発明の一実施形態に係る冷凍回路を使用した空気調和装置の構成図。The block diagram of the air conditioning apparatus which uses the refrigerating circuit which concerns on one Embodiment of this invention. 室内熱交換器の正面図。The front view of an indoor heat exchanger. 室外熱交換器の外観斜視図。The external appearance perspective view of an outdoor heat exchanger. 冷凍回路における室外熱交換器容積/室内熱交換器容積比を能力別に表したグラフ。The graph which represented the outdoor heat exchanger volume / indoor heat exchanger volume ratio in a refrigerating circuit according to capability. 気液分離器の簡略断面図。The simplified sectional view of a gas-liquid separator.
 以下図面を参照しながら、本発明の実施形態について説明する。なお、以下の実施形態は、本発明の具体例であって、本発明の技術的範囲を限定するものではない。
 (1)空気調和装置
 (1-1)全体構成
 図1は、本発明の一実施形態に係る冷凍回路を使用した空気調和装置の構成図である。図1において、空気調和装置1は、冷房運転及び暖房運転が可能な空気調和装置であり、室外機3と、室内機5と、室外機3と室内機5とを接続するための液冷媒連絡配管7及びガス冷媒連絡配管9とを備えている。
 (1-2)室内機
 室内機5は、室内熱交換器51と、室内ファン53とを有している。室内熱交換器51は、クロスフィン型熱交換器であり、室内空気との熱交換によって内部を流れる冷媒を蒸発又は凝縮させ、室内の空気を冷却又は加熱することができる。
Embodiments of the present invention will be described below with reference to the drawings. The following embodiments are specific examples of the present invention and do not limit the technical scope of the present invention.
(1) Air Conditioner (1-1) Overall Configuration FIG. 1 is a configuration diagram of an air conditioner using a refrigeration circuit according to an embodiment of the present invention. In FIG. 1, an air conditioner 1 is an air conditioner capable of cooling operation and heating operation, and communicates liquid refrigerant for connecting the outdoor unit 3, the indoor unit 5, and the outdoor unit 3 and the indoor unit 5. A pipe 7 and a gas refrigerant communication pipe 9 are provided.
(1-2) Indoor Unit The indoor unit 5 includes an indoor heat exchanger 51 and an indoor fan 53. The indoor heat exchanger 51 is a cross-fin type heat exchanger, and can evaporate or condense the refrigerant flowing in the interior by heat exchange with indoor air, thereby cooling or heating indoor air.
 (1-2-1)室内熱交換器
 図2は、室内熱交換器の正面図である。図2において、室内熱交換器51は、伝熱フィン511と伝熱管513とを備えている。伝熱フィン511は、薄いアルミニウム製の平板であり、一枚の伝熱フィン511には複数の貫通孔が形成されている。伝熱管513は、伝熱フィン511の貫通孔に挿入される直管513aと、隣り合う直管513aの端部同士を連結する第1U字管513b及び第2U字管513cとから成る。
 直管513aは、伝熱フィン511の貫通孔に挿入された後、拡管機によって拡管加工され、伝熱フィン511と密着する。直管513aと第1U字管513bとは一体に形成されており、第2U字管513cは、直管513aが伝熱フィン511の貫通孔に挿入され拡管加工された後、溶接などによって直管513aの端部に連結される。
(1-2-1) Indoor Heat Exchanger FIG. 2 is a front view of the indoor heat exchanger. In FIG. 2, the indoor heat exchanger 51 includes heat transfer fins 511 and heat transfer tubes 513. The heat transfer fins 511 are thin aluminum flat plates, and one heat transfer fin 511 has a plurality of through holes. The heat transfer tube 513 includes a straight tube 513a inserted into a through hole of the heat transfer fin 511, and a first U-shaped tube 513b and a second U-shaped tube 513c that connect ends of adjacent straight tubes 513a.
The straight pipe 513a is inserted into the through-holes of the heat transfer fins 511, and then is expanded by a pipe expander to be in close contact with the heat transfer fins 511. The straight pipe 513a and the first U-shaped pipe 513b are integrally formed, and the second U-shaped pipe 513c is straightened by welding after the straight pipe 513a is inserted into the through hole of the heat transfer fin 511 and expanded. It is connected to the end of 513a.
 (1-2-2)室内ファン
 室内ファン53は、回転することによって室内空気を取り込んで室内熱交換器51に送風し、室内熱交換器51と室内空気との熱交換を促進する。
 (1-3)室外機
 図1において、室外機3は、主に、圧縮機21、四路切換弁23、室外熱交換器25、冷媒貯留タンク27、膨張弁29、液側閉鎖弁37、ガス側閉鎖弁39、アキュームレータ31、及びバイパス路33を有している。さらに、室外機3は室外ファン41も有している。
 (1-3-1)圧縮機、四路切換弁およびアキュームレータ
 圧縮機21は、ガス冷媒を吸入して圧縮する。圧縮機21の吸込口手前には、アキュームレータ31が配置されており、圧縮機21に液冷媒が直に吸い込まれないようになっている。
(1-2-2) Indoor Fan The indoor fan 53 takes in indoor air by rotation and blows it to the indoor heat exchanger 51 to promote heat exchange between the indoor heat exchanger 51 and the indoor air.
(1-3) Outdoor Unit In FIG. 1, the outdoor unit 3 mainly includes a compressor 21, a four-way switching valve 23, an outdoor heat exchanger 25, a refrigerant storage tank 27, an expansion valve 29, a liquid side closing valve 37, A gas side closing valve 39, an accumulator 31, and a bypass passage 33 are provided. Furthermore, the outdoor unit 3 also has an outdoor fan 41.
(1-3-1) Compressor, four-way switching valve and accumulator The compressor 21 sucks and compresses the gas refrigerant. An accumulator 31 is arranged in front of the suction port of the compressor 21 so that liquid refrigerant is not directly sucked into the compressor 21.
 四路切換弁23は、冷房運転と暖房運転との切換時に、冷媒の流れの方向を切り換える。冷房運転時、四路切換弁23は、圧縮機21の吐出側と室外熱交換器25のガス側とを接続するとともに圧縮機21の吸入側とガス側閉鎖弁39とを接続する。つまり、図1の四路切換弁23内の実線で示された状態である。
 また、暖房運転時、四路切換弁23は、圧縮機21の吐出側とガス側閉鎖弁39とを接続するとともに圧縮機21の吸入側と室外熱交換器25のガス側とを接続する。つまり、図1の四路切換弁23内の点線で示された状態である。
 (1-3-2)室外熱交換器
 室外熱交換器25は、積層型熱交換器であって、室外空気との熱交換によって内部を流れる冷媒を凝縮又は蒸発させることができる。なお、室外ファン41が、この室外熱交換器25に対面するように配置されており、回転することによって室外空気を取り込んで室外熱交換器25に送風し、室外熱交換器25と室外空気との熱交換を促進する。
The four-way switching valve 23 switches the direction of the refrigerant flow when switching between the cooling operation and the heating operation. During the cooling operation, the four-way switching valve 23 connects the discharge side of the compressor 21 and the gas side of the outdoor heat exchanger 25 and connects the suction side of the compressor 21 and the gas side closing valve 39. That is, this is the state indicated by the solid line in the four-way selector valve 23 in FIG.
During the heating operation, the four-way switching valve 23 connects the discharge side of the compressor 21 and the gas side shut-off valve 39 and connects the suction side of the compressor 21 and the gas side of the outdoor heat exchanger 25. That is, this is the state indicated by the dotted line in the four-way selector valve 23 of FIG.
(1-3-2) Outdoor Heat Exchanger The outdoor heat exchanger 25 is a stacked heat exchanger, and can condense or evaporate the refrigerant flowing inside through heat exchange with outdoor air. In addition, the outdoor fan 41 is arrange | positioned so that this outdoor heat exchanger 25 may be faced, it takes in outdoor air by rotating, it blows to the outdoor heat exchanger 25, outdoor heat exchanger 25, outdoor air, Promote heat exchange.
 図3は、室外熱交換器の外観斜視図である。図3において、室外熱交換器25は、扁平管251、波形フィン253及びヘッダ255を有している。
 扁平管251は、アルミニウムまたはアルミニウム合金で成形されており、伝熱面となる平面部251aと、冷媒が流れる複数の内部流路(図示せず)を有している。扁平管251は、平面部251aを上下に向けた状態で複数段配列されている。
 波形フィン253は、波形に折り曲げられたアルミニウム製またはアルミニウム合金製のフィンである。波形フィン253は、上下に隣接する扁平管251に挟まれた通風空間に配置され、谷部および山部が扁平管251の平面部251aと接触している。なお、谷部と山部と平面部251aとはロウ付け溶接されている。
 ヘッダ255は、上下方向に複数段配列された扁平管251の両端に連結されている。ヘッダ255は、扁平管251を支持する機能と、冷媒を扁平管251の内部流路に導く機能と、内部流路から出てきた冷媒を集合させる機能とを有している。
FIG. 3 is an external perspective view of the outdoor heat exchanger. In FIG. 3, the outdoor heat exchanger 25 includes a flat tube 251, a corrugated fin 253, and a header 255.
The flat tube 251 is formed of aluminum or an aluminum alloy, and has a flat portion 251a serving as a heat transfer surface and a plurality of internal flow paths (not shown) through which a refrigerant flows. The flat tubes 251 are arranged in a plurality of stages with the flat portion 251a facing up and down.
The corrugated fins 253 are aluminum or aluminum alloy fins bent into a corrugated shape. The corrugated fins 253 are arranged in a ventilation space sandwiched between upper and lower flat tubes 251, and a valley portion and a mountain portion are in contact with a flat portion 251 a of the flat tube 251. In addition, the trough part, the peak part, and the plane part 251a are brazed and welded.
The header 255 is connected to both ends of the flat tubes 251 arranged in a plurality of stages in the vertical direction. The header 255 has a function of supporting the flat tube 251, a function of guiding the refrigerant to the internal flow path of the flat tube 251, and a function of collecting the refrigerant that has come out of the internal flow path.
 図3正面視において、右側のヘッダ255(以後、第1ヘッダとよぶ)の入口255aから流入した冷媒は、最上段の扁平管251の各内部流路へほぼ均等に分配され左側のヘッダ255(以後、第2ヘッダとよぶ)に向って流れる。第2ヘッダに達した冷媒は、2段目の扁平管251の各内部流路へ均等に分配され第1ヘッダへ向って流れる。以降、奇数段目の扁平管251内の冷媒は、第2ヘッダへ向って流れ、偶数段目の扁平管251内の冷媒は、第1ヘッダに向って流れる。そして、最下段で且つ偶数段目の扁平管251内の冷媒は、第1ヘッダに向って流れ、第1ヘッダで集合し出口255bから流出する。
 室外熱交換器25が蒸発器として機能するとき、扁平管251内を流れる冷媒は、波形フィン253を介して通風空間を流れる空気流から吸熱する。室外熱交換器25が凝縮器として機能するときは、扁平管251内を流れる冷媒は、波形フィン253を介して通風空間を流れる空気流へ放熱する。本実施形態では、室外熱交換器25を上記のような積層型熱交換器としたことによって、室外熱交換器25の容量が、室内熱交換器51の容量よりも小さくなっている。
In the front view of FIG. 3, the refrigerant flowing in from the inlet 255a of the right header 255 (hereinafter referred to as the first header) is distributed almost evenly to each internal flow path of the uppermost flat tube 251 and left header 255 ( Hereinafter, it flows toward the second header). The refrigerant that has reached the second header is evenly distributed to the internal flow paths of the second-stage flat tube 251 and flows toward the first header. Thereafter, the refrigerant in the odd-numbered flat tubes 251 flows toward the second header, and the refrigerant in the even-numbered flat tubes 251 flows toward the first header. Then, the refrigerant in the flat tube 251 at the lowest level and the even numbered level flows toward the first header, collects at the first header, and flows out from the outlet 255b.
When the outdoor heat exchanger 25 functions as an evaporator, the refrigerant flowing through the flat tube 251 absorbs heat from the air flow flowing through the ventilation space via the corrugated fins 253. When the outdoor heat exchanger 25 functions as a condenser, the refrigerant flowing in the flat tube 251 radiates heat to the air flow flowing in the ventilation space via the corrugated fins 253. In the present embodiment, since the outdoor heat exchanger 25 is a stacked heat exchanger as described above, the capacity of the outdoor heat exchanger 25 is smaller than the capacity of the indoor heat exchanger 51.
 図4は、冷凍回路における室外熱交換器容積/室内熱交換器容積比を能力別に表したグラフである。図4において、◇はパッケージエアコンの通常タイプ(クロスフィン型室外熱交換器)、◆はパッケージエアコンの室外熱交換器細径タイプ(積層型室外熱交換器)、△はルームエアコンの通常タイプ(クロスフィン型室外熱交換器)、▲はルームエアコンの室外熱交換器細径タイプ(積層型室外熱交換器)を示している。
 図4に示すように、室外熱交換器と室内熱交換器とが共にクロスフィン型熱交換器である組合せに対して、室外熱交換器だけを同等の熱交換性能を有する積層型熱交換器に替えたとき、室外熱交換器容量/室内熱交換器容積比が1.0を下回っている。これは、積層型熱交換器の容量がクロスフィン型の室外熱交換器の容積に比べて小さくなるだけでなく、それに接続されているクロスフィン型の室内熱交換器の容量よりも小さくなる、ことを意味している。それゆえ、冷房運転時に余剰冷媒が発生する。そこで、本実施形態の冷凍回路11では、その余剰冷媒を冷媒貯留タンク27に収容している。
FIG. 4 is a graph showing the outdoor heat exchanger volume / indoor heat exchanger volume ratio in the refrigeration circuit according to capacity. In FIG. 4, ◇ is a normal type of packaged air conditioner (cross fin type outdoor heat exchanger), ◆ is an outdoor heat exchanger of package air conditioner small diameter type (stacked type outdoor heat exchanger), and △ is a normal type of room air conditioner ( Cross fin type outdoor heat exchanger), and ▲ indicate outdoor heat exchanger small diameter type (stacked type outdoor heat exchanger) of room air conditioner.
As shown in FIG. 4, with respect to the combination in which the outdoor heat exchanger and the indoor heat exchanger are both cross-fin type heat exchangers, only the outdoor heat exchanger has a heat exchange performance equivalent to that of the stacked heat exchanger. , The outdoor heat exchanger capacity / indoor heat exchanger volume ratio is below 1.0. This is because not only the capacity of the laminated heat exchanger is smaller than the volume of the cross fin type outdoor heat exchanger, but also the capacity of the cross fin type indoor heat exchanger connected thereto, It means that. Therefore, surplus refrigerant is generated during the cooling operation. Therefore, in the refrigeration circuit 11 of the present embodiment, the excess refrigerant is stored in the refrigerant storage tank 27.
 なお、室外熱交換器容量/室内熱交換器容積比が0.3~0.9のときに、余剰冷媒を収容する冷媒貯留タンク27を用いることが好ましいが、室外熱交換器容量/室内熱交換器容積比が1.0の場合でも冷媒貯留タンク27を用いることによって、安定した冷媒制御が可能となる。
 (1-3-3)冷媒貯留タンク
 冷媒貯留タンク27は、余剰冷媒を溜めることが可能な容器である。例えば、室内熱交換器51が凝縮器として機能する暖房運転時に室内熱交換器51に収容することができる液冷媒量が1100cc、室外熱交換器25が凝縮器として機能する冷房運転時に室外熱交換器25に収容することができる液冷媒量が800ccである場合、冷房運転時に室外熱交換器25に収容しきれずに余った液冷媒300ccは、冷媒貯留タンク27に一時的に収容される。
In addition, when the outdoor heat exchanger capacity / indoor heat exchanger volume ratio is 0.3 to 0.9, it is preferable to use the refrigerant storage tank 27 that stores surplus refrigerant, but the outdoor heat exchanger capacity / indoor heat Even when the exchanger volume ratio is 1.0, the use of the refrigerant storage tank 27 enables stable refrigerant control.
(1-3-3) Refrigerant Storage Tank The refrigerant storage tank 27 is a container that can store excess refrigerant. For example, the amount of liquid refrigerant that can be accommodated in the indoor heat exchanger 51 during the heating operation in which the indoor heat exchanger 51 functions as a condenser is 1100 cc, and the outdoor heat exchange in the cooling operation in which the outdoor heat exchanger 25 functions as a condenser. When the amount of liquid refrigerant that can be stored in the cooler 25 is 800 cc, the remaining 300 cc of liquid refrigerant that cannot be stored in the outdoor heat exchanger 25 during the cooling operation is temporarily stored in the refrigerant storage tank 27.
 また、例えば暖房運転時、冷媒貯留タンク27に入る直前の冷媒には、膨張弁29を通過するときに発生したガス成分が含まれているが、冷媒貯留タンク27に入った後、液冷媒とガス冷媒とに分離され、下部側に液冷媒、上部側にガス冷媒が貯留される。
 (1-3-4)膨張弁
 膨張弁29は、冷媒圧力や冷媒流量の調節を行うために、冷媒貯留タンク27と液側閉鎖弁37の間の配管に接続され、冷房運転時及び暖房運転時のいずれにおいても、冷媒を膨張させる機能を有している。
 (1-3-5)バイパス路と流量調整弁
 冷媒貯留タンク27で分離されたガス冷媒は、バイパス路33を通って圧縮機21の吸い込み側へ流れる。また、冷媒貯留タンク27で分離された液冷媒は、室外熱交換器25へ流れる。なお、バイパス路33の途中には、流量調整弁35が接続されている。本実施形態では、流量調整弁35は電動膨張弁である。
Further, for example, the refrigerant immediately before entering the refrigerant storage tank 27 during the heating operation includes a gas component generated when passing through the expansion valve 29. The refrigerant is separated into the gas refrigerant, the liquid refrigerant is stored on the lower side, and the gas refrigerant is stored on the upper side.
(1-3-4) Expansion Valve The expansion valve 29 is connected to a pipe between the refrigerant storage tank 27 and the liquid side shut-off valve 37 in order to adjust the refrigerant pressure and the refrigerant flow rate. At any time, it has the function of expanding the refrigerant.
(1-3-5) Bypass Path and Flow Rate Control Valve The gas refrigerant separated in the refrigerant storage tank 27 flows through the bypass path 33 to the suction side of the compressor 21. Further, the liquid refrigerant separated in the refrigerant storage tank 27 flows to the outdoor heat exchanger 25. A flow rate adjustment valve 35 is connected in the middle of the bypass path 33. In the present embodiment, the flow rate adjustment valve 35 is an electric expansion valve.
 (1-3-6)閉鎖弁および冷媒連絡配管
 液側閉鎖弁37及びガス側閉鎖弁39は、それぞれ、液冷媒連絡配管7及びガス冷媒連絡配管9に接続されている。液冷媒連絡配管7は、室内機5の室内熱交換器51の液側と室外機3の液側閉鎖弁37との間を接続している。ガス冷媒連絡配管9は、室内機5の室内熱交換器51のガス側と室外機3のガス側閉鎖弁39との間を接続している。
 その結果、冷房運転時に圧縮機21、室外熱交換器25、膨張弁29および室内熱交換器51の順に冷媒が流れ、暖房運転時に圧縮機21、室内熱交換器51、膨張弁29および室外熱交換器25の順に冷媒が流れる冷凍回路11が形成されている。
 (2)暖房運転時の冷媒の流れ
 図1において、暖房運転時、四路切換弁23は、圧縮機21の吐出側とガス側閉鎖弁39とを接続するとともに圧縮機21の吸入側と室外熱交換器25のガス側とを接続する。また、膨張弁29は開度を絞る。その結果、室外熱交換器25が冷媒の蒸発器として機能し、かつ、室内熱交換器51が冷媒の凝縮器として機能する。
(1-3-6) Closing Valve and Refrigerant Communication Pipe The liquid side closing valve 37 and the gas side closing valve 39 are connected to the liquid refrigerant communication pipe 7 and the gas refrigerant communication pipe 9, respectively. The liquid refrigerant communication pipe 7 connects between the liquid side of the indoor heat exchanger 51 of the indoor unit 5 and the liquid side closing valve 37 of the outdoor unit 3. The gas refrigerant communication pipe 9 connects between the gas side of the indoor heat exchanger 51 of the indoor unit 5 and the gas side closing valve 39 of the outdoor unit 3.
As a result, the refrigerant flows in the order of the compressor 21, the outdoor heat exchanger 25, the expansion valve 29, and the indoor heat exchanger 51 during the cooling operation, and the compressor 21, the indoor heat exchanger 51, the expansion valve 29, and the outdoor heat during the heating operation. A refrigeration circuit 11 through which refrigerant flows is formed in the order of the exchanger 25.
(2) Flow of Refrigerant During Heating Operation In FIG. 1, during the heating operation, the four-way switching valve 23 connects the discharge side of the compressor 21 and the gas side shut-off valve 39, and at the suction side and the outdoor side of the compressor 21. The gas side of the heat exchanger 25 is connected. In addition, the opening of the expansion valve 29 is reduced. As a result, the outdoor heat exchanger 25 functions as a refrigerant evaporator, and the indoor heat exchanger 51 functions as a refrigerant condenser.
 このような状態の冷凍回路11において、低圧の冷媒は、圧縮機21に吸入され、高圧に圧縮された後に吐出される。圧縮機21から吐出された高圧の冷媒は、四路切換弁23、ガス側閉鎖弁39及びガス冷媒連絡配管9を通って、室内熱交換器51に入る。室内熱交換器51に入った高圧の冷媒は、そこで室内空気と熱交換を行って凝縮する。これにより、室内空気は加熱される。
 なお、室内熱交換器51の容量は室外熱交換器25の容量より大きいので、暖房運転時ではほとんどの液冷媒が凝縮器(室内熱交換器51)に収容される。室内熱交換器51で凝縮した高圧の冷媒は、液冷媒連絡配管7及び液側閉鎖弁37を通って、膨張弁29に至る。
 冷媒は、膨張弁29によって低圧に減圧され、その後、冷媒貯留タンク27に入る。冷媒貯留タンク27に入る直前の冷媒には、膨張弁29を通過するときに発生したガス成分が含まれているが、冷媒貯留タンク27に入った後、液冷媒とガス冷媒とに分離され、下部側に液冷媒、上部側にガス冷媒が貯留される。
In the refrigeration circuit 11 in such a state, the low-pressure refrigerant is sucked into the compressor 21 and is discharged after being compressed to a high pressure. The high-pressure refrigerant discharged from the compressor 21 enters the indoor heat exchanger 51 through the four-way switching valve 23, the gas side closing valve 39 and the gas refrigerant communication pipe 9. The high-pressure refrigerant that has entered the indoor heat exchanger 51 condenses by exchanging heat with the indoor air. Thereby, indoor air is heated.
In addition, since the capacity | capacitance of the indoor heat exchanger 51 is larger than the capacity | capacitance of the outdoor heat exchanger 25, most liquid refrigerants are accommodated in a condenser (indoor heat exchanger 51) at the time of heating operation. The high-pressure refrigerant condensed in the indoor heat exchanger 51 reaches the expansion valve 29 through the liquid refrigerant communication pipe 7 and the liquid side closing valve 37.
The refrigerant is decompressed to a low pressure by the expansion valve 29 and then enters the refrigerant storage tank 27. The refrigerant immediately before entering the refrigerant storage tank 27 contains gas components generated when passing through the expansion valve 29, but after entering the refrigerant storage tank 27, it is separated into liquid refrigerant and gas refrigerant, Liquid refrigerant is stored on the lower side, and gas refrigerant is stored on the upper side.
 また、流量調整弁35は開いているので、ガス冷媒はバイパス路33を通って圧縮機21の吸い込み側へ向う。液冷媒は、室外熱交換器25に送られ、そこで、室外ファン41によって供給される室外空気と熱交換を行って蒸発する。室外熱交換器25の入口からはガス冷媒がほとんど入らないので、室外熱交換器25を流れる冷媒量が減り、その分、圧力損失が抑制される。
 室外熱交換器25で蒸発した低圧の冷媒は、四路切換弁23を通じて、再び、圧縮機21に吸入される。
 (3)冷房運転時の冷媒の流れ
 図1において、冷房運転時、四路切換弁23が、圧縮機21の吐出側と室外熱交換器25のガス側とを接続するとともに圧縮機21の吸入側とガス側閉鎖弁39とを接続する。また、膨張弁29は開度を絞る。その結果、室外熱交換器25が冷媒の凝縮器として機能し、且つ、室内熱交換器51が冷媒の蒸発器として機能する。
Further, since the flow rate adjustment valve 35 is open, the gas refrigerant passes through the bypass passage 33 and moves toward the suction side of the compressor 21. The liquid refrigerant is sent to the outdoor heat exchanger 25, where it evaporates by exchanging heat with outdoor air supplied by the outdoor fan 41. Since almost no gas refrigerant enters from the inlet of the outdoor heat exchanger 25, the amount of refrigerant flowing through the outdoor heat exchanger 25 is reduced, and the pressure loss is suppressed accordingly.
The low-pressure refrigerant evaporated in the outdoor heat exchanger 25 is again sucked into the compressor 21 through the four-way switching valve 23.
(3) Refrigerant Flow During Cooling Operation In FIG. 1, during the cooling operation, the four-way switching valve 23 connects the discharge side of the compressor 21 and the gas side of the outdoor heat exchanger 25 and sucks the compressor 21. And the gas side closing valve 39 are connected. In addition, the opening of the expansion valve 29 is reduced. As a result, the outdoor heat exchanger 25 functions as a refrigerant condenser, and the indoor heat exchanger 51 functions as a refrigerant evaporator.
 このような状態の冷媒回路において、低圧の冷媒は、圧縮機21に吸入され、高圧に圧縮された後に吐出される。圧縮機21から吐出された高圧の冷媒は、四路切換弁23を通じて、室外熱交換器25に送られる。
 室外熱交換器25に送られた高圧の冷媒は、そこで室外空気と熱交換を行って凝縮する。室外熱交換器25において凝縮器した高圧の冷媒は、冷媒貯留タンク27に送られる。なお、室外熱交換器25の容量は室内熱交換器51の容量より小さいので、冷房運転時では凝縮器(室外熱交換器25)が全ての液冷媒を収容することができない。それゆえ、室外熱交換器25に収容しきれない液冷媒は冷媒貯留タンク27に溜まり、冷媒貯留タンク27は液冷媒で満たされる。なお、流量調整弁35は閉じているので、液冷媒はバイパス路33へ流れない。
In the refrigerant circuit in such a state, the low-pressure refrigerant is sucked into the compressor 21 and is discharged after being compressed to a high pressure. The high-pressure refrigerant discharged from the compressor 21 is sent to the outdoor heat exchanger 25 through the four-way switching valve 23.
The high-pressure refrigerant sent to the outdoor heat exchanger 25 exchanges heat with outdoor air and condenses there. The high-pressure refrigerant condensed in the outdoor heat exchanger 25 is sent to the refrigerant storage tank 27. In addition, since the capacity | capacitance of the outdoor heat exchanger 25 is smaller than the capacity | capacitance of the indoor heat exchanger 51, a condenser (outdoor heat exchanger 25) cannot accommodate all the liquid refrigerants at the time of air_conditionaing | cooling operation. Therefore, the liquid refrigerant that cannot be accommodated in the outdoor heat exchanger 25 is accumulated in the refrigerant storage tank 27, and the refrigerant storage tank 27 is filled with the liquid refrigerant. In addition, since the flow rate adjustment valve 35 is closed, the liquid refrigerant does not flow to the bypass passage 33.
 冷媒貯留タンク27を出た液冷媒は、膨張弁29に送られて低圧に減圧される。膨張弁29で減圧された低圧の冷媒は、液側閉鎖弁37及び液冷媒連絡配管7を通って、室内熱交換器51に入る。
 室内熱交換器51に入った低圧の冷媒は、そこで室内空気と熱交換を行って蒸発する。これにより、室内空気は冷却される。室内熱交換器51において蒸発した低圧の冷媒は、ガス冷媒連絡配管9、ガス側閉鎖弁39及び四路切換弁23を通じて、再び、圧縮機21に吸入される。
 (4)特徴
 (4-1)
 冷凍回路11は、室内熱交換器51がクロスフィン型熱交換器、室外熱交換器25が積層型熱交換器である。また、室外熱交換器25と膨張弁29との間に、冷媒貯留タンク27が設けられている。室外熱交換器25の容量が室内熱交換器51の容量より小さくなるので、冷房運転時に余剰冷媒が発生するが、この冷凍回路では、その余剰冷媒が冷媒貯留タンク27に収容されるので、冷媒制御に支障をきたすことは防止される。
The liquid refrigerant that has exited the refrigerant storage tank 27 is sent to the expansion valve 29 and decompressed to a low pressure. The low-pressure refrigerant depressurized by the expansion valve 29 enters the indoor heat exchanger 51 through the liquid side closing valve 37 and the liquid refrigerant communication pipe 7.
The low-pressure refrigerant that has entered the indoor heat exchanger 51 evaporates by exchanging heat with the indoor air. Thereby, indoor air is cooled. The low-pressure refrigerant evaporated in the indoor heat exchanger 51 is again sucked into the compressor 21 through the gas refrigerant communication pipe 9, the gas side closing valve 39 and the four-way switching valve 23.
(4) Features (4-1)
In the refrigeration circuit 11, the indoor heat exchanger 51 is a cross-fin heat exchanger, and the outdoor heat exchanger 25 is a stacked heat exchanger. A refrigerant storage tank 27 is provided between the outdoor heat exchanger 25 and the expansion valve 29. Since the capacity of the outdoor heat exchanger 25 is smaller than the capacity of the indoor heat exchanger 51, surplus refrigerant is generated during the cooling operation. However, in this refrigeration circuit, the surplus refrigerant is stored in the refrigerant storage tank 27. It is prevented that the control is disturbed.
 (4-2)
 冷凍回路11は、室外熱交換器25の容積は、室内熱交換器51の容積の100%以下である。また、室外熱交換器25と膨張弁29との間に、冷媒貯留タンク27が設けられている。室外熱交換器25の容量が室内熱交換器51の容量以下となることにより、冷房運転時に余剰冷媒が発生するが、その余剰冷媒が冷媒貯留タンクに収容されるので、冷媒制御に支障をきたすことは防止される。
 (4-3)
 冷凍回路11では、バイパス路33が設けられている。バイパス路33は、冷媒貯留タンク27内に溜まる冷媒のガス成分を圧縮機21、或いは、圧縮機21の吸込側の冷媒配管へ導く。暖房運転時、つまり室外熱交換器25が蒸発器として機能するとき、冷媒が室外熱交換器25の入口手前の冷媒貯留タンク27で液とガスとに分離され、ガス成分はバイパス路へ向う。その結果、蒸発に寄与しないガス成分は室外熱交換器25に入らなくなり、その分、室外熱交換器25を流れる冷媒量が減少し、室外熱交換器25での冷媒の圧力損失が抑制される。
(4-2)
In the refrigeration circuit 11, the volume of the outdoor heat exchanger 25 is 100% or less of the volume of the indoor heat exchanger 51. A refrigerant storage tank 27 is provided between the outdoor heat exchanger 25 and the expansion valve 29. When the capacity of the outdoor heat exchanger 25 is equal to or less than the capacity of the indoor heat exchanger 51, surplus refrigerant is generated during the cooling operation. However, since the surplus refrigerant is stored in the refrigerant storage tank, the refrigerant control is hindered. This is prevented.
(4-3)
In the refrigeration circuit 11, a bypass path 33 is provided. The bypass path 33 guides the refrigerant gas component stored in the refrigerant storage tank 27 to the compressor 21 or the refrigerant pipe on the suction side of the compressor 21. During the heating operation, that is, when the outdoor heat exchanger 25 functions as an evaporator, the refrigerant is separated into liquid and gas in the refrigerant storage tank 27 in front of the inlet of the outdoor heat exchanger 25, and the gas component goes to the bypass path. As a result, gas components that do not contribute to evaporation do not enter the outdoor heat exchanger 25, and accordingly, the amount of refrigerant flowing through the outdoor heat exchanger 25 decreases, and the pressure loss of refrigerant in the outdoor heat exchanger 25 is suppressed. .
 (4-4)
 圧縮機21の運転周波数が高いときには、冷媒貯留タンク27から気液混合冷媒がバイパス路33を経て圧縮機21の吸込側に戻り、圧縮機21に吸い込まれる可能性があるが、バイパス路33に流量調整弁35が設けられているので、気液混合冷媒の液成分が減圧されて蒸発する。その結果、圧縮機21の吸込側の冷媒配管に液成分が戻ることは防止される。
 (4-5)
 また、流量調整弁35を通った冷媒が、室外熱交換器25で蒸発して圧縮機21に向う冷媒と合流するので、流量調整弁35が電動膨張弁である場合、弁開度を制御することによって圧縮機21に吸い込まれる直前の冷媒状態を、より最適に調整することが可能になる。
(4-4)
When the operating frequency of the compressor 21 is high, the gas-liquid mixed refrigerant may return from the refrigerant storage tank 27 via the bypass passage 33 to the suction side of the compressor 21 and be sucked into the compressor 21. Since the flow rate adjusting valve 35 is provided, the liquid component of the gas-liquid mixed refrigerant is depressurized and evaporated. As a result, the liquid component is prevented from returning to the refrigerant pipe on the suction side of the compressor 21.
(4-5)
In addition, since the refrigerant that has passed through the flow rate adjustment valve 35 evaporates in the outdoor heat exchanger 25 and merges with the refrigerant that is directed to the compressor 21, the valve opening degree is controlled when the flow rate adjustment valve 35 is an electric expansion valve. As a result, the refrigerant state immediately before being sucked into the compressor 21 can be adjusted more optimally.
 (4-6)
 さらに、流量調整弁35が電動膨張弁である場合、弁開度を制御することによって圧縮機21に戻る冷媒量を増減させることができるので、室内熱交換器51側の負荷に応じて冷凍回路11の冷媒循環量を制御することも可能である。
 (5)変形例
 ここでは、冷媒貯留タンク27が気液分離器である変形例について説明する。図5は、気液分離器の簡略断面図である。図5において、気液分離器は、サイクロン方式であって、円筒容器271、第1接続管273、第2接続管275、及び第3接続管277を有している。
 第1接続管273は、円筒容器271の円周側壁の接線方向に連結されており、円筒容器271の内部と膨張弁29とを連絡する。第2接続管275は、円筒容器271の底壁に連結されており、円筒容器271の内部と室外熱交換器25とを連絡する。第3接続管277は、円筒容器271の天井壁に連結されており、円筒容器271の内部とバイパス路33とを連絡する。
(4-6)
Further, when the flow rate adjustment valve 35 is an electric expansion valve, the amount of refrigerant returning to the compressor 21 can be increased or decreased by controlling the valve opening, so that the refrigeration circuit according to the load on the indoor heat exchanger 51 side. It is also possible to control the refrigerant circulation amount of 11.
(5) Modified Example Here, a modified example in which the refrigerant storage tank 27 is a gas-liquid separator will be described. FIG. 5 is a simplified cross-sectional view of the gas-liquid separator. In FIG. 5, the gas-liquid separator is of a cyclone type and includes a cylindrical container 271, a first connection pipe 273, a second connection pipe 275, and a third connection pipe 277.
The first connecting pipe 273 is connected in the tangential direction of the circumferential side wall of the cylindrical container 271, and communicates the inside of the cylindrical container 271 and the expansion valve 29. The second connection pipe 275 is connected to the bottom wall of the cylindrical container 271 and connects the inside of the cylindrical container 271 and the outdoor heat exchanger 25. The third connecting pipe 277 is connected to the ceiling wall of the cylindrical container 271 and connects the inside of the cylindrical container 271 and the bypass path 33.
 暖房運転時、膨張弁29で減圧され気液混合状態となった冷媒は、第1接続管273から円筒容器271内に流入し、その円周側壁の内周面271bに沿って渦を巻くように流れ、そのとき、その内周面271bに液冷媒が付着し液冷媒とガス冷媒とが効率よく分離される。
 液冷媒は重力によって降下し下部に溜まり、第2接続管275を通って室外熱交換器25に向う。他方、ガス冷媒は旋回しながら上昇し、第3接続管277を通ってバイパス路33へ流れる。
 冷房運転時、室外熱交換器25において凝縮して飽和液となった高圧の冷媒は、第2接続管275から円筒容器271内に流入し、円筒容器271は液冷媒で満たされる。液冷媒は、第1接続管273を通って膨張弁29に向う。他方、円筒容器271内の液冷媒の一部は第3接続管277を通ってバイパス路33へ流れる。
During the heating operation, the refrigerant that has been decompressed by the expansion valve 29 and is in a gas-liquid mixed state flows into the cylindrical container 271 from the first connection pipe 273 and vortexes along the inner peripheral surface 271b of the circumferential side wall. At that time, the liquid refrigerant adheres to the inner peripheral surface 271b, and the liquid refrigerant and the gas refrigerant are efficiently separated.
The liquid refrigerant descends due to gravity and accumulates in the lower part, passes through the second connection pipe 275, and moves toward the outdoor heat exchanger 25. On the other hand, the gas refrigerant rises while turning, and flows to the bypass path 33 through the third connection pipe 277.
During the cooling operation, the high-pressure refrigerant that has condensed into the saturated liquid in the outdoor heat exchanger 25 flows into the cylindrical container 271 from the second connection pipe 275, and the cylindrical container 271 is filled with the liquid refrigerant. The liquid refrigerant passes through the first connection pipe 273 toward the expansion valve 29. On the other hand, a part of the liquid refrigerant in the cylindrical container 271 flows to the bypass path 33 through the third connection pipe 277.
 以上のように、変形例に係る冷凍回路11では、冷媒貯留タンク27がサイクロン方式の気液分離器であるので、冷媒が気液分離器の内周面271bに沿って旋回する間にその内周面に液冷媒が付着し、気液分離が効率よく行われる。
 また、気液分離器が液冷媒を溜める冷媒貯留機能に加えて、液冷媒とガス冷媒を分離する機能を担うので、冷媒貯留容器と気液分離器とを併設する必要がなく冷凍回路が簡素化される。
 (6)その他の実施形態
 (6-1)
 上記実施形態では、室外熱交換器25が、複数の扁平管251と波形フィン253とを有する積層型熱交換器であって、複数の扁平管251が間隔をあけて積み重なるように配列され、波形フィン253が隣接する扁平管251に挟まれている。
As described above, in the refrigeration circuit 11 according to the modified example, since the refrigerant storage tank 27 is a cyclone type gas-liquid separator, the refrigerant is swirled along the inner peripheral surface 271b of the gas-liquid separator. Liquid refrigerant adheres to the peripheral surface, and gas-liquid separation is performed efficiently.
In addition to the refrigerant storage function for storing liquid refrigerant, the gas-liquid separator has the function of separating liquid refrigerant and gas refrigerant, so there is no need to install a refrigerant storage container and gas-liquid separator, and the refrigeration circuit is simple. It becomes.
(6) Other embodiments (6-1)
In the above-described embodiment, the outdoor heat exchanger 25 is a stacked heat exchanger having a plurality of flat tubes 251 and corrugated fins 253, and the plurality of flat tubes 251 are arranged so as to be stacked at intervals. Fins 253 are sandwiched between adjacent flat tubes 251.
 しかし、室外熱交換器25は、上記のような構成に限定されることはなく、例えば、扁平管が蛇行形状に成形され、フィンが扁平管の互いに隣接する面の間に挟まれている、という構成でも、上記実施形態と同様の効果が得られる。
 (6-2)
 また、冷房運転時に室外熱交換器25を水で冷却するような冷凍装置の場合、室外熱交換器25および室内熱交換器51がともにクロスフィン型熱交換器であって、室外熱交換器25の伝熱管径が室内熱交換器51の伝熱管径よりも細い、という構成でも、上記実施形態と同様の効果が得られる。
However, the outdoor heat exchanger 25 is not limited to the above-described configuration. For example, the flat tube is formed in a meandering shape, and the fins are sandwiched between adjacent surfaces of the flat tube. Even with this configuration, the same effect as the above embodiment can be obtained.
(6-2)
In the case of a refrigeration apparatus that cools the outdoor heat exchanger 25 with water during the cooling operation, both the outdoor heat exchanger 25 and the indoor heat exchanger 51 are cross-fin heat exchangers, and the outdoor heat exchanger 25 Even if the heat transfer tube diameter is smaller than the heat transfer tube diameter of the indoor heat exchanger 51, the same effect as in the above embodiment can be obtained.
  以上のように、本発明によれば、簡素で高性能な冷凍回路が提供されるので、空気調和装置に限らず、ヒートポンプ式給湯機にも有用である。 As described above, according to the present invention, since a simple and high-performance refrigeration circuit is provided, it is useful not only for an air conditioner but also for a heat pump water heater.
11 冷凍回路
21 圧縮機
25 室外熱交換器
27 冷媒貯留タンク
29 膨張弁
33 バイパス路
35 流量調整弁(流量調整機構)
51 室内熱交換器
DESCRIPTION OF SYMBOLS 11 Refrigeration circuit 21 Compressor 25 Outdoor heat exchanger 27 Refrigerant storage tank 29 Expansion valve 33 Bypass path 35 Flow rate adjustment valve (flow rate adjustment mechanism)
51 Indoor heat exchanger
特開平6-143991号公報JP-A-6-143991

Claims (8)

  1.  冷房運転時に圧縮機(21)、室外熱交換器(25)、膨張弁(29)および室内熱交換器(51)の順に冷媒が流れ、暖房運転時に前記圧縮機(21)、前記室内熱交換器(51)、前記膨張弁(29)および前記室外熱交換器(25)の順に冷媒が流れる冷凍回路であって、
     前記室内熱交換器(51)がクロスフィン型熱交換器、前記室外熱交換器(25)が積層型熱交換器であり、
     前記室外熱交換器(25)と前記膨張弁(29)との間に、冷媒貯留タンク(27)が設けられている、
    冷凍回路(11)。
    The refrigerant flows in the order of the compressor (21), the outdoor heat exchanger (25), the expansion valve (29), and the indoor heat exchanger (51) during the cooling operation, and the compressor (21) and the indoor heat exchange during the heating operation. A refrigerant circuit through which refrigerant flows in the order of the vessel (51), the expansion valve (29), and the outdoor heat exchanger (25),
    The indoor heat exchanger (51) is a cross-fin type heat exchanger, and the outdoor heat exchanger (25) is a stacked heat exchanger,
    A refrigerant storage tank (27) is provided between the outdoor heat exchanger (25) and the expansion valve (29).
    Refrigeration circuit (11).
  2.  冷房運転時に圧縮機(21)、室外熱交換器(25)、膨張弁(29)および室内熱交換器(51)の順に冷媒が流れ、暖房運転時に前記圧縮機(21)、前記室内熱交換器(51)、前記膨張弁(29)および前記室外熱交換器(25)の順に冷媒が流れる冷凍回路であって、
     前記室外熱交換器(25)の容積は、前記室内熱交換器(51)の容積の100%以下であり、
     前記室外熱交換器(25)と前記膨張弁(29)との間に、冷媒貯留タンク(27)が設けられている、
    冷凍回路(11)。
    The refrigerant flows in the order of the compressor (21), the outdoor heat exchanger (25), the expansion valve (29), and the indoor heat exchanger (51) during the cooling operation, and the compressor (21) and the indoor heat exchange during the heating operation. A refrigerant circuit through which refrigerant flows in the order of the vessel (51), the expansion valve (29), and the outdoor heat exchanger (25),
    The volume of the outdoor heat exchanger (25) is 100% or less of the volume of the indoor heat exchanger (51),
    A refrigerant storage tank (27) is provided between the outdoor heat exchanger (25) and the expansion valve (29).
    Refrigeration circuit (11).
  3.  前記室外熱交換器(25)が、
     間隔をあけて積み重なるように配列された複数の扁平管と、
     隣接する前記扁平管に挟まれたフィンと、
    を有する積層型熱交換器である、
    請求項1又は請求項2に記載の冷凍回路(11)。
    The outdoor heat exchanger (25)
    A plurality of flat tubes arranged to be stacked at intervals;
    A fin sandwiched between adjacent flat tubes;
    A stacked heat exchanger having
    The refrigeration circuit (11) according to claim 1 or 2.
  4.  前記室外熱交換器(25)が、
     蛇行形状に成形された扁平管と、
     前記扁平管の互いに隣接する面の間に挟まれたフィンと、
    を有する積層型熱交換器である、
    請求項1又は請求項2に記載の冷凍回路(11)。
    The outdoor heat exchanger (25)
    A flat tube molded into a meandering shape;
    Fins sandwiched between adjacent surfaces of the flat tube;
    A stacked heat exchanger having
    The refrigeration circuit (11) according to claim 1 or 2.
  5.  前記室外熱交換器(25)および前記室内熱交換器(51)がともにクロスフィン型熱交換器であり、
     前記室外熱交換器(25)の伝熱管径が、前記室内熱交換器(51)の伝熱管径よりも細く設定されている、
    請求項2に記載の冷凍回路(11)。
    Both the outdoor heat exchanger (25) and the indoor heat exchanger (51) are cross-fin heat exchangers,
    The heat transfer tube diameter of the outdoor heat exchanger (25) is set to be thinner than the heat transfer tube diameter of the indoor heat exchanger (51).
    The refrigeration circuit (11) according to claim 2.
  6.  前記冷媒貯留タンク(27)内に溜まる冷媒のガス成分を前記圧縮機(21)、或いは、前記圧縮機(21)の吸込側の冷媒配管へ導くバイパス路(33)がさらに設けられている、
    請求項1又は請求項2に記載の冷凍回路(11)。
    A bypass path (33) for guiding the gas component of the refrigerant stored in the refrigerant storage tank (27) to the compressor (21) or a refrigerant pipe on the suction side of the compressor (21);
    The refrigeration circuit (11) according to claim 1 or 2.
  7.  前記バイパス路(33)は流量調整機構(35)を有する、
    請求項6に記載の冷凍回路(11)。
    The bypass path (33) has a flow rate adjustment mechanism (35).
    The refrigeration circuit (11) according to claim 6.
  8.  前記冷媒貯留タンク(27)が、気液分離器である、
    請求項1又は請求項2に記載の冷凍回路(11)。
    The refrigerant storage tank (27) is a gas-liquid separator.
    The refrigeration circuit (11) according to claim 1 or 2.
PCT/JP2011/071612 2010-09-30 2011-09-22 Refrigeration circuit WO2012043377A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2011800469860A CN103140728A (en) 2010-09-30 2011-09-22 Refrigeration circuit
AU2011309326A AU2011309326A1 (en) 2010-09-30 2011-09-22 Refrigeration circuit
EP11828934.7A EP2623894A4 (en) 2010-09-30 2011-09-22 Refrigeration circuit
KR1020137010694A KR20130059450A (en) 2010-09-30 2011-09-22 Refrigeration circuit
US13/824,709 US20130174595A1 (en) 2010-09-30 2011-09-22 Refrigeration circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010222719A JP2012077983A (en) 2010-09-30 2010-09-30 Refrigerating circuit
JP2010-222719 2010-09-30

Publications (1)

Publication Number Publication Date
WO2012043377A1 true WO2012043377A1 (en) 2012-04-05

Family

ID=45892828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071612 WO2012043377A1 (en) 2010-09-30 2011-09-22 Refrigeration circuit

Country Status (7)

Country Link
US (1) US20130174595A1 (en)
EP (1) EP2623894A4 (en)
JP (1) JP2012077983A (en)
KR (1) KR20130059450A (en)
CN (1) CN103140728A (en)
AU (1) AU2011309326A1 (en)
WO (1) WO2012043377A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108139119A (en) * 2015-10-08 2018-06-08 三菱电机株式会社 Refrigerating circulatory device

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103407A1 (en) * 2012-12-28 2014-07-03 三菱電機株式会社 Air-conditioning device
JP6036357B2 (en) * 2013-02-05 2016-11-30 ダイキン工業株式会社 Air conditioner
JP2015078792A (en) * 2013-10-17 2015-04-23 日立アプライアンス株式会社 Air conditioning device
AU2014385084B2 (en) * 2014-03-07 2017-08-03 Mitsubishi Electric Corporation Air-conditioning apparatus
US9976785B2 (en) 2014-05-15 2018-05-22 Lennox Industries Inc. Liquid line charge compensator
US10330358B2 (en) 2014-05-15 2019-06-25 Lennox Industries Inc. System for refrigerant pressure relief in HVAC systems
JP6423643B2 (en) 2014-08-08 2018-11-14 東京エレクトロン株式会社 Method for etching a multilayer film
JP6339963B2 (en) 2015-04-06 2018-06-06 東京エレクトロン株式会社 Etching method
JP6494424B2 (en) 2015-05-29 2019-04-03 東京エレクトロン株式会社 Etching method
JP6541439B2 (en) 2015-05-29 2019-07-10 東京エレクトロン株式会社 Etching method
JP6945388B2 (en) 2017-08-23 2021-10-06 東京エレクトロン株式会社 Etching method and etching processing equipment
JP6883495B2 (en) 2017-09-04 2021-06-09 東京エレクトロン株式会社 Etching method
JP6570200B2 (en) * 2017-12-21 2019-09-04 本田技研工業株式会社 Electric vehicle
JP6620389B2 (en) * 2017-12-21 2019-12-18 本田技研工業株式会社 Electric vehicle
US10663199B2 (en) 2018-04-19 2020-05-26 Lennox Industries Inc. Method and apparatus for common manifold charge compensator
US10830514B2 (en) 2018-06-21 2020-11-10 Lennox Industries Inc. Method and apparatus for charge compensator reheat valve
JP2021055958A (en) 2019-09-30 2021-04-08 ダイキン工業株式会社 Freezer
EP3862660A1 (en) * 2020-02-06 2021-08-11 Carrier Corporation Heat pump system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06143991A (en) 1992-11-13 1994-05-24 Calsonic Corp Condenser of automobile air conditioner
WO2006013769A1 (en) * 2004-08-04 2006-02-09 Daikin Industries, Ltd. Air conditioner
JP2007285635A (en) * 2006-04-19 2007-11-01 Hitachi Appliances Inc Refrigerating cycle device and air conditioner
JP2008089292A (en) * 2006-09-07 2008-04-17 Daikin Ind Ltd Air conditioner

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618063A (en) * 1992-07-02 1994-01-25 Hitachi Ltd Air-conditioner
JPH10318630A (en) * 1997-05-16 1998-12-04 Matsushita Electric Ind Co Ltd Air-conditioning equipment
JPH11201573A (en) * 1998-01-08 1999-07-30 Matsushita Electric Ind Co Ltd Multiroom type air conditioner
JP4848608B2 (en) * 2001-09-12 2011-12-28 三菱電機株式会社 Refrigerant circuit
JP2005233551A (en) * 2004-02-20 2005-09-02 Mitsubishi Electric Corp Refrigeration cycle device
JP3982548B2 (en) * 2005-08-15 2007-09-26 ダイキン工業株式会社 Refrigeration equipment
WO2008064251A2 (en) * 2006-11-22 2008-05-29 Johnson Controls Technology Company Space-saving multichannel heat exchanger
JP5228637B2 (en) * 2008-06-11 2013-07-03 ダイキン工業株式会社 Refrigerant recovery method for refrigeration equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06143991A (en) 1992-11-13 1994-05-24 Calsonic Corp Condenser of automobile air conditioner
WO2006013769A1 (en) * 2004-08-04 2006-02-09 Daikin Industries, Ltd. Air conditioner
JP2007285635A (en) * 2006-04-19 2007-11-01 Hitachi Appliances Inc Refrigerating cycle device and air conditioner
JP2008089292A (en) * 2006-09-07 2008-04-17 Daikin Ind Ltd Air conditioner

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2623894A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108139119A (en) * 2015-10-08 2018-06-08 三菱电机株式会社 Refrigerating circulatory device
CN108139119B (en) * 2015-10-08 2020-06-05 三菱电机株式会社 Refrigeration cycle device

Also Published As

Publication number Publication date
EP2623894A1 (en) 2013-08-07
CN103140728A (en) 2013-06-05
AU2011309326A1 (en) 2013-04-18
JP2012077983A (en) 2012-04-19
US20130174595A1 (en) 2013-07-11
EP2623894A4 (en) 2014-04-09
KR20130059450A (en) 2013-06-05

Similar Documents

Publication Publication Date Title
WO2012043377A1 (en) Refrigeration circuit
US9464830B2 (en) Refrigeration apparatus for executing a pump down
JP5617860B2 (en) Refrigeration equipment
JP5956743B2 (en) Air conditioner
JP2010523933A (en) Heat exchanger
JP5403095B2 (en) Refrigeration equipment
JP2019500572A (en) Heat exchanger with water chamber
JP2008139001A (en) Refrigerating plant
JP5625699B2 (en) Refrigeration circuit
JP5372901B2 (en) Cooling system for data center
CN114502887B (en) Refrigerating device
KR101418155B1 (en) An air conditioner
KR20220035172A (en) Chiller system with multiple compressors
JP2019211138A (en) Air conditioner
JP2006132804A (en) Refrigerating cycle and heat exchanger
JP2017219216A (en) Heat exchanger

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180046986.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828934

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13824709

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011828934

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011309326

Country of ref document: AU

Date of ref document: 20110922

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137010694

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013007437

Country of ref document: BR