JP6102724B2 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP6102724B2
JP6102724B2 JP2013265246A JP2013265246A JP6102724B2 JP 6102724 B2 JP6102724 B2 JP 6102724B2 JP 2013265246 A JP2013265246 A JP 2013265246A JP 2013265246 A JP2013265246 A JP 2013265246A JP 6102724 B2 JP6102724 B2 JP 6102724B2
Authority
JP
Japan
Prior art keywords
heat transfer
refrigerant
flows
heat exchanger
transfer tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013265246A
Other languages
Japanese (ja)
Other versions
JP2015121351A (en
Inventor
薫 穀田
薫 穀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2013265246A priority Critical patent/JP6102724B2/en
Publication of JP2015121351A publication Critical patent/JP2015121351A/en
Application granted granted Critical
Publication of JP6102724B2 publication Critical patent/JP6102724B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

本発明は、空気調和機に係り、特に室外機内の熱交換器に関するものである。   The present invention relates to an air conditioner, and more particularly to a heat exchanger in an outdoor unit.

空気調和機は、室内機と室外機を備え、各々には空気と冷媒を熱交換させる熱交換器を備えている。   The air conditioner includes an indoor unit and an outdoor unit, and each includes a heat exchanger that exchanges heat between the air and the refrigerant.

室外機内にある熱交換器(以下、室外熱交換器と記載)は、伝熱管とこの伝熱管に直交するフィンを備えたフィンチューブ型熱交換器である。図5に示すように、従来のフィンチューブ型熱交換器では、冷媒配管は第1分流器210、第2分流器220を介して室外熱交換器200に接続されている。冷房運転時は、第1分流器210で分流された冷媒のうち一方(上側の流路を流れる冷媒)は、室外熱交換器200の風下側の中央部にある伝熱管230から流入し、室外熱交換器200の上方に向かって最上段にある伝熱管239まで順次伝熱管(231〜238)を流通した後、風下側の上端にある伝熱管239から風上側の上端にある伝熱管240に流入し、風上側の中央部にある伝熱管249まで下方に向かって順次伝熱管(241〜248)を流通する。分流器210で分流された冷媒のうち残りの一方(下側の流路を流れる冷媒)は、室外熱交換器200の風下側の中央部にある伝熱管250から流入し、室外熱交換器200の下方に向かって最下段にある伝熱管259まで順次伝熱管(251〜258)を流通した後、風下側の下端にある伝熱管259から風上側の下端にある伝熱管260に流入し、風上側の中央部にある伝熱管269まで上方に向かって順次伝熱管(261〜268)を流通する。そして、両流路の冷媒は分流器220で合流し室外熱交換器から流出する。   A heat exchanger in the outdoor unit (hereinafter referred to as an outdoor heat exchanger) is a finned tube heat exchanger provided with a heat transfer tube and fins orthogonal to the heat transfer tube. As shown in FIG. 5, in the conventional fin tube heat exchanger, the refrigerant pipe is connected to the outdoor heat exchanger 200 via the first flow divider 210 and the second flow divider 220. During the cooling operation, one of the refrigerants divided by the first flow divider 210 (refrigerant flowing through the upper flow path) flows from the heat transfer tube 230 in the central part on the leeward side of the outdoor heat exchanger 200, After sequentially passing through the heat transfer tubes (231 to 238) to the heat transfer tube 239 at the uppermost stage toward the upper side of the heat exchanger 200, the heat transfer tube 239 at the upper end on the leeward side is transferred to the heat transfer tube 240 at the upper end on the windward side. It flows in and flows through the heat transfer tubes (241 to 248) sequentially downward to the heat transfer tube 249 in the central part on the windward side. The remaining one (refrigerant flowing through the lower flow path) of the refrigerant diverted by the flow divider 210 flows in from the heat transfer tube 250 in the central part on the leeward side of the outdoor heat exchanger 200, and the outdoor heat exchanger 200. After flowing through the heat transfer tubes (251 to 258) sequentially to the lowermost heat transfer tube 259, the heat flows from the heat transfer tube 259 at the lower end on the leeward side to the heat transfer tube 260 at the lower end on the windward side. The heat transfer tubes (261 to 268) are circulated sequentially up to the heat transfer tube 269 in the upper central portion. And the refrigerant | coolant of both flow paths merges with the flow divider 220, and flows out from an outdoor heat exchanger.

冷房運転時に、室外熱交換器200は凝縮器として機能するため、冷媒は空気と熱交換されるにつれ、液の割合が大きくなる。下側の流路の風上側にある伝熱管(260〜269)では冷媒が下から上に向かって流れるため、冷媒が溜まり易くなり、上側の流路と比較して下側の流路に流れる冷媒流量が低下し、熱交換量が少なくなる問題があった。   Since the outdoor heat exchanger 200 functions as a condenser during the cooling operation, the ratio of the liquid increases as the refrigerant exchanges heat with air. In the heat transfer tubes (260 to 269) on the windward side of the lower flow path, the refrigerant flows from the bottom to the top, so that the refrigerant tends to accumulate, and flows to the lower flow path as compared with the upper flow path. There was a problem that the flow rate of refrigerant decreased and the amount of heat exchange decreased.

この問題を解決する方法として、特許文献1に開示されている技術がある。特許文献1では、図6に示すように、冷媒は下側の流路の風下側の流路に加えて風上側にある伝熱管(360〜369)でも上から下に向かって流れるように、風下側の下端にある伝熱管359と風上側の中央部にある伝熱管369が配管370で接続されている。これにより、冷媒の液の割合が大きくなっても、冷媒は上から下に向かって流れ落ちるため、冷媒が溜まり難くなっている。   As a method for solving this problem, there is a technique disclosed in Patent Document 1. In Patent Document 1, as shown in FIG. 6, in addition to the leeward flow path of the lower flow path, the refrigerant also flows from the top to the bottom in the heat transfer tubes (360 to 369) on the windward side. A heat transfer tube 359 at the lower end on the leeward side and a heat transfer tube 369 at the center on the leeward side are connected by a pipe 370. Thereby, even if the ratio of the liquid of the refrigerant increases, the refrigerant flows down from the top to the bottom, so that it is difficult for the refrigerant to accumulate.

特許第3888000号公報Japanese Patent No. 3888000

しかし、特許文献1に開示されている室外熱交換器300では、暖房運転時、下側の流路上で風上側の最下端にある伝熱管360は低温冷媒が最初に流入する伝熱管であり、また、室外熱交換器300の上側の流路などで生じた凝縮水が流れ落ちてくる為、他の伝熱管と比較して霜が付着し易くなる問題があった。また、除霜運転時、下側の流路上で風上側の最下端にある伝熱管360は霜が多く付着しているにも関わらず、高温の冷媒が流れ込むのが最後であるため、伝熱管360に付着した霜を除去するまでに時間がかかる問題もあった。   However, in the outdoor heat exchanger 300 disclosed in Patent Document 1, during the heating operation, the heat transfer tube 360 at the lowermost end on the windward side on the lower flow path is a heat transfer tube into which the low-temperature refrigerant first flows, In addition, since the condensed water generated in the upper flow path of the outdoor heat exchanger 300 flows down, there is a problem that frost is likely to adhere as compared with other heat transfer tubes. In addition, during the defrosting operation, the heat transfer tube 360 at the lowermost end of the windward side on the lower flow path is the last to flow in high-temperature refrigerant despite the fact that a lot of frost is attached, so the heat transfer tube There was also a problem that it took time to remove the frost adhered to 360.

そこで、本発明は、冷房運転時に熱交換器内に冷媒が溜まりにくく、また、暖房運転時に室外熱交換器の下側の流路上で風上側の下部に霜を付着しにくくすると共に、除霜運転の時間を短くすることを目的としたものである。   Therefore, the present invention makes it difficult for refrigerant to accumulate in the heat exchanger during cooling operation, and makes it difficult for frost to adhere to the lower part of the windward side on the flow path below the outdoor heat exchanger during heating operation. The purpose is to shorten the driving time.

上記目的を達成するために、本発明は、所定の間隙をもって積層され、その間隙に空気を流通させる複数のフィンと、フィンを積層方向に貫通し、空気を流通させる方向に2列、空気を流通させる方向と交差する上下方向に複数段配置される伝熱管とを有し、伝熱管を順次接続して形成した冷媒流路に冷媒を流通させるフィンチューブ型熱交換器であって、熱交換器を凝縮器として使用した場合に、冷媒が流入する上側流入口と下側流入口が、空気を流通させる方向に対して風下側の列に上下に隣接して設けられ、冷媒が流出する上側流出口と下側流出口が空気を流通させる方向に対して風上側の列に設けられ、上側流入口から流入した冷媒が風下側の列の上方に向かって最上段の伝熱管まで順次伝熱管を流れた後風上側の列の最上段にある伝熱管に流入し風上側の列の下方に向かって順次伝熱管を流れ、上側流出口より流出する上側の流路と、下側流入口から流入した冷媒が風下側の列の下方に向かって最下段の伝熱管まで順次伝熱管を流れた後風上側の列の最下段にある伝熱管に流入し風上側の列の上方に向かって少なくとも2段の伝熱管を流れた後風上側の列の前記上側流出口の下隣にある伝熱管に流入し前記前記上側流出口の下隣にある伝熱管に流入する前に流れる伝熱管の上隣にある伝熱管まで下方に向かって順次伝熱管を流れ下側流出口より流出する下側の流路とを備える。   In order to achieve the above object, the present invention provides a plurality of fins that are laminated with a predetermined gap, and that circulates air through the gap, and that passes through the fins in the laminating direction and has two rows in the direction of circulating air. A finned tube type heat exchanger having a heat transfer tube arranged in a plurality of stages in the vertical direction intersecting with the direction of circulation, and circulating the refrigerant through a refrigerant flow path formed by sequentially connecting the heat transfer tubes. When the condenser is used as a condenser, an upper inlet and a lower inlet into which the refrigerant flows are provided vertically adjacent to a row on the leeward side with respect to the direction in which the air flows, and the upper side from which the refrigerant flows out The outlet and the lower outlet are provided in the windward row with respect to the direction in which the air flows, and the refrigerant flowing in from the upper inlet sequentially moves up the upper row to the uppermost heat transfer tube. In the uppermost row on the windward side after flowing through The heat flows into the heat pipe and flows through the heat transfer pipes sequentially toward the bottom of the leeward row, and the upper flow path that flows out from the upper outlet and the refrigerant that flows in from the lower inlet reach the lower side of the leeward row. After sequentially flowing through the heat transfer tubes to the lower heat transfer tubes, the air flows into the heat transfer tubes in the lowermost row of the windward row and flows through the at least two heat transfer tubes toward the upper side of the windward row. The heat transfer tubes are sequentially flowed downward to the heat transfer tubes that flow into the heat transfer tubes adjacent to the upper outlet and flow before flowing into the heat transfer tubes adjacent to the upper outlet. And a lower flow path that flows out from the lower flow outlet.

以上のような熱交換器によれば、熱交換器の風上側の下部に霜を付着しにくくすると共に、除霜運転に掛かる時間を短くすることが出来る。   According to the heat exchanger as described above, it is possible to make it difficult for frost to adhere to the lower part on the windward side of the heat exchanger and to shorten the time required for the defrosting operation.

第1の実施例の室外熱交換器を示す断面図である。It is sectional drawing which shows the outdoor heat exchanger of a 1st Example. 第1の実施例の冷凍サイクルを示す図である。It is a figure which shows the refrigerating cycle of a 1st Example. 第2の実施例の室外熱交換器を示す断面図である。It is sectional drawing which shows the outdoor heat exchanger of a 2nd Example. 第3の実施例の室外熱交換器を示す断面図である。It is sectional drawing which shows the outdoor heat exchanger of a 3rd Example. 従来の室外熱交換器を示す断面図である。It is sectional drawing which shows the conventional outdoor heat exchanger. 特許文献1の室外熱交換器を示す断面図である。It is sectional drawing which shows the outdoor heat exchanger of patent document 1.

以下、添付図面を参照しつつ本発明による熱交換器を、空気調和機に用いた場合の実施例に基づいて説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, a heat exchanger according to the present invention will be described with reference to the accompanying drawings based on an embodiment when used in an air conditioner.

本発明の第1の実施例について、図1および図2を用いて説明する。本実施例による空気調和機は図2に示すように、圧縮機10と、四方弁20と、室外熱交換器100と、膨張弁30と、室内熱交換器40とを冷媒配管で順次接続することで冷凍サイクル1を構成し、冷媒を循環させている。冷房運転時は、室外熱交換器100が凝縮器として機能し、室内熱交換器40が蒸発器として機能する。一方、暖房運転時は、室外熱交換器100が蒸発器として機能し、室内熱交換器40が凝縮器として機能する。   A first embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 2, the air conditioner according to the present embodiment sequentially connects the compressor 10, the four-way valve 20, the outdoor heat exchanger 100, the expansion valve 30, and the indoor heat exchanger 40 with refrigerant piping. Thus, the refrigeration cycle 1 is configured and the refrigerant is circulated. During the cooling operation, the outdoor heat exchanger 100 functions as a condenser, and the indoor heat exchanger 40 functions as an evaporator. On the other hand, during the heating operation, the outdoor heat exchanger 100 functions as an evaporator, and the indoor heat exchanger 40 functions as a condenser.

室外熱交換器100について以下に詳述する。
室外熱交換器100は、フィンチューブ型熱交換器である。この室外熱交換器100は、所定の間隙をもって積層され、その間隙に空気を流通させる複数のフィンを有する。また、フィンの積層方向に貫通し、空気を流通させる方向に2列、空気を流通させる方向と交差する上下方向に複数段配置される伝熱管とを有し、伝熱管を順次接続して形成した冷媒流路に冷媒を流通させている。室外熱交換器100が凝縮器として機能する場合、図1に示すように、冷媒は室外熱交換器100に流入する前に第1分流器110で上側の流路と下側の流路に分流される。分流された上側の流路の冷媒は、風下側の列で室外熱交換器100の中央部にある上側流入口となる伝熱管130に流入し、伝熱管130から流出する冷媒は風下側の列で上側の流路での最上段にある伝熱管139まで順次伝熱管(131〜138)を流通し、風下側の列で上側の流路での最上段にある伝熱管139から流出する冷媒は風上側の列で上側の流路での最上段にある伝熱管140に流入し、伝熱管140から流出する冷媒は風上側の列で室外熱交換器100の中央部にある伝熱管149まで順次伝熱管(141〜148)を流通した後、室外熱交換器100から流出し、第2分流器120に流入している。
The outdoor heat exchanger 100 will be described in detail below.
The outdoor heat exchanger 100 is a finned tube heat exchanger. The outdoor heat exchanger 100 includes a plurality of fins that are stacked with a predetermined gap and allow air to flow through the gap. In addition, it has two rows in the direction of circulating air and two rows of heat transfer tubes in the vertical direction intersecting with the direction of air circulation, and is formed by sequentially connecting the heat transfer tubes The refrigerant is circulated through the refrigerant flow path. When the outdoor heat exchanger 100 functions as a condenser, as shown in FIG. 1, before the refrigerant flows into the outdoor heat exchanger 100, the refrigerant is divided into the upper flow path and the lower flow path by the first flow divider 110. Is done. The separated refrigerant in the upper flow path flows into the heat transfer tube 130 serving as the upper inlet at the center of the outdoor heat exchanger 100 in the leeward row, and the refrigerant flowing out of the heat transfer tube 130 flows in the leeward row. The refrigerant flowing out from the heat transfer tube 139 in the uppermost flow path in the upper flow path in the upper flow path 139 is sequentially circulated through the heat transfer tubes (131 to 138) in the upper flow path. The refrigerant flowing into the uppermost heat transfer tube 140 in the upper flow path in the windward row and flowing out of the heat transfer tube 140 sequentially reaches the heat transfer tube 149 in the center of the outdoor heat exchanger 100 in the windward row. After flowing through the heat transfer tubes (141 to 148), the heat flows out from the outdoor heat exchanger 100 and flows into the second flow divider 120.

一方、分流された下側の流路の冷媒は、風下側の列で室外熱交換器100の中央部にある伝熱管130の下方に隣接する下側流入口となる伝熱管150に流入し、伝熱管150から風下側の列で下側の流路での最下段にある伝熱管159まで順次伝熱管(151〜158)を流通し、風下側の列で下側の流路での最下段にある伝熱管159から流出する冷媒は風上側の列で下側の流路での最下段にある伝熱管160に流入し、伝熱管160から流出する冷媒は伝熱管160の上方隣にある伝熱管161を流通し、配管170を通過して風上側の列で室外熱交換器100の中央部にある伝熱管169に流入し、伝熱管169から流出する冷媒は下方に向かって順次伝熱管(168〜162)を流通した後、室外熱交換器100から流出し、第2分流器120に流入し、上側の流路の冷媒と合流する。   On the other hand, the divided refrigerant in the lower flow path flows into the heat transfer pipe 150 serving as a lower inlet adjacent to the lower part of the heat transfer pipe 130 in the center of the outdoor heat exchanger 100 in the leeward row, The heat transfer tubes (151 to 158) are circulated sequentially from the heat transfer tube 150 to the heat transfer tube 159 in the lowermost flow path in the leeward row, and the lowermost row in the lower flow channel in the leeward row. The refrigerant flowing out from the heat transfer tube 159 flows into the heat transfer tube 160 at the lowest stage in the lower flow path in the windward row, and the refrigerant flowing out from the heat transfer tube 160 flows next to the heat transfer tube 160 above. The refrigerant flows through the heat pipe 161, passes through the pipe 170, flows into the heat transfer pipe 169 in the central portion of the outdoor heat exchanger 100 in a row on the windward side, and the refrigerant flowing out of the heat transfer pipe 169 sequentially heats down the heat transfer pipe ( 168 to 162) after flowing out of the outdoor heat exchanger 100, the second It flows into Nagareki 120, and merges with the refrigerant of the upper flow channel.

以上のように構成された室外熱交換器100を用いた冷凍サイクル1の動作について以下に説明する。
初めに、室外熱交換器100が凝縮器として作用する冷房運転時の動作について説明する。圧縮機10で高圧に圧縮された冷媒は、四方弁20を通り、室外熱交換器100に流入して室外空気に放熱して凝縮し、膨張弁30で低圧に減圧され、室内熱交換器40で室内空気から吸熱して蒸発し、四方弁20を通り圧縮機10に戻る。一般的な室外熱交換器100では、流入したガス冷媒が凝縮し2相冷媒となる。冷媒の凝縮が進行するほど2相冷媒中の液冷媒の割合が増加する。本発明による室外熱交換器100の流出口付近では、冷媒は下方に向かって伝熱管(169〜162)を順次流通しているため、液冷媒の自重が流路抵抗となって冷媒が滞留することが無い。
The operation of the refrigeration cycle 1 using the outdoor heat exchanger 100 configured as described above will be described below.
First, an operation during cooling operation in which the outdoor heat exchanger 100 acts as a condenser will be described. The refrigerant compressed to a high pressure by the compressor 10 passes through the four-way valve 20, flows into the outdoor heat exchanger 100, dissipates heat to the outdoor air, condenses, is decompressed to a low pressure by the expansion valve 30, and the indoor heat exchanger 40. Then, it absorbs heat from the room air and evaporates, returns to the compressor 10 through the four-way valve 20. In the general outdoor heat exchanger 100, the gas refrigerant that has flowed in is condensed into a two-phase refrigerant. As the refrigerant condenses, the ratio of the liquid refrigerant in the two-phase refrigerant increases. In the vicinity of the outlet of the outdoor heat exchanger 100 according to the present invention, the refrigerant sequentially flows through the heat transfer pipes (169 to 162) in the downward direction. There is nothing.

これにより、冷房運転時に伝熱管内に冷媒が滞留することによる熱交換量の低下を防ぐことができる。また、第1分流器110で分流した後の2つの冷媒流路のうち熱交換部分はほぼ同一の長さになっているため、冷媒流路間の圧力損失差がなく、圧力損失差によって生じる冷媒流量のアンバランスがなく、熱交換量の低下を防いでいる。   Thereby, the fall of the heat exchange amount by a refrigerant | coolant stagnating in a heat exchanger tube at the time of air_conditionaing | cooling operation can be prevented. In addition, since the heat exchange portions of the two refrigerant flow paths after being divided by the first flow divider 110 have substantially the same length, there is no pressure loss difference between the refrigerant flow paths, and the pressure loss difference is generated. There is no imbalance in the refrigerant flow rate, preventing a reduction in heat exchange.

次に、室外熱交換器100が蒸発器として作用する暖房運転時の動作について説明する。圧縮機10で高圧に圧縮された冷媒は、四方弁20を通り、室内熱交換器40に流入して室内空気に放熱して凝縮し、膨張弁30で低圧に減圧され、第2分流器120で分流した後、室外熱交換器100に流入し、室外熱交換器100で室外空気から吸熱して蒸発し、室外熱交換器100を流出した後、第1分流器110で合流し、四方弁20を通り圧縮機10に戻る。室外熱交換器100では、冷媒の蒸発が進行するほど室外熱交換器100の温度が下がり凝縮水が発生する。発生した凝縮水は自重によってフィンを伝って下方に滑り落ちる。しかし、伝熱管162を流通する冷媒よりも温度の低い冷媒は下側の流路での風上側の最下段にある伝熱管160に流入しない。これにより、凝縮水が室外熱交換器100の下部で冷却され、霜に変化する量を少なくすることが出来る。   Next, the operation | movement at the time of the heating operation in which the outdoor heat exchanger 100 acts as an evaporator is demonstrated. The refrigerant compressed to a high pressure by the compressor 10 passes through the four-way valve 20, flows into the indoor heat exchanger 40, dissipates heat to the indoor air, condenses, is decompressed to a low pressure by the expansion valve 30, and is supplied to the second shunt 120. And then flows into the outdoor heat exchanger 100, absorbs heat from the outdoor air by the outdoor heat exchanger 100, evaporates, flows out of the outdoor heat exchanger 100, and then joins at the first flow divider 110 to form a four-way valve. Return to the compressor 10 through 20. In the outdoor heat exchanger 100, as the refrigerant evaporates, the temperature of the outdoor heat exchanger 100 decreases and condensed water is generated. The generated condensed water slides down along the fins due to its own weight. However, the refrigerant having a temperature lower than that of the refrigerant flowing through the heat transfer tube 162 does not flow into the heat transfer tube 160 at the lowest level on the windward side in the lower flow path. Thereby, condensed water is cooled by the lower part of the outdoor heat exchanger 100, and the quantity which changes to frost can be decreased.

続いて、除霜運転時の動作について説明する。圧縮機10で高温高圧に圧縮された冷媒は、四方弁20を通り、室外熱交換器100に流入して室外熱交換器100に付着した霜を溶かし、膨張弁30と室内熱交換器40を経由して、四方弁20を通り圧縮機10に戻る。室外熱交換器100では、高温高圧の冷媒が流入することで、室外熱交換器100に付着した霜や氷を解かす。特に下側の流路での風上側の最下段にある伝熱管160には、風下側の伝熱管(150〜159)を流通した後の冷媒が流入するため、特許文献1のように風下側の伝熱管(350〜359)を流通した後の冷媒が風上側の伝熱管369から下方に向かって伝熱管360まで流れるよりも冷媒の温度が高いため、付着した霜などを早く除去することが出来る。   Then, the operation | movement at the time of a defrost operation is demonstrated. The refrigerant compressed to high temperature and high pressure by the compressor 10 passes through the four-way valve 20, flows into the outdoor heat exchanger 100, melts frost adhering to the outdoor heat exchanger 100, and connects the expansion valve 30 and the indoor heat exchanger 40. Via, it passes through the four-way valve 20 and returns to the compressor 10. In the outdoor heat exchanger 100, frost and ice adhering to the outdoor heat exchanger 100 are thawed by the flow of high-temperature and high-pressure refrigerant. In particular, since the refrigerant after flowing through the leeward heat transfer tubes (150 to 159) flows into the heat transfer tube 160 at the lowermost stage on the leeward side in the lower flow path, the leeward side as in Patent Document 1. The refrigerant after flowing through the heat transfer tubes (350 to 359) has a higher temperature than the refrigerant flowing from the windward heat transfer tube 369 downward to the heat transfer tube 360, so that attached frost and the like can be removed quickly. I can do it.

以上より、冷房運転時に風上側の列の下側の流路に液冷媒が溜まりにくくなる。また、暖房運転時では、下側の流路での冷媒の流出口を最下段よりも上方にある伝熱管にした。これにより、下側の流路での風上側の列の下部に霜を付着しにくくする。さらに、除霜運転時では、下側の流路での冷媒の流出口となる伝熱管と下方向で隣接する伝熱管に高温の冷媒を早めに流すことで除霜運転に掛かる時間を短くすることが出来る。   As described above, the liquid refrigerant is less likely to accumulate in the lower flow path in the windward row during the cooling operation. Further, during the heating operation, the refrigerant outlet in the lower flow path is a heat transfer tube located above the lowermost stage. This makes it difficult for frost to adhere to the lower part of the windward row in the lower channel. Furthermore, during the defrosting operation, the time required for the defrosting operation is shortened by flowing a high-temperature refrigerant early to the heat transfer tube that is adjacent to the heat transfer tube serving as the refrigerant outlet in the lower channel. I can do it.

次に、本発明の第2の実施例について図3を用いて説明する。本実施例では、第1の実施例で説明した熱交換器における最下段となる伝熱管(159、160)の下方に過冷却部を設けた熱交換器である。冷房運転時、上側の流路と下側の流路を流れた冷媒が室外熱交換器400の風下側の列の下部にある伝熱管473で合流し、合流した後の冷媒は配管483を介して風上側の列にある伝熱管475に流入し、伝熱管475から流出する冷媒は伝熱管478まで順次伝熱管(476〜477)を通過し、伝熱管478から流出する冷媒は室外熱交換器400から流出される。暖房運転時では、下側の流路に分流された冷媒が最初に流入する伝熱管460を下側の流路上での最下段にある伝熱管458よりも上方にすることで下側の流路での風上側の列の下部に霜を付着しにくくした。また、除霜運転時では伝熱管460と下方向で隣接する伝熱管459に風下側の列の伝熱管(450〜457)を流通し、風上側の列の伝熱管458を流通した後に高温の冷媒が流れるため、伝熱管460も加熱されて霜を除去し易くなり、除霜運転に掛かる時間を短くすることが出来る。このように、室外熱交換器400における最下段となる伝熱管(457、458)の下部に過冷却部を設けた場合でも、過冷却部の効果も得られると共に、第1の実施例と同様の効果も得ることができる。   Next, a second embodiment of the present invention will be described with reference to FIG. In this embodiment, the heat exchanger is provided with a supercooling section below the heat transfer tubes (159, 160) which are the lowest stages in the heat exchanger described in the first embodiment. During the cooling operation, the refrigerant that has flowed through the upper flow path and the lower flow path merges in the heat transfer pipe 473 at the lower part of the leeward row of the outdoor heat exchanger 400, and the combined refrigerant passes through the pipe 483. The refrigerant flowing into the heat transfer tubes 475 in the windward row and flowing out from the heat transfer tubes 475 sequentially passes through the heat transfer tubes (476 to 477) up to the heat transfer tubes 478, and the refrigerant flowing out from the heat transfer tubes 478 is the outdoor heat exchanger. 400 is discharged. During the heating operation, the lower flow path is formed by setting the heat transfer tube 460 into which the refrigerant branched into the lower flow path first flows above the lowermost heat transfer pipe 458 on the lower flow path. In order to prevent frost from adhering to the lower part of the windward side of Further, during the defrosting operation, the heat transfer tubes 459 adjacent to the heat transfer tubes 460 in the downward direction are circulated through the heat transfer tubes (450 to 457) on the leeward side, and then the heat transfer tubes 458 in the leeward row are circulated. Since the refrigerant flows, the heat transfer tube 460 is also heated to easily remove frost, and the time required for the defrosting operation can be shortened. Thus, even when the supercooling section is provided at the lower part of the heat transfer tubes (457, 458) as the lowest stage in the outdoor heat exchanger 400, the effect of the supercooling section can be obtained and the same as in the first embodiment. The effect of can also be acquired.

次に、本発明の第3の実施例について図4を用いて説明する。本実施例では、第2の実施例で説明した熱交換器における最上段となる伝熱管(437、438)の上方に第1の実施例で説明した熱交換器と同じ流路を備えた熱交換部を設けた熱交換器である。本実施例の熱交換器を蒸発器として用いる場合、熱交換器の効率を良くするために、冷媒を多数に分岐させることで、それぞれの冷媒流路を長くしないようにしている。本実施例では、冷媒を4つに分岐させて熱交換器に冷媒を流入させた場合について説明する。冷媒は第1分流器510と第2分流器511の夫々で、上側の流路と下側の流路に分流され、上下方向に隣接する伝熱管(530と540、550と560)に流入される。上側の流路に流れる冷媒は、冷房運転時、風下側の列にある伝熱管(530、550)から上側の流路上で風下側の列での最上段にある伝熱管(533、553)まで順次伝熱管(531〜532、551〜552)を流入し、伝熱管(533、553)から流出する冷媒は風上側の列の最上段にある伝熱管(534、554)に流入した後、下方に向かって順次伝熱管(535〜537、555〜557)を流れる。一方、下側の流路に流れる冷媒は、冷房運転時、風下側の列にある伝熱管(540、560)から下側の流路上で風下側の列の最下段にある伝熱管(543、563)まで順次伝熱管(541〜542、561〜562)を流入し、伝熱管(543、563)から流出する冷媒は下側の流路上で風上側の列の最下段にある伝熱管(544、564)に流入した後、伝熱管(544、564)よりも1段上にある伝熱管(545、565)に流入し、伝熱管(545、565)から流出する冷媒はさらに2段上にある伝熱管(547、567)に配管を介して流入した後、下方に向かって伝熱管(546、566)を流れる。暖房運転時では、下側の流路に流れる冷媒が最初に流入する伝熱管(546、566)を下側の流路での最下段にある伝熱管(544、564)よりも上方にしたことで下側の流路での風上側の列の下部に霜を付着しにくくした。また、除霜運転時に冷媒の流出口となる伝熱管(546、566)と下方向で隣接する伝熱管(545、565)に風下側にある伝熱管(540〜543、560〜563)を流通し、風上側の列の下側の流路での最下段にある伝熱管(544、564)を通過した後に冷媒を流すことで除霜運転に掛かる時間を短くすることが出来る。このように熱交換器に流入する冷媒を分流して熱交換器内の冷媒流路を長くしないようにすることで圧力損失を少なくしている。本実施例の熱交換器のように室外熱交換器500に流入する伝熱管が4本ある場合でも、第1の実施例と同様の効果を得ることが出来る。なお、本発明では室外熱交換器500に流入する伝熱管を2本や4本に限定したものではなく、分流器で分流された上側の流路と下側の流路が上下方向で隣接する伝熱管に流入するものが複数あっても良い。   Next, a third embodiment of the present invention will be described with reference to FIG. In the present embodiment, heat having the same flow path as the heat exchanger described in the first embodiment above the heat transfer tubes (437, 438) which are the uppermost stage in the heat exchanger described in the second embodiment. It is a heat exchanger provided with an exchange part. When the heat exchanger of this embodiment is used as an evaporator, in order to improve the efficiency of the heat exchanger, a large number of refrigerants are branched so that each refrigerant flow path is not lengthened. In the present embodiment, a case where the refrigerant is branched into four and the refrigerant is caused to flow into the heat exchanger will be described. The refrigerant is divided into an upper flow path and a lower flow path in each of the first flow divider 510 and the second flow divider 511, and flows into the heat transfer tubes (530 and 540, 550 and 560) adjacent in the vertical direction. The During the cooling operation, the refrigerant flowing in the upper flow path extends from the heat transfer tubes (530, 550) in the leeward row to the uppermost heat transfer tubes (533, 553) in the leeward row on the upper flow path. The refrigerant that sequentially flows in the heat transfer tubes (531 to 532, 551 to 552) and flows out of the heat transfer tubes (533 and 553) flows into the heat transfer tubes (534 and 554) in the uppermost row of the windward side, and then moves downward. To the heat transfer tubes (535-537, 555-557) sequentially. On the other hand, during the cooling operation, the refrigerant flowing in the lower flow path is transferred from the heat transfer tubes (540, 560) in the leeward row to the heat transfer tubes (543, 563) sequentially flows in the heat transfer tubes (541 to 542, 561 to 562), and the refrigerant flowing out of the heat transfer tubes (543, 563) flows on the lower flow path, and the heat transfer tubes (544 in the lowermost row in the windward row). 564), the refrigerant flowing into the heat transfer tubes (545, 565) that are one stage higher than the heat transfer tubes (544, 564), and the refrigerant flowing out of the heat transfer tubes (545, 565) is further two steps higher. After flowing into a certain heat transfer tube (547, 567) through a pipe, the heat transfer tube (546, 566) flows downward. During the heating operation, the heat transfer tubes (546, 566) into which the refrigerant flowing in the lower flow path first flows are placed above the lowermost heat transfer tubes (544, 564) in the lower flow path. Thus, frost is less likely to adhere to the lower part of the windward side of the lower channel. In addition, the heat transfer tubes (540 to 543, 560 to 563) on the leeward side are circulated to the heat transfer tubes (545, 565) which are adjacent to the heat transfer tubes (546, 566) serving as the refrigerant outlet during the defrosting operation. However, the time taken for the defrosting operation can be shortened by flowing the refrigerant after passing through the heat transfer tubes (544, 564) in the lowermost stage in the lower flow path in the windward row. Thus, pressure loss is reduced by diverting the refrigerant flowing into the heat exchanger so as not to lengthen the refrigerant flow path in the heat exchanger. Even when there are four heat transfer tubes flowing into the outdoor heat exchanger 500 as in the heat exchanger of the present embodiment, the same effect as that of the first embodiment can be obtained. In the present invention, the number of heat transfer tubes flowing into the outdoor heat exchanger 500 is not limited to two or four, but the upper flow path and the lower flow path that are divided by the flow divider are adjacent in the vertical direction. There may be a plurality of things flowing into the heat pipe.

1 冷凍サイクル
10 圧縮機
20 四方弁
30 膨張弁
40 室内熱交換器
100 室外熱交換器
1 Refrigeration cycle 10 Compressor 20 Four-way valve 30 Expansion valve 40 Indoor heat exchanger 100 Outdoor heat exchanger

Claims (1)

所定の間隙をもって積層され、その間隙に空気を流通させる複数のフィンと、
前記フィンを積層方向に貫通し、空気を流通させる方向に2列、空気を流通させる方向と交差する上下方向に複数段配置される伝熱管とを有し、
前記伝熱管を順次接続して形成した冷媒流路に冷媒を流通させるフィンチューブ型熱交換器であって、
前記熱交換器を凝縮器として使用した場合に、冷媒が流入する上側流入口と下側流入口が空気を流通させる方向に対して風下側の列に上下に隣接して設けられ、冷媒が流出する上側流出口と下側流出口が空気を流通させる方向に対して風上側の列に設けられ、
前記上側流入口から流入した冷媒が風下側の列の上方に向かって最上段の伝熱管まで順次伝熱管を流れた後風上側の列にある最上段の伝熱管に流入し風上側の列の下方に向かって順次伝熱管を流れ、前記上側流出口より流出する上側の流路と、
前記下側流入口から流入した冷媒が風下側の列の下方に向かって最下段の伝熱管まで順次伝熱管を流れた後風上側の列にある最下段の伝熱管に流入し風上側の列の上方に向かって少なくとも2段の伝熱管を流れた後風上側の列の前記上側流出口の下隣にある伝熱管に流入し前記上側流出口の下隣にある伝熱管に流入する前に流れる伝熱管の上隣にある伝熱管まで下方に向かって順次伝熱管を流れ前記下側流出口より流出する下側の流路とを備えることを特徴とする熱交換器。
A plurality of fins laminated with a predetermined gap, and air flowing through the gap;
Heat passing through the fins in the stacking direction, two rows in the direction of circulating air, and a plurality of heat transfer tubes arranged in the vertical direction intersecting the direction of circulating air,
A fin tube type heat exchanger that circulates a refrigerant in a refrigerant flow path formed by sequentially connecting the heat transfer tubes,
When the heat exchanger is used as a condenser, the upper inlet and the lower inlet into which the refrigerant flows are provided vertically adjacent to the leeward row with respect to the direction in which the air flows, and the refrigerant flows out. The upper outlet and the lower outlet are provided in a row on the windward side in the direction in which the air flows.
The refrigerant flowing in from the upper inflow port sequentially flows through the heat transfer tubes up to the uppermost heat transfer tube toward the upper side of the leeward row, and then flows into the uppermost heat transfer tube in the upper windward row. An upper flow path that sequentially flows through the heat transfer tubes downward and flows out of the upper outlet,
The refrigerant flowing in from the lower inflow port sequentially flows through the heat transfer tubes to the lowermost heat transfer tube toward the lower side of the leeward row and then flows into the lowermost heat transfer tube in the upper windward row. After flowing through at least two stages of heat transfer tubes toward the upper side, before flowing into the heat transfer tubes adjacent to the upper outlets in the row on the windward side and before flowing into the heat transfer tubes adjacent to the upper outlets A heat exchanger, comprising: a lower flow path that sequentially flows downward through a heat transfer tube to a heat transfer tube adjacent to the upper side of the flowing heat transfer tube and flows out from the lower outlet.
JP2013265246A 2013-12-24 2013-12-24 Heat exchanger Active JP6102724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013265246A JP6102724B2 (en) 2013-12-24 2013-12-24 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013265246A JP6102724B2 (en) 2013-12-24 2013-12-24 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2015121351A JP2015121351A (en) 2015-07-02
JP6102724B2 true JP6102724B2 (en) 2017-03-29

Family

ID=53533107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013265246A Active JP6102724B2 (en) 2013-12-24 2013-12-24 Heat exchanger

Country Status (1)

Country Link
JP (1) JP6102724B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106322847A (en) * 2016-10-17 2017-01-11 珠海格力电器股份有限公司 Multi-row heat exchanger and air conditioner including multi-row heat exchanger
ES2931028T3 (en) * 2018-11-22 2022-12-23 Mitsubishi Electric Corp Heat exchanger and refrigeration cycle device
JP6878511B2 (en) * 2019-07-17 2021-05-26 日立ジョンソンコントロールズ空調株式会社 Heat exchanger, air conditioner, indoor unit and outdoor unit

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2979926B2 (en) * 1993-10-18 1999-11-22 株式会社日立製作所 Air conditioner
JP3185687B2 (en) * 1996-11-13 2001-07-11 ダイキン工業株式会社 Heat exchanger
JP2001174101A (en) * 1999-12-20 2001-06-29 Fujitsu General Ltd Air conditioner
JP2008111622A (en) * 2006-10-31 2008-05-15 Toshiba Kyaria Kk Heat exchanger and outdoor unit of air conditioner using the same

Also Published As

Publication number Publication date
JP2015121351A (en) 2015-07-02

Similar Documents

Publication Publication Date Title
JP6351494B2 (en) Air conditioner
JP6364539B2 (en) Heat exchange device and air conditioner using the same
JP6109303B2 (en) Heat exchanger and refrigeration cycle apparatus
EP3156752B1 (en) Heat exchanger
JP4428341B2 (en) Refrigeration cycle equipment
CN103857976A (en) Refrigeration cycle device
JP2000249479A (en) Heat exchanger
JP6218944B2 (en) Air conditioner
CN105352225B (en) Air conditioner
JP5951475B2 (en) Air conditioner and outdoor heat exchanger used therefor
JP6102724B2 (en) Heat exchanger
JP2006097987A (en) Three-way branch pipe and fin tube type heat exchanger using the same
JP5627635B2 (en) Air conditioner
JP2015052444A (en) Heat exchanger
JP2016084970A (en) Heat exchanger
JP6918257B1 (en) Air conditioner and heat exchanger
JP4902625B2 (en) Heat pump water heater and refrigeration equipment
JP5677237B2 (en) Air conditioner
JP6596541B2 (en) Air conditioner
JP2013204913A (en) Heat exchanger
KR101626215B1 (en) An air conditioner
JP6537868B2 (en) Heat exchanger
JP2014025615A (en) Heat exchanger and heat cycle device including heat exchanger
JP6918258B1 (en) Air conditioner and heat exchanger
JP6990795B1 (en) Indoor unit and outdoor unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170213

R151 Written notification of patent or utility model registration

Ref document number: 6102724

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151