JP2000266426A - Heat exchanger and cooling system - Google Patents

Heat exchanger and cooling system

Info

Publication number
JP2000266426A
JP2000266426A JP11068581A JP6858199A JP2000266426A JP 2000266426 A JP2000266426 A JP 2000266426A JP 11068581 A JP11068581 A JP 11068581A JP 6858199 A JP6858199 A JP 6858199A JP 2000266426 A JP2000266426 A JP 2000266426A
Authority
JP
Japan
Prior art keywords
heat transfer
heat exchanger
transfer tube
refrigerant side
inner diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11068581A
Other languages
Japanese (ja)
Inventor
Shigeji Taira
繁治 平良
Yasuhiko Oka
恭彦 岡
Masaaki Kitazawa
昌昭 北沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP11068581A priority Critical patent/JP2000266426A/en
Publication of JP2000266426A publication Critical patent/JP2000266426A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a heat exchanger and a cooling system in which the quantity of refrigerant can be reduced by enhancing the heat exchanging power and global warming can be prevented. SOLUTION: Inside diameter of heating tubes 11, 12, 13, 14, 15, 16 is decreased gradually from the gas refrigerant side G toward the liquid refrigerant side L. Since the inside diameter of heating tubes 11, 12 on the gas refrigerant side G is larger than the inside diameter of heating tubes 15, 16 on the liquid refrigerant side L, pressure loss of the gas refrigerant is reduced. Since condensed liquid refrigerant flows through the small diameter heating tubes 14, 15, 16 on the liquid refrigerant side L, heat exchange efficiency is enhanced on the liquid refrigerant side L while preventing shifted flow of the liquid refrigerant and dew formation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、冷媒量を削減で
きて地球温暖化を防止できる熱交換器および冷凍装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger and a refrigeration apparatus capable of reducing the amount of refrigerant and preventing global warming.

【0002】[0002]

【従来の技術】例えば、冷暖兼用の空気調和機に使用す
る熱交換器は、蒸発器と凝縮器との両方の役目を果たさ
なけらばならない。従来、この種の熱交換器において
は、1種類の管径の伝熱管を使用し、蒸発器または凝縮
器のどちらかの機能に重きを置いて、上記伝熱管の内径
を圧力損失、偏流防止等の性能、信頼性の見地から定め
ていた。
2. Description of the Related Art For example, a heat exchanger used in a cooling / heating air conditioner must serve as both an evaporator and a condenser. Conventionally, in this type of heat exchanger, a heat transfer tube of one kind of diameter is used, and emphasis is placed on the function of either the evaporator or the condenser, and the inner diameter of the heat transfer tube is reduced to prevent pressure loss and drift. It was determined from the viewpoint of performance and reliability.

【0003】また、本来、伝熱管のパス取り(パスの数
の設定、パスの配置)には、蒸発器および凝縮器の夫々
に最適なものがあるが、上記熱交換器は蒸発器と凝縮器
との両方の役目を果たさなければならないため、蒸発器
または凝縮器のどちらかの機能に重きを置いて定めてい
た。
[0003] In addition, although there are originally optimal paths for the heat transfer tubes (setting of the number of paths and arrangement of the paths) for each of the evaporator and the condenser, the heat exchanger is provided with the evaporator and the condenser. Since both functions of the evaporator and the condenser must be performed, the function of the evaporator or the condenser is emphasized.

【0004】[0004]

【発明が解決しようとする課題】ところで、地球温暖化
問題の1998年12月の京都国際会議以来、地球温暖
化を防止するために、冷媒量を削減することは極めて重
要なことであると認識されるようになってきた。
Since the Kyoto International Conference on Global Warming in December 1998, it has been recognized that it is extremely important to reduce the amount of refrigerant in order to prevent global warming. It has come to be.

【0005】そこで、本発明者は、上記従来の熱交換器
では、蒸発器または凝縮器のどちらかの機能に重きを置
いて、1種類の管径の伝熱管を用い、かつ、パス取りを
定めているため、有効な伝熱面積を充分に大きくするこ
とができなくて、熱交換能力が低くて、必要冷媒量が多
くなっているという問題があることを発見した。
In view of the above, the present inventor has conceived that, in the above-mentioned conventional heat exchanger, a heat transfer tube of one kind of pipe diameter is used, and a pass is taken with emphasis on the function of either the evaporator or the condenser. As a result, it was found that there was a problem that the effective heat transfer area could not be sufficiently increased, the heat exchange capacity was low, and the required refrigerant amount was large.

【0006】そこで、この発明の目的は、熱交換能力を
高めて冷媒量を削減できて地球温暖化を防止できる熱交
換器および冷凍装置を提供することにある。
Accordingly, an object of the present invention is to provide a heat exchanger and a refrigeration apparatus that can increase the heat exchange capacity and reduce the amount of refrigerant to prevent global warming.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、請求項1の発明の熱交換器は、液冷媒側の伝熱管の
内径の総断面積がガス冷媒側の伝熱管の内径の総断面積
よりも小さいことを特徴としている。
According to a first aspect of the present invention, there is provided a heat exchanger, wherein the total cross-sectional area of the heat transfer tube on the liquid refrigerant side is equal to the total cross-sectional area of the heat transfer tube on the gas refrigerant side. It is characterized by being smaller than the cross-sectional area.

【0008】ところで、冷媒の流動抵抗つまり圧力損失
という見地からは、伝熱管は太い方がよい。一方、熱交
換の効率および液冷媒の偏流防止という見地からは、伝
熱管は細い方がよい。
By the way, from the viewpoint of the flow resistance of the refrigerant, that is, the pressure loss, it is preferable that the heat transfer tube be thick. On the other hand, from the viewpoint of the efficiency of heat exchange and the prevention of liquid refrigerant drift, the narrower the heat transfer tube, the better.

【0009】一方、熱交換器が凝縮器として機能すると
きには、冷媒は伝熱管内をガス状態から液状態に変化し
て流れ、一方、熱交換器が蒸発器として機能するときに
は、冷媒は伝熱管内を液状態からガス状態に変化して流
れる。
On the other hand, when the heat exchanger functions as a condenser, the refrigerant flows in the heat transfer tube while changing from a gas state to a liquid state. On the other hand, when the heat exchanger functions as an evaporator, the refrigerant transfers heat. The liquid flows from the liquid state to the gas state in the pipe.

【0010】その際、ガス冷媒が伝熱管内を流れる際の
流動抵抗、圧力損失は、ガス冷媒の体積が液冷媒の体積
よりも著しく大きいため、液冷媒が伝熱管内を流れる際
の圧力損失よりも大きい。
[0010] At this time, the flow resistance and pressure loss when the gas refrigerant flows through the heat transfer tube are significantly larger than the volume of the liquid refrigerant when the liquid refrigerant flows through the heat transfer tube. Greater than.

【0011】そこで、請求項1の発明では、通常圧力損
失が大きくなるガス冷媒側の伝熱管の内径の総断面積を
液冷媒側の伝熱管の内径の総断面積よりも大きくして、
ガス冷媒側における伝熱管による圧力損失を小さくして
いる。このように、請求項1の発明の伝熱管は、圧力損
失を少なくするという見地からは、最も有効な設定にな
っている。
Therefore, in the first aspect of the present invention, the total cross-sectional area of the inner diameter of the heat transfer tube on the gas refrigerant side where the pressure loss usually increases is made larger than the total cross-sectional area of the inner diameter of the heat transfer tube on the liquid refrigerant side,
The pressure loss due to the heat transfer tube on the gas refrigerant side is reduced. Thus, the heat transfer tube according to the first aspect of the invention is the most effective setting from the viewpoint of reducing pressure loss.

【0012】一方、熱交換器の伝熱管は細い方が太いよ
りも熱交換の効率がよくて、かつ、液冷媒の偏流も生じ
にくくて、結露の虞もない。
On the other hand, the heat exchanger tubes of the heat exchanger are thinner and more efficient in heat exchange than thicker ones, are less likely to cause liquid refrigerant drift, and have no risk of dew condensation.

【0013】そこで、請求項1の発明では、液冷媒側の
伝熱管の内径の総断面積をガス冷媒側の伝熱管の内径の
総断面積よりも小さくしている。したがって、請求項1
の発明では、熱交換器の液冷媒側における熱交換の効率
が、液冷媒側における伝熱管の内径の総断面積をガス冷
媒側における伝熱管の内径の総断面積と等しくしている
従来例に比べて、高くなり、かつ、液冷媒の偏流を防止
でき、結露を防止できる。
Therefore, in the invention of claim 1, the total cross-sectional area of the inner diameter of the heat transfer tube on the liquid refrigerant side is made smaller than the total cross-sectional area of the inner diameter of the heat transfer tube on the gas refrigerant side. Therefore, claim 1
In the prior art, the efficiency of heat exchange on the liquid refrigerant side of the heat exchanger is such that the total cross-sectional area of the inner diameter of the heat transfer tube on the liquid refrigerant side is equal to the total cross-sectional area of the inner diameter of the heat transfer tube on the gas refrigerant side. As compared with the above, it is possible to prevent the liquid refrigerant from drifting and prevent dew condensation.

【0014】したがって、請求項1の発明の熱交換器で
は、圧力損失を有効に抑えることができ、かつ、熱交換
の効率を高め、かつ、液冷媒の偏流を防止できるから、
トータル的に熱交換の能力が高くなって、この熱交換器
を使用する冷凍装置の冷媒量を削減できる。したがっ
て、地球温暖化を防止できる。
Therefore, in the heat exchanger according to the first aspect of the present invention, the pressure loss can be effectively suppressed, the heat exchange efficiency can be increased, and the drift of the liquid refrigerant can be prevented.
The total heat exchange capacity is increased, and the amount of refrigerant in the refrigeration system using this heat exchanger can be reduced. Therefore, global warming can be prevented.

【0015】また、請求項1の発明の熱交換器は、液冷
媒側の伝熱管の内径の総断面積を小さくした分だけ、部
品材料を低減でき、コストダウンできる。
In the heat exchanger according to the first aspect of the present invention, the material for parts can be reduced and the cost can be reduced by reducing the total sectional area of the inner diameter of the heat transfer tube on the liquid refrigerant side.

【0016】ここで、熱交換器の伝熱管の液冷媒側と
は、蒸発器においては伝熱管の入口側を、凝縮器におい
ては伝熱管の出口側を意味し、一方、熱交換器の伝熱管
のガス冷媒側とは、蒸発器においては伝熱管の出口側
を、凝縮器においては伝熱管の入口側を意味する。
Here, the liquid refrigerant side of the heat transfer tube of the heat exchanger means the inlet side of the heat transfer tube in the evaporator and the outlet side of the heat transfer tube in the condenser. The gas refrigerant side of the heat tube means the outlet side of the heat transfer tube in the evaporator and the inlet side of the heat transfer tube in the condenser.

【0017】また、請求項2の発明の熱交換器は、請求
項1の熱交換器において、上記液冷媒側の伝熱管の内径
が上記ガス冷媒側の伝熱管の内径よりも小さいことを特
徴としている。
The heat exchanger according to a second aspect of the present invention is the heat exchanger according to the first aspect, wherein the inner diameter of the heat transfer tube on the liquid refrigerant side is smaller than the inner diameter of the heat transfer tube on the gas refrigerant side. And

【0018】請求項2の発明の熱交換器では、請求項1
の熱交換器において、伝熱管の内径を液冷媒側で小さ
く、ガス冷媒側で大きくしているから、簡単な構成で請
求項1の作用効果を得ることができる。すなわち、次の
作用効果を得ることができる。
In the heat exchanger according to the second aspect of the present invention, the heat exchanger according to the first aspect is provided.
In this heat exchanger, the inner diameter of the heat transfer tube is smaller on the liquid refrigerant side and larger on the gas refrigerant side, so that the operational effect of claim 1 can be obtained with a simple configuration. That is, the following operation and effect can be obtained.

【0019】請求項2の発明の熱交換器では、液冷媒の
体積よりも著しく体積が大きいガス冷媒側の伝熱管の内
径が液冷媒側の伝熱管の内径よりも大きくなっているの
で、圧力損失が少なくなる。したがって、請求項2の発
明の熱交換器の伝熱管は、簡単な構成で、圧力損失を効
果的に少なくすることができる。
In the heat exchanger according to the second aspect of the present invention, the inner diameter of the heat transfer tube on the gas refrigerant side, which is significantly larger than the volume of the liquid refrigerant, is larger than the inner diameter of the heat transfer tube on the liquid refrigerant side. Loss is reduced. Therefore, the heat transfer tube of the heat exchanger according to the second aspect of the present invention can effectively reduce pressure loss with a simple configuration.

【0020】また、請求項2の発明の熱交換器では、液
冷媒側の伝熱管の内径をガス冷媒側の伝熱管の内径より
も小さくしているので、熱交換器の液冷媒側における熱
交換の効率が、液冷媒側の伝熱管の内径をガス冷媒側の
伝熱管の内径と等しくしている従来例に比べて、高くな
り、かつ、液冷媒の偏流を防止でき、かつ、結露を防止
できる。
Further, in the heat exchanger according to the second aspect of the present invention, since the inner diameter of the heat transfer tube on the liquid refrigerant side is smaller than the inner diameter of the heat transfer tube on the gas refrigerant side, the heat transfer on the liquid refrigerant side of the heat exchanger is performed. The exchange efficiency is higher than the conventional example in which the inner diameter of the heat transfer tube on the liquid refrigerant side is equal to the inner diameter of the heat transfer tube on the gas refrigerant side, and the drift of the liquid refrigerant can be prevented, and dew condensation can be prevented. Can be prevented.

【0021】したがって、請求項2の発明の熱交換器で
は、圧力損失を有効に抑えることができ、かつ、熱交換
の効率を高め、かつ、液冷媒の偏流および結露を防止で
きるから、トータル的に熱交換の能力が高くなって、こ
の熱交換器を使用する冷凍装置の冷媒量を削減できる。
したがって、地球温暖化を防止できる。
Therefore, in the heat exchanger according to the second aspect of the present invention, the pressure loss can be effectively suppressed, the heat exchange efficiency can be increased, and the drift and dew condensation of the liquid refrigerant can be prevented. Therefore, the heat exchange capacity is increased, and the amount of refrigerant in the refrigeration system using this heat exchanger can be reduced.
Therefore, global warming can be prevented.

【0022】また、請求項3の発明の熱交換器は、請求
項1または2の熱交換器において、上記伝熱管は液冷媒
側とガス冷媒側とでパス数が同一であることを特徴とし
ている。
A heat exchanger according to a third aspect of the present invention is the heat exchanger according to the first or second aspect, wherein the heat transfer tubes have the same number of paths on the liquid refrigerant side and the gas refrigerant side. I have.

【0023】請求項3の発明の熱交換器によれば、上記
伝熱管は液冷媒側とガス冷媒側とでパス数が同一である
から、伝熱管の配置が簡単になり、かつ、熱交換器を簡
単、安価に製造できる。
According to the heat exchanger of the third aspect of the present invention, since the heat transfer tubes have the same number of passes on the liquid refrigerant side and the gas refrigerant side, the arrangement of the heat transfer tubes is simplified and the heat exchange is performed. The vessel can be manufactured simply and inexpensively.

【0024】また、請求項4の発明の熱交換器は、請求
項1または2の熱交換器において、上記伝熱管は液冷媒
側のパス数がガス冷媒側のパス数よりも少ないことを特
徴としている。
According to a fourth aspect of the present invention, in the heat exchanger of the first or second aspect, the number of the heat transfer tubes on the liquid refrigerant side is smaller than that on the gas refrigerant side. And

【0025】請求項4の発明の熱交換器では、上記伝熱
管は液冷媒側のパス数がガス冷媒側のパス数よりも少な
いから、例えば、液冷媒側とガス冷媒側とで同一の内径
を有する伝熱管を用いても、簡単に、液冷媒側の伝熱管
の内径の総断面積がガス冷媒側の伝熱管の内径の総断面
積よりも小さいようにできる。
In the heat exchanger according to the fourth aspect of the present invention, since the number of passes on the liquid refrigerant side is smaller than the number of passes on the gas refrigerant side, for example, the heat transfer tubes have the same inner diameter on the liquid refrigerant side and the gas refrigerant side. Even if a heat transfer tube having the following formula is used, the total cross-sectional area of the inner diameter of the heat transfer tube on the liquid refrigerant side can be easily made smaller than the total cross-sectional area of the inner diameter of the heat transfer tube on the gas refrigerant side.

【0026】また、請求項2の発明の熱交換器ように、
液冷媒側の伝熱管の内径を小さく、ガス冷媒側の伝熱管
の内径を大きくした上で、液冷媒側のパス数がガス冷媒
側のパス数よりも少なくすると、簡単に、液冷媒側の伝
熱管の内径の総断面積がガス冷媒側の伝熱管の内径の総
断面積よりも極めて小さくなるようにすることができ
る。
Further, as in the heat exchanger according to the second aspect of the present invention,
After reducing the inner diameter of the heat transfer tube on the liquid refrigerant side and increasing the inner diameter of the heat transfer tube on the gas refrigerant side, if the number of passes on the liquid refrigerant side is smaller than the number of passes on the gas refrigerant side, simply The total cross-sectional area of the inner diameter of the heat transfer tube can be made extremely smaller than the total cross-sectional area of the inner diameter of the heat transfer tube on the gas refrigerant side.

【0027】また、請求項5の発明の熱交換器は、液冷
媒側の伝熱管の内径がガス冷媒側の伝熱管の内径よりも
小さいことを特徴としている。
The heat exchanger according to the fifth aspect of the present invention is characterized in that the inner diameter of the heat transfer tube on the liquid refrigerant side is smaller than the inner diameter of the heat transfer tube on the gas refrigerant side.

【0028】請求項5の発明の熱交換器では、液冷媒の
体積よりも著しく体積が大きいガス冷媒側の伝熱管の内
径が液冷媒側の伝熱管の内径よりも大きくしているの
で、圧力損失を極めて小さくできる。したがって、請求
項5の発明の熱交換器の伝熱管は、圧力損失を少なくす
るという見地からは、簡単な構成で最も有効な設定にな
っている。
In the heat exchanger according to the fifth aspect of the present invention, the inner diameter of the heat transfer tube on the gas refrigerant side, which is significantly larger than the volume of the liquid refrigerant, is larger than the inner diameter of the heat transfer tube on the liquid refrigerant side. The loss can be made extremely small. Therefore, the heat transfer tube of the heat exchanger according to the fifth aspect of the invention has the simplest configuration and is the most effective setting from the viewpoint of reducing pressure loss.

【0029】また、請求項5の発明では、液冷媒側の伝
熱管の内径がガス冷媒側の伝熱管の内径よりも小さいの
で、熱交換器の液冷媒側における熱交換の効率が、液冷
媒側の伝熱管の内径をガス冷媒側の伝熱管の内径と等し
くしている従来例に比べて、高くなり、かつ、液冷媒の
偏流を防止でき、結露を防止できる。
According to the fifth aspect of the present invention, since the inner diameter of the heat transfer tube on the liquid refrigerant side is smaller than the inner diameter of the heat transfer tube on the gas refrigerant side, the efficiency of heat exchange on the liquid refrigerant side of the heat exchanger is reduced. As compared with the conventional example in which the inner diameter of the heat transfer tube on the gas refrigerant side is made equal to the inner diameter of the heat transfer tube on the gas refrigerant side, the liquid refrigerant can be prevented from drifting and dew condensation can be prevented.

【0030】したがって、請求項5の発明では、圧力損
失を少なくしつつ、熱交換の効率を高め、かつ、液冷媒
の偏流および結露を防止できるから、トータル的に熱交
換の能力が高くなって、この熱交換器を使用する冷凍装
置の冷媒量を削減できる。したがって、地球温暖化を防
止できる。
Therefore, according to the fifth aspect of the present invention, since the efficiency of heat exchange can be increased while the pressure loss is reduced, and the drift and dew condensation of the liquid refrigerant can be prevented, the heat exchange ability can be increased as a whole. In addition, the amount of refrigerant in a refrigeration apparatus using this heat exchanger can be reduced. Therefore, global warming can be prevented.

【0031】また、請求項5の発明の熱交換器は、液冷
媒側の伝熱管の内径を小さくした分だけ、部品材料を低
減でき、コストダウンできる。
Further, in the heat exchanger according to the fifth aspect of the present invention, the material of parts can be reduced and the cost can be reduced by reducing the inner diameter of the heat transfer tube on the liquid refrigerant side.

【0032】また、請求項6の発明の熱交換器は、請求
項1乃至5のいずれか1つの熱交換器において、複数の
フィンに伝熱管を挿通してなる複数のブロックを備え、
上記複数のブロックのうちの少なくとも2個のブロック
のフィンは、フィンパターンまたはフィン幅のうちの少
なくとも一方が互いに異なることを特徴としている。
A heat exchanger according to a sixth aspect of the present invention is the heat exchanger according to any one of the first to fifth aspects, further comprising a plurality of blocks each having a heat transfer tube inserted through a plurality of fins.
The fins of at least two blocks of the plurality of blocks are different from each other in at least one of a fin pattern and a fin width.

【0033】請求項6の発明の熱交換器は、上記複数の
ブロックを備え、この複数のブロックのうちの少なくと
も2個のブロックのフィンは、フィンパターンまたはフ
ィン幅のうちの少なくとも一方が互いに異なるから、伝
熱管の液冷媒側とガス冷媒側とで内径あるいはパス数が
異なっていても、上記伝熱管をフィンに簡単に適合させ
ることができる。
A heat exchanger according to a sixth aspect of the present invention includes the plurality of blocks, and fins of at least two blocks of the plurality of blocks are different from each other in at least one of a fin pattern and a fin width. Therefore, even when the inner diameter or the number of passes differs between the liquid refrigerant side and the gas refrigerant side of the heat transfer tube, the heat transfer tube can be easily adapted to the fin.

【0034】また、請求項7の発明の熱交換器は、請求
項1乃至5のいずれか1つの熱交換器において、複数の
フィンに伝熱管を挿通してなる1個のみのブロックから
なり、上記複数のフィンは外周形状は実質的に同じであ
り、かつ、上記複数のフィンのうちの少なくとも2枚の
フィンのフィンパターンが互いに異なることを特徴とし
ている。
A heat exchanger according to a seventh aspect of the present invention is the heat exchanger according to any one of the first to fifth aspects, wherein the heat exchanger comprises only one block formed by inserting a heat transfer tube through a plurality of fins. The plurality of fins have substantially the same outer peripheral shape, and the fin patterns of at least two of the plurality of fins are different from each other.

【0035】請求項7の発明の熱交換器は、1個のみの
ブロックからなり、複数のフィンは外周形状は実質的に
同じであり、かつ、上記複数のフィンのうちの少なくと
も2枚のフィンのフィンパターンが互いに異なるから、
伝熱管の液冷媒側とガス冷媒側とで内径あるいはパス数
が異なっていても、上記伝熱管をフィンに簡単、安価に
適合させることができる。
The heat exchanger according to the invention of claim 7 comprises only one block, the plurality of fins have substantially the same outer peripheral shape, and at least two fins of the plurality of fins are provided. Fin patterns are different from each other,
Even if the inner diameter or the number of passes differs between the liquid refrigerant side and the gas refrigerant side of the heat transfer tube, the heat transfer tube can be simply and inexpensively adapted to the fin.

【0036】また、請求項8の発明の熱交換器は、請求
項1乃至7のいずれか1つの熱交換器において、上記伝
熱管を風の進行方向を横切る方向に2列以上配列してい
ることを特徴としている。
The heat exchanger according to the invention of claim 8 is the heat exchanger according to any one of claims 1 to 7, wherein the heat transfer tubes are arranged in two or more rows in a direction crossing the direction of wind flow. It is characterized by:

【0037】請求項8の発明の熱交換器によれば、伝熱
管を風の進行方向を横切る方向に2列以上配列している
から、伝熱管の液冷媒側とガス冷媒側とで内径あるいは
パス数が異なっていても、伝熱管を最適な配置にして、
熱交換効率を高め、かつ、騒音を低減することができ
る。
According to the heat exchanger of the present invention, since the heat transfer tubes are arranged in two or more rows in a direction crossing the traveling direction of the wind, the inner diameter or the inner side of the heat transfer tubes on the liquid refrigerant side and the gas refrigerant side is reduced. Even if the number of passes is different, arrange the heat transfer tubes optimally,
Heat exchange efficiency can be increased and noise can be reduced.

【0038】また、請求項9の発明の熱交換器は、請求
項1乃至8のいずれか1つの熱交換器において、J字
状、L字状またはU字状をしていることを特徴としてい
る。
According to a ninth aspect of the present invention, in the heat exchanger of any one of the first to eighth aspects, the heat exchanger has a J-shape, an L-shape, or a U-shape. I have.

【0039】請求項9の発明の熱交換器は、伝熱管の液
冷媒側とガス冷媒側とで内径あるいはパス数の少なくと
も一方が異なっているから、熱交換能力が向上している
上に、J字状、L字状またはU字状をしているので、構
造がコンパクトである。
In the heat exchanger according to the ninth aspect of the present invention, since at least one of the inner diameter and the number of passes differs between the liquid refrigerant side and the gas refrigerant side of the heat transfer tube, the heat exchange capacity is improved. Since it is J-shaped, L-shaped or U-shaped, the structure is compact.

【0040】また、請求項10の発明の熱交換器は、請
求項1乃至9のいずれか1つの熱交換器において、上記
伝熱管の内周面が円錐状に連続的に変化していることを
特徴としている。
According to a tenth aspect of the present invention, in the heat exchanger according to any one of the first to ninth aspects, the inner peripheral surface of the heat transfer tube continuously changes in a conical shape. It is characterized by.

【0041】請求項10の発明の熱交換器によれば、上
記伝熱管の内周面が円錐状に連続的に変化している。し
たがって、上記伝熱管における圧力損失が一層少なくな
って、熱交換器の能力が向上する。
According to the heat exchanger of the tenth aspect, the inner peripheral surface of the heat transfer tube continuously changes in a conical shape. Therefore, the pressure loss in the heat transfer tube is further reduced, and the performance of the heat exchanger is improved.

【0042】また、請求項11の発明の熱交換器は、液
冷媒側の伝熱管のパス数がガス冷媒側の伝熱管のパス数
よりも少ないことを特徴としている。
The heat exchanger according to the eleventh aspect is characterized in that the number of heat transfer tubes on the liquid refrigerant side is smaller than the number of heat transfer tubes on the gas refrigerant side.

【0043】請求項11の発明の熱交換器によれば、請
求項4の発明の熱交換器と同じ作用効果を得ることがで
きる。
According to the heat exchanger of the eleventh aspect, the same operation and effect as those of the heat exchanger of the fourth aspect can be obtained.

【0044】また、請求項12の発明の冷凍装置は、請
求項1乃至11のいずれか1つの熱交換器を備え、HF
C(ハイドロフルオロカーボン)32系冷媒を充填した
ことを特徴としている。
A refrigeration apparatus according to a twelfth aspect of the present invention includes the heat exchanger according to any one of the first to eleventh aspects,
It is characterized by being filled with a C (hydrofluorocarbon) 32 type refrigerant.

【0045】請求項12の発明の冷凍装置では、請求項
1乃至11のいずれか1つの熱交換器を備えるから、ガ
ス冷媒側での伝熱管の圧力損失が小さく、かつ、液冷媒
側の伝熱管の内径あるいはその総断面積が小さいことに
よる熱交換効率の高さと偏流防止作用により、上記熱交
換器は熱交換能力が高いという作用効果を有する。それ
に加えて、HFC32系冷媒自体は、粘性が低いから圧
力損失が小さくて伝熱管を小径化でき、かつ、成績係数
(COP)が高く、地球温暖化係数(GWP)が低いと
いう機能を有する。この請求項1乃至10のいずれか1
つの熱交換器の作用効果とHFC32系冷媒自体の作用
効果との相乗作用によって、この冷凍装置は、冷媒量を
極めて削減できて、たとえば、HCFC(ハイドロクロ
ロフルオロカーボン)22系冷媒を用いた従来の冷凍装
置に比べて、地球温暖化効果は1/12よりも低くなる
ことが分かった。
In the refrigeration apparatus according to the twelfth aspect of the present invention, since the heat exchanger according to any one of the first to eleventh aspects is provided, the pressure loss of the heat transfer tube on the gas refrigerant side is small and the transfer loss on the liquid refrigerant side is small. Due to the high heat exchange efficiency and the effect of preventing drifting due to the small inner diameter of the heat tube or its total cross-sectional area, the heat exchanger has the effect of having a high heat exchange capacity. In addition, the HFC32-based refrigerant itself has a function of reducing pressure loss due to low viscosity, making it possible to reduce the diameter of the heat transfer tube, and having a high coefficient of performance (COP) and a low global warming coefficient (GWP). Any one of claims 1 to 10
By the synergistic effect of the operation effect of the two heat exchangers and the operation effect of the HFC32-based refrigerant itself, this refrigeration apparatus can significantly reduce the amount of the refrigerant, for example, the conventional refrigerant using HCFC (hydrochlorofluorocarbon) 22-based refrigerant. It was found that the global warming effect was lower than 1/12 as compared with the refrigeration system.

【0046】ここで、HFC32系冷媒とは、HFC3
2冷媒単体あるいはHFC32冷媒を一部に含む混合冷
媒を言う。
Here, the HFC32-based refrigerant is HFC3
Two refrigerants alone or a mixed refrigerant partially containing HFC32 refrigerant.

【0047】また、請求項13の発明の熱交換器は、熱
交換器の冷媒出入口の一端側と他端側とで伝熱管のパス
数が異なることを特徴としている。
Further, the heat exchanger according to the thirteenth aspect is characterized in that the number of heat transfer tube paths differs between one end and the other end of the refrigerant inlet / outlet of the heat exchanger.

【0048】請求項13の発明の熱交換器によれば、パ
ス数の多い一端側をガス冷媒側に、パス数の少ない他端
側を液冷媒側に接続すれば、請求項4の発明の熱交換器
と同じ作用効果を得ることができる。
According to the heat exchanger of the thirteenth aspect, the one end having a large number of passes is connected to the gas refrigerant side and the other end having a small number of passes is connected to the liquid refrigerant side. The same operation and effect as those of the heat exchanger can be obtained.

【0049】また、請求項14の発明の熱交換器は、請
求項13の熱交換器において、上記伝熱管のパス数が3
段階以上であることを特徴としている。
Further, the heat exchanger of the invention according to claim 14 is the heat exchanger according to claim 13, wherein the number of passes of the heat transfer tube is three.
It is characterized by more than one stage.

【0050】請求項14の発明の熱交換器によれば、パ
ス数の多い一端側をガス冷媒側に、パス数の少ない他端
側を液冷媒側に接続すれば、請求項4の発明の熱交換器
と同じ作用効果を得ることができる。しかも、パス数が
3段階以上であるので、徐々にパス数を変化させること
ができる。
According to the heat exchanger of the fourteenth aspect, if one end having a large number of passes is connected to the gas refrigerant and the other end having a small number of passes is connected to the liquid refrigerant, The same operation and effect as those of the heat exchanger can be obtained. Moreover, since the number of passes is three or more, the number of passes can be gradually changed.

【0051】また、請求項15の発明の熱交換器は、伝
熱管の一端側と他端側とで内径の総断面積が異なること
を特徴としている。
Further, the heat exchanger according to the fifteenth aspect is characterized in that one end side and the other end side of the heat transfer tube have different inner cross-sectional areas.

【0052】請求項15の発明の熱交換器によれば、伝
熱管の総断面積が大きい一端側をガス冷媒側に、伝熱管
の総断面積が小さい他端側を液冷媒側に接続すれば、請
求項1の発明の熱交換器と同じ作用効果を得ることがで
きる。
According to the heat exchanger of the present invention, one end of the heat transfer tube having a large total cross-sectional area is connected to the gas refrigerant side, and the other end of the heat transfer tube having a small total cross-sectional area is connected to the liquid refrigerant side. With this, the same operation and effect as those of the heat exchanger of the first aspect can be obtained.

【0053】また、請求項16の発明の熱交換器は、内
径の異なる伝熱管を用いたことを特徴としている。
The heat exchanger according to the sixteenth aspect of the present invention is characterized in that heat exchanger tubes having different inner diameters are used.

【0054】請求項16の発明の熱交換器によれば、内
径が大きい一端側の伝熱管をガス冷媒側に、内径が小さ
い他端側の伝熱管を液冷媒側に接続すれば、請求項5の
発明の熱交換器と同じ作用効果を得ることができる。
According to the heat exchanger of the sixteenth aspect, the heat transfer tube on one end having a large inner diameter is connected to the gas refrigerant, and the heat transfer tube on the other end having a small inner diameter is connected to the liquid refrigerant. The same operation and effect as those of the heat exchanger of the fifth aspect can be obtained.

【0055】また、請求項17の発明の熱交換器は、3
種類以上の内径の異なる伝熱管を用いたことを特徴とし
ている。
The heat exchanger according to the seventeenth aspect of the present invention has
It is characterized by the use of more than one type of heat transfer tubes with different inner diameters.

【0056】請求項17の発明の熱交換器によれば、内
径が大きい一端側の伝熱管をガス冷媒側に、内径が小さ
い他端側の伝熱管を液冷媒側に接続すれば、請求項5の
発明の熱交換器と同じ作用効果を得ることができる。し
かも、伝熱管の内径が3種類以上であるので、徐々に内
径を変化させることができる。
According to the heat exchanger of the seventeenth aspect, if the heat transfer tube at one end having a large inner diameter is connected to the gas refrigerant side and the heat transfer tube at the other end having a small inner diameter is connected to the liquid refrigerant side, The same operation and effect as those of the heat exchanger of the fifth aspect can be obtained. Moreover, since the heat transfer tubes have three or more inner diameters, the inner diameters can be gradually changed.

【0057】[0057]

【発明の実施の形態】以下、この発明を図示の実施の形
態により詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments.

【0058】図1はこの実施の形態の熱交換器を示して
いる。この熱交換器1は、図示しないが、フィンに伝熱
管を挿通してなり、液冷媒側Lにおける伝熱管の内径は
ガス冷媒側Gにおける伝熱管の内径よりも小さくなって
いる。さらに、この熱交換器1は、液冷媒側Lにおける
伝熱管のパス数は、ガス冷媒側Gにおける伝熱管のパス
数よりも少なくなっている。したがって、この熱交換器
1では、液冷媒側Lにおける伝熱管の内径の総断面積
は、ガス冷媒側Gにおける伝熱管の内径の総断面積より
も著しく小さくなっている。
FIG. 1 shows a heat exchanger according to this embodiment. Although not shown, the heat exchanger 1 has a heat transfer tube inserted through a fin. The inner diameter of the heat transfer tube on the liquid refrigerant side L is smaller than the inner diameter of the heat transfer tube on the gas refrigerant side G. Further, in this heat exchanger 1, the number of heat transfer tubes on the liquid refrigerant side L is smaller than the number of heat transfer tubes on the gas refrigerant side G. Therefore, in this heat exchanger 1, the total cross-sectional area of the inner diameter of the heat transfer tube on the liquid refrigerant side L is significantly smaller than the total cross-sectional area of the inner diameter of the heat transfer tube on the gas refrigerant side G.

【0059】この熱交換器1は、凝縮器として機能する
ときには、図1において実線の矢印に示すように冷媒が
流れる一方、蒸発器として機能するときには、図1にお
いて破線の矢印に示すように冷媒が流れる。すなわち、
この熱交換器1が凝縮器であるときには、ガス冷媒側G
の伝熱管の端が入口になり、液冷媒側Lの伝熱管の端が
出口になり、一方、この熱交換器1が蒸発器であるとき
には、液冷媒側Lの伝熱管の端が入口になり、ガス冷媒
側Gの伝熱管の端が出口になる。
When the heat exchanger 1 functions as a condenser, the refrigerant flows as shown by a solid arrow in FIG. 1, while when it functions as an evaporator, the refrigerant flows as shown by a dashed arrow in FIG. Flows. That is,
When the heat exchanger 1 is a condenser, the gas refrigerant G
The end of the heat transfer tube on the liquid refrigerant side L is the inlet, and the end of the heat transfer tube on the liquid refrigerant side L is the outlet. On the other hand, when the heat exchanger 1 is an evaporator, the end of the heat transfer tube on the liquid refrigerant side L is the inlet. Thus, the end of the heat transfer tube on the gas refrigerant side G becomes the outlet.

【0060】ところで、図2に示すような現象がある。
すなわち、凝縮器、蒸発器には能力(熱交換能力および
圧力損失を考慮した能力)を最大のするには、最適な伝
熱管の内径とパス数がある。さらに、凝縮器の能力を最
大にする伝熱管の内径およびパス数は、夫々、蒸発器の
能力を最大にする伝熱管の内径およびパス数よりも小さ
い。これらの現象を踏まえて、本発明者は、上記実施の
形態の1つの熱交換器1が凝縮器、蒸発器のいずれに使
用しても能力が最大になるようにしたのである。
Incidentally, there is a phenomenon as shown in FIG.
That is, in order to maximize the capacity (capacity considering heat exchange capacity and pressure loss) of the condenser and the evaporator, there is an optimum inner diameter of the heat transfer tube and the number of passes. Furthermore, the inside diameter and the number of passes of the heat transfer tubes that maximize the capacity of the condenser are respectively smaller than the inside diameter and the number of passes of the heat transfer tubes that maximize the capacity of the evaporator. Based on these phenomena, the present inventor has made the heat exchanger 1 of the above-described embodiment maximize the capacity regardless of whether it is used as a condenser or an evaporator.

【0061】上記実施の形態では、液冷媒の体積よりも
著しく体積が大きいガス冷媒が流れるガス冷媒側Gの伝
熱管の内径の総断面積を液冷媒側Lの伝熱管の内径の総
断面積よりも大きくして、ガス冷媒側Gにおける伝熱管
内のガス冷媒の圧力損失を小さくしている。このよう
に、一般に大きくなるガス冷媒側Gの圧力損失を小さく
しているから、圧力損失の低減効果が大きい。
In the above embodiment, the total cross-sectional area of the inner diameter of the heat transfer tube on the gas refrigerant side G is defined by the total cross-sectional area of the inner diameter of the heat transfer tube on the liquid refrigerant side L, through which the gas refrigerant having a significantly larger volume than the liquid refrigerant flows. The pressure loss of the gas refrigerant in the heat transfer tube on the gas refrigerant side G is reduced. As described above, since the generally large pressure loss on the gas refrigerant side G is reduced, the effect of reducing the pressure loss is large.

【0062】また、上記実施の形態では、液冷媒側Lの
伝熱管の内径の総断面積をガス冷媒側Gの伝熱管の内径
の総断面積よりも小さくしているので、液冷媒側Lにお
ける熱交換の効率が、液冷媒側における伝熱管の内径の
総断面積をガス冷媒側における伝熱管の内径の総断面積
と等しくしている従来例に比べて、高くなり、かつ、液
冷媒の偏流を防止でき、結露を防止できる。
In the above embodiment, the total cross-sectional area of the heat transfer tube on the liquid refrigerant side L is smaller than the total cross-sectional area of the inner diameter of the heat transfer tube on the gas refrigerant side G. Heat exchange efficiency is higher than that of the conventional example in which the total cross-sectional area of the inner diameter of the heat transfer tube on the liquid refrigerant side is equal to the total cross-sectional area of the inner diameter of the heat transfer tube on the gas refrigerant side, and the liquid refrigerant is higher. Can be prevented and dew condensation can be prevented.

【0063】したがって、この実施の形態の熱交換器1
では、圧力損失を効果的に低減でき、かつ、熱交換の効
率を高め、かつ、液冷媒の偏流および結露を防止できる
から、トータル的に熱交換の能力が高くなって、この熱
交換器を使用する冷凍装置の冷媒量を削減できる。した
がって、地球温暖化を防止できる。
Therefore, the heat exchanger 1 of this embodiment
Therefore, the pressure loss can be effectively reduced, the efficiency of heat exchange can be increased, and the drift and dew condensation of the liquid refrigerant can be prevented. The amount of refrigerant in the refrigeration system used can be reduced. Therefore, global warming can be prevented.

【0064】また、この熱交換器1は、液冷媒側Lの伝
熱管の内径の総断面積を小さくした分だけ、部品材料を
低減でき、コストダウンできる。
Further, in the heat exchanger 1, the amount of component materials can be reduced and the cost can be reduced by reducing the total cross-sectional area of the inner diameter of the heat transfer tube on the liquid refrigerant side L.

【0065】図3は他の実施の形態の熱交換器10を示
している。この熱交換器10ではフィン9を伝熱管1
1,12,13,14,15,16が貫通し、伝熱管1
1と12をUベント17で接続し、伝熱管13と14を
Uベント18で接続し、伝熱管15と16をUベント1
9で接続している。上記伝熱管11,12,13,1
4,15,16は1パスを構成し、ガス冷媒側Gから液
冷媒側Lに向けて段階的に細くなっている。すなわち、
上記伝熱管11,12,13,14,15,16の内径
は伝熱管11から伝熱管16に向けて段々小さくなって
いる。
FIG. 3 shows a heat exchanger 10 according to another embodiment. In this heat exchanger 10, the fins 9 are connected to the heat transfer tubes 1
1, 12, 13, 14, 15, 16 penetrate and heat transfer tube 1
1 and 12 are connected by a U vent 17, heat transfer tubes 13 and 14 are connected by a U vent 18, and heat transfer tubes 15 and 16 are connected by a U vent 1
9 is connected. The heat transfer tubes 11, 12, 13, 1
4, 15 and 16 constitute one pass, and are tapered from the gas refrigerant side G to the liquid refrigerant side L stepwise. That is,
The inner diameter of each of the heat transfer tubes 11, 12, 13, 14, 15, 16 is gradually reduced from the heat transfer tube 11 to the heat transfer tube 16.

【0066】いま、上記熱交換器10を凝縮器として使
用して、大径の伝熱管11にガス冷媒が流入し、凝縮し
て、小径の伝熱管16から液冷媒が流出するとする。
Now, suppose that the gas refrigerant flows into the large-diameter heat transfer tube 11, condenses, and the liquid refrigerant flows out of the small-diameter heat transfer tube 16 using the heat exchanger 10 as a condenser.

【0067】このとき、ガス冷媒側Gの伝熱管11,1
2の内径が液冷媒側Lの伝熱管15,16の内径よりも
大きくなっているので、ガス冷媒の体積が液冷媒の体積
よりも著しく大きいが、伝熱管の内径を全体の亘って同
じにしている場合に比べて、ガス冷媒の圧力損失が極め
て小さい。このように、上記伝熱管11,12,13,
14,15,16の内径を段階的に小さくするという簡
単、安価な構成で、ガス冷媒側Gの圧力損失を小さくで
きるのである。
At this time, the heat transfer tubes 11, 1 on the gas refrigerant side G are
2 is larger than the inner diameter of the heat transfer tubes 15 and 16 on the liquid refrigerant side L, the volume of the gas refrigerant is significantly larger than the volume of the liquid refrigerant, but the inner diameter of the heat transfer tubes is the same throughout. The pressure loss of the gas refrigerant is extremely small as compared with the case where the pressure is low. Thus, the heat transfer tubes 11, 12, 13,
The pressure loss on the gas refrigerant side G can be reduced with a simple and inexpensive configuration in which the inner diameters of 14, 15, and 16 are gradually reduced.

【0068】一方、凝縮した液冷媒は液冷媒側Lの小径
の伝熱管14,15,16を流れるが、この液冷媒側L
の伝熱管14,15,16の内径がガス冷媒側の伝熱管
11,12,13の内径よりも小さくなっているので、
液冷媒側Lにおける熱交換の効率が、液冷媒側の伝熱管
の内径をガス冷媒側の伝熱管の内径と等しくしている場
合に比べて、高くなり、かつ、液冷媒の偏流を防止で
き、かつ、結露を防止できる。
On the other hand, the condensed liquid refrigerant flows through the small-diameter heat transfer tubes 14, 15, 16 on the liquid refrigerant side L.
Since the inner diameter of the heat transfer tubes 14, 15, 16 is smaller than the inner diameter of the heat transfer tubes 11, 12, 13 on the gas refrigerant side,
The efficiency of heat exchange on the liquid refrigerant side L is higher than when the inner diameter of the heat transfer tube on the liquid refrigerant side is equal to the inner diameter of the heat transfer tube on the gas refrigerant side, and the drift of the liquid refrigerant can be prevented. In addition, dew condensation can be prevented.

【0069】したがって、この実施の形態の熱交換器1
0では、ガス冷媒側Gと液冷媒側Lが同じパス数である
1パスで伝熱管11,12,13,14,15,16の
内径を段々小さくするという簡単、安価な構成で、圧力
損失を効果的に低減でき、かつ、熱交換の効率を高め、
かつ、液冷媒の偏流および結露を防止できるから、トー
タル的に熱交換の能力が高くなる。したがって、この熱
交換器10を使用する冷凍装置の冷媒量を削減できる。
したがって、地球温暖化を防止できる。
Therefore, the heat exchanger 1 of this embodiment
0, the gas refrigerant side G and the liquid refrigerant side L have the same number of passes, and the heat transfer tubes 11, 12, 13, 14, 15, 16 have a simple and inexpensive configuration in which the inner diameter of the heat transfer tubes 11, 12, 13, 14, 15, 16 is gradually reduced. Can be effectively reduced, and the efficiency of heat exchange can be increased,
In addition, since the drift and dew condensation of the liquid refrigerant can be prevented, the heat exchange ability is increased in total. Therefore, the amount of refrigerant in the refrigerating apparatus using the heat exchanger 10 can be reduced.
Therefore, global warming can be prevented.

【0070】また、この熱交換器10は、液冷媒側Lの
伝熱管14,15,16の内径を小さくした分だけ、部
品材料を低減でき、コストダウンできる。
Further, in the heat exchanger 10, parts materials can be reduced and the cost can be reduced by reducing the inner diameter of the heat transfer tubes 14, 15, 16 on the liquid refrigerant side L.

【0071】なお、この熱交換器10を蒸発器として使
用するときには、小径の伝熱管16に液冷媒を流入さ
せ、蒸発したガス冷媒を大径の伝熱管11から流出させ
る。
When the heat exchanger 10 is used as an evaporator, the liquid refrigerant flows into the small-diameter heat transfer tube 16 and the evaporated gas refrigerant flows out from the large-diameter heat transfer tube 11.

【0072】図4はこの発明の熱交換器に用いる一例と
しての伝熱管20を示し、この伝熱管20は内径が、液
冷媒側Lからガス冷媒側Gに向けて、4mm、6mm、
7mm、8mm、9.5mmと段階的に大きくなってい
る。この伝熱管20は、簡単、安価に製造できる。
FIG. 4 shows a heat transfer tube 20 as an example used in the heat exchanger of the present invention. The heat transfer tube 20 has an inner diameter of 4 mm, 6 mm, from the liquid refrigerant side L to the gas refrigerant side G.
It is gradually increased to 7 mm, 8 mm, and 9.5 mm. This heat transfer tube 20 can be manufactured simply and at low cost.

【0073】図示しないが、伝熱管の内周面が円錐状に
連続的に変化するのが望ましい。こうすれば、上記伝熱
管における圧力損失が一層少なくなって、熱交換器の能
力が一層向上する。
Although not shown, it is desirable that the inner peripheral surface of the heat transfer tube changes continuously in a conical shape. In this case, the pressure loss in the heat transfer tube is further reduced, and the performance of the heat exchanger is further improved.

【0074】図5は他の実施の形態の熱交換器の伝熱管
系30のみを示している。この熱交換器では、同じ内径
の伝熱管31,32,33,34をカスケード形式で接
続して、液冷媒側Lの伝熱管31または伝熱管32,3
2の内径の総断面積をガス冷媒側Gの伝熱管34,3
4,34,34の内径の総断面積よりも小さくしてい
る。
FIG. 5 shows only a heat transfer tube system 30 of a heat exchanger according to another embodiment. In this heat exchanger, the heat transfer tubes 31, 32, 33, and 34 having the same inner diameter are connected in a cascade manner, and the heat transfer tube 31 or the heat transfer tubes 32, 3 on the liquid refrigerant side L are connected.
The total cross-sectional area of the inner diameter of the heat transfer tubes 34, 3 on the gas refrigerant side G is
4, 34, 34 are smaller than the total cross-sectional area of the inner diameter.

【0075】なお、上記伝熱管34,34,34,34
は図示しないヘッダーに接続される。
The heat transfer tubes 34, 34, 34, 34
Is connected to a header (not shown).

【0076】この実施の形態では、同じ内径の伝熱管3
1,32,33,34を用い、ガス冷媒側Gと液冷媒L
とでパス数を変えることによって、ガス冷媒側Gの伝熱
管34,34の内径の総断面積を液冷媒側Lの伝熱管3
1または32,32の内径の総断面積よりも大きくして
いるので、簡単、安価な構成で、ガス冷媒側Gにおける
伝熱管34,34,34,34内のガス冷媒の圧力損失
を小さくできる。
In this embodiment, the heat transfer tubes 3 having the same inner diameter are used.
1, 32, 33, 34, the gas refrigerant side G and the liquid refrigerant L
By changing the number of passes between the heat transfer tubes 3 and 34 on the gas refrigerant side G, the total cross-sectional area of the inner diameter of the heat transfer tubes 34 and 34 on the gas refrigerant side G is changed.
Since the diameter is larger than the total cross-sectional area of the inner diameter of the first or second 32, the pressure loss of the gas refrigerant in the heat transfer tubes 34, 34, 34, 34 on the gas refrigerant side G can be reduced with a simple and inexpensive configuration. .

【0077】また、上記実施の形態では、同じ内径の伝
熱管31,32,33,34をカスケード形式で接続し
て、液冷媒側Lの伝熱管31または32,32の内径の
総断面積をガス冷媒側Gの伝熱管34,34,34,3
4の内径の総断面積よりも小さくしているので、液冷媒
側Lにおける熱交換の効率が、液冷媒側における伝熱管
の内径の総断面積をガス冷媒側における伝熱管の内径の
総断面積と等しくしている場合に比べて、高くなり、か
つ、液冷媒の偏流を防止でき、結露を防止できる。
In the above embodiment, the heat transfer tubes 31, 32, 33, and 34 having the same inner diameter are connected in a cascade manner, and the total cross-sectional area of the inner diameter of the heat transfer tube 31 or 32, 32 on the liquid refrigerant side L is reduced. Heat transfer tubes 34, 34, 34, 3 on the gas refrigerant side G
4 is smaller than the total cross-sectional area of the inner diameter of the liquid refrigerant, the heat exchange efficiency on the liquid refrigerant side L depends on the total cross-sectional area of the inner diameter of the heat transfer tube on the liquid refrigerant side. As compared with the case where the area is equal to the area, the height is higher, and the drift of the liquid refrigerant can be prevented, and the dew condensation can be prevented.

【0078】したがって、この実施の形態の熱交換器で
は、圧力損失を低減することができ、かつ、熱交換の効
率を高め、かつ、液冷媒の偏流を防止できるから、トー
タル的に熱交換の能力が高くなる。したがって、この熱
交換器を使用する冷凍装置の冷媒量を削減できる。した
がって、地球温暖化を防止できる。
Therefore, in the heat exchanger of this embodiment, the pressure loss can be reduced, the heat exchange efficiency can be increased, and the drift of the liquid refrigerant can be prevented. Ability increases. Therefore, the amount of refrigerant in the refrigerating apparatus using the heat exchanger can be reduced. Therefore, global warming can be prevented.

【0079】図6は他の実施の形態の熱交換器の伝熱管
系40のみを示している。この熱交換器では、液冷媒側
Lの伝熱管41または伝熱管42,42,42の各内径
およびその内径の総断面積を、夫々、ガス冷媒側Gの伝
熱管45,45,45または伝熱管46の各内径および
その内径の総断面積よりも小さくしている。さらに、上
記伝熱管42,42,42と伝熱管45,45,45と
を一本の伝熱管43で接続して、伝熱管42,42,4
2におけ液冷媒の偏流の影響が伝熱管45,45,45
に及ばないようにしている。
FIG. 6 shows only a heat transfer tube system 40 of a heat exchanger according to another embodiment. In this heat exchanger, the inner diameter of the heat transfer tube 41 or the heat transfer tubes 42, 42, 42 on the liquid refrigerant side L and the total cross-sectional area of the inner diameter are respectively transferred to the heat transfer tubes 45, 45, 45 or 45 on the gas refrigerant side G. Each inner diameter of the heat pipe 46 and the total cross-sectional area of the inner diameter are made smaller. Further, the heat transfer tubes 42, 42, 42 and the heat transfer tubes 45, 45, 45 are connected by one heat transfer tube 43, and the heat transfer tubes 42, 42, 4 are connected.
The influence of the drift of the liquid refrigerant in the heat transfer tubes 45, 45, 45
Less.

【0080】この実施の形態では、ガス冷媒側Gの伝熱
管45,45,45または46の内径の総断面積を液冷
媒側Lの伝熱管41または42,42,42の内径の総
断面積よりも大きくしているので、簡単、安価な構成
で、ガス冷媒側Gにおける伝熱管45,45,45およ
び46内のガス冷媒の圧力損失を小さくできる。
In this embodiment, the total cross-sectional area of the inner diameter of the heat transfer tubes 45, 45, 45 or 46 on the gas refrigerant side G is changed to the total cross-sectional area of the inner diameter of the heat transfer tubes 41 or 42, 42, 42 on the liquid refrigerant side L. The pressure loss of the gas refrigerant in the heat transfer tubes 45, 45, 45 and 46 on the gas refrigerant side G can be reduced with a simple and inexpensive configuration.

【0081】また、上記実施の形態では、液冷媒側Lの
伝熱管41または42,42,42の内径の総断面積
を、ガス冷媒側Gの伝熱管45,45,45または46
の内径の総断面積よりも小さくしているので、液冷媒側
Lにおける熱交換の効率が、液冷媒側における伝熱管の
内径の総断面積をガス冷媒側における伝熱管の内径の総
断面積と等しくしている場合に比べて、高くなり、か
つ、液冷媒の偏流を防止でき、結露を防止できる。
Also, in the above embodiment, the total cross-sectional area of the inner diameter of the heat transfer tube 41 or 42, 42, 42 on the liquid refrigerant side L is determined by the heat transfer tube 45, 45, 45 or 46 on the gas refrigerant side G.
Is smaller than the total cross-sectional area of the inner diameter of the heat transfer tube on the liquid refrigerant side L, the total cross-sectional area of the inner diameter of the heat transfer tube on the liquid refrigerant side is the total cross-sectional area of the inner diameter of the heat transfer tube on the gas refrigerant side. As compared with the case where the pressure is equal to the above, it is possible to prevent the liquid refrigerant from drifting and to prevent dew condensation.

【0082】したがって、この実施の形態の熱交換器で
は、圧力損失を低減することができ、かつ、熱交換の効
率を高め、かつ、液冷媒の偏流を防止できるから、トー
タル的に熱交換の能力が高くなる。したがって、この熱
交換器を使用する冷凍装置の冷媒量を削減できる。した
がって、地球温暖化を防止できる。
Therefore, in the heat exchanger of this embodiment, the pressure loss can be reduced, the heat exchange efficiency can be increased, and the drift of the liquid refrigerant can be prevented. Ability increases. Therefore, the amount of refrigerant in the refrigerating apparatus using the heat exchanger can be reduced. Therefore, global warming can be prevented.

【0083】図7は空気調和機の室内機50を示してい
る。この室内機50は、ケーシング51内にクロスフロ
ーファン52と熱交換器53とを設けている。
FIG. 7 shows an indoor unit 50 of an air conditioner. The indoor unit 50 has a cross flow fan 52 and a heat exchanger 53 provided in a casing 51.

【0084】この実施の形態の熱交換器53は、複数の
フィン54を紙面と直交する方向に所定間隔をあけて積
み重ね、これらのフィン54に伝熱管55,56,5
7,58を挿通してなるJ字形状の1個のブロックから
なる。上記積み重ねた複数のフィン54は外周形状は実
質的に同じである。液冷媒側Lの伝熱管55,56の内
径は小さく、ガス冷媒側Gの伝熱管57,58の内径は
大きくしている。さらに、上記伝熱管55,57;5
6,58は、風の流れる方向Wを横切る方向に2列に配
列している。
In the heat exchanger 53 of this embodiment, a plurality of fins 54 are stacked at predetermined intervals in a direction perpendicular to the plane of the paper, and heat transfer tubes 55, 56, and 5 are mounted on these fins 54.
It consists of one J-shaped block with 7, 58 inserted. The plurality of stacked fins 54 have substantially the same outer peripheral shape. The heat transfer tubes 55 and 56 on the liquid refrigerant side L have small inside diameters, and the heat transfer tubes 57 and 58 on the gas refrigerant side G have large inside diameters. Further, the heat transfer tubes 55, 57;
6, 58 are arranged in two rows in a direction crossing the direction W in which the wind flows.

【0085】また、上記伝熱管55,56,57,58
は紙面と直交する方向に内径が徐々に連続的に、あるい
は、段階的に変化して、ガス冷媒が多くなるほど内径が
大きくなるようにしている。それに応じて、複数のフィ
ン54のフィンパターン(伝熱管を挿通するための穴の
サイズやその穴の配置)が異なっている。
The heat transfer tubes 55, 56, 57, 58
The inner diameter gradually changes continuously or stepwise in a direction perpendicular to the paper surface, so that the inner diameter increases as the gas refrigerant increases. Accordingly, the fin patterns of the plurality of fins 54 (the size of the holes for inserting the heat transfer tubes and the arrangement of the holes) are different.

【0086】上記実施の形態の熱交換器53は、液冷媒
側Lの伝熱管55,56の内径を小さく、ガス冷媒側G
の伝熱管57、58の内径を大きくし、かつ、紙面と直
交する方向にガス冷媒が多くなるほど伝熱管55,5
6,57,58の内径が大きくなるようにしているの
で、圧力損失を極めて低減することができ、かつ、熱交
換の効率を極めて高め、かつ、液冷媒の偏流を極めて防
止できる。したがって、この熱交換器53はトータル的
に熱交換の能力が極めて高くなる。したがって、この熱
交換器53は、空気調和機の冷媒量の削減に大きく寄与
できる。したがって、地球温暖化の防止に大いに役立
つ。
In the heat exchanger 53 of the above embodiment, the inner diameter of the heat transfer tubes 55 and 56 on the liquid refrigerant side L is small,
Of the heat transfer tubes 55, 5 as the gas refrigerant increases in the direction orthogonal to the paper surface.
Since the inner diameter of 6, 57, 58 is increased, the pressure loss can be extremely reduced, the efficiency of heat exchange can be extremely increased, and the drift of the liquid refrigerant can be extremely prevented. Therefore, the heat exchanger 53 has an extremely high heat exchange capacity in total. Therefore, the heat exchanger 53 can greatly contribute to the reduction of the refrigerant amount of the air conditioner. Therefore, it is very useful for preventing global warming.

【0087】また、上記実施の形態の熱交換器53は,
J字形状の1個のみのブロックからなり、かつ、複数の
フィン54は外周形状は実質的に同じであるから、構造
がコンパクトで、かつ、簡単、安価に製造できる。
The heat exchanger 53 of the above embodiment is
Since only one J-shaped block is formed and the plurality of fins 54 have substantially the same outer peripheral shape, the structure can be made compact, simple, and inexpensive.

【0088】また、上記積み重ねた複数のフィン54
は、フィンのフィンパターンが互いに異なるから、伝熱
管55,56,57、58が紙面と直交する方向で内径
あるいはパス数が異なっていても、上記伝熱管55,5
6,57、58をフィン54に簡単、安価に適合させる
ことができる。
The plurality of stacked fins 54
Since the fin patterns of the fins are different from each other, even if the heat transfer tubes 55, 56, 57, and 58 have different inner diameters or the number of passes in the direction perpendicular to the plane of the paper, the heat transfer tubes 55, 5,
6, 57, 58 can be easily and inexpensively adapted to the fins 54.

【0089】また、上記熱交換器53では、伝熱管5
5,56,57、58を風の進行方向Wを横切る方向に
2列に配列しているから、伝熱管55,56,57、5
8の液冷媒側とガス冷媒側とで内径あるいはパス数が異
なっていても、伝熱管55,56,57、58を最適な
配置にして、熱交換効率を高め、かつ、騒音を低減する
ことができる。
In the heat exchanger 53, the heat transfer tubes 5
Since the heat transfer tubes 55, 56, 57, and 58 are arranged in two rows in a direction crossing the wind traveling direction W, the heat transfer tubes 55, 56, 57, and
8. Even if the inner diameter or the number of passes differs between the liquid refrigerant side and the gas refrigerant side of No. 8, the heat transfer tubes 55, 56, 57, 58 are optimally arranged to increase heat exchange efficiency and reduce noise. Can be.

【0090】図8は他の実施の形態の熱交換器60を示
している。この熱交換器60は、複数のブロック61,
62,63,64をJ字状に配列してなる。各ブロック
61,62,63,64は、夫々のフィン81,82,
83,84を紙面と直交する方向に所定間隔をあけて積
み重ね、各フィン81,82,83,84に各伝熱管7
1,73,74,75を夫々挿通してなる。
FIG. 8 shows a heat exchanger 60 according to another embodiment. The heat exchanger 60 includes a plurality of blocks 61,
62, 63 and 64 are arranged in a J-shape. Each block 61, 62, 63, 64 has a respective fin 81, 82,
83, 84 are stacked at predetermined intervals in a direction perpendicular to the plane of the paper, and each fin 81, 82, 83, 84
1, 73, 74 and 75 are respectively inserted.

【0091】また、上記フィン81,82,83,84
は、大きさ(幅と長さ)が互いに異なり、かつ、フィン
パターンも互いに異なっている。
The fins 81, 82, 83, 84
Have different sizes (width and length) and different fin patterns.

【0092】上記ブロック61では、風の進行方向Wを
横切る方向に伝熱管71を1列に配置し、ブロック62
では、風の進行方向Wを横切る方向に伝熱管73を2列
に配置し、ブロック63では、風の進行方向Wを横切る
方向に伝熱管74を2列に配置し、ブロック64では、
風の進行方向Wを横切る方向に伝熱管75を3列P,
Q,Rに配置している。上記伝熱管71,73,74,
75において、ガス冷媒側の内径の総断面積は液冷媒側
の内径の総断面積よりも大きくなっている。
In the block 61, the heat transfer tubes 71 are arranged in a row in a direction crossing the wind traveling direction W.
In the example, the heat transfer tubes 73 are arranged in two rows in the direction crossing the wind traveling direction W, in the block 63, the heat transfer tubes 74 are arranged in two rows in the direction crossing the wind traveling direction W, and in the block 64,
The heat transfer tubes 75 are arranged in three rows P in a direction crossing the wind traveling direction W,
Q and R are arranged. The heat transfer tubes 71, 73, 74,
At 75, the total cross-sectional area of the gas refrigerant side inner diameter is larger than the total cross-sectional area of the liquid refrigerant side inner diameter.

【0093】上記熱交換器60では、伝熱管71,7
3,74,75において、ガス冷媒側の内径の総断面積
は液冷媒側の内径の総断面積よりも大きくしているの
で、圧力損失を低減することができ、かつ、熱交換の効
率を高め、かつ、液冷媒の偏流および結露を防止でき
る。したがって、トータル的に熱交換の能力が極めて高
くなる。したがって、この熱交換器60は冷媒量の削減
に大きく貢献でき、地球温暖化の防止に大いに寄与でき
る。
In the heat exchanger 60, the heat transfer tubes 71, 7
In 3, 74 and 75, since the total cross-sectional area of the inner diameter on the gas refrigerant side is larger than the total cross-sectional area of the inner diameter on the liquid refrigerant side, the pressure loss can be reduced and the efficiency of heat exchange can be reduced. In addition, it is possible to prevent the liquid refrigerant from drifting and dew condensation. Therefore, the heat exchange capacity becomes extremely high in total. Therefore, the heat exchanger 60 can greatly contribute to the reduction of the amount of refrigerant, and can greatly contribute to prevention of global warming.

【0094】また、上記熱交換器60は、J字形状に配
列した複数のブロック61,62,63,64からなる
から、ブロック単位で簡単、安価に製造できる。
Since the heat exchanger 60 is composed of a plurality of blocks 61, 62, 63, 64 arranged in a J-shape, it can be manufactured simply and inexpensively in block units.

【0095】また、上記複数のブロック61,62,6
3,64は、フィン81,82,83,84の大きさお
よびフィンパターンが夫々互いに異なるから、伝熱管7
1,73,74,75が液冷媒側とガス冷媒側とで内径
あるいはパス数が異なっていても、上記伝熱管71,7
3,74,75をフィン81,82,83,84に簡単
に適合させることができる。
The plurality of blocks 61, 62, 6
The heat transfer tubes 7 and 64 have different sizes and fin patterns of the fins 81, 82, 83 and 84, respectively.
The heat transfer tubes 71, 7, 7, and 75 have different inner diameters or different numbers of passes between the liquid refrigerant side and the gas refrigerant side.
3, 74, 75 can be easily adapted to the fins 81, 82, 83, 84.

【0096】また、上記熱交換器60では、ブロック6
1では、風の進行方向Wを横切る方向に伝熱管71を1
列に配置し、ブロック62では、風の進行方向Wを横切
る方向に伝熱管73を2列に配置し、ブロック63で
は、風の進行方向Wを横切る方向に伝熱管74を2列に
配置し、ブロック64では、風の進行方向Wを横切る方
向に伝熱管75を3列P,Q,Rに配置しているから、
伝熱管71,73,74,75の液冷媒側とガス冷媒側
とで内径あるいはパス数が異なっていても、伝熱管7
1,73,74,75を最適な配置にして、熱交換効率
を高め、かつ、騒音を低減するようにすることができ
る。
In the heat exchanger 60, the block 6
In FIG. 1, the heat transfer tube 71 is moved in the direction crossing the wind traveling direction W by one.
In the block 62, the heat transfer tubes 73 are arranged in two rows in a direction crossing the wind traveling direction W, and in the block 63, the heat transfer tubes 74 are arranged in two rows in a direction crossing the wind traveling direction W. In the block 64, the heat transfer tubes 75 are arranged in three rows P, Q, and R in a direction crossing the wind traveling direction W.
Even if the inner diameter or the number of passes differs between the liquid refrigerant side and the gas refrigerant side of the heat transfer tubes 71, 73, 74, 75, the heat transfer tubes 7
1, 73, 74, and 75 can be optimally arranged to increase heat exchange efficiency and reduce noise.

【0097】図9は他の実施の形態の冷凍装置の一例と
しての空気調和機を示している。この空気調和機は、圧
縮機91と、四路切換弁92と、室内熱交換器93と、
減圧機構の一例としての膨張弁94と、室外熱交換器9
5とを順に接続して、冷媒回路を構成している。上記冷
媒回路にHFC32系冷媒を充填している。そして、上
記冷媒回路にHFC32系冷媒を充填している。
FIG. 9 shows an air conditioner as an example of a refrigerating apparatus according to another embodiment. This air conditioner includes a compressor 91, a four-way switching valve 92, an indoor heat exchanger 93,
An expansion valve 94 as an example of a pressure reducing mechanism, and the outdoor heat exchanger 9
5 are connected in order to form a refrigerant circuit. The refrigerant circuit is filled with HFC32-based refrigerant. The refrigerant circuit is filled with HFC32-based refrigerant.

【0098】上記室内熱交換器93と室外熱交換器95
とは、先の実施の形態の熱交換器と同様に、ガス冷媒側
の伝熱管の内径の総断面積が大きく、液冷媒側の伝熱管
の内径の総断面積が小さくなっている。
The indoor heat exchanger 93 and the outdoor heat exchanger 95
As in the heat exchanger of the previous embodiment, the total cross-sectional area of the heat transfer tube on the gas refrigerant side is large and the total cross-sectional area of the heat transfer tube on the liquid refrigerant side is small.

【0099】上記室内熱交換器93と室外熱交換器95
では、ガス冷媒側の伝熱管の内径の総断面積が大きいか
ら、ガス冷媒側での伝熱管の圧力損失が小さく、かつ、
液冷媒側の伝熱管の内径の総断面積が小さいから、液冷
媒側での熱交換能力が高く、かつ、液冷媒の偏流を防止
し、かつ、結露を防止する。したがって、上記室内熱交
換器93と室外熱交換器95の熱交換能力が高い。それ
に加えて、HFC32系冷媒自体は、粘性が低いから圧
力損失が小さくて伝熱管を小径化でき、かつ、成績係数
(COP)が高く、地球温暖化係数(GWP)が低いと
いう機能を有する。
The indoor heat exchanger 93 and the outdoor heat exchanger 95
Since the total cross-sectional area of the inner diameter of the heat transfer tube on the gas refrigerant side is large, the pressure loss of the heat transfer tube on the gas refrigerant side is small, and
Since the total cross-sectional area of the inner diameter of the heat transfer tube on the liquid refrigerant side is small, the heat exchange capacity on the liquid refrigerant side is high, the drift of the liquid refrigerant is prevented, and dew condensation is prevented. Therefore, the heat exchange capacity of the indoor heat exchanger 93 and the outdoor heat exchanger 95 is high. In addition, the HFC32-based refrigerant itself has a function of reducing pressure loss due to low viscosity, making it possible to reduce the diameter of the heat transfer tube, and having a high coefficient of performance (COP) and a low global warming coefficient (GWP).

【0100】したがって、上記室内熱交換器93と室外
熱交換器95の機能とHFC32系冷媒の機能との相乗
作用によって、この空気調和機は、冷媒量を極めて削減
できた。この空気調和機は、例えば、HCFC22系冷
媒を用いた従来の空気調和機に比べて、地球温暖化効果
は1/12よりも低くなることが分かった。
Therefore, the synergistic effect of the function of the indoor heat exchanger 93 and the function of the outdoor heat exchanger 95 and the function of the HFC32-based refrigerant significantly reduced the amount of refrigerant in this air conditioner. It has been found that this air conditioner has, for example, a global warming effect lower than 1/12 as compared with a conventional air conditioner using an HCFC22-based refrigerant.

【0101】上記実施の形態では、熱交換器はフィンタ
イプであったが、熱交換器はメッシュタイプであっても
よい。また、熱交換器は、J字形状に限らず、L字形状
またはU字形状であってもよい。
In the above embodiment, the heat exchanger is a fin type, but the heat exchanger may be a mesh type. Further, the heat exchanger is not limited to the J shape, but may be an L shape or a U shape.

【0102】また、上記実施の形態では、冷凍装置とし
て冷暖兼用の空気調和機について説明したが、冷房専用
の空気調和機、あるいは、空気調和機以外の製氷機等の
冷凍装置にもこの発明が適用できるのは勿論である。
In the above embodiment, the air conditioner for both cooling and heating is described as the refrigerating device. However, the present invention is also applicable to an air conditioner dedicated to cooling or a refrigerating device such as an ice making machine other than the air conditioner. Of course, it can be applied.

【0103】また、上記実施の形態では、冷媒としてH
FC32系冷媒を使用したが、これに限らず、どのよう
な冷媒であっても、この発明の熱交換器は能力が高いと
いう効果を有する。
In the above embodiment, the refrigerant is H
Although the FC32-based refrigerant was used, the present invention is not limited to this, and the heat exchanger of the present invention has an effect that the capacity is high regardless of the refrigerant.

【0104】[0104]

【発明の効果】以上より明らかなように、請求項1の発
明の熱交換器によれば、液冷媒側の伝熱管の内径の総断
面積をガス冷媒側の伝熱管の内径の総断面積よりも小さ
くしているので、液冷媒側における熱交換の効率が高く
なり、かつ、液冷媒の偏流を防止でき、結露を防止で
き、かつ、ガス冷媒側における圧力損失を少なくでき
て、トータル的に熱交換の能力が高くなって、冷媒量を
削減できる。したがって、請求項1の発明の熱交換器
は、地球温暖化を防止できる。
As is clear from the above, according to the heat exchanger of the first aspect of the present invention, the total cross-sectional area of the inner diameter of the heat transfer tube on the liquid refrigerant side is reduced by the total cross-sectional area of the inner diameter of the heat transfer tube on the gas refrigerant side. Smaller, the efficiency of heat exchange on the liquid refrigerant side is increased, and the drift of the liquid refrigerant can be prevented, dew condensation can be prevented, and the pressure loss on the gas refrigerant side can be reduced. In addition, the heat exchange capacity is increased, and the amount of refrigerant can be reduced. Therefore, the heat exchanger according to the first aspect of the present invention can prevent global warming.

【0105】また、請求項1の発明の熱交換器は、液冷
媒側の伝熱管の内径の総断面積を小さくした分だけ、部
品材料を低減でき、コストダウンできる。
In the heat exchanger according to the first aspect of the present invention, the material for parts can be reduced and the cost can be reduced by reducing the total sectional area of the inner diameter of the heat transfer tube on the liquid refrigerant side.

【0106】また、請求項2の発明の熱交換器には、請
求項1の熱交換器において、上記液冷媒側の伝熱管の内
径が上記ガス冷媒側の伝熱管の内径よりも小さいので、
簡単な構成で請求項1の発明の作用、効果を得ることが
できる。
In the heat exchanger according to the second aspect of the present invention, in the heat exchanger according to the first aspect, the inner diameter of the heat transfer tube on the liquid refrigerant side is smaller than the inner diameter of the heat transfer tube on the gas refrigerant side.
The operation and effect of the first aspect can be obtained with a simple configuration.

【0107】また、請求項3の発明の熱交換器は、請求
項1または2の熱交換器において、上記伝熱管は液冷媒
側とガス冷媒側とでパス数が同一であるので、伝熱管の
配置が簡単になり、かつ、簡単、安価に製造できる。
The heat exchanger according to the third aspect of the present invention is the heat exchanger according to the first or second aspect, wherein the heat transfer tubes have the same number of paths on the liquid refrigerant side and the gas refrigerant side. Can be easily arranged, and can be manufactured easily and inexpensively.

【0108】また、請求項4の発明の熱交換器は、請求
項1または2の熱交換器において、上記伝熱管は液冷媒
側のパス数がガス冷媒側のパス数よりも少ないので、例
えば、液冷媒側とガス冷媒側とで同一の内径を有する伝
熱管を用いても、簡単に、液冷媒側の伝熱管の内径の総
断面積がガス冷媒側の伝熱管の内径の総断面積よりも小
さいようにできる。また、請求項4の発明の熱交換器
は、例えば、請求項2の発明のように、液冷媒側の伝熱
管の内径を小さく、ガス冷媒側の伝熱管の内径を大きく
すると、液冷媒側のパス数がガス冷媒側のパス数よりも
少なくなっているので、簡単に、液冷媒側の伝熱管の内
径の総断面積をガス冷媒側の伝熱管の内径の総断面積よ
りも極めて小さくすることができる。
Further, in the heat exchanger according to the fourth aspect of the present invention, in the heat exchanger according to the first or second aspect, the number of passes of the heat transfer tube on the liquid refrigerant side is smaller than the number of passes on the gas refrigerant side. Even if the heat transfer tubes having the same inner diameter on the liquid refrigerant side and the gas refrigerant side are used, simply, the total cross-sectional area of the inner diameter of the heat transfer tube on the liquid refrigerant side is simply the total cross-sectional area of the inner diameter of the heat transfer tube on the gas refrigerant side. Can be smaller than Further, the heat exchanger according to the fourth aspect of the present invention, when the inner diameter of the heat transfer tube on the liquid refrigerant side is reduced and the inner diameter of the heat transfer tube on the gas refrigerant side is increased, as in the second aspect of the invention, Since the number of passes is smaller than the number of passes on the gas refrigerant side, the total cross-sectional area of the inner diameter of the heat transfer tube on the liquid refrigerant side is simply extremely smaller than the total cross-sectional area of the inner diameter of the heat transfer tube on the gas refrigerant side. can do.

【0109】また、請求項5の発明の熱交換器は、液冷
媒側の伝熱管の内径がガス冷媒側の伝熱管の内径よりも
小さいので、液冷媒側における熱交換の効率が高くな
り、かつ、液冷媒の偏流を防止でき、結露を防止でき、
かつ、ガス冷媒側における圧力損失を少なくできて、ト
ータル的に熱交換の能力が高くなって、冷媒量を削減で
きる。したがって、請求項5の発明の熱交換器は、地球
温暖化を防止できる。
In the heat exchanger according to the fifth aspect of the present invention, since the inner diameter of the heat transfer tube on the liquid refrigerant side is smaller than the inner diameter of the heat transfer tube on the gas refrigerant side, the efficiency of heat exchange on the liquid refrigerant side increases. In addition, the drift of the liquid refrigerant can be prevented, dew condensation can be prevented,
In addition, the pressure loss on the gas refrigerant side can be reduced, and the heat exchange capacity can be increased as a whole, and the amount of refrigerant can be reduced. Therefore, the heat exchanger according to the fifth aspect can prevent global warming.

【0110】また、請求項5の発明の熱交換器は、液冷
媒側の伝熱管の内径を小さくした分だけ、部品材料を低
減でき、コストダウンできる。
Further, in the heat exchanger according to the fifth aspect of the present invention, the material of parts can be reduced and the cost can be reduced by reducing the inner diameter of the heat transfer tube on the liquid refrigerant side.

【0111】また、請求項6の発明の熱交換器は、請求
項1乃至5のいずれか1つの熱交換器において、複数の
フィンに伝熱管を挿通してなる複数のブロックを備え、
上記複数のブロックのうちの少なくとも2個のブロック
のフィンは、フィンパターンまたはフィン幅のうちの少
なくとも一方が互いに異なるので、伝熱管の液冷媒側と
ガス冷媒側とで内径あるいはパス数が異なっていても、
上記伝熱管をフィンに簡単に適合させることができる。
A heat exchanger according to a sixth aspect of the present invention is the heat exchanger according to any one of the first to fifth aspects, further comprising a plurality of blocks formed by inserting a heat transfer tube through a plurality of fins.
The fins of at least two blocks of the plurality of blocks have at least one of a fin pattern and a fin width different from each other. Therefore, the inner diameter or the number of passes differs between the liquid refrigerant side and the gas refrigerant side of the heat transfer tube. Even
The heat transfer tubes can be easily adapted to the fins.

【0112】また、請求項7の発明の熱交換器は、請求
項1乃至5のいずれか1つの熱交換器において、複数の
フィンに伝熱管を挿通してなる1個のみのブロックから
なり、上記複数のフィンは外周形状は実質的に同じであ
り、かつ、上記複数のフィンのうちの少なくとも2枚の
フィンのフィンパターンが互いに異なるので、伝熱管の
液冷媒側とガス冷媒側とで内径あるいはパス数が異なっ
ていても、上記伝熱管をフィンに簡単、安価に適合させ
ることができる。
A heat exchanger according to a seventh aspect of the present invention is the heat exchanger according to any one of the first to fifth aspects, wherein the heat exchanger comprises only one block formed by inserting a heat transfer tube through a plurality of fins. The plurality of fins have substantially the same outer peripheral shape, and since the fin patterns of at least two of the plurality of fins are different from each other, the inner diameter of the heat transfer tube between the liquid refrigerant side and the gas refrigerant side is different. Alternatively, even if the number of passes is different, the heat transfer tube can be easily and inexpensively adapted to the fin.

【0113】また、請求項8の発明の熱交換器は、請求
項1乃至7のいずれか1つの熱交換器において、上記伝
熱管を風の進行方向を横切る方向に2列以上配列してい
るので、伝熱管の液冷媒側とガス冷媒側とで内径あるい
はパス数が異なっていても、伝熱管を最適な配置にし
て、熱交換効率を高め、かつ、騒音を低減することがで
きる。
Further, the heat exchanger of the invention according to claim 8 is the heat exchanger according to any one of claims 1 to 7, wherein the heat transfer tubes are arranged in two or more rows in a direction crossing the traveling direction of the wind. Therefore, even if the inner diameter or the number of passes is different between the liquid refrigerant side and the gas refrigerant side of the heat transfer tube, the heat transfer tube can be optimally arranged to increase heat exchange efficiency and reduce noise.

【0114】また、請求項9の発明の熱交換器は、請求
項1乃至8のいずれか1つの熱交換器において、J字
状、L字状またはU字状をしているので、伝熱管の液冷
媒側とガス冷媒側とで内径あるいはパス数の少なくとも
一方が異なっていることにより、熱交換能力が向上して
いる上に、J字状、L字状またはU字状をしているの
で、構造がコンパクトである。
The heat exchanger according to the ninth aspect of the present invention is the heat exchanger according to any one of the first to eighth aspects, wherein the heat exchanger has a J-shape, an L-shape, or a U-shape. The liquid refrigerant side and the gas refrigerant side are different in at least one of the inner diameter or the number of passes, so that the heat exchange capacity is improved and the liquid refrigerant side has a J-shape, L-shape or U-shape. Therefore, the structure is compact.

【0115】また、請求項10の発明の熱交換器は、請
求項1乃至9のいずれか1つの熱交換器において、上記
伝熱管の内周面が円錐状に連続的に変化しているので、
上記伝熱管における圧力損失を一層少なくして、熱交換
器の能力を一層向上できる。
The heat exchanger according to the tenth aspect of the present invention is the heat exchanger according to any one of the first to ninth aspects, wherein the inner peripheral surface of the heat transfer tube continuously changes in a conical shape. ,
The pressure loss in the heat transfer tube can be further reduced, and the performance of the heat exchanger can be further improved.

【0116】また、請求項11の発明の熱交換器は、伝
熱管の一端側と他端側とで内径の総断面積が異なるの
で、伝熱管の総断面積が大きい一端側をガス冷媒側に、
伝熱管の総断面積が小さい他端側を液冷媒側に接続すれ
ば、請求項1の発明の熱交換器と同じ作用効果を得るこ
とができる。
In the heat exchanger according to the eleventh aspect of the present invention, since one end side and the other end side of the heat transfer tube have different total cross-sectional areas of the inner diameter, one end of the heat transfer tube having a larger total cross-sectional area is connected to the gas refrigerant side. To
If the other end of the heat transfer tube having a small total cross-sectional area is connected to the liquid refrigerant side, the same operation and effect as the heat exchanger of the first aspect of the invention can be obtained.

【0117】また、請求項12の発明の冷凍装置は、請
求項1乃至11のいずれか1つの熱交換器を備え、HF
C32系冷媒を充填しているので、請求項1乃至11の
いずれか1つの熱交換器の圧力損失が少なくて熱交換効
率が高いという熱交換器自体の作用効果と、HFC32
系冷媒自体の粘性が低いから圧力損失が小さくて伝熱管
を小径化でき、かつ、成績係数が高く、地球温暖化係数
が低いというHFC32系冷媒自体の作用効果との相乗
作用によって、冷媒量を極めて削減できて、地球温暖化
の防止に極めて貢献できる。
A refrigeration apparatus according to a twelfth aspect of the present invention includes the heat exchanger according to any one of the first to eleventh aspects,
Since the refrigerant is filled with the C32-based refrigerant, the effect of the heat exchanger itself that the pressure loss of the heat exchanger according to any one of claims 1 to 11 is small and the heat exchange efficiency is high, and the HFC32
Since the viscosity of the system refrigerant itself is low, the pressure loss is small, the diameter of the heat transfer tube can be reduced, and the coefficient of performance is high. It can be extremely reduced and can contribute to the prevention of global warming.

【0118】また、請求項13の発明の熱交換器によれ
ば、パス数の多い一端側をガス冷媒側に、パス数の少な
い他端側を液冷媒側に接続すれば、請求項4の発明の熱
交換器と同じ作用効果を得ることができる。
According to the heat exchanger of the thirteenth aspect, if one end having a large number of passes is connected to the gas refrigerant and the other end having a small number of passes is connected to the liquid refrigerant, The same operation and effect as the heat exchanger of the invention can be obtained.

【0119】また、請求項14の発明の熱交換器によれ
ば、パス数の多い一端側をガス冷媒側に、パス数の少な
い他端側を液冷媒側に接続すれば、請求項4の発明の熱
交換器と同じ作用効果を得ることができ、しかも、パス
数が3段階以上であるので、徐々にパス数を変化させる
ことができる。
According to the heat exchanger of the fourteenth aspect, if one end having a large number of passes is connected to the gas refrigerant and the other end having a small number of passes is connected to the liquid refrigerant, The same operation and effect as the heat exchanger of the present invention can be obtained, and the number of passes can be gradually changed because the number of passes is three or more.

【0120】また、請求項15の発明の熱交換器によれ
ば、請求項4の発明の熱交換器と同じ作用効果を得るこ
とができる。
According to the heat exchanger of the fifteenth aspect, the same operation and effect as those of the heat exchanger of the fourth aspect can be obtained.

【0121】また、請求項16の発明の熱交換器は、内
径の異なる伝熱管を用いたので、内径が大きい一端側の
伝熱管をガス冷媒側に、内径が小さい他端側の伝熱管を
液冷媒側に接続すれば、請求項5の発明の熱交換器と同
じ作用効果を得ることができる。
Further, since the heat exchanger of the present invention uses heat transfer tubes having different inner diameters, the heat transfer tube at one end having a larger inner diameter is connected to the gas refrigerant side, and the heat transfer tube at the other end having a smaller inner diameter is used. If connected to the liquid refrigerant side, the same function and effect as the heat exchanger according to the fifth aspect of the invention can be obtained.

【0122】また、請求項17の発明の熱交換器は、3
種類以上の内径の異なる伝熱管を用いたので、内径が大
きい一端側の伝熱管をガス冷媒側に、内径が小さい他端
側の伝熱管を液冷媒側に接続すれば、請求項5の発明の
熱交換器と同じ作用効果を得ることができ、しかも、伝
熱管の内径が3種類以上であるので、徐々に内径を変化
させることができる。
The heat exchanger according to the seventeenth aspect of the present invention has
Since the heat transfer tubes having different inner diameters of more than one kind are used, the heat transfer tube at one end having a larger inner diameter is connected to the gas refrigerant side, and the heat transfer tube at the other end having the smaller inner diameter is connected to the liquid refrigerant side. The same operation and effects as those of the heat exchanger can be obtained, and the inner diameter of the heat transfer tube is three or more, so that the inner diameter can be gradually changed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態の熱交換器の説明図あ
る。
FIG. 1 is an explanatory diagram of a heat exchanger according to an embodiment of the present invention.

【図2】 凝縮器と蒸発器について、パス数と伝熱管の
内径に対する能力の関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the number of passes and the capacity with respect to the inner diameter of a heat transfer tube for a condenser and an evaporator.

【図3】 この発明の他の実施の形態の熱交換器の一部
断面斜視図である。
FIG. 3 is a partially sectional perspective view of a heat exchanger according to another embodiment of the present invention.

【図4】 伝熱管を示す図である。FIG. 4 is a view showing a heat transfer tube.

【図5】 伝熱管系のパスを示す図である。FIG. 5 is a view showing a path of a heat transfer tube system.

【図6】 伝熱管系を示す図である。FIG. 6 is a view showing a heat transfer tube system.

【図7】 室内機を示す図である。FIG. 7 is a diagram showing an indoor unit.

【図8】 この発明の他の実施の形態の熱交換器を示す
図である。
FIG. 8 is a diagram showing a heat exchanger according to another embodiment of the present invention.

【図9】 この発明の他の実施の形態の空気調和機の回
路図である。
FIG. 9 is a circuit diagram of an air conditioner according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,10,53,60,93,95 熱交換器 11,12,13,14,15,16,20,31,3
2,33,34,41,42,43,45,46,5
5,56,57,58 伝熱管 54,81,82,83,84 フィン 61,62,63,64 ブロック
1,10,53,60,93,95 Heat exchanger 11,12,13,14,15,16,20,31,3
2,33,34,41,42,43,45,46,5
5, 56, 57, 58 heat transfer tubes 54, 81, 82, 83, 84 fins 61, 62, 63, 64 blocks

───────────────────────────────────────────────────── フロントページの続き (72)発明者 北沢 昌昭 滋賀県草津市岡本町字大谷1000番地の2 ダイキン工業株式会社滋賀製作所内 Fターム(参考) 3L051 BE10  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Masaaki Kitazawa 1000 Oya, Okamotocho, Kusatsu-shi, Shiga 2 Daikin Industries, Ltd. Shiga Works F-term (reference) 3L051 BE10

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】 液冷媒側の伝熱管(16,31,41,
55,71)の内径の総断面積がガス冷媒側の伝熱管
(11,34,46,58,74)の内径の総断面積よ
りも小さいことを特徴とする熱交換器。
1. A heat transfer tube (16, 31, 41,
A heat exchanger characterized in that the total cross-sectional area of the inner diameter of the heat transfer tubes (11, 34, 46, 58, 74) on the gas refrigerant side is smaller than the total cross-sectional area of the inner diameter of the heat transfer pipes (55, 71).
【請求項2】 請求項1の熱交換器において、上記液冷
媒側の伝熱管(16,41,55,71)の内径が上記
ガス冷媒側の伝熱管(11,46,58,74)の内径
よりも小さいことを特徴とする熱交換器。
2. The heat exchanger according to claim 1, wherein an inner diameter of the heat transfer tube on the liquid refrigerant side is equal to an inner diameter of the heat transfer tube on the gas refrigerant side. A heat exchanger characterized by being smaller than the inner diameter.
【請求項3】 請求項1または2の熱交換器において、
上記伝熱管(11,16,55,58)は液冷媒側とガ
ス冷媒側とでパス数が同一であることを特徴とする熱交
換器。
3. The heat exchanger according to claim 1, wherein
A heat exchanger, wherein the heat transfer tubes (11, 16, 55, 58) have the same number of passes on the liquid refrigerant side and the gas refrigerant side.
【請求項4】 請求項1または2の熱交換器において、
上記伝熱管(31,34)は液冷媒側のパス数がガス冷
媒側のパス数よりも少ないことを特徴とする熱交換器。
4. The heat exchanger according to claim 1, wherein
The heat exchanger wherein the heat transfer tubes (31, 34) have a smaller number of passes on the liquid refrigerant side than a number of passes on the gas refrigerant side.
【請求項5】 液冷媒側の伝熱管(16,41,55,
71)の内径がガス冷媒側の伝熱管(11,46,5
8,74)の内径よりも小さいことを特徴とする熱交換
器。
5. A heat transfer tube (16, 41, 55,
71) has a heat transfer tube (11, 46, 5) on the gas refrigerant side.
8, 74) smaller than the inner diameter of the heat exchanger.
【請求項6】 請求項1乃至5のいずれか1つの熱交換
器において、複数のフィン(81,82,83,84)
に伝熱管(71,73,74,75)を挿通してなる複
数のブロック(61,62,63,64)を備え、上記
複数のブロック(61,62,63,64)のうちの少
なくとも2個のブロックのフィンは、フィンパターンま
たはフィン幅のうちの少なくとも一方が互いに異なるこ
とを特徴とする熱交換器。
6. The heat exchanger according to claim 1, wherein the plurality of fins are provided.
A plurality of blocks (61, 62, 63, 64) each having a heat transfer tube (71, 73, 74, 75) inserted therein, and at least two of the plurality of blocks (61, 62, 63, 64) are provided. The heat exchanger wherein the fins of the blocks differ from each other in at least one of a fin pattern and a fin width.
【請求項7】 請求項1乃至5のいずれか1つの熱交換
器において、複数のフィン(54)に伝熱管(55,5
6,57,58)を挿通してなる1個のみのブロックか
らなり、上記複数のフィン(54)は外周形状は実質的
に同じであり、かつ、上記複数のフィン(54)のうち
の少なくとも2枚のフィンのフィンパターンが互いに異
なることを特徴とする熱交換器。
7. The heat exchanger according to claim 1, wherein the plurality of fins (54) are connected to the heat transfer tubes (55, 5).
6, 57, 58) through which only one block is inserted. The plurality of fins (54) have substantially the same outer peripheral shape and at least one of the plurality of fins (54). A heat exchanger wherein two fins have different fin patterns.
【請求項8】 請求項1乃至7のいずれか1つの熱交換
器において、上記伝熱管(55,57,56,58,7
3,74,75)を風の進行方向を横切る方向に2列以
上配列していることを特徴とする熱交換器。
8. The heat exchanger according to claim 1, wherein the heat transfer tubes (55, 57, 56, 58, 7)
3, 74, 75) are arranged in two or more rows in a direction crossing the wind traveling direction.
【請求項9】 請求項1乃至8のいずれか1つの熱交換
器において、J字状、L字状またはU字状をしているこ
とを特徴とする熱交換器。
9. The heat exchanger according to claim 1, wherein the heat exchanger has a J-shape, an L-shape, or a U-shape.
【請求項10】 請求項1乃至9のいずれか1つの熱交
換器において、上記伝熱管の内周面が円錐状に連続的に
変化していることを特徴とする熱交換器。
10. The heat exchanger according to claim 1, wherein an inner peripheral surface of the heat transfer tube continuously changes in a conical shape.
【請求項11】 液冷媒側の伝熱管のパス数がガス冷媒
側の伝熱管のパス数よりも少ないことを特徴とする熱交
換器。
11. A heat exchanger wherein the number of passes of the heat transfer tubes on the liquid refrigerant side is smaller than the number of passes of the heat transfer tubes on the gas refrigerant side.
【請求項12】 請求項1乃至11のいずれか1つの熱
交換器(93,95)を備え、 HFC32系冷媒を充填したことを特徴とする冷凍装
置。
12. A refrigeration apparatus comprising the heat exchanger (93, 95) according to claim 1 and filled with an HFC32-based refrigerant.
【請求項13】 熱交換器の冷媒出入口の一端側と他端
側とで伝熱管のパス数が異なることを特徴とする熱交換
器。
13. The heat exchanger, wherein the number of passes of the heat transfer tube is different between one end and the other end of the refrigerant inlet / outlet of the heat exchanger.
【請求項14】 請求項13の熱交換器において、上記
伝熱管のパス数が3段階以上であることを特徴とする熱
交換器。
14. The heat exchanger according to claim 13, wherein the number of passes of the heat transfer tube is three or more.
【請求項15】 伝熱管の一端側と他端側とで内径の総
断面積が異なることを特徴とする熱交換器。
15. A heat exchanger characterized in that one end side and the other end side of the heat transfer tube have different total inner cross-sectional areas.
【請求項16】 内径の異なる伝熱管を用いたことを特
徴とする熱交換器。
16. A heat exchanger using heat transfer tubes having different inner diameters.
【請求項17】 3種類以上の内径の異なる伝熱管を用
いたことを特徴とする熱交換器。
17. A heat exchanger using three or more types of heat transfer tubes having different inner diameters.
JP11068581A 1999-03-15 1999-03-15 Heat exchanger and cooling system Pending JP2000266426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11068581A JP2000266426A (en) 1999-03-15 1999-03-15 Heat exchanger and cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11068581A JP2000266426A (en) 1999-03-15 1999-03-15 Heat exchanger and cooling system

Publications (1)

Publication Number Publication Date
JP2000266426A true JP2000266426A (en) 2000-09-29

Family

ID=13377902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11068581A Pending JP2000266426A (en) 1999-03-15 1999-03-15 Heat exchanger and cooling system

Country Status (1)

Country Link
JP (1) JP2000266426A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007212108A (en) * 2006-02-13 2007-08-23 Toshiba Kyaria Kk Air conditioner
JP2007255842A (en) * 2006-03-24 2007-10-04 Toshiba Kyaria Kk Air conditioner
JP2009222246A (en) * 2008-03-13 2009-10-01 Mitsubishi Electric Corp Heat pump type water heater
CN102116584A (en) * 2011-01-14 2011-07-06 广东美的电器股份有限公司 Single-row variable pipe diameter heat exchanger
CN106765552A (en) * 2016-11-29 2017-05-31 青岛海尔空调器有限总公司 Indoor apparatus of air conditioner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007212108A (en) * 2006-02-13 2007-08-23 Toshiba Kyaria Kk Air conditioner
JP4647512B2 (en) * 2006-02-13 2011-03-09 東芝キヤリア株式会社 Air conditioner
JP2007255842A (en) * 2006-03-24 2007-10-04 Toshiba Kyaria Kk Air conditioner
JP2009222246A (en) * 2008-03-13 2009-10-01 Mitsubishi Electric Corp Heat pump type water heater
CN102116584A (en) * 2011-01-14 2011-07-06 广东美的电器股份有限公司 Single-row variable pipe diameter heat exchanger
CN106765552A (en) * 2016-11-29 2017-05-31 青岛海尔空调器有限总公司 Indoor apparatus of air conditioner

Similar Documents

Publication Publication Date Title
JP2002206890A (en) Heat exchanger, and freezing air-conditioning cycle device using it
WO2007017969A1 (en) Air conditioner and method of producing air conditioner
US6571575B1 (en) Air conditioner using inflammable refrigerant
JP2009281693A (en) Heat exchanger, its manufacturing method, and air-conditioning/refrigerating device using the heat exchanger
EP3587988B1 (en) Heat exchanger and air conditioner
WO2015133626A1 (en) Heat exchanger and air conditioner
JP4209860B2 (en) Air conditioner using flammable refrigerant
JPH10205919A (en) Condenser of air-cooling apparatus
WO2021234956A1 (en) Heat exchanger, outdoor unit, and refrigeration cycle device
JP2000266426A (en) Heat exchanger and cooling system
JP5646257B2 (en) Refrigeration cycle equipment
JP2006097987A (en) Three-way branch pipe and fin tube type heat exchanger using the same
JPH11337104A (en) Air conditioner
JPH11257800A (en) Heat exchanger and air conditioner with exchanger
JPWO2017208419A1 (en) Fin tube type heat exchanger and heat pump device provided with the fin tube type heat exchanger
WO2021095567A1 (en) Heat transfer pipe and heat exchanger
JP4983878B2 (en) Heat exchanger, refrigerator equipped with this heat exchanger, and air conditioner
JP2002228380A (en) Heat exchanger and cooling apparatus
WO2019180817A1 (en) Heat exchanger, refrigeration cycle device, and air conditioning device
KR20000031340A (en) Indoor heat exchanger
JP3758310B2 (en) Air conditioner
JPH11264629A (en) Cross fin coil type heat exchanger
JP2005024188A (en) Heat exchanger
JPH08145490A (en) Heat exchanger for heat pump air conditioner
WO2023281655A1 (en) Heat exchanger and refrigeration cycle device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040713