JP2007255842A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2007255842A
JP2007255842A JP2006083504A JP2006083504A JP2007255842A JP 2007255842 A JP2007255842 A JP 2007255842A JP 2006083504 A JP2006083504 A JP 2006083504A JP 2006083504 A JP2006083504 A JP 2006083504A JP 2007255842 A JP2007255842 A JP 2007255842A
Authority
JP
Japan
Prior art keywords
heat exchanger
heat transfer
air conditioner
inner diameter
transfer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006083504A
Other languages
Japanese (ja)
Inventor
Koji Wada
宏二 和田
Madoka Odajima
円 小田島
Hiroyuki Arakawa
裕幸 荒川
Yoshiaki Nagaoka
良明 長岡
Tatsuji Kitano
竜児 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2006083504A priority Critical patent/JP2007255842A/en
Priority to CNU2007200047554U priority patent/CN201014848Y/en
Publication of JP2007255842A publication Critical patent/JP2007255842A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner capable of simplifying a refrigerant flow channel and a throttle, improving productivity, and significantly reducing costs. <P>SOLUTION: In this air conditioner, heat transfer tubes of an indoor heat exchanger are formed as one flow channel by being arranged in series over the whole length, at least two or more kinds of heat transfer tubes are used so that the heat transfer tube at a refrigerant inlet side has an inner diameter B, and the heat transfer tube at a downstream side has an inner diameter C, and the relationship among the inner diameters of the heat transfer tubes satisfies A≥C>B, when a heat transfer tube of an outdoor heat exchanger has an inner diameter A. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は空気調和機に係り、特に1冷媒流路に形成され内径の異なる2種類以上の伝熱管を用いた室内熱交換器を備える空気調和機に関する。   The present invention relates to an air conditioner, and more particularly to an air conditioner including an indoor heat exchanger that is formed in one refrigerant flow path and uses two or more types of heat transfer tubes having different inner diameters.

空気調和機に組み込まれる冷凍サイクルの熱交換器は、複数本の伝熱管を多数の伝熱フィンに管列をなすように伝熱的に挿入される。   In a heat exchanger of a refrigeration cycle incorporated in an air conditioner, a plurality of heat transfer tubes are heat-transferred so as to form a row of tubes on a large number of heat transfer fins.

図8に示すように、従来の室内熱交換器21は伝熱管22が全て内径6.35mmであり、分流管23や接続管24を用いて、分流し、冷媒の流れを2流路にしている。   As shown in FIG. 8, in the conventional indoor heat exchanger 21, the heat transfer tubes 22 all have an inner diameter of 6.35 mm, and are divided using the flow dividing tube 23 and the connecting tube 24, so that the refrigerant flow is divided into two flow paths. Yes.

このように、冷媒循環量(空気調和機の能力ランク)に応じて、分流管等を用いて冷媒の圧力損失と管内熱伝達量のバランスを図り、冷媒流路(パス数)を選択してトータル熱交換量の最適化を行っていた。そのため、流路が複雑化し、絞り量も循環量に応じて制御する必要があり、また、折り曲げタイプの熱交換器の場合は、特に、接続管も多く複雑になり、製造性が悪く、製造コストがアップするという問題があった。   In this way, according to the refrigerant circulation amount (capacity rank of the air conditioner), the refrigerant pressure loss and the heat transfer amount in the pipe are balanced using a shunt pipe or the like, and the refrigerant flow path (number of passes) is selected. The total heat exchange amount was optimized. Therefore, the flow path becomes complicated, and the amount of restriction needs to be controlled according to the amount of circulation. Especially in the case of a bending type heat exchanger, the number of connecting pipes is also complicated and the manufacturability is poor. There was a problem of increased costs.

また、特許文献1には、二相流域の伝熱管径よりも単相流域の伝熱管径を細径にし、単相流として流れる単相流域の伝熱を促進して熱交換器性能を向上させる熱交換器が提案されている。
特開2001−304791号公報
Patent Document 1 discloses that the heat transfer tube diameter of the single-phase flow region is smaller than the heat transfer tube diameter of the two-phase flow region, and heat transfer in the single-phase flow region that flows as a single-phase flow is promoted. A heat exchanger has been proposed to improve the efficiency.
JP 2001-304791 A

本発明は上述した事情を考慮してなされたもので、冷媒流路や絞りが簡略化され、製造性が向上し、大幅なコストダウンが可能な空気調和機を提供することを目的とする。   The present invention has been made in consideration of the above-described circumstances, and an object of the present invention is to provide an air conditioner in which the refrigerant flow path and the throttle are simplified, the productivity is improved, and the cost can be significantly reduced.

上述した目的を達成するため、本発明に係る空気調和機は、圧縮機、四方切換弁、室外熱交換器、絞り機構、室内熱交換器を順次配管接続して構成される冷凍サイクルを備えた冷暖房兼用の空気調和機において、前記室内熱交換器は伝熱管が全長に渡って1流路で形成され、冷房運転時の冷媒上流側となる伝熱管の内径をBとし、下流側となる伝熱管の内径をCとするよう少なくとも内径の異なる2種類以上の伝熱管により構成し、前記室外熱交換器の伝熱管の内径をAとしたとき、各伝熱管の内径の関係が、A≧C>Bとなることを特徴とする。   In order to achieve the above-described object, an air conditioner according to the present invention includes a refrigeration cycle configured by sequentially connecting a compressor, a four-way switching valve, an outdoor heat exchanger, a throttle mechanism, and an indoor heat exchanger. In the air conditioner for both cooling and heating, the indoor heat exchanger has a heat transfer tube formed in one flow path over its entire length, and the inner diameter of the heat transfer tube on the refrigerant upstream side during cooling operation is B, and the heat transfer tube is on the downstream side. The heat pipe is composed of at least two types of heat transfer pipes having different inner diameters so that the inner diameter of the heat pipe is C, and when the inner diameter of the heat transfer pipe of the outdoor heat exchanger is A, the relationship between the inner diameters of the heat transfer pipes is A ≧ C > B.

本発明に係る空気調和機によれば、冷媒流路や絞りが簡略化され、製造性が向上し、大幅なコストダウンが可能な空気調和機を提供することができる。   According to the air conditioner according to the present invention, it is possible to provide an air conditioner in which the refrigerant flow path and the throttle are simplified, the productivity is improved, and the cost can be significantly reduced.

本発明の一実施形態に係る空気調和機について添付図面を参照して説明する。   An air conditioner according to an embodiment of the present invention will be described with reference to the accompanying drawings.

図1は本発明の一実施形態に係る空気調和機に組み込まれる冷凍サイクルの概念図であり、図2はこの冷凍サイクルに用いられる熱交換器の縦断面図である。   FIG. 1 is a conceptual diagram of a refrigeration cycle incorporated in an air conditioner according to an embodiment of the present invention, and FIG. 2 is a longitudinal sectional view of a heat exchanger used in the refrigeration cycle.

図1に示すように、本第1実施形態の空気調和機は、スプリットタイプの冷暖房兼用タイプで、筐体(図示せず)内に冷凍サイクル1が組み込まれ、この冷凍サイクル1は圧縮機2、四方切換弁3、室外熱交換器4、絞り機構5、室内熱交換器6を順次配管接続して構成される。   As shown in FIG. 1, the air conditioner according to the first embodiment is a split-type air conditioning unit, and a refrigeration cycle 1 is incorporated in a housing (not shown). The refrigeration cycle 1 includes a compressor 2. The four-way switching valve 3, the outdoor heat exchanger 4, the throttle mechanism 5, and the indoor heat exchanger 6 are sequentially connected by piping.

図2に示すように、室内熱交換器6は前側熱交換器6Aと後側熱交換器6Bが側面視逆V字状に折曲形成して構成され、複数本の伝熱管7が多数の伝熱フィン8に管列をなすように伝熱的に挿入され、伝熱管7がその全長に渡って直列をなして1流路で形成される。   As shown in FIG. 2, the indoor heat exchanger 6 is configured by bending a front heat exchanger 6A and a rear heat exchanger 6B into a reverse V shape in a side view, and a plurality of heat transfer tubes 7 are formed. The heat transfer fins 8 are inserted in heat transfer so as to form a tube row, and the heat transfer tubes 7 are formed in one flow path in series over the entire length thereof.

伝熱管7は冷房運転時の冷媒上流(入口)側となり、室内熱交換器6の全管長の2/3を超える長さを占める基本伝熱管7bの内径をBとし、出口(下流)側となる大径伝熱管7cの内径がCとなるよう少なくとも2種以上の異なる内径とし、室外熱交換器4の伝熱管の内径をAとしたとき、各内径の関係を、A≧C>Bとする。   The heat transfer tube 7 is on the refrigerant upstream (inlet) side during the cooling operation, the inner diameter of the basic heat transfer tube 7b occupying a length exceeding 2/3 of the total tube length of the indoor heat exchanger 6 is B, and the outlet (downstream) side When the inner diameter of the heat transfer tube of the outdoor heat exchanger 4 is A, the relationship between the inner diameters is as follows: A ≧ C> B To do.

具体的例として、略々ハ字状の室内熱交換器6の基本伝熱管7bの内径を6.35mmとし、前面側熱交換器6Aの後列側管列の大径伝熱管7cの内径を7mmとし、室外熱交換器4の伝熱管の内径を全て8mmとする。また、冷房運転時に下流側となる大径伝熱管7cは、室内熱交換器6の全配管長さ(管7b+7c)の1/3以下にする。   As a specific example, the inner diameter of the basic heat transfer tube 7b of the substantially C-shaped indoor heat exchanger 6 is set to 6.35 mm, and the inner diameter of the large-diameter heat transfer tube 7c in the rear row side tube row of the front side heat exchanger 6A is set to 7 mm. And the inner diameters of the heat transfer tubes of the outdoor heat exchanger 4 are all 8 mm. In addition, the large-diameter heat transfer tube 7c on the downstream side during the cooling operation is set to 1/3 or less of the total piping length (tube 7b + 7c) of the indoor heat exchanger 6.

室内熱交換器6の伝熱管7の配列は、伝熱フィン8の外側(空気の流れの上流側)と内側(空気の流れの下流側)にそれぞれ伝熱管7が2段に亘り配列され、冷房運転時の冷媒流れにおいて、後側熱交換器6Bの外側上部に入口部の伝熱管7b1を設け、この入口側伝熱管7b1から外側の配管を順次下側方向に最下部まで連結し、更に最下部にて内側の伝熱管に連結し、内側の伝熱管を順次上側方向に最上部まで連結した後、後側熱交換器6Bの外側最上部に形成する伝熱管7b2に連結する。次に、前側熱交換器6Aの外側最上部に形成する伝熱管7b3に連結し、前側熱交換器6Aの外側に配列する伝熱管を順次下側方向に最下部まで連結し、更に最下部にて内側の基本伝熱管7bの出口側となる伝熱管7b4に連結する。次に、前側熱交換器6Aの内側下部に形成する大径伝熱管7cの入口側となる伝熱管7c1に連結し、内側の伝熱管を順次上側方向に接続し、最上部の出口管配管となる伝熱管7c2まで連結した1本の直列流路により構成する。   The heat transfer tubes 7 of the indoor heat exchanger 6 are arranged in two stages on the outside (upstream side of the air flow) and inside (downstream side of the air flow) of the heat transfer fins 8, respectively. In the refrigerant flow during the cooling operation, an inlet heat transfer tube 7b1 is provided on the outer upper portion of the rear heat exchanger 6B, and the outer pipes are sequentially connected from the inlet heat transfer tube 7b1 to the bottom in the lower direction. It connects with an inner heat exchanger tube in the lowest part, and after connecting an inner heat exchanger tube to the uppermost part sequentially in the upper direction, it connects with the heat exchanger tube 7b2 formed in the outermost upper part of the rear side heat exchanger 6B. Next, it connects with the heat exchanger tube 7b3 formed in the outermost upper part of 6 A of front side heat exchangers, connects the heat exchanger tube arranged on the outer side of the front side heat exchanger 6A to a lowermost part one by one, and also in the lowest part. And connected to the heat transfer tube 7b4 on the outlet side of the inner basic heat transfer tube 7b. Next, it connects with the heat transfer pipe 7c1 used as the inlet side of the large-diameter heat transfer pipe 7c formed in the inner lower part of the front heat exchanger 6A, and connects the inner heat transfer pipes in the upward direction in order, It consists of one serial flow path connected to the heat transfer tube 7c2.

図3に示すように、管孔8aが略々直線に2列穿設された伝熱フィン8を重ね合わせ、U形状の伝熱管7を挿入して組み立てた後、図4に示すように、後側熱交換器6Bの外側最上部に形成する伝熱管7b2と前側熱交換器6Aの外側最上部に形成する伝熱管7b3とを接続するU字状の連結管7dを図3に示す熱交換器6の状態でロー付し、図4に示すように折り曲げて熱交換器6としての最終の形状にし、さらに、図5に示すように、室内熱交換器6には冷房運転時における冷媒下流側の出口側伝熱管7c2に内径Cの出口側U字管9を、冷媒入口側伝熱管7b1に内径Bの入口側U字管10を各々接続し、さらに、出口側内径CのU字管9には内径Dの補助出口管11を介して圧縮機側配管12を接続する。ここで内径C、Dの関係はC≧Dとする。   As shown in FIG. 3, after the heat transfer fins 8 in which the tube holes 8a are formed in two substantially straight lines are overlapped and assembled by inserting the U-shaped heat transfer tube 7, as shown in FIG. The U-shaped connecting pipe 7d that connects the heat transfer pipe 7b2 formed on the outermost uppermost part of the rear heat exchanger 6B and the heat transfer pipe 7b3 formed on the outermost uppermost part of the front heat exchanger 6A is shown in FIG. In the state of the cooler 6, it is brazed, bent as shown in FIG. 4 to the final shape as the heat exchanger 6, and further, as shown in FIG. 5, the indoor heat exchanger 6 has a refrigerant downstream in the cooling operation. An outlet-side U-shaped tube 9 having an inner diameter C is connected to the outlet-side heat transfer tube 7c2 on the side, an inlet-side U-shaped tube 10 having an inner diameter B is connected to the refrigerant inlet-side heat transfer tube 7b1, and a U-shaped tube having an inner diameter C on the outlet side is further connected. A compressor side pipe 12 is connected to 9 through an auxiliary outlet pipe 11 having an inner diameter D. Here, the relationship between the inner diameters C and D is C ≧ D.

上記のように室内熱交換器6を2つの内径が異なる基本伝熱管7bと大径伝熱管7cで構成し、室外熱交換器4の内径との関係をA≧C>Bとすることで、冷房運転時と暖房運転時の両熱交換器4、6での圧力損失と管内熱伝達率を共に最適に設定できるとともに、室内熱交換器6の効率向上により室外熱交換器容量4の縮小化が可能となる。   As described above, the indoor heat exchanger 6 is composed of two basic heat transfer tubes 7b and large-diameter heat transfer tubes 7c having different inner diameters, and the relationship between the inner diameter of the outdoor heat exchanger 4 and A ≧ C> B, Both the pressure loss and heat transfer coefficient in the heat exchangers 4 and 6 during the cooling operation and the heating operation can be set optimally, and the outdoor heat exchanger capacity 4 can be reduced by improving the efficiency of the indoor heat exchanger 6. Is possible.

また、室内熱交換器6と室外熱交換器4の内容積を適正化することで、両熱交換器4、6の熱交換量のバランスを図ることができるため、冷房運転、暖房運転時における絞りを一定にすることが可能となり、絞り量可変の電子膨張弁を必要とせず、絞り量一定のコストの安いキャピラリチューブの使用が可能となり、安価になる。   Further, by optimizing the internal volumes of the indoor heat exchanger 6 and the outdoor heat exchanger 4, the heat exchange amount of both the heat exchangers 4 and 6 can be balanced, so that the cooling operation and the heating operation can be performed. The throttle can be made constant, an electronic expansion valve with a variable throttle amount is not required, and a low-cost capillary tube with a constant throttle amount can be used, which is inexpensive.

特に大径伝熱管を冷媒のガス域側となる下流側に配することで、冷房サイクル及び暖房サイクル運転時の最適絞り量をほぼ等しくすることが可能となり、キャピラリの使用が実現される。   In particular, by arranging the large-diameter heat transfer tube on the downstream side, which is the gas region side of the refrigerant, the optimum throttle amount during the cooling cycle and heating cycle operation can be made substantially equal, and the use of the capillary is realized.

図6及び図7に示すように、一般に伝熱管をその途中で分岐して並列にし、2流路を形成した室内熱交換器を備えた冷凍サイクルは、冷房運転及び暖房運転時共に、冷房能力が大きく(3.6kW前後)なっても高COPを維持するため、大冷暖房能力の空気調和機に適するが、配管構造が複雑になる。一方、伝熱管を分岐させずその全長に渡って直列にし、1流路の室内熱交換器を備えた冷凍サイクルは、冷房運転及び暖房運転時共に、冷房能力が大きくなるとCOPが急激に低下するため、大冷暖房能力の空気調和機には適さないが、小能力(2.2kW)では、2流路方式を上回るCOPが得られ、6畳以下の小さな部屋を空調する空気調和機に適する。   As shown in FIGS. 6 and 7, generally, a refrigeration cycle including an indoor heat exchanger in which heat transfer tubes are branched in parallel and formed with two flow paths is used for both cooling and heating operations. Is large (around 3.6 kW) and maintains a high COP, which is suitable for an air conditioner having a large cooling and heating capacity, but the piping structure becomes complicated. On the other hand, in the refrigeration cycle in which the heat transfer tubes are arranged in series over the entire length without branching and the one-channel indoor heat exchanger is provided, the COP rapidly decreases as the cooling capacity increases during both the cooling operation and the heating operation. Therefore, it is not suitable for an air conditioner having a large cooling / heating capacity, but with a small capacity (2.2 kW), a COP exceeding the two-channel method is obtained, and it is suitable for an air conditioner that air-conditions a small room of 6 tatami or less.

従って、小能力空気調和機に適する1流路の本実施形態では、2流路化に必要な分岐管の接続や、電子膨張弁などの可動部品の使用が不必要になるため、冷凍サイクルの信頼性を高めることができる。   Therefore, in the present embodiment of one flow path suitable for a small capacity air conditioner, it is not necessary to connect a branch pipe necessary for two flow paths or use a movable part such as an electronic expansion valve. Reliability can be increased.

また、内径Cの出口側U字管9と圧縮機側配管12の接続を、内径D(C≧D)の補助出口管11を用いて行うので、管接続にフレアー加工の必要はなくなり、製造が容易になり、また、自動ロー付が容易になる。   In addition, since the outlet side U-shaped tube 9 with the inner diameter C and the compressor side piping 12 are connected using the auxiliary outlet tube 11 with the inner diameter D (C ≧ D), there is no need for flare processing for the pipe connection, and manufacturing And automatic brazing becomes easy.

さらに、前記室内熱交換器は前側熱交換器と後側熱交換器が側面視逆V字状に折曲形成して構成され、伝熱フィン8の外側と内側に伝熱管7が2段に亘り配列され、室内熱交換器の伝熱管の配列は、冷房運転時の冷媒流れにおいて、後側熱交換器の外側上部に入口部を設け、この入口側から外側を順次下側方向に連結し、更に内側に連結して順次上側方向に最上部まで連結した後、前側熱交換器の外側上部に連結して順次下側方向に連結し、更に内側に連結して順次上側方向に接続し、前側熱交換器内側上部に出口部を設けた1本の直列流路により構成すると共に、内径をCとする伝熱管を前側熱交換器の内側に構成させたことにより、配管接続が簡素化されると共に、内径をCとする伝熱管を前側熱交換器の空気の流れの後流側に配置した事で、前側熱交換器の伝熱管を通過する風が効率的に流すことができる。   Further, the indoor heat exchanger is configured such that a front heat exchanger and a rear heat exchanger are bent in an inverted V shape when viewed from the side, and the heat transfer tubes 7 are arranged in two stages on the outer side and the inner side of the heat transfer fins 8. The arrangement of the heat transfer tubes of the indoor heat exchanger is such that an inlet is provided at the upper part of the outer side of the rear heat exchanger in the refrigerant flow during the cooling operation, and the outer side from the inlet side is sequentially connected in the downward direction. , Further connected to the inner side and sequentially connected to the uppermost part in the upper direction, then connected to the outer upper part of the front heat exchanger, sequentially connected to the lower direction, further connected to the inner side and sequentially connected to the upper direction, Piping connection is simplified by having a single series flow path with an outlet on the inner side of the front heat exchanger and a heat transfer tube with an inner diameter of C inside the front heat exchanger. In addition, a heat transfer tube having an inner diameter of C is disposed on the downstream side of the air flow of the front heat exchanger. In, can wind passing through the heat transfer tubes of the front heat exchanger is flowed efficiently.

本実施形態の空気調和機によれば、冷媒流路や絞りが簡略化され、製造性が向上し、大幅なコストダウンが実現される。   According to the air conditioner of the present embodiment, the refrigerant flow path and the throttle are simplified, the productivity is improved, and a significant cost reduction is realized.

なお、本実施形態では、室内熱交換器のU字管の内径を2種類の例で説明したが、冷媒の下流側(ガス側)に行くに従って管内径を順次大きくするような構成にし、管内径を3種類以上にしてもよい。   In this embodiment, the inner diameter of the U-shaped tube of the indoor heat exchanger has been described with two types of examples. However, the inner diameter of the tube is gradually increased toward the downstream side (gas side) of the refrigerant. Three or more types of inner diameters may be used.

本発明に係る空気調和機に組み込まれる冷凍サイクルの概念図。The conceptual diagram of the refrigerating cycle integrated in the air conditioner which concerns on this invention. 本発明に係る空気調和機に組み込まれる室内熱交換器の縦断面図。The longitudinal cross-sectional view of the indoor heat exchanger integrated in the air conditioner which concerns on this invention. 図2に示す室内熱交換器の製造時の側面図。The side view at the time of manufacture of the indoor heat exchanger shown in FIG. 図2に示す室内熱交換器の製造時の側面図。The side view at the time of manufacture of the indoor heat exchanger shown in FIG. 図2に示す室内熱交換器の使用時の側面図。The side view at the time of use of the indoor heat exchanger shown in FIG. 一般な空気調和機の冷房運転時の冷媒流路数とCOPの関連図。The related figure of the refrigerant | coolant flow path number at the time of air_conditionaing | cooling operation of a general air conditioner, and COP. 一般な空気調和機の暖房運転時の冷媒流路数とCOPの関連図。The related figure of the number of refrigerant channels at the time of heating operation of a general air conditioner, and COP. 従来の空気調和機に組み込まれる室内熱交換器の縦断面図。The longitudinal cross-sectional view of the indoor heat exchanger integrated in the conventional air conditioner.

符号の説明Explanation of symbols

1…冷凍サイクル、2…圧縮機、3…四方切換弁、4…室外熱交換器、5…絞り機構、6…室内熱交換器、6A…前側熱交換器、6B…後側熱交換器、7…伝熱管、7b…基本伝熱管、7c…大径伝熱管、7d…連結管、8…伝熱フィン、9,10…U字管、11…補助出口管、12…圧縮機側配管。   DESCRIPTION OF SYMBOLS 1 ... Refrigeration cycle, 2 ... Compressor, 3 ... Four-way selector valve, 4 ... Outdoor heat exchanger, 5 ... Throttle mechanism, 6 ... Indoor heat exchanger, 6A ... Front side heat exchanger, 6B ... Rear side heat exchanger, 7 ... Heat transfer tube, 7b ... Basic heat transfer tube, 7c ... Large diameter heat transfer tube, 7d ... Connection tube, 8 ... Heat transfer fin, 9, 10 ... U-shaped tube, 11 ... Auxiliary outlet tube, 12 ... Compressor side piping.

Claims (3)

圧縮機、四方切換弁、室外熱交換器、絞り機構、室内熱交換器を順次配管接続して構成される冷凍サイクルを備えた冷暖房兼用の空気調和機において、前記室内熱交換器は伝熱管が全長に渡って1流路で形成され、冷房運転時の冷媒上流側となる伝熱管の内径をBとし、下流側となる伝熱管の内径をCとするよう少なくとも内径の異なる2種類以上の伝熱管により構成し、前記室外熱交換器の伝熱管の内径をAとしたとき、各伝熱管の内径の関係が、A≧C>Bとなることを特徴とする空気調和機。 In an air conditioner combined with a refrigeration cycle configured by sequentially connecting a compressor, a four-way switching valve, an outdoor heat exchanger, a throttle mechanism, and an indoor heat exchanger, the indoor heat exchanger includes a heat transfer tube. Two or more types of heat transfer pipes that are formed in one flow path over the entire length and that have at least two different inner diameters so that the inner diameter of the heat transfer tube upstream of the refrigerant during cooling operation is B and the inner diameter of the heat transfer tube downstream is C. An air conditioner characterized in that the relationship between the inner diameters of the heat transfer tubes is A ≧ C> B, where A is the inner diameter of the heat transfer tubes of the outdoor heat exchanger. 前記Aが8mm、Bが6.35mm、Cが7mmであり、室内熱交換器の冷房運転時に下流側となる内径Cの伝熱管は、室内熱交換器の全配管長さの1/3以下であることを特徴とする請求項1に記載の空気調和機。 The A is 8 mm, B is 6.35 mm, C is 7 mm, and the heat transfer tube having an inner diameter C that is the downstream side during the cooling operation of the indoor heat exchanger is 1/3 or less of the total pipe length of the indoor heat exchanger. The air conditioner according to claim 1, wherein 前記室内熱交換器は前側熱交換器と後側熱交換器が側面視逆V字状に折曲形成して構成され、伝熱フィンの外側と内側に伝熱管が2段に亘り配列され、室内熱交換器の伝熱管の配列は、冷房運転時の冷媒流れにおいて、後側熱交換器の外側上部に入口部を設け、この入口側から外側を順次下側方向に連結し、更に内側に連結して順次上側方向に最上部まで連結した後、前側熱交換器の外側上部に連結して順次下側方向に連結し、更に内側に連結して順次上側方向に接続し、前側熱交換器内側上部に出口部を設けた1本の直列流路により構成すると共に、内径をCとする伝熱管を前側熱交換器の内側に構成させたことを特徴とする請求項1に記載の空気調和機。 The indoor heat exchanger is configured by bending a front heat exchanger and a rear heat exchanger in a reverse V shape when viewed from the side, and heat transfer tubes are arranged in two stages on the outside and inside of the heat transfer fins, The arrangement of the heat transfer tubes of the indoor heat exchanger is such that, in the refrigerant flow during the cooling operation, an inlet portion is provided on the outer upper portion of the rear heat exchanger, and the outer side is sequentially connected from the inlet side to the lower side, and further to the inner side. After connecting and sequentially connecting up to the top in the upper direction, connecting to the outer upper part of the front heat exchanger and connecting to the lower direction sequentially, further connecting to the inner side and sequentially connecting to the upper direction, the front heat exchanger The air conditioner according to claim 1, wherein the air conditioner is configured by a single series flow path having an outlet portion at an inner upper portion, and a heat transfer tube having an inner diameter of C is formed inside the front heat exchanger. Machine.
JP2006083504A 2006-03-24 2006-03-24 Air conditioner Pending JP2007255842A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006083504A JP2007255842A (en) 2006-03-24 2006-03-24 Air conditioner
CNU2007200047554U CN201014848Y (en) 2006-03-24 2007-03-22 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006083504A JP2007255842A (en) 2006-03-24 2006-03-24 Air conditioner

Publications (1)

Publication Number Publication Date
JP2007255842A true JP2007255842A (en) 2007-10-04

Family

ID=38630260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006083504A Pending JP2007255842A (en) 2006-03-24 2006-03-24 Air conditioner

Country Status (2)

Country Link
JP (1) JP2007255842A (en)
CN (1) CN201014848Y (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5972397B2 (en) * 2012-11-30 2016-08-17 三菱電機株式会社 Air conditioner and design method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09292135A (en) * 1996-02-26 1997-11-11 Sanyo Electric Co Ltd Air conditioning apparatus
JPH10176867A (en) * 1996-12-13 1998-06-30 Toshiba Corp Air conditioner
JPH11108481A (en) * 1997-10-01 1999-04-23 Daikin Ind Ltd Air conditioner
JP2000266426A (en) * 1999-03-15 2000-09-29 Daikin Ind Ltd Heat exchanger and cooling system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09292135A (en) * 1996-02-26 1997-11-11 Sanyo Electric Co Ltd Air conditioning apparatus
JPH10176867A (en) * 1996-12-13 1998-06-30 Toshiba Corp Air conditioner
JPH11108481A (en) * 1997-10-01 1999-04-23 Daikin Ind Ltd Air conditioner
JP2000266426A (en) * 1999-03-15 2000-09-29 Daikin Ind Ltd Heat exchanger and cooling system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5972397B2 (en) * 2012-11-30 2016-08-17 三菱電機株式会社 Air conditioner and design method thereof

Also Published As

Publication number Publication date
CN201014848Y (en) 2008-01-30

Similar Documents

Publication Publication Date Title
US9651317B2 (en) Heat exchanger and air conditioner
JP4889011B2 (en) Air conditioning system
US20190072335A1 (en) Heat exchanger and refrigeration cycle device
JP2005055108A (en) Heat exchanger
JP6089340B2 (en) Finned tube heat exchanger
JP2006284134A (en) Heat exchanger
JP2010127601A (en) Air conditioner
EP3062037B1 (en) Heat exchanger and refrigeration cycle device using said heat exchanger
JP4845987B2 (en) Air conditioning system
JP2007255785A (en) Heat exchanger with fin and air conditioner
WO2017042940A1 (en) Heat exchanger
JP2017138085A (en) Heat exchanger
JP2007147221A (en) Heat exchanger with fin
JP2005127529A (en) Heat exchanger
JP5591285B2 (en) Heat exchanger and air conditioner
JP2010261642A (en) Condenser and air conditioning device having the same
JP2016050718A (en) Air conditioner
JP2009145010A (en) Fin-less heat exchanger for air conditioner
JP2007255842A (en) Air conditioner
JP4624146B2 (en) Air conditioner indoor unit
JP2015014397A (en) Heat exchanger
JPH1151412A (en) Indoor unit for air-conditioner, and its indoor heat exchanger
JPWO2015111216A1 (en) Laminated header, heat exchanger, and air conditioner
JP2004332958A (en) Heat exchanger of air conditioner
CN218096712U (en) Heat exchanger and air condensing units

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080521

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110809