JP2007232365A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2007232365A
JP2007232365A JP2007123170A JP2007123170A JP2007232365A JP 2007232365 A JP2007232365 A JP 2007232365A JP 2007123170 A JP2007123170 A JP 2007123170A JP 2007123170 A JP2007123170 A JP 2007123170A JP 2007232365 A JP2007232365 A JP 2007232365A
Authority
JP
Japan
Prior art keywords
carbon dioxide
heat exchanger
dioxide refrigerant
heat
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007123170A
Other languages
Japanese (ja)
Other versions
JP4710869B2 (en
Inventor
Shinichi Wakamoto
慎一 若本
Fumitake Unezaki
史武 畝崎
Masayuki Tsunoda
昌之 角田
So Nomoto
宗 野本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007123170A priority Critical patent/JP4710869B2/en
Publication of JP2007232365A publication Critical patent/JP2007232365A/en
Application granted granted Critical
Publication of JP4710869B2 publication Critical patent/JP4710869B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve heat efficiency of a heat radiator without increasing the pressure loss of air. <P>SOLUTION: This air conditioner is provided with: a flow rate control means 3 for controlling the flow rate of a carbon dioxide refrigerant; an evaporator 4 for evaporating the carbon dioxide refrigerant; a compressor 1 for compressing the evaporated carbon dioxide refrigerant; a first heat exchanger 2A composed by arranging heat transfer tubes for passing the carbon dioxide refrigerant therethrough in a predetermined number of fin plates; a second heat exchanger 2B composed by similarly arranging heat transfer tubes for passing the carbon dioxide refrigerant therethrough in a predetermined number of fin plates; and a blower 5 for supplying air to the first heat exchanger 2A and the second heat exchanger 2B. The air supplied from the flower 5 passes through the second heat exchanger 2B and thereafter flows into the first heat exchanger 2A, and the carbon dioxide refrigerant compressed by the compressor 1 is rapidly lowered in temperature while passing through the first heat exchanger 2A and flows into the second heat exchanger 2B after the lowering amount of the temperature is lowered. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、空気調和装置に関し、特に、冷媒を用いて室内温度を調整する空気調和装置に関する。   The present invention relates to an air conditioner, and more particularly to an air conditioner that adjusts a room temperature using a refrigerant.

フロン系冷媒は地球温暖化係数が大きいため、それに代わる冷媒として二酸化炭素が着目されている。特許文献1は二酸化炭素を使用する空気調和装置の開示例である。この空気調和装置は、圧縮機、放熱器、流量制御手段、蒸発器を主な構成要素として備え、これらの構成要素は伝熱管(冷媒配管)で順次接続されている。   Since CFC refrigerants have a large global warming potential, carbon dioxide is attracting attention as an alternative refrigerant. Patent Document 1 is an example of disclosure of an air conditioner that uses carbon dioxide. This air conditioner includes a compressor, a radiator, a flow rate control unit, and an evaporator as main components, and these components are sequentially connected by heat transfer tubes (refrigerant piping).

冷媒である二酸化炭素は、圧縮機から高温高圧状態の超臨界流体として吐出され、放熱器で空気を加熱しながら温度が低下し、さらに、流量制御手段で低温低圧状態の二相(気相と液相)混合流体に変化する。ついで冷媒は、蒸発器で空気を冷却しながら液体が蒸発して低温低圧状態の気体に変化し、圧縮機に戻る。   Carbon dioxide, which is a refrigerant, is discharged from the compressor as a supercritical fluid in a high-temperature and high-pressure state, and the temperature is lowered while heating the air with a radiator. (Liquid phase) Changes to a mixed fluid. Next, the refrigerant evaporates while cooling the air with the evaporator, changes to a low-temperature and low-pressure gas, and returns to the compressor.

ここでは、フィンを有する放熱器は空気の流れる方向と冷媒の流れる方向を対向させて熱交換させるように構成されている。こうすることにより、熱交換する際に空気と超臨界状態の二酸化炭素の温度差がほぼ一定に保たれることをねらっている。   Here, the radiator having the fins is configured to exchange heat by making the air flow direction and the refrigerant flow direction face each other. By doing so, the temperature difference between the air and the supercritical carbon dioxide is kept almost constant during heat exchange.

特開2001−263772号公報Japanese Patent Laid-Open No. 2001-267372

超臨界状態の二酸化炭素が放熱器で空気と熱交換すると、二酸化炭素の温度は急激に低下するが、放熱器のフィンが大きな温度分布をもち、このフィンを介して高温高圧状態の二酸化炭素が、空気を加熱するよりもむしろ温度の低い二酸化炭素を再加熱する(図7参照)。   When carbon dioxide in the supercritical state exchanges heat with air in the radiator, the temperature of the carbon dioxide decreases rapidly, but the fins of the radiator have a large temperature distribution, and the carbon dioxide in the high temperature and high pressure state passes through these fins. Reheat the low temperature carbon dioxide rather than heat the air (see FIG. 7).

この再加熱することを防ぐには、空気の流れる方向に熱交換部材の長さを長くとり、高温高圧状態の二酸化炭素が流れる伝熱管と、低温状態の二酸化炭素が流れる伝熱管との距離を大きくする必要がある。しかしこうすると放熱器は大型化し、空気の圧力損失の増大による空気調和装置の効率の低下を招く。本発明は、圧力損失の増大を生じることなく放熱器の熱効率を向上させることを目的としている。   To prevent this reheating, the length of the heat exchange member is increased in the direction of air flow, and the distance between the heat transfer tube through which high-temperature and high-pressure carbon dioxide flows and the heat transfer tube through which low-temperature carbon dioxide flows are determined. It needs to be bigger. However, this increases the size of the radiator and causes a reduction in the efficiency of the air conditioner due to an increase in air pressure loss. An object of the present invention is to improve the thermal efficiency of a radiator without causing an increase in pressure loss.

この発明に係る空気調和装置は、二酸化炭素冷媒の流量を制御する流量制御手段と、二酸化炭素冷媒を気化させる蒸発器と、気化した二酸化炭素冷媒を圧縮する圧縮機と、所定枚数のフィンプレートに二酸化炭素冷媒が通過する伝熱管を配列させて構成される第1の熱交換器と、同じく所定枚数のフィンプレートに二酸化炭素冷媒が通過する伝熱管を配列させて構成される第2の熱交換器と、第1の熱交換器と第2の熱交換器に空気を供給する送風機を備えてなり、送風機から供給される空気は第2の熱交換器を通過してから第1の熱交換器に流れるとともに、圧縮機で圧縮された二酸化炭素冷媒は第1の熱交換器を通過中に急激に温度を下げて温度の減少量が低下してから第2の熱交換器に流入するように構成されているものである。   An air conditioner according to the present invention includes a flow rate control unit that controls the flow rate of carbon dioxide refrigerant, an evaporator that vaporizes the carbon dioxide refrigerant, a compressor that compresses the vaporized carbon dioxide refrigerant, and a predetermined number of fin plates. A first heat exchanger configured by arranging heat transfer tubes through which carbon dioxide refrigerant passes, and a second heat exchange configured by arranging heat transfer tubes through which carbon dioxide refrigerant passes through a predetermined number of fin plates. And a blower for supplying air to the first heat exchanger and the second heat exchanger, and the air supplied from the blower passes through the second heat exchanger before the first heat exchange. The carbon dioxide refrigerant compressed by the compressor and the refrigerant flows into the second heat exchanger after the temperature is suddenly lowered while passing through the first heat exchanger and the amount of decrease in temperature is reduced. It is composed of.

この発明に係る空気調和装置は、二酸化炭素冷媒の流量を制御する流量制御手段と、二酸化炭素冷媒を気化させる蒸発器と、気化した二酸化炭素冷媒を圧縮する圧縮機と、所定枚数のフィンプレートに二酸化炭素冷媒が通過する伝熱管を配列させて構成される第1の熱交換器と、同じく所定枚数のフィンプレートに二酸化炭素冷媒が通過する伝熱管を配列させて構成される第2の熱交換器と、第1の熱交換器と第2の熱交換器に空気を供給する送風機を備えてなり、送風機から供給される空気は第2の熱交換器を通過してから第1の熱交換器に流れるとともに、圧縮機で圧縮された二酸化炭素冷媒は第1の熱交換器を通過中に急激に温度を下げて温度の減少量が低下してから第2の熱交換器に流入するように構成されていることにより、熱効率が高い。   An air conditioner according to the present invention includes a flow rate control unit that controls the flow rate of carbon dioxide refrigerant, an evaporator that vaporizes the carbon dioxide refrigerant, a compressor that compresses the vaporized carbon dioxide refrigerant, and a predetermined number of fin plates. A first heat exchanger configured by arranging heat transfer tubes through which carbon dioxide refrigerant passes, and a second heat exchange configured by arranging heat transfer tubes through which carbon dioxide refrigerant passes through a predetermined number of fin plates. And a blower for supplying air to the first heat exchanger and the second heat exchanger, and the air supplied from the blower passes through the second heat exchanger before the first heat exchange. The carbon dioxide refrigerant compressed by the compressor and the refrigerant flows into the second heat exchanger after the temperature is suddenly lowered while passing through the first heat exchanger and the amount of decrease in temperature is reduced. By configuring the It is high.

実施の形態1.
本発明にかかわる空気調和装置は、図1に示されるように、圧縮機1、放熱器2、流量制御弁3、蒸発器4、送風機5を備えている。これらの構成要素1から4は冷媒配管(伝熱管)で順次接続されており、冷媒である二酸化炭素が循環する。フロン系冷媒を使用する空気調和装置では、放熱器2は、凝縮器と呼ばれることが多い。
Embodiment 1 FIG.
As shown in FIG. 1, the air conditioner according to the present invention includes a compressor 1, a radiator 2, a flow rate control valve 3, an evaporator 4, and a blower 5. These components 1 to 4 are sequentially connected by a refrigerant pipe (heat transfer pipe), and carbon dioxide as a refrigerant circulates. In an air conditioner using a chlorofluorocarbon refrigerant, the radiator 2 is often called a condenser.

実施の形態1にかかわる放熱器2は、熱交換器2Aと熱交換器2Bからなり、冷媒が熱交換器2Aを通過してから熱交換器2Bを通過するように両者は伝熱管で接続されている。送風機5で起こされた冷却風は熱交換器2Bを通ってから熱交換器2Aに到達する。   The radiator 2 according to the first embodiment includes a heat exchanger 2A and a heat exchanger 2B, and both are connected by a heat transfer tube so that the refrigerant passes through the heat exchanger 2A and then passes through the heat exchanger 2B. ing. The cooling air generated by the blower 5 reaches the heat exchanger 2A after passing through the heat exchanger 2B.

図2は図1に示されている熱交換器2A、2Bを紙面に平行な方向から見た状態を表している。伝熱管6は所定の間隔で平行に配置されているフィンプレート7と一体化されており、このフィンプレート7に設けられている貫通孔(図示せず)を通った後、左右の両端で折り返され、再びフィンプレートに戻るように配列されている。フィンプレート7は、各々の熱交換器において、最上段から最下段までを連絡する熱伝導性に優れた一枚の板状部材で、冷媒の流入部分と冷媒の流出部分の温度差を最小にする。なおこの図ではフィンプレートが8枚描かれているが、本発明がその枚数や、厚さ、材質等に制限されることがないことは言うまでもない。   FIG. 2 shows a state in which the heat exchangers 2A and 2B shown in FIG. 1 are viewed from a direction parallel to the paper surface. The heat transfer tube 6 is integrated with a fin plate 7 arranged in parallel at a predetermined interval. After passing through a through hole (not shown) provided in the fin plate 7, the heat transfer tube 6 is folded at both the left and right ends. Then, they are arranged so as to return to the fin plate again. The fin plate 7 is a single plate-like member having excellent thermal conductivity that communicates from the uppermost stage to the lowermost stage in each heat exchanger, and minimizes the temperature difference between the refrigerant inflow portion and the refrigerant outflow portion. To do. In this figure, eight fin plates are drawn, but it goes without saying that the present invention is not limited to the number, thickness, material, or the like.

図1では熱交換器2Aと熱交換器2Bを接続する伝熱管の長さを短くするために熱交換器2Bでは冷媒が下方向に流れているが、図3に示すように両者を長い伝熱管で接続して、熱交換器2Bを冷媒が上方向に流れるようにすることも出来る。どちらの場合も、熱交換器2Aと熱交換器2Bは伝熱管で接続されているだけであるため、両者の間には大きな熱抵抗が存在し、熱交換器2Aから熱交換器2Bに伝導される熱量は最小限度に抑制される。なお、熱交換器の数は2段に限られるものではなく、空気の流れが悪くならない範囲で、自由に段数を増やすことが出来る。   In FIG. 1, in order to shorten the length of the heat transfer tube connecting the heat exchanger 2A and the heat exchanger 2B, the refrigerant flows downward in the heat exchanger 2B. However, as shown in FIG. It is also possible to connect with a heat pipe so that the refrigerant flows upward in the heat exchanger 2B. In either case, since the heat exchanger 2A and the heat exchanger 2B are only connected by a heat transfer tube, there is a large thermal resistance between them, and the heat exchanger 2A conducts from the heat exchanger 2A to the heat exchanger 2B. The amount of heat generated is minimized. Note that the number of heat exchangers is not limited to two, and the number of stages can be freely increased within a range in which the air flow does not deteriorate.

図4は二酸化炭素の状態図(エントロピ−温度曲線)を示している。二酸化炭素は条件に応じて液相、2相(液相と気相)混合体、気相、超臨界相を示す。標準冷房条件であれば、放熱器2における空気の吸い込み温度は、臨界温度よりも若干高い35℃である。   FIG. 4 shows a phase diagram (entropy-temperature curve) of carbon dioxide. Carbon dioxide exhibits a liquid phase, a two-phase (liquid phase and gas phase) mixture, a gas phase, and a supercritical phase depending on conditions. Under the standard cooling condition, the air suction temperature in the radiator 2 is 35 ° C., which is slightly higher than the critical temperature.

次に図5に基いて空気調和装置の動作を説明する。圧縮機1から吐出された高温高圧状態にある超臨界状態の二酸化炭素は、放熱器2で、熱交換器2A、熱交換器2Bの順に流れ、空気と熱交換して、温度を低下させる。このとき、超臨界状態の二酸化炭素は、高温(約40〜100℃の温度範囲)では比熱が小さいため熱交換によって温度が急激に低下するが(図5中▲1▼から▲2▼)、低温(約30〜40℃の温度範囲)では比熱が大きく、温度はわずかしか変化しない(図5中▲2▼から▲3▼)。放熱器2に流入する空気は、先ず熱交換器2Bで比較的温度の低い二酸化炭素によって加熱されたのち、さらに熱交換器2Aで高温の二酸化炭素によって加熱される。   Next, operation | movement of an air conditioning apparatus is demonstrated based on FIG. The supercritical carbon dioxide in the high temperature and high pressure state discharged from the compressor 1 flows in the heat exchanger 2 in the order of the heat exchanger 2A and the heat exchanger 2B, and exchanges heat with air to lower the temperature. At this time, the carbon dioxide in the supercritical state has a low specific heat at a high temperature (temperature range of about 40 to 100 ° C.), so the temperature rapidly decreases due to heat exchange (from (1) to (2) in FIG. 5). The specific heat is large at a low temperature (temperature range of about 30 to 40 ° C.), and the temperature changes only slightly ((2) to (3) in FIG. 5). The air flowing into the radiator 2 is first heated by the carbon dioxide having a relatively low temperature in the heat exchanger 2B, and then further heated by the high-temperature carbon dioxide in the heat exchanger 2A.

温度が下がった二酸化炭素は流量制御弁3によって減圧され、低温の気液二相状態に変化したあと(図中▲3▼から▲4▼)、蒸発器4に流入する。蒸発器4では、空気を冷却しながら冷媒液が蒸発し、気体に変化した冷媒は圧縮機1に戻る(図中▲5▼から▲1▼)。   The carbon dioxide whose temperature has been reduced is reduced in pressure by the flow control valve 3 and changed into a low-temperature gas-liquid two-phase state (from (3) to (4) in the figure) and then flows into the evaporator 4. In the evaporator 4, the refrigerant liquid evaporates while cooling the air, and the refrigerant changed to gas returns to the compressor 1 (from (5) to (1) in the figure).

比較のためにフロン系冷媒の状態図(エントロピ−温度曲線)を図6に示した。フロン系冷媒を用いる空気調和装置においても、冷媒は、圧縮機から高温高圧状態の気体(図6中▲1▼)として吐出され、凝縮器(放熱器)では気体が凝縮しながら空気を加熱し高圧の液体(図6中▲2▼)に変化する。この液体は流量制御手段で低温低圧の二相状態(図6中▲4▼)に変化する。蒸発器では液体だけが蒸発し、空気を冷却しながら低温低圧の気体(図6中▲5▼)に変化し、圧縮機に戻る。   For comparison, a phase diagram (entropy-temperature curve) of a chlorofluorocarbon refrigerant is shown in FIG. Even in an air conditioner using a fluorocarbon refrigerant, the refrigerant is discharged from the compressor as a high-temperature and high-pressure gas ((1) in FIG. 6), and the condenser (heat radiator) heats the air while condensing the gas. It changes to a high-pressure liquid ((2) in FIG. 6). This liquid changes to a low-temperature and low-pressure two-phase state (4 in FIG. 6) by the flow rate control means. In the evaporator, only the liquid evaporates, changes to a low-temperature and low-pressure gas ((5) in FIG. 6) while cooling the air, and returns to the compressor.

圧縮機から吐出されるフロン系冷媒は高温で、空気との熱交換によって温度が低下する。しかし、この高温高圧状態のフロン系冷媒は、気体であるため比熱が極めて小さく、温度変化が大きくて高温の領域(図6に示した斜線部分)は狭い。凝縮器では冷媒が凝縮しながら空気を加熱するために冷媒の温度はほぼ一定で(図6中▲2▼から▲3▼)、凝縮器を構成するフィンの温度もほぼ一定に保たれる。熱交換率を高めるには空気温度と冷媒の温度差を一定にすることが重要である。   The chlorofluorocarbon refrigerant discharged from the compressor has a high temperature, and the temperature is lowered by heat exchange with air. However, since the high-temperature and high-pressure fluorocarbon refrigerant is a gas, its specific heat is extremely small, the temperature change is large, and the high-temperature region (shaded area shown in FIG. 6) is narrow. In the condenser, the temperature of the refrigerant is substantially constant ((2) to (3) in FIG. 6) in order to heat the air while the refrigerant is condensed, and the temperature of the fins constituting the condenser is also kept almost constant. In order to increase the heat exchange rate, it is important to keep the temperature difference between the air temperature and the refrigerant constant.

これに対し、超臨界状態にある二酸化炭素は、温度変化が大きくて高温の領域(図5に示した斜線部分)が広い。このため、放熱器を構成するフィンに大きな温度分布が生じ、フィンを介して高温の二酸化炭素が空気を加熱するのではなく低温の二酸化炭素を再加熱し、放熱器の出口の二酸化炭素の温度を上昇させることが熱交換率を低下させていた(図7参照)。   On the other hand, carbon dioxide in a supercritical state has a large temperature change and a wide high temperature region (shaded area shown in FIG. 5). For this reason, a large temperature distribution occurs in the fins constituting the radiator, and the high temperature carbon dioxide does not heat the air through the fins, but reheats the low temperature carbon dioxide, and the temperature of the carbon dioxide at the outlet of the radiator As a result, the heat exchange rate was lowered (see FIG. 7).

実施の形態1にかかわる空気調和装置は、熱交換器2Aと熱交換器2Bがそれぞれ独立したフィンプレート7を備えているため、高温の二酸化炭素が低温の二酸化炭素を加熱すること(再加熱現象)を防ぐことが出来る(図7参照)。これにより、高温の領域から低温の領域への熱移動を抑制でき、放熱器の出口の二酸化炭素の温度を低くできるため、熱効率が向上する。さらに、放熱器の伝熱管の構成が簡単で低コストで実現できる。   In the air conditioner according to the first embodiment, the heat exchanger 2A and the heat exchanger 2B are provided with independent fin plates 7, so that the high-temperature carbon dioxide heats the low-temperature carbon dioxide (reheating phenomenon). ) Can be prevented (see FIG. 7). Thereby, the heat transfer from a high temperature area | region to a low temperature area | region can be suppressed, and since the temperature of the carbon dioxide of the exit of a radiator can be made low, thermal efficiency improves. Furthermore, the configuration of the heat transfer tube of the radiator is simple and can be realized at low cost.

実際に、直径7mmの伝熱管を用い、フィンプレートの間隔を1.5mmにして作成した熱交換器2A、2Bを、空気吸入温度35℃、二酸化炭素の熱交換器2Aの入口温度68℃、入口圧力9.3MPaで運転し、熱効率を測定した。実施の形態1にかかわる放熱器は、フィンプレートが独立(分離)していない放熱器に比べて、熱交換熱量が6%以上向上した。   Actually, heat exchangers 2A and 2B prepared using a heat transfer tube with a diameter of 7 mm and a fin plate interval of 1.5 mm are used as an air intake temperature of 35 ° C., an inlet temperature of carbon dioxide heat exchanger 2 A of 68 ° C., Operating at an inlet pressure of 9.3 MPa, the thermal efficiency was measured. The heat exchanger according to the first embodiment has a heat exchange heat amount improved by 6% or more compared to a heat radiator in which the fin plate is not independent (separated).

実施の形態2.
実施の形態2にかかわる放熱器の形態を図8と図9に示す。他の構成要素は図1に示されているものと同じである。放熱器2は、第1の熱交換部と第2の熱交換部からなるが、両者は共通のフィンプレート7で一体化されていて、両者の間に空隙は存在しない。冷媒は第1の熱交換部を通ってから第2の熱交換部に流入する。放熱器2に流入した空気は、第1の熱交換部に流入するものと、第2の熱交換部に流入するものとに別れる。
Embodiment 2. FIG.
FIGS. 8 and 9 show a heat radiator according to the second embodiment. The other components are the same as those shown in FIG. Although the heat radiator 2 consists of a 1st heat exchange part and a 2nd heat exchange part, both are integrated by the common fin plate 7, and there is no space | gap between both. The refrigerant flows into the second heat exchange section after passing through the first heat exchange section. The air that has flowed into the radiator 2 is divided into one that flows into the first heat exchange section and one that flows into the second heat exchange section.

第1の熱交換部は、空気の流れる方向に対向して冷媒が流れるように構成されている。すなわち、冷媒は風下側に位置する後列に配置された伝熱管から流れ込み、風上側に位置する前列に配置された伝熱管から流出する。これに対し、第2の熱交換部は、空気の流れる方向と直交する方向でしかも第1の熱交換部から遠ざかる方向に冷媒が流れるように構成されている。すなわち、冷媒は第1の熱交換部を通過した後、断面で見ると千鳥状に前後しながら最終的に第1の熱交換部から遠ざかる方向(放熱器の上端)に向かう。   The first heat exchange unit is configured such that the refrigerant flows in a direction opposite to the air flow direction. That is, the refrigerant flows in from the heat transfer tubes arranged in the rear row located on the leeward side, and flows out from the heat transfer tubes arranged in the front row located on the upwind side. On the other hand, the second heat exchange unit is configured such that the refrigerant flows in a direction orthogonal to the air flow direction and in a direction away from the first heat exchange unit. That is, after passing through the first heat exchanging part, the refrigerant goes in a direction (upper end of the radiator) finally moving away from the first heat exchanging part while moving back and forth in a zigzag shape when viewed in cross section.

次に図10を参照して動作について説明する。圧縮機1から吐出された超臨界状態の二酸化炭素は、放熱器2に流入し、第1の熱交換部で空気とほぼ一定の温度差を保ちながらその温度を急激に低下させる(図10中▲1▼から▲2▼)。次に、温度が低下した二酸化炭素は、第2の熱交換部に流入し、空気との熱交換によって二酸化炭素の温度はさらに下がるが、温度の減少量はわずかである(図10中▲2▼から▲3▼)。   Next, the operation will be described with reference to FIG. The supercritical carbon dioxide discharged from the compressor 1 flows into the radiator 2 and rapidly decreases its temperature while maintaining a substantially constant temperature difference with air in the first heat exchange section (in FIG. 10). (1) to (2)). Next, the carbon dioxide whose temperature has decreased flows into the second heat exchange section, and the temperature of the carbon dioxide further decreases due to heat exchange with the air, but the decrease in temperature is slight ((2 in FIG. 10). ▼ to ▲ 3 ▼).

これにより、第1の熱交換部で熱交換する空気は高温の冷媒との温度差が一定に保たれ、効率的な運転ができる。また第2の熱交換部で熱交換する空気も、温度変化が少ない低温の領域ではあるが、ほぼ一定の温度差を保つことができる。さらに第2の熱交換部では温度差が少ないため、再加熱現象が起こらない。   As a result, the temperature of the air that exchanges heat in the first heat exchanging section is kept constant from the high-temperature refrigerant, and efficient operation is possible. In addition, the air that exchanges heat in the second heat exchanging section can also maintain a substantially constant temperature difference although it is in a low temperature region where the temperature change is small. Furthermore, since the temperature difference is small in the second heat exchange section, the reheating phenomenon does not occur.

このあと、二酸化炭素は流量制御弁3によって減圧され、低温の気液二相状態に変化し、蒸発器4に流入する。蒸発器4では、空気を冷却しながら液体のみが蒸発し、気体に変化した冷媒は圧縮機1に戻る。   Thereafter, the carbon dioxide is depressurized by the flow control valve 3, changes to a low-temperature gas-liquid two-phase state, and flows into the evaporator 4. In the evaporator 4, only the liquid evaporates while cooling the air, and the refrigerant changed to gas returns to the compressor 1.

実施の形態2にかかわる空気調和装置は、第1の熱交換部と第2の熱交換部を独立して設ける必要がないが、実施の形態1と同様の効果が得られる。また、冷媒の温度変化が大きい第1の熱交換部で空気と冷媒が互いに対向して熱交換できるため、放熱器の大型化や空気の圧力損失の増大を招くことなく、熱効率がさらに上昇する。   The air conditioner according to Embodiment 2 does not need to provide the first heat exchange unit and the second heat exchange unit independently, but the same effect as in Embodiment 1 can be obtained. Moreover, since air and the refrigerant can exchange heat with each other in the first heat exchanging section where the temperature change of the refrigerant is large, the thermal efficiency is further increased without increasing the size of the radiator and increasing the pressure loss of the air. .

実施の形態3.
実施の形態3にかかわる放熱器の形態を図11から図13に示す。他の構成要素は図1に示されているものと同じである。放熱器は、熱交換器2Cと熱交換器2Dからなり、各々は独立したフィンプレート7を備えている。両者は伝熱管で接続されていて、冷媒は熱交換器2Cを通ってから熱交換器2Dに流れる。
Embodiment 3 FIG.
The form of the heat radiator concerning Embodiment 3 is shown in FIGS. The other components are the same as those shown in FIG. The radiator includes a heat exchanger 2C and a heat exchanger 2D, and each includes an independent fin plate 7. Both are connected by a heat transfer tube, and the refrigerant flows to the heat exchanger 2D after passing through the heat exchanger 2C.

熱交換器2Cは空気の流れる方向に対向して冷媒が流れるように構成されている。すなわち、冷媒は風下側に位置する後列に配置された伝熱管から流入し、風上側に位置する前列に配置された伝熱管から流れ出る。熱交換器2Cは、図12に2C’として示されているように、前列に配列されている伝熱管と後列に配列されている伝熱管の間を分離することも出来る。   The heat exchanger 2C is configured so that the refrigerant flows in a direction opposite to the air flow direction. That is, the refrigerant flows in from the heat transfer tubes arranged in the rear row located on the leeward side, and flows out from the heat transfer tubes arranged in the front row located on the upwind side. The heat exchanger 2C can also separate between the heat transfer tubes arranged in the front row and the heat transfer tubes arranged in the rear row, as shown as 2C 'in FIG.

これに対し、熱交換器2Dは空気の流れる方向と直交する方向に冷媒が流れるように構成されている。すなわち、熱交換器2Dでは、冷媒が後列に配置された伝熱管を通過してから前列に配置された伝熱管を通るようにしてもよいし(図11と図12参照)、断面で見ると前後しながら千鳥状に熱交換器2Cから遠ざかるように冷媒を通過させてもよい(図13参照)。前者では冷媒の流出部は放熱器の途中に設けられることになるが、後者では流出部は放熱器2の端部に設けられることになる。   On the other hand, the heat exchanger 2D is configured such that the refrigerant flows in a direction orthogonal to the direction in which air flows. In other words, in the heat exchanger 2D, the refrigerant may pass through the heat transfer tubes arranged in the rear row and then pass through the heat transfer tubes arranged in the front row (see FIGS. 11 and 12). The refrigerant may be passed in a staggered manner away from the heat exchanger 2C while moving back and forth (see FIG. 13). In the former, the outflow part of the refrigerant is provided in the middle of the radiator, whereas in the latter, the outflow part is provided at the end of the radiator 2.

次に動作について説明する。圧縮機1から吐出された超臨界状態の二酸化炭素は、放熱器2に流入し、熱交換器2Cで空気とほぼ一定の温度差を保ちながら温度が急激に低下する(図10中▲1▼から▲2▼)。次に、熱交換器2Dに流入し、空気と熱交換して温度がわずかに低下する(図10中▲2▼から▲3▼)。温度が下がった二酸化炭素は流量制御弁3によって減圧され、低温の気液二相状態に変化し(図10中▲3▼から▲4▼)、蒸発器4に流入する。蒸発器4では、空気を冷却しながら蒸気に変化し(図10中▲4▼から▲5▼)、圧縮機1に戻る(図10中▲5▼から▲1▼)。   Next, the operation will be described. The supercritical carbon dioxide discharged from the compressor 1 flows into the radiator 2, and the temperature rapidly decreases while maintaining a substantially constant temperature difference from the air in the heat exchanger 2C ((1) in FIG. 10). To (2)). Next, it flows into the heat exchanger 2D and exchanges heat with air, so that the temperature slightly decreases (from (2) to (3) in FIG. 10). The carbon dioxide whose temperature has decreased is depressurized by the flow control valve 3, changes to a low-temperature gas-liquid two-phase state (from (3) to (4) in FIG. 10), and flows into the evaporator 4. The evaporator 4 changes to steam while cooling the air (from 4 to 5 in FIG. 10) and returns to the compressor 1 (from 5 to 1 in FIG. 10).

熱交換器2Dに流入した空気は、冷媒との温度差をほぼ一定に保ちながら比較的温度の低い二酸化炭素によって加熱される。熱交換器2Cでも空気と冷媒との温度差をほぼ一定に保ちながら、高温の二酸化炭素によって加熱される。しかも熱交換器2Cと熱交換器2Dの間は伝熱管で接続されているだけであるため、熱交換器2Cから熱交換器2Dに伝導されて再加熱に寄与する熱量は最小限度に抑えられている。   The air flowing into the heat exchanger 2D is heated by carbon dioxide having a relatively low temperature while keeping the temperature difference with the refrigerant substantially constant. The heat exchanger 2C is also heated by high-temperature carbon dioxide while keeping the temperature difference between the air and the refrigerant substantially constant. Moreover, since the heat exchanger 2C and the heat exchanger 2D are only connected by a heat transfer tube, the amount of heat that is transmitted from the heat exchanger 2C to the heat exchanger 2D and contributes to reheating is minimized. ing.

以上のように実施の形態3にかかわる空気調和装置は、実施の形態2と同様の効果が得られる。さらに、熱交換器2Dの構成が熱交換器2Cの構成と関係なく決めることができるため、熱交換器2Dの伝熱管の配列の自由度が高い。   As described above, the air-conditioning apparatus according to the third embodiment can obtain the same effects as those of the second embodiment. Furthermore, since the configuration of the heat exchanger 2D can be determined regardless of the configuration of the heat exchanger 2C, the degree of freedom in arranging the heat transfer tubes of the heat exchanger 2D is high.

実施の形態1にかかわる空気調和装置の構成を示す図である。1 is a diagram illustrating a configuration of an air conditioner according to Embodiment 1. FIG. 伝熱管とフィンプレートの関係を説明するための図である。It is a figure for demonstrating the relationship between a heat exchanger tube and a fin plate. 実施の形態1にかかわる空気調和装置の別の構成を示す図である。It is a figure which shows another structure of the air conditioning apparatus concerning Embodiment 1. FIG. 二酸化炭素のエントロピと温度の関係を示す状態図である。It is a state figure showing the relation between the entropy of carbon dioxide and temperature. 二酸化炭素を使用する空気調和装置の動作原理を説明するための図である。It is a figure for demonstrating the principle of operation of the air conditioning apparatus which uses a carbon dioxide. フロン系冷媒を使用する空気調和装置の動作原理を説明するための図である。It is a figure for demonstrating the principle of operation of the air conditioning apparatus which uses a fluorocarbon refrigerant. 再加熱現象を説明するための図である。It is a figure for demonstrating a reheating phenomenon. 実施の形態2にかかわる空気調和装置の構成を示す図である。FIG. 4 is a diagram showing a configuration of an air conditioning apparatus according to Embodiment 2. 実施の形態2にかかわる空気調和装置の別の構成を示す図である。It is a figure which shows another structure of the air conditioning apparatus concerning Embodiment 2. FIG. 実施の形態2にかかわる空気調和装置の動作原理を説明するための図である。FIG. 6 is a diagram for explaining an operation principle of an air conditioner according to Embodiment 2. 実施の形態3にかかわる空気調和装置の構成を示す図である。FIG. 6 is a diagram showing a configuration of an air conditioning apparatus according to Embodiment 3. 実施の形態3にかかわる空気調和装置の別の構成を示す図である。It is a figure which shows another structure of the air conditioning apparatus concerning Embodiment 3. FIG. 実施の形態3にかかわる空気調和装置のさらに別の構成を示す図である。It is a figure which shows another structure of the air conditioning apparatus concerning Embodiment 3. FIG.

符号の説明Explanation of symbols

1 圧縮機、2 放熱器、3 流量制御弁、4 蒸発器、5 送風機、6 伝熱管、7 フィンプレート。 1 compressor, 2 radiator, 3 flow control valve, 4 evaporator, 5 blower, 6 heat transfer tube, 7 fin plate.

Claims (6)

二酸化炭素冷媒の流量を制御する流量制御手段と、前記二酸化炭素冷媒を気化させる蒸発器と、気化した前記二酸化炭素冷媒を圧縮する圧縮機と、所定枚数のフィンプレートに前記二酸化炭素冷媒が通過する伝熱管を配列させて構成される第1の熱交換器と、同じく所定枚数のフィンプレートに前記二酸化炭素冷媒が通過する伝熱管を配列させて構成される第2の熱交換器と、前記第1の熱交換器と前記第2の熱交換器に空気を供給する送風機を備えてなり、
前記送風機から供給される空気は前記第2の熱交換器を通過してから前記第1の熱交換器に流れるとともに、前記圧縮機で圧縮された二酸化炭素冷媒は前記第1の熱交換器を通過中に急激に温度を下げて温度の減少量が低下してから前記第2の熱交換器に流入するように構成されている空気調和装置。
Flow rate control means for controlling the flow rate of the carbon dioxide refrigerant, an evaporator for vaporizing the carbon dioxide refrigerant, a compressor for compressing the vaporized carbon dioxide refrigerant, and the carbon dioxide refrigerant passes through a predetermined number of fin plates. A first heat exchanger configured by arranging heat transfer tubes, a second heat exchanger configured similarly by arranging heat transfer tubes through which the carbon dioxide refrigerant passes through a predetermined number of fin plates, and the first A heat exchanger for supplying air to one heat exchanger and the second heat exchanger;
The air supplied from the blower passes through the second heat exchanger and then flows into the first heat exchanger, and the carbon dioxide refrigerant compressed by the compressor passes through the first heat exchanger. An air conditioner configured to flow into the second heat exchanger after the temperature is rapidly reduced during passage and the amount of decrease in temperature is reduced.
二酸化炭素冷媒の流量を制御する流量制御手段と、前記二酸化炭素冷媒を気化させる蒸発器と、気化した前記二酸化炭素冷媒を圧縮する圧縮機と、所定枚数のフィンプレートに前記圧縮された二酸化炭素冷媒が通過する伝熱管を配列させて構成される放熱器と、前記放熱器に空気を供給する送風機を備えてなり、
前記放熱器は、前記送風機から供給される空気の風下側から順次風上側に向かって二酸化炭素冷媒が流れるように伝熱管が配管された第1の熱交換部と、この第1の熱交換部を通過中に急激に温度を下げて温度の減少量が低下した二酸化炭素冷媒が空気の流れる方向と直交する方向でしかも第1の熱交換部から遠ざかる方向に順次流れるように伝熱管が配置された第2の熱交換部を有してなる空気調和装置。
Flow rate control means for controlling the flow rate of the carbon dioxide refrigerant, an evaporator for vaporizing the carbon dioxide refrigerant, a compressor for compressing the vaporized carbon dioxide refrigerant, and the carbon dioxide refrigerant compressed on a predetermined number of fin plates Comprising a heat radiator configured by arranging heat transfer tubes passing through, and a blower for supplying air to the heat radiator,
The heat radiator includes a first heat exchange part in which a heat transfer pipe is piped so that a carbon dioxide refrigerant flows from the leeward side of the air supplied from the blower toward the windward side, and the first heat exchange part. The heat transfer tubes are arranged so that the carbon dioxide refrigerant whose temperature decrease is suddenly lowered while passing through the gas flows in a direction orthogonal to the direction of air flow and further away from the first heat exchange section. An air conditioner having a second heat exchange unit.
二酸化炭素冷媒の流量を制御する流量制御手段と、前記二酸化炭素冷媒を気化させる蒸発器と、気化した前記二酸化炭素冷媒を圧縮する圧縮機と、所定枚数のフィンプレートに前記二酸化炭素冷媒が通過する伝熱管を配列させて構成される第1の熱交換器と、同じく所定枚数のフィンプレートに前記二酸化炭素冷媒が通過する伝熱管を配列させて構成される第2の熱交換器と、前記第1の熱交換器と前記第2の熱交換器に空気を供給する送風機を備えてなり、
前記第1の熱交換器では前記送風機から供給される空気の風下側から順次風上側に向かって前記圧縮機で圧縮された二酸化炭素冷媒が流れるように伝熱管が配列されているとともに、前記第2の熱交換器では前記第1の熱交換器を通過中に急激に温度を下げて温度の減少量が低下した二酸化炭素冷媒が空気の流れる方向とは直交する方向に流れるように伝熱管が配列されている空気調和装置。
The carbon dioxide refrigerant passes through a flow rate control means that controls the flow rate of the carbon dioxide refrigerant, an evaporator that vaporizes the carbon dioxide refrigerant, a compressor that compresses the vaporized carbon dioxide refrigerant, and a predetermined number of fin plates. A first heat exchanger configured by arranging heat transfer tubes, a second heat exchanger configured similarly by arranging heat transfer tubes through which the carbon dioxide refrigerant passes through a predetermined number of fin plates, and the first A heat exchanger for supplying air to one heat exchanger and the second heat exchanger;
In the first heat exchanger, heat transfer tubes are arranged so that the carbon dioxide refrigerant compressed by the compressor flows in order from the leeward side of the air supplied from the blower toward the windward side. In the heat exchanger 2, the heat transfer tube is arranged so that the carbon dioxide refrigerant whose temperature decrease is suddenly decreased while passing through the first heat exchanger flows in a direction perpendicular to the air flow direction. Arranged air conditioner.
二酸化炭素冷媒の流量を制御する流量制御手段と、前記二酸化炭素冷媒を気化させる蒸発器と、気化した前記二酸化炭素冷媒を圧縮する圧縮機と、所定枚数のフィンプレートに前記二酸化炭素冷媒が通過する伝熱管を配列させて構成される第1の熱交換器と、同じく所定枚数のフィンプレートに前記二酸化炭素冷媒が通過する伝熱管を配列させて構成される第2の熱交換器と、前記第1の熱交換器と前記第2の熱交換器に空気を供給する送風機を備えてなり、
前記圧縮機で圧縮された二酸化炭素冷媒は前記第1の熱交換器を通過してから前記第2の熱交換器に約40℃で流入するとともに、前記送風機から供給される空気は前記第2の熱交換器を通過してから前記第1の熱交換器に流れるように構成されている空気調和装置。
The carbon dioxide refrigerant passes through a flow rate control means that controls the flow rate of the carbon dioxide refrigerant, an evaporator that vaporizes the carbon dioxide refrigerant, a compressor that compresses the vaporized carbon dioxide refrigerant, and a predetermined number of fin plates. A first heat exchanger configured by arranging heat transfer tubes, a second heat exchanger configured similarly by arranging heat transfer tubes through which the carbon dioxide refrigerant passes through a predetermined number of fin plates, and the first A heat exchanger for supplying air to one heat exchanger and the second heat exchanger;
The carbon dioxide refrigerant compressed by the compressor passes through the first heat exchanger and then flows into the second heat exchanger at about 40 ° C., and the air supplied from the blower is the second heat exchanger. An air conditioner configured to flow to the first heat exchanger after passing through the heat exchanger.
二酸化炭素冷媒の流量を制御する流量制御手段と、前記二酸化炭素冷媒を気化させる蒸発器と、気化した前記二酸化炭素冷媒を圧縮する圧縮機と、所定枚数のフィンプレートに前記圧縮された二酸化炭素冷媒が通過する伝熱管を配列させて構成される放熱器と、前記放熱器に空気を供給する送風機を備えてなり、
前記放熱器は、前記送風機から供給される空気の風下側から順次風上側に向かって二酸化炭素冷媒が流れるように伝熱管が配管された第1の熱交換部と、この第1の熱交換部を通過して約40℃で流入した二酸化炭素冷媒が空気の流れる方向と直交する方向でしかも第1の熱交換部から遠ざかる方向に順次流れるように伝熱管が配置された第2の熱交換部を有してなる空気調和装置。
Flow rate control means for controlling the flow rate of the carbon dioxide refrigerant, an evaporator for vaporizing the carbon dioxide refrigerant, a compressor for compressing the vaporized carbon dioxide refrigerant, and the carbon dioxide refrigerant compressed on a predetermined number of fin plates Comprising a heat radiator configured by arranging heat transfer tubes passing through, and a blower for supplying air to the heat radiator,
The heat radiator includes a first heat exchange part in which a heat transfer pipe is piped so that a carbon dioxide refrigerant flows from the leeward side of the air supplied from the blower toward the windward side, and the first heat exchange part. The second heat exchange section in which the heat transfer tubes are arranged so that the carbon dioxide refrigerant flowing in at about 40 ° C. through the pipe flows in a direction perpendicular to the air flow direction and away from the first heat exchange section. An air conditioner comprising:
二酸化炭素冷媒の流量を制御する流量制御手段と、前記二酸化炭素冷媒を気化させる蒸発器と、気化した前記二酸化炭素冷媒を圧縮する圧縮機と、所定枚数のフィンプレートに前記二酸化炭素冷媒が通過する伝熱管を配列させて構成される第1の熱交換器と、同じく所定枚数のフィンプレートに前記二酸化炭素冷媒が通過する伝熱管を配列させて構成される第2の熱交換器と、前記第1の熱交換器と前記第2の熱交換器に空気を供給する送風機を備えてなり、
前記第1の熱交換器では前記送風機から供給される空気の風下側から順次風上側に向かって前記圧縮機で圧縮された二酸化炭素冷媒が流れるように伝熱管が配列されているとともに、前記第2の熱交換器では前記第1の熱交換器を通過して約40℃で流入した二酸化炭素冷媒が空気の流れる方向とは直交する方向に流れるように伝熱管が配列されている空気調和装置。
The carbon dioxide refrigerant passes through a flow rate control means that controls the flow rate of the carbon dioxide refrigerant, an evaporator that vaporizes the carbon dioxide refrigerant, a compressor that compresses the vaporized carbon dioxide refrigerant, and a predetermined number of fin plates. A first heat exchanger configured by arranging heat transfer tubes, a second heat exchanger configured similarly by arranging heat transfer tubes through which the carbon dioxide refrigerant passes through a predetermined number of fin plates, and the first A heat exchanger for supplying air to one heat exchanger and the second heat exchanger;
In the first heat exchanger, heat transfer tubes are arranged so that the carbon dioxide refrigerant compressed by the compressor flows in order from the leeward side of the air supplied from the blower toward the windward side. In the heat exchanger 2, an air conditioner in which heat transfer tubes are arranged so that the carbon dioxide refrigerant that has passed through the first heat exchanger and flows in at about 40 ° C. flows in a direction perpendicular to the direction of air flow. .
JP2007123170A 2007-05-08 2007-05-08 Air conditioner Expired - Lifetime JP4710869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007123170A JP4710869B2 (en) 2007-05-08 2007-05-08 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007123170A JP4710869B2 (en) 2007-05-08 2007-05-08 Air conditioner

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002326744A Division JP2004162945A (en) 2002-11-11 2002-11-11 Air conditioner

Publications (2)

Publication Number Publication Date
JP2007232365A true JP2007232365A (en) 2007-09-13
JP4710869B2 JP4710869B2 (en) 2011-06-29

Family

ID=38553117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007123170A Expired - Lifetime JP4710869B2 (en) 2007-05-08 2007-05-08 Air conditioner

Country Status (1)

Country Link
JP (1) JP4710869B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012037108A (en) * 2010-08-05 2012-02-23 Toyo Eng Works Ltd Direct expansion type air conditioner
EP3002537A1 (en) 2014-09-29 2016-04-06 Mitsubishi Heavy Industries, Ltd. Radiator and refrigerating cycle device
EP3141857A1 (en) 2015-08-13 2017-03-15 Mitsubishi Heavy Industries, Ltd. Radiator and supercritical pressure refrigeration cycle using the same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4895644A (en) * 1972-03-22 1973-12-07
JPH06194000A (en) * 1992-12-24 1994-07-15 Hitachi Ltd Air conditioner
JPH06307738A (en) * 1993-04-21 1994-11-01 Hitachi Ltd Condenser for non-azeotrope reefrigerant
JPH102638A (en) * 1996-06-17 1998-01-06 Hitachi Ltd Heat exchanger and slit fin
JPH10160266A (en) * 1996-11-28 1998-06-19 Hitachi Ltd Heat exchanger for air conditioner
JPH10176867A (en) * 1996-12-13 1998-06-30 Toshiba Corp Air conditioner
JPH11193967A (en) * 1997-12-26 1999-07-21 Zexel:Kk Refrigerating cycle
JP2000304380A (en) * 1999-04-22 2000-11-02 Aisin Seiki Co Ltd Heat exchanger
JP2000337722A (en) * 1999-05-26 2000-12-08 Sanden Corp Vapor compression type refrigeration cycle
JP2002174462A (en) * 2000-12-06 2002-06-21 Mitsubishi Heavy Ind Ltd Cooling cycle for air conditioning apparatus and lubricating oil for cooling cycle

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4895644A (en) * 1972-03-22 1973-12-07
JPH06194000A (en) * 1992-12-24 1994-07-15 Hitachi Ltd Air conditioner
JPH06307738A (en) * 1993-04-21 1994-11-01 Hitachi Ltd Condenser for non-azeotrope reefrigerant
JPH102638A (en) * 1996-06-17 1998-01-06 Hitachi Ltd Heat exchanger and slit fin
JPH10160266A (en) * 1996-11-28 1998-06-19 Hitachi Ltd Heat exchanger for air conditioner
JPH10176867A (en) * 1996-12-13 1998-06-30 Toshiba Corp Air conditioner
JPH11193967A (en) * 1997-12-26 1999-07-21 Zexel:Kk Refrigerating cycle
JP2000304380A (en) * 1999-04-22 2000-11-02 Aisin Seiki Co Ltd Heat exchanger
JP2000337722A (en) * 1999-05-26 2000-12-08 Sanden Corp Vapor compression type refrigeration cycle
JP2002174462A (en) * 2000-12-06 2002-06-21 Mitsubishi Heavy Ind Ltd Cooling cycle for air conditioning apparatus and lubricating oil for cooling cycle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012037108A (en) * 2010-08-05 2012-02-23 Toyo Eng Works Ltd Direct expansion type air conditioner
EP3002537A1 (en) 2014-09-29 2016-04-06 Mitsubishi Heavy Industries, Ltd. Radiator and refrigerating cycle device
EP3141857A1 (en) 2015-08-13 2017-03-15 Mitsubishi Heavy Industries, Ltd. Radiator and supercritical pressure refrigeration cycle using the same

Also Published As

Publication number Publication date
JP4710869B2 (en) 2011-06-29

Similar Documents

Publication Publication Date Title
JP4358832B2 (en) Refrigeration air conditioner
JP2004162945A (en) Air conditioner
EP3343129B1 (en) Refrigeration cycle apparatus
US7032411B2 (en) Integrated dual circuit evaporator
JP6388670B2 (en) Refrigeration cycle equipment
WO2007017969A1 (en) Air conditioner and method of producing air conditioner
JP2008275201A (en) Refrigerating air-conditioning device
JP2009133624A (en) Refrigerating/air-conditioning device
KR101449899B1 (en) Economizer, Heat Pump and Cooling-heating System using thereof
JP2013242126A (en) Heat exchanger, and method for transferring heat
JP4710869B2 (en) Air conditioner
CN111829385B (en) Distributor, heat exchanger, indoor unit, outdoor unit, and air conditioning apparatus
JP2023503423A (en) Configuration of air-cooled refrigeration cycle
CN102455090A (en) Sub-cooling condenser
JP5646257B2 (en) Refrigeration cycle equipment
JP6611101B2 (en) Refrigeration cycle equipment
JP6104357B2 (en) Heat exchange device and refrigeration cycle device provided with the same
JP2013134024A (en) Refrigeration cycle device
JP2017089904A (en) Heat pump system
JP3650358B2 (en) Air conditioner
JP4983878B2 (en) Heat exchanger, refrigerator equipped with this heat exchanger, and air conditioner
WO2023013347A1 (en) Refrigeration cycle device
KR101172572B1 (en) Distributor and air conditioner including the same
JP2005009808A (en) Heat exchanger for air conditioner
WO2022215193A1 (en) Refrigeration cycle device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110307

R151 Written notification of patent or utility model registration

Ref document number: 4710869

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140401

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term