JPH09145076A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPH09145076A
JPH09145076A JP7308717A JP30871795A JPH09145076A JP H09145076 A JPH09145076 A JP H09145076A JP 7308717 A JP7308717 A JP 7308717A JP 30871795 A JP30871795 A JP 30871795A JP H09145076 A JPH09145076 A JP H09145076A
Authority
JP
Japan
Prior art keywords
heat exchanger
tube
tubes
thick
bend
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7308717A
Other languages
Japanese (ja)
Inventor
Yasushi Watabe
安司 渡部
Toshio Wakabayashi
寿夫 若林
Shinji Watanabe
伸二 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7308717A priority Critical patent/JPH09145076A/en
Publication of JPH09145076A publication Critical patent/JPH09145076A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
    • F28F9/262Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators for radiators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate instability in a circulation composition associated with a drop in the efficiency of heat transfer attributed to a temperature shift, the generation of icing and frosting attributed to a temperature shift in a mixed refrigerant during heating and a multiple pass designing in an heat exchanger used in a heat pump device using the nonazeotropic mixed refrigerant. SOLUTION: A multi-row/multi-stage heat exchanger having more than one row, heat exchanger tubes 2 are arranged with two kinds of tube diameter (small-diameter tubes < large-diameter tubes) and the small-diameter tubes 2a and the large-diameter tubes 2b of the heat exchanger tubes 2 are built divided in separate rows while a U bend 5a is arranged to link the small- diameter tubes 2a separately, a U bend 5b to link the large-diameter tubes 2b separately and a U bend 5ab to link the small-diameter tubes 2a and the large-diameter tubes 2b. Thus, a refrigerant pipeline is built to let a non- azeotropic mixed refrigerant flow in the direction of an inlet of an external fluid from the direction of an outlet thereof.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、沸点が異なる2種
類以上の冷媒を所定の比率で混合した非共沸混合冷媒を
用いたヒートポンプ装置に使用される熱交換器に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger used in a heat pump device using a non-azeotropic mixed refrigerant in which two or more kinds of refrigerants having different boiling points are mixed at a predetermined ratio.

【0002】[0002]

【従来の技術】近年、地球環境保護の立場から、オゾン
層を破壊するフロンに対する規制が強化されてきてお
り、特に破壊力が大きなCFC(クロロフルオロカーボ
ン)については1995年末に全廃が決定しており、ま
た破壊力が比較的小さなHCFC(ハイドロクロロフル
カーボン)についても1996年より総量規制が開始さ
れ、将来的には全廃されることが決定している。したが
って、冷媒としてフロンを用いた機器について、その代
替冷媒の開発が進められており、オゾン層を破壊しない
HFC(ハイドロフルオロカーボン)が検討されている
が、冷凍機や空調機に用いられているHCFCの代替冷
媒として単独で用いることのでるものはHFCの中には
見あたらず、したがって2種類以上のHFC系冷媒を混
合させた非共沸の混合冷媒が有望視されている。
2. Description of the Related Art In recent years, from the standpoint of protecting the global environment, regulations on CFCs that destroy the ozone layer have been strengthened, and it has been decided to abolish CFC (chlorofluorocarbon), which has a particularly high destructive power, at the end of 1995. Also, the total amount of HCFC (hydrochloroful carbon), which has a relatively small destructive power, was regulated in 1996, and it has been decided that it will be completely abolished in the future. Therefore, for devices that use CFCs as refrigerants, alternative refrigerants are being developed, and HFCs (hydrofluorocarbons) that do not destroy the ozone layer are being studied, but HCFCs used in refrigerators and air conditioners are being investigated. No single refrigerant that can be used alone as an alternative refrigerant has been found in HFC, and therefore, a non-azeotropic mixed refrigerant obtained by mixing two or more kinds of HFC refrigerants is considered promising.

【0003】従来、CFCやHCFC等の単一冷媒もし
くは共沸混合冷媒を用いた冷凍機や空気調和機の蒸発温
度および凝縮温度はそれぞれ等温である。しかし、非共
沸混合冷媒を用いた場合には飽和冷媒液温度と飽和冷媒
蒸気温度とが異なり、飽和冷媒液温度は飽和冷媒蒸気温
度より低くなるという非等温性を有している。
Conventionally, the evaporation temperature and the condensation temperature of a refrigerator or an air conditioner using a single refrigerant such as CFC or HCFC or an azeotropic mixed refrigerant are isothermal. However, when a non-azeotropic mixed refrigerant is used, the saturated refrigerant liquid temperature and the saturated refrigerant vapor temperature are different, and the saturated refrigerant liquid temperature is lower than the saturated refrigerant vapor temperature, which is non-isothermal.

【0004】以下、図面を参照しながら説明する。図9
は、従来のヒートポンプ装置の冷凍サイクル図である。
同図において、9は圧縮機、10は四方弁、11は熱源
側熱交換器(室外側)、12は絞り弁、13は利用側熱
交換器(室内側)であり、これらは順次環状に連結され
ている。また、図10は、単一冷媒(R22)を用いた
ヒートポンプ装置に使用した室外側熱交換器の側面図で
あり、冷媒管路形状を示したものである。同図におい
て、14は熱交換器(2列24段)、2は伝熱管(全て
φ7.00mm)、5はU字管、14はT字管(冷媒分
流器)、15は多曲管であり、また冷媒の流れ(←)方
向は暖房運転時である。
A description will be given below with reference to the drawings. FIG.
FIG. 7 is a refrigeration cycle diagram of a conventional heat pump device.
In the figure, 9 is a compressor, 10 is a four-way valve, 11 is a heat source side heat exchanger (outdoor side), 12 is a throttle valve, 13 is a use side heat exchanger (inside room), and these are sequentially annularly formed. It is connected. Further, FIG. 10 is a side view of the outdoor heat exchanger used in the heat pump device using the single refrigerant (R22), and shows the refrigerant pipe shape. In the figure, 14 is a heat exchanger (2 rows and 24 stages), 2 is a heat transfer tube (all φ7.00 mm), 5 is a U-shaped tube, 14 is a T-shaped tube (refrigerant flow divider), and 15 is a multi-curved tube. Yes, and the flow direction (←) of the refrigerant is during heating operation.

【0005】次に、熱交換器の具体的な動作について説
明する。図9および図10より、上記熱交換器14(室
外側)を暖房運転時に蒸発器として用いる場合、ヒート
ポンプ装置の絞り弁12により減圧膨張された冷媒は、
伝熱管入口2inからUベンド5、T字管14および多
曲管15により各伝熱管を通過し、蒸発気化されて、伝
熱管出口2outより熱交換器8を出で行き、圧縮機9
に戻される。
Next, the specific operation of the heat exchanger will be described. From FIG. 9 and FIG. 10, when the heat exchanger 14 (outdoor side) is used as an evaporator during heating operation, the refrigerant decompressed and expanded by the throttle valve 12 of the heat pump device is:
After passing through each heat transfer tube from the heat transfer tube inlet 2 in by the U bend 5, the T-shaped tube 14 and the multi-curved tube 15, it is evaporated and vaporized, and exits the heat exchanger 8 from the heat transfer tube outlet 2out, and then the compressor 9
Is returned to.

【0006】[0006]

【発明が解決しようとする課題】ところが、上記従来の
熱交換器を用いたヒートポンプ装置に非共沸混合冷媒を
使用した場合、前記熱交換器8の性能が十分発揮され
ず、ヒートポンプ装置全体の性能が低下する課題があっ
た。
However, when the non-azeotropic mixed refrigerant is used in the heat pump device using the conventional heat exchanger, the performance of the heat exchanger 8 is not sufficiently exhibited, and the heat pump device as a whole is There was a problem that performance deteriorated.

【0007】非共沸混合冷媒を一定圧力で蒸発させる
と、単一冷媒の場合と異なり蒸発するにつれて液冷媒の
組成が変化し、これに伴って蒸発温度が上昇していく。
この非等温性(温度勾配)について、図11のモリエル
線図を用いて説明する。
When a non-azeotropic mixed refrigerant is evaporated at a constant pressure, the composition of the liquid refrigerant changes as it evaporates, unlike the case of a single refrigerant, and the evaporation temperature rises accordingly.
This non-isothermal property (temperature gradient) will be described with reference to the Mollier diagram of FIG.

【0008】同図において、T1は着霜限界温度(仮に
−3℃)、T2は外気温度(仮に7℃)を示す等温線で
ある。
In the figure, T 1 is an isotherm showing the frost formation limit temperature (provisionally -3 ° C.) and T 2 is the outside air temperature (provisionally 7 ° C.).

【0009】上記熱交換器14(蒸発器)は、多パス化
して圧力損失を小さくしているため上記熱交換器14内
での混合冷媒の圧力はほぼ一定であり、入口での温度が
1、出口での温度がT1より高いT2となり、入口と出
口とで大きな温度差を生じる(温度すべり)。このよう
に、温度勾配の大きな混合冷媒を用いると熱交換器での
最適な蒸発温度域が、外気温度(7℃)と着霜限界温度
(−3℃)とによって狭く限定され、(1)蒸発圧力を
高くして着霜を回避しようとすると蒸発器出口側で蒸発
温度が外気温度より高くなり、蒸発器を有効に使うこと
ができない、(2)蒸発圧力を低めに設定すると蒸発器
入口側での蒸発温度が着霜限界温度より低くなり着氷ま
たは着霜が発生する。したがって、温度すべりによる熱
効率の低下および着氷・着霜の発生により、熱交換器の
能力が低下し、装置全体の能力が低下するという課題を
有していた。また、多パス化は、混合冷媒を使用する場
合、分流時のパスバランスおよび組成の安定に高度な技
術が必要であった。
Since the heat exchanger 14 (evaporator) has multiple passes to reduce the pressure loss, the pressure of the mixed refrigerant in the heat exchanger 14 is substantially constant, and the temperature at the inlet is T. 1 , the temperature at the outlet becomes T 2 which is higher than T 1 , and a large temperature difference occurs between the inlet and the outlet (temperature slip). Thus, when a mixed refrigerant having a large temperature gradient is used, the optimum evaporation temperature range in the heat exchanger is narrowly limited by the outside air temperature (7 ° C) and the frosting limit temperature (-3 ° C), and (1) When the evaporation pressure is increased to avoid frost formation, the evaporation temperature becomes higher than the outside air temperature on the evaporator outlet side, and the evaporator cannot be used effectively. (2) If the evaporation pressure is set low, the evaporator inlet The evaporation temperature on the side becomes lower than the frost limit temperature, and icing or frost occurs. Therefore, there has been a problem in that the thermal efficiency is reduced due to the temperature slippage and the formation of ice and frost causes the capacity of the heat exchanger to be deteriorated and the capacity of the entire apparatus to be deteriorated. Further, in the case of using a mixed refrigerant, the multi-pass construction requires a sophisticated technique for stabilizing the path balance and composition at the time of diversion.

【0010】本発明の熱交換器は上記課題に鑑み、非共
沸混合冷媒を用いた冷凍サイクルにおいて、混合冷媒の
温度すべりによる熱効率の低下、暖房時の着氷・着霜の
発生および多パス化に伴うパスバランスおよび循環組成
の不安定という問題点を改善し、熱交換器の性能向上を
図るものである。
In view of the above-mentioned problems, the heat exchanger of the present invention reduces the thermal efficiency due to the temperature slip of the mixed refrigerant in the refrigeration cycle using the non-azeotropic mixed refrigerant, the occurrence of icing and frost formation during heating, and the multi-passage. It aims to improve the performance of the heat exchanger by improving the problems of unstable path balance and circulation composition due to the increase in temperature.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に本発明の熱交換器は、2列以上の多列多段熱交換器に
おいて、2種類の管径(細管<太管)の伝熱管を有し、
かつ前記伝熱管の細管、太管を列ごとに構成し、かつ前
記細管を各々連結する第1Uベンド、前記太管をそれぞ
れ連結する第2Uベンドを有し、かつ前記細管と前記太
管を連結する第3Uベンドを有することにより非共沸混
合冷媒を外部流体の出口列方向から入口列方向へ流す冷
媒管路を構成するものである。
In order to solve the above problems, the heat exchanger of the present invention is a multi-row multi-stage heat exchanger having two or more rows, and a heat transfer tube having two kinds of tube diameters (narrow tube <thick tube). Have
And, the thin tubes and the thick tubes of the heat transfer tubes are arranged in rows, and the first tube has a first U bend for connecting the thin tubes, and the second tube has a second U bend for connecting the thick tubes, and the thin tube and the thick tube are connected to each other. By having the third U bend, the non-azeotropic mixed refrigerant constitutes a refrigerant pipe line for flowing the external fluid from the outlet row direction to the inlet row direction.

【0012】また、本発明の他の熱交換器は、上記記載
の熱交換器の伝熱管の細管、太管を同列に構成するもの
である。
Further, another heat exchanger of the present invention is such that the thin tubes and the thick tubes of the heat transfer tubes of the heat exchanger described above are arranged in the same row.

【0013】また、本発明の他の熱交換器は、3種類の
管径(細管<中管<太管)の伝熱管を有し、上記記載の
熱交換器の伝熱管の細管、太管との間に中管を設けたも
のである。
Further, another heat exchanger of the present invention has heat transfer tubes of three kinds of tube diameters (thin tube <medium tube <thick tube), and the heat transfer tube of the above heat exchanger has a thin tube and a thick tube. The middle pipe is provided between the and.

【0014】また、本発明の他の熱交換器は、1列多段
熱交換器において、2種類以上の管径を有する伝熱管を
構成するものである。
Further, another heat exchanger of the present invention is a one-row multistage heat exchanger which constitutes a heat transfer tube having two or more kinds of tube diameters.

【0015】[0015]

【発明の実施の形態】作用は、本発明の熱交換器を図8
の非共沸混合冷媒を用いたヒートポンプ装置の熱源側熱
交換器(暖房時、蒸発器)として使用した場合について
説明する。
The operation of the heat exchanger of the present invention is shown in FIG.
A case where the heat pump is used as a heat source side heat exchanger (during heating, an evaporator) using the non-azeotropic mixed refrigerant will be described.

【0016】本発明の熱交換器は、2列以上の多列多段
熱交換器において、伝熱管の細管、太管を列ごとに設置
し、かつ細管をそれぞれ連結するUベンド、太管をそれ
ぞれ連結するUベンドを有し、さらに上記熱交換器内の
細管部と太管部の間の管路にUベンド(中間)を設ける
ことにより、上記熱交換器の入口からUベンドまで(細
管部)は圧力損失を大きく、Uベンドから出口まで(太
管部)は圧力損失を小さくすることができる。したがっ
て、細管部は混合冷媒の温度勾配に対応した減圧を行う
ことにより等温変化、太管部は非等温変化を行うことに
より、暖房運転時における蒸発器入口部温度の上昇およ
び共沸冷媒に近い温度変化が得られるため、着氷および
着霜の発生を防ぐことができる。その結果、上記熱交換
器は、着霜回避による熱交換器能力の増加が得られ、装
置全体の性能向上を図ることができる。さらに、Uベン
ドにより非共沸混合冷媒を外部流体の出口列方向から入
口列方向へ流す冷媒管路を構成することにより、熱交換
器に対向流の要素が付加され、更なる熱交換器の能力増
加が図れる。また、太管部により圧力損失は軽減される
ため、多パス化を必要としない。
The heat exchanger of the present invention is a multi-row multi-stage heat exchanger having two or more rows, wherein thin tubes and large tubes of heat transfer tubes are installed in each row, and U-bends and large tubes for connecting the thin tubes are respectively connected. From the inlet of the heat exchanger to the U bend (narrow tube portion) by having a U bend to be connected, and further by providing a U bend (intermediate) in the conduit between the thin tube portion and the thick tube portion in the heat exchanger. ) Has a large pressure loss, and the pressure loss can be reduced from the U bend to the outlet (thick pipe portion). Therefore, the thin tube part changes isothermally by decompressing in accordance with the temperature gradient of the mixed refrigerant, and the thick tube part changes non-isothermally, increasing the evaporator inlet temperature during heating operation and close to the azeotropic refrigerant. Since the temperature change can be obtained, it is possible to prevent the formation of ice and frost. As a result, in the heat exchanger, the heat exchanger capacity can be increased by avoiding frost formation, and the performance of the entire device can be improved. Further, the U-bend configures a refrigerant pipe line that allows the non-azeotropic mixed refrigerant to flow from the outlet row direction of the external fluid to the inlet row direction, whereby a counterflow element is added to the heat exchanger, and a further heat exchanger The ability can be increased. Moreover, since the thick tube portion reduces the pressure loss, it is not necessary to provide multiple passes.

【0017】本発明の他の熱交換器は、上記記載の熱交
換器の伝熱管における細管、太管を同列に構成すること
により、細管の段数を任意に可変できるため、細管部に
おける圧力損失の設定が容易であり、様々なヒートポン
プ装置および混合冷媒に対応した減圧が得られる。した
がって、暖房運転時における蒸発器入口部温度の上昇お
よび共沸に近い温度分布が得られるため、着氷および着
霜の発生を防ぐことができる。その他の作用は、上記熱
交換器と同様なため、説明を省略する。
In another heat exchanger according to the present invention, the number of stages of the thin tubes can be arbitrarily changed by arranging the thin tubes and the thick tubes in the heat transfer tubes of the above heat exchanger in the same row, so that the pressure loss in the thin tube portion can be changed. Is easily set, and decompression corresponding to various heat pump devices and mixed refrigerants can be obtained. Therefore, the temperature rise of the evaporator inlet portion and the temperature distribution close to azeotrope can be obtained during the heating operation, so that the formation of ice and frost can be prevented. The other operations are similar to those of the above heat exchanger, and the description thereof will be omitted.

【0018】本発明の他の熱交換器は、細管と太管の組
み合わせだけでは混合冷媒の温度勾配に対応した減圧が
得られない場合、上記記載の熱交換器の伝熱管における
細管、太管との間に中管を設けることにより、減圧を段
階的に行うことができる。したがって、暖房運転時にお
ける蒸発器入口部温度の上昇および共沸冷媒に近い温度
変化が得られるため、着氷および着霜の発生を防ぐこと
ができる。その他の作用は、上記熱交換器と同様なた
め、説明を省略する。
In another heat exchanger of the present invention, when the pressure reduction corresponding to the temperature gradient of the mixed refrigerant cannot be obtained only by the combination of the thin tube and the thick tube, the thin tube and the thick tube in the heat transfer tube of the heat exchanger described above are used. By providing an intermediate tube between the and, the pressure reduction can be performed in stages. Therefore, the temperature at the inlet of the evaporator and the temperature change close to that of the azeotropic refrigerant can be obtained during the heating operation, so that the formation of ice and frost can be prevented. The other operations are similar to those of the above heat exchanger, and the description thereof will be omitted.

【0019】本発明の他の熱交換器は、1列多段熱交換
器において、2種類以上の管径を有する伝熱管を同列に
構成し、上記熱交換器内の入口(細管部)と出口(太管
部)の間の管路にUベンド(中間)を設けることによ
り、上記熱交換器の入口からUベンド(細管部)までは
圧力損失を大きく、Uベンドから出口(太管部)までは
圧力損失を小さくすることができる。したがって、上記
熱交換器(蒸発器)を入口からUベンドまでは混合冷媒
の温度勾配に対応した減圧(細管部)を行うことにより
等温変化、Uベンドから出口までは非等温変化させるこ
とにより、暖房運転時における蒸発器入口部温度の上昇
および共沸に近い温度分布が得られるため、着氷および
着霜の発生を防ぐことができる。
Another heat exchanger of the present invention is a one-row multi-stage heat exchanger in which heat transfer tubes having two or more kinds of tube diameters are arranged in the same row, and the inlet (narrow tube portion) and the outlet in the heat exchanger are arranged. By providing a U bend (intermediate) in the pipe line between the (thick pipe portions), the pressure loss is large from the inlet of the heat exchanger to the U bend (narrow pipe portion), and the U bend is the outlet (thick pipe portion). Up to can reduce pressure loss. Therefore, by changing the temperature of the heat exchanger (evaporator) from the inlet to the U bend by reducing the pressure (capillary tube portion) corresponding to the temperature gradient of the mixed refrigerant, and by changing the non-isothermal change from the U bend to the outlet, Since a rise in the temperature at the inlet of the evaporator and a temperature distribution close to azeotrope are obtained during the heating operation, it is possible to prevent the formation of ice and frost.

【0020】[0020]

【実施例】以下本発明の一実施例における熱交換器につ
いて、図面とともに説明する。なお、従来の技術の項で
説明したものと同一機能を有するものには同一の番号を
付して詳細な説明は省略する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A heat exchanger according to an embodiment of the present invention will be described below with reference to the drawings. Components having the same functions as those described in the section of the related art are denoted by the same reference numerals, and detailed description will be omitted.

【0021】図1および図2は、本発明の第1の実施例
における多列多段熱交換器1(ここでは2列多段)の側
面図および縦断面図であり、上記熱交換器1は、伝熱管
2における細管2aと太管2bを列ごとに構成し、かつ
細管2aをそれぞれ連結するUベンド5a、太管2bを
それぞれ連結するUベンド5bを有し、かつ細管2aと
太管2bを連結するUベンド5abを有することにより
非共沸混合冷媒を外部流体の出口列方向から入口列方向
へ流す冷媒管路を構成している。図6は、この発明の熱
交換器を蒸発器としてヒートポンプ装置に使用した場合
のモリエル線図(暖房運転)である。
1 and 2 are a side view and a vertical cross-sectional view of a multi-row multi-stage heat exchanger 1 (here, a two-row multi-stage heat exchanger) according to the first embodiment of the present invention. The heat exchanger 1 is The thin tubes 2a and the thick tubes 2b in the heat transfer tube 2 are arranged in rows, and each of the thin tubes 2a has a U bend 5a and each of the thick tubes 2b has a U bend 5b. By having the U-bends 5ab connected to each other, a refrigerant pipeline for flowing the non-azeotropic mixed refrigerant from the outlet row direction of the external fluid to the inlet row direction is formed. FIG. 6 is a Mollier diagram (heating operation) when the heat exchanger of the present invention is used as an evaporator in a heat pump device.

【0022】次に動作について説明する。本発明の上記
熱交換器1は、図1および図6より、多列多段熱交換器
1内の伝熱管2における細管2aおよび太管2b列ごと
に設け、各々の管の内径および段数を任意に設定し(例
えば細管径da=7.00mm,段数sa=24段、太
管径db=9.52mm,sb=20段)、さらに上記
熱交換器1内の入口(細管部)と出口(太管部)の間の
管路にUベンド(中間)5abを設けることにより、上
記熱交換器1の入口からUベンド5ab(細管部)まで
は圧力損失を大きく、Uベンド5abから出口(太管
部)までは圧力損失を小さくすることができる。ここ
で、図6より、T1は着霜限界温度(仮に−3℃)、T
2は外気温度(仮に7℃)を示す等温線であることを考
慮すれば、混合冷媒は上記熱交換器1(蒸発器)を入口
からUベンド5abまでの細管部において混合冷媒の温
度勾配に対応した圧力損失を有するため等温変化を行
い、Uベンド5abから出口までの太管部において非等
温変化を行う。したがって、暖房運転時において上記熱
交換器1(蒸発器)は、蒸発器入口部温度の上昇および
共沸冷媒に近い温度変化が得られるため、着氷および着
霜の発生を防ぐことができる。さらに、Uベンド5a、
5bおよび5abにより非共沸混合冷媒を外部流体の出
口列方向から入口列方向へ流す冷媒管路を構成すること
により、熱交換器に対向流の要素が付加され、更なる熱
交換器の能力増加が図れる。また、この発明の熱交換器
1は、細管2aと太管2bの内径および段数の組み合わ
せにより、各々の圧力損失を調整できるため、従来の熱
交換器の問題点であった多パス化に伴う冷媒分流(パス
バランス)を必要とせず、さらに混合冷媒分流時の組成
変化も発生しない有効な特徴を具備する。さらに、伝熱
管2の内径の種類は、列ごとに設置している関係上、従
来の熱交換器の曲げ行程等の製造設備をほとんど変える
ことなく使用できる点で、本発明の熱交換器は製造コス
ト面でも有益である。
Next, the operation will be described. 1 and 6, the heat exchanger 1 of the present invention is provided for each row of the thin tubes 2a and the thick tubes 2b of the heat transfer tube 2 in the multi-row multi-stage heat exchanger 1, and the inner diameter and the number of steps of each tube are arbitrary. (For example, thin tube diameter da = 7.00 mm, number of stages sa = 24 steps, thick tube diameter db = 9.52 mm, sb = 20 steps), and further the inlet (narrow tube portion) and outlet in the heat exchanger 1 By providing the U bend (intermediate) 5ab in the conduit between the (thick pipe portions), the pressure loss from the inlet of the heat exchanger 1 to the U bend 5ab (narrow pipe portion) is large, and from the U bend 5ab to the outlet ( It is possible to reduce the pressure loss up to the thick tube portion. Here, from FIG. 6, T1 is the frost formation limit temperature (provisionally −3 ° C.), T1
Considering that 2 is an isotherm indicating the outside air temperature (tentatively 7 ° C.), the mixed refrigerant has a temperature gradient of the mixed refrigerant in the thin tube portion from the inlet to the U bend 5ab in the heat exchanger 1 (evaporator). Since it has a corresponding pressure loss, an isothermal change is made, and a non-isothermal change is made in the thick pipe portion from the U bend 5ab to the outlet. Therefore, during the heating operation, in the heat exchanger 1 (evaporator), the rise in the evaporator inlet temperature and the temperature change close to that of the azeotropic refrigerant are obtained, so that the formation of ice and frost can be prevented. In addition, U bend 5a,
By constructing a refrigerant pipe through which the non-azeotropic mixed refrigerant flows from the outlet row direction of the external fluid to the inlet row direction by 5b and 5ab, a counterflow element is added to the heat exchanger, and the capacity of the further heat exchanger is increased. Can be increased. Further, in the heat exchanger 1 of the present invention, the pressure loss of each of the thin tubes 2a and the thick tubes 2b can be adjusted by the combination of the inner diameter and the number of stages. It has an effective characteristic that it does not require a refrigerant split flow (path balance) and does not cause a composition change when the mixed refrigerant is split. Further, the type of the inner diameter of the heat transfer tube 2 can be used without changing manufacturing equipment such as the bending process of the conventional heat exchanger, because the heat exchanger tubes 2 are installed in each row. It is also beneficial in terms of manufacturing cost.

【0023】次に、本発明の第2の実施例について、図
面を参照しながら説明する。図3は、第2の実施例にお
ける多列多段熱交換器6(ここでは2列多段)の側面図
であり、第1の実施例と異なる点は、同列(前列)に伝
熱管2における細管2a、太管2bを有している点であ
る。その他の構成は、第1の実施例で示したものと等し
いので説明を省く、図7は、この発明の熱交換器を蒸発
器としてヒートホンプ装置に使用した場合のモリエル線
図(暖房運転)であり、第1および第2の実施例の熱交
換器を、破線および実線でそれぞれ示す。
Next, a second embodiment of the present invention will be described with reference to the drawings. FIG. 3 is a side view of the multi-row multi-stage heat exchanger 6 (here, two-row multi-stage) in the second embodiment. The difference from the first embodiment is that the thin tubes in the heat transfer tubes 2 are in the same row (front row). 2a and a thick tube 2b. Other configurations are the same as those shown in the first embodiment, and therefore the description thereof is omitted. FIG. 7 is a Mollier diagram (heating operation) when the heat exchanger of the present invention is used as an evaporator in a heat hoop device. Yes, the heat exchangers of the first and second embodiments are shown in dashed and solid lines, respectively.

【0024】次に第2の実施例の動作について図3およ
び図7を用いて説明する。伝熱管の内径および段数が使
用する能力機種別に制限を受ける関係上、第1の実施例
の熱交換器(破線)、すなわち伝熱管の細管2a、太管
2bを列ごとに組み合わせた場合、混合冷媒の温度勾配
に対応した減圧が得られない場合が生じる。そこで、第
2の実施例(実線)における熱交換器6は、同列(前
列)に伝熱管2の細管2a、太管2bを設置することに
より、細管2aの段数を任意に決定し(残りは太管)、
着霜限界温度T1(たとえば−3℃)になるような細管
部の圧力損失に設定できる。つまり、本熱交換器6は、
様々なヒートポンプ装置および混合冷媒に対応した所望
の圧力損失を容易に得ることが可能となる。ゆえに、暖
房運転時における蒸発器入口部温度の上昇および共沸冷
媒に近い温度分布が得られるため、上記熱交換器6にお
ける着氷および着霜の発生を防ぎ、熱交換器の能力を増
加させ、装置全体の性能向上を図ることができる。その
他の効果は、上記熱交換器1の効果と同等であるため、
説明を省略する。
Next, the operation of the second embodiment will be described with reference to FIGS. Since the inner diameter and the number of stages of the heat transfer tubes are limited depending on the type of capability to be used, when the heat exchanger of the first embodiment (broken line), that is, the thin tubes 2a and the thick tubes 2b of the heat transfer tubes are combined in each row, they are mixed. In some cases, the pressure reduction corresponding to the temperature gradient of the refrigerant cannot be obtained. Therefore, in the heat exchanger 6 in the second embodiment (solid line), the thin tubes 2a and the thick tubes 2b of the heat transfer tubes 2 are installed in the same row (front row) to arbitrarily determine the number of stages of the thin tubes 2a (the rest are Thick tube),
It is possible to set the pressure loss of the thin tube portion so as to reach the frost formation limit temperature T1 (for example, -3 ° C). That is, the heat exchanger 6 is
It is possible to easily obtain a desired pressure loss corresponding to various heat pump devices and mixed refrigerants. Therefore, since the temperature at the inlet of the evaporator rises and the temperature distribution close to that of the azeotropic refrigerant is obtained during the heating operation, the formation of icing and frost in the heat exchanger 6 is prevented and the capacity of the heat exchanger is increased. Therefore, the performance of the entire device can be improved. Since other effects are equivalent to those of the heat exchanger 1,
Description is omitted.

【0025】次に、本発明の第3の実施例について、図
面を参照しながら説明する。図4は、第3の実施例にお
ける多列多段熱交換器7(ここでは3列多段)の側面図
であり、第1、2の実施例と異なる点は、伝熱管2にお
ける細管2a、太管2bとの間に中管2cを有する点で
ある。その他の構成は、第1、2の実施例で示したもの
と等しいので説明を省く、図8は、この発明の熱交換器
を蒸発器としてヒートポンプ装置に使用した場合のモリ
エル線図(暖房運転)であり、第1および第3の実施例
の熱交換器を、破線および実線でそれぞれ示す。
Next, a third embodiment of the present invention will be described with reference to the drawings. FIG. 4 is a side view of the multi-row multi-stage heat exchanger 7 (here, three-row multi-stage) in the third embodiment. The difference from the first and second embodiments is that the thin tubes 2a in the heat transfer tube 2 The point is that the middle tube 2c is provided between the tube 2b and the tube 2b. Other configurations are the same as those shown in the first and second embodiments, and therefore description thereof will be omitted. FIG. 8 is a Mollier diagram (heating operation when the heat exchanger of the present invention is used in a heat pump device as an evaporator). ) And the heat exchangers of the first and third embodiments are shown in broken and solid lines, respectively.

【0026】次に第3の実施例の動作について、図4お
よび図8を用いて説明する。伝熱管の内径および段数が
使用する能力機種別に制限を受ける関係上、第1の実施
例の熱交換器(破線)、すなわち伝熱管の細管2a、太
管2bを列ごとに組み合わせだけでは混合冷媒の温度勾
配に対応した減圧が得られない場合が生じる。そこで、
第3の実施例(実線)における熱交換器7は、上記記載
の熱交換器1の伝熱管2における細管2aと太管2bと
の間に中管2cを設けることにより、細管および中管部
において、細管2a、中管2cの内径および段数に応じ
た圧力損失が段階的に得られるため、混合冷媒を着霜限
界温度T1(たとえば−3℃)以下にならないように等
温変化させることができる。つまり、上記熱交換器7
は、様々なヒートポンプ装置および混合冷媒に対応した
所望の圧力損失を容易に得ることが可能となる。ゆえ
に、暖房運転時における蒸発器入口部温度の上昇および
共沸冷媒に近い温度分布が得られるため、着氷および着
霜の発生を防ぐとともに、熱交換器の能力を増加させ、
装置全体の性能向上を図ることができる。
Next, the operation of the third embodiment will be described with reference to FIGS. 4 and 8. Since the inner diameter of the heat transfer tube and the number of stages are limited depending on the type of capability to be used, the heat exchanger of the first embodiment (broken line), that is, the thin tubes 2a and the thick tubes 2b of the heat transfer tube are combined only in each row to form a mixed refrigerant. In some cases, the reduced pressure corresponding to the temperature gradient of 1 cannot be obtained. Therefore,
The heat exchanger 7 in the third embodiment (solid line) is a thin tube and a middle tube portion by providing the middle tube 2c between the thin tube 2a and the thick tube 2b in the heat transfer tube 2 of the heat exchanger 1 described above. In, since the pressure loss corresponding to the inner diameters and the number of stages of the thin tube 2a and the middle tube 2c is obtained stepwise, it is possible to change the mixed refrigerant isothermally so as not to fall below the frosting limit temperature T1 (for example, -3 ° C). . That is, the heat exchanger 7
Can easily obtain a desired pressure loss corresponding to various heat pump devices and mixed refrigerants. Therefore, since the temperature rise of the evaporator inlet and the temperature distribution close to that of the azeotropic refrigerant during the heating operation can be obtained, the occurrence of icing and frost is prevented and the capacity of the heat exchanger is increased.
The performance of the entire device can be improved.

【0027】次に、本発明の第4の実施例について、図
面を参照しながら説明する。図5は、第4の実施例にお
ける1列多段熱交換器8の側面図であり、2種類以上の
管径を有する伝熱管2が同列に構成されている。細管2
a(φ7.00mm)および太管2b(φ9.52m
m)の2種類の伝熱管2を用いたとすれば、第1、2、
3の実施例と異なる点は、1列式の熱交換器であるた
め、非共沸混合冷媒を外部流体の出口列方向から入口列
方向へ流す冷媒管路を構成できない点である。この発明
の熱交換器を蒸発器としてヒートポンプ装置に使用した
場合のモリエル線図(暖房運転)は、図6と同様であ
る。
Next, a fourth embodiment of the present invention will be described with reference to the drawings. FIG. 5 is a side view of the one-row multi-stage heat exchanger 8 in the fourth embodiment, in which the heat transfer tubes 2 having two or more tube diameters are arranged in the same row. Thin tube 2
a (φ7.00 mm) and large tube 2b (φ9.52 m)
If two types of heat transfer tubes 2 of m) are used, the first, second,
The third embodiment is different from the third embodiment in that it is a one-row type heat exchanger, and therefore it is not possible to form a refrigerant pipe line for flowing the non-azeotropic mixed refrigerant from the outlet row direction of the external fluid to the inlet row direction. The Mollier diagram (heating operation) when the heat exchanger of the present invention is used as an evaporator in a heat pump device is the same as in FIG.

【0028】次に第4の実施例の動作について説明す
る。本発明の上記熱交換器8は、1列多段熱交換器内の
伝熱管2における細管2aおよび太管2bを同列に設
け、各々の管の内径および段数を任意に設定し(例えば
細管径da=7.00mm,段数sa=6段、太管径d
b=9.52mm,sb=4段)、さらに上記熱交換器
1内の入口(細管部)と出口(太管部)の間の管路にU
ベンド(中管)5abを設けることにより、上記熱交換
器1の入口からUベンド5ab(細管部)までは圧力損
失を大きく、Uベンド5abから出口(太管部)までは
圧力損失を小さくすることができる。したがって、図6
より、混合冷媒は、上記熱交換器1(蒸発器)を入口か
らUベンド5abまでの細管部において混合冷媒の温度
勾配に対応した圧力損失を有するため等温度化を行い、
Uベンド5abから出口までの太管部において非等温変
化を行う。したがって、暖房運転時における上記熱交換
器8(蒸発器)の入口部温度の上昇および共沸冷媒に近
い温度変化が得られるため、着氷および着霜の発生を防
ぐことができる。ゆえに、熱交換器の能力を増加させ、
装置全体の性能向上を図ることができる。
Next, the operation of the fourth embodiment will be described. In the heat exchanger 8 of the present invention, the thin tubes 2a and the thick tubes 2b of the heat transfer tubes 2 in the one-row multi-stage heat exchanger are provided in the same row, and the inner diameter and the number of stages of each tube are arbitrarily set (for example, the thin tube diameter). da = 7.00 mm, number of steps sa = 6 steps, large pipe diameter d
b = 9.52 mm, sb = 4 steps), and further U in the pipe between the inlet (thin pipe part) and the outlet (thick pipe part) in the heat exchanger 1.
By providing the bend (medium tube) 5ab, the pressure loss from the inlet of the heat exchanger 1 to the U bend 5ab (narrow tube portion) is large, and the pressure loss from the U bend 5ab to the outlet (thick tube portion) is small. be able to. Therefore, FIG.
Therefore, the mixed refrigerant has the pressure loss corresponding to the temperature gradient of the mixed refrigerant in the thin tube portion from the inlet to the U-bend 5ab in the heat exchanger 1 (evaporator), so that the mixed refrigerant is isothermalized.
A non-isothermal change is performed in the thick pipe portion from the U bend 5ab to the outlet. Therefore, the temperature rise at the inlet of the heat exchanger 8 (evaporator) and the temperature change close to that of the azeotropic refrigerant can be obtained during the heating operation, so that the formation of ice and frost can be prevented. Therefore, increasing the capacity of the heat exchanger,
The performance of the entire device can be improved.

【0029】[0029]

【発明の効果】本発明の熱交換器は、上記の説明から明
らかなように、2列以上の多列多段熱交換器において、
伝熱管の細管、太管を列ごとに設置し、かつ細管をそれ
ぞれ連結するUベンド、太管をそれぞれ連結するUベン
ドを有し、さらに上記熱交換器内の細管部と太管部の間
の管路にUベンド(中間)を設けることにより、上記熱
交換器の入口からUベンドまで(細管部)は圧力損失を
大きく、Uベンドから出口まで(太管部)は圧力損失を
小さくすることができる。したがって、細管部は混合冷
媒の温度勾配に対応した減圧を行うことにより等温変
化、太管部は非等温変化を行うことにより、暖房運転時
における蒸発器入口部の温度を上昇および共沸冷媒に近
い温度変化が得られるため、着氷および着霜の発生を防
ぐことができる。その結果、上記熱交換器は、着霜回避
による熱交換器能力の増加が得られ、装置全体の性能向
上を図ることができる。さらに、Uベンドにより非共沸
混合冷媒を外部流体の出口列方向から入口列方向へ流す
冷媒管路を構成することにより、熱交換器に対向流の要
素が付加され、更なる熱交換器の能力増加が図れる。ま
た、細管と太管の内径および段数の組み合わせにより、
各々の圧力損失を調整できるため、従来の熱交換器の問
題点であった多パス化に伴う冷媒分流(パスバランス)
を必要とせず、さらに混合冷媒分流時の組成変化も発生
しない有効な特徴を具備する。さらに、伝熱管の内径の
種類は、列ごとに設置している関係上、従来の熱交換器
の曲げ行程等の製造設備をほとんど変えることなく使用
できる点で、本発明の熱交換器は製造コスト面でも有益
である。
As is clear from the above description, the heat exchanger of the present invention is a multi-row multi-stage heat exchanger having two or more rows,
Between the thin tubes and the thick tubes in the heat exchanger, there are U-bends that connect the thin tubes and the thick tubes of the heat transfer tubes in rows, and that connect the thin tubes and U-bends that connect the thick tubes. By providing a U-bend (intermediate) in the pipe, the pressure loss from the inlet to the U-bend (narrow pipe part) of the heat exchanger is large, and the pressure loss from the U-bend to the outlet (thick pipe part) is small. be able to. Therefore, the thin tube section changes the temperature isothermally by reducing the pressure corresponding to the temperature gradient of the mixed refrigerant, and the thick tube section changes the temperature non-isothermally to raise the temperature of the evaporator inlet during the heating operation and make it an azeotropic refrigerant. Since a close temperature change can be obtained, it is possible to prevent the formation of ice and frost. As a result, in the heat exchanger, the heat exchanger capacity can be increased by avoiding frost formation, and the performance of the entire device can be improved. Further, the U-bend configures a refrigerant pipe line that allows the non-azeotropic mixed refrigerant to flow from the outlet row direction of the external fluid to the inlet row direction, whereby a counterflow element is added to the heat exchanger, and a further heat exchanger The ability can be increased. Also, depending on the combination of the inner diameter and the number of steps
Since each pressure loss can be adjusted, refrigerant splitting (path balance) associated with multiple passes, which was a problem of conventional heat exchangers
It has an effective feature that does not require the above, and does not cause a composition change when the mixed refrigerant is split. Furthermore, since the type of the inner diameter of the heat transfer tube is installed in each row, the heat exchanger of the present invention can be used in that it can be used with almost no change in the manufacturing equipment such as the bending process of the conventional heat exchanger. It is also beneficial in terms of cost.

【0030】本発明の他の熱交換器は、上記記載の熱交
換器の伝熱管における細管、太管を同列に構成すること
により、細管の圧力損失の設定を任意に可変できるた
め、様々なヒートポンプ装置および混合冷媒に対応した
減圧が得られる。したがって、暖房運転時における蒸発
器入口部温度の上昇および共沸に近い温度分布が得られ
るため、着氷および着霜の発生を防ぐことができる。そ
の他の効果は、上記熱交換器の効果と同等であるため、
説明を省略する。
In another heat exchanger of the present invention, by configuring the thin tubes and the thick tubes in the heat transfer tubes of the above-mentioned heat exchanger in the same row, the pressure loss of the thin tubes can be arbitrarily changed, and thus various heat exchangers can be used. A reduced pressure corresponding to the heat pump device and the mixed refrigerant can be obtained. Therefore, the temperature rise of the evaporator inlet portion and the temperature distribution close to azeotrope can be obtained during the heating operation, so that the formation of ice and frost can be prevented. Other effects are the same as those of the above heat exchanger,
Description is omitted.

【0031】本発明の他の熱交換器は、細管と太管の組
み合わせだけでは混合冷媒の温度勾配に対応した減圧が
得られない場合、上記記載の熱交換器の伝熱管における
細管、太管との間に中管を設けることにより、減圧を段
階的に行うことができる。したがって、暖房運転時にお
ける蒸発器入口部温度の上昇および共沸冷媒に近い温度
変化が得られるため、着氷および着霜の発生を防ぐこと
ができる。その他の効果は、上記熱交換器の効果と同等
であるため、説明を省略する。
In another heat exchanger of the present invention, when the pressure reduction corresponding to the temperature gradient of the mixed refrigerant cannot be obtained only by the combination of the thin tube and the thick tube, the thin tube and the thick tube in the heat transfer tube of the heat exchanger described above are used. By providing an intermediate tube between the and, the pressure reduction can be performed in stages. Therefore, the temperature at the inlet of the evaporator and the temperature change close to that of the azeotropic refrigerant can be obtained during the heating operation, so that the formation of ice and frost can be prevented. Since other effects are the same as those of the above heat exchanger, description thereof will be omitted.

【0032】本発明の他の熱交換器は、1列多段熱交換
器において、2種類以上の管径を有する伝熱管を同列に
構成し、上記熱交換器内の入口(細管部)と出口(太管
部)の間の管路にUベンド(中間)を設けることによ
り、上記熱交換器の入口からUベンド(細管部)までは
圧力損失を大きく、Uベンドから出口(太管部)までは
圧力損失を小さくすることができる。したがって、上記
熱交換器(蒸発器)を入口からUベンドまでは混合冷媒
の温度勾配に対応した減圧(細管部)を行うことにより
等温変化、Uベンドから出口までは非等温変化させるこ
とにより、暖房運転時における蒸発器入口部の温度を上
昇させ、着氷および着霜の発生を防ぐとともに、熱交換
器の能力を増加させ、装置全体の性能を向上させること
ができる。
Another heat exchanger of the present invention is a one-row multi-stage heat exchanger in which heat transfer tubes having two or more kinds of tube diameters are arranged in the same row, and an inlet (narrow tube portion) and an outlet in the heat exchanger are provided. By providing a U bend (intermediate) in the pipe line between the (thick pipe portions), the pressure loss is large from the inlet of the heat exchanger to the U bend (narrow pipe portion), and the U bend is the outlet (thick pipe portion). Up to can reduce pressure loss. Therefore, by changing the temperature of the heat exchanger (evaporator) from the inlet to the U bend by reducing the pressure (capillary tube portion) corresponding to the temperature gradient of the mixed refrigerant, and by changing the non-isothermal change from the U bend to the outlet, It is possible to raise the temperature at the inlet of the evaporator during the heating operation, prevent the formation of ice and frost, increase the capacity of the heat exchanger, and improve the performance of the entire apparatus.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例における熱交換器の側面
FIG. 1 is a side view of a heat exchanger according to a first embodiment of the present invention.

【図2】本発明の第1の実施例における熱交換器の図1
中II−II縦断面図
FIG. 2 is a diagram of a heat exchanger according to a first embodiment of the present invention.
Middle II-II vertical sectional view

【図3】本発明の第2の実施例における熱交換器の側面
FIG. 3 is a side view of the heat exchanger according to the second embodiment of the present invention.

【図4】本発明の第3の実施例における熱交換器の側面
FIG. 4 is a side view of a heat exchanger according to a third embodiment of the present invention.

【図5】本発明の第4の実施例における熱交換器の側面
FIG. 5 is a side view of a heat exchanger according to a fourth embodiment of the present invention.

【図6】本発明の第1および4の実施例におけるヒート
ポンプ装置のモリエル線図
FIG. 6 is a Mollier diagram of the heat pump device according to the first and fourth embodiments of the present invention.

【図7】本発明の第2の実施例におけるヒートポンプ装
置のモリエル線図
FIG. 7 is a Mollier diagram of the heat pump device according to the second embodiment of the present invention.

【図8】本発明の第3の実施例におけるヒートポンプ装
置のモリエル線図
FIG. 8 is a Mollier diagram of the heat pump device according to the third embodiment of the present invention.

【図9】従来例におけるヒートポンプ装置の冷凍サイク
ル図
FIG. 9 is a refrigeration cycle diagram of a heat pump device in a conventional example.

【図10】従来例における熱交換器の側面図FIG. 10 is a side view of a conventional heat exchanger.

【図11】従来のヒートポンプ装置に非共沸混合冷媒を
用いた場合のモリエル線図
FIG. 11 is a Mollier diagram when a non-azeotropic mixed refrigerant is used in a conventional heat pump device.

【符号の説明】[Explanation of symbols]

1 熱交換器(2列多段) 2,2a,2b 伝熱管(a:細管,b:太管) 3 フィン 4 側板 5,5a,5b,5ab U字管(a:細管,b:太
管,ab:異径管) 6 熱交換器(2列多段) 7 熱交換器(3列多段) 8 熱交換器(1列多段) 9 圧縮機 10 四方弁 11 熱源側熱交換器(室外側) 12 絞り弁 13 利用側熱交換器(室内側) 14 熱交換器(2列24段) 15 T字管 16 多曲管
1 heat exchanger (2 rows multi-stage) 2, 2a, 2b heat transfer tube (a: thin tube, b: thick tube) 3 fins 4 side plate 5, 5a, 5b, 5ab U-shaped tube (a: thin tube, b: thick tube, ab: Different diameter pipe 6 Heat exchanger (2 rows multi-stage) 7 Heat exchanger (3 rows multi-stage) 8 Heat exchanger (1 row multi-stage) 9 Compressor 10 Four-way valve 11 Heat source side heat exchanger (outside) 12 Throttle valve 13 Use side heat exchanger (indoor side) 14 Heat exchanger (2 rows, 24 stages) 15 T-shaped tube 16 Multi-curved tube

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】2列以上の多列多段熱交換器において、2
種類の管径(細管<太管)の伝熱管を有し、かつ前記伝
熱管の細管、太管を列ごとに構成し、かつ前記細管を各
々連結する第1Uベンド、前記太管をそれぞれ連結する
第2Uベンドを有し、かつ前記細管と前記太管を連結す
る第3Uベンドを有することにより非共沸混合冷媒を外
部流体の出口列方向から入口列方向へ流す冷媒管路を設
けた熱交換器。
1. In a multi-row multi-stage heat exchanger having two or more rows, 2
Having a heat transfer tube of different tube diameters (thin tube <thick tube), and configuring the thin tubes and the thick tubes of the heat transfer tube in rows, and connecting the first U-bend and the thick tube respectively connecting the thin tubes Heat having a second U bend for connecting the thin pipe and the thick pipe and having a third U bend for connecting the thin pipe and the thick pipe with a refrigerant pipe for flowing the non-azeotropic mixed refrigerant from the outlet row direction of the external fluid to the inlet row direction. Exchanger.
【請求項2】伝熱管の細管、太管を同列に構成すること
を特徴とする請求項1記載の熱交換器。
2. The heat exchanger according to claim 1, wherein the thin tubes and the thick tubes of the heat transfer tubes are arranged in the same row.
【請求項3】3種類の管径(細管<中管<太管)の伝熱
管を有し、前記伝熱管の細管、太管との間に中管を設け
たことを特徴とする請求項2記載の熱交換器。
3. A heat transfer tube having three kinds of tube diameters (narrow tube <middle tube <thick tube), and a middle tube is provided between the thin tube and the thick tube of the heat transfer tube. The heat exchanger according to 2.
【請求項4】1列多段熱交換器において、2種類以上の
管径を有する伝熱管を構成することを特徴とする熱交換
器。
4. A heat exchanger in a single-row multi-stage heat exchanger, characterized by comprising heat transfer tubes having two or more kinds of tube diameters.
JP7308717A 1995-11-28 1995-11-28 Heat exchanger Pending JPH09145076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7308717A JPH09145076A (en) 1995-11-28 1995-11-28 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7308717A JPH09145076A (en) 1995-11-28 1995-11-28 Heat exchanger

Publications (1)

Publication Number Publication Date
JPH09145076A true JPH09145076A (en) 1997-06-06

Family

ID=17984439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7308717A Pending JPH09145076A (en) 1995-11-28 1995-11-28 Heat exchanger

Country Status (1)

Country Link
JP (1) JPH09145076A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100709421B1 (en) * 2005-05-02 2007-04-18 엘지전자 주식회사 Heat exchanger
JP2009257745A (en) * 2008-03-25 2009-11-05 Daikin Ind Ltd Refrigerating device
JP2012531574A (en) * 2009-06-29 2012-12-10 トレイン・インターナショナル・インコーポレイテッド Flat plate fin with hybrid hole pattern
WO2013084455A1 (en) * 2011-12-08 2013-06-13 パナソニック株式会社 Heat exchanger and air conditioner provided with same
WO2014181400A1 (en) * 2013-05-08 2014-11-13 三菱電機株式会社 Heat exchanger and refrigeration cycle device
JPWO2015059832A1 (en) * 2013-10-25 2017-03-09 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus using the heat exchanger
CN108895876A (en) * 2018-07-24 2018-11-27 豫新汽车热管理科技有限公司 A kind of change caliber pipe plate type heat interchanger core body
JPWO2020021700A1 (en) * 2018-07-27 2021-06-03 三菱電機株式会社 Refrigeration cycle equipment
JP6918258B1 (en) * 2021-01-28 2021-08-11 日立ジョンソンコントロールズ空調株式会社 Air conditioner and heat exchanger
JP6918257B1 (en) * 2021-01-28 2021-08-11 日立ジョンソンコントロールズ空調株式会社 Air conditioner and heat exchanger
JP6990795B1 (en) * 2021-01-28 2022-01-12 日立ジョンソンコントロールズ空調株式会社 Indoor unit and outdoor unit

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100709421B1 (en) * 2005-05-02 2007-04-18 엘지전자 주식회사 Heat exchanger
JP2009257745A (en) * 2008-03-25 2009-11-05 Daikin Ind Ltd Refrigerating device
JP2012531574A (en) * 2009-06-29 2012-12-10 トレイン・インターナショナル・インコーポレイテッド Flat plate fin with hybrid hole pattern
WO2013084455A1 (en) * 2011-12-08 2013-06-13 パナソニック株式会社 Heat exchanger and air conditioner provided with same
CN103765131A (en) * 2011-12-08 2014-04-30 松下电器产业株式会社 Heat exchanger and air conditioner provided with same
JPWO2013084455A1 (en) * 2011-12-08 2015-04-27 パナソニックIpマネジメント株式会社 Heat exchanger and air conditioner equipped with the same
US9791189B2 (en) 2013-05-08 2017-10-17 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle apparatus
WO2014181400A1 (en) * 2013-05-08 2014-11-13 三菱電機株式会社 Heat exchanger and refrigeration cycle device
JPWO2014181400A1 (en) * 2013-05-08 2017-02-23 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus
JPWO2015059832A1 (en) * 2013-10-25 2017-03-09 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus using the heat exchanger
US10101091B2 (en) 2013-10-25 2018-10-16 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle apparatus using the same heat exchanger
CN108895876A (en) * 2018-07-24 2018-11-27 豫新汽车热管理科技有限公司 A kind of change caliber pipe plate type heat interchanger core body
JPWO2020021700A1 (en) * 2018-07-27 2021-06-03 三菱電機株式会社 Refrigeration cycle equipment
JP6918258B1 (en) * 2021-01-28 2021-08-11 日立ジョンソンコントロールズ空調株式会社 Air conditioner and heat exchanger
JP6918257B1 (en) * 2021-01-28 2021-08-11 日立ジョンソンコントロールズ空調株式会社 Air conditioner and heat exchanger
JP6990795B1 (en) * 2021-01-28 2022-01-12 日立ジョンソンコントロールズ空調株式会社 Indoor unit and outdoor unit
CN114812010A (en) * 2021-01-28 2022-07-29 日立江森自控空调有限公司 Air conditioner and heat exchanger
CN114811768A (en) * 2021-01-28 2022-07-29 日立江森自控空调有限公司 Air conditioner and heat exchanger
CN114812010B (en) * 2021-01-28 2024-06-04 日立江森自控空调有限公司 Air conditioner and heat exchanger

Similar Documents

Publication Publication Date Title
JP2979926B2 (en) Air conditioner
US6571575B1 (en) Air conditioner using inflammable refrigerant
EP3343129B1 (en) Refrigeration cycle apparatus
WO2018029784A1 (en) Heat exchanger and refrigeration cycle device provided with heat exchanger
JPH09145076A (en) Heat exchanger
JPH10205919A (en) Condenser of air-cooling apparatus
JP2002013841A (en) Evaporator and freezer
JP5646257B2 (en) Refrigeration cycle equipment
WO2018008129A1 (en) Refrigeration cycle device
JP2001304783A (en) Outdoor heat exchanger, indoor heat exchanger and air conditioner
JPH06194000A (en) Air conditioner
US20210278137A1 (en) System and Method for Manufacturing and Operating a Coaxial Tube Heat Exchanger
WO2019021364A1 (en) Refrigeration device and refrigeration device operation method
JP5485602B2 (en) Refrigeration system
WO2017149642A1 (en) Refrigeration cycle device
JPH08178445A (en) Heat pump type air conditioner
JPWO2021205536A5 (en)
JPH06307725A (en) Air conditioner
JP7112168B2 (en) Heat exchanger and refrigeration cycle equipment
JPH08145490A (en) Heat exchanger for heat pump air conditioner
JPH1068560A (en) Refrigeration cycle device
JP3421130B2 (en) Air conditioner
KR101172572B1 (en) Distributor and air conditioner including the same
JP6682081B1 (en) Freezing method
JPH07269971A (en) Air conditioner