WO2018008129A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2018008129A1
WO2018008129A1 PCT/JP2016/070168 JP2016070168W WO2018008129A1 WO 2018008129 A1 WO2018008129 A1 WO 2018008129A1 JP 2016070168 W JP2016070168 W JP 2016070168W WO 2018008129 A1 WO2018008129 A1 WO 2018008129A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigeration cycle
refrigerant
heat transfer
fins
evaporator
Prior art date
Application number
PCT/JP2016/070168
Other languages
French (fr)
Japanese (ja)
Inventor
伊東 大輔
佑太 小宮
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/070168 priority Critical patent/WO2018008129A1/en
Publication of WO2018008129A1 publication Critical patent/WO2018008129A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/04Preventing the formation of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements

Definitions

  • the present invention relates to a refrigeration cycle apparatus such as a refrigeration air conditioner used for applications such as refrigeration, refrigeration, and air conditioning.
  • refrigeration and air conditioning equipment used for refrigeration, refrigeration, air conditioning, etc. at distribution bases such as refrigeration factories, food processing factories, agricultural and marine product processing factories, markets, distribution warehouses, and retail stores such as supermarkets and convenience stores.
  • a refrigeration cycle apparatus is used as a refrigeration system.
  • a refrigeration cycle apparatus has been developed that uses a natural refrigerant (substance that naturally exists in nature, such as carbon dioxide (CO 2 )), which has a low environmental load as a refrigerant (see, for example, Patent Document 1).
  • a dual refrigeration cycle apparatus having a high refrigeration cycle for circulating a high temperature side refrigerant and a low refrigeration cycle for circulating a low temperature side refrigerant has been proposed. ing.
  • a low-side refrigeration cycle and a high-side refrigeration cycle are connected by a cascade condenser configured to exchange heat between the low-side condenser and the high-side evaporator.
  • JP 2010-60267 A Japanese Patent No. 3606043
  • an auxiliary condenser is installed in front of the cascade condenser in the low-side refrigeration cycle, and the refrigerant discharged from the low-side compressor is cooled by the auxiliary condenser. To improve driving efficiency.
  • frost is likely to be formed because the interval between adjacent heat transfer tubes is narrow, and the evaporation temperature is reduced with a decrease in heat exchange efficiency due to frost formation. Decreases and the driving efficiency deteriorates.
  • frost begins to form on the evaporator, the frost hinders the flow of air and heat exchange between the air and the refrigerant cannot be performed, thereby lowering the evaporation temperature, which accelerates frost formation, and the refrigeration capacity rapidly increases. It will decline.
  • the frost formation is not determined only by the interval between the heat transfer tubes, but the relationship between the fin pitch, which is the distance between the fins, and the step pitch indicating the interval between the heat transfer tubes is also affected. Therefore, even if only the interval between the heat transfer tubes is improved, it does not solve the fundamental problem of frost formation.
  • the present invention has been made against the background of the above problems, and an object of the present invention is to obtain a refrigeration cycle apparatus that avoids blockage of an air passage due to frost formation and prevents a reduction in refrigeration capacity.
  • a refrigeration cycle apparatus is a refrigeration cycle apparatus including a refrigeration cycle in which a compressor, a condenser, an expansion valve, and an evaporator are connected in order, and the evaporator is along an air flow direction.
  • the distance L from the windward end of the heat transfer tube in the first fin to the front edge of the first fin among the plurality of heat transfer tubes is 6.5 mm ⁇ L ⁇ 8.5 mm.
  • the distance L from the windward end of the heat transfer tube to the front edge of the first fin in the first fin arranged at the most upstream among the plurality of heat transfer tubes is 6.5 mm ⁇ Since L ⁇ 8.5 mm, the ratio of the tube diameter of the heat transfer tube to the fin width can be within a range of 23% ⁇ heat transfer tube diameter / fin width ⁇ 100 ⁇ 42%, which can improve the cooling capacity reduction. .
  • FIG. 1 It is a schematic block diagram which shows an example of the refrigerant circuit structure of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention. It is a schematic diagram which shows the specification of the low former side evaporator of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention, (a) is the side view seen from the side, (b) is the front view seen from the front , Respectively. It is a graph showing the relationship between the distance L and average refrigeration capacity in an evaporator. It is a graph showing the relationship between (Fp ⁇ tf) ⁇ L and average refrigeration capacity in an evaporator.
  • the refrigeration cycle apparatus according to the present invention is applied to a refrigeration apparatus.
  • the present invention is not limited to such a case.
  • other refrigeration cycles such as a refrigeration apparatus and an air conditioner It may be applied to the device.
  • FIG. 1 is a schematic configuration diagram showing an example of a refrigerant circuit configuration of a refrigeration cycle apparatus (hereinafter referred to as refrigeration cycle apparatus 100A) according to Embodiment 1 of the present invention.
  • refrigeration cycle apparatus 100A a refrigeration cycle apparatus
  • the refrigeration cycle apparatus 100A has two refrigerant circuits (a low-side refrigeration cycle 10 and a high-side refrigeration cycle 20), and is configured to circulate refrigerant independently of each other. .
  • the high-side evaporator 24 and the low-side condenser 12 are coupled so as to be able to exchange heat between the refrigerants passing therethrough.
  • the refrigerant-to-refrigerant heat exchanger (cascade condenser) 16 is configured.
  • level of temperature, pressure, etc. is not particularly determined in relation to absolute values, but is relatively determined in terms of the state and operation of the system, apparatus, etc.
  • the low-side refrigeration cycle 10 includes a low-side compressor 11, an auxiliary radiator 15, a low-side condenser 12, a low-side expansion valve 13, and a low-side evaporator 14 in this order as refrigerant piping. 18 is connected by piping.
  • the low-source side refrigeration cycle 10 corresponds to the “first refrigeration cycle” of the present invention.
  • the low-source compressor 11 corresponds to the “first compressor” of the present invention.
  • the low-side condenser 12 corresponds to the “first condenser” of the present invention.
  • the low-side expansion valve 13 corresponds to the “first expansion valve” of the present invention.
  • the low-side evaporator 14 corresponds to the “first evaporator” of the present invention.
  • the auxiliary radiator 15 corresponds to the “heat radiator” of the present invention.
  • the low-side compressor 11 sucks the refrigerant flowing through the low-side refrigeration cycle 10, compresses the refrigerant, and discharges it in a high temperature and high pressure state.
  • the low-side compressor 11 may be configured by a compressor of a type that can control the rotation speed by an inverter circuit or the like and adjust the discharge amount of the low-side refrigerant.
  • the auxiliary radiator 15 functions as a gas cooler, for example, and cools the gas refrigerant discharged from the low-side compressor 11 by heat exchange with, for example, outdoor air (outside air), water, brine, or the like as a heat source. .
  • outdoor air outdoor air
  • water brine
  • the auxiliary radiator 15 will be described assuming that the heat source is the outside air and heat exchange is performed between the outside air and the refrigerant.
  • the low-source side condenser 12 exchanges heat between the refrigerant that has passed through the auxiliary radiator 15 and the refrigerant that flows through the high-side refrigeration cycle 20, and condenses the refrigerant that has passed through the auxiliary radiator 15 to form a liquid refrigerant (Condensed liquid).
  • a heat transfer tube or the like through which the refrigerant flowing through the low-source side refrigeration cycle 10 passes in the inter-refrigerant heat exchanger 16 serves as the low-source side condenser 12, and heat with the refrigerant flowing through the high-source side refrigeration cycle 20. Exchange shall be performed.
  • the low-side expansion valve 13 functions as a decompression device, a throttling device, and the like, and decompresses and expands the refrigerant flowing through the low-side refrigeration cycle 10.
  • the low-source side expansion valve 13 may be composed of, for example, a flow rate control means such as an electronic expansion valve, a refrigerant flow rate adjustment means such as a capillary tube, a temperature-sensitive expansion valve, and the like.
  • the low element side evaporator 14 evaporates the refrigerant flowing through the low element side refrigeration cycle 10 by heat exchange with a cooling target, for example, and converts it into a gaseous refrigerant (evaporates and gasifies).
  • the object to be cooled is cooled directly or indirectly by heat exchange with the refrigerant.
  • the low-side evaporator 14 is provided with a fan for promoting heat exchange.
  • the high-side refrigeration cycle 20 includes a high-side compressor 21, a high-side condenser 22, a high-side expansion valve 23, and a high-side evaporator 24 that are connected by a refrigerant pipe 28 in order. It is configured.
  • the high-side refrigeration cycle 20 corresponds to the “second refrigeration cycle” of the present invention.
  • the high-end compressor 21 corresponds to the “second compressor” of the present invention.
  • the high-side condenser 22 corresponds to the “second condenser” of the present invention.
  • the high-side expansion valve 23 corresponds to the “second expansion valve” of the present invention.
  • the high-side evaporator 24 corresponds to the “second evaporator” of the present invention.
  • the high-side compressor 21 sucks the refrigerant flowing through the high-side refrigeration cycle 20, compresses the refrigerant, and discharges it in a high temperature and high pressure state.
  • the high-end compressor 21 may also be configured by a compressor of a type that can control the number of revolutions by an inverter circuit or the like and adjust the discharge amount of the high-end refrigerant.
  • the high-side condenser 22 performs, for example, heat exchange between outside air, water, brine, and the like and the refrigerant flowing through the high-side refrigeration cycle 20 to condense and liquefy the refrigerant.
  • the high-side condenser 22 will be described assuming that the heat source is the outside air and heat exchange is performed between the outside air and the refrigerant. Therefore, the high-side condenser 22 includes a high-side condenser fan 25 for promoting heat exchange.
  • the high-side condenser fan 25 may be constituted by a blower of a type that can adjust the air volume, for example.
  • the high-side expansion valve 23 functions as a decompression device, a throttling device, and the like, and decompresses and expands the refrigerant flowing through the high-side refrigeration cycle 20.
  • the high-side expansion valve 23 may be constituted by a flow rate control means such as an electronic expansion valve, or a refrigerant flow rate adjusting means such as a capillary tube or a temperature-sensitive expansion valve, for example, similarly to the low-side expansion valve 13.
  • the high-side evaporator 24 evaporates the refrigerant flowing through the high-side refrigeration cycle 20 by heat exchange.
  • the heat transfer tube or the like through which the refrigerant flowing through the high-side refrigeration cycle 20 passes in the inter-refrigerant heat exchanger 16 serves as the high-side evaporator 24, and heat with the refrigerant flowing through the low-side refrigeration cycle 10. Exchange shall be performed.
  • the inter-refrigerant heat exchanger 16 is a cascade heat exchanger that has the functions of the high-end evaporator 24 and the low-end condenser 12 and enables heat exchange between the high-end refrigerant and the low-end refrigerant.
  • the refrigeration cycle apparatus 100A has a multi-stage configuration of the high-source-side refrigeration cycle 20 and the low-source-side refrigeration cycle 10 via the inter-refrigerant heat exchanger 16, and performs heat exchange between the refrigerants.
  • the circuit is configured to be linked.
  • ⁇ Refrigerant used for refrigeration cycle apparatus 100A> a part of the low-end refrigeration cycle 10 (for example, the low-end evaporator 14) is included in an indoor load device such as a supermarket showcase. Sometimes. In such a case, for example, when the low-side refrigeration cycle 10 is opened by changing the connection of piping by changing the showcase or the like, the possibility of refrigerant leakage increases. Therefore, in the refrigeration cycle apparatus 100A, carbon dioxide that has a small influence on global warming is used as a low-source refrigerant that circulates the low-source refrigeration cycle 10 in consideration of refrigerant leakage. Note that a mixed refrigerant containing carbon dioxide may be used.
  • HFO hydro-fluoro-olefin
  • HC refrigerant carbon dioxide, ammonia, water, etc.
  • a refrigerant having a small influence on global warming such as can be used.
  • an HFC refrigerant having a high global warming potential can be used from the viewpoint of cost and performance.
  • R32 is used as a high-side refrigerant that circulates the high-side refrigeration cycle 20 will be described as an example.
  • the carbon dioxide refrigerant used in the low-source side refrigeration cycle 10 has a smaller refrigeration effect than R32 used in the high-source side refrigeration cycle 20. Therefore, a large compressor power is required, and the operation efficiency is lower than R32 used in the high-source side refrigeration cycle 20. Therefore, the power consumption on the low-source side refrigeration cycle 10 side is reduced by increasing the capacity of the high-source side compressor 21 and decreasing the low-source side high pressure. And even if the power consumption on the high refrigeration cycle 20 side using R32 having high operation efficiency increases, the operation efficiency of the entire dual refrigeration apparatus is increased by increasing the work amount on the high refrigeration cycle 20 side. Improve.
  • the operating efficiency of the entire apparatus can be optimized by increasing the power consumption ratio of the high-efficiency high-side refrigeration cycle 20.
  • the high-end compressor 21 sucks in the high-end refrigerant (R32), compresses it, and discharges it in a high temperature and high pressure state.
  • the high-side refrigerant discharged from the high-side compressor 21 flows into the high-side condenser 22.
  • the high-side condenser 22 performs heat exchange between the outside air supplied from the high-side condenser fan 25 and the high-side refrigerant, and condenses and liquefies the high-side refrigerant.
  • the high-side refrigerant condensed and liquefied by the high-side condenser 22 passes through the high-side expansion valve 23.
  • the high-side expansion valve 23 depressurizes the condensed high-side refrigerant.
  • the high-side refrigerant whose pressure is reduced by the high-side expansion valve 23 flows into the high-side evaporator 24.
  • the high-side evaporator 24 evaporates and gasifies the high-side refrigerant by heat exchange with the low-side refrigerant that passes through the low-side condenser 12.
  • the high-side compressor 21 sucks the high-side refrigerant evaporated and gasified by the high-side evaporator 24.
  • the low-side compressor 11 sucks low-pressure side refrigerant (carbon dioxide), compresses it, and discharges it in a high temperature and high pressure state.
  • the low-side refrigerant discharged from the low-side compressor 11 is cooled by the auxiliary radiator 15 and flows into the low-side condenser 12.
  • the low-side condenser 12 condenses and liquefies the low-side refrigerant by heat exchange with the high-side refrigerant passing through the high-side evaporator 24.
  • the low-side refrigerant condensed and liquefied by the low-side condenser 12 passes through the low-side expansion valve 13.
  • the low-side expansion valve 13 depressurizes the condensed low-side refrigerant.
  • the low-side refrigerant whose pressure is reduced by the low-side expansion valve 13 flows into the low-side evaporator 14.
  • the low-side evaporator 14 evaporates the low-side refrigerant by heat exchange with the object to be cooled.
  • the low-side compressor 11 sucks the low-side refrigerant that has been vaporized and gasified by the low-side evaporator 14.
  • the operating state of a general single-stage cycle refrigeration cycle apparatus operating at an outside air temperature of 32 ° C., that is, an evaporation temperature of ⁇ 40 ° C., a condensation temperature of 40 ° C. (supercritical carbon dioxide has a high pressure of 8.8 MPa), inhalation
  • the theoretical COP of each refrigerant under the conditions of superheating degree 5 ° C. and liquid supercooling degree 5 ° C. is as follows.
  • the design pressure of the low-source side refrigeration cycle 10 is set to the design pressure equivalent to the HFC refrigerant, for example, The pressure was reduced to 4.15 MPa equivalent to R410A.
  • the refrigeration cycle apparatus 100A can be widely applied to refrigeration or refrigeration equipment such as showcases, commercial refrigeration refrigerators, vending machines, etc. that require non-fluorocarbon refrigerants, reduction of CFC refrigerants, and energy saving of equipment. it can.
  • FIG. 2 is a schematic view showing the specifications of the low-side evaporator 14 of the refrigeration cycle apparatus 100A, where (a) shows a side view seen from the side, and (b) shows a front view seen from the front. ing.
  • FIG. 3 is a graph showing the relationship between the distance L and the average refrigeration capacity in the evaporator. Based on FIG.2 and FIG.3, the specification 1 of the low former side evaporator 14 is demonstrated.
  • the fin thickness tf is the thickness of each of the plurality of fins 32 having the same configuration.
  • the fin pitch Fp is an interval between the fins 32 adjacent in parallel among the plurality of fins 32.
  • the step pitch Dp is the interval between the heat transfer tubes 31 adjacent in the step direction among the plurality of heat transfer tubes 31.
  • the row pitch Rp is the distance between the heat transfer tubes 31 adjacent to each other in the air flow direction among the plurality of heat transfer tubes 31.
  • the fin width Fw is the distance in the short direction of each of the plurality of fins 32 having the same configuration.
  • the tube diameter do is the diameter of each of the plurality of heat transfer tubes 31 having the same configuration.
  • carbon dioxide having a low global warming potential is used as a low-side refrigerant that circulates the low-side refrigeration cycle 10.
  • the low-side evaporator 14 of the low-side refrigeration cycle 10 includes a plurality of heat transfer tubes 31 and a plurality of rectangular plate-like members that are joined to each of the plurality of heat transfer tubes 31 by brazing, for example. And fins 32.
  • the fins 32 are configured in a row in the short direction along the air flow.
  • the low-side evaporator 14 having low temperature and low pressure in the low-side refrigeration cycle 10 is configured by arranging a plurality of cut fins 32 in a line along the air flow direction. That is, one of the fins 32 arranged on the windward side in the longitudinal direction is opposed to the other longitudinal one of the fins 32 adjacent thereto, and the fins 32 are arranged in a line along the air flow direction. Yes.
  • Each of the plurality of fins 32 has the same configuration.
  • each of the plurality of fins 32 arranged in a row is arranged in parallel to form a plurality of rows (multiple rows) with a predetermined interval (fin pitch) therebetween.
  • the plurality of heat transfer tubes 31 intersect with each of the plurality of fins 32 and are arranged side by side in the longitudinal direction of the fins 32. And since the fin 32 is comprised in a line along the flow direction of air, the heat exchanger tube 31 is also arrange
  • Each of the plurality of heat transfer tubes 31 has the same configuration.
  • the fin 32 on the upstream side of the air flow that is, the fin 32 disposed in the uppermost stream is illustrated as the first fin 32A, and the fin adjacent to the first fin 32A on the leeward side of the first fin 32A. 32 is illustrated as a second fin 32B.
  • the low-side evaporator 14 having a configuration in which two sets of fins 32 are arranged along the air flow is shown as an example, but the present invention is not limited to this.
  • the vessel 14 may be configured by arranging three or more sets of fins 32 along the air flow direction.
  • the heat transfer tube 31 on the most upstream side is the heat transfer tube 31 joined to the first fin 32A on the most upstream side.
  • FIG. 3 shows that when the distance L> 8.5 mm, the operating efficiency deteriorates and the average refrigeration capacity decreases. This is because, with the same fin width, the tube diameter is reduced and the distance L is increased, so that the pressure loss of the refrigerant becomes excessive, the operating efficiency is deteriorated, and the average refrigeration capacity is lowered.
  • the ratio of the heat transfer tube diameter to the fin width is similarly reduced because the tube diameter is small, but the ratio of the heat transfer tube diameter to the fin width described above, which reduces the average refrigeration capacity, is less than 23%. is there.
  • the average refrigeration capacity decreases even at a distance L ⁇ 6.5 mm. This is because at a distance L ⁇ 6.5 mm, the tube diameter of the heat transfer tube is excessive, and the heat transfer coefficient in the tube decreases due to a decrease in the refrigerant flow rate. Further, when the distance L ⁇ 6.5 mm, the distance between the heat transfer tube and the front edge side of the fin is reduced, and the front edge temperature of the fin is decreased, so that frost is likely to be generated and the refrigeration capacity is decreased.
  • the ratio of the heat transfer tube diameter to the fin width is in an area larger than 42%, the tube diameter increases, so the average capacity decreases due to a decrease in heat transfer coefficient in the tube and a deterioration in frost formation due to improved fin efficiency. .
  • the low-side evaporator 14 since the distance L is in the range of 6.5 mm ⁇ L ⁇ 8.5 mm, the ratio of the heat transfer tube diameter to the fin width is 23% ⁇ heat transfer tube diameter / fin width. It can be in the range of x100 ⁇ 42%. By doing so, the low-side evaporator 14 can improve the refrigerating capacity reduction, and even when a carbon dioxide refrigerant is used, it is not necessary to increase the capacity of the heat exchanger. Therefore, according to the refrigeration cycle apparatus 100A, there is an effect that energy consumption can be reduced throughout the year without increasing the cost, and the apparatus can be made compact.
  • FIG. 4 is a graph showing the relationship between (Fp ⁇ tf) ⁇ L and the average refrigeration capacity in the evaporator. Based on FIG.2 and FIG.4, the specification 2 of the low former side evaporator 14 is demonstrated.
  • the vertical axis represents the average refrigeration capacity
  • the horizontal axis represents (Fp ⁇ tf) ⁇ L.
  • the average refrigeration capacity is expressed as a ratio with R410A used in the current refrigeration cycle apparatus.
  • (Fp ⁇ tf) ⁇ L is in a range of 40 mm 2 ⁇ (Fp ⁇ tf) ⁇ L ⁇ 52 mm 2 .
  • FIG. 4 shows that the refrigerating capacity decreases even when 52 mm 2 ⁇ (Fp ⁇ tf) ⁇ L. This is because if 52 mm 2 ⁇ (Fp ⁇ tf) ⁇ L, the wind speed passing through the wind path on the windward side is lowered, and the heat transfer rate from the fin to the air is excessively lowered.
  • (Fp ⁇ tf) ⁇ L is set to a range of 40 mm 2 ⁇ (Fp ⁇ tf) ⁇ L ⁇ 52 mm 2 .
  • the specification 2 of the low-side evaporator 14 may be combined with the specification 1 of the low-side evaporator 14. In this case, the effects of both the specification 1 and the specification 2 of the low-side evaporator 14 are exhibited.
  • FIG. 5 is a graph showing the relationship between the ratio of the heat transfer tubes to the fin width in the evaporator and the average refrigeration capacity.
  • FIG. 6 is a graph showing the relationship between the area Aj and the average refrigeration capacity in the evaporator.
  • the vertical axis represents the average refrigeration capacity
  • the horizontal axis represents the heat transfer tube diameter / fin width ⁇ 100%.
  • the vertical axis represents the average refrigeration capacity
  • the horizontal axis represents the area Aj.
  • the average refrigeration capacity in FIGS. 5 and 6 is expressed as a ratio with R410A used in the current refrigeration cycle apparatus.
  • the area Aj (Fp ⁇ tf) ⁇ (Dp / 2 ⁇ do) is in the range of 23 mm 2 ⁇ Aj ⁇ 47 mm 2 .
  • FIG. 6 shows that even if 47 mm 2 ⁇ Aj, the refrigeration capacity decreases. This is because if 47 mm 2 ⁇ Aj, the tube diameter of the heat transfer tube becomes too small, the refrigerant pressure loss increases, and the refrigerant circulation rate decreases.
  • the area Aj is set to a range of 23 mm 2 ⁇ Aj ⁇ 47 mm 2 .
  • the low-side evaporator 14 has a reduced heat transfer area per unit area than before, but the frosting resistance is improved and the blockage due to Aj frost is less likely to occur. improves.
  • the weight of the heat transfer tube can be reduced by reducing the diameter of the heat transfer tube, the cost of the heat exchanger can be reduced.
  • the specification 3 of the low-side evaporator 14 may be combined with at least one of the specification 1 and the specification 2 of the low-side evaporator 14. In this case, all the effects of the combined specifications are exhibited.
  • FIG. 7 is a graph showing the relationship between the volume Vj and the average refrigeration capacity in the evaporator. Based on FIG.2 and FIG.7, the specification 4 of the low original side evaporator 14 is demonstrated. In FIG. 7, the vertical axis represents the average refrigeration capacity, and the horizontal axis represents the volume Vj. The average refrigeration capacity is expressed as a ratio with R410A used in the current refrigeration cycle apparatus.
  • the volume Vj is in the range of 250 mm 3 ⁇ Vj ⁇ 800 mm 3 .
  • the low former side evaporator 14 becomes the thing excellent in frost formation property and defrosting property. Therefore, the refrigeration cycle apparatus 100A can exhibit high refrigeration capacity even when carbon dioxide is used as the refrigerant.
  • the specification 4 of the low-side evaporator 14 may be combined with at least one of the specifications 1 to 3 of the low-side evaporator 14. In this case, all the effects of the combined specifications are exhibited.
  • the refrigeration cycle apparatus 100A can be used by being applied to an apparatus equipped with a refrigeration cycle, such as a refrigeration air conditioner (for example, a refrigeration apparatus, a refrigeration apparatus, a room air conditioner, a packaged air conditioner, a building multi air conditioner, etc.), a heat pump water heater, and the like. it can.
  • a refrigeration air conditioner for example, a refrigeration apparatus, a refrigeration apparatus, a room air conditioner, a packaged air conditioner, a building multi air conditioner, etc.
  • a heat pump water heater and the like. it can.
  • FIG. FIG. 8 is a schematic configuration diagram showing an example of a refrigerant circuit configuration of a refrigeration cycle apparatus (hereinafter referred to as refrigeration cycle apparatus 100B) according to Embodiment 2 of the present invention.
  • the refrigeration cycle apparatus 100B will be described based on FIG.
  • the refrigeration cycle apparatus 100A provided with the dual refrigeration cycle has been described as an example.
  • the refrigeration cycle apparatus 100B provided with one refrigerant circuit will be described. It should be noted that the levels of temperature, pressure, etc. are not particularly determined in relation to absolute values, but are relatively determined in terms of the state and operation of the system, apparatus, and the like.
  • the refrigeration cycle apparatus 100B has one refrigerant circuit (refrigeration cycle 50) and is configured to circulate the refrigerant.
  • the refrigeration cycle 50 is configured by connecting a compressor 51, a condenser 52, an expansion valve 53, and an evaporator 54 in order by a refrigerant pipe 58.
  • the compressor 51 sucks the refrigerant flowing through the refrigeration cycle 50, compresses the refrigerant, and discharges it in a high temperature and high pressure state.
  • the compressor 51 may be configured by a compressor of a type that can control the number of revolutions by an inverter circuit or the like and adjust the discharge amount of the low-source side refrigerant.
  • the condenser 52 performs, for example, heat exchange between outside air, water, brine, and the like and the refrigerant flowing through the refrigeration cycle 50 to condense and liquefy the refrigerant.
  • the condenser 52 uses the heat source as the outside air and performs heat exchange between the outside air and the refrigerant. Therefore, the condenser 52 has a condenser fan 55a for promoting heat exchange.
  • the condenser fan 55a may be a blower of a type that can adjust the air volume.
  • the expansion valve 53 functions as a decompression device, a throttling device, etc., and decompresses and expands the refrigerant flowing through the refrigeration cycle 50.
  • the expansion valve 53 may be constituted by a flow rate control means such as an electronic expansion valve, or a refrigerant flow rate adjustment means such as a capillary tube or a temperature-sensitive expansion valve.
  • the evaporator 54 evaporates the refrigerant flowing through the refrigeration cycle 50 by heat exchange with the object to be cooled, for example, to form a gas (gas) refrigerant (evaporate gas).
  • the object to be cooled is cooled directly or indirectly by heat exchange with the refrigerant.
  • the evaporator 54 is assumed to have an evaporator fan 55b for promoting heat exchange.
  • the evaporator fan 55b may be a blower of a type that can adjust the air volume.
  • ⁇ Refrigerant used for refrigeration cycle apparatus 100B> a refrigerant having a small influence on global warming such as an HFO refrigerant, an HC refrigerant, carbon dioxide, ammonia, and water can be used.
  • a refrigerant having a high global warming potential can be used from the viewpoint of cost and performance.
  • Compressor 51 sucks in refrigerant, compresses it, discharges it in a high temperature and high pressure state.
  • the discharged refrigerant flows into the condenser 52.
  • the condenser 52 exchanges heat between the outside air supplied from the condenser fan 55a and the refrigerant, and condenses and liquefies the refrigerant.
  • the condensed and liquefied refrigerant passes through the expansion valve 53.
  • the expansion valve 53 depressurizes the condensed and liquefied refrigerant.
  • the decompressed refrigerant flows into the evaporator 54.
  • the evaporator 54 evaporates the refrigerant by heat exchange with the object to be cooled.
  • the compressor 51 sucks the evaporated gas refrigerant.
  • the refrigeration cycle apparatus 100B is an apparatus equipped with a refrigeration cycle, such as a refrigeration air conditioner (for example, a refrigeration apparatus, a refrigeration apparatus, a room air conditioner, a packaged air conditioner, a multi air conditioner for buildings), a heat pump water heater, etc. It can be used by applying to.
  • a refrigeration air conditioner for example, a refrigeration apparatus, a refrigeration apparatus, a room air conditioner, a packaged air conditioner, a multi air conditioner for buildings
  • a heat pump water heater etc. It can be used by applying to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

A refrigeration cycle device according to the present invention is configured such that the distance L from the upwind-side end of the heat transfer tubes disposed on a first fin among a plurality of heat transfer tubes to the front edge of the first fin is within the range of 6.5 mm ≤ L ≤ 8.5 mm.

Description

冷凍サイクル装置Refrigeration cycle equipment
 本発明は、例えば、冷凍、冷蔵、空調等の用途に利用する冷凍空調装置等の冷凍サイクル装置に関するものである。 The present invention relates to a refrigeration cycle apparatus such as a refrigeration air conditioner used for applications such as refrigeration, refrigeration, and air conditioning.
 例えば、冷凍工場、食品加工工場、農水物加工工場、市場、物流倉庫等の物流拠点、あるいは、スーパーマーケットやコンビニエンスストアなどの小売店舗等では、冷凍、冷蔵、空調等の用途に利用する冷凍空調装置等の冷凍システムとして冷凍サイクル装置が使用されている。近年、冷媒として環境負荷の少ない自然冷媒(元来自然界に存在する物質、例えば二酸化炭素(CO))を使用する冷凍サイクル装置が開発されている(例えば、特許文献1参照)。 For example, refrigeration and air conditioning equipment used for refrigeration, refrigeration, air conditioning, etc. at distribution bases such as refrigeration factories, food processing factories, agricultural and marine product processing factories, markets, distribution warehouses, and retail stores such as supermarkets and convenience stores. A refrigeration cycle apparatus is used as a refrigeration system. In recent years, a refrigeration cycle apparatus has been developed that uses a natural refrigerant (substance that naturally exists in nature, such as carbon dioxide (CO 2 )), which has a low environmental load as a refrigerant (see, for example, Patent Document 1).
 また、マイナス数十度の低温度の冷却を行うものとして、高温側冷媒を循環させる高元側冷凍サイクルと低温側冷媒を循環させる低元側冷凍サイクルとを有する二元冷凍サイクル装置が提案されている。このような二元冷凍サイクル装置では、低元側凝縮器と高元側蒸発器とが熱交換できるように構成されたカスケードコンデンサによって低元側冷凍サイクルと高元側冷凍サイクルとを連結している。 In addition, as a device for performing cooling at a low temperature of minus several tens of degrees, a dual refrigeration cycle apparatus having a high refrigeration cycle for circulating a high temperature side refrigerant and a low refrigeration cycle for circulating a low temperature side refrigerant has been proposed. ing. In such a binary refrigeration cycle apparatus, a low-side refrigeration cycle and a high-side refrigeration cycle are connected by a cascade condenser configured to exchange heat between the low-side condenser and the high-side evaporator. Yes.
 ただし、冷蔵あるいは冷凍に利用する比較的蒸発温度が低い冷凍装置においては、高外気温度条件において効率が著しく低下するとともに、蒸発温度の低下に伴って吐出ガス温度が非常に高くなる。そのため、二酸化炭素冷媒の適用が進んでいないのが現状である。そこで、低元側冷媒に二酸化炭素(炭酸ガス)を使用し、高元側冷媒に二酸化炭素以外の他の冷媒を使用した二元冷凍サイクル装置が提案されている(例えば、特許文献2参照)。 However, in a refrigeration apparatus having a relatively low evaporation temperature used for refrigeration or refrigeration, the efficiency is remarkably reduced under high outside air temperature conditions, and the discharge gas temperature becomes very high as the evaporation temperature decreases. For this reason, the application of carbon dioxide refrigerant has not progressed. Therefore, a binary refrigeration cycle apparatus has been proposed in which carbon dioxide (carbon dioxide) is used for the low-side refrigerant and other refrigerant other than carbon dioxide is used for the high-side refrigerant (see, for example, Patent Document 2). .
特開2010-60267号公報JP 2010-60267 A 特許第3604973号公報Japanese Patent No. 3606043
 特許文献2に記載されている二元冷凍サイクル装置では、低元側冷凍サイクルにおいてカスケードコンデンサの前段に補助コンデンサを設置し、低元側圧縮機から吐出された吐出冷媒を補助コンデンサで冷却することで運転効率の向上を図っている。 In the binary refrigeration cycle apparatus described in Patent Document 2, an auxiliary condenser is installed in front of the cascade condenser in the low-side refrigeration cycle, and the refrigerant discharged from the low-side compressor is cooled by the auxiliary condenser. To improve driving efficiency.
 しかしながら、低元側冷凍サイクルに従来の蒸発器(管径9.52mm)を用いると、隣接する伝熱管の間隔が狭いため霜が付きやすく、着霜による熱交換効率の低下に伴って蒸発温度が低下し運転効率が悪化してしまう。つまり、蒸発器に霜が付き始めると霜が空気の流れを阻害し、空気と冷媒との熱交換が行えなくなり、これにより蒸発温度が低下し、これが着霜を加速させ、冷凍能力が急激に低下してしまう。 However, when a conventional evaporator (tube diameter: 9.52 mm) is used in the low-source side refrigeration cycle, frost is likely to be formed because the interval between adjacent heat transfer tubes is narrow, and the evaporation temperature is reduced with a decrease in heat exchange efficiency due to frost formation. Decreases and the driving efficiency deteriorates. In other words, when frost begins to form on the evaporator, the frost hinders the flow of air and heat exchange between the air and the refrigerant cannot be performed, thereby lowering the evaporation temperature, which accelerates frost formation, and the refrigeration capacity rapidly increases. It will decline.
 また、蒸発温度の低下により蒸発器への着霜量が増えるため、空調運転時間が短縮し、運転時間に対する平均冷凍能力が大幅に低下してしまう。特に二酸化炭素は、R32、R410Aといった従来の冷媒に比べ冷凍効果が小さくなるため、熱交換面積を増やす必要があるが、装置の大型化やコスト増加を招いてしまう。 Also, since the amount of frost on the evaporator increases due to a decrease in the evaporation temperature, the air-conditioning operation time is shortened, and the average refrigeration capacity with respect to the operation time is significantly reduced. In particular, carbon dioxide has a smaller refrigeration effect than conventional refrigerants such as R32 and R410A. Therefore, it is necessary to increase the heat exchange area, but this increases the size and cost of the apparatus.
 この着霜による冷凍能力改善のため、外径7mm以下の伝熱管を用いた蒸発器を使用することが考えられる。ただし、冷凍サイクル装置の用途、伝熱管のパス数、伝熱管の段数、冷媒流量なども併せて考慮する必要があり、外径7mm以下の伝熱管を用いた蒸発器を単純に使用すればよいということにはならない。例えば、1パス構成の蒸発器を、冷媒流量が多く、伝熱管の段数及びパス数がほぼ同数となる大型の冷凍機の蒸発器として使用する場合を考えると、1パス構成のため冷媒の圧力損失が大きくなり、従来よりも蒸発温度が低くなる。そのため、霜がより着きやすくなり、運転効率が悪化してしまう。 In order to improve the refrigerating capacity by this frost formation, it is considered to use an evaporator using a heat transfer tube having an outer diameter of 7 mm or less. However, the use of the refrigeration cycle apparatus, the number of heat transfer tube passes, the number of heat transfer tube stages, the flow rate of the refrigerant, etc. need to be considered together, and an evaporator using a heat transfer tube having an outer diameter of 7 mm or less may be simply used. That doesn't mean that. For example, when considering a case where an evaporator having a one-pass configuration is used as an evaporator of a large refrigerator having a large refrigerant flow rate and approximately the same number of heat transfer tube stages and passes, the pressure of the refrigerant for the one-pass configuration is considered. The loss increases and the evaporation temperature becomes lower than before. Therefore, it becomes easier for frost to arrive, and the operation efficiency is deteriorated.
 また、着霜性は伝熱管の間隔のみで決まるものではなく、フィン間の距離であるフィンピッチと伝熱管の間隔を示す段ピッチとの関係も影響している。そのため、伝熱管の間隔のみを改善したとしても、着霜性についての抜本的な課題解決にはならない。 Also, the frost formation is not determined only by the interval between the heat transfer tubes, but the relationship between the fin pitch, which is the distance between the fins, and the step pitch indicating the interval between the heat transfer tubes is also affected. Therefore, even if only the interval between the heat transfer tubes is improved, it does not solve the fundamental problem of frost formation.
 本発明は、上記のような課題を背景としてなされたものであり、着霜による風路の閉塞を回避して冷凍能力を低下させないようにした冷凍サイクル装置を得ることを目的とする。 The present invention has been made against the background of the above problems, and an object of the present invention is to obtain a refrigeration cycle apparatus that avoids blockage of an air passage due to frost formation and prevents a reduction in refrigeration capacity.
 本発明に係る冷凍サイクル装置は、圧縮機、凝縮器、膨張弁、及び、蒸発器を順に配管接続した冷凍サイクルを備えた冷凍サイクル装置であって、前記蒸発器は、空気の流れ方向に沿って少なくとも一列に並べられた複数のフィンと、前記複数のフィンのそれぞれに交差して配置された複数の伝熱管と、を有し、前記複数のフィンは、前記空気の流れ方向において、最上流に配置された第1のフィンを含み、前記複数の伝熱管のうち前記第1のフィンにおける伝熱管の風上側端部から前記第1のフィンの前縁までの距離Lを6.5mm≦L≦8.5mmの範囲としたものである。 A refrigeration cycle apparatus according to the present invention is a refrigeration cycle apparatus including a refrigeration cycle in which a compressor, a condenser, an expansion valve, and an evaporator are connected in order, and the evaporator is along an air flow direction. A plurality of fins arranged in at least one row and a plurality of heat transfer tubes arranged to intersect with each of the plurality of fins, the plurality of fins being the most upstream in the air flow direction. The distance L from the windward end of the heat transfer tube in the first fin to the front edge of the first fin among the plurality of heat transfer tubes is 6.5 mm ≦ L ≦ 8.5 mm.
 本発明に係る冷凍サイクル装置は、複数の伝熱管のうち最上流に配置された第1のフィンにおける伝熱管の風上側端部から第1のフィンの前縁までの距離Lを6.5mm≦L≦8.5mmの範囲としたので、フィン幅に対する伝熱管の管径との比率を23%≦伝熱管径/フィン幅×100≦42%の範囲内にでき、冷凍能力低下を改善できる。 In the refrigeration cycle apparatus according to the present invention, the distance L from the windward end of the heat transfer tube to the front edge of the first fin in the first fin arranged at the most upstream among the plurality of heat transfer tubes is 6.5 mm ≦ Since L ≦ 8.5 mm, the ratio of the tube diameter of the heat transfer tube to the fin width can be within a range of 23% ≦ heat transfer tube diameter / fin width × 100 ≦ 42%, which can improve the cooling capacity reduction. .
本発明の実施の形態1に係る冷凍サイクル装置の冷媒回路構成の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the refrigerant circuit structure of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置の低元側蒸発器の仕様を示す模式図であり、(a)が側面から見た側面図を、(b)が正面から見た正面図を、それぞれ示している。It is a schematic diagram which shows the specification of the low former side evaporator of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention, (a) is the side view seen from the side, (b) is the front view seen from the front , Respectively. 蒸発器における距離Lと平均冷凍能力との関係を表すグラフである。It is a graph showing the relationship between the distance L and average refrigeration capacity in an evaporator. 蒸発器における(Fp-tf)×Lと平均冷凍能力との関係を表すグラフである。It is a graph showing the relationship between (Fp−tf) × L and average refrigeration capacity in an evaporator. 蒸発器におけるフィン幅に対する伝熱管の比率と平均冷凍能力との関係を表すグラフである。It is a graph showing the relationship between the ratio of the heat exchanger tube with respect to the fin width in an evaporator, and an average refrigerating capacity. 蒸発器における面積Ajと平均冷凍能力との関係を表すグラフである。It is a graph showing the relationship between the area Aj in an evaporator, and an average refrigerating capacity. 蒸発器における容積Vjと平均冷凍能力との関係を表すグラフである。It is a graph showing the relationship between the volume Vj and average refrigerating capacity in an evaporator. 本発明の実施の形態2に係る冷凍サイクル装置の冷媒回路構成の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the refrigerant circuit structure of the refrigerating-cycle apparatus which concerns on Embodiment 2 of this invention.
 以下、本発明に係る冷凍サイクル装置について、図面を用いて説明する。
 なお、以下で説明する構成、動作等は、一例にすぎず、本発明に係る冷凍サイクル装置は、そのような構成、動作等である場合に限定されない。また、各図において、同一又は類似するものには、同一の符号を付すか、又は、符号を付すことを省略している。また、細かい構造については、適宜図示を簡略化又は省略している。また、重複又は類似する説明については、適宜簡略化又は省略している。
Hereinafter, a refrigeration cycle apparatus according to the present invention will be described with reference to the drawings.
In addition, the structure, operation | movement, etc. which are demonstrated below are only examples, and the refrigeration cycle apparatus according to the present invention is not limited to such a structure, operation, or the like. Moreover, in each figure, the same code | symbol is attached | subjected to the same or similar thing, or attaching | subjecting code | symbol is abbreviate | omitted. Further, the illustration of the fine structure is simplified or omitted as appropriate. In addition, overlapping or similar descriptions are appropriately simplified or omitted.
 また、以下では、本発明に係る冷凍サイクル装置が、冷凍装置に適用される場合を説明しているが、そのような場合に限定されず、例えば、冷蔵装置や空気調和装置など他の冷凍サイクル装置に適用されてもよい。 In the following, the case where the refrigeration cycle apparatus according to the present invention is applied to a refrigeration apparatus is described. However, the present invention is not limited to such a case. For example, other refrigeration cycles such as a refrigeration apparatus and an air conditioner It may be applied to the device.
実施の形態1.
 図1は、本発明の実施の形態1に係る冷凍サイクル装置(以下、冷凍サイクル装置100Aと称する)の冷媒回路構成の一例を示す概略構成図である。図1に基づいて、冷凍サイクル装置100Aについて説明する。
Embodiment 1 FIG.
FIG. 1 is a schematic configuration diagram showing an example of a refrigerant circuit configuration of a refrigeration cycle apparatus (hereinafter referred to as refrigeration cycle apparatus 100A) according to Embodiment 1 of the present invention. A refrigeration cycle apparatus 100A will be described with reference to FIG.
 図1に示すように、冷凍サイクル装置100Aは、2つの冷媒回路(低元側冷凍サイクル10及び高元側冷凍サイクル20)を有し、それぞれ独立して冷媒を循環させるように構成されている。そして、冷凍サイクル装置100Aにおいては、2つの冷媒回路を多段構成とするために、高元側蒸発器24と低元側凝縮器12とを、それぞれ通過する冷媒間での熱交換を可能に結合させて構成した冷媒間熱交換器(カスケードコンデンサ)16を有している。 As shown in FIG. 1, the refrigeration cycle apparatus 100A has two refrigerant circuits (a low-side refrigeration cycle 10 and a high-side refrigeration cycle 20), and is configured to circulate refrigerant independently of each other. . In the refrigeration cycle apparatus 100A, in order to make the two refrigerant circuits in a multistage configuration, the high-side evaporator 24 and the low-side condenser 12 are coupled so as to be able to exchange heat between the refrigerants passing therethrough. The refrigerant-to-refrigerant heat exchanger (cascade condenser) 16 is configured.
 なお、温度、圧力等の高低については、特に絶対的な値との関係で高低等が定まっているものではなく、システム、装置等における状態、動作等において相対的に定まるものとする。 Note that the level of temperature, pressure, etc. is not particularly determined in relation to absolute values, but is relatively determined in terms of the state and operation of the system, apparatus, etc.
<低元側冷凍サイクル10の構成>
 低元側冷凍サイクル10は、低元側圧縮機11と、補助放熱器15と、低元側凝縮器12と、低元側膨張弁13と、低元側蒸発器14と、を順に冷媒配管18で配管接続して構成されている。
 低元側冷凍サイクル10が本発明の「第1冷凍サイクル」に相当する。
 低元側圧縮機11が本発明の「第1圧縮機」に相当する。
 低元側凝縮器12が本発明の「第1凝縮器」に相当する。
 低元側膨張弁13が本発明の「第1膨張弁」に相当する。
 低元側蒸発器14が本発明の「第1蒸発器」に相当する。
 補助放熱器15が本発明の「放熱器」に相当する。
<Configuration of low-source side refrigeration cycle 10>
The low-side refrigeration cycle 10 includes a low-side compressor 11, an auxiliary radiator 15, a low-side condenser 12, a low-side expansion valve 13, and a low-side evaporator 14 in this order as refrigerant piping. 18 is connected by piping.
The low-source side refrigeration cycle 10 corresponds to the “first refrigeration cycle” of the present invention.
The low-source compressor 11 corresponds to the “first compressor” of the present invention.
The low-side condenser 12 corresponds to the “first condenser” of the present invention.
The low-side expansion valve 13 corresponds to the “first expansion valve” of the present invention.
The low-side evaporator 14 corresponds to the “first evaporator” of the present invention.
The auxiliary radiator 15 corresponds to the “heat radiator” of the present invention.
 低元側圧縮機11は、低元側冷凍サイクル10を流れる冷媒を吸入し、その冷媒を圧縮して高温、高圧の状態にして吐出するものである。低元側圧縮機11を、例えばインバータ回路等により回転数を制御し、低元側冷媒の吐出量を調整できるタイプの圧縮機で構成するとよい。 The low-side compressor 11 sucks the refrigerant flowing through the low-side refrigeration cycle 10, compresses the refrigerant, and discharges it in a high temperature and high pressure state. For example, the low-side compressor 11 may be configured by a compressor of a type that can control the rotation speed by an inverter circuit or the like and adjust the discharge amount of the low-side refrigerant.
 補助放熱器15は、例えばガスクーラとして機能し、熱源とする例えば屋外の空気(外気)、水、ブライン等との熱交換により低元側圧縮機11から吐出されたガス冷媒を冷却するものである。この実施の形態では、補助放熱器15が、熱源を外気とし、外気と冷媒との熱交換を行うものとして説明する。 The auxiliary radiator 15 functions as a gas cooler, for example, and cools the gas refrigerant discharged from the low-side compressor 11 by heat exchange with, for example, outdoor air (outside air), water, brine, or the like as a heat source. . In this embodiment, the auxiliary radiator 15 will be described assuming that the heat source is the outside air and heat exchange is performed between the outside air and the refrigerant.
 低元側凝縮器12は、補助放熱器15を通過した冷媒と高元側冷凍サイクル20を流れる冷媒との間で熱交換を行い、補助放熱器15を通過した冷媒を凝縮させて液状の冷媒にする(凝縮液化させる)ものである。例えば、ここでは、冷媒間熱交換器16において低元側冷凍サイクル10を流れる冷媒が通過する伝熱管等が低元側凝縮器12となって、高元側冷凍サイクル20を流れる冷媒との熱交換が行われるものとする。 The low-source side condenser 12 exchanges heat between the refrigerant that has passed through the auxiliary radiator 15 and the refrigerant that flows through the high-side refrigeration cycle 20, and condenses the refrigerant that has passed through the auxiliary radiator 15 to form a liquid refrigerant (Condensed liquid). For example, here, a heat transfer tube or the like through which the refrigerant flowing through the low-source side refrigeration cycle 10 passes in the inter-refrigerant heat exchanger 16 serves as the low-source side condenser 12, and heat with the refrigerant flowing through the high-source side refrigeration cycle 20. Exchange shall be performed.
 低元側膨張弁13は、減圧装置、絞り装置等として機能し、低元側冷凍サイクル10を流れる冷媒を減圧して膨張させるものである。低元側膨張弁13は、例えば電子式膨張弁等の流量制御手段、毛細管(キャピラリ)、感温式膨張弁等の冷媒流量調節手段等で構成するとよい。 The low-side expansion valve 13 functions as a decompression device, a throttling device, and the like, and decompresses and expands the refrigerant flowing through the low-side refrigeration cycle 10. The low-source side expansion valve 13 may be composed of, for example, a flow rate control means such as an electronic expansion valve, a refrigerant flow rate adjustment means such as a capillary tube, a temperature-sensitive expansion valve, and the like.
 低元側蒸発器14は、例えば冷却対象との熱交換により低元側冷凍サイクル10を流れる冷媒を蒸発させて気体(ガス)状の冷媒にする(蒸発ガス化させる)ものである。冷媒との熱交換により、冷却対象は、直接又は間接に冷却されることになる。なお、冷却対象が空気の場合、低元側蒸発器14には熱交換を促すためのファンが付設される。 The low element side evaporator 14 evaporates the refrigerant flowing through the low element side refrigeration cycle 10 by heat exchange with a cooling target, for example, and converts it into a gaseous refrigerant (evaporates and gasifies). The object to be cooled is cooled directly or indirectly by heat exchange with the refrigerant. When the object to be cooled is air, the low-side evaporator 14 is provided with a fan for promoting heat exchange.
<高元側冷凍サイクル20の構成>
 高元側冷凍サイクル20は、高元側圧縮機21と、高元側凝縮器22と、高元側膨張弁23と、高元側蒸発器24と、を順に冷媒配管28で配管接続して構成されている。
 高元側冷凍サイクル20が本発明の「第2冷凍サイクル」に相当する。
 高元側圧縮機21が本発明の「第2圧縮機」に相当する。
 高元側凝縮器22が本発明の「第2凝縮器」に相当する。
 高元側膨張弁23が本発明の「第2膨張弁」に相当する。
 高元側蒸発器24が本発明の「第2蒸発器」に相当する。
<Configuration of the high-side refrigeration cycle 20>
The high-side refrigeration cycle 20 includes a high-side compressor 21, a high-side condenser 22, a high-side expansion valve 23, and a high-side evaporator 24 that are connected by a refrigerant pipe 28 in order. It is configured.
The high-side refrigeration cycle 20 corresponds to the “second refrigeration cycle” of the present invention.
The high-end compressor 21 corresponds to the “second compressor” of the present invention.
The high-side condenser 22 corresponds to the “second condenser” of the present invention.
The high-side expansion valve 23 corresponds to the “second expansion valve” of the present invention.
The high-side evaporator 24 corresponds to the “second evaporator” of the present invention.
 高元側圧縮機21は、高元側冷凍サイクル20を流れる冷媒を吸入し、その冷媒を圧縮して高温、高圧の状態にして吐出するものである。高元側圧縮機21についても、例えばインバータ回路等により回転数を制御し、高元側冷媒の吐出量を調整できるタイプの圧縮機で構成するとよい。 The high-side compressor 21 sucks the refrigerant flowing through the high-side refrigeration cycle 20, compresses the refrigerant, and discharges it in a high temperature and high pressure state. The high-end compressor 21 may also be configured by a compressor of a type that can control the number of revolutions by an inverter circuit or the like and adjust the discharge amount of the high-end refrigerant.
 高元側凝縮器22は、例えば、外気、水、ブライン等と高元側冷凍サイクル20を流れる冷媒との間で熱交換を行い、冷媒を凝縮液化させるものである。この実施の形態では、高元側凝縮器22が、熱源を外気とし、外気と冷媒との熱交換を行うものとして説明する。そのため、高元側凝縮器22は、熱交換を促すための高元側凝縮器ファン25を有している。高元側凝縮器ファン25は、例えば風量を調整できるタイプの送風機で構成するとよい。 The high-side condenser 22 performs, for example, heat exchange between outside air, water, brine, and the like and the refrigerant flowing through the high-side refrigeration cycle 20 to condense and liquefy the refrigerant. In this embodiment, the high-side condenser 22 will be described assuming that the heat source is the outside air and heat exchange is performed between the outside air and the refrigerant. Therefore, the high-side condenser 22 includes a high-side condenser fan 25 for promoting heat exchange. The high-side condenser fan 25 may be constituted by a blower of a type that can adjust the air volume, for example.
 高元側膨張弁23は、減圧装置、絞り装置等として機能し、高元側冷凍サイクル20を流れる冷媒を減圧して膨張させるものである。高元側膨張弁23は、例えば低元側膨張弁13と同様に、電子式膨張弁等の流量制御手段、毛細管、感温式膨張弁等の冷媒流量調節手段で構成するとよい。 The high-side expansion valve 23 functions as a decompression device, a throttling device, and the like, and decompresses and expands the refrigerant flowing through the high-side refrigeration cycle 20. The high-side expansion valve 23 may be constituted by a flow rate control means such as an electronic expansion valve, or a refrigerant flow rate adjusting means such as a capillary tube or a temperature-sensitive expansion valve, for example, similarly to the low-side expansion valve 13.
 高元側蒸発器24は、熱交換により高元側冷凍サイクル20を流れる冷媒を蒸発ガス化するものである。例えば、ここでは、冷媒間熱交換器16において高元側冷凍サイクル20を流れる冷媒が通過する伝熱管等が高元側蒸発器24となって、低元側冷凍サイクル10を流れる冷媒との熱交換が行われるものとする。なお、冷媒間熱交換器16は、プレート式熱交換器などで構成してもよい。 The high-side evaporator 24 evaporates the refrigerant flowing through the high-side refrigeration cycle 20 by heat exchange. For example, here, the heat transfer tube or the like through which the refrigerant flowing through the high-side refrigeration cycle 20 passes in the inter-refrigerant heat exchanger 16 serves as the high-side evaporator 24, and heat with the refrigerant flowing through the low-side refrigeration cycle 10. Exchange shall be performed. In addition, you may comprise the heat exchanger 16 between refrigerant | coolants with a plate-type heat exchanger.
 冷媒間熱交換器16は、高元側蒸発器24と低元側凝縮器12との機能を有し、高元側冷媒と低元側冷媒とを熱交換可能にするカスケード熱交換器である。冷凍サイクル装置100Aは、冷媒間熱交換器16を介して高元側冷凍サイクル20と低元側冷凍サイクル10とを多段構成にし、冷媒間の熱交換を行うようにすることで、独立した冷媒回路を連携させるように構成されている。 The inter-refrigerant heat exchanger 16 is a cascade heat exchanger that has the functions of the high-end evaporator 24 and the low-end condenser 12 and enables heat exchange between the high-end refrigerant and the low-end refrigerant. . The refrigeration cycle apparatus 100A has a multi-stage configuration of the high-source-side refrigeration cycle 20 and the low-source-side refrigeration cycle 10 via the inter-refrigerant heat exchanger 16, and performs heat exchange between the refrigerants. The circuit is configured to be linked.
<冷凍サイクル装置100Aに使用する冷媒>
 このような構成の冷凍サイクル装置100Aにおいては、低元側冷凍サイクル10の一部の機器(例えば低元側蒸発器14)を、例えばスーパーマーケットのショーケースなどの室内の負荷装置が有していることがある。このような場合、例えば、ショーケースを配置換えなどして配管の接続変更などを行って低元側冷凍サイクル10が開放されると、冷媒漏れが発生する可能性が多くなる。そこで、冷凍サイクル装置100Aでは、低元側冷凍サイクル10を循環させる低元側冷媒として、冷媒漏れを考慮し、地球温暖化に対する影響が小さい二酸化炭素を用いるようにしている。なお、二酸化炭素を含む混合冷媒を用いてもよい。
<Refrigerant used for refrigeration cycle apparatus 100A>
In the refrigeration cycle apparatus 100A having such a configuration, a part of the low-end refrigeration cycle 10 (for example, the low-end evaporator 14) is included in an indoor load device such as a supermarket showcase. Sometimes. In such a case, for example, when the low-side refrigeration cycle 10 is opened by changing the connection of piping by changing the showcase or the like, the possibility of refrigerant leakage increases. Therefore, in the refrigeration cycle apparatus 100A, carbon dioxide that has a small influence on global warming is used as a low-source refrigerant that circulates the low-source refrigeration cycle 10 in consideration of refrigerant leakage. Note that a mixed refrigerant containing carbon dioxide may be used.
 一方、高元側冷凍サイクル20では、ショーケースの配置換えなどに伴う冷媒回路の開放がない。そこで、冷凍サイクル装置100Aでは、高元側冷凍サイクル20を循環させる高元側冷媒として、例えば、HFO(ハイドロ・フルオロ・オレフィン)冷媒(HFO1234yf、HFO1234ze等)、HC冷媒、二酸化炭素、アンモニア、水などの地球温暖化に対する影響が小さい冷媒を用いることができる。あるいは、高元側冷凍サイクル20が開放されることがないため、例えばコスト、性能の観点から地球温暖化係数の高いHFC冷媒などを用いることもできる。なお、冷凍サイクル装置100Aでは、高元側冷凍サイクル20を循環させる高元側冷媒としてR32を使用した場合を例に説明する。 On the other hand, in the high-side refrigeration cycle 20, there is no opening of the refrigerant circuit due to rearrangement of the showcase. Therefore, in the refrigeration cycle apparatus 100A, for example, HFO (hydro-fluoro-olefin) refrigerant (HFO1234yf, HFO1234ze, etc.), HC refrigerant, carbon dioxide, ammonia, water, etc. are used as the high-side refrigerant circulating through the high-side refrigeration cycle 20. A refrigerant having a small influence on global warming such as can be used. Alternatively, since the high-end refrigeration cycle 20 is not opened, for example, an HFC refrigerant having a high global warming potential can be used from the viewpoint of cost and performance. In the refrigeration cycle apparatus 100A, a case where R32 is used as a high-side refrigerant that circulates the high-side refrigeration cycle 20 will be described as an example.
 例えば、低元側冷凍サイクル10に使用される二酸化炭素冷媒は、高元側冷凍サイクル20で用いられるR32に比べて冷凍効果が小さい。そのため、大きな圧縮機動力が必要となり、高元側冷凍サイクル20で用いているR32に比べて運転効率が低くなる。そこで、高元側圧縮機21の容量を増大させて、低元側高圧を低下させることにより、低元側冷凍サイクル10側の消費電力を小さくする。そして、運転効率が高いR32を用いた高元側冷凍サイクル20側の消費電力が大きくなったとしても高元側冷凍サイクル20側の仕事量を増やすことで、二元冷凍装置全体の運転効率を向上させる。 For example, the carbon dioxide refrigerant used in the low-source side refrigeration cycle 10 has a smaller refrigeration effect than R32 used in the high-source side refrigeration cycle 20. Therefore, a large compressor power is required, and the operation efficiency is lower than R32 used in the high-source side refrigeration cycle 20. Therefore, the power consumption on the low-source side refrigeration cycle 10 side is reduced by increasing the capacity of the high-source side compressor 21 and decreasing the low-source side high pressure. And even if the power consumption on the high refrigeration cycle 20 side using R32 having high operation efficiency increases, the operation efficiency of the entire dual refrigeration apparatus is increased by increasing the work amount on the high refrigeration cycle 20 side. Improve.
 このように、冷凍サイクル装置100Aでは、高効率な高元側冷凍サイクル20の消費電力比率を大きくすることで、装置全体の運転効率を最適とすることができる。 Thus, in the refrigeration cycle apparatus 100A, the operating efficiency of the entire apparatus can be optimized by increasing the power consumption ratio of the high-efficiency high-side refrigeration cycle 20.
<冷凍サイクル装置100Aの動作>
 以上のような二元冷凍サイクルを備えた冷凍サイクル装置100Aの各構成機器の動作等を、各冷媒回路を循環する冷媒の流れに基づいて説明する。
<Operation of the refrigeration cycle apparatus 100A>
The operation and the like of each component device of the refrigeration cycle apparatus 100A provided with the above-described binary refrigeration cycle will be described based on the flow of refrigerant circulating through each refrigerant circuit.
 まず、高元側冷凍サイクル20の動作について説明する。
 高元側圧縮機21は、高元側冷媒(R32)を吸入し、圧縮して高温、高圧の状態にして吐出する。高元側圧縮機21が吐出した高元側冷媒は高元側凝縮器22へ流入する。高元側凝縮器22は、高元側凝縮器ファン25から供給される外気と高元側冷媒との間で熱交換を行い、高元側冷媒を凝縮液化する。
First, the operation of the high-side refrigeration cycle 20 will be described.
The high-end compressor 21 sucks in the high-end refrigerant (R32), compresses it, and discharges it in a high temperature and high pressure state. The high-side refrigerant discharged from the high-side compressor 21 flows into the high-side condenser 22. The high-side condenser 22 performs heat exchange between the outside air supplied from the high-side condenser fan 25 and the high-side refrigerant, and condenses and liquefies the high-side refrigerant.
 高元側凝縮器22で凝縮液化した高元側冷媒は高元側膨張弁23を通過する。高元側膨張弁23は凝縮液化した高元側冷媒を減圧する。高元側膨張弁23が減圧した高元側冷媒は高元側蒸発器24に流入する。高元側蒸発器24は、低元側凝縮器12を通過する低元側冷媒との熱交換により高元側冷媒を蒸発ガス化する。高元側蒸発器24で蒸発ガス化した高元側冷媒を高元側圧縮機21が吸入する。 The high-side refrigerant condensed and liquefied by the high-side condenser 22 passes through the high-side expansion valve 23. The high-side expansion valve 23 depressurizes the condensed high-side refrigerant. The high-side refrigerant whose pressure is reduced by the high-side expansion valve 23 flows into the high-side evaporator 24. The high-side evaporator 24 evaporates and gasifies the high-side refrigerant by heat exchange with the low-side refrigerant that passes through the low-side condenser 12. The high-side compressor 21 sucks the high-side refrigerant evaporated and gasified by the high-side evaporator 24.
 次に、低元側冷凍サイクル10の動作について説明する。
 低元側圧縮機11は、低元側冷媒(二酸化炭素)を吸入し、圧縮して高温、高圧の状態にして吐出する。低元側圧縮機11が吐出した低元側冷媒は補助放熱器15で冷却されて低元側凝縮器12へ流入する。低元側凝縮器12は、高元側蒸発器24を通過する高元側冷媒との熱交換により低元側冷媒を凝縮液化する。
Next, the operation of the low-source side refrigeration cycle 10 will be described.
The low-side compressor 11 sucks low-pressure side refrigerant (carbon dioxide), compresses it, and discharges it in a high temperature and high pressure state. The low-side refrigerant discharged from the low-side compressor 11 is cooled by the auxiliary radiator 15 and flows into the low-side condenser 12. The low-side condenser 12 condenses and liquefies the low-side refrigerant by heat exchange with the high-side refrigerant passing through the high-side evaporator 24.
 低元側凝縮器12で凝縮液化した低元側冷媒は低元側膨張弁13を通過する。低元側膨張弁13は凝縮液化した低元側冷媒を減圧する。低元側膨張弁13が減圧した低元側冷媒は低元側蒸発器14に流入する。低元側蒸発器14は冷却対象との熱交換により低元側冷媒を蒸発ガス化する。低元側蒸発器14で蒸発ガス化した低元側冷媒を低元側圧縮機11が吸入する。 The low-side refrigerant condensed and liquefied by the low-side condenser 12 passes through the low-side expansion valve 13. The low-side expansion valve 13 depressurizes the condensed low-side refrigerant. The low-side refrigerant whose pressure is reduced by the low-side expansion valve 13 flows into the low-side evaporator 14. The low-side evaporator 14 evaporates the low-side refrigerant by heat exchange with the object to be cooled. The low-side compressor 11 sucks the low-side refrigerant that has been vaporized and gasified by the low-side evaporator 14.
<冷媒の運転効率>
 次に、冷媒の運転効率について具体的に説明する。
 運転効率の指標である理論COPが高ければ、少ない圧縮動力で大きな蒸発潜熱を得られ、高効率な冷媒となる。なお、理論COPは、(蒸発器のエンタルピ差/圧縮過程のエンタルピ差)で求めたものである。
<Operating efficiency of refrigerant>
Next, the operation efficiency of the refrigerant will be specifically described.
If the theoretical COP, which is an index of operation efficiency, is high, a large latent heat of evaporation can be obtained with a small amount of compression power, and the refrigerant becomes highly efficient. The theoretical COP is obtained by (the enthalpy difference of the evaporator / the enthalpy difference of the compression process).
 例えば、外気温度32℃で運転する一般の単段サイクルの冷凍サイクル装置の動作状態、すなわち蒸発温度-40℃、凝縮温度40℃(超臨界の二酸化炭素の高圧は8.8MPaとする)、吸入過熱度5℃、液過冷却度5℃の条件での各冷媒の理論COPは、以下のようになる。 For example, the operating state of a general single-stage cycle refrigeration cycle apparatus operating at an outside air temperature of 32 ° C., that is, an evaporation temperature of −40 ° C., a condensation temperature of 40 ° C. (supercritical carbon dioxide has a high pressure of 8.8 MPa), inhalation The theoretical COP of each refrigerant under the conditions of superheating degree 5 ° C. and liquid supercooling degree 5 ° C. is as follows.
 二酸化炭素では「1.25」、R32では「1.98」、HFO1234yfでは「1.84」、HFO1234zeでは「1.97」、プロパンでは「1.99」、イソブタンでは「2.05」、アンモニアでは「2.07」、R134aでは「2.01」、R410Aでは「1.91」、R407Cでは「1.98」、R404Aでは「1.76」となる。
 二酸化炭素は、その他のHFO冷媒やHFC冷媒、HC冷媒などと比較しCOPが低く、低効率な冷媒であることがわかる。
"1.25" for carbon dioxide, "1.98" for R32, "1.84" for HFO1234yf, "1.97" for HFO1234ze, "1.99" for propane, "2.05" for isobutane, ammonia Is “2.07”, R134a is “2.01”, R410A is “1.91”, R407C is “1.98”, and R404A is “1.76”.
It can be seen that carbon dioxide is a low-efficiency refrigerant having a lower COP than other HFO refrigerants, HFC refrigerants, HC refrigerants, and the like.
 上述したように、冷凍サイクル装置100Aでは、低元側冷凍サイクル10に二酸化炭素を使用する。二酸化炭素は、R404AまたはR410AなどHFC冷媒に対して冷媒動作圧力が高いため、本来であれば設計圧力の高い新規部品を用いる必要があり、大幅なコスト増加となる。そこで、冷凍サイクル装置100Aでは、従来HFC冷媒を使用した冷凍サイクル装置の部品の流用をできるように、コスト低減を図るため、低元側冷凍サイクル10の設計圧力をHFC冷媒同等の設計圧力、例えばR410A相当の4.15MPaまで低下させるようにした。 As described above, in the refrigeration cycle apparatus 100A, carbon dioxide is used for the low-source side refrigeration cycle 10. Since carbon dioxide has a higher refrigerant operating pressure than HFC refrigerants such as R404A or R410A, it is necessary to use new parts with a high design pressure. Therefore, in the refrigeration cycle apparatus 100A, in order to reduce costs so that parts of the refrigeration cycle apparatus using the conventional HFC refrigerant can be diverted, the design pressure of the low-source side refrigeration cycle 10 is set to the design pressure equivalent to the HFC refrigerant, for example, The pressure was reduced to 4.15 MPa equivalent to R410A.
 なお、冷凍サイクル装置100Aは、冷媒のノンフロン化やフロン冷媒の削減、機器の省エネルギー化が要求されるショーケースや業務用冷凍冷蔵庫、自動販売機等の冷蔵あるいは冷凍機器にも広く適用することができる。 The refrigeration cycle apparatus 100A can be widely applied to refrigeration or refrigeration equipment such as showcases, commercial refrigeration refrigerators, vending machines, etc. that require non-fluorocarbon refrigerants, reduction of CFC refrigerants, and energy saving of equipment. it can.
<低元側蒸発器14の仕様その1>
 図2は、冷凍サイクル装置100Aの低元側蒸発器14の仕様を示す模式図であり、(a)が側面から見た側面図を、(b)が正面から見た正面図を、それぞれ示している。図3は、蒸発器における距離Lと平均冷凍能力との関係を表すグラフである。図2及び図3に基づいて、低元側蒸発器14の仕様その1について説明する。
<Specification of low-side evaporator 14>
FIG. 2 is a schematic view showing the specifications of the low-side evaporator 14 of the refrigeration cycle apparatus 100A, where (a) shows a side view seen from the side, and (b) shows a front view seen from the front. ing. FIG. 3 is a graph showing the relationship between the distance L and the average refrigeration capacity in the evaporator. Based on FIG.2 and FIG.3, the specification 1 of the low former side evaporator 14 is demonstrated.
 なお、図2において、「tf」がフィンの板厚を、「Fp」がフィンピッチを、「Dp」が段ピッチを、「Rp」が列ピッチを、「Fw」がフィン幅を、「do」が伝熱管の管径を、それぞれ示している。また、図3では、縦軸が平均冷凍能力を、横軸が距離Lを、それぞれ表している。さらに、平均冷凍能力は、現行の冷凍サイクル装置に用いられているR410Aとの比で表している。 In FIG. 2, “tf” is the fin thickness, “Fp” is the fin pitch, “Dp” is the step pitch, “Rp” is the row pitch, “Fw” is the fin width, “do” "Indicates the diameter of each heat transfer tube. In FIG. 3, the vertical axis represents the average refrigeration capacity, and the horizontal axis represents the distance L. Furthermore, the average refrigeration capacity is expressed as a ratio with R410A used in the current refrigeration cycle apparatus.
 フィンの板厚tfとは、同一構成の複数のフィン32のそれぞれの板厚のことである。
 フィンピッチFpとは、複数のフィン32のうち平行に隣接するフィン32の間隔のことである。
 段ピッチDpとは、複数の伝熱管31のうち段方向に隣接する伝熱管31の間隔のことである。
 列ピッチRpとは、複数の伝熱管31のうち空気の流れ方向に隣接する伝熱管31管の距離のことである。
 フィン幅Fwとは、同一構成の複数のフィン32のそれぞれの短手方向の距離のことである。
 管径doとは、同一構成の複数の伝熱管31のそれぞれの径のことである。
The fin thickness tf is the thickness of each of the plurality of fins 32 having the same configuration.
The fin pitch Fp is an interval between the fins 32 adjacent in parallel among the plurality of fins 32.
The step pitch Dp is the interval between the heat transfer tubes 31 adjacent in the step direction among the plurality of heat transfer tubes 31.
The row pitch Rp is the distance between the heat transfer tubes 31 adjacent to each other in the air flow direction among the plurality of heat transfer tubes 31.
The fin width Fw is the distance in the short direction of each of the plurality of fins 32 having the same configuration.
The tube diameter do is the diameter of each of the plurality of heat transfer tubes 31 having the same configuration.
 冷凍サイクル装置100Aでは、低元側冷凍サイクル10を循環させる低元側冷媒として、地球温暖化係数の低い二酸化炭素を使用している。低元側冷凍サイクル10の低元側蒸発器14は、複数の伝熱管31と、複数の伝熱管31のそれぞれに、例えばロウ付け等で接合される複数の長方形状の板状部材で構成されたフィン32と、を有する。 In the refrigeration cycle apparatus 100A, carbon dioxide having a low global warming potential is used as a low-side refrigerant that circulates the low-side refrigeration cycle 10. The low-side evaporator 14 of the low-side refrigeration cycle 10 includes a plurality of heat transfer tubes 31 and a plurality of rectangular plate-like members that are joined to each of the plurality of heat transfer tubes 31 by brazing, for example. And fins 32.
 フィン32は、短手方向が空気の流れに沿って一列に構成されている。つまり、低元側冷凍サイクル10の低温、低圧となる低元側蒸発器14は、切断された複数のフィン32を空気の流れ方向に沿って一列に並べて構成されている。つまり、風上側に配置されているフィン32の長手方向の一方と、それに隣接するフィン32の長手方向の他方と、が対向されて、フィン32が空気の流れ方向に沿って一列に並べられている。複数のフィン32のそれぞれは、同一の構成とされている。また、一列に並べられた複数のフィン32のそれぞれは、平行に一定間隔(フィンピッチ)をあけて平行に複数列(多列)となるように配置されている。 The fins 32 are configured in a row in the short direction along the air flow. In other words, the low-side evaporator 14 having low temperature and low pressure in the low-side refrigeration cycle 10 is configured by arranging a plurality of cut fins 32 in a line along the air flow direction. That is, one of the fins 32 arranged on the windward side in the longitudinal direction is opposed to the other longitudinal one of the fins 32 adjacent thereto, and the fins 32 are arranged in a line along the air flow direction. Yes. Each of the plurality of fins 32 has the same configuration. In addition, each of the plurality of fins 32 arranged in a row is arranged in parallel to form a plurality of rows (multiple rows) with a predetermined interval (fin pitch) therebetween.
 複数の伝熱管31は、複数のフィン32のそれぞれに交差され、フィン32の長手方向に並べて配置されている。そして、フィン32が空気の流れ方向に沿って一列に構成されているので、伝熱管31も空気の流れ風上側、風下側に配置されている。複数の伝熱管31のそれぞれは、同一の構成とされている。 The plurality of heat transfer tubes 31 intersect with each of the plurality of fins 32 and are arranged side by side in the longitudinal direction of the fins 32. And since the fin 32 is comprised in a line along the flow direction of air, the heat exchanger tube 31 is also arrange | positioned at the flow top and the leeward side of the air flow. Each of the plurality of heat transfer tubes 31 has the same configuration.
 図2では、空気の流れ上流側のフィン32、つまり最上流に配置されたフィン32を第1のフィン32Aとして図示し、第1のフィン32Aの風下側で第1のフィン32Aに隣接したフィン32を第2のフィン32Bとして図示している。なお、ここでは、空気の流れに沿ってフィン32を2組並べた構成とした低元側蒸発器14を例に示しているが、これに限定するものではなく、実際には低元側蒸発器14は空気の流れ方向に沿ってフィン32を3組以上並べて構成してもよい。 In FIG. 2, the fin 32 on the upstream side of the air flow, that is, the fin 32 disposed in the uppermost stream is illustrated as the first fin 32A, and the fin adjacent to the first fin 32A on the leeward side of the first fin 32A. 32 is illustrated as a second fin 32B. Here, the low-side evaporator 14 having a configuration in which two sets of fins 32 are arranged along the air flow is shown as an example, but the present invention is not limited to this. The vessel 14 may be configured by arranging three or more sets of fins 32 along the air flow direction.
 そして、低元側蒸発器14では、最上流側における伝熱管31の風上側端部から第1のフィン32Aの前縁までの距離Lを6.5mm≦L≦8.5mmの範囲としている。なお、最上流側における伝熱管31とは、最上流側における第1のフィン32Aに接合されている伝熱管31のことである。 And in the low element side evaporator 14, the distance L from the windward side edge part of the heat exchanger tube 31 in the most upstream side to the front edge of the 1st fin 32A is made into the range of 6.5 mm <= L <= 8.5mm. The heat transfer tube 31 on the most upstream side is the heat transfer tube 31 joined to the first fin 32A on the most upstream side.
 図3から、距離L>8.5mmでは、運転効率が悪くなり平均冷凍能力が低下してしまうということがわかる。それは、同一のフィン幅で、管径を小さくして距離Lを大きくすることになるため、冷媒の圧力損失が過大になり、運転効率が悪くなり平均冷凍能力が低下してしまうからである。なお、フィン幅に対する伝熱管の管径との比率は管径が小さくなるため同様に小さくなるが、平均冷凍能力が低下する前述のフィン幅に対する伝熱管の管径との比率は23%未満である。 FIG. 3 shows that when the distance L> 8.5 mm, the operating efficiency deteriorates and the average refrigeration capacity decreases. This is because, with the same fin width, the tube diameter is reduced and the distance L is increased, so that the pressure loss of the refrigerant becomes excessive, the operating efficiency is deteriorated, and the average refrigeration capacity is lowered. The ratio of the heat transfer tube diameter to the fin width is similarly reduced because the tube diameter is small, but the ratio of the heat transfer tube diameter to the fin width described above, which reduces the average refrigeration capacity, is less than 23%. is there.
 一方、図3から、距離L<6.5mmでも、平均冷凍能力が低下してしまうということがわかる。それは、距離L<6.5mmでは、伝熱管の管径が過大であり、冷媒流速の低下により管内の熱伝達率が低下してしまうからである。また、距離L<6.5mmでは、伝熱管とフィンの前縁側との距離が近くなり、フィンの前縁温度が低下するため、霜が発生しやすくなり、冷凍能力が低下する。なお、フィン幅に対する伝熱管の管径との比率が42%より大きい領域であると、管径が大きくなるため管内熱伝達率の低下やフィン効率向上による着霜性悪化により平均能力が低下する。 On the other hand, it can be seen from FIG. 3 that the average refrigeration capacity decreases even at a distance L <6.5 mm. This is because at a distance L <6.5 mm, the tube diameter of the heat transfer tube is excessive, and the heat transfer coefficient in the tube decreases due to a decrease in the refrigerant flow rate. Further, when the distance L <6.5 mm, the distance between the heat transfer tube and the front edge side of the fin is reduced, and the front edge temperature of the fin is decreased, so that frost is likely to be generated and the refrigeration capacity is decreased. In addition, if the ratio of the heat transfer tube diameter to the fin width is in an area larger than 42%, the tube diameter increases, so the average capacity decreases due to a decrease in heat transfer coefficient in the tube and a deterioration in frost formation due to improved fin efficiency. .
 そこで、低元側蒸発器14では、距離Lを6.5mm≦L≦8.5mmの範囲としているので、フィン幅に対する伝熱管の管径との比率を23%≦伝熱管径/フィン幅×100≦42%の範囲内にできる。こうすることにより、低元側蒸発器14は、冷凍能力低下を改善でき、二酸化炭素冷媒を使用した場合であっても、熱交換器を大容量化する必要がない。したがって、冷凍サイクル装置100Aによれば、コストを増大させることなく、年間を通して消費エネルギーを低減できる効果があり、コンパクトなものとすることができる。 Therefore, in the low-side evaporator 14, since the distance L is in the range of 6.5 mm ≦ L ≦ 8.5 mm, the ratio of the heat transfer tube diameter to the fin width is 23% ≦ heat transfer tube diameter / fin width. It can be in the range of x100 ≦ 42%. By doing so, the low-side evaporator 14 can improve the refrigerating capacity reduction, and even when a carbon dioxide refrigerant is used, it is not necessary to increase the capacity of the heat exchanger. Therefore, according to the refrigeration cycle apparatus 100A, there is an effect that energy consumption can be reduced throughout the year without increasing the cost, and the apparatus can be made compact.
<低元側蒸発器14の仕様その2>
 図4は、蒸発器における(Fp-tf)×Lと平均冷凍能力との関係を表すグラフである。図2及び図4に基づいて、低元側蒸発器14の仕様その2について説明する。なお、図4では、縦軸が平均冷凍能力を、横軸が(Fp-tf)×Lを、それぞれ表している。さらに、平均冷凍能力は、現行の冷凍サイクル装置に用いられているR410Aとの比で表している。
<Specification of low-side evaporator 14>
FIG. 4 is a graph showing the relationship between (Fp−tf) × L and the average refrigeration capacity in the evaporator. Based on FIG.2 and FIG.4, the specification 2 of the low former side evaporator 14 is demonstrated. In FIG. 4, the vertical axis represents the average refrigeration capacity, and the horizontal axis represents (Fp−tf) × L. Furthermore, the average refrigeration capacity is expressed as a ratio with R410A used in the current refrigeration cycle apparatus.
 そして、低元側蒸発器14では、(Fp-tf)×Lが40mm≦(Fp-tf)×L≦52mmの範囲としている。 In the low-side evaporator 14, (Fp−tf) × L is in a range of 40 mm 2 ≦ (Fp−tf) × L ≦ 52 mm 2 .
 図4から、40mm>(Fp-tf)×Lでは、フィン効率が高くなり風上側フィンの温度が低下しやすくなるということがわかる。また、風上側の風路を通過する風速が増加し、前縁効果によりフィンから空気への熱伝達率も高まるため、霜が付きやすくなり、霜による風路閉塞が生じ冷凍能力が低下することにもつながる。 From FIG. 4, it can be seen that when 40 mm 2 > (Fp−tf) × L, the fin efficiency increases and the temperature of the windward fin tends to decrease. In addition, the wind speed passing through the wind path on the windward side increases, and the heat transfer rate from the fins to the air increases due to the leading edge effect. It also leads to.
 一方、図4から、52mm<(Fp-tf)×Lでも、冷凍能力が低下してしまうということがわかる。それは、52mm<(Fp-tf)×Lでは、風上側の風路を通過する風速が低下しフィンから空気への熱伝達率が過大に低下してしまうからである。 On the other hand, FIG. 4 shows that the refrigerating capacity decreases even when 52 mm 2 <(Fp−tf) × L. This is because if 52 mm 2 <(Fp−tf) × L, the wind speed passing through the wind path on the windward side is lowered, and the heat transfer rate from the fin to the air is excessively lowered.
 そこで、低元側蒸発器14では、(Fp-tf)×Lを40mm≦(Fp-tf)×L≦52mmの範囲としている。こうすることにより、低元側蒸発器14は、霜が付きやすく閉塞しやすい最上流側の着霜を抑制でき、運転時間が長くなり平均冷凍能力は向上する。 Therefore, in the low-side evaporator 14, (Fp−tf) × L is set to a range of 40 mm 2 ≦ (Fp−tf) × L ≦ 52 mm 2 . By doing so, the low-side evaporator 14 can suppress frost formation on the most upstream side, which is likely to be frosted and easily blocked, and the operation time becomes longer and the average refrigeration capacity is improved.
 なお、低元側蒸発器14の仕様その2を、低元側蒸発器14の仕様その1と組み合わせてもよい。この場合、低元側蒸発器14の仕様その1、仕様その2の双方の効果を奏することになる。 Note that the specification 2 of the low-side evaporator 14 may be combined with the specification 1 of the low-side evaporator 14. In this case, the effects of both the specification 1 and the specification 2 of the low-side evaporator 14 are exhibited.
<低元側蒸発器14の仕様その3>
 図5は、蒸発器におけるフィン幅に対する伝熱管の比率と平均冷凍能力との関係を表すグラフである。図6は、蒸発器における面積Ajと平均冷凍能力との関係を表すグラフである。図2、図5及び図6に基づいて、低元側蒸発器14の仕様その3について説明する。なお、図5では、縦軸が平均冷凍能力を、横軸が伝熱管径/フィン幅×100%を、それぞれ表している。また、図6では、縦軸が平均冷凍能力を、横軸が面積Ajを、それぞれ表している。さらに、図5及び図6の平均冷凍能力は、現行の冷凍サイクル装置に用いられているR410Aとの比で表している。
<Specifications of low-side evaporator 14>
FIG. 5 is a graph showing the relationship between the ratio of the heat transfer tubes to the fin width in the evaporator and the average refrigeration capacity. FIG. 6 is a graph showing the relationship between the area Aj and the average refrigeration capacity in the evaporator. Based on FIGS. 2, 5, and 6, the third specification of the low-side evaporator 14 will be described. In FIG. 5, the vertical axis represents the average refrigeration capacity, and the horizontal axis represents the heat transfer tube diameter / fin width × 100%. In FIG. 6, the vertical axis represents the average refrigeration capacity, and the horizontal axis represents the area Aj. Furthermore, the average refrigeration capacity in FIGS. 5 and 6 is expressed as a ratio with R410A used in the current refrigeration cycle apparatus.
 そして、低元側蒸発器14では、面積Aj=(Fp-tf)×(Dp/2-do)が23mm≦Aj≦47mmの範囲としている。 In the low-side evaporator 14, the area Aj = (Fp−tf) × (Dp / 2−do) is in the range of 23 mm 2 ≦ Aj ≦ 47 mm 2 .
 図6から、23mm>Ajでは、冷凍能力が低下するということがわかる。それは、23mm>Ajでは、伝熱管の管径が過大で管内熱伝達率が小さくなるからである。また、フィン、伝熱管の距離が小さくなり、フィン効率が上がるため、フィン温度が低下して霜量が増加することにもつながる。 From FIG. 6, it can be seen that the refrigeration capacity decreases when 23 mm 2 > Aj. This is because if 23 mm 2 > Aj, the tube diameter of the heat transfer tube is excessive and the heat transfer coefficient in the tube becomes small. In addition, since the distance between the fin and the heat transfer tube is reduced and the fin efficiency is increased, the fin temperature is lowered and the amount of frost is increased.
 一方、図6から、47mm<Ajでも、冷凍能力が低下してしまうということがわかる。それは、47mm<Ajでは、伝熱管の管径が過小になり、冷媒の圧力損失が増加し冷媒循環量が低下してしまうからである。 On the other hand, FIG. 6 shows that even if 47 mm 2 <Aj, the refrigeration capacity decreases. This is because if 47 mm 2 <Aj, the tube diameter of the heat transfer tube becomes too small, the refrigerant pressure loss increases, and the refrigerant circulation rate decreases.
 そこで、低元側蒸発器14では、面積Ajを23mm≦Aj≦47mmの範囲としている。こうすることにより、低元側蒸発器14は、従来よりも単位面積当たりの管外伝熱面積は減少するが、着霜耐力が向上しAjの霜による閉塞が生じ難くなるため、平均冷凍能力は向上する。また、伝熱管の細径化により、伝熱管の重量も減らせるため、熱交換器のコストを低減できることにもなる。 Therefore, in the low-side evaporator 14, the area Aj is set to a range of 23 mm 2 ≦ Aj ≦ 47 mm 2 . By doing so, the low-side evaporator 14 has a reduced heat transfer area per unit area than before, but the frosting resistance is improved and the blockage due to Aj frost is less likely to occur. improves. Moreover, since the weight of the heat transfer tube can be reduced by reducing the diameter of the heat transfer tube, the cost of the heat exchanger can be reduced.
 なお、低元側蒸発器14の仕様その3を、低元側蒸発器14の仕様その1及び仕様その2の少なくとも1つと組み合わせてもよい。この場合、組み合わせた仕様の全部の効果を奏することになる。 The specification 3 of the low-side evaporator 14 may be combined with at least one of the specification 1 and the specification 2 of the low-side evaporator 14. In this case, all the effects of the combined specifications are exhibited.
<低元側蒸発器14の仕様その4>
 図7は、蒸発器における容積Vjと平均冷凍能力との関係を表すグラフである。図2及び図7に基づいて、低元側蒸発器14の仕様その4について説明する。なお、図7では、縦軸が平均冷凍能力を、横軸が容積Vjを、それぞれ表している。また、平均冷凍能力は、現行の冷凍サイクル装置に用いられているR410Aとの比で表している。
<Specification of low-side evaporator 14>
FIG. 7 is a graph showing the relationship between the volume Vj and the average refrigeration capacity in the evaporator. Based on FIG.2 and FIG.7, the specification 4 of the low original side evaporator 14 is demonstrated. In FIG. 7, the vertical axis represents the average refrigeration capacity, and the horizontal axis represents the volume Vj. The average refrigeration capacity is expressed as a ratio with R410A used in the current refrigeration cycle apparatus.
 そして、低元側蒸発器14では、容積Vj=(Fp-tf)×(Dp/2-do)×(Rp-do)が250mm≦Vj≦800mmの範囲としている。 In the low-side evaporator 14, the volume Vj = (Fp−tf) × (Dp / 2−do) × (Rp−do) is in the range of 250 mm 3 ≦ Vj ≦ 800 mm 3 .
 図7から、Vj<250mmでは、冷凍能力が低下するということがわかる。それは、Vj<250mmでは、霜の溶けた液滴が氷結し、これが熱抵抗となるからである。具体的には、Vj<250mmでは、空気流れ方向の伝熱管同士の距離が小さくなり、フィン効率が高くなるため、霜が付きやすくなる。そして、除霜時に霜の溶けた液滴が伝熱管間で保持されやすくなるため、除霜性が悪くなる。除霜できずに運転を開始すると液滴が氷結し、これが熱抵抗となってしまい、冷凍能力が低下することになる。通常運転と除霜運転を繰り返すと、この氷が体積膨張し、フィンや伝熱管の変形、破壊の要因となる。 From FIG. 7, it can be seen that when Vj <250 mm 3 , the refrigerating capacity decreases. This is because when Vj <250 mm 3 , the frost-melted droplets freeze, and this becomes a thermal resistance. Specifically, when Vj <250 mm 3 , the distance between the heat transfer tubes in the air flow direction is reduced, and the fin efficiency is increased. And since the droplet which the frost melt | dissolved at the time of defrosting becomes easy to be hold | maintained between heat exchanger tubes, defrosting property worsens. When the operation is started without defrosting, the droplets freeze, which becomes a thermal resistance, and the refrigerating capacity is reduced. When normal operation and defrosting operation are repeated, this ice expands in volume, causing deformation and destruction of the fins and heat transfer tubes.
 一方、図7から、Vj>800mmでも、冷凍能力が低下してしまうということがわかる。それは、Vj>800mmでは、伝熱管の管径が過小になり、管外伝熱面積が低下してしまうからである。また、フィンの前縁と伝熱管の距離が過大になり、フィン効率が低下し、管外熱伝達率も低下するため、熱交換性能が悪化することにもなる。 On the other hand, it can be seen from FIG. 7 that the refrigerating capacity decreases even when Vj> 800 mm 3 . This is because when Vj> 800 mm 3 , the tube diameter of the heat transfer tube becomes too small, and the heat transfer area outside the tube decreases. Further, the distance between the front edge of the fin and the heat transfer tube becomes excessive, the fin efficiency is lowered, and the heat transfer coefficient outside the tube is also lowered, so that the heat exchange performance is also deteriorated.
 そこで、低元側蒸発器14では、容積Vjを250mm≦Vj≦800mmの範囲としている。こうすることにより、低元側蒸発器14は、着霜性、除霜性に優れたものになる。そのため、冷凍サイクル装置100Aは、冷媒に二酸化炭素を用いても、高い冷凍能力を発揮することが可能になる。 Therefore, in the low-side evaporator 14, the volume Vj is in the range of 250 mm 3 ≦ Vj ≦ 800 mm 3 . By carrying out like this, the low former side evaporator 14 becomes the thing excellent in frost formation property and defrosting property. Therefore, the refrigeration cycle apparatus 100A can exhibit high refrigeration capacity even when carbon dioxide is used as the refrigerant.
 なお、低元側蒸発器14の仕様その4を、低元側蒸発器14の仕様その1~仕様その3の少なくともいずれか1つと組み合わせてもよい。この場合、組み合わせた仕様の全部の効果を奏することになる。 The specification 4 of the low-side evaporator 14 may be combined with at least one of the specifications 1 to 3 of the low-side evaporator 14. In this case, all the effects of the combined specifications are exhibited.
 冷凍サイクル装置100Aは、冷凍空調装置(例えば、冷凍装置、冷蔵装置、ルームエアコン、パッケージエアコン、ビル用マルチエアコン等)、ヒートポンプ給湯機等、冷凍サイクルを備えた装置に適用して利用することができる。 The refrigeration cycle apparatus 100A can be used by being applied to an apparatus equipped with a refrigeration cycle, such as a refrigeration air conditioner (for example, a refrigeration apparatus, a refrigeration apparatus, a room air conditioner, a packaged air conditioner, a building multi air conditioner, etc.), a heat pump water heater, and the like. it can.
実施の形態2.
 図8は、本発明の実施の形態2に係る冷凍サイクル装置(以下、冷凍サイクル装置100Bと称する)の冷媒回路構成の一例を示す概略構成図である。図8に基づいて、冷凍サイクル装置100Bについて説明する。
Embodiment 2. FIG.
FIG. 8 is a schematic configuration diagram showing an example of a refrigerant circuit configuration of a refrigeration cycle apparatus (hereinafter referred to as refrigeration cycle apparatus 100B) according to Embodiment 2 of the present invention. The refrigeration cycle apparatus 100B will be described based on FIG.
 実施の形態1では、二元冷凍サイクルを備えた冷凍サイクル装置100Aを例に説明したが、実施の形態2では、1つの冷媒回路を備えた冷凍サイクル装置100Bについて説明する。
 なお、温度、圧力等の高低については、特に絶対的な値との関係で高低等が定まっているものではなく、システム、装置等における状態、動作等において相対的に定まるものとする。
In the first embodiment, the refrigeration cycle apparatus 100A provided with the dual refrigeration cycle has been described as an example. In the second embodiment, the refrigeration cycle apparatus 100B provided with one refrigerant circuit will be described.
It should be noted that the levels of temperature, pressure, etc. are not particularly determined in relation to absolute values, but are relatively determined in terms of the state and operation of the system, apparatus, and the like.
 図8に示すように、冷凍サイクル装置100Bは、1つの冷媒回路(冷凍サイクル50)を有し、冷媒を循環させるように構成されている。
 冷凍サイクル50は、圧縮機51と、凝縮器52と、膨張弁53と、蒸発器54と、を順に冷媒配管58で配管接続して構成されている。
As shown in FIG. 8, the refrigeration cycle apparatus 100B has one refrigerant circuit (refrigeration cycle 50) and is configured to circulate the refrigerant.
The refrigeration cycle 50 is configured by connecting a compressor 51, a condenser 52, an expansion valve 53, and an evaporator 54 in order by a refrigerant pipe 58.
 圧縮機51は、冷凍サイクル50を流れる冷媒を吸入し、その冷媒を圧縮して高温、高圧の状態にして吐出するものである。圧縮機51を、例えばインバータ回路等により回転数を制御し、低元側冷媒の吐出量を調整できるタイプの圧縮機で構成するとよい。 The compressor 51 sucks the refrigerant flowing through the refrigeration cycle 50, compresses the refrigerant, and discharges it in a high temperature and high pressure state. For example, the compressor 51 may be configured by a compressor of a type that can control the number of revolutions by an inverter circuit or the like and adjust the discharge amount of the low-source side refrigerant.
 凝縮器52は、例えば、外気、水、ブライン等と冷凍サイクル50を流れる冷媒との間で熱交換を行い、冷媒を凝縮液化させるものである。この実施の形態では、凝縮器52が、熱源を外気とし、外気と冷媒との熱交換を行うものとして説明する。そのため、凝縮器52は、熱交換を促すための凝縮器ファン55aを有している。凝縮器ファン55aは、例えば風量を調整できるタイプの送風機で構成するとよい。 The condenser 52 performs, for example, heat exchange between outside air, water, brine, and the like and the refrigerant flowing through the refrigeration cycle 50 to condense and liquefy the refrigerant. In this embodiment, the description will be made assuming that the condenser 52 uses the heat source as the outside air and performs heat exchange between the outside air and the refrigerant. Therefore, the condenser 52 has a condenser fan 55a for promoting heat exchange. For example, the condenser fan 55a may be a blower of a type that can adjust the air volume.
 膨張弁53は、減圧装置、絞り装置等として機能し、冷凍サイクル50を流れる冷媒を減圧して膨張させるものである。膨張弁53は、例えば、電子式膨張弁等の流量制御手段、毛細管、感温式膨張弁等の冷媒流量調節手段で構成するとよい。 The expansion valve 53 functions as a decompression device, a throttling device, etc., and decompresses and expands the refrigerant flowing through the refrigeration cycle 50. The expansion valve 53 may be constituted by a flow rate control means such as an electronic expansion valve, or a refrigerant flow rate adjustment means such as a capillary tube or a temperature-sensitive expansion valve.
 蒸発器54は、例えば冷却対象との熱交換により冷凍サイクル50を流れる冷媒を蒸発させて気体(ガス)状の冷媒にする(蒸発ガス化させる)ものである。冷媒との熱交換により、冷却対象は、直接又は間接に冷却されることになる。また、蒸発器54は、熱交換を促すための蒸発器ファン55bを有しているものとする。蒸発器ファン55bは、例えば風量を調整できるタイプの送風機で構成するとよい。 The evaporator 54 evaporates the refrigerant flowing through the refrigeration cycle 50 by heat exchange with the object to be cooled, for example, to form a gas (gas) refrigerant (evaporate gas). The object to be cooled is cooled directly or indirectly by heat exchange with the refrigerant. The evaporator 54 is assumed to have an evaporator fan 55b for promoting heat exchange. For example, the evaporator fan 55b may be a blower of a type that can adjust the air volume.
<冷凍サイクル装置100Bに使用する冷媒>
 このような構成の冷凍サイクル装置100Bにおいては、例えば、HFO冷媒、HC冷媒、二酸化炭素、アンモニア、水などの地球温暖化に対する影響が小さい冷媒を用いることができる。あるいは、例えばコスト、性能の観点から地球温暖化係数の高いHFC冷媒などを用いることもできる。
<Refrigerant used for refrigeration cycle apparatus 100B>
In the refrigeration cycle apparatus 100B having such a configuration, for example, a refrigerant having a small influence on global warming such as an HFO refrigerant, an HC refrigerant, carbon dioxide, ammonia, and water can be used. Alternatively, for example, an HFC refrigerant having a high global warming potential can be used from the viewpoint of cost and performance.
<冷凍サイクル装置100Bの動作>
 以上のような冷凍サイクル装置100Bの各構成機器の動作等を、各冷媒回路を循環する冷媒の流れに基づいて説明する。
<Operation of refrigeration cycle apparatus 100B>
The operation | movement of each component apparatus of the above refrigeration cycle apparatuses 100B etc. are demonstrated based on the flow of the refrigerant | coolant which circulates through each refrigerant circuit.
 圧縮機51は、冷媒を吸入し、圧縮して高温、高圧の状態にして吐出する。吐出した冷媒は凝縮器52へ流入する。凝縮器52は、凝縮器ファン55aから供給される外気と冷媒との間で熱交換を行い、冷媒を凝縮液化する。凝縮液化した冷媒は膨張弁53を通過する。膨張弁53は凝縮液化した冷媒を減圧する。減圧した冷媒は蒸発器54に流入する。蒸発器54は冷却対象との熱交換により冷媒を蒸発ガス化する。蒸発ガス化した冷媒を圧縮機51が吸入する。 Compressor 51 sucks in refrigerant, compresses it, discharges it in a high temperature and high pressure state. The discharged refrigerant flows into the condenser 52. The condenser 52 exchanges heat between the outside air supplied from the condenser fan 55a and the refrigerant, and condenses and liquefies the refrigerant. The condensed and liquefied refrigerant passes through the expansion valve 53. The expansion valve 53 depressurizes the condensed and liquefied refrigerant. The decompressed refrigerant flows into the evaporator 54. The evaporator 54 evaporates the refrigerant by heat exchange with the object to be cooled. The compressor 51 sucks the evaporated gas refrigerant.
<蒸発器54の仕様>
 蒸発器54として、図2で示した構成と同様の構成を有し、実施の形態1で説明した低元側蒸発器14の仕様の少なくとも1つを採用しているものとする。
 このように冷凍サイクル装置100Bを構成することにより、実施の形態1に係る冷凍サイクル装置100Aが奏する効果と同様の効果を奏することが可能になる。
<Specifications of the evaporator 54>
It is assumed that the evaporator 54 has the same configuration as that shown in FIG. 2 and employs at least one of the specifications of the low-source evaporator 14 described in the first embodiment.
By configuring the refrigeration cycle apparatus 100B in this manner, it is possible to achieve the same effects as the effects exhibited by the refrigeration cycle apparatus 100A according to Embodiment 1.
 冷凍サイクル装置100Bは、冷凍サイクル装置100Aと同様に、冷凍空調装置(例えば、冷凍装置、冷蔵装置、ルームエアコン、パッケージエアコン、ビル用マルチエアコン等)、ヒートポンプ給湯機等、冷凍サイクルを備えた装置に適用して利用することができる。 The refrigeration cycle apparatus 100B is an apparatus equipped with a refrigeration cycle, such as a refrigeration air conditioner (for example, a refrigeration apparatus, a refrigeration apparatus, a room air conditioner, a packaged air conditioner, a multi air conditioner for buildings), a heat pump water heater, etc. It can be used by applying to.
 10 低元側冷凍サイクル、11 低元側圧縮機、12 低元側凝縮器、13 低元側膨張弁、14 低元側蒸発器、15 補助放熱器、16 冷媒間熱交換器、18 冷媒配管、20 高元側冷凍サイクル、21 高元側圧縮機、22 高元側凝縮器、23 高元側膨張弁、24 高元側蒸発器、25 高元側凝縮器ファン、28 冷媒配管、31 伝熱管、32 フィン、32A 第1のフィン、32B 第2のフィン、50 冷凍サイクル、51 圧縮機、52 凝縮器、53 膨張弁、54 蒸発器、55a 凝縮器ファン、55b 蒸発器ファン、58 冷媒配管、100A 冷凍サイクル装置、100B 冷凍サイクル装置。 10 Low-source-side refrigeration cycle, 11 Low-source-side compressor, 12 Low-source-side condenser, 13 Low-source-side expansion valve, 14 Low-source-side evaporator, 15 Auxiliary radiator, 16 Inter-refrigerant heat exchanger, 18 Refrigerant piping , 20 Higher refrigeration cycle, 21 Higher compressor, 22 Higher condenser, 23 Higher expansion valve, 24 Higher evaporator, 25 Higher condenser fan, 28 Refrigerant piping, 31 Transmission Heat pipe, 32 fin, 32A 1st fin, 32B 2nd fin, 50 refrigeration cycle, 51 compressor, 52 condenser, 53 expansion valve, 54 evaporator, 55a condenser fan, 55b evaporator fan, 58 refrigerant piping , 100A refrigeration cycle apparatus, 100B refrigeration cycle apparatus.

Claims (6)

  1.  圧縮機、凝縮器、膨張弁、及び、蒸発器を順に配管接続した冷凍サイクルを備えた冷凍サイクル装置であって、
     前記蒸発器は、
     空気の流れ方向に沿って少なくとも一列に並べられた複数のフィンと、
     前記複数のフィンのそれぞれに交差して配置された複数の伝熱管と、を有し、
     前記複数のフィンは、前記空気の流れ方向において、最上流に配置された第1のフィンを含み、
     前記複数の伝熱管のうち前記第1のフィンにおける伝熱管の風上側端部から前記第1のフィンの前縁までの距離Lを6.5mm≦L≦8.5mmの範囲とした
     冷凍サイクル装置。
    A refrigeration cycle apparatus comprising a refrigeration cycle in which a compressor, a condenser, an expansion valve, and an evaporator are connected in order,
    The evaporator is
    A plurality of fins arranged in at least one row along the air flow direction;
    A plurality of heat transfer tubes arranged to intersect each of the plurality of fins,
    The plurality of fins include a first fin disposed in the uppermost stream in the air flow direction,
    A refrigeration cycle apparatus in which the distance L from the windward end of the heat transfer tube in the first fin to the front edge of the first fin among the plurality of heat transfer tubes is in a range of 6.5 mm ≦ L ≦ 8.5 mm .
  2.  前記複数のフィンが、空気の流れ方向に直交する方向に間隔をあけて平行に複数列となるように配置されており、
     前記複数のフィンのうち平行に隣接するフィンの間隔であるフィンピッチをFp、
     前記複数のフィンのそれぞれの板厚をtf、とし、
     (Fp-tf)×Lを、40mm≦(Fp-tf)×L≦52mmの範囲とした
     請求項1に記載の冷凍サイクル装置。
    The plurality of fins are arranged in parallel to form a plurality of rows at intervals in a direction perpendicular to the air flow direction,
    A fin pitch which is an interval between fins adjacent in parallel among the plurality of fins is Fp,
    The thickness of each of the plurality of fins is tf,
    The refrigeration cycle apparatus according to claim 1, wherein (Fp-tf) x L is in a range of 40 mm 2 ≤ (Fp-tf) x L ≤ 52 mm 2 .
  3.  前記複数のフィンのそれぞれは長方形状に構成され、短手方向が空気の流れ方向となるように配置され、
     前記複数の伝熱管は前記複数のフィンのそれぞれの長手方向に配列されており、
     前記複数のフィンのうち平行に隣接するフィンの間隔であるフィンピッチをFp、
     前記複数のフィンのそれぞれの板厚をtf、
     前記複数の伝熱管のうちフィンの長手方向に隣接する伝熱管の間隔である段ピッチをDp、
     前記複数の伝熱管のそれぞれの管径をdo、
     (Fp-tf)×(Dp/2-do)を面積Ajとし、
     前記Ajを21mm≦Aj≦57mmの範囲とした
     請求項2に記載の冷凍サイクル装置。
    Each of the plurality of fins is configured in a rectangular shape, and is arranged such that the short direction is the air flow direction,
    The plurality of heat transfer tubes are arranged in the longitudinal direction of each of the plurality of fins,
    A fin pitch which is an interval between fins adjacent in parallel among the plurality of fins is Fp,
    The thickness of each of the plurality of fins is tf,
    The step pitch, which is the interval between the heat transfer tubes adjacent in the longitudinal direction of the fin among the plurality of heat transfer tubes, is Dp,
    The tube diameter of each of the plurality of heat transfer tubes is do,
    (Fp−tf) × (Dp / 2−do) is defined as area Aj,
    The refrigeration cycle apparatus according to claim 2, wherein the Aj is in a range of 21 mm 2 ≦ Aj ≦ 57 mm 2 .
  4.  前記複数のフィンのそれぞれは長方形状に構成され、短手方向が空気の流れ方向となるように配置され、
     前記複数の伝熱管は前記複数のフィンのそれぞれの長手方向に配列されており、
     前記複数のフィンのうち平行に隣接するフィンの間隔であるフィンピッチをFp、
     前記複数のフィンのそれぞれの板厚をtf、
     前記複数の伝熱管のうちフィンの長手方向に隣接する伝熱管の間隔である段ピッチをDp、
     前記複数の伝熱管のそれぞれの管径をdo、
     前記複数の伝熱管のうち空気の流れ方向に隣接する伝熱管の間隔である列ピッチをRp、
     (Fp-tf)×(Dp/2-do)×(Rp-do)を容積Vjとし、
     前記Vjを250mm≦Vj≦800mmの範囲とした
     請求項2又は3に記載の冷凍サイクル装置。
    Each of the plurality of fins is configured in a rectangular shape, and is arranged such that the short direction is the air flow direction,
    The plurality of heat transfer tubes are arranged in the longitudinal direction of each of the plurality of fins,
    A fin pitch which is an interval between fins adjacent in parallel among the plurality of fins is Fp,
    The thickness of each of the plurality of fins is tf,
    The step pitch, which is the interval between the heat transfer tubes adjacent in the longitudinal direction of the fin among the plurality of heat transfer tubes, is Dp,
    The tube diameter of each of the plurality of heat transfer tubes is do,
    Among the plurality of heat transfer tubes, the row pitch that is the interval between the heat transfer tubes adjacent in the air flow direction is Rp,
    (Fp−tf) × (Dp / 2−do) × (Rp−do) is defined as a volume Vj,
    The refrigeration cycle apparatus according to claim 2 or 3, wherein the Vj is in a range of 250 mm 3 ≤ Vj ≤ 800 mm 3 .
  5.  第1圧縮機、放熱器、第1凝縮器、第1膨張弁、及び、第1蒸発器を順に配管接続した第1冷凍サイクルと、
     第2圧縮機、第2凝縮器、第2膨張弁、及び、第2蒸発器を順に配管接続した第2冷凍サイクルと、を有し、
     前記第1凝縮器と前記第2蒸発器とで熱交換させるように構成したものであって、
     前記第1蒸発器を請求項1~4のいずれか一項に記載の前記蒸発器で構成した
     冷凍サイクル装置。
    A first refrigeration cycle in which a first compressor, a radiator, a first condenser, a first expansion valve, and a first evaporator are connected in order,
    A second refrigeration cycle in which a second compressor, a second condenser, a second expansion valve, and a second evaporator are connected in order,
    The first condenser and the second evaporator are configured to exchange heat,
    A refrigeration cycle apparatus, wherein the first evaporator includes the evaporator according to any one of claims 1 to 4.
  6.  前記第1冷凍サイクルを循環させる冷媒として、二酸化炭素を用い、
     前記第2冷凍サイクルを循環させる冷媒として、HFO冷媒、HC冷媒、二酸化炭素、アンモニア、水、HFC冷媒のいずれか、または、これらを含む混合冷媒を用いる
     請求項5に記載の冷凍サイクル装置。
    Carbon dioxide is used as a refrigerant for circulating the first refrigeration cycle,
    The refrigeration cycle apparatus according to claim 5, wherein any one of HFO refrigerant, HC refrigerant, carbon dioxide, ammonia, water, HFC refrigerant, or a mixed refrigerant containing these is used as the refrigerant circulating in the second refrigeration cycle.
PCT/JP2016/070168 2016-07-07 2016-07-07 Refrigeration cycle device WO2018008129A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/070168 WO2018008129A1 (en) 2016-07-07 2016-07-07 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/070168 WO2018008129A1 (en) 2016-07-07 2016-07-07 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2018008129A1 true WO2018008129A1 (en) 2018-01-11

Family

ID=60912592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070168 WO2018008129A1 (en) 2016-07-07 2016-07-07 Refrigeration cycle device

Country Status (1)

Country Link
WO (1) WO2018008129A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022537628A (en) * 2019-05-02 2022-08-29 アー・ファウ・アー ライフサイエンス ゲー・エム・ベー・ハー biological binding molecule
WO2022180821A1 (en) * 2021-02-26 2022-09-01 三菱電機株式会社 Refrigeration cycle device
WO2024023986A1 (en) * 2022-07-27 2024-02-01 三菱電機株式会社 Two-stage refrigeration device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01111177A (en) * 1987-10-23 1989-04-27 Hitachi Ltd Heat exchanger with oblique waveform fin
JP2001304783A (en) * 2000-04-14 2001-10-31 Daikin Ind Ltd Outdoor heat exchanger, indoor heat exchanger and air conditioner
JP2007240128A (en) * 2006-03-13 2007-09-20 Mitsubishi Electric Corp Fin for heat exchanger, heat exchanger, and air conditioner
JP2008249168A (en) * 2007-03-29 2008-10-16 Matsushita Electric Ind Co Ltd Heat exchanger
JP2009210133A (en) * 2008-02-29 2009-09-17 Mitsubishi Electric Corp Heat pump water heater
JP2009270731A (en) * 2008-04-30 2009-11-19 Daikin Ind Ltd Fin tube type heat exchanger, and refrigerating device and hot water supply device comprising the same
WO2015132964A1 (en) * 2014-03-07 2015-09-11 三菱電機株式会社 Refrigeration cycle device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01111177A (en) * 1987-10-23 1989-04-27 Hitachi Ltd Heat exchanger with oblique waveform fin
JP2001304783A (en) * 2000-04-14 2001-10-31 Daikin Ind Ltd Outdoor heat exchanger, indoor heat exchanger and air conditioner
JP2007240128A (en) * 2006-03-13 2007-09-20 Mitsubishi Electric Corp Fin for heat exchanger, heat exchanger, and air conditioner
JP2008249168A (en) * 2007-03-29 2008-10-16 Matsushita Electric Ind Co Ltd Heat exchanger
JP2009210133A (en) * 2008-02-29 2009-09-17 Mitsubishi Electric Corp Heat pump water heater
JP2009270731A (en) * 2008-04-30 2009-11-19 Daikin Ind Ltd Fin tube type heat exchanger, and refrigerating device and hot water supply device comprising the same
WO2015132964A1 (en) * 2014-03-07 2015-09-11 三菱電機株式会社 Refrigeration cycle device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022537628A (en) * 2019-05-02 2022-08-29 アー・ファウ・アー ライフサイエンス ゲー・エム・ベー・ハー biological binding molecule
WO2022180821A1 (en) * 2021-02-26 2022-09-01 三菱電機株式会社 Refrigeration cycle device
GB2618030A (en) * 2021-02-26 2023-10-25 Mitsubishi Electric Corp Refrigeration cycle device
WO2024023986A1 (en) * 2022-07-27 2024-02-01 三菱電機株式会社 Two-stage refrigeration device

Similar Documents

Publication Publication Date Title
JP6125000B2 (en) Dual refrigeration equipment
JP4358832B2 (en) Refrigeration air conditioner
WO2018047416A1 (en) Air conditioner
KR0142506B1 (en) Airconditioner employing non-azeotrope refrigerant
JP2008530498A (en) HVAC system with powered supercooler
US10907866B2 (en) Refrigerant cycle apparatus and air conditioning apparatus including the same
KR101797176B1 (en) Dual pipe structure for internal heat exchanger
JP2009133624A (en) Refrigerating/air-conditioning device
JP4118254B2 (en) Refrigeration equipment
WO2018008129A1 (en) Refrigeration cycle device
WO2010098005A1 (en) Binary heat pump and refrigerator
JP2008008593A (en) Refrigeration system
JP6161787B2 (en) Refrigeration cycle equipment
JP5506638B2 (en) Refrigeration equipment
JP2012102992A (en) Parallel flow multi-stage condensation subcooler for outdoor unit
JP4608303B2 (en) Vapor compression heat pump
WO2012002248A1 (en) Refrigeration apparatus
WO2014203500A1 (en) Air conditioner
JP5409747B2 (en) Dual refrigeration equipment
JP6091567B2 (en) Refrigerator and refrigeration equipment
JP7146117B2 (en) refrigeration cycle equipment
CN110914608A (en) Refrigeration device and method for operating refrigeration device
JP2007240040A (en) Refrigerating system and its control method
JP2006003023A (en) Refrigerating unit
JP5474140B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16908173

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16908173

Country of ref document: EP

Kind code of ref document: A1