WO2024023986A1 - Two-stage refrigeration device - Google Patents

Two-stage refrigeration device Download PDF

Info

Publication number
WO2024023986A1
WO2024023986A1 PCT/JP2022/029000 JP2022029000W WO2024023986A1 WO 2024023986 A1 WO2024023986 A1 WO 2024023986A1 JP 2022029000 W JP2022029000 W JP 2022029000W WO 2024023986 A1 WO2024023986 A1 WO 2024023986A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
heat
compressor
temperature
Prior art date
Application number
PCT/JP2022/029000
Other languages
French (fr)
Japanese (ja)
Inventor
智隆 石川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/029000 priority Critical patent/WO2024023986A1/en
Publication of WO2024023986A1 publication Critical patent/WO2024023986A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit

Definitions

  • the present disclosure relates to a dual refrigeration device.
  • a two-stage refrigeration cycle apparatus (two-stage refrigeration cycle apparatus) is used in a refrigeration system with a relatively low evaporation temperature used for refrigeration or freezing.
  • Patent Document 1 International Publication No. 2018/008129 (Patent Document 1) describes a binary system that performs heat exchange between a low-stage-side refrigerant and a high-stage-side refrigerant.
  • An example of a refrigeration cycle device is disclosed.
  • the degree of superheating of the refrigerant sucked into the compressor is appropriately controlled, and the system is operated so that the discharge temperature does not rise excessively.
  • the discharge temperature becomes high.
  • a refrigerant with a high specific heat ratio such as R32
  • the heat exchange amount of the cascade heat exchanger that exchanges heat between the two refrigerants in the binary refrigeration cycle increases, The temperature of the suction refrigerant also increases. For this reason, there is a possibility that the temperature of the discharged refrigerant on the high-end side exceeds the upper limit of heat resistance.
  • An object of the present disclosure is to provide a binary refrigeration system that can suppress the temperature of the refrigerant discharged from the compressor on the high side.
  • the present disclosure relates to a binary refrigeration system that cools the inside of a freezer using a first refrigerant and a second refrigerant having a lower specific heat ratio than the first refrigerant.
  • the binary refrigeration system includes a first compressor, a first heat exchanger, a first expansion valve, a second heat exchanger, a second compressor, a third heat exchanger, and a second expansion valve.
  • the first heat exchanger is configured to exchange heat between the first refrigerant and the second refrigerant.
  • the second heat exchanger is configured to exchange heat between the first refrigerant and the air within the freezer.
  • the third heat exchanger is configured to exchange heat between the second refrigerant and the air outside the freezer.
  • the first compressor, the first heat exchanger, the first expansion valve, and the second heat exchanger constitute a first refrigerant circuit in which the first refrigerant circulates.
  • the second compressor, the third heat exchanger, the second expansion valve, and the first heat exchanger constitute a second refrigerant circuit in which the second refrigerant circulates.
  • the dual refrigeration system further includes a cooling device configured to cool the first refrigerant flowing from the first compressor to the first heat exchanger.
  • the cooling device is configured to cool the first refrigerant on the low source side, the temperature of the refrigerant discharged from the compressor on the high source side is suppressed to an appropriate temperature. can be kept.
  • FIG. 1 is a diagram showing the configuration of a binary refrigeration system 1000 according to the first embodiment.
  • FIG. 3 is a diagram illustrating changes in refrigerant temperature when cascade heat exchangers exchange heat in a counterflow relationship.
  • FIG. 3 is a diagram illustrating changes in refrigerant temperature when cascade heat exchangers exchange heat in a parallel flow relationship. It is a flow chart for explaining control of compressor 100 on the high side. It is a flowchart for explaining control of the expansion valve 102 on the high side. It is a flowchart for explaining the control of the compressor 10 on the low power side. It is a flowchart for explaining control of the expansion valve 15 on the low base side. 5 is a flowchart for explaining control of fan 150F of intercooler 150.
  • FIG. 2 is a diagram showing the configuration of a binary refrigeration system 2000 according to a second embodiment. It is a flow chart for explaining control of expansion valve 302 of refrigerant circuit C3. It is a flow chart for explaining control of compressor 300 of refrigerant circuit C3.
  • FIG. 1 is a diagram showing the configuration of a binary refrigeration system 1000 according to the first embodiment.
  • a binary refrigeration system 1000 shown in FIG. 1 includes an outdoor unit 1 installed outdoors and an indoor unit 2 installed inside a freezer.
  • the outdoor unit 1 includes a compressor 10, an intercooler 150, a heat exchanger 12, a compressor 100, a heat exchanger 101, a fan 101F, an expansion valve 102, pressure sensors 17 and 105, and a temperature It includes sensors 18, 103, and 106 and a control device 200.
  • the indoor unit 2 includes an expansion valve 15, a heat exchanger 16, and a fan 16F.
  • the outdoor unit 1 includes a portion of a refrigerant circuit C1 that is a low-base refrigerant circuit, and a refrigerant circuit C2 that is a high-base refrigerant circuit.
  • the indoor unit 2 includes the remainder of the refrigerant circuit C1.
  • the refrigerant circuit C1 uses the first refrigerant.
  • Refrigerant circuit C2 uses the second refrigerant.
  • the first refrigerant has a lower boiling point than the second refrigerant at the same pressure. Further, the specific heat ratio of the second refrigerant is higher than that of the first refrigerant.
  • the second refrigerant for example, R32 or a mixed refrigerant containing R32 can be used.
  • As the first refrigerant for example, CO 2 or a mixed refrigerant containing CO 2 can be used.
  • the first refrigerant filled in the low-source refrigerant circuit C1 passes through an extension pipe that connects the indoor unit 2 and the outdoor unit 1. For this reason, it is preferable to select as the first refrigerant a refrigerant that is nonflammable, has a small temperature drop due to pressure loss, and has a low global warming potential (GWP) and whose main component is CO 2 .
  • the first refrigerant may be a low boiling point refrigerant other than CO 2 .
  • the second refrigerant filled in the refrigerant circuit C2 on the high side does not pass through the extension pipe, and even if it leaks, it will not be directly released into the freezer, which is frequently visited by users. For this reason, it is preferable to select a refrigerant (for example, R32, R290, R1234yf, R1234ze (E)) that has a high coefficient of performance (COP) of the refrigerant circuit and a relatively small GWP as the second refrigerant.
  • a refrigerant for example, R32, R290, R1234yf, R1234ze (E)
  • COP coefficient of performance
  • the refrigerant circuit C2 is designed to have a lower pressure resistance than the low-source side refrigerant circuit C1. Good too.
  • arrows indicate the flow of refrigerant during cooling operation of the binary refrigeration system.
  • the first refrigerant circulates through the compressor 10, the intercooler 150, the heat exchanger 12, the expansion valve 15, and the heat exchanger 16 in this order and returns to the compressor 10.
  • the heat exchanger 16 operates as an evaporator.
  • a liquid receiver may be disposed between the heat exchanger 12 and the expansion valve 15.
  • the first refrigerant in the gas state compressed from the compressor 10 is cooled by the intercooler 150, and then flows into the heat exchanger 12, and the first refrigerant is Refrigerant condenses.
  • the condensed first refrigerant is expanded in the expansion valve 15 .
  • the first refrigerant exchanges heat with the air inside the refrigerator and evaporates in the heat exchanger 16 that functions as an evaporator.
  • the evaporated first refrigerant then returns to the compressor 10.
  • the compressor 10 is configured so that the operating frequency f1 can be changed within a predetermined range by inverter control.
  • the second refrigerant circulates through the compressor 100, the heat exchanger 101, the expansion valve 102, and the heat exchanger 12 in this order and returns to the compressor 100.
  • the heat exchanger 12 operates as an evaporator.
  • the heat exchanger 12 functions as a cascade condenser that exchanges heat between the first refrigerant and the second refrigerant.
  • the control device 200 controls the pressure sensor 105 and temperature sensor 106 arranged between the evaporation side outlet of the heat exchanger 12 and the suction section of the compressor 100 in order to bring the degree of superheat of the refrigerant sucked into the compressor 100 to a target value.
  • the expansion valve 102 is configured to control the expansion valve 102 based on the output.
  • the control device 200 also controls the operating frequency f1 of the compressor 10 based on the output of the pressure sensor 17 provided in the suction section of the compressor 10 in order to set the evaporation temperature of the refrigerant circuit C1 to a target value. It is composed of
  • control device 200 controls the expansion valve 15 based on the output of the temperature sensor 18 provided in the suction section of the compressor 10 in order to bring the degree of superheat of the refrigerant sucked into the compressor 10 to a target value. configured.
  • control device 200 controls the operating frequency f2 of the compressor 100 based on the output of the pressure sensor 105 provided at the discharge part of the compressor 100 in order to set the condensing temperature of the refrigerant circuit C1 to a target value. It is composed of
  • control device 200 controls the heat exchanger based on the output of a pressure sensor (not shown) disposed between the compressor 100 and the heat exchanger 101 in order to set the condensation temperature of the refrigerant circuit C2 to a target value. 101, the fan 101F is controlled.
  • control device 200 can maintain the refrigerant circuits C1 and C2 in a desired state.
  • the control device 200 includes a CPU (Central Processing Unit) 201, a memory 202 (ROM (Read Only Memory) and RAM (Random Access Memory)), an input/output buffer (not shown), and the like.
  • the CPU 201 expands a program stored in the ROM to a RAM or the like and executes the program.
  • the program stored in the ROM is a program in which the processing procedure of the control device 200 is written.
  • the control device 200 executes control of each device in the binary refrigeration system according to these programs. This control is not limited to processing by software, but can also be performed by dedicated hardware (electronic circuit).
  • control device 200 may be distributed in the indoor unit 2 and the outdoor unit 1, and may be connected through communication.
  • the binary refrigeration system 1000 of this embodiment includes a cooling device for cooling the first refrigerant between the compressor 10 and the heat exchanger 12 in the low-source refrigerant circuit C1.
  • a cooling device for cooling the first refrigerant between the compressor 10 and the heat exchanger 12 in the low-source refrigerant circuit C1.
  • an intercooler 150 which is an air-cooled heat exchanger, is disposed as a cooling device to radiate heat from the first refrigerant in a superheated gas state.
  • the intercooler 150 and the fan 150F By providing the intercooler 150 and the fan 150F, a portion of the condensed heat on the low source side can be radiated to the atmosphere. Therefore, the amount of heat that needs to be processed in the refrigerant circuit C2 on the high-end side can be reduced, so the sizes of the compressor 100, heat exchanger 101, and heat exchanger 12 can be reduced, and power consumption can also be reduced. can.
  • the intercooler 150 may be a heat exchanger in which the heat exchanger 101 and the fin portion are integrated.
  • the control device 200 controls the fan 150F of the intercooler 150 based on the output of the temperature sensor 103 disposed between the compressor 100 and the heat exchanger 101 in order to set the discharge refrigerant temperature of the refrigerant circuit C2 to the target value. configured to control.
  • the heat exchanger 12 is configured so that the first refrigerant and the second refrigerant exchange heat in a parallel flow relationship. This suppresses an increase in the degree of superheating of the refrigerant sucked into the compressor 100, thereby suppressing an increase in the temperature of the refrigerant discharged.
  • the difference in refrigerant temperature between counterflow and parallel flow will be explained below.
  • FIG. 2 is a diagram illustrating changes in refrigerant temperature when the cascade heat exchanger exchanges heat in a counterflow relationship.
  • temperature T1 indicates the temperature of the first refrigerant on the low-temperature side
  • temperature T2 indicates the temperature of the second refrigerant on the high-temperature side.
  • the vertical axis indicates the refrigerant temperature T
  • the horizontal axis indicates the distance from the refrigerant inlet to the heat exchange position when considering the second refrigerant in the heat exchanger.
  • the first refrigerant flows in the opposite direction to the second refrigerant, as shown by the arrows in FIG. Therefore, since the temperature difference Tw1 can be ensured regardless of the heat exchange position, counterflow generally has better heat exchange performance.
  • the first refrigerant on the low source side exchanges heat with the outlet section of the second refrigerant on the high source side when the temperature is high (at the refrigerant inlet), the degree of superheating SH2 of the suction refrigerant on the high source side increases. It ends up.
  • FIG. 3 is a diagram illustrating changes in refrigerant temperature when cascade heat exchangers exchange heat in a parallel flow relationship.
  • temperature T1 indicates the temperature of the first refrigerant on the low-temperature side
  • temperature T2 indicates the temperature of the second refrigerant on the high-temperature side.
  • the vertical axis indicates the refrigerant temperature T
  • the horizontal axis indicates the distance from the refrigerant inlet to the heat exchange position when considering the second refrigerant in the heat exchanger.
  • the cascade heat exchanger When the cascade heat exchanger is in a parallel flow relationship, the first refrigerant flows in the same direction as the second refrigerant, as shown by the arrows in FIG. Therefore, the amount of heat exchanged is large at the inlet section where the temperature difference Tw2 is large, but the amount of heat exchanged is small at the outlet section because the temperature difference is small, so generally parallel flow has better heat exchange performance than counterflow. becomes worse.
  • the heat exchanger 12 is configured to exchange heat in parallel flow.
  • the first refrigerant on the low-temperature side exchanges heat with the outlet of the second refrigerant on the high-temperature side when the temperature is low (at the outlet of the refrigerant).
  • the degree of superheating SH2 of the suction refrigerant on the high side is smaller than the degree of superheating SH2 in the case of counterflow shown in FIG.
  • FIG. 4 is a flowchart for explaining control of the compressor 100 on the high end side.
  • step S11 the control device 200 uses the pressure sensor 105 to detect the pressure Ps2 of the low pressure section of the high-side refrigerant circuit C2. Subsequently, in step S12, the control device 200 compares the pressure Ps2 and the target pressure value Ps2*. If Ps2>Ps2* holds true (YES in S12), control device 200 reduces operating frequency f2 of compressor 100 in step S13. On the other hand, if Ps2>Ps2* does not hold (NO in S12), control device 200 increases operating frequency f2 of compressor 100 in step S14. By repeatedly performing this process at regular intervals, the pressure Ps2 in the low pressure section of the high-side refrigerant circuit C2 is maintained near the target value Ps2*.
  • FIG. 5 is a flowchart for explaining control of the expansion valve 102 on the high side.
  • the control device 200 uses the pressure sensor 105 and the temperature sensor 106 to detect the degree of superheat SH2 of the refrigerant sucked into the high-end refrigerant circuit C2.
  • the saturation temperature corresponding to the pressure detected by the pressure sensor 105 is determined by referring to a saturation temperature table stored in advance, and the degree of superheating SH2 is obtained by calculating the difference between the temperature detected by the temperature sensor 106 and the saturation temperature. be able to.
  • step S22 the control device 200 compares the degree of superheat SH2 and the target degree of superheat SH2*. If SH2>SH2* holds true (YES in S22), the control device 200 increases the opening degree of the expansion valve 102 in step S23. On the other hand, if SH2>SH2* does not hold (NO in S22), the control device 200 decreases the opening degree of the expansion valve 102 in step S24. By repeatedly performing this process at regular intervals, the degree of superheat SH2 of the refrigerant sucked into the high-end refrigerant circuit C2 is maintained near the target degree of superheat SH2*.
  • FIG. 6 is a flowchart for explaining the control of the compressor 10 on the low-power side.
  • the control device 200 uses the pressure sensor 17 to detect the pressure Ps1 of the low pressure section of the low-source side refrigerant circuit C1.
  • the control device 200 compares the pressure Ps1 and the target pressure value Ps1*. If Ps1>Ps1* holds true (YES in S32), control device 200 reduces operating frequency f1 of compressor 100 in step S33. On the other hand, if Ps1>Ps1* does not hold (NO in S32), the control device 200 increases the operating frequency f1 of the compressor 100 in step S34. By repeatedly performing this process at regular intervals, the pressure Ps1 of the low pressure section of the low source side refrigerant circuit C1 is maintained near the target value Ps1*.
  • FIG. 7 is a flowchart for explaining control of the expansion valve 15 on the low base side.
  • the control device 200 uses the pressure sensor 17 and the temperature sensor 18 to detect the degree of superheat SH1 of the refrigerant sucked into the low-source refrigerant circuit C1.
  • the saturation temperature corresponding to the pressure detected by the pressure sensor 17 is determined by referring to a saturation temperature table stored in advance, and the degree of superheating SH1 is obtained by calculating the difference between the temperature detected by the temperature sensor 18 and the saturation temperature. be able to.
  • step S42 the control device 200 compares the degree of superheat SH1 and the target degree of superheat SH1*. If SH1>SH1* holds true (YES in S42), the control device 200 increases the opening degree of the expansion valve 15 in step S43. On the other hand, if SH1>SH1* does not hold (NO in S42), the control device 200 reduces the opening degree of the expansion valve 15 in step S44. By repeatedly performing this process at regular intervals, the degree of superheat SH1 of the refrigerant sucked into the low-source side refrigerant circuit C1 is maintained near the target degree of superheat SH1*.
  • FIG. 8 is a flowchart for explaining control of fan 150F of intercooler 150.
  • step S51 the control device 200 uses the temperature sensor 103 to detect the discharge temperature Td2 of the refrigerant in the high-end refrigerant circuit C2. Subsequently, in step S52, the control device 200 compares the discharge temperature Td2 and the target discharge temperature Td2*. If Td2>Td2* holds true (YES in S52), control device 200 increases the rotational speed of fan 150F of intercooler 150 in step S53. This increases the amount of cooling of the first refrigerant in the intercooler 150. On the other hand, if Td2>Td2* does not hold (NO in S52), control device 200 reduces the rotation speed of fan 150F of intercooler 150 in step S54. By repeatedly performing this process at regular intervals, the discharge temperature Td2 of the refrigerant in the high-end refrigerant circuit C2 is maintained near the target discharge temperature Td2*.
  • the intercooler 150 is used as a cooling device. Therefore, part of the condensation heat on the low-source side can be radiated to the atmosphere. For this reason, it is possible to prevent the refrigerant temperature in the high-end refrigerant circuit C2 from increasing, so that the discharge temperature Td2 of the compressor 100 can be set around the target temperature Td2*, which is below the heat-resistant temperature. In addition, since the amount of heat that needs to be processed in the refrigerant circuit C2 on the high-end side can be reduced, the sizes of the compressor 100, heat exchanger 101, and heat exchanger 12 can be reduced, and power consumption can also be reduced. can.
  • the heat exchanger 12 which is a cascade heat exchanger, is configured to exchange heat in parallel flow, it is possible to suppress an increase in the degree of superheat SH2 of the suction refrigerant.
  • FIG. 9 is a diagram showing the configuration of a binary refrigeration system 2000 according to the second embodiment.
  • a binary refrigeration system 2000 shown in FIG. 9 includes an outdoor unit 2001 installed outdoors and an indoor unit 2 installed inside the freezer.
  • the indoor unit 2 is the same as in Embodiment 1, so the description will not be repeated.
  • Outdoor unit 2001 includes a refrigerant circuit C3 in place of intercooler 150 and fan 150F in the configuration of outdoor unit 1 in FIG.
  • the other configuration of outdoor unit 2001 is the same as outdoor unit 1.
  • Refrigerant circuit C3 includes a compressor 300, a heat exchanger 301, a fan 301F, an expansion valve 302, a heat exchanger 312, temperature sensors 303 and 306, and a pressure sensor 305.
  • Refrigerant circuit C3 uses the third refrigerant.
  • the specific heat ratio of the second refrigerant is higher than the specific heat ratio of the first refrigerant. Further, the specific heat ratio of the third refrigerant is lower than the specific heat ratio of the second refrigerant circulating in the refrigerant circuit C2.
  • the first refrigerant for example, CO 2 or a mixed refrigerant containing CO 2 can be used.
  • the second refrigerant circulating in the refrigerant circuit C2 for example, R32 or a mixed refrigerant containing R32 can be used.
  • the intercooler 150 and the fan 150F cooled the first refrigerant circulating in the lower-side refrigerant circuit C1.
  • the first refrigerant is cooled by a refrigerant circuit C3, which is a refrigeration cycle different from the high base cycle and the low base cycle, as a cooling device.
  • FIG. 10 is a flowchart for explaining control of the expansion valve 302 of the refrigerant circuit C3.
  • step S111 the control device 200 uses the pressure sensor 305 and the temperature sensor 306 to detect the degree of superheat SH3 of the refrigerant sucked into the refrigerant circuit C3.
  • the saturation temperature corresponding to the pressure detected by the pressure sensor 305 is determined by referring to a saturation temperature table stored in advance, and the degree of superheating SH3 is obtained by calculating the difference between the temperature detected by the temperature sensor 306 and the saturation temperature. be able to.
  • step S112 the control device 200 compares the degree of superheat SH3 and the target degree of superheat SH3*. If SH3>SH3* holds true (YES in S112), control device 200 increases the opening degree of expansion valve 302 in step S113. On the other hand, if SH3>SH3* does not hold (NO in S112), the control device 200 decreases the opening degree of the expansion valve 302 in step S114. By repeatedly performing this process at regular intervals, the degree of superheat SH3 of the refrigerant sucked into the refrigerant circuit C3 is maintained near the target degree of superheat SH3*.
  • FIG. 11 is a flowchart for explaining the control of the compressor 300 of the refrigerant circuit C3.
  • step S121 the control device 200 uses the temperature sensor 103 to detect the discharge temperature Td2 of the refrigerant in the high-side refrigerant circuit C2. Subsequently, in step S122, the control device 200 compares the discharge temperature Td2 and the target discharge temperature Td2*. If Td2>Td2* holds true (YES in S122), control device 200 increases operating frequency f3 of compressor 300 in step S123. This increases the amount of cooling of the first refrigerant in the heat exchanger 312 of the refrigerant circuit C3. On the other hand, if Td2>Td2* does not hold (NO in S122), control device 200 decreases operating frequency f3 of compressor 300 in step S124. By repeatedly performing this process at regular intervals, the discharge temperature Td2 of the refrigerant in the high-end refrigerant circuit C2 is maintained near the target discharge temperature Td2*.
  • the refrigerant circuit C3 which is a separate refrigeration cycle, is used as a cooling device. Therefore, a part of the condensed heat amount on the low-source side can be radiated to the atmosphere through the third refrigerant. Therefore, the amount of heat exchanged in the heat exchanger 12 can be reduced, and an increase in the refrigerant temperature in the high-end refrigerant circuit C2 can be prevented.
  • the temperature can be set to an appropriate temperature around Td2*.
  • the sizes of the compressor 100, heat exchanger 101, and heat exchanger 12 can be reduced, and power consumption can also be reduced. can.
  • the heat exchanger 12 which is a cascade heat exchanger, is configured to exchange heat in parallel flow, it is possible to suppress an increase in the degree of superheating SH2 of the suction refrigerant.
  • the heat exchanger 312 which is a similar cascade heat exchanger, may also exchange heat in parallel flows, but the heat exchange efficiency is higher than that in counter-flows as shown in FIG. is more preferable because it increases.
  • the present disclosure relates to a binary refrigeration system that cools the inside of a freezer using a first refrigerant and a second refrigerant having a lower specific heat ratio than the first refrigerant.
  • the binary refrigeration apparatuses 1000, 2000 shown in FIGS. 1 and 9 include a first compressor 10, a first heat exchanger 12, a first expansion valve 15, a second heat exchanger 16, a second compressor 100, a third A heat exchanger 101 and a second expansion valve 102 are provided.
  • the first heat exchanger 12 is configured to exchange heat between the first refrigerant and the second refrigerant.
  • the second heat exchanger 16 is configured to exchange heat between the first refrigerant and the air within the freezer.
  • the third heat exchanger 101 is configured to exchange heat between the second refrigerant and the air outside the freezer.
  • the first compressor 10, the first heat exchanger 12, the first expansion valve 15, and the second heat exchanger 16 constitute a first refrigerant circuit C1 in which the first refrigerant circulates.
  • the second compressor 100, the third heat exchanger 101, the second expansion valve 102, and the first heat exchanger 12 constitute a second refrigerant circuit C2 in which the second refrigerant circulates.
  • the binary refrigeration apparatuses 1000 and 2000 further include a cooling device (intercooler 150 or refrigerant circuit C3) configured to cool the first refrigerant flowing from the first compressor 10 to the first heat exchanger 12.
  • the cooling device (intercooler 150) in FIG. 1 is configured to exchange heat between the air outside the freezer and the first refrigerant.
  • the cooling device in FIG. a fourth heat exchanger 301 configured to exchange heat between and a fifth heat exchanger 312 configured to perform heat exchange between the third refrigerant and the first refrigerant.
  • the specific heat ratio of the third refrigerant is lower than the specific heat ratio of the first refrigerant.
  • the third refrigerant is a refrigerant containing any one of R32, R1234yf, R1234ze(E), R134a, and R290.
  • the first heat exchanger 12 is a cascade heat exchanger configured so that the first refrigerant and the second refrigerant pass in a parallel flow relationship. It is.
  • the first refrigerant is a refrigerant containing CO2.
  • the second refrigerant is a refrigerant containing R32.

Abstract

A two-stage refrigeration device (1000) comprises a first heat exchanger (12), a second heat exchanger (16), and a third heat exchanger (101). The first heat exchanger (12) exchanges heat between a first refrigerant and a second refrigerant. The second heat exchanger (16) exchanges heat between the first refrigerant and air inside a freezer. The third heat exchanger (101) exchanges heat between the second refrigerant and air outside the freezer. The two-stage refrigeration device (1000) additionally comprises an intermediate cooler (150) configured to cool the first refrigerant directed from a first compressor (10) toward the first heat exchanger (12).

Description

二元冷凍装置dual refrigeration equipment
 本開示は、二元冷凍装置に関する。 The present disclosure relates to a dual refrigeration device.
 冷蔵または冷凍に利用する比較的蒸発温度が低い冷凍装置においては、二元冷凍サイクル装置(two-stage refrigeration cycle apparatus)が用いられる。たとえば、国際公開第2018/008129号(特許文献1)には、低元側(low-stage-side)冷媒と高元側(high-stage-side)冷媒との間で熱交換を行なう二元冷凍サイクル装置の一例が開示されている。 A two-stage refrigeration cycle apparatus (two-stage refrigeration cycle apparatus) is used in a refrigeration system with a relatively low evaporation temperature used for refrigeration or freezing. For example, International Publication No. 2018/008129 (Patent Document 1) describes a binary system that performs heat exchange between a low-stage-side refrigerant and a high-stage-side refrigerant. An example of a refrigeration cycle device is disclosed.
国際公開第2018/008129号International Publication No. 2018/008129
 二元冷凍サイクル装置の高元サイクルにおいては、圧縮機の吸入冷媒の過熱度が適切に制御され、吐出温度が過上昇しないように運転される。 In the high-end cycle of a binary refrigeration cycle device, the degree of superheating of the refrigerant sucked into the compressor is appropriately controlled, and the system is operated so that the discharge temperature does not rise excessively.
 しかし、冷媒は、比熱比(=定圧比熱/定積比熱)が高いと吐出温度が高くなる。たとえば、R32のような比熱比が高い冷媒を高元サイクルに適用した場合、二元冷凍サイクルにおける2冷媒間の熱交換を行なうカスケード熱交換器の熱交換量が大きくなれば、高元サイクルの吸入冷媒の温度も高くなる。このため、高元側の吐出冷媒温度が耐熱の上限値を超えてしまう可能性がある。 However, when the refrigerant has a high specific heat ratio (=specific heat at constant pressure/specific heat at constant volume), the discharge temperature becomes high. For example, when a refrigerant with a high specific heat ratio such as R32 is applied to the high-temperature cycle, if the heat exchange amount of the cascade heat exchanger that exchanges heat between the two refrigerants in the binary refrigeration cycle increases, The temperature of the suction refrigerant also increases. For this reason, there is a possibility that the temperature of the discharged refrigerant on the high-end side exceeds the upper limit of heat resistance.
 本開示の目的は、高元側の圧縮機の吐出冷媒温度を抑制することができる二元冷凍装置を提供することである。 An object of the present disclosure is to provide a binary refrigeration system that can suppress the temperature of the refrigerant discharged from the compressor on the high side.
 本開示は、第1冷媒と第1冷媒よりも比熱比が低い第2冷媒とを用いて冷凍庫内を冷却する二元冷凍装置に関する。二元冷凍装置は、第1圧縮機、第1熱交換器、第1膨張弁、第2熱交換器、第2圧縮機、第3熱交換器、第2膨張弁を備える。第1熱交換器は、第1冷媒と第2冷媒との間で熱交換が行なわれるように構成される。第2熱交換器は、第1冷媒と冷凍庫内の空気との間で熱交換が行なわれるように構成される。第3熱交換器は、第2冷媒と冷凍庫外の空気との間で熱交換が行なわれるように構成される。第1圧縮機、第1熱交換器、第1膨張弁、および第2熱交換器は、第1冷媒が循環する第1冷媒回路を構成する。第2圧縮機、第3熱交換器、第2膨張弁、および第1熱交換器は、第2冷媒が循環する第2冷媒回路を構成する。二元冷凍装置は、第1圧縮機から第1熱交換器に向かう第1冷媒を冷却するように構成される冷却装置をさらに備える。 The present disclosure relates to a binary refrigeration system that cools the inside of a freezer using a first refrigerant and a second refrigerant having a lower specific heat ratio than the first refrigerant. The binary refrigeration system includes a first compressor, a first heat exchanger, a first expansion valve, a second heat exchanger, a second compressor, a third heat exchanger, and a second expansion valve. The first heat exchanger is configured to exchange heat between the first refrigerant and the second refrigerant. The second heat exchanger is configured to exchange heat between the first refrigerant and the air within the freezer. The third heat exchanger is configured to exchange heat between the second refrigerant and the air outside the freezer. The first compressor, the first heat exchanger, the first expansion valve, and the second heat exchanger constitute a first refrigerant circuit in which the first refrigerant circulates. The second compressor, the third heat exchanger, the second expansion valve, and the first heat exchanger constitute a second refrigerant circuit in which the second refrigerant circulates. The dual refrigeration system further includes a cooling device configured to cool the first refrigerant flowing from the first compressor to the first heat exchanger.
 本開示の二元冷凍装置によれば、冷却装置で低元側の第1冷媒を冷却するように構成されているため、高元側の圧縮機の吐出冷媒温度を抑制し、適正な温度に保つことができる。 According to the dual refrigeration system of the present disclosure, since the cooling device is configured to cool the first refrigerant on the low source side, the temperature of the refrigerant discharged from the compressor on the high source side is suppressed to an appropriate temperature. can be kept.
実施の形態1の二元冷凍装置1000の構成を示す図である。FIG. 1 is a diagram showing the configuration of a binary refrigeration system 1000 according to the first embodiment. カスケード熱交換器が対向流の関係で熱交換する場合の冷媒温度の変化を説明する図である。FIG. 3 is a diagram illustrating changes in refrigerant temperature when cascade heat exchangers exchange heat in a counterflow relationship. カスケード熱交換器が並行流の関係で熱交換する場合の冷媒温度の変化を説明する図である。FIG. 3 is a diagram illustrating changes in refrigerant temperature when cascade heat exchangers exchange heat in a parallel flow relationship. 高元側の圧縮機100の制御を説明するためのフローチャートである。It is a flow chart for explaining control of compressor 100 on the high side. 高元側の膨張弁102の制御を説明するためのフローチャートである。It is a flowchart for explaining control of the expansion valve 102 on the high side. 低元側の圧縮機10の制御を説明するためのフローチャートである。It is a flowchart for explaining the control of the compressor 10 on the low power side. 低元側の膨張弁15の制御を説明するためのフローチャートである。It is a flowchart for explaining control of the expansion valve 15 on the low base side. 中間冷却器150のファン150Fの制御を説明するためのフローチャートである。5 is a flowchart for explaining control of fan 150F of intercooler 150. FIG. 実施の形態2の二元冷凍装置2000の構成を示す図である。FIG. 2 is a diagram showing the configuration of a binary refrigeration system 2000 according to a second embodiment. 冷媒回路C3の膨張弁302の制御を説明するためのフローチャートである。It is a flow chart for explaining control of expansion valve 302 of refrigerant circuit C3. 冷媒回路C3の圧縮機300の制御を説明するためのフローチャートである。It is a flow chart for explaining control of compressor 300 of refrigerant circuit C3.
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。以下では、複数の実施の形態について説明するが、各実施の形態で説明された構成を適宜組み合わせることは出願当初から予定されている。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Although a plurality of embodiments will be described below, it has been planned from the beginning of the application to appropriately combine the configurations described in each embodiment. In addition, the same reference numerals are attached to the same or corresponding parts in the drawings, and the description thereof will not be repeated.
 実施の形態1.
 図1は、実施の形態1の二元冷凍装置1000の構成を示す図である。図1に示す二元冷凍装置1000は、屋外に設置される室外機1と、冷凍庫内に設置される室内機2とで構成される。
Embodiment 1.
FIG. 1 is a diagram showing the configuration of a binary refrigeration system 1000 according to the first embodiment. A binary refrigeration system 1000 shown in FIG. 1 includes an outdoor unit 1 installed outdoors and an indoor unit 2 installed inside a freezer.
 室外機1は、圧縮機10と、中間冷却器150と、熱交換器12と、圧縮機100と、熱交換器101と、ファン101Fと、膨張弁102と、圧力センサ17,105と、温度センサ18,103、106と、制御装置200とを備える。 The outdoor unit 1 includes a compressor 10, an intercooler 150, a heat exchanger 12, a compressor 100, a heat exchanger 101, a fan 101F, an expansion valve 102, pressure sensors 17 and 105, and a temperature It includes sensors 18, 103, and 106 and a control device 200.
 室内機2は、膨張弁15と、熱交換器16と、ファン16Fとを備える。
 室外機1は、低元側の冷媒回路である冷媒回路C1の一部分と、高元側の冷媒回路である冷媒回路C2とを備える。室内機2は、冷媒回路C1の残部を備える。冷媒回路C1は、第1冷媒を使用する。冷媒回路C2は、第2冷媒を使用する。第1冷媒は、第2冷媒よりも同じ圧力において沸点が低い冷媒である。また、第2冷媒の比熱比は、第1冷媒より高い。第2冷媒としては、たとえばR32、またはR32含む混合冷媒を用いることができる。第1冷媒としては、たとえばCO、またはCO含む混合冷媒を用いることができる。
The indoor unit 2 includes an expansion valve 15, a heat exchanger 16, and a fan 16F.
The outdoor unit 1 includes a portion of a refrigerant circuit C1 that is a low-base refrigerant circuit, and a refrigerant circuit C2 that is a high-base refrigerant circuit. The indoor unit 2 includes the remainder of the refrigerant circuit C1. The refrigerant circuit C1 uses the first refrigerant. Refrigerant circuit C2 uses the second refrigerant. The first refrigerant has a lower boiling point than the second refrigerant at the same pressure. Further, the specific heat ratio of the second refrigerant is higher than that of the first refrigerant. As the second refrigerant, for example, R32 or a mixed refrigerant containing R32 can be used. As the first refrigerant, for example, CO 2 or a mixed refrigerant containing CO 2 can be used.
 より詳細には、低元側の冷媒回路C1に充填される第1冷媒は、室内機2と室外機1を接続する延長配管を通過するものである。このため、不燃で、圧力損失による温度低下が小さく、地球温暖化係数(GWP)が小さいCOを主成分とした冷媒を第1冷媒として選定するのが好ましい。なお、第1冷媒はCO以外の低沸点の冷媒であってもよい。 More specifically, the first refrigerant filled in the low-source refrigerant circuit C1 passes through an extension pipe that connects the indoor unit 2 and the outdoor unit 1. For this reason, it is preferable to select as the first refrigerant a refrigerant that is nonflammable, has a small temperature drop due to pressure loss, and has a low global warming potential (GWP) and whose main component is CO 2 . Note that the first refrigerant may be a low boiling point refrigerant other than CO 2 .
 一方、高元側の冷媒回路C2に充填される第2冷媒は、延長配管を通過せず、漏洩してもユーザーの出入りの多い冷凍庫内へ直接放出されるものではない。このため、冷媒回路の成績係数(COP)が高く、かつGWPが比較的小さい冷媒(たとえば、R32、R290、R1234yf、R1234ze(E))を第2冷媒として選定するのが好ましい。 On the other hand, the second refrigerant filled in the refrigerant circuit C2 on the high side does not pass through the extension pipe, and even if it leaks, it will not be directly released into the freezer, which is frequently visited by users. For this reason, it is preferable to select a refrigerant (for example, R32, R290, R1234yf, R1234ze (E)) that has a high coefficient of performance (COP) of the refrigerant circuit and a relatively small GWP as the second refrigerant.
 また、高元側の冷媒回路C2に低元側の第1冷媒よりも沸点の高い冷媒が封入される場合には、冷媒回路C2は低元側の冷媒回路C1よりも耐圧を低く設計してもよい。 In addition, when a refrigerant with a higher boiling point than the first refrigerant on the low-source side is sealed in the high-source side refrigerant circuit C2, the refrigerant circuit C2 is designed to have a lower pressure resistance than the low-source side refrigerant circuit C1. Good too.
 図1には、二元冷凍装置の冷却運転時における冷媒の流れが矢印で示されている。
 低元側の冷媒回路C1において、第1冷媒は、圧縮機10、中間冷却器150、熱交換器12、膨張弁15、熱交換器16を順に流れて圧縮機10に戻るように循環する。このとき熱交換器16は、蒸発器として作動する。なお、熱交換器12と膨張弁15との間に受液器(レシーバ)が配置されていても良い。
In FIG. 1, arrows indicate the flow of refrigerant during cooling operation of the binary refrigeration system.
In the low-source side refrigerant circuit C1, the first refrigerant circulates through the compressor 10, the intercooler 150, the heat exchanger 12, the expansion valve 15, and the heat exchanger 16 in this order and returns to the compressor 10. At this time, the heat exchanger 16 operates as an evaporator. Note that a liquid receiver may be disposed between the heat exchanger 12 and the expansion valve 15.
 すなわち、冷却運転時には、低元側の冷媒回路C1では、まず圧縮機10から圧縮されたガス状態の第1冷媒が中間冷却器150で冷却された後に熱交換器12へと流入し、第1冷媒が凝縮する。凝縮された第1冷媒は、膨張弁15にて膨張する。その後、第1冷媒は、蒸発器として働く熱交換器16において、庫内空気と熱交換し蒸発する。そして、蒸発した第1冷媒は、圧縮機10へ戻る。なお、圧縮機10は、インバータ制御により運転周波数f1を予め定められた範囲内で変更できるように構成されている。 That is, during cooling operation, in the low-source side refrigerant circuit C1, the first refrigerant in the gas state compressed from the compressor 10 is cooled by the intercooler 150, and then flows into the heat exchanger 12, and the first refrigerant is Refrigerant condenses. The condensed first refrigerant is expanded in the expansion valve 15 . Thereafter, the first refrigerant exchanges heat with the air inside the refrigerator and evaporates in the heat exchanger 16 that functions as an evaporator. The evaporated first refrigerant then returns to the compressor 10. Note that the compressor 10 is configured so that the operating frequency f1 can be changed within a predetermined range by inverter control.
 高元側の冷媒回路C2において、第2冷媒は、圧縮機100、熱交換器101、膨張弁102、熱交換器12を順に流れて圧縮機100に戻るように循環する。このとき熱交換器12は、蒸発器として作動する。 In the refrigerant circuit C2 on the high side, the second refrigerant circulates through the compressor 100, the heat exchanger 101, the expansion valve 102, and the heat exchanger 12 in this order and returns to the compressor 100. At this time, the heat exchanger 12 operates as an evaporator.
 すなわち、冷却運転時には、高元側の冷媒回路C2では、圧縮機100より圧縮された過熱蒸気が凝縮器として働く熱交換器101へと流入し、第2冷媒が凝縮される。凝縮された第2冷媒は、膨張弁102にて膨張し、熱交換器12にて熱交換し蒸発する。蒸発した第2冷媒は、圧縮機100へ戻る。なお、圧縮機100は、インバータ制御により運転周波数f2を予め定められた範囲内で変更できるように構成されている。 That is, during cooling operation, in the refrigerant circuit C2 on the high side, superheated steam compressed by the compressor 100 flows into the heat exchanger 101 functioning as a condenser, and the second refrigerant is condensed. The condensed second refrigerant expands in the expansion valve 102, exchanges heat with the heat exchanger 12, and evaporates. The evaporated second refrigerant returns to the compressor 100. Note that the compressor 100 is configured so that the operating frequency f2 can be changed within a predetermined range by inverter control.
 このように第1冷媒と第2冷媒が正常に循環している場合は、熱交換器12は第1冷媒と第2冷媒との間で熱交換を行なうカスケードコンデンサとして働く。 When the first refrigerant and the second refrigerant are circulating normally in this way, the heat exchanger 12 functions as a cascade condenser that exchanges heat between the first refrigerant and the second refrigerant.
 制御装置200は、圧縮機100の吸入冷媒の過熱度を目標値にするために、熱交換器12の蒸発側出口部と圧縮機100の吸入部間に配置した圧力センサ105および温度センサ106の出力に基づいて膨張弁102を制御するように構成される。 The control device 200 controls the pressure sensor 105 and temperature sensor 106 arranged between the evaporation side outlet of the heat exchanger 12 and the suction section of the compressor 100 in order to bring the degree of superheat of the refrigerant sucked into the compressor 100 to a target value. The expansion valve 102 is configured to control the expansion valve 102 based on the output.
 また、制御装置200は、冷媒回路C1の蒸発温度を目標値にするために、圧縮機10の吸入部に設けた圧力センサ17の出力に基づいて、圧縮機10の運転周波数f1を制御するように構成される。 The control device 200 also controls the operating frequency f1 of the compressor 10 based on the output of the pressure sensor 17 provided in the suction section of the compressor 10 in order to set the evaporation temperature of the refrigerant circuit C1 to a target value. It is composed of
 また、制御装置200は、圧縮機10の吸入冷媒の過熱度を目標値にするために、圧縮機10の吸入部に設けた温度センサ18の出力に基づいて、膨張弁15を制御するように構成される。 Further, the control device 200 controls the expansion valve 15 based on the output of the temperature sensor 18 provided in the suction section of the compressor 10 in order to bring the degree of superheat of the refrigerant sucked into the compressor 10 to a target value. configured.
 また、制御装置200は、冷媒回路C1の凝縮温度を目標値にするために、圧縮機100の吐出部に設けた圧力センサ105の出力に基づいて、圧縮機100の運転周波数f2を制御するように構成される。 Further, the control device 200 controls the operating frequency f2 of the compressor 100 based on the output of the pressure sensor 105 provided at the discharge part of the compressor 100 in order to set the condensing temperature of the refrigerant circuit C1 to a target value. It is composed of
 また、制御装置200は、冷媒回路C2の凝縮温度を目標値にするために、圧縮機100と熱交換器101の間に配置された圧力センサ(図示せず)の出力に基づいて熱交換器101のファン101Fを制御する。 In addition, the control device 200 controls the heat exchanger based on the output of a pressure sensor (not shown) disposed between the compressor 100 and the heat exchanger 101 in order to set the condensation temperature of the refrigerant circuit C2 to a target value. 101, the fan 101F is controlled.
 制御装置200は、以上のような制御を行なうことによって、冷媒回路C1,C2を所望の状態に維持することができる。 By performing the above-described control, the control device 200 can maintain the refrigerant circuits C1 and C2 in a desired state.
 制御装置200は、CPU(Central Processing Unit)201と、メモリ202(ROM(Read Only Memory)およびRAM(Random Access Memory))と、入出力バッファ(図示せず)等を含んで構成される。CPU201は、ROMに格納されているプログラムをRAM等に展開して実行する。ROMに格納されるプログラムは、制御装置200の処理手順が記されたプログラムである。制御装置200は、これらのプログラムに従って、二元冷凍装置における各機器の制御を実行する。この制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。 The control device 200 includes a CPU (Central Processing Unit) 201, a memory 202 (ROM (Read Only Memory) and RAM (Random Access Memory)), an input/output buffer (not shown), and the like. The CPU 201 expands a program stored in the ROM to a RAM or the like and executes the program. The program stored in the ROM is a program in which the processing procedure of the control device 200 is written. The control device 200 executes control of each device in the binary refrigeration system according to these programs. This control is not limited to processing by software, but can also be performed by dedicated hardware (electronic circuit).
 なお、制御装置200は、室内機2と室外機1に分散配置され、通信によって接続されていても良い。 Note that the control device 200 may be distributed in the indoor unit 2 and the outdoor unit 1, and may be connected through communication.
 本実施の形態の二元冷凍装置1000では、図1に示すように、低元側の冷媒回路C1において圧縮機10と熱交換器12との間に、第1冷媒を冷却する冷却装置を備えている。具体的には、冷却装置として空冷熱交換器である中間冷却器150を配置して過熱ガス状態の第1冷媒の熱を放熱している。中間冷却器150とファン150Fとを設けることによって、低元側の凝縮熱量の一部を大気に放熱できる。このため、高元側の冷媒回路C2で処理が必要な熱量が減らせるので圧縮機100、熱交換器101および熱交換器12のサイズを小さくすることが可能であり、消費電力も減らすことができる。 As shown in FIG. 1, the binary refrigeration system 1000 of this embodiment includes a cooling device for cooling the first refrigerant between the compressor 10 and the heat exchanger 12 in the low-source refrigerant circuit C1. ing. Specifically, an intercooler 150, which is an air-cooled heat exchanger, is disposed as a cooling device to radiate heat from the first refrigerant in a superheated gas state. By providing the intercooler 150 and the fan 150F, a portion of the condensed heat on the low source side can be radiated to the atmosphere. Therefore, the amount of heat that needs to be processed in the refrigerant circuit C2 on the high-end side can be reduced, so the sizes of the compressor 100, heat exchanger 101, and heat exchanger 12 can be reduced, and power consumption can also be reduced. can.
 また、中間冷却器150は熱交換器101とフィン部分が一体となった熱交換器であってもよい。 Furthermore, the intercooler 150 may be a heat exchanger in which the heat exchanger 101 and the fin portion are integrated.
 制御装置200は、冷媒回路C2の吐出冷媒温度を目標値にするために、圧縮機100と熱交換器101の間に配置された温度センサ103の出力に基づいて中間冷却器150のファン150Fを制御するように構成される。 The control device 200 controls the fan 150F of the intercooler 150 based on the output of the temperature sensor 103 disposed between the compressor 100 and the heat exchanger 101 in order to set the discharge refrigerant temperature of the refrigerant circuit C2 to the target value. configured to control.
 また、熱交換器12は、第1冷媒と第2冷媒とが並行流の関係で熱交換をするように構成されている。これにより、圧縮機100の吸入冷媒の過熱度の上昇を抑制し、これにより吐出冷媒の温度上昇を抑制している。以下に、対向流と並行流での冷媒温度の違いについて説明する。 Furthermore, the heat exchanger 12 is configured so that the first refrigerant and the second refrigerant exchange heat in a parallel flow relationship. This suppresses an increase in the degree of superheating of the refrigerant sucked into the compressor 100, thereby suppressing an increase in the temperature of the refrigerant discharged. The difference in refrigerant temperature between counterflow and parallel flow will be explained below.
 図2は、カスケード熱交換器が対向流の関係で熱交換する場合の冷媒温度の変化を説明する図である。図2において、温度T1は低元側の第1冷媒の温度を示し、温度T2は高元側の第2冷媒の温度を示している。また、縦軸は、冷媒温度Tを示し、横軸は、熱交換器における第2冷媒を中心に考えた場合の熱交換位置の冷媒入口からの距離を示している。 FIG. 2 is a diagram illustrating changes in refrigerant temperature when the cascade heat exchanger exchanges heat in a counterflow relationship. In FIG. 2, temperature T1 indicates the temperature of the first refrigerant on the low-temperature side, and temperature T2 indicates the temperature of the second refrigerant on the high-temperature side. Further, the vertical axis indicates the refrigerant temperature T, and the horizontal axis indicates the distance from the refrigerant inlet to the heat exchange position when considering the second refrigerant in the heat exchanger.
 カスケード熱交換器を対向流の関係とすると、図2の矢印に示すように、第1冷媒は第2冷媒とは逆向きに流れる。したがって、熱交換位置に依存せず温度差Tw1が確保できるので、一般的に、対向流の方が、熱交換性能が良い。しかし、温度が高い状態(冷媒の入口部)で低元側の第1冷媒が高元側の第2冷媒の出口部と熱交換するため、高元側の吸入冷媒の過熱度SH2が増加してしまう。 When the cascade heat exchanger has a counterflow relationship, the first refrigerant flows in the opposite direction to the second refrigerant, as shown by the arrows in FIG. Therefore, since the temperature difference Tw1 can be ensured regardless of the heat exchange position, counterflow generally has better heat exchange performance. However, since the first refrigerant on the low source side exchanges heat with the outlet section of the second refrigerant on the high source side when the temperature is high (at the refrigerant inlet), the degree of superheating SH2 of the suction refrigerant on the high source side increases. It ends up.
 図3は、カスケード熱交換器が並行流の関係で熱交換する場合の冷媒温度の変化を説明する図である。図3において、温度T1は低元側の第1冷媒の温度を示し、温度T2は高元側の第2冷媒の温度を示している。また、縦軸は、冷媒温度Tを示し、横軸は、熱交換器における第2冷媒を中心に考えた場合の熱交換位置の冷媒入口からの距離を示している。 FIG. 3 is a diagram illustrating changes in refrigerant temperature when cascade heat exchangers exchange heat in a parallel flow relationship. In FIG. 3, temperature T1 indicates the temperature of the first refrigerant on the low-temperature side, and temperature T2 indicates the temperature of the second refrigerant on the high-temperature side. Further, the vertical axis indicates the refrigerant temperature T, and the horizontal axis indicates the distance from the refrigerant inlet to the heat exchange position when considering the second refrigerant in the heat exchanger.
 カスケード熱交換器を並行流の関係とすると、図3の矢印に示すように、第1冷媒は第2冷媒と同じ向きに流れる。したがって、温度差Tw2が大きい入口部分では熱交換量が大きいが、出口部分では温度差が小さくなるので熱交換量が小さくなるため、一般的に、並行流の方が対向流よりも熱交換性能が悪くなる。 When the cascade heat exchanger is in a parallel flow relationship, the first refrigerant flows in the same direction as the second refrigerant, as shown by the arrows in FIG. Therefore, the amount of heat exchanged is large at the inlet section where the temperature difference Tw2 is large, but the amount of heat exchanged is small at the outlet section because the temperature difference is small, so generally parallel flow has better heat exchange performance than counterflow. becomes worse.
 しかし、本実施の形態では、熱交換器12は、並行流で熱交換するように構成される。並行流とすると、温度が低くなった状態(冷媒の出口部)で低元側の第1冷媒が高元側の第2冷媒の出口部と熱交換するため、図3に示す並行流のときの高元側の吸入冷媒の過熱度SH2は、図2に示す対向流のときの過熱度SH2よりも少なくなる。 However, in this embodiment, the heat exchanger 12 is configured to exchange heat in parallel flow. In the case of parallel flow, the first refrigerant on the low-temperature side exchanges heat with the outlet of the second refrigerant on the high-temperature side when the temperature is low (at the outlet of the refrigerant). The degree of superheating SH2 of the suction refrigerant on the high side is smaller than the degree of superheating SH2 in the case of counterflow shown in FIG.
 次に、実施の形態1において制御装置200が実行する制御の詳細について説明する。
 図4は、高元側の圧縮機100の制御を説明するためのフローチャートである。
Next, details of the control executed by the control device 200 in the first embodiment will be described.
FIG. 4 is a flowchart for explaining control of the compressor 100 on the high end side.
 まずステップS11において、制御装置200は、圧力センサ105を用いて高元側の冷媒回路C2の低圧部の圧力Ps2を検知する。続いて、ステップS12において、制御装置200は圧力Ps2と圧力の目標値Ps2*とを比較する。Ps2>Ps2*が成立した場合(S12でYES)、制御装置200は、ステップS13において圧縮機100の運転周波数f2を減少させる。一方、Ps2>Ps2*が成立しない場合(S12でNO)、制御装置200は、ステップS14において圧縮機100の運転周波数f2を増加させる。この処理が繰返し一定時間ごとに実行されることによって、高元側冷媒回路C2の低圧部の圧力Ps2が目標値Ps2*付近に維持される。 First, in step S11, the control device 200 uses the pressure sensor 105 to detect the pressure Ps2 of the low pressure section of the high-side refrigerant circuit C2. Subsequently, in step S12, the control device 200 compares the pressure Ps2 and the target pressure value Ps2*. If Ps2>Ps2* holds true (YES in S12), control device 200 reduces operating frequency f2 of compressor 100 in step S13. On the other hand, if Ps2>Ps2* does not hold (NO in S12), control device 200 increases operating frequency f2 of compressor 100 in step S14. By repeatedly performing this process at regular intervals, the pressure Ps2 in the low pressure section of the high-side refrigerant circuit C2 is maintained near the target value Ps2*.
 図5は、高元側の膨張弁102の制御を説明するためのフローチャートである。
 まずステップS21において、制御装置200は、圧力センサ105と温度センサ106とを用いて、高元側の冷媒回路C2の吸入冷媒の過熱度SH2を検出する。たとえば、予め記憶しておいた飽和温度テーブルを参照し圧力センサ105の検出圧力に対応する飽和温度を求め、温度センサ106の検出温度と飽和温度との差を計算することによって過熱度SH2を得ることができる。
FIG. 5 is a flowchart for explaining control of the expansion valve 102 on the high side.
First, in step S21, the control device 200 uses the pressure sensor 105 and the temperature sensor 106 to detect the degree of superheat SH2 of the refrigerant sucked into the high-end refrigerant circuit C2. For example, the saturation temperature corresponding to the pressure detected by the pressure sensor 105 is determined by referring to a saturation temperature table stored in advance, and the degree of superheating SH2 is obtained by calculating the difference between the temperature detected by the temperature sensor 106 and the saturation temperature. be able to.
 続いて、ステップS22において、制御装置200は過熱度SH2と目標過熱度SH2*とを比較する。SH2>SH2*が成立した場合(S22でYES)、制御装置200は、ステップS23において膨張弁102の開度を増加させる。一方、SH2>SH2*が成立しない場合(S22でNO)、制御装置200は、ステップS24において膨張弁102の開度を減少させる。この処理が繰返し一定時間ごとに実行されることによって、高元側冷媒回路C2の吸入冷媒の過熱度SH2が目標過熱度SH2*付近に維持される。 Subsequently, in step S22, the control device 200 compares the degree of superheat SH2 and the target degree of superheat SH2*. If SH2>SH2* holds true (YES in S22), the control device 200 increases the opening degree of the expansion valve 102 in step S23. On the other hand, if SH2>SH2* does not hold (NO in S22), the control device 200 decreases the opening degree of the expansion valve 102 in step S24. By repeatedly performing this process at regular intervals, the degree of superheat SH2 of the refrigerant sucked into the high-end refrigerant circuit C2 is maintained near the target degree of superheat SH2*.
 図6は、低元側の圧縮機10の制御を説明するためのフローチャートである。
 まずステップS31において、制御装置200は、圧力センサ17を用いて低元側の冷媒回路C1の低圧部の圧力Ps1を検知する。続いて、ステップS32において、制御装置200は圧力Ps1と圧力の目標値Ps1*とを比較する。Ps1>Ps1*が成立した場合(S32でYES)、制御装置200は、ステップS33において圧縮機100の運転周波数f1を減少させる。一方、Ps1>Ps1*が成立しない場合(S32でNO)、制御装置200は、ステップS34において圧縮機100の運転周波数f1を増加させる。この処理が繰返し一定時間ごとに実行されることによって、低元側冷媒回路C1の低圧部の圧力Ps1が目標値Ps1*付近に維持される。
FIG. 6 is a flowchart for explaining the control of the compressor 10 on the low-power side.
First, in step S31, the control device 200 uses the pressure sensor 17 to detect the pressure Ps1 of the low pressure section of the low-source side refrigerant circuit C1. Subsequently, in step S32, the control device 200 compares the pressure Ps1 and the target pressure value Ps1*. If Ps1>Ps1* holds true (YES in S32), control device 200 reduces operating frequency f1 of compressor 100 in step S33. On the other hand, if Ps1>Ps1* does not hold (NO in S32), the control device 200 increases the operating frequency f1 of the compressor 100 in step S34. By repeatedly performing this process at regular intervals, the pressure Ps1 of the low pressure section of the low source side refrigerant circuit C1 is maintained near the target value Ps1*.
 図7は、低元側の膨張弁15の制御を説明するためのフローチャートである。
 まずステップS41において、制御装置200は、圧力センサ17と温度センサ18とを用いて、低元側の冷媒回路C1の吸入冷媒の過熱度SH1を検出する。たとえば、予め記憶しておいた飽和温度テーブルを参照し圧力センサ17の検出圧力に対応する飽和温度を求め、温度センサ18の検出温度と飽和温度との差を計算することによって過熱度SH1を得ることができる。
FIG. 7 is a flowchart for explaining control of the expansion valve 15 on the low base side.
First, in step S41, the control device 200 uses the pressure sensor 17 and the temperature sensor 18 to detect the degree of superheat SH1 of the refrigerant sucked into the low-source refrigerant circuit C1. For example, the saturation temperature corresponding to the pressure detected by the pressure sensor 17 is determined by referring to a saturation temperature table stored in advance, and the degree of superheating SH1 is obtained by calculating the difference between the temperature detected by the temperature sensor 18 and the saturation temperature. be able to.
 続いて、ステップS42において、制御装置200は過熱度SH1と目標過熱度SH1*とを比較する。SH1>SH1*が成立した場合(S42でYES)、制御装置200は、ステップS43において膨張弁15の開度を増加させる。一方、SH1>SH1*が成立しない場合(S42でNO)、制御装置200は、ステップS44において膨張弁15の開度を減少させる。この処理が繰返し一定時間ごとに実行されることによって、低元側冷媒回路C1の吸入冷媒の過熱度SH1が目標過熱度SH1*付近に維持される。 Subsequently, in step S42, the control device 200 compares the degree of superheat SH1 and the target degree of superheat SH1*. If SH1>SH1* holds true (YES in S42), the control device 200 increases the opening degree of the expansion valve 15 in step S43. On the other hand, if SH1>SH1* does not hold (NO in S42), the control device 200 reduces the opening degree of the expansion valve 15 in step S44. By repeatedly performing this process at regular intervals, the degree of superheat SH1 of the refrigerant sucked into the low-source side refrigerant circuit C1 is maintained near the target degree of superheat SH1*.
 図8は、中間冷却器150のファン150Fの制御を説明するためのフローチャートである。 FIG. 8 is a flowchart for explaining control of fan 150F of intercooler 150.
 まずステップS51において、制御装置200は、温度センサ103を用いて、高元側の冷媒回路C2の冷媒の吐出温度Td2を検出する。続いて、ステップS52において、制御装置200は吐出温度Td2と目標吐出温度Td2*とを比較する。Td2>Td2*が成立した場合(S52でYES)、制御装置200は、ステップS53において中間冷却器150のファン150Fの回転速度を増加させる。これにより中間冷却器150における第1冷媒の冷却量が増加する。一方、Td2>Td2*が成立しない場合(S52でNO)、制御装置200は、ステップS54において中間冷却器150のファン150Fの回転速度を減少させる。この処理が繰返し一定時間ごとに実行されることによって、高元側冷媒回路C2の冷媒の吐出温度Td2が目標吐出温度Td2*付近に維持される。 First, in step S51, the control device 200 uses the temperature sensor 103 to detect the discharge temperature Td2 of the refrigerant in the high-end refrigerant circuit C2. Subsequently, in step S52, the control device 200 compares the discharge temperature Td2 and the target discharge temperature Td2*. If Td2>Td2* holds true (YES in S52), control device 200 increases the rotational speed of fan 150F of intercooler 150 in step S53. This increases the amount of cooling of the first refrigerant in the intercooler 150. On the other hand, if Td2>Td2* does not hold (NO in S52), control device 200 reduces the rotation speed of fan 150F of intercooler 150 in step S54. By repeatedly performing this process at regular intervals, the discharge temperature Td2 of the refrigerant in the high-end refrigerant circuit C2 is maintained near the target discharge temperature Td2*.
 以上説明したように、実施の形態1の二元冷凍装置1000によれば、冷却装置として中間冷却器150を用いている。このため、低元側の凝縮熱量の一部を大気に放熱できる。このため、高元側冷媒回路C2の冷媒温度の上昇を防ぐことができるので、圧縮機100の吐出温度Td2を耐熱温度以下の目標温度Td2*付近とすることができる。加えて、高元側の冷媒回路C2で処理が必要な熱量が減らせるので圧縮機100、熱交換器101および熱交換器12のサイズを小さくすることが可能であり、消費電力も減らすことができる。 As explained above, according to the binary refrigeration system 1000 of the first embodiment, the intercooler 150 is used as a cooling device. Therefore, part of the condensation heat on the low-source side can be radiated to the atmosphere. For this reason, it is possible to prevent the refrigerant temperature in the high-end refrigerant circuit C2 from increasing, so that the discharge temperature Td2 of the compressor 100 can be set around the target temperature Td2*, which is below the heat-resistant temperature. In addition, since the amount of heat that needs to be processed in the refrigerant circuit C2 on the high-end side can be reduced, the sizes of the compressor 100, heat exchanger 101, and heat exchanger 12 can be reduced, and power consumption can also be reduced. can.
 また、カスケード熱交換器である熱交換器12が並行流で熱交換するように構成されているため、吸入冷媒の過熱度SH2の増加を抑制することができる。 Furthermore, since the heat exchanger 12, which is a cascade heat exchanger, is configured to exchange heat in parallel flow, it is possible to suppress an increase in the degree of superheat SH2 of the suction refrigerant.
 実施の形態2.
 図9は、実施の形態2の二元冷凍装置2000の構成を示す図である。図9に示す二元冷凍装置2000は、屋外に設置される室外機2001と、冷凍庫内に設置される室内機2とで構成される。室内機2については、実施の形態1と同じであるので説明は繰り返さない。
Embodiment 2.
FIG. 9 is a diagram showing the configuration of a binary refrigeration system 2000 according to the second embodiment. A binary refrigeration system 2000 shown in FIG. 9 includes an outdoor unit 2001 installed outdoors and an indoor unit 2 installed inside the freezer. The indoor unit 2 is the same as in Embodiment 1, so the description will not be repeated.
 室外機2001は、図1の室外機1の構成において、中間冷却器150およびファン150Fに代えて、冷媒回路C3を備える。室外機2001の他の構成は、室外機1と同じである。 Outdoor unit 2001 includes a refrigerant circuit C3 in place of intercooler 150 and fan 150F in the configuration of outdoor unit 1 in FIG. The other configuration of outdoor unit 2001 is the same as outdoor unit 1.
 冷媒回路C3は、圧縮機300と、熱交換器301と、ファン301Fと、膨張弁302と、熱交換器312と、温度センサ303,306と、圧力センサ305とを含む。 Refrigerant circuit C3 includes a compressor 300, a heat exchanger 301, a fan 301F, an expansion valve 302, a heat exchanger 312, temperature sensors 303 and 306, and a pressure sensor 305.
 冷媒回路C3は、第3冷媒を使用する。第2冷媒の比熱比は、第1冷媒の比熱比よりも高い。また第3冷媒の比熱比は、冷媒回路C2を循環する第2冷媒の比熱比よりも低い。第1冷媒としては、たとえばCO、またはCO含む混合冷媒を用いることができる。冷媒回路C2を循環する第2冷媒としては、たとえばR32、またはR32含む混合冷媒を用いることができる。冷媒回路C3を循環する第3冷媒としては、たとえば、R32、R1234yf、R1234ze(E)、R134a、R290のいずれかを含む冷媒を用いることができる。 Refrigerant circuit C3 uses the third refrigerant. The specific heat ratio of the second refrigerant is higher than the specific heat ratio of the first refrigerant. Further, the specific heat ratio of the third refrigerant is lower than the specific heat ratio of the second refrigerant circulating in the refrigerant circuit C2. As the first refrigerant, for example, CO 2 or a mixed refrigerant containing CO 2 can be used. As the second refrigerant circulating in the refrigerant circuit C2, for example, R32 or a mixed refrigerant containing R32 can be used. As the third refrigerant circulating in the refrigerant circuit C3, for example, a refrigerant containing any one of R32, R1234yf, R1234ze(E), R134a, and R290 can be used.
 実施の形態1では、中間冷却器150およびファン150Fによって、低元側冷媒回路C1を循環する第1冷媒を冷却した。実施の形態3では、冷却装置として高元サイクル、低元サイクルとは別の冷凍サイクルである冷媒回路C3によって第1冷媒を冷却する。 In the first embodiment, the intercooler 150 and the fan 150F cooled the first refrigerant circulating in the lower-side refrigerant circuit C1. In the third embodiment, the first refrigerant is cooled by a refrigerant circuit C3, which is a refrigeration cycle different from the high base cycle and the low base cycle, as a cooling device.
 次に、実施の形態2において制御装置200が実行する制御の詳細について説明する。なお、図4~図7に示した高元側の圧縮機100および膨張弁102、低元側の圧縮機10および膨張弁15の各制御は、実施の形態2でも同様であるので説明は繰り返さない。 Next, details of the control executed by the control device 200 in the second embodiment will be described. Note that each control of the compressor 100 and expansion valve 102 on the high-end side and the compressor 10 and expansion valve 15 on the low-end side shown in FIGS. 4 to 7 is the same in the second embodiment, so the explanation will not be repeated. do not have.
 図10は、冷媒回路C3の膨張弁302の制御を説明するためのフローチャートである。 FIG. 10 is a flowchart for explaining control of the expansion valve 302 of the refrigerant circuit C3.
 まずステップS111において、制御装置200は、圧力センサ305と温度センサ306とを用いて、冷媒回路C3の吸入冷媒の過熱度SH3を検出する。たとえば、予め記憶しておいた飽和温度テーブルを参照し圧力センサ305の検出圧力に対応する飽和温度を求め、温度センサ306の検出温度と飽和温度との差を計算することによって過熱度SH3を得ることができる。 First, in step S111, the control device 200 uses the pressure sensor 305 and the temperature sensor 306 to detect the degree of superheat SH3 of the refrigerant sucked into the refrigerant circuit C3. For example, the saturation temperature corresponding to the pressure detected by the pressure sensor 305 is determined by referring to a saturation temperature table stored in advance, and the degree of superheating SH3 is obtained by calculating the difference between the temperature detected by the temperature sensor 306 and the saturation temperature. be able to.
 続いて、ステップS112において、制御装置200は過熱度SH3と目標過熱度SH3*とを比較する。SH3>SH3*が成立した場合(S112でYES)、制御装置200は、ステップS113において膨張弁302の開度を増加させる。一方、SH3>SH3*が成立しない場合(S112でNO)、制御装置200は、ステップS114において膨張弁302の開度を減少させる。この処理が繰返し一定時間ごとに実行されることによって、冷媒回路C3の吸入冷媒の過熱度SH3が目標過熱度SH3*付近に維持される。 Subsequently, in step S112, the control device 200 compares the degree of superheat SH3 and the target degree of superheat SH3*. If SH3>SH3* holds true (YES in S112), control device 200 increases the opening degree of expansion valve 302 in step S113. On the other hand, if SH3>SH3* does not hold (NO in S112), the control device 200 decreases the opening degree of the expansion valve 302 in step S114. By repeatedly performing this process at regular intervals, the degree of superheat SH3 of the refrigerant sucked into the refrigerant circuit C3 is maintained near the target degree of superheat SH3*.
 図11は、冷媒回路C3の圧縮機300の制御を説明するためのフローチャートである。 FIG. 11 is a flowchart for explaining the control of the compressor 300 of the refrigerant circuit C3.
 まずステップS121において、制御装置200は、温度センサ103を用いて、高元側の冷媒回路C2の冷媒の吐出温度Td2を検出する。続いて、ステップS122において、制御装置200は吐出温度Td2と目標吐出温度Td2*とを比較する。Td2>Td2*が成立した場合(S122でYES)、制御装置200は、ステップS123において圧縮機300の運転周波数f3を増加させる。これにより冷媒回路C3の熱交換器312における第1冷媒の冷却量が増加する。一方、Td2>Td2*が成立しない場合(S122でNO)、制御装置200は、ステップS124において圧縮機300の運転周波数f3を減少させる。この処理が繰返し一定時間ごとに実行されることによって、高元側冷媒回路C2の冷媒の吐出温度Td2が目標吐出温度Td2*付近に維持される。 First, in step S121, the control device 200 uses the temperature sensor 103 to detect the discharge temperature Td2 of the refrigerant in the high-side refrigerant circuit C2. Subsequently, in step S122, the control device 200 compares the discharge temperature Td2 and the target discharge temperature Td2*. If Td2>Td2* holds true (YES in S122), control device 200 increases operating frequency f3 of compressor 300 in step S123. This increases the amount of cooling of the first refrigerant in the heat exchanger 312 of the refrigerant circuit C3. On the other hand, if Td2>Td2* does not hold (NO in S122), control device 200 decreases operating frequency f3 of compressor 300 in step S124. By repeatedly performing this process at regular intervals, the discharge temperature Td2 of the refrigerant in the high-end refrigerant circuit C2 is maintained near the target discharge temperature Td2*.
 以上説明したように、実施の形態2の二元冷凍装置1000によれば、冷却装置として別途の冷凍サイクルである冷媒回路C3を用いている。このため、低元側の凝縮熱量の一部を、第3冷媒を媒介として、大気に放熱できる。このため、熱交換器12における熱交換量を低減させることができ、高元側冷媒回路C2の冷媒温度の上昇を防ぐことができるので、圧縮機100の吐出温度Td2を耐熱温度以下の目標温度Td2*付近の適正温度とすることができる。加えて、高元側の冷媒回路C2で処理が必要な熱量が減らせるので圧縮機100、熱交換器101および熱交換器12のサイズを小さくすることが可能であり、消費電力も減らすことができる。 As explained above, according to the binary refrigeration system 1000 of the second embodiment, the refrigerant circuit C3, which is a separate refrigeration cycle, is used as a cooling device. Therefore, a part of the condensed heat amount on the low-source side can be radiated to the atmosphere through the third refrigerant. Therefore, the amount of heat exchanged in the heat exchanger 12 can be reduced, and an increase in the refrigerant temperature in the high-end refrigerant circuit C2 can be prevented. The temperature can be set to an appropriate temperature around Td2*. In addition, since the amount of heat that needs to be processed in the refrigerant circuit C2 on the high-end side can be reduced, the sizes of the compressor 100, heat exchanger 101, and heat exchanger 12 can be reduced, and power consumption can also be reduced. can.
 また、カスケード熱交換器である熱交換器12が並行流で熱交換するように構成されているため、吸入冷媒の過熱度SH2の増加を抑制することができる。 Furthermore, since the heat exchanger 12, which is a cascade heat exchanger, is configured to exchange heat in parallel flow, it is possible to suppress an increase in the degree of superheating SH2 of the suction refrigerant.
 なお、実施の形態3では、同様なカスケード熱交換器である熱交換器312も並行流で熱交換しても良いが、熱交換の効率は図9に示すように対向流で熱交換する方が高くなるのでより好ましい。 In Embodiment 3, the heat exchanger 312, which is a similar cascade heat exchanger, may also exchange heat in parallel flows, but the heat exchange efficiency is higher than that in counter-flows as shown in FIG. is more preferable because it increases.
 (まとめ)
 以下に、再び図を参照して本実施の形態について総括する。
(summary)
The present embodiment will be summarized below with reference to the drawings again.
 (1) 本開示は、第1冷媒と第1冷媒よりも比熱比が低い第2冷媒とを用いて冷凍庫内を冷却する二元冷凍装置に関する。図1および図9に示す二元冷凍装置1000,2000は、第1圧縮機10、第1熱交換器12、第1膨張弁15、第2熱交換器16、第2圧縮機100、第3熱交換器101、第2膨張弁102を備える。第1熱交換器12は、第1冷媒と第2冷媒との間で熱交換が行なわれるように構成される。第2熱交換器16は、第1冷媒と冷凍庫内の空気との間で熱交換が行なわれるように構成される。第3熱交換器101は、第2冷媒と冷凍庫外の空気との間で熱交換が行なわれるように構成される。第1圧縮機10、第1熱交換器12、第1膨張弁15、および第2熱交換器16は、第1冷媒が循環する第1冷媒回路C1を構成する。第2圧縮機100、第3熱交換器101、第2膨張弁102、および第1熱交換器12は、第2冷媒が循環する第2冷媒回路C2を構成する。二元冷凍装置1000,2000は、第1圧縮機10から第1熱交換器12に向かう第1冷媒を冷却するように構成される冷却装置(中間冷却器150または冷媒回路C3)をさらに備える。 (1) The present disclosure relates to a binary refrigeration system that cools the inside of a freezer using a first refrigerant and a second refrigerant having a lower specific heat ratio than the first refrigerant. The binary refrigeration apparatuses 1000, 2000 shown in FIGS. 1 and 9 include a first compressor 10, a first heat exchanger 12, a first expansion valve 15, a second heat exchanger 16, a second compressor 100, a third A heat exchanger 101 and a second expansion valve 102 are provided. The first heat exchanger 12 is configured to exchange heat between the first refrigerant and the second refrigerant. The second heat exchanger 16 is configured to exchange heat between the first refrigerant and the air within the freezer. The third heat exchanger 101 is configured to exchange heat between the second refrigerant and the air outside the freezer. The first compressor 10, the first heat exchanger 12, the first expansion valve 15, and the second heat exchanger 16 constitute a first refrigerant circuit C1 in which the first refrigerant circulates. The second compressor 100, the third heat exchanger 101, the second expansion valve 102, and the first heat exchanger 12 constitute a second refrigerant circuit C2 in which the second refrigerant circulates. The binary refrigeration apparatuses 1000 and 2000 further include a cooling device (intercooler 150 or refrigerant circuit C3) configured to cool the first refrigerant flowing from the first compressor 10 to the first heat exchanger 12.
 (2) (1)において、図1の冷却装置(中間冷却器150)は、冷凍庫外の空気と第1冷媒との間で熱交換を行なうように構成される。 (2) In (1), the cooling device (intercooler 150) in FIG. 1 is configured to exchange heat between the air outside the freezer and the first refrigerant.
 (3) (1)において、図9の冷却装置(冷媒回路C3)は、第3冷媒を圧縮する第3圧縮機300と、第3圧縮機300から吐出された第3冷媒と冷凍庫外の空気との間で熱交換を行なうように構成される第4熱交換器301と、第4熱交換器301を通過した第3冷媒を減圧する第3膨張弁302と、第3膨張弁302を通過した第3冷媒と第1冷媒との間で熱交換が行なわれるように構成される第5熱交換器312とを含む。 (3) In (1), the cooling device (refrigerant circuit C3) in FIG. a fourth heat exchanger 301 configured to exchange heat between and a fifth heat exchanger 312 configured to perform heat exchange between the third refrigerant and the first refrigerant.
 (4) (3)において、第3冷媒の比熱比は、第1冷媒の比熱比よりも低い。
 (5) (4)において、第3冷媒は、R32、R1234yf、R1234ze(E)、R134a、R290のいずれかを含む冷媒である。
(4) In (3), the specific heat ratio of the third refrigerant is lower than the specific heat ratio of the first refrigerant.
(5) In (4), the third refrigerant is a refrigerant containing any one of R32, R1234yf, R1234ze(E), R134a, and R290.
 (6) (1)~(5)のいずれか1項において、第1熱交換器12は、第1冷媒と第2冷媒とが並行流の関係で通過するように構成されるカスケード熱交換器である。 (6) In any one of (1) to (5), the first heat exchanger 12 is a cascade heat exchanger configured so that the first refrigerant and the second refrigerant pass in a parallel flow relationship. It is.
 (7) (1)~(5)のいずれか1項において、第1冷媒は、CO2を含む冷媒である。 (7) In any one of (1) to (5), the first refrigerant is a refrigerant containing CO2.
 (8) (1)~(5)のいずれか1項において、第2冷媒は、R32を含む冷媒である。 (8) In any one of (1) to (5), the second refrigerant is a refrigerant containing R32.
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be illustrative in all respects and not restrictive. The scope of the present disclosure is indicated by the claims rather than the description of the embodiments described above, and it is intended that all changes within the meaning and range equivalent to the claims are included.
 1,2001 室外機、2 室内機、10,100,300 圧縮機、12,16,101,301,312 熱交換器、15,102,302 膨張弁、16F,101F,150F,301F ファン、17,105,305 圧力センサ、18,103,106,303,306 温度センサ、150 中間冷却器、200 制御装置、201 CPU、202 メモリ、1000,2000 二元冷凍装置、C1,C2,C3 冷媒回路。 1,2001 Outdoor unit, 2 Indoor unit, 10,100,300 Compressor, 12,16,101,301,312 Heat exchanger, 15,102,302 Expansion valve, 16F, 101F, 150F, 301F Fan, 17, 105,305 Pressure sensor, 18,103,106,303,306 Temperature sensor, 150 Intercooler, 200 Control device, 201 CPU, 202 Memory, 1000,2000 Binary refrigeration system, C1, C2, C3 Refrigerant circuit.

Claims (8)

  1.  第1冷媒と前記第1冷媒よりも比熱比が低い第2冷媒とを用いて冷凍庫内を冷却する二元冷凍装置であって、
     第1圧縮機、第1熱交換器、第1膨張弁、第2熱交換器、第2圧縮機、第3熱交換器、第2膨張弁を備え、
     前記第1熱交換器は、前記第1冷媒と前記第2冷媒との間で熱交換が行なわれるように構成され、
     前記第2熱交換器は、前記第1冷媒と冷凍庫内の空気との間で熱交換が行なわれるように構成され、
     前記第3熱交換器は、前記第2冷媒と冷凍庫外の空気との間で熱交換が行なわれるように構成され、
     前記第1圧縮機、前記第1熱交換器、前記第1膨張弁、および前記第2熱交換器は、前記第1冷媒が循環する第1冷媒回路を構成し、
     前記第2圧縮機、前記第3熱交換器、前記第2膨張弁、および前記第1熱交換器は、前記第2冷媒が循環する第2冷媒回路を構成し、
     前記二元冷凍装置は、
     前記第1圧縮機から前記第1熱交換器に向かう前記第1冷媒を冷却するように構成される冷却装置をさらに備える、二元冷凍装置。
    A binary refrigeration device that cools the inside of a freezer using a first refrigerant and a second refrigerant having a lower specific heat ratio than the first refrigerant,
    comprising a first compressor, a first heat exchanger, a first expansion valve, a second heat exchanger, a second compressor, a third heat exchanger, and a second expansion valve,
    The first heat exchanger is configured to exchange heat between the first refrigerant and the second refrigerant,
    The second heat exchanger is configured to exchange heat between the first refrigerant and air in the freezer,
    The third heat exchanger is configured to exchange heat between the second refrigerant and air outside the freezer,
    The first compressor, the first heat exchanger, the first expansion valve, and the second heat exchanger constitute a first refrigerant circuit in which the first refrigerant circulates,
    The second compressor, the third heat exchanger, the second expansion valve, and the first heat exchanger constitute a second refrigerant circuit in which the second refrigerant circulates,
    The dual refrigeration device includes:
    A dual refrigeration system further comprising a cooling device configured to cool the first refrigerant flowing from the first compressor to the first heat exchanger.
  2.  前記冷却装置は、冷凍庫外の空気と前記第1冷媒との間で熱交換を行なうように構成される、請求項1に記載の二元冷凍装置。 The binary refrigeration device according to claim 1, wherein the cooling device is configured to exchange heat between air outside the freezer and the first refrigerant.
  3.  前記冷却装置は、
     第3冷媒を圧縮する第3圧縮機と、
     前記第3圧縮機から吐出された前記第3冷媒と冷凍庫外の空気との間で熱交換を行なうように構成される第4熱交換器と、
     前記第4熱交換器を通過した前記第3冷媒を減圧する第3膨張弁と、
     前記第3膨張弁を通過した前記第3冷媒と前記第1冷媒との間で熱交換が行なわれるように構成される第5熱交換器とを含む、請求項1に記載の二元冷凍装置。
    The cooling device includes:
    a third compressor that compresses a third refrigerant;
    a fourth heat exchanger configured to exchange heat between the third refrigerant discharged from the third compressor and air outside the freezer;
    a third expansion valve that reduces the pressure of the third refrigerant that has passed through the fourth heat exchanger;
    The binary refrigeration system according to claim 1, further comprising a fifth heat exchanger configured to perform heat exchange between the third refrigerant and the first refrigerant that have passed through the third expansion valve. .
  4.  前記第3冷媒の比熱比は、前記第1冷媒の比熱比よりも低い、請求項3に記載の二元冷凍装置。 The binary refrigeration system according to claim 3, wherein the specific heat ratio of the third refrigerant is lower than the specific heat ratio of the first refrigerant.
  5.  前記第3冷媒は、R32、R1234yf、R1234ze(E)、R134a、R290のいずれかを含む冷媒である、請求項4に記載の二元冷凍装置。 The binary refrigeration system according to claim 4, wherein the third refrigerant is a refrigerant containing any one of R32, R1234yf, R1234ze(E), R134a, and R290.
  6.  前記第1熱交換器は、前記第1冷媒と前記第2冷媒とが並行流の関係で通過するように構成されるカスケード熱交換器である、請求項1~5のいずれか1項に記載の二元冷凍装置。 The first heat exchanger is a cascade heat exchanger configured so that the first refrigerant and the second refrigerant pass in parallel flow relationship, according to any one of claims 1 to 5. dual refrigeration equipment.
  7.  前記第1冷媒は、COを含む冷媒である、請求項1~5のいずれか1項に記載の二元冷凍装置。 The binary refrigeration apparatus according to any one of claims 1 to 5, wherein the first refrigerant is a refrigerant containing CO 2 .
  8.  前記第2冷媒は、R32を含む冷媒である、請求項1~5のいずれか1項に記載の二元冷凍装置。 The binary refrigeration apparatus according to any one of claims 1 to 5, wherein the second refrigerant is a refrigerant containing R32.
PCT/JP2022/029000 2022-07-27 2022-07-27 Two-stage refrigeration device WO2024023986A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/029000 WO2024023986A1 (en) 2022-07-27 2022-07-27 Two-stage refrigeration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/029000 WO2024023986A1 (en) 2022-07-27 2022-07-27 Two-stage refrigeration device

Publications (1)

Publication Number Publication Date
WO2024023986A1 true WO2024023986A1 (en) 2024-02-01

Family

ID=89705663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029000 WO2024023986A1 (en) 2022-07-27 2022-07-27 Two-stage refrigeration device

Country Status (1)

Country Link
WO (1) WO2024023986A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012066763A1 (en) * 2010-11-15 2012-05-24 三菱電機株式会社 Freezer
JP2014020673A (en) * 2012-07-18 2014-02-03 Mitsubishi Electric Corp Refrigeration unit
WO2018008129A1 (en) * 2016-07-07 2018-01-11 三菱電機株式会社 Refrigeration cycle device
WO2022044168A1 (en) * 2020-08-26 2022-03-03 三菱電機株式会社 Refrigeration device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012066763A1 (en) * 2010-11-15 2012-05-24 三菱電機株式会社 Freezer
JP2014020673A (en) * 2012-07-18 2014-02-03 Mitsubishi Electric Corp Refrigeration unit
WO2018008129A1 (en) * 2016-07-07 2018-01-11 三菱電機株式会社 Refrigeration cycle device
WO2022044168A1 (en) * 2020-08-26 2022-03-03 三菱電機株式会社 Refrigeration device

Similar Documents

Publication Publication Date Title
JP6125000B2 (en) Dual refrigeration equipment
JP2011052884A (en) Refrigerating air conditioner
JP2006283989A (en) Cooling/heating system
WO2017221382A1 (en) Binary refrigeration device
JP2007218460A (en) Refrigerating cycle device and cool box
JP2007051841A (en) Refrigeration cycle device
JP6758506B2 (en) Air conditioner
WO2024023986A1 (en) Two-stage refrigeration device
WO2021044548A1 (en) Compressor unit and refrigeration device
JP5409747B2 (en) Dual refrigeration equipment
JP2007051788A (en) Refrigerating device
JP4999531B2 (en) Air conditioner
KR20210026645A (en) Air conditioner and control method thereof
JP6675083B2 (en) Binary heat pump device
JP6091567B2 (en) Refrigerator and refrigeration equipment
KR20080082357A (en) Air conditioner
WO2021065914A1 (en) Freezing apparatus
JP7343755B2 (en) refrigerant cycle system
JP5474140B2 (en) Refrigeration equipment
JP6978242B2 (en) Refrigerant circuit equipment
JP2004116978A (en) Controller for multi-room air conditioner
WO2018173854A1 (en) Cooling system, cooling method, and program
KR20050043089A (en) Heat pump
JP2003302111A (en) Air conditioner
JP2004116930A (en) Gas heat pump type air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953080

Country of ref document: EP

Kind code of ref document: A1