JP2004116930A - Gas heat pump type air conditioner - Google Patents

Gas heat pump type air conditioner Download PDF

Info

Publication number
JP2004116930A
JP2004116930A JP2002282753A JP2002282753A JP2004116930A JP 2004116930 A JP2004116930 A JP 2004116930A JP 2002282753 A JP2002282753 A JP 2002282753A JP 2002282753 A JP2002282753 A JP 2002282753A JP 2004116930 A JP2004116930 A JP 2004116930A
Authority
JP
Japan
Prior art keywords
refrigerant
heat
heat exchanger
pump
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002282753A
Other languages
Japanese (ja)
Inventor
Takeshi Yokoyama
横山 武
Takeya Inamura
稲邑 武也
Hiroshi Tsuruoka
鶴岡 浩
Sukenari Tate
舘 祐成
Hiroaki Kishi
岸 廣秋
Hidekazu Kawai
河合 英一
Katsuyuki Tsuno
津野 勝之
Takashi Mochizuki
望月 高志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Lp Gas Rengokai
Osaka Gas Co Ltd
Sanyo Electric Co Ltd
Tokyo Gas Co Ltd
Sanyo Electric Air Conditioning Co Ltd
Toho Gas Co Ltd
Original Assignee
Nippon Lp Gas Rengokai
Osaka Gas Co Ltd
Sanyo Electric Co Ltd
Tokyo Gas Co Ltd
Sanyo Electric Air Conditioning Co Ltd
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Lp Gas Rengokai, Osaka Gas Co Ltd, Sanyo Electric Co Ltd, Tokyo Gas Co Ltd, Sanyo Electric Air Conditioning Co Ltd, Toho Gas Co Ltd filed Critical Nippon Lp Gas Rengokai
Priority to JP2002282753A priority Critical patent/JP2004116930A/en
Publication of JP2004116930A publication Critical patent/JP2004116930A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce power of a gas engine for driving a compressor by driving a refrigerant pump for circulating a refrigerant. <P>SOLUTION: This gas heat pump type air conditioner 10 is so structured that a refrigeration cycle is composed by sequentially connecting the compressor 16, an outdoor heat exchanger 19, an outdoor expansion valve 24, and indoor heat exchangers 21A, 21B and 21C; and the compressor is driven by the gas engine 30. In exhaust heat recovery system piping 41 starting from the exit side in a heating operation of the indoor heat exchangers, bypassing the outdoor expansion valve, the outdoor heat exchanger and the compressor, and reaching the entrance side in the heating operation of the indoor heat exchangers, an overcooling heat exchanger 42 for bringing a liquid refrigerant into an overcooled state, the refrigerant pump 43 for circulating the liquid refrigerant, and an exhaust heat recovery heat exchanger 3 for recovering the exhaust heat of the gas engine to evaporate the liquid refrigerant by imparting the heat to it are sequentially installed. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、冷媒を液状態で搬送するポンプを利用したガスヒートポンプ式空気調和装置に関する。
【0002】
【従来の技術】
冷凍装置では、フロンなどの冷媒を用いて冷凍サイクルを形成する際、図5及び図6に示すように、冷媒の循環に、通常、圧縮機100が用いられる。この冷凍サイクルでは、冷媒は減圧装置102により減圧され、蒸発器103にて低温の空気から熱を得、圧縮機100にて断熱圧縮されて高温高圧となった後、凝縮器101により凝縮されて室内を暖房する。凝縮器101を出た冷媒は受液器104に一時貯溜される。
【0003】
この場合、冷媒との熱交換により熱を汲み取られる側の流体(空気)と、熱を吐き出す側の流体(空気)には温度差があるのが常である。圧縮機は、ガス冷媒を断熱圧縮することにより、熱移動を担う冷媒の温度を高める役目を果たすと同時に、熱を汲み取る低温側熱交換器(蒸発器)から、熱を吐き出す高温側熱交換器(凝縮器)へ冷媒を搬送する駆動ポンプの役目も果たす。
【0004】
ところが、被加熱流体(冷媒)の温度と同じか、それよりも高い温度レベルの別の流体(例えばエンジン冷却水)が存在した場合、上述と同様なサイクルを成立させようとすると、前述の圧縮機は、本来の圧縮の機能を果たさなくなり、流体搬送のポンプとしての機能だけになる。
【0005】
このような場合、流体搬送の手段として、圧縮機ではなくポンプを使ってもサイクルを成立させることができる(特許文献1)。図7と図8は、圧縮機100の代わりにポンプ105を使用した冷凍装置と、その冷凍サイクルの圧力(P)―エンタルピ(h)線図をそれぞれ示す。
【0006】
通常、ポンプは、流体に運動エネルギーを与える補機である。一般に水などで使われるものは渦巻ポンプと呼ばれるもので、羽根車を回転させることにより流体を吐出する。水を送り出す場合には、吸込み管に抵抗があるもの(弁など)を設けない限り安定した流量を得ることができる。しかし、液面が低かったり水温が高かったりすると、羽根車の中の液体が蒸発して、振動や音を発生するキャビテーションという現象が発生することがある。この現象は、水よりも冷媒の方が発生する頻度が高い。
【0007】
【特許文献1】
特開平3−105174号公報
【0008】
【発明が解決しようとする課題】
キャビテーションは、一般に、ポンプに吸い込まれる流体の圧力が、その温度での飽和蒸気圧よりも下回ったときに発生する。図9(A)に示すように、通常、水では、ポンプの吸込み液面に大気庄101.3kPaがかかった開放系である。この大気圧に、吸込み液面からポンプ吸込み口までの高低差が位置ヘッドとして加わり(吸い上げの場合はマイナス)、吸込み液面からポンプ吸込み口までの配管の摩擦損失が差し引かれて、ポンプ吸込み口の流体の圧力(正味押込み圧力)が算出される。水の場合、100℃での飽和蒸気圧は101.3kPaであるが、20℃では2.34kPaであるので、水がキャビテーションを発生するまでには、99kPaの余裕度がある。言いかえると、水は沸点が100℃であるので、常温20℃では80℃の過冷却液となっているに等しく、この過冷却度が水を蒸発させにくくしている。
【0009】
ところが、フロンなど沸点が常温(例えば、20℃)よりも低い冷媒は、常温で気化してしまうので、この冷媒を液の状態で循環させるためには、密閉系(配管が大気と遮断されている系)にしなければならない。この系では、図9(B)に示すように、ポンプの吸込み液面にかかる圧力はその温度での冷媒の飽和蒸気圧であり、この飽和蒸気圧に、吸込み液面からポンプ吸込み口までの高低差が位置ヘッドとして加わり、吸込み液面からポンプ吸込み口までの配管の摩擦損失が差し引かれて、正味押込み圧力が算出される。ところが、この正味押込み圧力は、吸い込まれる液冷媒の飽和蒸気圧との差が非常に小さいため、キャビテーションが発生する可能性が極めて高く、ポンプを安定して駆動させることができない恐れがある。
【0010】
本発明の目的は、上述の事情を考慮してなされたものであり、冷媒を循環させる冷媒ポンプを安定して駆動できるガスヒートポンプ式空気調和装置を提供することにある。また、本発明の他の目的は、冷媒を循環させる冷媒ポンプの駆動により、圧縮機を駆動するガスエンジンの動力を低減できるガスヒートポンプ式空気調和装置を提供することにある。
【0011】
【課題を解決するための手段】
請求項1に記載の発明は、圧縮機、凝縮器、減圧装置及び蒸発器が順次接続されて冷凍サイクルが構成され、上記圧縮機がガスエンジンにより駆動されるガスヒートポンプ式空気調和装置において、上記凝縮器の出口側から上記減圧装置、上記蒸発器及び上記圧縮機を迂回して当該凝縮器の入口側へ至る管路に、液冷媒を過冷却状態とする過冷却器と、液冷媒を循環させる冷媒ポンプと、上記ガスエンジンの排熱を回収して液冷媒に付与し蒸発させる排熱回収熱交換器とが、上記凝縮器の出口側から入口側へ向かって順次配設されたことを特徴とするものである
請求項2に記載の発明は、請求項1に記載の発明において、上記過冷却器はプレートフィン式熱交換器であり、外気により液冷媒を過冷却させるよう構成されたことを特徴とするものである
請求項3に記載の発明は、請求項1に記載の発明において、上記過冷却器は、内室と外室を有する二重管構造にて構成され、液冷媒の一部が他の減圧装置を経て上記内室または外室の一方に流入し、その蒸発潜熱により、上記内室または外室の他方に流入した液冷媒を過冷却させるよう構成されたことを特徴とするものである。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態を、図面に基づき説明する。
【0013】
図1は、本発明に係るガスヒートポンプ式空気調和装置の一実施の形態を示す回路図である。
【0014】
この図1に示すように、冷凍装置としてのガスヒートポンプ式空気調和装置10は、室外機11及び複数(例えば3台)の室内機12A、12B、12Cを有してなり、室外機11の室外冷媒配管14と室内機12A、12B、12Cの各室内冷媒配管15A、15B、15Cとが連結されて、冷凍サイクルが構成されている。
【0015】
室外機11は室外に設置され、室外冷媒配管14には圧縮機16が配設されるとともに、この圧縮機16の吸込側にアキュムレータ17が、吐出側に、オイルセパレータ26を介して四方弁18がそれぞれ配設され、この四方弁18側に室外熱交換器19、減圧装置としての室外膨張弁24、受液器25が順次配設されて構成される。室外熱交換器19には、この室外熱交換器19へ向かって送風する室外ファン20が隣接して配置されている。また、圧縮機16は、タイミングベルト27を介してガスエンジン30に連結され、このガスエンジン30により駆動される。
【0016】
一方、室内機12A、12B、12Cはそれぞれ室内に設置され、それぞれ、室内冷媒配管15A、15B、15Cに室内熱交換器21A、21B、21Cが配設されるとともに、室内冷媒配管15A、15B、15Cのそれぞれにおいて室内熱交換器21A、21B、21Cの近傍に、減圧装置としての室内膨張弁22A、22B、22Cが配設されて構成される。上記室内熱交換器21A、21B、21Cには、これらの室内熱交換器21A、21B、21Cへ送風する室内ファン23A、23B、23Cが隣接して配置されている。
【0017】
四方弁18が切り換えられることにより、ガスヒートポンプ式空気調和装置10が冷房運転又は暖房運転に設定される。つまり、四方弁18が冷房側に切り換えられたときには、冷媒が破線矢印αの如く流れ、室外熱交換器19が凝縮器に、室内熱交換器21A、21B、21Cが蒸発器になって冷房運転状態となり、各室内熱交換器21A、21B、21Cが室内を冷房する。また、四方弁18が暖房側に切り換えられたときには、冷媒が実線矢印βの如く流れ、室内熱交換器21A、21B、21Cが凝縮器に、室外熱交換器19が蒸発器になって暖房運転状態となり、各室内熱交換器21A、21B、21Cが室内を暖房する。
【0018】
冷房運転時には、室内膨張弁22A、22B、22Cのそれぞれの弁開度が空調負荷に応じて調整され、室外膨張弁24が全開操作される。また、暖房運転時には、室外膨張弁24及び室内膨張弁22A、22B、22Cのそれぞれの弁開度が空調負荷に応じて調整される。
【0019】
他方、上記ガスエンジン30は、エンジン冷却系31を流れるエンジン冷却水により冷却される。このエンジン冷却系31は、第1冷却系配管35にガスエンジン30、冷却水三方弁32、排熱回収熱交換器33及び冷却水ポンプ34が配設され、放熱器37が配設された第2冷却系配管36の一端が冷却水三方弁32に接続され、その他端が第1冷却系配管35における冷却水ポンプ34の吸込側に接続されて構成される。
【0020】
ガスヒートポンプ式空気調和装置10の冷房運転時には冷却水三方弁32が放熱器37側に開放され、冷却水ポンプ34の稼動により、エンジン冷却水が放熱器37へ導かれて放熱され、ガスエンジン30が冷却される。また、ガスヒートポンプ式空気調和装置10の暖房運転時には冷却水三方弁32が排熱回収熱交換器33側に開放され、冷却水ポンプ34の稼動により、エンジン冷却水が排熱回収熱交換器33へ導かれ、後述の如く液冷媒との熱交換により放熱されて、ガスエンジン30が冷却される。
【0021】
更に、上記ガスヒートポンプ式空気調和装置10の室外機11には、室内熱交換器21A、21B、21Cの暖房運転時における出口側の受液器25から当該室内熱交換器21A、21B、21Cの暖房運転時における入口側へ至る室外冷媒配管14に排熱回収系40が配設されている。この排熱回収系40は、室外膨張弁24、室外熱交換器19及び圧縮機16を迂回して設けられる。
【0022】
つまり、排熱回収系40は、排熱回収系配管41の一端が受液器25に接続され、他端が室外冷媒配管14における四方弁18と室内熱交換器21A、21B、21Cとの間に接続される。この排熱回収系配管41に、過冷却器しての過冷却熱交換器42、冷媒ポンプ43、流量調整弁44及びエンジン冷却系31の前記排熱回収熱交換器33が、受液器25の側から順次配設されて構成される。
【0023】
上記冷媒ポンプ43は定容量型のポンプであり、受液器25に貯溜された液冷媒を、排熱回収系配管41と室内熱交換器21A、21B、21Cを含む室外冷媒配管14との間で循環させる。また、排熱回収熱交換器33は、高温(約70〜85℃)のエンジン冷却水と、排熱回収系配管41内を流れる液冷媒とを熱交換して、この液冷媒を蒸発させ過熱ガス冷媒とする。この過熱ガス冷媒は、暖房運転時に圧縮機16から室内熱交換器21A、21B、21Cへ向かう高温高圧のガス冷媒に合流される。
【0024】
更に、上記流量調整弁44は、ガスヒートポンプ式空気調和装置10の冷房運転時に閉鎖されると共に、暖房運転時には冷媒ポンプ43から排熱回収熱交換器33へ向かう液冷媒の流量を調整する。また、冷媒ポンプ43と流量調整弁44との間の排熱回収系配管41には、バイパス弁45を備えたバイパス配管46の一端が接続され、このバイパス配管46の他端が受液器25に接続される。このバイパス弁45も、冷媒ポンプ43から排熱回収熱交換器33へ流れる液冷媒の流量を調整する。
【0025】
上記過冷却熱交換器42は、図2に示すようにプレートフィン式熱交換器であり、液冷媒が流れるパス配管47がヘッダ48により合流されて、圧力損失が低減されている。過冷却熱交換器42のパス配管47を流れる液冷媒の温度は約40〜45℃であるが、この過冷却熱交換器42へ送風ファン49が送風する空気の温度(外気温度)が約8℃程度であるため、この過冷却熱交換器42により液冷媒は過冷却状態まで冷却される。この過冷却熱交換器42により過冷却状態とされる液冷媒の過冷却度は、約5℃である。
【0026】
冷媒ポンプ43に吸い込まれる冷媒を過冷却熱交換器42により過冷却状態とする理由は、冷媒ポンプ43においてキャビテーションの発生を防止して、この冷媒ポンプ43を安定して駆動させるためである。つまり、冷媒ポンプ43を安定して駆動させる条件は、この冷媒ポンプ43を含む排熱回収系40の正味吸込みヘッド(NPSH)が、当該排熱回収系40がキャビテーションを発生しない最小の正味吸込みヘッド(NPSH)よりも3割程度高い値となることである。
【0027】
ここで、正味吸込みヘッド(NPSH)は、次式(1)によって規定される。
【0028】
NPSH=吸込み液面と接する気相の圧力+位置ヘッドによる圧力−液体の飽和蒸気圧−配管の摩擦損失…式(1)
冷媒ポンプ43に吸い込まれる液冷媒を過冷却熱交換器42によって過冷却状態にすることで、上記式(1)の「液体(冷媒)の飽和蒸気圧」が低下する。これにより、正味吸込みヘッド(NPSH)が増大して、冷媒ポンプ43を含む排熱回収系40にキャビテーションの発生を防止でき、冷媒ポンプ43を安定して駆動させることが可能となる。
【0029】
排熱回収熱交換器33へエンジン冷却水が流れて、この排熱回収熱交換器33が冷媒を加熱して蒸発させ過熱ガス冷媒とするのは、ガスヒートポンプ式空気調和装置10の暖房運転時である。この暖房運転時、圧縮機16から吐出された冷媒(図3の点B)は、オイルセパレータ26、四方弁18を経た後、排熱回収熱交換器33により加熱された過熱ガス冷媒(図3の点I)と合流し(図3の点C)、室内熱交換器21A、21B、21Cにて凝縮されて(図3の点D)、室内を暖房する。
【0030】
室内熱交換器21A、21B、21Cにて凝縮された液冷媒は受液器25に至り(図3の点E)、その一部が排熱回収系40へ流れる。この一部の液冷媒は、排熱回収系40の過冷却熱交換器42にて過冷却状態となり(図3の点F)、冷媒ポンプ43に吸い込まれて昇圧され(図3の点G)、流量調整弁44にて流量調整されて(図3の点H)、排熱回収熱交換器33へ流入する。この排熱回収熱交換器33にて冷媒は、前述の如く過熱ガス冷媒となって(図3の点I)、室内熱交換器21A、21B、21Cへ向かって流れる冷媒と合流する。
【0031】
受液器25に至った冷媒の大部分は、室外膨張弁24にて減圧され(図3の点J)、室外熱交換器19にて低温の外気から熱を得て蒸発し(図3の点K)、四方弁18を通り(図3の点A)、アキュムレータ17を経て圧縮機16へ戻される。
【0032】
上述のように構成されたことから、上記実施の形態によれば、次の効果▲1▼及び▲2▼を奏する。
【0033】
▲1▼冷媒ポンプ43に吸い込まれる液冷媒が過冷却熱交換器42により過冷却状態とされることから、排熱回収系40における冷媒の飽和蒸気圧を低下させることができ、冷媒ポンプ43の正味吸込みヘッド(NPSH)を高く設定できる。この結果、冷媒ポンプ43にキャビテーションの発生を防止できるので、冷媒を循環させる当該冷媒ポンプ43を安定して駆動できる。このように、冷媒ポンプ43を安定して駆動させることができるので、この冷媒ポンプ43の能力を最大限に発揮させることができ、このため、圧縮機16を駆動するためのガスエンジン30の動力を低減でき、暖房運転時におけるエネルギー効率を向上させることができる。
【0034】
▲2▼上述の如く、ガスエンジン30の動力が低減されるので、このガスエンジン30が消費するガス消費量を低減できる。この結果、ガスエンジン30から大気中へ排出されるNOxなどの排ガス量が削減されて、環境汚染の度合いが緩和される。
【0035】
以上、本発明を上記実施の形態に基づいて説明したが、本発明はこれに限定されるものではない。
【0036】
例えば、過冷却器は、図4に示すように二重管構造の二重管熱交換器50であってもよい。この二重管熱交換器50は内室51と外室52とを有し、受液器25からの大部分の液冷媒が内室51内を流れる。受液器25からの一部の液冷媒は、減圧装置としてのキャピラリチューブ53により減圧されて気液2相となり、外室52内を流れる。この外室52内の冷媒は、蒸発のための潜熱を内室51内の液冷媒から奪って、この内室51内の冷媒を過冷却状態まで冷却する。この二重管熱交換器50及びキャピラリチューブ53によれば、冷媒を冷却するために空気(外気)などの他の流体を必要としない。
【0037】
また、冷媒ポンプ43に吸い込まれる冷媒を過冷却熱交換器42または二重管熱交換器50により過冷却させることによって、冷媒ポンプ43を安定して運転させることができるので、本発明を氷蓄熱式空気調和装置や、余剰エネルギー利用のための熱搬送に適用することができる。
【0038】
【発明の効果】
請求項1乃至3に記載の発明に係るガスヒートポンプ式空気調和装置によれば、冷媒を循環させる冷媒ポンプを安定して駆動できる。また、本発明のガスヒートポンプ式空気調和装置によれば、冷媒を循環させる冷媒ポンプの駆動により、圧縮機を駆動するガスエンジンの動力を低減できる。
【図面の簡単な説明】
【図1】本発明に係るガスヒートポンプ式空気調和装置の一実施の形態を示す回路図である。
【図2】図1の過冷却器としての過冷却熱交換器を示す斜視図である。
【図3】図1の冷凍サイクルにおける圧力(P)‐エンタルピ(h)線図を示すグラフである。
【図4】過冷却器としての他の形態を示す斜視図である。
【図5】従来の冷凍装置(空気調和装置)を示す回路図である。
【図6】図5の冷凍サイクルにおける圧力(P)‐エンタルピ(h)線図を示すグラフである。
【図7】従来の他の冷凍装置(空気調和装置)を示す回路図である。
【図8】図7の冷凍サイクルにおける圧力(P)‐エンタルピ(h)線図を示すグラフである。
【図9】ポンプ位置とNPSHとの関係を示し、(A)が水の場合を、(B)が冷媒の場合をそれぞれ示す図である。
【符号の説明】
10 ガスヒートポンプ式空気調和装置
16 圧縮機
19 室外熱交換器
21A、21B、21C 室内熱交換器
24 室外膨張弁(減圧装置)
25 受液器
30 ガスエンジン
33 排熱回収熱交換器
40 排熱回収系
41 排熱回収系配管
42 過冷却熱交換器(過冷却器)
43 冷媒ポンプ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a gas heat pump type air conditioner using a pump that conveys a refrigerant in a liquid state.
[0002]
[Prior art]
In a refrigeration apparatus, when a refrigeration cycle is formed using a refrigerant such as Freon, a compressor 100 is generally used for circulation of the refrigerant, as shown in FIGS. 5 and 6. In this refrigeration cycle, the refrigerant is depressurized by a decompression device 102, heat is obtained from low-temperature air in an evaporator 103, adiabatically compressed by a compressor 100 to a high temperature and high pressure, and then condensed by a condenser 101. Heat the room. The refrigerant that has left the condenser 101 is temporarily stored in the liquid receiver 104.
[0003]
In this case, there is usually a temperature difference between the fluid (air) on the side where heat is drawn by heat exchange with the refrigerant and the fluid (air) on the side that discharges heat. The compressor serves to increase the temperature of the refrigerant responsible for heat transfer by adiabatically compressing the gas refrigerant, and at the same time, discharges heat from the low-temperature heat exchanger (evaporator) that draws heat from the high-temperature heat exchanger. (Condenser) Also serves as a drive pump for transporting the refrigerant to the (condenser).
[0004]
However, when another fluid (for example, engine cooling water) having a temperature equal to or higher than the temperature of the fluid to be heated (refrigerant) is present, if the same cycle as described above is to be established, the above-described compression is performed. The machine no longer performs its original compression function, but only functions as a fluid transport pump.
[0005]
In such a case, a cycle can be established even by using a pump instead of a compressor as a means for transporting the fluid (Patent Document 1). 7 and 8 show a refrigerating apparatus using a pump 105 instead of the compressor 100, and a pressure (P) -enthalpy (h) diagram of the refrigerating cycle, respectively.
[0006]
Typically, a pump is an accessory that imparts kinetic energy to the fluid. What is generally used with water or the like is a so-called volute pump, which discharges a fluid by rotating an impeller. When sending out water, a stable flow rate can be obtained unless a suction pipe having a resistance (such as a valve) is provided. However, when the liquid level is low or the water temperature is high, the liquid in the impeller evaporates, and a phenomenon called cavitation, which generates vibration and sound, may occur. This phenomenon occurs more frequently in the refrigerant than in the water.
[0007]
[Patent Document 1]
JP-A-3-105174
[Problems to be solved by the invention]
Cavitation generally occurs when the pressure of the fluid drawn into the pump falls below the saturated vapor pressure at that temperature. As shown in FIG. 9 (A), normally, in the case of water, the system is an open system in which an air pressure of 101.3 kPa is applied to a suction liquid level of a pump. To this atmospheric pressure, a height difference from the suction liquid level to the pump suction port is added as a position head (minus in the case of suction), the friction loss of the pipe from the suction liquid level to the pump suction port is subtracted, and the pump suction port is reduced. Of the fluid (net pushing pressure) is calculated. In the case of water, the saturated vapor pressure at 100 ° C. is 101.3 kPa, but it is 2.34 kPa at 20 ° C. Therefore, there is a margin of 99 kPa before the water generates cavitation. In other words, since water has a boiling point of 100 ° C., it is equivalent to a supercooled liquid of 80 ° C. at normal temperature of 20 ° C., and this degree of supercooling makes it difficult to evaporate water.
[0009]
However, refrigerants having a boiling point lower than room temperature (for example, 20 ° C.) such as chlorofluorocarbons are vaporized at room temperature. Therefore, in order to circulate the refrigerant in a liquid state, a closed system (pipe is cut off from the atmosphere) System). In this system, as shown in FIG. 9 (B), the pressure applied to the suction liquid level of the pump is the saturated vapor pressure of the refrigerant at that temperature, and this saturated vapor pressure is applied to the pressure from the suction liquid level to the pump suction port. The height difference is added as a position head, and the friction loss of the pipe from the suction liquid level to the pump suction port is subtracted to calculate the net pushing pressure. However, since the difference between the net pushing pressure and the saturated vapor pressure of the sucked liquid refrigerant is very small, cavitation is very likely to occur, and the pump may not be driven stably.
[0010]
SUMMARY OF THE INVENTION An object of the present invention is to provide a gas heat pump type air conditioner capable of stably driving a refrigerant pump for circulating a refrigerant. Another object of the present invention is to provide a gas heat pump type air conditioner that can reduce the power of a gas engine that drives a compressor by driving a refrigerant pump that circulates refrigerant.
[0011]
[Means for Solving the Problems]
The invention according to claim 1 is a gas heat pump type air conditioner in which a compressor, a condenser, a decompression device, and an evaporator are sequentially connected to form a refrigeration cycle, and the compressor is driven by a gas engine. A subcooler that makes the liquid refrigerant in a supercooled state, and circulates the liquid refrigerant to a pipe line that bypasses the decompression device, the evaporator, and the compressor from the outlet side of the condenser to the inlet side of the condenser. And a heat pump for recovering the heat exhausted from the gas engine, applying the liquid heat to the liquid refrigerant, and evaporating the liquid heat. The heat exchanger is arranged in order from the outlet side to the inlet side of the condenser. According to a second aspect of the present invention, in the first aspect of the invention, the subcooler is a plate-fin heat exchanger, and is configured to supercool the liquid refrigerant by outside air. Also characterized by According to a third aspect of the present invention, in the first aspect of the present invention, the subcooler has a double-pipe structure having an inner chamber and an outer chamber, and a part of the liquid refrigerant is other than the other. The refrigerant flows into one of the inner chamber and the outer chamber via a pressure reducing device, and is configured to supercool the liquid refrigerant flowing into the other of the inner chamber or the outer chamber by the latent heat of evaporation. .
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0013]
FIG. 1 is a circuit diagram showing an embodiment of a gas heat pump type air conditioner according to the present invention.
[0014]
As shown in FIG. 1, a gas heat pump type air conditioner 10 as a refrigerating apparatus includes an outdoor unit 11 and a plurality (for example, three) of indoor units 12A, 12B, and 12C. The refrigerant pipe 14 and the indoor refrigerant pipes 15A, 15B, 15C of the indoor units 12A, 12B, 12C are connected to form a refrigeration cycle.
[0015]
The outdoor unit 11 is installed outdoors, and a compressor 16 is disposed in the outdoor refrigerant pipe 14. An accumulator 17 is provided on the suction side of the compressor 16 and a four-way valve 18 is provided on the discharge side thereof via an oil separator 26. The outdoor heat exchanger 19, the outdoor expansion valve 24 as a pressure reducing device, and the liquid receiver 25 are sequentially arranged on the four-way valve 18 side. An outdoor fan 20 that blows air toward the outdoor heat exchanger 19 is disposed adjacent to the outdoor heat exchanger 19. The compressor 16 is connected to a gas engine 30 via a timing belt 27, and is driven by the gas engine 30.
[0016]
On the other hand, the indoor units 12A, 12B, and 12C are installed indoors, respectively, and the indoor heat exchangers 21A, 21B, and 21C are disposed in the indoor refrigerant pipes 15A, 15B, and 15C, respectively, and the indoor refrigerant pipes 15A, 15B, and In each of 15C, indoor expansion valves 22A, 22B, 22C as pressure reducing devices are arranged near the indoor heat exchangers 21A, 21B, 21C. Indoor fans 23A, 23B, and 23C that blow air to the indoor heat exchangers 21A, 21B, and 21C are arranged adjacent to the indoor heat exchangers 21A, 21B, and 21C.
[0017]
By switching the four-way valve 18, the gas heat pump air conditioner 10 is set to the cooling operation or the heating operation. That is, when the four-way valve 18 is switched to the cooling side, the refrigerant flows as indicated by the dashed arrow α, the outdoor heat exchanger 19 functions as a condenser, and the indoor heat exchangers 21A, 21B, and 21C function as evaporators, thereby performing a cooling operation. It becomes a state and each indoor heat exchanger 21A, 21B, 21C cools a room. When the four-way valve 18 is switched to the heating side, the refrigerant flows as indicated by the solid arrow β, and the indoor heat exchangers 21A, 21B, and 21C function as condensers, and the outdoor heat exchanger 19 functions as an evaporator to perform heating operation. It becomes a state and each indoor heat exchanger 21A, 21B, 21C heats a room.
[0018]
During the cooling operation, the respective opening degrees of the indoor expansion valves 22A, 22B, and 22C are adjusted according to the air conditioning load, and the outdoor expansion valve 24 is fully opened. During the heating operation, the respective valve openings of the outdoor expansion valve 24 and the indoor expansion valves 22A, 22B, 22C are adjusted according to the air conditioning load.
[0019]
On the other hand, the gas engine 30 is cooled by engine cooling water flowing through the engine cooling system 31. The engine cooling system 31 includes a first cooling system pipe 35 in which a gas engine 30, a cooling water three-way valve 32, an exhaust heat recovery heat exchanger 33, and a cooling water pump 34 are provided, and a radiator 37 is provided. One end of the two cooling system piping 36 is connected to the cooling water three-way valve 32, and the other end is connected to the suction side of the cooling water pump 34 in the first cooling system piping 35.
[0020]
During the cooling operation of the gas heat pump type air conditioner 10, the cooling water three-way valve 32 is opened to the radiator 37 side, and the operation of the cooling water pump 34 guides the engine cooling water to the radiator 37 to radiate heat. Is cooled. During the heating operation of the gas heat pump type air conditioner 10, the cooling water three-way valve 32 is opened to the exhaust heat recovery heat exchanger 33 side, and the operation of the cooling water pump 34 allows the engine cooling water to be removed from the exhaust heat recovery heat exchanger 33. And the heat is radiated by heat exchange with the liquid refrigerant as described later, and the gas engine 30 is cooled.
[0021]
Further, the outdoor unit 11 of the gas heat pump type air conditioner 10 is connected to the indoor heat exchangers 21A, 21B, 21C from the outlet side liquid receiver 25 during the heating operation of the indoor heat exchangers 21A, 21B, 21C. An exhaust heat recovery system 40 is provided in the outdoor refrigerant pipe 14 reaching the inlet side during the heating operation. The exhaust heat recovery system 40 is provided to bypass the outdoor expansion valve 24, the outdoor heat exchanger 19, and the compressor 16.
[0022]
That is, in the exhaust heat recovery system 40, one end of the exhaust heat recovery system pipe 41 is connected to the liquid receiver 25, and the other end is between the four-way valve 18 and the indoor heat exchangers 21A, 21B, and 21C in the outdoor refrigerant pipe 14. Connected to. A supercooling heat exchanger 42 serving as a subcooler, a refrigerant pump 43, a flow control valve 44, and the exhaust heat recovery heat exchanger 33 of the engine cooling system 31 are connected to the exhaust heat recovery system pipe 41 by a receiver 25. Are sequentially arranged from the side.
[0023]
The refrigerant pump 43 is a fixed-capacity type pump, and transfers the liquid refrigerant stored in the liquid receiver 25 between the exhaust heat recovery system pipe 41 and the outdoor refrigerant pipe 14 including the indoor heat exchangers 21A, 21B, and 21C. To circulate. Further, the exhaust heat recovery heat exchanger 33 exchanges heat between the high-temperature (about 70 to 85 ° C.) engine cooling water and the liquid refrigerant flowing in the exhaust heat recovery system piping 41 to evaporate the liquid refrigerant to overheat. Gas refrigerant. This superheated gas refrigerant is combined with the high-temperature and high-pressure gas refrigerant flowing from the compressor 16 to the indoor heat exchangers 21A, 21B, and 21C during the heating operation.
[0024]
Further, the flow control valve 44 is closed during the cooling operation of the gas heat pump air conditioner 10 and adjusts the flow rate of the liquid refrigerant flowing from the refrigerant pump 43 to the exhaust heat recovery heat exchanger 33 during the heating operation. Further, one end of a bypass pipe 46 having a bypass valve 45 is connected to the exhaust heat recovery system pipe 41 between the refrigerant pump 43 and the flow control valve 44, and the other end of the bypass pipe 46 is connected to the receiver 25. Connected to. This bypass valve 45 also adjusts the flow rate of the liquid refrigerant flowing from the refrigerant pump 43 to the exhaust heat recovery heat exchanger 33.
[0025]
The supercooling heat exchanger 42 is a plate fin type heat exchanger as shown in FIG. 2, and a path pipe 47 through which a liquid refrigerant flows is joined by a header 48 to reduce pressure loss. The temperature of the liquid refrigerant flowing through the path pipe 47 of the subcooling heat exchanger 42 is about 40 to 45 ° C., and the temperature of the air (outside air temperature) blown by the blower fan 49 to the subcooling heat exchanger 42 is about 8 Since the temperature is on the order of degrees Celsius, the liquid refrigerant is cooled by the supercooling heat exchanger 42 to a supercooled state. The degree of supercooling of the liquid refrigerant brought into a supercooled state by the supercooling heat exchanger 42 is about 5 ° C.
[0026]
The reason that the refrigerant sucked into the refrigerant pump 43 is supercooled by the subcooling heat exchanger 42 is to prevent cavitation in the refrigerant pump 43 and to drive the refrigerant pump 43 stably. That is, the condition for stably driving the refrigerant pump 43 is that the net suction head (NPSH) of the exhaust heat recovery system 40 including the refrigerant pump 43 is the minimum net suction head that does not generate cavitation in the exhaust heat recovery system 40. (NPSH) is about 30% higher.
[0027]
Here, the net suction head (NPSH) is defined by the following equation (1).
[0028]
NPSH = pressure of gas phase in contact with suction liquid level + pressure by position head−saturated vapor pressure of liquid−friction loss of pipe… Equation (1)
By setting the liquid refrigerant sucked into the refrigerant pump 43 to a supercooled state by the subcooling heat exchanger 42, the “saturated vapor pressure of the liquid (refrigerant)” in the above equation (1) decreases. As a result, the net suction head (NPSH) increases, cavitation can be prevented from occurring in the exhaust heat recovery system 40 including the refrigerant pump 43, and the refrigerant pump 43 can be driven stably.
[0029]
The engine cooling water flows to the exhaust heat recovery heat exchanger 33, and the exhaust heat recovery heat exchanger 33 heats and evaporates the refrigerant to be a superheated gas refrigerant during the heating operation of the gas heat pump air conditioner 10. It is. During the heating operation, the refrigerant (point B in FIG. 3) discharged from the compressor 16 passes through the oil separator 26 and the four-way valve 18 and then is heated by the exhaust heat recovery heat exchanger 33 (FIG. 3). (Point C in FIG. 3) and condensed in the indoor heat exchangers 21A, 21B, 21C (point D in FIG. 3) to heat the room.
[0030]
The liquid refrigerant condensed in the indoor heat exchangers 21A, 21B, 21C reaches the liquid receiver 25 (point E in FIG. 3), and a part of the liquid refrigerant flows to the exhaust heat recovery system 40. This part of the liquid refrigerant is supercooled in the supercooling heat exchanger 42 of the exhaust heat recovery system 40 (point F in FIG. 3), and is sucked into the refrigerant pump 43 to be boosted (point G in FIG. 3). The flow rate is adjusted by the flow rate adjusting valve 44 (point H in FIG. 3), and flows into the exhaust heat recovery heat exchanger 33. In the exhaust heat recovery heat exchanger 33, the refrigerant becomes a superheated gas refrigerant as described above (point I in FIG. 3), and merges with the refrigerant flowing toward the indoor heat exchangers 21A, 21B, and 21C.
[0031]
Most of the refrigerant that has reached the liquid receiver 25 is depressurized by the outdoor expansion valve 24 (point J in FIG. 3), and the outdoor heat exchanger 19 obtains heat from low-temperature outside air and evaporates (see FIG. 3). At point K), it passes through the four-way valve 18 (point A in FIG. 3) and returns to the compressor 16 via the accumulator 17.
[0032]
According to the above-described embodiment, the following effects (1) and (2) can be obtained.
[0033]
(1) Since the liquid refrigerant sucked into the refrigerant pump 43 is supercooled by the subcooling heat exchanger 42, the saturated vapor pressure of the refrigerant in the exhaust heat recovery system 40 can be reduced. The net suction head (NPSH) can be set higher. As a result, since cavitation can be prevented from occurring in the refrigerant pump 43, the refrigerant pump 43 for circulating the refrigerant can be driven stably. As described above, since the refrigerant pump 43 can be driven stably, the capacity of the refrigerant pump 43 can be maximized, and therefore, the power of the gas engine 30 for driving the compressor 16 can be improved. Can be reduced, and the energy efficiency during the heating operation can be improved.
[0034]
(2) As described above, since the power of the gas engine 30 is reduced, the amount of gas consumed by the gas engine 30 can be reduced. As a result, the amount of exhaust gas such as NOx discharged from the gas engine 30 into the atmosphere is reduced, and the degree of environmental pollution is reduced.
[0035]
As described above, the present invention has been described based on the above embodiment, but the present invention is not limited to this.
[0036]
For example, the subcooler may be a double tube heat exchanger 50 having a double tube structure as shown in FIG. This double tube heat exchanger 50 has an inner chamber 51 and an outer chamber 52, and most of the liquid refrigerant from the liquid receiver 25 flows through the inner chamber 51. A part of the liquid refrigerant from the liquid receiver 25 is decompressed by the capillary tube 53 as a decompression device to become a gas-liquid two phase, and flows in the outer chamber 52. The refrigerant in the outer chamber 52 removes latent heat for evaporation from the liquid refrigerant in the inner chamber 51 and cools the refrigerant in the inner chamber 51 to a supercooled state. According to the double tube heat exchanger 50 and the capillary tube 53, other fluid such as air (outside air) is not required for cooling the refrigerant.
[0037]
Further, by supercooling the refrigerant sucked into the refrigerant pump 43 by the subcooling heat exchanger 42 or the double tube heat exchanger 50, the refrigerant pump 43 can be operated stably. The present invention can be applied to a type air conditioner and heat transfer for utilizing surplus energy.
[0038]
【The invention's effect】
According to the gas heat pump type air conditioner according to the first to third aspects of the present invention, the refrigerant pump for circulating the refrigerant can be driven stably. Further, according to the gas heat pump type air conditioner of the present invention, the power of the gas engine that drives the compressor can be reduced by driving the refrigerant pump that circulates the refrigerant.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing one embodiment of a gas heat pump type air conditioner according to the present invention.
FIG. 2 is a perspective view showing a subcooling heat exchanger as the subcooler in FIG.
FIG. 3 is a graph showing a pressure (P) -enthalpy (h) diagram in the refrigeration cycle of FIG. 1;
FIG. 4 is a perspective view showing another embodiment of the supercooler.
FIG. 5 is a circuit diagram showing a conventional refrigeration apparatus (air conditioner).
FIG. 6 is a graph showing a pressure (P) -enthalpy (h) diagram in the refrigeration cycle of FIG. 5;
FIG. 7 is a circuit diagram showing another conventional refrigeration apparatus (air conditioner).
FIG. 8 is a graph showing a pressure (P) -enthalpy (h) diagram in the refrigeration cycle of FIG. 7;
FIG. 9 is a diagram showing a relationship between a pump position and NPSH, where (A) shows a case of water and (B) shows a case of a refrigerant.
[Explanation of symbols]
Reference Signs List 10 gas heat pump type air conditioner 16 compressor 19 outdoor heat exchangers 21A, 21B, 21C indoor heat exchanger 24 outdoor expansion valve (decompression device)
25 Liquid receiver 30 Gas engine 33 Exhaust heat recovery heat exchanger 40 Exhaust heat recovery system 41 Exhaust heat recovery system piping 42 Subcooling heat exchanger (supercooler)
43 Refrigerant pump

Claims (3)

圧縮機、凝縮器、減圧装置及び蒸発器が順次接続されて冷凍サイクルが構成され、上記圧縮機がガスエンジンにより駆動されるガスヒートポンプ式空気調和装置において、
上記凝縮器の出口側から上記減圧装置、上記蒸発器及び上記圧縮機を迂回して当該凝縮器の入口側へ至る管路に、液冷媒を過冷却状態とする過冷却器と、液冷媒を循環させる冷媒ポンプと、上記ガスエンジンの排熱を回収して液冷媒に付与し蒸発させる排熱回収熱交換器とが、上記凝縮器の出口側から入口側へ向かって順次配設されたことを特徴とするガスヒートポンプ式空気調和装置。
In a gas heat pump type air conditioner in which a compressor, a condenser, a decompression device, and an evaporator are sequentially connected to form a refrigeration cycle, and the compressor is driven by a gas engine.
A subcooler that makes the liquid refrigerant in a supercooled state, and a pipe that extends from the outlet side of the condenser to the decompression device, the evaporator, and the inlet side of the condenser bypassing the compressor. A circulating refrigerant pump and an exhaust heat recovery heat exchanger that collects the exhaust heat of the gas engine, applies the liquid heat to the liquid refrigerant, and evaporates the liquid refrigerant are sequentially arranged from the outlet side to the inlet side of the condenser. A gas heat pump type air conditioner characterized by the following.
上記過冷却器はプレートフィン式熱交換器であり、外気により液冷媒を過冷却させるよう構成されたことを特徴とする請求項1に記載のガスヒートポンプ式空気調和装置。The gas heat pump type air conditioner according to claim 1, wherein the subcooler is a plate fin type heat exchanger, and is configured to supercool the liquid refrigerant by outside air. 上記過冷却器は、内室と外室を有する二重管構造にて構成され、液冷媒の一部が他の減圧装置を経て上記内室または外室の一方に流入し、その蒸発潜熱により、上記内室または外室の他方に流入した液冷媒を過冷却させるよう構成されたことを特徴とする請求項1に記載のガスヒートポンプ式空気調和装置。The supercooler is configured in a double pipe structure having an inner chamber and an outer chamber, and a part of the liquid refrigerant flows into one of the inner chamber or the outer chamber via another decompression device, and the latent heat of evaporation causes The gas heat pump type air conditioner according to claim 1, wherein the liquid refrigerant flowing into the other of the inner chamber and the outer chamber is supercooled.
JP2002282753A 2002-09-27 2002-09-27 Gas heat pump type air conditioner Pending JP2004116930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002282753A JP2004116930A (en) 2002-09-27 2002-09-27 Gas heat pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002282753A JP2004116930A (en) 2002-09-27 2002-09-27 Gas heat pump type air conditioner

Publications (1)

Publication Number Publication Date
JP2004116930A true JP2004116930A (en) 2004-04-15

Family

ID=32276818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002282753A Pending JP2004116930A (en) 2002-09-27 2002-09-27 Gas heat pump type air conditioner

Country Status (1)

Country Link
JP (1) JP2004116930A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119483A1 (en) * 2008-03-24 2009-10-01 ヤンマー株式会社 Engine-driven heat pump
WO2018062054A1 (en) * 2016-09-27 2018-04-05 東芝キヤリア株式会社 Refrigeration cycle device
CN109916104A (en) * 2019-03-11 2019-06-21 李国斌 A kind of cold Multisource heat pump unit of evaporation
JP2019174096A (en) * 2018-03-30 2019-10-10 井上 修行 Hybrid heat pump device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119483A1 (en) * 2008-03-24 2009-10-01 ヤンマー株式会社 Engine-driven heat pump
JP2009228997A (en) * 2008-03-24 2009-10-08 Yanmar Co Ltd Engine-driven heat pump
WO2018062054A1 (en) * 2016-09-27 2018-04-05 東芝キヤリア株式会社 Refrigeration cycle device
JPWO2018062054A1 (en) * 2016-09-27 2019-07-04 東芝キヤリア株式会社 Refrigeration cycle device
JP2019174096A (en) * 2018-03-30 2019-10-10 井上 修行 Hybrid heat pump device
JP7145632B2 (en) 2018-03-30 2022-10-03 大阪瓦斯株式会社 Hybrid heat pump device
CN109916104A (en) * 2019-03-11 2019-06-21 李国斌 A kind of cold Multisource heat pump unit of evaporation

Similar Documents

Publication Publication Date Title
JP5585003B2 (en) Refrigeration equipment
US7984621B2 (en) Air conditioning system for communication equipment and controlling method thereof
US20110259027A1 (en) Heat pump type hot water supply apparatus
EP2947402B1 (en) Heat pump
JP2004190917A (en) Refrigeration device
JP4428341B2 (en) Refrigeration cycle equipment
KR20100059170A (en) Heat pump storage system
KR20110004157A (en) Air conditioner
KR20100059176A (en) Storage system
KR20100005734U (en) Heat pump storage system
EP3290827A1 (en) Defrosting without reversing refrigerant cycle
JP4608303B2 (en) Vapor compression heat pump
KR20100046365A (en) Heat pump system
JP2007051788A (en) Refrigerating device
KR100883600B1 (en) Air conditioner
JP2004116930A (en) Gas heat pump type air conditioner
KR20100005735U (en) storage system
KR20100005736U (en) Heat pump system
WO2016199671A1 (en) Refrigeration system
JP2004293889A (en) Ice thermal storage unit, ice thermal storage type air conditioner and its operating method
KR100613502B1 (en) Heat pump type air conditioner
JP2021055958A (en) Freezer
KR100554566B1 (en) Heat pump cycle for excessive low temperature
KR20050102479A (en) Structure for improving superheat degree of refrigerant in heatpump
JPH10311614A (en) Heat storage type cooling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080123

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080826