WO2018062054A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2018062054A1
WO2018062054A1 PCT/JP2017/034381 JP2017034381W WO2018062054A1 WO 2018062054 A1 WO2018062054 A1 WO 2018062054A1 JP 2017034381 W JP2017034381 W JP 2017034381W WO 2018062054 A1 WO2018062054 A1 WO 2018062054A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
machine room
refrigeration cycle
housing
heat exchanger
Prior art date
Application number
PCT/JP2017/034381
Other languages
French (fr)
Japanese (ja)
Inventor
馨 松下
裕昭 渡邉
Original Assignee
東芝キヤリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝キヤリア株式会社 filed Critical 東芝キヤリア株式会社
Priority to JP2018542526A priority Critical patent/JPWO2018062054A1/en
Publication of WO2018062054A1 publication Critical patent/WO2018062054A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/62Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/46Component arrangements in separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • Embodiment of this invention is related with the refrigerating-cycle apparatus provided with the spiral pump which supplies water to a water heat exchanger.
  • An air-cooled heat pump chilling unit that generates cold water or hot water includes a housing having a machine room.
  • the machine room has an elongated shape extending in the depth direction of the chilling unit, and various refrigeration cycle components including a water heat exchanger are accommodated in the machine room.
  • the water heat exchanger is connected to a utilization device such as an air conditioner through a water circuit having a spiral pump.
  • the spiral pump is an element that supplies water returning from the utilization device side to the water flow path of the water heat exchanger, and is disposed at one end portion along the longitudinal direction of the machine room.
  • the spiral pump is provided with a casing in which a suction port and a discharge port are opened, and a motor that rotates an impeller in the casing.
  • the centrifugal pump housed in the chilling unit housing is fixed to the bottom of the machine room with the motor rotation axis placed vertically, and between the lower end of the motor and the bottom of the machine room.
  • the casing is located on the top.
  • JP 2014-178113 A Japanese Unexamined Patent Publication No. 2016-90083
  • a water inlet connected to the water flow path is generally opened at the upper end of the water heat exchanger.
  • the centrifugal pump is arranged in the machine room with the motor rotation axis placed vertically, so that the discharge port of the casing is located near the bottom of the machine room far from the water inlet of the water heat exchanger. Opened sideways.
  • the water pipe connecting the discharge port and the water inlet needs to be pulled out sideways from the discharge port and then set up toward the top of the machine room through the side of the motor. Therefore, the route for routing the water pipe becomes complicated and the length of the pipe cannot be denied.
  • An object of the present invention is to obtain a refrigeration cycle apparatus in which water pipes connecting between a centrifugal pump and a water heat exchanger can be arranged in a compact manner, and the water piping route can be simplified.
  • the refrigeration cycle apparatus includes a housing having a machine room and a water heat exchanger that is accommodated in the machine room and performs heat exchange between water flowing through the water flow path and refrigerant flowing through the refrigerant flow path.
  • a centrifugal pump that is housed in the machine room and supplies water to the water flow path of the water heat exchanger.
  • the spiral pump includes a casing having a suction port and a discharge port opened in directions orthogonal to each other, and a power unit that rotates an impeller in the casing, and the discharge port opens upward in the machine room
  • the centrifugal pump is installed on the bottom of the machine room in a posture in which the rotation axis of the power unit is placed horizontally.
  • the water heat exchanger has a water inlet connected to an upstream end of the water flow path at a position higher than the discharge port of the spiral pump, and the discharge port of the spiral pump and the water inlet of the water heat exchanger Is connected by a water pipe.
  • FIG. 1 is a perspective view of an air-cooled heat pump chilling unit according to an embodiment.
  • FIG. 2 is a side view of the air-cooled heat pump chilling unit according to the embodiment.
  • FIG. 3 is a perspective view showing the positional relationship between the machine room containing the first refrigeration cycle unit, the second refrigeration cycle unit, the water circuit and the electrical unit and the drain pan.
  • FIG. 4 is a plan view showing the positional relationship between the first refrigeration cycle unit, the second refrigeration cycle unit, the water circuit, and the electrical unit housed in the machine room.
  • FIG. 5 is a circuit diagram showing a refrigeration cycle of the air-cooled heat pump chilling unit according to the embodiment.
  • FIG. 6 is an exploded perspective view showing an air heat exchange unit used in the air-cooled heat pump chilling unit according to the embodiment.
  • FIG. 7 is a rear view of the air-cooled heat pump chilling unit as seen from the direction of arrow F7 in FIG.
  • FIG. 8A is a plan view showing a spiral pump used in the air-cooled heat pump chilling unit and a water piping routing path according to the embodiment.
  • FIG. 8B is an arrow view seen from the direction of the arrow F8 in FIG. 8A.
  • FIG. 9A is a plan view showing another spiral pump and water pipe routing route selectively used in the air-cooled heat pump chilling unit according to the embodiment.
  • FIG. 9B is an arrow view seen from the direction of arrow F9 in FIG. 9A.
  • FIG. 10A is a plan view showing still another spiral pump and water pipe routing route selectively used in the air-cooled heat pump chilling unit according to the embodiment.
  • FIG. 10B is an arrow view seen from the direction of the arrow F10 in FIG. 10A.
  • FIG. 1 is a perspective view of an air-cooled heat pump chilling unit 1 that generates, for example, cold water or hot water
  • FIG. 2 is a side view of the air-cooled heat pump chilling unit 1.
  • the air-cooled heat pump chilling unit 1 is an example of a refrigeration cycle apparatus that can be operated in a cooling mode and a heating mode, for example, and can be rephrased as an air-cooled heat pump heat source machine. In the following description, the air-cooled heat pump chilling unit 1 is simply referred to as a chilling unit 1.
  • the chilling unit 1 includes a housing 2, a first refrigeration cycle unit 3, a second refrigeration cycle unit 4, a water circuit 5, and an electrical unit 6 as main elements.
  • FIGS. 1 to 3 show a state in which the panels covering the front, back, right side, and left side of the housing 2 are removed.
  • the housing 2 is installed on a horizontal installation surface G such as the roof of a building.
  • the casing 2 is formed in an elongated hollow box shape whose depth dimension is much larger than the width dimension.
  • the housing 2 includes a main frame 7.
  • the main frame 7 includes a lower frame 8, an upper frame 9 and a plurality of vertical bars 10.
  • the lower frame 8 and the upper frame 9 are elongated rectangular shapes extending in the depth direction of the housing 2.
  • the length L1 of the lower frame 8 along the depth direction of the housing 2 is shorter than the length L2 of the upper frame 9 along the depth direction of the housing 2.
  • the length L3 of the upper frame 9 along the width direction of the housing 2 is shorter than the length L4 of the lower frame 8 along the width direction of the housing 2.
  • the vertical beam 10 is an element that connects the lower frame 8 and the upper frame 9, and is arranged at intervals in the depth direction of the housing 2.
  • the vertical rails 10 facing the width direction of the housing 2 are inclined so as to approach each other as they proceed from the lower frame 8 to the upper frame 9.
  • the main frame 7 moves from the lower frame 8 toward the upper frame 9. It is formed in a tapered shape such that the dimension along the width direction is gradually narrowed.
  • the bottom plate 13 is fixed on the lower frame 8.
  • the bottom plate 13 defines a machine room 14 inside the housing 2 in cooperation with a plurality of panels (not shown) that cover the right side, left side, front, and back of the main frame 7.
  • the bottom plate 13 constitutes the bottom of the machine room 14.
  • the machine room 14 extends over the entire length along the depth direction of the housing 2.
  • the front end of the lower frame 8 and the front end of the upper frame 9 positioned on the front side of the housing 2 are positioned along the depth direction of the housing 2 so as to be aligned in the height direction of the housing 2. Are aligned with each other.
  • the upper frame 9 projects horizontally beyond the lower frame 8 toward the back of the housing 2.
  • the depth direction of the housing 2 can be restated as the longitudinal direction of the housing 2.
  • the first refrigeration cycle unit 3 includes a first refrigerant circuit RA and a second refrigerant circuit RB that are independent of each other.
  • the second refrigeration cycle unit 4 includes a third refrigerant circuit RC and a fourth refrigerant circuit RD that are independent of each other.
  • first to fourth refrigerant circuits RA, RB, RC, and RD have a common configuration
  • the first refrigerant circuit RA will be described as a representative
  • the first refrigerant circuit RA includes a variable capacity hermetic compressor 20, a four-way valve 21, an air heat exchange unit 22, a pair of expansion valves 23a and 23b, a receiver 24, and a water heat exchanger. 25 and the gas-liquid separator 26 are provided as main elements.
  • the plurality of elements are examples of refrigeration cycle components and are connected via a circulation circuit 27 in which the refrigerant circulates.
  • the discharge port of the hermetic compressor 20 is connected to the first port 21 a of the four-way valve 21.
  • the second port 21 b of the four-way valve 21 is connected to the air heat exchange unit 22.
  • the air heat exchange unit 22 of the present embodiment includes a pair of air heat exchangers 29 a and 29 b and a fan 30.
  • the air heat exchangers 29a and 29b include a plurality of plate fins and a plurality of refrigerant pipes penetrating the plate fins.
  • the air heat exchangers 29a and 29b are erected so as to face each other with a gap in the width direction of the housing 2, and are inclined to move away from each other as they move upward.
  • both end portions of the air heat exchangers 29a and 29b along the depth direction of the casing 2 are bent in the width direction of the casing 2 so as to face each other.
  • a gap between both ends of the air heat exchangers 29a and 29b is closed by a pair of shielding plates 32a and 32b.
  • a cylindrical space surrounded by the air heat exchangers 29a and 29b and the shielding plates 32a and 32b defines an exhaust passage 33 extending in the vertical direction.
  • the fan 30 of the air heat exchanger 22 includes a fan motor 35 that rotates the impeller 34 and a fan cover 37 that surrounds the impeller 34.
  • the fan motor 35 is supported by a fan base 36 straddling between the upper ends of the air heat exchangers 29a and 29b.
  • the fan cover 37 has a cylindrical exhaust port 38 facing the impeller 34.
  • the air around the chilling unit 1 passes through the air heat exchangers 29a and 29b and is sucked into the exhaust passage 33.
  • the air sucked into the exhaust passage 33 is sucked up toward the exhaust port 38 and discharged from the exhaust port 38 toward the upper side of the air heat exchangers 29a and 29b.
  • the chilling unit 1 of the present embodiment includes the first to fourth refrigerant circuits RA, RB, RC, and RD, there are four sets of air heat exchange units 22.
  • the four air heat exchange units 22 are fixed in an upright posture on the upper frame 9 of the main frame 7 and are arranged in a line along the depth direction of the housing 2. Therefore, in this embodiment, the four sets of air heat exchange units 22 are located directly above the machine room 14.
  • the air heat exchanging portion 22 is formed in a V shape that expands in the width direction of the casing 2 as it goes upward of the casing 2 when the casing 2 is viewed from the front direction F and the rear direction R. Has been. Therefore, the chilling unit 1 in which the air heat exchanging part 22 is positioned on the housing 2 has a drum-shaped shape in which an intermediate part along the height direction is constricted.
  • one bent end of the air heat exchangers 29 a and 29 b is in the direction F on the front surface of the housing 2. Exposed.
  • the bent one ends of the air heat exchangers 29 a and 29 b are in the direction of the back surface of the housing 2. Exposed to R.
  • one end of the two sets of air heat exchangers 29a and 29b positioned at both ends along the arrangement direction of the plurality of air heat exchange units 22 is a heat exchange surface exposed around the chilling unit 1. It has become.
  • the two air heat exchange units 22 positioned on the front end portion and the rear end portion of the casing 2 can be used in addition to the air sucked from the width direction of the chilling unit 1, respectively. Heat exchange can be performed using the air sucked from the front direction F and the rear direction R of the body 2.
  • the upper frame 9 of the main frame 7 projects horizontally toward the back of the housing 2 rather than the lower frame 8.
  • the rearmost air heat exchanging unit 22 located at the rear end of the housing 2 protrudes from the rear end of the housing 2 in the depth direction of the housing 2. Yes. Therefore, the total length along the depth direction of the housing 2 is shorter than the total length along the alignment direction of the four air heat exchange units 22.
  • a stepped portion 43 that is recessed from the rearmost air heat exchanging portion 22 is formed behind the housing 2.
  • the stepped portion 43 defines a space S1 that is continuously open to the side and the back of the housing 2, and the rearmost air heat exchanging portion 22 projects over the space S1.
  • the vertical beam 10 disposed at the rear end of the housing 2 is located at the center along the depth direction of the air heat exchangers 29a and 29b constituting the rearmost air heat exchange unit 22 or at the center rather than the center. Located behind the body 2. Thereby, the air heat exchangers 29a and 29b, which are heavy objects, can be stably supported by the main frame 7.
  • the inlets of the air heat exchangers 29 a and 29 b are connected in parallel to the second port 21 b of the four-way valve 21.
  • the outlets of the air heat exchangers 29a and 29b are connected to the third port 21c of the four-way valve 21 via the expansion valves 23a and 23b, the receiver 24, and the water heat exchanger 25.
  • the fourth port 21 d of the four-way valve 21 is connected to the suction side of the hermetic compressor 20 via a gas-liquid separator 26.
  • outlet of the gas-liquid separator 26 is connected to the first port 21a of the four-way valve 21 via the bypass pipe 40.
  • a normally closed solenoid valve 41 is provided in the middle of the bypass pipe 40.
  • the water heat exchanger 25 includes a first refrigerant channel 25a, a second refrigerant channel 25b, and a water channel 25c.
  • the first refrigerant flow path 25 a of the water heat exchanger 25 is connected to the receiver 24 of the first refrigerant circuit RA and the third port 21 c of the four-way valve 21.
  • the second refrigerant flow path 25b is connected to the receiver 24 of the second refrigerant circuit RB and the third port 21c of the four-way valve 21. Therefore, in the first refrigeration cycle unit 3, the first refrigerant circuit RA and the second refrigerant circuit RB share one water heat exchanger 25.
  • the chilling unit 1 is equipped with two water heat exchangers 25.
  • the various elements of the first refrigeration cycle unit 3 and the second refrigeration cycle unit 4 except for the four air heat exchange units 22 are the machine room of the housing 2. 14.
  • the first refrigeration cycle unit 3 including the first refrigerant circuit RA and the second refrigerant circuit RB includes, for example, a machine room 14 when the housing 2 is viewed in a plan view. It is arranged in the latter half along the depth direction.
  • the second refrigeration cycle unit 4 including the third refrigerant circuit RC and the fourth refrigerant circuit RD is, for example, a front half portion along the depth direction of the machine room 14 when the housing 2 is viewed in a plan view. Is arranged.
  • the two hermetic compressors 20, the two receivers 24, and the two gas-liquid separators 26 constituting the first refrigerant circuit RA and the second refrigerant circuit RB are each in a machine room. 14 is installed on the bottom plate 13 so as to be aligned in the depth direction of the machine room 14. Further, the two hermetic compressors 20 and the two gas-liquid separators 26 are arranged adjacent to each other in the width direction of the machine chamber 14.
  • One water heat exchanger 25 shared by the first refrigerant circuit RA and the second refrigerant circuit RB is installed on the bottom plate 13 so as to be located behind the two gas-liquid separators 26. Therefore, the water heat exchanger 25 is located at the rearmost part of the first refrigeration cycle unit 3.
  • the two hermetic compressors 20, the two receivers 24, and the two gas-liquid separators 26 constituting the third refrigerant circuit RC and the fourth refrigerant circuit RD are respectively in the first half of the machine room 14, It is installed on the bottom plate 13 so as to line up in the depth direction of the machine room 14. Further, the two hermetic compressors 20 and the two gas-liquid separators 26 are arranged adjacent to each other in the width direction of the machine chamber 14.
  • One water heat exchanger 25 shared by the third refrigerant circuit RC and the fourth refrigerant circuit RD is installed on the bottom plate 13 so as to be located behind the two gas-liquid separators 26. Therefore, the water heat exchanger 25 is located at the rearmost part of the second refrigeration cycle unit 4.
  • the first refrigeration cycle unit 3 and the second refrigeration cycle unit 4 are arranged in the depth direction of the machine room 14.
  • the two water heat exchangers 25 are separated from each other in the depth direction of the machine room 14.
  • the water heat exchanger 25 has a square box shape and is erected from the bottom plate 13 of the housing 2 in the height direction of the machine room 14.
  • Each water heat exchanger 25 has a water inlet 28a and a water outlet 28b.
  • the water inlet 28 a and the water outlet 28 b are located on the left side surface of the water heat exchanger 25 when the housing 2 is viewed from the front direction F.
  • the water inlet 28a is connected to the upstream end of the water passage 25c at the upper end of the left side surface of the water heat exchanger 25.
  • the water outlet 28b is connected to the downstream end of the water flow path 25c at the lower end of the left side surface of the water heat exchanger 25. Therefore, the water inlet 28 a is located at the upper end portion of the machine room 14.
  • the water that has flowed into the water channel 25c from the water inlet 28a flows from the top to the bottom along the direction of gravity in the water channel 25c.
  • the water circuit 5 is housed in the machine room 14 together with the first refrigeration cycle unit 3 and the second refrigeration cycle unit 4.
  • the water circuit 5 includes a variable capacity centrifugal pump 45 and first to fourth water pipes 46a, 46b, 46c, and 46d as main elements.
  • the centrifugal pump 45 is installed on the bottom plate 13 so as to be located at the rear end of the machine room 14.
  • the centrifugal pump 45 is adjacent to one water heat exchanger 25 shared by the first refrigerant circuit RA and the second refrigerant circuit RB at the rear end of the machine chamber 14.
  • the centrifugal pump 45 includes a pedestal 48, a casing 49 and a motor 50.
  • the pedestal 48 is a square plate-like element having a predetermined thickness, and is fixed directly on the bottom plate 13 of the housing 2 via fasteners such as a plurality of bolts.
  • the casing 49 is fixed to the upper surface of the pedestal 48.
  • the casing 49 has a suction port 51 and a discharge port 52 and houses an impeller 53.
  • the suction port 51 and the discharge port 52 are opened in a direction orthogonal to the casing 49.
  • the motor 50 is an example of a power unit, and is fixed to the upper surface of the base 48 so as to be adjacent to the casing 49.
  • the rotating shaft 54 of the motor 50 passes through the casing 49 and is coaxially connected to the impeller 53.
  • the spiral pump 45 has a rotation axis O ⁇ b> 1 that passes through the center of the rotation shaft 54 of the motor 50.
  • the spiral pump 45 is housed in the machine room 14 in a horizontal posture such that the rotation axis O1 is horizontal.
  • the rotation axis O ⁇ b> 1 of the centrifugal pump 45 extends in the width direction of the housing 2.
  • the suction port 51 of the casing 49 is located on the axis of the rotation axis O1. As shown in FIG. 7, the suction port 51 is opened toward the left side of the casing 2 in the machine room 14 when the casing 2 is viewed from the rear direction R.
  • the discharge port 52 that is in a positional relationship orthogonal to the suction port 51 is opened upward at the upper end portion of the casing 49 so as to be along the vertical direction. Further, the water inlet 28 a of the water heat exchanger 25 adjacent to the spiral pump 45 is located above the discharge port 52.
  • the vortex pump 45 has a horizontal first central axis C1 lying in the width direction of the housing 2 through the center of the suction port 51 and a housing through the center of the discharge port 52. And a vertical second central axis C2 standing in the height direction of the body 2.
  • the base 48 of the spiral pump 45 is such that the intersection P1 where the central axis C1 and the second central axis C2 intersect with a reference point defined in advance inside the machine chamber 14. Is fixed on the bottom plate 13 of the housing 2 so that the position of the housing 2 can be adjusted in the depth direction and the width direction.
  • the bottom plate 13 of the housing 2 has a plurality of screw holes into which bolts are screwed at positions where the pedestals 48 are placed, and the screw holes are respectively predetermined in the depth direction and the width direction of the housing 2. Multiple arrays are arranged with an interval of. Therefore, by selecting the screw hole into which the bolt passing through the base 48 is screwed, the fixing position of the spiral pump 45 with respect to the bottom plate 13 is set to the depth of the housing 2 so that the intersection point P1 of the spiral pump 45 matches the reference point. It can be shifted in the direction and width direction.
  • the outer diameter of the motor 50 of the centrifugal pump 45 is smaller than the full length. Therefore, by setting the centrifugal pump 45 horizontally in the machine room 14, the area above the motor 50 is widely opened, and this area functions as the piping space S2.
  • the first water pipe 46 a of the water circuit 5 is connected to the suction port 51 of the centrifugal pump 45.
  • the first water pipe 46 a is drawn to the left side of the casing 49 and then bent at a right angle toward the rear of the machine room 14.
  • a strainer 56 is connected to the rear end of the first water pipe 46a.
  • the rear end of the first water pipe 46a and the strainer 56 protrude from the rear end portion of the machine room 14 to the stepped portion 43 behind the housing 2, and are accommodated in the space S1 defined by the stepped portion 43. Yes. For this reason, most of the strainer 56 is positioned directly below the rearmost air heat exchange unit 22.
  • strainer 56 is connected to a water outlet on the side of a utilization device such as an air conditioner through accessories such as various valves and flexible joints and a field pipe laid on the installation surface G. .
  • the second water pipe 46 b is formed between the discharge port 52 of the centrifugal pump 45 and the water inlet 28 a of the water heat exchanger 25 corresponding to the first refrigeration cycle unit 3. Are connected.
  • the second water pipe 46 b is led right above the casing 49 and then bent at a right angle toward the water heat exchanger 25 in front of the centrifugal pump 45.
  • the second water pipe 46 b is routed horizontally in the depth direction of the housing 2 through a pipe space generated on the motor 50.
  • the third water pipe 46 c includes water outlets 28 b of the water heat exchanger 25 corresponding to the first refrigeration cycle unit 3 and water heat corresponding to the second refrigeration cycle unit 4.
  • the water inlet 28a of the exchanger 25 is connected in series.
  • the third water pipe 46 c is routed in the depth direction of the housing 2 through the sides of the two gas-liquid separators 26 of the first refrigeration cycle unit 3.
  • the fourth water pipe 46d is connected to the water outlet 28b of the water heat exchanger 25 corresponding to the second refrigeration cycle unit 4.
  • the fourth water pipe 46 d is routed horizontally toward the rear of the water heat exchanger 25 so as to be along the bottom plate 13 of the housing 2, and the pipe above the motor 50 just before the motor 50. Launched for space.
  • a discharge pipe 58 having a check valve 57 is connected to the rear end of the fourth water pipe 46d.
  • the check valve 57 and the discharge pipe 58 are arranged in the pipe space S2.
  • the rear end of the discharge pipe 58 protrudes from the rear end portion of the machine room 14 to the stepped portion 43 behind the housing 2, and includes accessories such as various valves and flexible joints, and the installation surface G. For example, it is connected to a water inlet on the side of a utilization device such as an air conditioner through another on-site piping.
  • a drain pan 60 is disposed between the machine room 14 of the housing 2 and the four air heat exchange units 22.
  • the drain pan 60 is an element that receives dew condensation water or the like dripping from the air heat exchangers 29 a and 29 b of the air heat exchanger 22, and includes a pair of troughs 61 a and 61 b and a drain collection board 62.
  • the casings 61a and 61b extend straight along the arrangement direction of the four sets of air heat exchangers 22, and are positioned directly below the air heat exchangers 29a and 29b of the air heat exchangers 22. 2 is supported by the upper frame 9.
  • the cages 61a and 61b are arranged on the machine room 14 in parallel with each other in the width direction of the housing 2.
  • the machine room 14 is communicated with the exhaust passages 33 of the four air heat exchange units 22 through a gap between the flanges 61a and 61b.
  • the drain collection board 62 is supported by the upper frame 9 so as to straddle between the rear ends of the flanges 61a and 61b.
  • the drain collection board 62 is located immediately above the centrifugal pump 45.
  • the drain collection board 62 defines the ceiling of the piping space S2.
  • the discharge pipe 58 having the upstream end of the second water pipe 46 b connected to the discharge port 52 and the check valve 57 is positioned between the drain collection board 62 and the spiral pump 45.
  • the drain collection board 62 protrudes above the stepped portion 43 behind the housing 2. Furthermore, the drain collection board 62 has a drain pipe connection port 64 disposed near the center in the width direction. The drain pipe connection port 64 is opened downward so as to protrude from the bottom of the drain collection board 62 to the upper end of the space S ⁇ b> 1 defined by the stepped portion 43, and a drain pipe (not shown) is connected to the drain pipe connection port 64. It has become so.
  • Opening the drain pipe connection port 64 downward from the bottom of the drain collection board 62 improves the drainage of the condensed water received by the drain collection board 62.
  • the drain pipe connection port 64 at the center in the width direction of the drain collection board 62, good drainage can be secured even if there is only one drain pipe connection port 64.
  • the drain pipe connection port 64 protrudes from the upper end of the space S1, the work for connecting the drain pipe to the drain pipe connection port 64 can be easily performed.
  • the electrical unit 6 is installed at the front end of the machine room 14 on the front side of the housing 2.
  • the electrical unit 6 of this embodiment includes an electrical box 70 and a fan device 71.
  • the electrical box 70 is fixed on the bottom plate 13 of the housing 2 and has the same height as the machine room 14.
  • the electrical box 70 accommodates various electrical components that control the operation of the first refrigeration cycle unit 3 and the second refrigeration cycle unit 4.
  • An example of the electrical component includes a plurality of control boards that control the voltage and frequency applied to the hermetic compressor 20, a plurality of power modules such as an inverter and a converter, a plurality of smoothing capacitors, a plurality of reactors for power factor improvement, A plurality of filter substrates, a plurality of terminal blocks, a plurality of electromagnetic contactors, and the like.
  • a plurality of control boards and a plurality of power modules can be rephrased as heat generating components that generate a large amount of heat during operation. Since the heat-generating component requires active heat dissipation, it is thermally connected to a plurality of heat sinks (not shown). The heat sink is exposed to an air passage (not shown) inside the electrical box 70. The air passage is located at the center of the electrical box 70 and is erected so as to penetrate the electrical box 70 in the height direction.
  • the fan device 71 is attached to the upper surface of the electrical box 70.
  • the fan device 71 includes an elongated box-shaped fan case 72 and a plurality of electric fans 73 a, 73 b, 73 c accommodated in the fan case 72.
  • the fan case 72 is attached to the center of the upper surface of the electrical box 70.
  • the fan case 72 extends in the depth direction of the housing 2 so as to surround the upper end of the air passage opened in the upper surface of the electrical box 70. Further, the fan case 72 protrudes upward from the upper surface of the electrical box 70.
  • the upper end portion of the fann case 72 enters the exhaust passage 33 of the foremost air heat exchange unit 22 located at the front end portion of the housing 2 through the space between the flanges 61a and 61b.
  • the electric fans 73a, 73b, 73c are arranged in a line at intervals in the depth direction of the housing 2.
  • the electric fans 73a, 73b, and 73c are incorporated in the fan case 72 in a posture in which the rotation axis is placed vertically so as to be positioned immediately above the air passage of the electrical box 70.
  • the electric fans 73a, 73b, 73c all exhaust toward the upper side of the fan case 72.
  • the heat sink that receives the heat from the heat generating parts is directly exposed to the air flowing through the air passage. Thereby, the heat of the heat generating component transmitted to the heat sink is released by multiplying the air flow, and the heat generating component is forcibly cooled.
  • the air that has passed through the air passage is sucked up by the electric fans 73a, 73b, and 73c and discharged from the upper end of the fan case 72 to the exhaust passage 33 of the foremost air heat exchange section 26.
  • the air discharged into the exhaust passage 33 is sucked up together with the air that has passed through the air heat exchangers 29a and 29b by the operation of the fan 30, and is discharged from the exhaust port 38 to the upper side of the chilling unit 1. Therefore, the air after cooling the heat-generating component does not stay in the machine room 14, and the temperature rise of the machine room 14 can be avoided.
  • a standard centrifugal pump 45 disclosed in FIGS. 8A and 8B can be selected as appropriate so that a centrifugal pump that can provide the maximum flow rate and maximum head of water required by the unit can be selected.
  • two types of other centrifugal pumps 80 and 90 having different capacities from the centrifugal pump 45 are prepared. Since the configuration of the other centrifugal pumps 80 and 90 is the same as that of the standard centrifugal pump 45 disclosed in FIGS. 8A and 8B, the same components are denoted by the same reference numerals and description thereof is omitted. To do.
  • the other centrifugal pump 80 disclosed in FIGS. 9A and 9B has a smaller capacity than the standard centrifugal pump 45. Specifically, the sizes of the casing 49 and the motor 50 are slightly smaller than the standard centrifugal pump 45.
  • the other centrifugal pump 90 disclosed in FIGS. 10A and 10B has a smaller capacity than the centrifugal pump 80 disclosed in FIGS. 9A and 9B, and the size of the casing 49 and the motor 50 is smaller than that of the centrifugal pump 80. Small around.
  • the distance along the width direction of the housing 2 from the intersection P1 between the first central axis C1 and the second central axis C2 to the center of the suction port 51 is defined as Y1.
  • the spiral Between the pumps 80 and 90 Y1 is equal and Z1 and Z2 are different.
  • Y1, Z1, and Z2 of the other centrifugal pumps 80, 90 are all different from Y1, Z1, and Z2 of the standard centrifugal pump 45.
  • the intersection P1 is the machine chamber in each of the other spiral pumps 80 or 90. 14 in the X direction along the depth direction of the housing 2, the Y direction along the width direction of the housing 2, and the Z direction along the height direction of the housing 2.
  • a dedicated first bracket 81 is used.
  • the first bracket 81 is a plate-like element interposed between the pedestal 48 and the bottom plate 13 of another centrifugal pump 80, and has a predetermined thickness t1 along the Z direction.
  • the first bracket 81 is fixed on the bottom plate 13 with a plurality of bolts together with a pedestal 48 of another spiral pump 80. At this time, by selecting the screw hole on the side of the bottom plate 13 into which the bolt passing through the pedestal 48 and the first bracket 81 is screwed, the bottom plate 13 so that the intersection point P1 of the vortex pump 80 matches the reference point.
  • the swivel pump 80 can be fixed in the depth direction (X direction) and the width direction (Y direction) of the housing 2. At the same time, the fixed position of the centrifugal pump 80 with respect to the bottom plate 13 can be pushed up in the height direction (Z direction) of the housing 2 by the thickness t1 of the first bracket 81.
  • the intersection point P1 of the other centrifugal pump 80 can be matched with the reference point in the machine room 14.
  • a dedicated second bracket 91 is used.
  • the second bracket 91 is a plate-like element interposed between the pedestal 48 and the bottom plate 13 of another spiral pump 90, and has a predetermined thickness t2 along the Z direction.
  • the thickness t2 of the second bracket 91 is larger than the thickness t1 of the first bracket 81.
  • the second bracket 91 is fixed on the bottom plate 13 with a plurality of bolts together with the pedestal 48 of the other centrifugal pump 90. At this time, by selecting a screw hole on the side of the bottom plate 13 into which the bolt passing through the pedestal 48 and the second bracket 91 is screwed, the bottom plate 13 so that the intersection point P1 of the spiral pump 90 matches the reference point.
  • the swivel pump 90 can be fixed in the depth direction (X direction) and the width direction (Y direction) of the housing 2.
  • the fixed position of the centrifugal pump 90 with respect to the bottom plate 13 can be pushed up in the height direction (Z direction) of the housing 2 by the thickness t2 of the second bracket 91.
  • the intersection point P1 of the other centrifugal pump 90 can be matched with the reference point in the machine room 14.
  • the position of the water heat exchanger 25 and the position of the strainer 56 connected to the on-site piping are generally the same.
  • the fixing position of the spiral pumps 45, 80, 90 relative to the machine chamber 14 is changed so that the intersection P1 of the three types of spiral pumps 45, 80, 90 matches the reference point in the machine chamber 14. Can do.
  • the length of the first water pipe 46a connected to the suction port 51 and the discharge port 52 are connected. It is only necessary to adjust the length of the second water pipe 46b.
  • the first water pipe 26a can be shared.
  • the shapes of the first water pipe 46a and the second water pipe 46b for each of the three types of centrifugal pumps 45, 80, 90 can be prevented from greatly changing or becoming complicated.
  • the four-way valves 21 of the first to fourth refrigerant circuits RA, RB, RC, RD are shown by solid lines in FIG. As shown, the first port 21a is switched to communicate with the second port 21b, and the third port 21c is switched to communicate with the fourth port 21d.
  • high-temperature and high-pressure gas-phase refrigerant is discharged from the first to fourth refrigerant circuits RA, RB, RC, and RD into the circulation circuit 27.
  • the high-temperature and high-pressure gas-phase refrigerant discharged from the hermetic compressor 20 is guided to the air heat exchangers 29a and 29b via the four-way valve 21.
  • the gas-phase refrigerant guided to the air heat exchangers 29a and 29b is condensed by heat exchange with the air passing through the air heat exchangers 29a and 29b, and is changed into a high-pressure liquid-phase refrigerant.
  • the high-pressure liquid-phase refrigerant is depressurized in the process of passing through the expansion valves 23a and 23b, and changes to an intermediate-pressure gas-liquid two-phase refrigerant.
  • the gas-liquid two-phase refrigerant is guided to the water heat exchanger 25 via the receiver 24.
  • the first refrigerant circuit RA and the second refrigerant circuit RB share one water heat exchanger 25, and the third refrigerant circuit RC and the fourth refrigerant circuit RD share one other water heat.
  • the exchanger 25 is shared. For this reason, in the first refrigerant circuit RA and the second refrigerant circuit RB, a gas-liquid two-phase refrigerant having an intermediate pressure is supplied to the first refrigerant channel 25a and the second refrigerant channel 25b of the water heat exchanger 25, respectively. It is guided and exchanges heat with water flowing through the water flow path 25c.
  • the gas-liquid two-phase refrigerant flowing in the first refrigerant flow path 25a and the second refrigerant flow path 25b evaporates and receives heat from the water in the water flow path 25c, and the low-temperature and low-pressure gas-liquid is generated by latent heat of evaporation. Change to two-phase refrigerant.
  • the water in the water flow path 25c becomes cold water by removing latent heat.
  • the water flow path 25c of the water heat exchanger 25 shared by the first refrigerant circuit RA and the second refrigerant circuit RB is connected to the third refrigerant circuit RC and the fourth refrigerant circuit RD via the third water pipe 46c.
  • the other water heat exchanger 25 to be shared is connected in series to the water flow path 25c.
  • the water cooled in the water heat exchanger 25 shared by the first refrigerant circuit RA and the second refrigerant circuit RB is the other water shared by the third refrigerant circuit RC and the fourth refrigerant circuit RD.
  • it In the process of passing through the water flow path 25c of the heat exchanger 25, it is cooled again by heat exchange with the gas-liquid two-phase refrigerant flowing through the first refrigerant flow path 25a and the second refrigerant flow path 25b of the water heat exchanger 25. It is.
  • the water cooled in two stages is supplied from the fourth water pipe 46d to the utilization equipment side via the on-site pipe.
  • the low-temperature and low-pressure gas-liquid two-phase refrigerant that has passed through each water heat exchanger 25 is guided to the gas-liquid separator 26 via the four-way valve 21, where it is separated into a liquid-phase refrigerant and a gas-phase refrigerant. .
  • the gas-phase refrigerant separated from the liquid-phase refrigerant is sucked into the hermetic compressor 20 and is again discharged as a high-temperature / high-pressure gas-phase refrigerant from the hermetic compressor 20 to the circulation circuit 27.
  • the four-way valves 21 of the first to fourth refrigerant circuits RA, RB, RC, RD are shown in FIG. As indicated by a broken line, the first port 21a is switched to communicate with the third port 21c, and the second port 21b is switched to communicate with the fourth port 21d.
  • the high-temperature and high-pressure gas-phase refrigerant compressed by the hermetic compressor 20 is guided to the water heat exchanger 25 via the four-way valve 21.
  • the water flow path 25c of one water heat exchanger 25 shared by the first refrigerant circuit RA and the second refrigerant circuit RB, and the third refrigerant circuit RC and the fourth refrigerant circuit RD are shared. Since the water flow path 25c of the other one water heat exchanger 25 is connected in series, the water flowing through the water flow path 25c is the gas phase flowing through the first refrigerant flow path 25a and the second refrigerant flow path 25b. It is heated in two stages by heat exchange with the refrigerant. The water heated by receiving the heat of the gas-phase refrigerant is supplied from the fourth water pipe 46d to the utilization equipment side via the on-site pipe.
  • the high-pressure liquid-phase refrigerant that has passed through the water heat exchanger 25 is changed to an intermediate-pressure gas-liquid two-phase refrigerant in the process of passing through the receiver 24 and the expansion valves 23a and 23b, and is also introduced into the air heat exchangers 29a and 29b. It is burned.
  • the gas-liquid two-phase refrigerant guided to the air heat exchangers 29a and 29b evaporates by heat exchange with the air passing through the air heat exchangers 29a and 29b, and changes to a low-temperature and low-pressure gas-liquid two-phase refrigerant.
  • the low-temperature and low-pressure gas-liquid two-phase refrigerant that has passed through the air heat exchangers 29a and 29b is guided to the gas-liquid separator 26 via the four-way valve 21, where it is separated into a liquid-phase refrigerant and a gas-phase refrigerant.
  • the gas-phase refrigerant separated from the liquid-phase refrigerant is sucked into the hermetic compressor 20 and is again discharged as a high-temperature / high-pressure gas-phase refrigerant from the hermetic compressor 20 to the circulation circuit 27.
  • the spiral pump 45 that supplies water to the water heat exchanger 25 shared by the first refrigerant circuit RA and the second refrigerant circuit RB has a rotation axis that passes through the center of the rotation shaft 54.
  • the O 1 is fixed on the bottom plate 13 of the machine room 14 in a horizontal posture along the width direction of the casing 2.
  • the casing 49 housing the impeller 53 and the motor 50 lie on the bottom plate 13 so as to be aligned in the width direction of the housing 2.
  • the swirl pump 45 it is possible to avoid the swirl pump 45 from projecting greatly above the bottom plate 13 and to effectively utilize the limited space in the machine room 14. At the same time, the overall height of the chilling unit 1 including the air heat exchange units 22 arranged on the machine room 14 can be suppressed as low as possible.
  • a sufficient piping space S2 can be secured between the motor 50 and the drain collection board 62, and the first water piping 46a is utilized using the piping space S2. And a check valve 57 can be arranged.
  • the discharge port 52 of the spiral pump 45 is opened upward at the upper end portion of the casing 49 so as to be along the vertical direction, the discharge port 52 is connected to the water inlet 28a of the water heat exchanger 25.
  • the second water pipe 46 b can be routed over the centrifugal pump 45.
  • the configuration as described above is particularly useful in a heat pump device that performs large-capacity heat transport such as a chilling unit.
  • a heat pump device that performs large-capacity heat transport such as a chilling unit.
  • the larger the amount of heat required on the user equipment side the larger the volume of the centrifugal pump, the water heat exchanger, and the air heat exchanger. It is desirable to increase the amount of heat transport.
  • the air heat exchangers 29a and 29b are arranged on the housing 2 in which the spiral pump 45 and the water heat exchanger 25 are accommodated, so that the spiral pump 45 and the water heat exchange are arranged.
  • the space efficiency in the machine chamber 14 can be improved while increasing the volume of the vessel 25 and the heat exchange area of the air heat exchangers 29a and 29b. Therefore, it is possible to transport a large volume of heat while reducing the size of the heat pump device.
  • the rotation axis of the motor of the spiral pump is not limited to be placed horizontally so as to be along the width direction of the housing, but may be placed horizontally so as to be along the depth direction of the housing. That is, the casing and the motor may be arranged side by side in the depth direction of the housing so that the casing is located behind the motor, and the suction port of the casing may be opened toward the rear of the machine room.
  • the first water pipe connected to the suction port can be drawn straight out toward the rear of the machine room. Therefore, the shape of the first water pipe can be simplified and the pressure loss can be kept low.
  • the opening direction of a discharge port may incline a little with respect to a perpendicular line.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

This refrigeration cycle device is provided with: a water heat exchanger which is accommodated in a machine chamber of a case and performs heat exchange between water flowing through a water flow passage and a refrigerant flowing through a refrigerant flow passage; and a volute pump which is accommodated in the machine chamber and supplies water to the water flow passage of the water heat exchanger. The volute pump includes a casing having an inlet port and a discharge port which are open at right angles to each other, and a driving power part for rotating an impeller in the casing, and is installed on the bottom of the machine chamber such that the rotating axis line of the driving power part is horizontal, thereby ensuring that the discharge port is upwardly open in the machine chamber. The water heat exchanger has water inlet ports lined up on an upstream end of the water flow passage and positioned higher than the discharge port of the volute pump, and the discharge port of the volute pump and the water inlet ports of the water heat exchanger are connected by water piping.

Description

冷凍サイクル装置Refrigeration cycle equipment
 本発明の実施形態は、水熱交換器に水を供給する渦巻きポンプを備えた冷凍サイクル装置に関する。 Embodiment of this invention is related with the refrigerating-cycle apparatus provided with the spiral pump which supplies water to a water heat exchanger.
 冷水もしくは温水を生成する空冷ヒートポンプ式チリングユニットは、機械室を有する筐体を備えている。機械室は、チリングユニットの奥行き方向に延びた細長い形状を有し、当該機械室の内部に水熱交換器を含む各種の冷凍サイクル構成要素が収容されている。 An air-cooled heat pump chilling unit that generates cold water or hot water includes a housing having a machine room. The machine room has an elongated shape extending in the depth direction of the chilling unit, and various refrigeration cycle components including a water heat exchanger are accommodated in the machine room.
 水熱交換器は、渦巻きポンプを有する水回路を介して例えば空調機のような利用機器に接続されている。渦巻きポンプは、利用機器の側から戻る水を水熱交換器の水流路に供給する要素であって、機械室の長手方向に沿う一端部に配置されている。 The water heat exchanger is connected to a utilization device such as an air conditioner through a water circuit having a spiral pump. The spiral pump is an element that supplies water returning from the utilization device side to the water flow path of the water heat exchanger, and is disposed at one end portion along the longitudinal direction of the machine room.
 渦巻きポンプは、吸込口および吐出口が開口されたケーシングと、ケーシング内のインペラを回転させるモータと、を備えている。一般的に、チリングユニットの筐体内に収納される渦巻きポンプは、モータの回転軸線を縦置きにした姿勢で機械室の底部に固定されており、当該モータの下端と機械室の底部との間にケーシングが位置されている。 The spiral pump is provided with a casing in which a suction port and a discharge port are opened, and a motor that rotates an impeller in the casing. Generally, the centrifugal pump housed in the chilling unit housing is fixed to the bottom of the machine room with the motor rotation axis placed vertically, and between the lower end of the motor and the bottom of the machine room. The casing is located on the top.
特開2014-178113号公報JP 2014-178113 A 特開2016-90083号公報Japanese Unexamined Patent Publication No. 2016-90083
 従来のチリングユニットでは、水熱交換器の熱交換性能を高めるため、水熱交換器の上端部に水流路に連なる水入口が開口されているのが一般的である。これに対し、渦巻きポンプは、モータの回転軸線を縦置きにした姿勢で機械室に配置されているため、ケーシングの吐出口が水熱交換器の水入口から遠く離れた機械室の底付近で横向きに開口されている。 In the conventional chilling unit, in order to enhance the heat exchange performance of the water heat exchanger, a water inlet connected to the water flow path is generally opened at the upper end of the water heat exchanger. On the other hand, the centrifugal pump is arranged in the machine room with the motor rotation axis placed vertically, so that the discharge port of the casing is located near the bottom of the machine room far from the water inlet of the water heat exchanger. Opened sideways.
 この結果、吐出口と水入口との間を結ぶ水配管は、吐出口から横向きに引き出した後、モータの脇を通して機械室の上部に向けて立ち上げる必要がある。したがって、水配管の引き回し経路が煩雑となるとともに、配管長が長くなるのを否めない。 As a result, the water pipe connecting the discharge port and the water inlet needs to be pulled out sideways from the discharge port and then set up toward the top of the machine room through the side of the motor. Therefore, the route for routing the water pipe becomes complicated and the length of the pipe cannot be denied.
 加えて、モータの脇に水配管を立ち上げる専用のスペースを確保しなくてはならず、機械室の大型化を招く一つの要因となる。 In addition, it is necessary to secure a dedicated space to set up the water piping beside the motor, which is one factor that leads to an increase in the size of the machine room.
 本発明の目的は、渦巻きポンプと水熱交換器との間を結ぶ水配管をコンパクトに配置することができ、水配管の引き回し経路を簡素化することができる冷凍サイクル装置を得ることにある。 An object of the present invention is to obtain a refrigeration cycle apparatus in which water pipes connecting between a centrifugal pump and a water heat exchanger can be arranged in a compact manner, and the water piping route can be simplified.
 実施形態によれば、冷凍サイクル装置は、機械室を有する筐体と、前記機械室に収容され、水流路を流れる水と冷媒流路を流れる冷媒との間で熱交換を行なう水熱交換器と、前記機械室に収容され、前記水熱交換器の前記水流路に水を供給する渦巻きポンプと、を備えている。 
 前記渦巻きポンプは、互いに直交する方向に開口された吸込口および吐出口を有するケーシングと、前記ケーシング内のインペラを回転させる動力部と、を含み、前記吐出口が前記機械室内で上向きに開口するように、前記渦巻きポンプが前記動力部の回転軸線を横置きにした姿勢で前記機械室の底に据え付けられている。前記水熱交換器は、前記渦巻きポンプの前記吐出口よりも高い位置に前記水流路の上流端に連なる水入口を有し、前記渦巻きポンプの前記吐出口と前記水熱交換器の前記水入口との間が水配管により接続されている。
According to the embodiment, the refrigeration cycle apparatus includes a housing having a machine room and a water heat exchanger that is accommodated in the machine room and performs heat exchange between water flowing through the water flow path and refrigerant flowing through the refrigerant flow path. And a centrifugal pump that is housed in the machine room and supplies water to the water flow path of the water heat exchanger.
The spiral pump includes a casing having a suction port and a discharge port opened in directions orthogonal to each other, and a power unit that rotates an impeller in the casing, and the discharge port opens upward in the machine room As described above, the centrifugal pump is installed on the bottom of the machine room in a posture in which the rotation axis of the power unit is placed horizontally. The water heat exchanger has a water inlet connected to an upstream end of the water flow path at a position higher than the discharge port of the spiral pump, and the discharge port of the spiral pump and the water inlet of the water heat exchanger Is connected by a water pipe.
図1は、実施形態に係る空冷ヒートポンプ式チリングユニットの斜視図である。FIG. 1 is a perspective view of an air-cooled heat pump chilling unit according to an embodiment. 図2は、実施形態に係る空冷ヒートポンプ式チリングユニットの側面図である。FIG. 2 is a side view of the air-cooled heat pump chilling unit according to the embodiment. 図3は、第1の冷凍サイクルユニット、第2の冷凍サイクルユニット、水回路および電装ユニットを収容した機械室とドレンパンとの位置関係を示す斜視図である。FIG. 3 is a perspective view showing the positional relationship between the machine room containing the first refrigeration cycle unit, the second refrigeration cycle unit, the water circuit and the electrical unit and the drain pan. 図4は、機械室に収容された第1の冷凍サイクルユニット、第2の冷凍サイクルユニット、水回路および電装ユニットの位置関係を示す平面図である。FIG. 4 is a plan view showing the positional relationship between the first refrigeration cycle unit, the second refrigeration cycle unit, the water circuit, and the electrical unit housed in the machine room. 図5は、実施形態に係る空冷ヒートポンプ式チリングユニットの冷凍サイクルを示す回路図である。FIG. 5 is a circuit diagram showing a refrigeration cycle of the air-cooled heat pump chilling unit according to the embodiment. 図6は、実施形態に係る空冷ヒートポンプ式チリングユニットに用いる空気熱交換部を分解して示す斜視図である。FIG. 6 is an exploded perspective view showing an air heat exchange unit used in the air-cooled heat pump chilling unit according to the embodiment. 図7は、図2の矢印F7の方向から見た空冷ヒートポンプ式チリングユニットの背面図である。FIG. 7 is a rear view of the air-cooled heat pump chilling unit as seen from the direction of arrow F7 in FIG. 図8Aは、実施形態に係る空冷ヒートポンプ式チリングユニットに用いる渦巻きポンプおよび水配管の引き回し経路を示す平面図である。FIG. 8A is a plan view showing a spiral pump used in the air-cooled heat pump chilling unit and a water piping routing path according to the embodiment. 図8Bは、図8Aの矢印F8の方向から見た矢視図である。FIG. 8B is an arrow view seen from the direction of the arrow F8 in FIG. 8A. 図9Aは、実施形態に係る空冷ヒートポンプ式チリングユニットに選択的に用いる他の渦巻きポンプおよび水配管の引き回し経路を示す平面図である。FIG. 9A is a plan view showing another spiral pump and water pipe routing route selectively used in the air-cooled heat pump chilling unit according to the embodiment. 図9Bは、図9Aの矢印F9の方向から見た矢視図である。FIG. 9B is an arrow view seen from the direction of arrow F9 in FIG. 9A. 図10Aは、実施形態に係る空冷ヒートポンプ式チリングユニットに選択的に用いるさらに他の渦巻きポンプおよび水配管の引き回し経路を示す平面図である。FIG. 10A is a plan view showing still another spiral pump and water pipe routing route selectively used in the air-cooled heat pump chilling unit according to the embodiment. 図10Bは、図10Aの矢印F10の方向から見た矢視図である。FIG. 10B is an arrow view seen from the direction of the arrow F10 in FIG. 10A.
 以下、実施形態について、図面を参照して説明する。 Hereinafter, embodiments will be described with reference to the drawings.
 図1は、例えば冷水もしくは温水を生成する空冷ヒートポンプ式チリングユニット1の斜視図、図2は、空冷ヒートポンプ式チリングユニット1の側面図である。 FIG. 1 is a perspective view of an air-cooled heat pump chilling unit 1 that generates, for example, cold water or hot water, and FIG. 2 is a side view of the air-cooled heat pump chilling unit 1.
 空冷ヒートポンプ式チリングユニット1は、例えば冷却モードおよび加熱モードで運転が可能な冷凍サイクル装置の一例であって、空冷ヒートポンプ式熱源機と言い換えることができる。以下の説明では、空冷ヒートポンプ式チリングユニット1を単にチリングユニット1と称する。 The air-cooled heat pump chilling unit 1 is an example of a refrigeration cycle apparatus that can be operated in a cooling mode and a heating mode, for example, and can be rephrased as an air-cooled heat pump heat source machine. In the following description, the air-cooled heat pump chilling unit 1 is simply referred to as a chilling unit 1.
 図1ないし図4に示すように、チリングユニット1は、筐体2、第1の冷凍サイクルユニット3、第2の冷凍サイクルユニット4、水回路5および電装ユニット6を主要な要素として備えている。ここで、図1ないし図3は、筐体2の正面、背面、右側面および左側面を覆うパネルを取り除いた状態を示している。 As shown in FIGS. 1 to 4, the chilling unit 1 includes a housing 2, a first refrigeration cycle unit 3, a second refrigeration cycle unit 4, a water circuit 5, and an electrical unit 6 as main elements. . Here, FIGS. 1 to 3 show a state in which the panels covering the front, back, right side, and left side of the housing 2 are removed.
 筐体2は、例えば建屋の屋上のような水平な設置面Gの上に据え付けられている。筐体2は、奥行き寸法が幅寸法よりも格段に大きな細長い中空の箱状に形成されている。 The housing 2 is installed on a horizontal installation surface G such as the roof of a building. The casing 2 is formed in an elongated hollow box shape whose depth dimension is much larger than the width dimension.
 図2ないし図4に示すように、筐体2は、メインフレーム7を備えている。メインフレーム7は、下フレーム8、上フレーム9および複数の縦桟10で構成されている。下フレーム8および上フレーム9は、筐体2の奥行き方向に延びた細長い矩形状である。筐体2の奥行き方向に沿う下フレーム8の長さL1は、筐体2の奥行き方向に沿う上フレーム9の長さL2よりも短い。さらに、筐体2の幅方向に沿う上フレーム9の長さL3は、筐体2の幅方向に沿う下フレーム8の長さL4よりも短い。 As shown in FIGS. 2 to 4, the housing 2 includes a main frame 7. The main frame 7 includes a lower frame 8, an upper frame 9 and a plurality of vertical bars 10. The lower frame 8 and the upper frame 9 are elongated rectangular shapes extending in the depth direction of the housing 2. The length L1 of the lower frame 8 along the depth direction of the housing 2 is shorter than the length L2 of the upper frame 9 along the depth direction of the housing 2. Further, the length L3 of the upper frame 9 along the width direction of the housing 2 is shorter than the length L4 of the lower frame 8 along the width direction of the housing 2.
 縦桟10は、下フレーム8と上フレーム9との間を連結する要素であって、筐体2の奥行き方向に互いに間隔を存して配列されている。筐体2の幅方向に向かい合う縦桟10は、下フレーム8から上フレーム9の方向に進むに従い互いに近づくように傾いている。 The vertical beam 10 is an element that connects the lower frame 8 and the upper frame 9, and is arranged at intervals in the depth direction of the housing 2. The vertical rails 10 facing the width direction of the housing 2 are inclined so as to approach each other as they proceed from the lower frame 8 to the upper frame 9.
 このため、図1および図3に示すように、筐体2を正面の方向Fおよび背面の方向Rから見た時に、メインフレーム7は、下フレーム8から上フレーム9に向けて筐体2の幅方向に沿う寸法が次第に狭まるような先細り状に形成されている。 For this reason, as shown in FIGS. 1 and 3, when the housing 2 is viewed from the front direction F and the back direction R, the main frame 7 moves from the lower frame 8 toward the upper frame 9. It is formed in a tapered shape such that the dimension along the width direction is gradually narrowed.
 下フレーム8の上に底板13が固定されている。底板13は、メインフレーム7の右側面、左側面、正面および背面を覆う複数のパネル(図示せず)と協働して筐体2の内部に機械室14を規定している。底板13は、機械室14の底を構成している。機械室14は、筐体2の奥行き方向に沿う全長に亘って延びている。 The bottom plate 13 is fixed on the lower frame 8. The bottom plate 13 defines a machine room 14 inside the housing 2 in cooperation with a plurality of panels (not shown) that cover the right side, left side, front, and back of the main frame 7. The bottom plate 13 constitutes the bottom of the machine room 14. The machine room 14 extends over the entire length along the depth direction of the housing 2.
 本実施形態によると、筐体2の正面の側に位置された下フレーム8の前端および上フレーム9の前端は、筐体2の高さ方向に並ぶように筐体2の奥行き方向に沿う位置が互いに揃えられている。筐体2の背面の側では、上フレーム9が下フレーム8よりも筐体2の背後に向けて水平に張り出している。筐体2の奥行き方向は、筐体2の長手方向と言い換えることができる。 According to the present embodiment, the front end of the lower frame 8 and the front end of the upper frame 9 positioned on the front side of the housing 2 are positioned along the depth direction of the housing 2 so as to be aligned in the height direction of the housing 2. Are aligned with each other. On the back side of the housing 2, the upper frame 9 projects horizontally beyond the lower frame 8 toward the back of the housing 2. The depth direction of the housing 2 can be restated as the longitudinal direction of the housing 2.
 図5に示すように、第1の冷凍サイクルユニット3は、互いに独立した第1の冷媒回路RAおよび第2の冷媒回路RBを備えている。同様に、第2の冷凍サイクルユニット4は、互いに独立した第3の冷媒回路RCおよび第4の冷媒回路RDを備えている。 As shown in FIG. 5, the first refrigeration cycle unit 3 includes a first refrigerant circuit RA and a second refrigerant circuit RB that are independent of each other. Similarly, the second refrigeration cycle unit 4 includes a third refrigerant circuit RC and a fourth refrigerant circuit RD that are independent of each other.
 第1ないし第4の冷媒回路RA,RB,RC,RDは、互いに共通の構成を有するため、第1の冷媒回路RAを代表して説明し、第2ないし第4の冷媒回路RB,RC,RDについては同一の参照符号を付して、その説明を省略する。 Since the first to fourth refrigerant circuits RA, RB, RC, and RD have a common configuration, the first refrigerant circuit RA will be described as a representative, and the second to fourth refrigerant circuits RB, RC, RD, About RD, the same referential mark is attached | subjected and the description is abbreviate | omitted.
 図5に示すように、第1の冷媒回路RAは、能力可変型の密閉型圧縮機20、四方弁21、空気熱交換部22、一対の膨張弁23a,23b、レシーバ24、水熱交換器25および気液分離器26を主要な要素として備えている。前記複数の要素は、冷凍サイクル構成部品の一例であって、冷媒が循環する循環回路27を介して接続されている。 As shown in FIG. 5, the first refrigerant circuit RA includes a variable capacity hermetic compressor 20, a four-way valve 21, an air heat exchange unit 22, a pair of expansion valves 23a and 23b, a receiver 24, and a water heat exchanger. 25 and the gas-liquid separator 26 are provided as main elements. The plurality of elements are examples of refrigeration cycle components and are connected via a circulation circuit 27 in which the refrigerant circulates.
 具体的に述べると、密閉型圧縮機20の吐出口は、四方弁21の第1ポート21aに接続されている。四方弁21の第2ポート21bは、空気熱交換部22に接続されている。図6に示すように、本実施形態の空気熱交換部22は、一対の空気熱交換器29a,29bおよびファン30を備えている。 More specifically, the discharge port of the hermetic compressor 20 is connected to the first port 21 a of the four-way valve 21. The second port 21 b of the four-way valve 21 is connected to the air heat exchange unit 22. As shown in FIG. 6, the air heat exchange unit 22 of the present embodiment includes a pair of air heat exchangers 29 a and 29 b and a fan 30.
 空気熱交換器29a,29bは、複数のプレートフィンと、プレートフィンを貫通する複数の冷媒配管と、を備えている。空気熱交換器29a,29bは、筐体2の幅方向に間隔を存して向かい合うように起立しているとともに、上方に進むに従い互いに遠ざかる方向に傾いている。 The air heat exchangers 29a and 29b include a plurality of plate fins and a plurality of refrigerant pipes penetrating the plate fins. The air heat exchangers 29a and 29b are erected so as to face each other with a gap in the width direction of the housing 2, and are inclined to move away from each other as they move upward.
 さらに、空気熱交換器29a,29bの筐体2の奥行き方向に沿う両端部は、互いに向かい合うように筐体2の幅方向に折り曲げられている。空気熱交換器29a,29bの両端部の間の隙間は、一対の遮蔽板32a,32bで閉塞されている。空気熱交換器29a,29bおよび遮蔽板32a,32bで囲まれた筒状の空間は、上下方向に延びた排気通路33を規定している。 Further, both end portions of the air heat exchangers 29a and 29b along the depth direction of the casing 2 are bent in the width direction of the casing 2 so as to face each other. A gap between both ends of the air heat exchangers 29a and 29b is closed by a pair of shielding plates 32a and 32b. A cylindrical space surrounded by the air heat exchangers 29a and 29b and the shielding plates 32a and 32b defines an exhaust passage 33 extending in the vertical direction.
 空気熱交換部22のファン30は、羽根車34を回転させるファンモータ35と、羽根車34を取り囲むファンカバー37と、を備えている。ファンモータ35は、空気熱交換器29a,29bの上端部の間に跨るファンベース36に支持されている。ファンカバー37は、羽根車34と向かい合う円筒状の排気口38を有している。 The fan 30 of the air heat exchanger 22 includes a fan motor 35 that rotates the impeller 34 and a fan cover 37 that surrounds the impeller 34. The fan motor 35 is supported by a fan base 36 straddling between the upper ends of the air heat exchangers 29a and 29b. The fan cover 37 has a cylindrical exhaust port 38 facing the impeller 34.
 ファン30が駆動されると、チリングユニット1の周囲の空気が空気熱交換器29a,29bを通過して排気通路33に吸い込まれる。排気通路33に吸い込まれた空気は、排気口38に向けて吸い上げられるとともに、当該排気口38から空気熱交換器29a,29bの上方に向けて排出される。 When the fan 30 is driven, the air around the chilling unit 1 passes through the air heat exchangers 29a and 29b and is sucked into the exhaust passage 33. The air sucked into the exhaust passage 33 is sucked up toward the exhaust port 38 and discharged from the exhaust port 38 toward the upper side of the air heat exchangers 29a and 29b.
 本実施形態のチリングユニット1は、第1ないし第4の冷媒回路RA,RB,RC,RDを有するので、四組の空気熱交換部22が存在する。四組の空気熱交換部22は、メインフレーム7の上フレーム9の上に起立した姿勢で固定されているとともに、筐体2の奥行き方向に沿って一列に並んでいる。したがって、本実施形態では、四組の空気熱交換部22が機械室14の真上に位置されている。 Since the chilling unit 1 of the present embodiment includes the first to fourth refrigerant circuits RA, RB, RC, and RD, there are four sets of air heat exchange units 22. The four air heat exchange units 22 are fixed in an upright posture on the upper frame 9 of the main frame 7 and are arranged in a line along the depth direction of the housing 2. Therefore, in this embodiment, the four sets of air heat exchange units 22 are located directly above the machine room 14.
 空気熱交換部22は、筐体2を正面の方向Fおよび背面の方向Rから見た時に、筐体2の上方に向かうに従い筐体2の幅方向に拡開するようなV字状に形成されている。よって、筐体2の上に空気熱交換部22が位置されたチリングユニット1は、高さ方向に沿う中間部が括れた鼓形の形状を有している。 The air heat exchanging portion 22 is formed in a V shape that expands in the width direction of the casing 2 as it goes upward of the casing 2 when the casing 2 is viewed from the front direction F and the rear direction R. Has been. Therefore, the chilling unit 1 in which the air heat exchanging part 22 is positioned on the housing 2 has a drum-shaped shape in which an intermediate part along the height direction is constricted.
 さらに、筐体2の奥行き方向に沿う前端部の上に位置された空気熱交換部22では、空気熱交換器29a,29bの折り曲げられた一方の端部が筐体2の正面の方向Fに露出されている。同様に、筐体2の奥行き方向に沿う後端部の上に位置された空気熱交換部22では、空気熱交換器29a,29bの折り曲げられた一方の端部が筐体2の背面の方向Rに露出されている。 Further, in the air heat exchange unit 22 positioned on the front end along the depth direction of the housing 2, one bent end of the air heat exchangers 29 a and 29 b is in the direction F on the front surface of the housing 2. Exposed. Similarly, in the air heat exchanger 22 positioned on the rear end along the depth direction of the housing 2, the bent one ends of the air heat exchangers 29 a and 29 b are in the direction of the back surface of the housing 2. Exposed to R.
 言い換えると、複数の空気熱交換部22の並び方向に沿う両端部に位置された二組の空気熱交換器29a,29bの一方の端部は、チリングユニット1の周囲に露出された熱交換面となっている。 In other words, one end of the two sets of air heat exchangers 29a and 29b positioned at both ends along the arrangement direction of the plurality of air heat exchange units 22 is a heat exchange surface exposed around the chilling unit 1. It has become.
 この構成を採用することで、筐体2の前端部および後端部の上に位置された二組の空気熱交換部22は、夫々チリングユニット1の幅方向から吸い込まれる空気に加えて、筐体2の正面の方向Fおよび背面の方向Rから吸い込まれる空気を利用して熱交換を行なうことができる。 By adopting this configuration, the two air heat exchange units 22 positioned on the front end portion and the rear end portion of the casing 2 can be used in addition to the air sucked from the width direction of the chilling unit 1, respectively. Heat exchange can be performed using the air sucked from the front direction F and the rear direction R of the body 2.
 図2に最もよく示されるように、メインフレーム7の上フレーム9は、下フレーム8よりも筐体2の背後に向けて水平に張り出している。四組の空気熱交換部22のうち、筐体2の後端部に位置された最後部の空気熱交換部22は、筐体2の後端部から筐体2の奥行き方向に突出されている。したがって、筐体2の奥行き方向に沿う全長は、四組の空気熱交換部22の並び方向に沿う全長よりも短い。 As best shown in FIG. 2, the upper frame 9 of the main frame 7 projects horizontally toward the back of the housing 2 rather than the lower frame 8. Of the four sets of air heat exchanging units 22, the rearmost air heat exchanging unit 22 located at the rear end of the housing 2 protrudes from the rear end of the housing 2 in the depth direction of the housing 2. Yes. Therefore, the total length along the depth direction of the housing 2 is shorter than the total length along the alignment direction of the four air heat exchange units 22.
 この結果、筐体2の背後に、最後部の空気熱交換部22よりも引っ込んだ段差部43が形成されている。段差部43は、筐体2の側方および背後に連続して開放されたスペースS1を規定しており、当該スペースS1の上に最後部の空気熱交換部22が張り出している。 As a result, a stepped portion 43 that is recessed from the rearmost air heat exchanging portion 22 is formed behind the housing 2. The stepped portion 43 defines a space S1 that is continuously open to the side and the back of the housing 2, and the rearmost air heat exchanging portion 22 projects over the space S1.
 本実施形態では、筐体2の後端部に配置された縦桟10は、最後部の空気熱交換部22を構成する空気熱交換器29a,29bの奥行き方向に沿う中央又は中央よりも筐体2の背後の側に位置されている。これにより、重量物である空気熱交換器29a,29bをメインフレーム7で安定して支持することができる。 In the present embodiment, the vertical beam 10 disposed at the rear end of the housing 2 is located at the center along the depth direction of the air heat exchangers 29a and 29b constituting the rearmost air heat exchange unit 22 or at the center rather than the center. Located behind the body 2. Thereby, the air heat exchangers 29a and 29b, which are heavy objects, can be stably supported by the main frame 7.
 図5に示すように、空気熱交換器29a,29bの入口は、四方弁21の第2ポート21bに並列に接続されている。空気熱交換器29a,29bの出口は、膨張弁23a,23b、レシーバ24および水熱交換器25を介して四方弁21の第3ポート21cに接続されている。四方弁21の第4ポート21dは、気液分離器26を介して密閉型圧縮機20の吸入側に接続されている。 As shown in FIG. 5, the inlets of the air heat exchangers 29 a and 29 b are connected in parallel to the second port 21 b of the four-way valve 21. The outlets of the air heat exchangers 29a and 29b are connected to the third port 21c of the four-way valve 21 via the expansion valves 23a and 23b, the receiver 24, and the water heat exchanger 25. The fourth port 21 d of the four-way valve 21 is connected to the suction side of the hermetic compressor 20 via a gas-liquid separator 26.
 さらに、気液分離器26の出口は、バイパス配管40を介して四方弁21の第1ポート21aに接続されている。常閉形の電磁弁41がバイパス配管40の途中に設けられている。 Furthermore, the outlet of the gas-liquid separator 26 is connected to the first port 21a of the four-way valve 21 via the bypass pipe 40. A normally closed solenoid valve 41 is provided in the middle of the bypass pipe 40.
 図5に示すように、水熱交換器25は、第1の冷媒流路25a、第2の冷媒流路25bおよび水流路25cを備えている。水熱交換器25の第1の冷媒流路25aは、第1の冷媒回路RAのレシーバ24および四方弁21の第3ポート21cに接続されている。第2の冷媒流路25bは、第2の冷媒回路RBのレシーバ24および四方弁21の第3ポート21cに接続されている。このため、第1の冷凍サイクルユニット3では、第1の冷媒回路RAおよび第2の冷媒回路RBが一つの水熱交換器25を共有している。 As shown in FIG. 5, the water heat exchanger 25 includes a first refrigerant channel 25a, a second refrigerant channel 25b, and a water channel 25c. The first refrigerant flow path 25 a of the water heat exchanger 25 is connected to the receiver 24 of the first refrigerant circuit RA and the third port 21 c of the four-way valve 21. The second refrigerant flow path 25b is connected to the receiver 24 of the second refrigerant circuit RB and the third port 21c of the four-way valve 21. Therefore, in the first refrigeration cycle unit 3, the first refrigerant circuit RA and the second refrigerant circuit RB share one water heat exchanger 25.
 同様に、第2の冷凍サイクルユニット4においても、一つの水熱交換器25を共有するように第3の冷媒回路RCおよび第4の冷媒回路RDが一つの水熱交換器25に並列に接続されている。したがって、チリングユニット1は、二台の水熱交換器25を搭載している。 Similarly, in the second refrigeration cycle unit 4, the third refrigerant circuit RC and the fourth refrigerant circuit RD are connected in parallel to one water heat exchanger 25 so as to share one water heat exchanger 25. Has been. Therefore, the chilling unit 1 is equipped with two water heat exchangers 25.
 図1ないし図4に示すように、第1の冷凍サイクルユニット3および第2の冷凍サイクルユニット4のうち、四組の空気熱交換部22を除いた各種の要素は、筐体2の機械室14に収容されている。 As shown in FIGS. 1 to 4, the various elements of the first refrigeration cycle unit 3 and the second refrigeration cycle unit 4 except for the four air heat exchange units 22 are the machine room of the housing 2. 14.
 図4に最もよく示されるように、第1の冷媒回路RAおよび第2の冷媒回路RBを備えた第1の冷凍サイクルユニット3は、例えば筐体2を平面的に見た時に、機械室14の奥行き方向に沿う後半部に配置されている。同様に、第3の冷媒回路RCおよび第4の冷媒回路RDを備えた第2の冷凍サイクルユニット4は、例えば筐体2を平面的に見た時に、機械室14の奥行き方向に沿う前半部に配置されている。 As best shown in FIG. 4, the first refrigeration cycle unit 3 including the first refrigerant circuit RA and the second refrigerant circuit RB includes, for example, a machine room 14 when the housing 2 is viewed in a plan view. It is arranged in the latter half along the depth direction. Similarly, the second refrigeration cycle unit 4 including the third refrigerant circuit RC and the fourth refrigerant circuit RD is, for example, a front half portion along the depth direction of the machine room 14 when the housing 2 is viewed in a plan view. Is arranged.
 具体的に述べると、第1の冷媒回路RAおよび第2の冷媒回路RBを構成する二台の密閉型圧縮機20、二台のレシーバ24および二台の気液分離器26は、夫々機械室14の後半部において、機械室14の奥行き方向に並ぶように底板13の上に据え付けられている。さらに、二台の密閉型圧縮機20および二台の気液分離器26は、機械室14の幅方向に互いに隣り合うように配置されている。 More specifically, the two hermetic compressors 20, the two receivers 24, and the two gas-liquid separators 26 constituting the first refrigerant circuit RA and the second refrigerant circuit RB are each in a machine room. 14 is installed on the bottom plate 13 so as to be aligned in the depth direction of the machine room 14. Further, the two hermetic compressors 20 and the two gas-liquid separators 26 are arranged adjacent to each other in the width direction of the machine chamber 14.
 第1の冷媒回路RAおよび第2の冷媒回路RBが共有する一つの水熱交換器25は、二台の気液分離器26の背後に位置するように底板13の上に据え付けられている。そのため、当該水熱交換器25は、第1の冷凍サイクルユニット3の最後部に位置されている。 One water heat exchanger 25 shared by the first refrigerant circuit RA and the second refrigerant circuit RB is installed on the bottom plate 13 so as to be located behind the two gas-liquid separators 26. Therefore, the water heat exchanger 25 is located at the rearmost part of the first refrigeration cycle unit 3.
 第3の冷媒回路RCおよび第4の冷媒回路RDを構成する二台の密閉型圧縮機20、二台のレシーバ24および二台の気液分離器26は、夫々機械室14の前半部において、機械室14の奥行き方向に並ぶように底板13の上に据え付けられている。さらに、二台の密閉型圧縮機20および二台の気液分離器26は、機械室14の幅方向に互いに隣り合うように配置されている。 The two hermetic compressors 20, the two receivers 24, and the two gas-liquid separators 26 constituting the third refrigerant circuit RC and the fourth refrigerant circuit RD are respectively in the first half of the machine room 14, It is installed on the bottom plate 13 so as to line up in the depth direction of the machine room 14. Further, the two hermetic compressors 20 and the two gas-liquid separators 26 are arranged adjacent to each other in the width direction of the machine chamber 14.
 第3の冷媒回路RCおよび第4の冷媒回路RDが共有する一つの水熱交換器25は、二台の気液分離器26の背後に位置するように底板13の上に据え付けられている。そのため、当該水熱交換器25は、第2の冷凍サイクルユニット4の最後部に位置されている。 One water heat exchanger 25 shared by the third refrigerant circuit RC and the fourth refrigerant circuit RD is installed on the bottom plate 13 so as to be located behind the two gas-liquid separators 26. Therefore, the water heat exchanger 25 is located at the rearmost part of the second refrigeration cycle unit 4.
 このことから、第1の冷凍サイクルユニット3および第2の冷凍サイクルユニット4は、機械室14の奥行き方向に並んでいる。それとともに、二台の水熱交換器25は、機械室14の奥行き方向に互いに離れている。 For this reason, the first refrigeration cycle unit 3 and the second refrigeration cycle unit 4 are arranged in the depth direction of the machine room 14. At the same time, the two water heat exchangers 25 are separated from each other in the depth direction of the machine room 14.
 図1ないし図3に示すように、水熱交換器25は、四角い箱形の形状を有するとともに、筐体2の底板13から機械室14の高さ方向に起立されている。各水熱交換器25は、水入口28aおよび水出口28bを有している。水入口28aおよび水出口28bは、筐体2を正面の方向Fから見た時に、水熱交換器25の左側面に位置されている。 As shown in FIGS. 1 to 3, the water heat exchanger 25 has a square box shape and is erected from the bottom plate 13 of the housing 2 in the height direction of the machine room 14. Each water heat exchanger 25 has a water inlet 28a and a water outlet 28b. The water inlet 28 a and the water outlet 28 b are located on the left side surface of the water heat exchanger 25 when the housing 2 is viewed from the front direction F.
 水入口28aは、水熱交換器25の左側面の上端部において、水流路25cの上流端に接続されている。水出口28bは、水熱交換器25の左側面の下端部において、水流路25cの下流端に接続されている。そのため、水入口28aは、機械室14の上端部に位置されている。水入口28aから水流路25cに流入した水は、水流路25cを重力方向に沿うように上から下に向けて流れる。 The water inlet 28a is connected to the upstream end of the water passage 25c at the upper end of the left side surface of the water heat exchanger 25. The water outlet 28b is connected to the downstream end of the water flow path 25c at the lower end of the left side surface of the water heat exchanger 25. Therefore, the water inlet 28 a is located at the upper end portion of the machine room 14. The water that has flowed into the water channel 25c from the water inlet 28a flows from the top to the bottom along the direction of gravity in the water channel 25c.
 図1ないし図4に示すように、水回路5は、第1の冷凍サイクルユニット3および第2の冷凍サイクルユニット4と共に機械室14に収容されている。水回路5は、能力可変型の渦巻きポンプ45および第1ないし第4の水配管46a,46b,46c,46dを主要な要素として備えている。 As shown in FIGS. 1 to 4, the water circuit 5 is housed in the machine room 14 together with the first refrigeration cycle unit 3 and the second refrigeration cycle unit 4. The water circuit 5 includes a variable capacity centrifugal pump 45 and first to fourth water pipes 46a, 46b, 46c, and 46d as main elements.
 渦巻きポンプ45は、機械室14の後端部に位置するように底板13の上に据え付けられている。渦巻きポンプ45は、機械室14の後端部で第1の冷媒回路RAおよび第2の冷媒回路RBが共有する一つの水熱交換器25と隣り合っている。 The centrifugal pump 45 is installed on the bottom plate 13 so as to be located at the rear end of the machine room 14. The centrifugal pump 45 is adjacent to one water heat exchanger 25 shared by the first refrigerant circuit RA and the second refrigerant circuit RB at the rear end of the machine chamber 14.
 図7、図8Aおよび図8Bに示すように、渦巻きポンプ45は、台座48、ケーシング49およびモータ50を備えている。台座48は、所定の厚さを有する四角い板状の要素であって、筐体2の底板13の上に例えば複数のボルトのような締結具を介して直に固定されている。 As shown in FIG. 7, FIG. 8A and FIG. 8B, the centrifugal pump 45 includes a pedestal 48, a casing 49 and a motor 50. The pedestal 48 is a square plate-like element having a predetermined thickness, and is fixed directly on the bottom plate 13 of the housing 2 via fasteners such as a plurality of bolts.
 ケーシング49は、台座48の上面に固定されている。ケーシング49は、吸込口51および吐出口52を有するとともに、インペラ53を収容している。吸込口51および吐出口52は、ケーシング49に対し互いに直交し合う方向に開口されている。 The casing 49 is fixed to the upper surface of the pedestal 48. The casing 49 has a suction port 51 and a discharge port 52 and houses an impeller 53. The suction port 51 and the discharge port 52 are opened in a direction orthogonal to the casing 49.
 モータ50は、動力部の一例であって、ケーシング49と隣り合うように台座48の上面に固定されている。モータ50の回転軸54は、ケーシング49を貫通してインペラ53に同軸状に連結されている。 The motor 50 is an example of a power unit, and is fixed to the upper surface of the base 48 so as to be adjacent to the casing 49. The rotating shaft 54 of the motor 50 passes through the casing 49 and is coaxially connected to the impeller 53.
 渦巻きポンプ45は、モータ50の回転軸54の中心を通る回転軸線O1を有している。渦巻きポンプ45は、回転軸線O1が水平となるような横置きの姿勢で機械室14に収容されている。本実施形態によると、渦巻きポンプ45の回転軸線O1は、筐体2の幅方向に延びている。 The spiral pump 45 has a rotation axis O <b> 1 that passes through the center of the rotation shaft 54 of the motor 50. The spiral pump 45 is housed in the machine room 14 in a horizontal posture such that the rotation axis O1 is horizontal. According to the present embodiment, the rotation axis O <b> 1 of the centrifugal pump 45 extends in the width direction of the housing 2.
 ケーシング49の吸込口51は、回転軸線O1の軸上に位置されている。図7に示すように、吸込口51は、筐体2を背面の方向Rから見た時に、機械室14内で筐体2の左側方に向けて開口されている。吸込口51と直交する位置関係にある吐出口52は、ケーシング49の上端部で鉛直方向に沿うように上向きに開口されている。さらに、渦巻きポンプ45と隣り合う水熱交換器25の水入口28aは、吐出口52よりも上方に位置されている。 The suction port 51 of the casing 49 is located on the axis of the rotation axis O1. As shown in FIG. 7, the suction port 51 is opened toward the left side of the casing 2 in the machine room 14 when the casing 2 is viewed from the rear direction R. The discharge port 52 that is in a positional relationship orthogonal to the suction port 51 is opened upward at the upper end portion of the casing 49 so as to be along the vertical direction. Further, the water inlet 28 a of the water heat exchanger 25 adjacent to the spiral pump 45 is located above the discharge port 52.
 図8Aおよび図8Bに示すように、渦巻きポンプ45は、吸込口51の中心を通って筐体2の幅方向に横たわる水平な第1の中心軸線C1と、吐出口52の中心を通って筐体2の高さ方向に起立する垂直な第2の中心軸線C2と、を有する。本実施形態の渦巻きポンプ45では、中心軸線C1と第2の中心軸線C2とが交差する交点P1が予め機械室14の内部に規定された基準点と合致するように、渦巻きポンプ45の台座48が筐体2の奥行き方向および幅方向に位置調整可能に筐体2の底板13の上に固定されている。 As shown in FIGS. 8A and 8B, the vortex pump 45 has a horizontal first central axis C1 lying in the width direction of the housing 2 through the center of the suction port 51 and a housing through the center of the discharge port 52. And a vertical second central axis C2 standing in the height direction of the body 2. In the spiral pump 45 of the present embodiment, the base 48 of the spiral pump 45 is such that the intersection P1 where the central axis C1 and the second central axis C2 intersect with a reference point defined in advance inside the machine chamber 14. Is fixed on the bottom plate 13 of the housing 2 so that the position of the housing 2 can be adjusted in the depth direction and the width direction.
 具体的には、筐体2の底板13は、台座48が載置される位置にボルトがねじ込まれる複数のねじ孔を有し、当該ねじ孔が筐体2の奥行き方向および幅方向に夫々所定の間隔を存して複数配列されている。そのため、台座48を貫通したボルトがねじ込まれるねじ孔を選択することで、渦巻きポンプ45の前記交点P1が基準点と合致するように、底板13に対する渦巻きポンプ45の固定位置を筐体2の奥行き方向および幅方向にずらすことができる。 Specifically, the bottom plate 13 of the housing 2 has a plurality of screw holes into which bolts are screwed at positions where the pedestals 48 are placed, and the screw holes are respectively predetermined in the depth direction and the width direction of the housing 2. Multiple arrays are arranged with an interval of. Therefore, by selecting the screw hole into which the bolt passing through the base 48 is screwed, the fixing position of the spiral pump 45 with respect to the bottom plate 13 is set to the depth of the housing 2 so that the intersection point P1 of the spiral pump 45 matches the reference point. It can be shifted in the direction and width direction.
 さらに、渦巻きポンプ45のモータ50は、その外径が全長よりも小さい。そのため、渦巻きポンプ45を機械室14内で横置きとしたことにより、モータ50の上の領域が広く開放され、当該領域が配管スペースS2として機能している。 Furthermore, the outer diameter of the motor 50 of the centrifugal pump 45 is smaller than the full length. Therefore, by setting the centrifugal pump 45 horizontally in the machine room 14, the area above the motor 50 is widely opened, and this area functions as the piping space S2.
 図8Aに示すように、水回路5の第1の水配管46aは、渦巻きポンプ45の吸込口51に接続されている。第1の水配管46aは、ケーシング49の左側方に引き出された後、機械室14の後方に向けて直角に折り曲げられている。第1の水配管46aの後端にストレーナ56が接続されている。 As shown in FIG. 8A, the first water pipe 46 a of the water circuit 5 is connected to the suction port 51 of the centrifugal pump 45. The first water pipe 46 a is drawn to the left side of the casing 49 and then bent at a right angle toward the rear of the machine room 14. A strainer 56 is connected to the rear end of the first water pipe 46a.
 第1の水配管46aの後端およびストレーナ56は、機械室14の後端部から筐体2の背後の段差部43に突出されているとともに、当該段差部43が規定するスペースS1に収まっている。このため、ストレーナ56の大部分は、最後部の空気熱交換部22の真下に位置されている。 The rear end of the first water pipe 46a and the strainer 56 protrude from the rear end portion of the machine room 14 to the stepped portion 43 behind the housing 2, and are accommodated in the space S1 defined by the stepped portion 43. Yes. For this reason, most of the strainer 56 is positioned directly below the rearmost air heat exchange unit 22.
 さらに、ストレーナ56は、例えば各種のバルブやフレキシブルジョイントのような付属品ならびに設置面Gの上に敷設された現場配管を介して例えば空調機のような利用機器側の水出口に接続されている。 Further, the strainer 56 is connected to a water outlet on the side of a utilization device such as an air conditioner through accessories such as various valves and flexible joints and a field pipe laid on the installation surface G. .
 図7、図8Aおよび図8Bに示すように、第2の水配管46bは、渦巻きポンプ45の吐出口52と第1の冷凍サイクルユニット3に対応する水熱交換器25の水入口28aとの間を接続している。第2の水配管46bは、ケーシング49の真上に導かれた後、渦巻きポンプ45の前方の水熱交換器25に向けて直角に折り曲げられている。第2の水配管46bは、モータ50の上に生じた配管スペースを通して筐体2の奥行き方向に水平に引き回されている。 As shown in FIG. 7, FIG. 8A and FIG. 8B, the second water pipe 46 b is formed between the discharge port 52 of the centrifugal pump 45 and the water inlet 28 a of the water heat exchanger 25 corresponding to the first refrigeration cycle unit 3. Are connected. The second water pipe 46 b is led right above the casing 49 and then bent at a right angle toward the water heat exchanger 25 in front of the centrifugal pump 45. The second water pipe 46 b is routed horizontally in the depth direction of the housing 2 through a pipe space generated on the motor 50.
 図2ないし図5に示すように、第3の水配管46cは、第1の冷凍サイクルユニット3に対応する水熱交換器25の水出口28bと第2の冷凍サイクルユニット4に対応する水熱交換器25の水入口28aとの間を直列に接続している。第3の水配管46cは、第1の冷凍サイクルユニット3の二組の気液分離器26の側方を通して筐体2の奥行き方向に引き回されている。 As shown in FIGS. 2 to 5, the third water pipe 46 c includes water outlets 28 b of the water heat exchanger 25 corresponding to the first refrigeration cycle unit 3 and water heat corresponding to the second refrigeration cycle unit 4. The water inlet 28a of the exchanger 25 is connected in series. The third water pipe 46 c is routed in the depth direction of the housing 2 through the sides of the two gas-liquid separators 26 of the first refrigeration cycle unit 3.
 第4の水配管46dは、第2の冷凍サイクルユニット4に対応する水熱交換器25の水出口28bに接続されている。第4の水配管46dは、筐体2の底板13の上に沿うように水熱交換器25の後方に向けて水平に引き回されているとともに、モータ50の直前でモータ50の上の配管スペースに向けて立ち上げられている。 The fourth water pipe 46d is connected to the water outlet 28b of the water heat exchanger 25 corresponding to the second refrigeration cycle unit 4. The fourth water pipe 46 d is routed horizontally toward the rear of the water heat exchanger 25 so as to be along the bottom plate 13 of the housing 2, and the pipe above the motor 50 just before the motor 50. Launched for space.
 第4の水配管46dの後端にチェッキバルブ57を有する吐出配管58が接続されている。チェッキバルブ57および吐出配管58は、配管スペースS2に配置されている。吐出配管58の後端は、機械室14の後端部から筐体2の背後の段差部43に突出されているとともに、例えば各種のバルブやフレキシブルジョイントのような付属品ならびに設置面Gの上に敷設された他の現場配管を介して例えば空調機のような利用機器側の水入口に接続されている。 A discharge pipe 58 having a check valve 57 is connected to the rear end of the fourth water pipe 46d. The check valve 57 and the discharge pipe 58 are arranged in the pipe space S2. The rear end of the discharge pipe 58 protrudes from the rear end portion of the machine room 14 to the stepped portion 43 behind the housing 2, and includes accessories such as various valves and flexible joints, and the installation surface G. For example, it is connected to a water inlet on the side of a utilization device such as an air conditioner through another on-site piping.
 図3に示すように、ドレンパン60が筐体2の機械室14と四組の空気熱交換部22との間に配置されている。ドレンパン60は、空気熱交換部22の空気熱交換器29a,29bから滴下する結露水等を受け止める要素であって、一対の樋61a,61bおよびドレン回収盤62を備えている。 As shown in FIG. 3, a drain pan 60 is disposed between the machine room 14 of the housing 2 and the four air heat exchange units 22. The drain pan 60 is an element that receives dew condensation water or the like dripping from the air heat exchangers 29 a and 29 b of the air heat exchanger 22, and includes a pair of troughs 61 a and 61 b and a drain collection board 62.
 樋61a,61bは、四組の空気熱交換部22の配列方向に沿って真っ直ぐに延びており、各空気熱交換部22の空気熱交換器29a,29bの真下に位置するように、筐体2の上フレーム9に支持されている。 The casings 61a and 61b extend straight along the arrangement direction of the four sets of air heat exchangers 22, and are positioned directly below the air heat exchangers 29a and 29b of the air heat exchangers 22. 2 is supported by the upper frame 9.
 樋61a,61bは、機械室14の上で筐体2の幅方向に互いに間隔を存して平行に配置されている。機械室14は、樋61a,61bの間の隙間を通じて四組の空気熱交換部22の排気通路33に連通されている。 The cages 61a and 61b are arranged on the machine room 14 in parallel with each other in the width direction of the housing 2. The machine room 14 is communicated with the exhaust passages 33 of the four air heat exchange units 22 through a gap between the flanges 61a and 61b.
 ドレン回収盤62は、樋61a,61bの後端部の間に跨るように上フレーム9に支持されている。ドレン回収盤62は、渦巻きポンプ45の真上に位置されている。言い換えると、ドレン回収盤62は、配管スペースS2の天井を規定している。本実施形態では、ドレン回収盤62と渦巻きポンプ45との間に、吐出口52に接続された第2の水配管46bの上流端およびチェッキバルブ57を有する吐出配管58が位置されている。 The drain collection board 62 is supported by the upper frame 9 so as to straddle between the rear ends of the flanges 61a and 61b. The drain collection board 62 is located immediately above the centrifugal pump 45. In other words, the drain collection board 62 defines the ceiling of the piping space S2. In the present embodiment, the discharge pipe 58 having the upstream end of the second water pipe 46 b connected to the discharge port 52 and the check valve 57 is positioned between the drain collection board 62 and the spiral pump 45.
 図2および図3に示すように、ドレン回収盤62の後端部は、筐体2の背後の段差部43の上方に張り出している。さらに、ドレン回収盤62は、その幅方向中央付近に配置されたドレン配管接続口64を有している。ドレン配管接続口64は、ドレン回収盤62の底から段差部43が規定するスペースS1の上端に突出するように下向きに開口されており、当該ドレン配管接続口64に図示しないドレン配管が接続されるようになっている。 As shown in FIGS. 2 and 3, the rear end portion of the drain collection board 62 protrudes above the stepped portion 43 behind the housing 2. Furthermore, the drain collection board 62 has a drain pipe connection port 64 disposed near the center in the width direction. The drain pipe connection port 64 is opened downward so as to protrude from the bottom of the drain collection board 62 to the upper end of the space S <b> 1 defined by the stepped portion 43, and a drain pipe (not shown) is connected to the drain pipe connection port 64. It has become so.
 ドレン配管接続口64をドレン回収盤62の底から下向きに開口させることで、ドレン回収盤62で受けた結露水の排水性が良好となる。それとともに、ドレン回収盤62の幅方向中央部にドレン配管接続口64を配置することで、ドレン配管接続口64が一つであっても良好な排水性を確保することができる。 排水 Opening the drain pipe connection port 64 downward from the bottom of the drain collection board 62 improves the drainage of the condensed water received by the drain collection board 62. At the same time, by arranging the drain pipe connection port 64 at the center in the width direction of the drain collection board 62, good drainage can be secured even if there is only one drain pipe connection port 64.
 加えて、本実施形態では、ドレン配管接続口64がスペースS1の上端に突出しているので、ドレン配管接続口64にドレン配管を接続する際の作業も容易に行なうことができる。 In addition, in the present embodiment, since the drain pipe connection port 64 protrudes from the upper end of the space S1, the work for connecting the drain pipe to the drain pipe connection port 64 can be easily performed.
 図1ないし図4に示すように、前記電装ユニット6は、筐体2の正面の側である機械室14の前端部に設置されている。本実施形態の電装ユニット6は、電装ボックス70およびファン装置71を備えている。電装ボックス70は、筐体2の底板13の上に固定されているとともに、機械室14と同等の高さ寸法を有している。 As shown in FIGS. 1 to 4, the electrical unit 6 is installed at the front end of the machine room 14 on the front side of the housing 2. The electrical unit 6 of this embodiment includes an electrical box 70 and a fan device 71. The electrical box 70 is fixed on the bottom plate 13 of the housing 2 and has the same height as the machine room 14.
 電装ボックス70は、第1の冷凍サイクルユニット3および第2の冷凍サイクルユニット4の運転を制御する各種の電気部品を収容している。電気部品の一例は、密閉型圧縮機20に印加する電圧および周波数を制御する複数の制御基板、インバータおよびコンバータのような複数のパワーモジュール、複数の平滑コンデンサ、力率改善用の複数のリアクトル、複数のフィルタ基板、複数の端子台および複数の電磁接触器等である。 The electrical box 70 accommodates various electrical components that control the operation of the first refrigeration cycle unit 3 and the second refrigeration cycle unit 4. An example of the electrical component includes a plurality of control boards that control the voltage and frequency applied to the hermetic compressor 20, a plurality of power modules such as an inverter and a converter, a plurality of smoothing capacitors, a plurality of reactors for power factor improvement, A plurality of filter substrates, a plurality of terminal blocks, a plurality of electromagnetic contactors, and the like.
 各種の電気部品の中でも例えば複数の制御基板および複数のパワーモジュールは、動作中の発熱量が大きい発熱部品と言い換えることができる。発熱部品は、積極的な放熱を必要とするので、複数のヒートシンク(図示せず)に熱的に接続されている。ヒートシンクは、電装ボックス70の内部の空気通路(図示せず)に露出されている。空気通路は、電装ボックス70の中央部に位置されるとともに、電装ボックス70を高さ方向に貫通するように起立されている。 Among various electrical components, for example, a plurality of control boards and a plurality of power modules can be rephrased as heat generating components that generate a large amount of heat during operation. Since the heat-generating component requires active heat dissipation, it is thermally connected to a plurality of heat sinks (not shown). The heat sink is exposed to an air passage (not shown) inside the electrical box 70. The air passage is located at the center of the electrical box 70 and is erected so as to penetrate the electrical box 70 in the height direction.
 図3および図4に示すように、ファン装置71は、電装ボックス70の上面に取り付けられている。ファン装置71は、細長い箱状のファンケース72と、ファンケース72に収容された複数の電動ファン73a,73b,73cと、を備えている。 3 and 4, the fan device 71 is attached to the upper surface of the electrical box 70. The fan device 71 includes an elongated box-shaped fan case 72 and a plurality of electric fans 73 a, 73 b, 73 c accommodated in the fan case 72.
 ファンケース72は、電装ボックス70の上面の中央部に取り付けられている。ファンケース72は、電装ボックス70の上面に開口された前記空気通路の上端を取り囲むように筐体2の奥行き方向に延びている。さらに、ファンケース72は、電装ボックス70の上面から上向きに突出されている。ファンンケース72の上端部は、樋61a,61bの間を通じて筐体2の前端部に位置された最前部の空気熱交換部22の排気通路33に入り込んでいる。 The fan case 72 is attached to the center of the upper surface of the electrical box 70. The fan case 72 extends in the depth direction of the housing 2 so as to surround the upper end of the air passage opened in the upper surface of the electrical box 70. Further, the fan case 72 protrudes upward from the upper surface of the electrical box 70. The upper end portion of the fann case 72 enters the exhaust passage 33 of the foremost air heat exchange unit 22 located at the front end portion of the housing 2 through the space between the flanges 61a and 61b.
 電動ファン73a,73b,73cは、筐体2の奥行き方向に間隔を存して一列に並んでいる。電動ファン73a,73b,73cは、電装ボックス70が有する前記空気通路の真上に位置するように、回転軸線を縦置きにした姿勢でファンケース72に組み込まれている。電動ファン73a,73b,73cは、いずれもファンケース72の上方に向けて排気する。 The electric fans 73a, 73b, 73c are arranged in a line at intervals in the depth direction of the housing 2. The electric fans 73a, 73b, and 73c are incorporated in the fan case 72 in a posture in which the rotation axis is placed vertically so as to be positioned immediately above the air passage of the electrical box 70. The electric fans 73a, 73b, 73c all exhaust toward the upper side of the fan case 72.
 電動ファン73a,73b,73cが動作すると、電装ボックス70の空気通路に負圧が作用する。これにより、筐体2の周囲の空気が筐体2の底板13の側から空気通路に吸い込まれる。吸い込まれた空気は、空気通路を下から上に向けて流れるとともに、ファンケース72に導かれる。 When the electric fans 73a, 73b, 73c operate, negative pressure acts on the air passage of the electrical box 70. Thereby, the air around the housing 2 is sucked into the air passage from the bottom plate 13 side of the housing 2. The sucked air flows through the air passage from the bottom to the top and is guided to the fan case 72.
 発熱部品の熱を受けるヒートシンクは、空気通路を流れる空気に直に晒されている。これにより、ヒートシンクに伝えられた発熱部品の熱が空気の流れに乗じて放出され、発熱部品が強制的に冷やされる。 ¡The heat sink that receives the heat from the heat generating parts is directly exposed to the air flowing through the air passage. Thereby, the heat of the heat generating component transmitted to the heat sink is released by multiplying the air flow, and the heat generating component is forcibly cooled.
 空気通路を通過した空気は、電動ファン73a,73b,73cにより吸い上げられるとともに、ファンケース72の上端から最前部の空気熱交換部26の排気通路33に吐出される。 The air that has passed through the air passage is sucked up by the electric fans 73a, 73b, and 73c and discharged from the upper end of the fan case 72 to the exhaust passage 33 of the foremost air heat exchange section 26.
 排気通路33に吐出された空気は、ファン30の動作によって空気熱交換器29a,29bを通過した空気と共に吸い上げられるとともに、排気口38からチリングユニット1の上方に排出される。したがって、発熱部品を冷却した後の空気が機械室14に滞留することはなく、機械室14の温度上昇を回避できる。 The air discharged into the exhaust passage 33 is sucked up together with the air that has passed through the air heat exchangers 29a and 29b by the operation of the fan 30, and is discharged from the exhaust port 38 to the upper side of the chilling unit 1. Therefore, the air after cooling the heat-generating component does not stay in the machine room 14, and the temperature rise of the machine room 14 can be avoided.
 一方、本実施形態のチリングユニット1では、例えばユニットが必要とする水の最大流量および最大揚程を賄える渦巻きポンプを適宜選定し得るように、図8Aおよび図8Bに開示された標準の渦巻きポンプ45の他に、当該渦巻きポンプ45とは容量が異なる二種類の他の渦巻きポンプ80,90が用意されている。他の渦巻きポンプ80,90の構成は、図8Aおよび図8Bに開示された標準の渦巻きポンプ45と同様であるので、同一の構成部分には同一の参照符号を付して、その説明を省略する。 On the other hand, in the chilling unit 1 of the present embodiment, for example, a standard centrifugal pump 45 disclosed in FIGS. 8A and 8B can be selected as appropriate so that a centrifugal pump that can provide the maximum flow rate and maximum head of water required by the unit can be selected. In addition, two types of other centrifugal pumps 80 and 90 having different capacities from the centrifugal pump 45 are prepared. Since the configuration of the other centrifugal pumps 80 and 90 is the same as that of the standard centrifugal pump 45 disclosed in FIGS. 8A and 8B, the same components are denoted by the same reference numerals and description thereof is omitted. To do.
 図9Aおよび図9Bに開示された他の渦巻きポンプ80は、標準の渦巻きポンプ45よりも容量が少ない。具体的には、ケーシング49およびモータ50の大きさが標準の渦巻きポンプ45よりも一回り小さい。 The other centrifugal pump 80 disclosed in FIGS. 9A and 9B has a smaller capacity than the standard centrifugal pump 45. Specifically, the sizes of the casing 49 and the motor 50 are slightly smaller than the standard centrifugal pump 45.
 図10Aおよび図10Bに開示された他の渦巻きポンプ90は、図9Aおよび図9Bに開示された渦巻きポンプ80よりもさらに容量が少なく、ケーシング49およびモータ50の大きさが渦巻きポンプ80よりも一回り小さい。 The other centrifugal pump 90 disclosed in FIGS. 10A and 10B has a smaller capacity than the centrifugal pump 80 disclosed in FIGS. 9A and 9B, and the size of the casing 49 and the motor 50 is smaller than that of the centrifugal pump 80. Small around.
 この結果、夫々の他の渦巻きポンプ80,90において、第1の中心軸線C1と第2の中心軸線C2との交点P1から吸込口51の中心までの筐体2の幅方向に沿う距離をY1、交点P1から吐出口52の中心までの筐体2の高さ方向に沿う距離をZ1、交点P1から台座48の下面までの筐体2の高さ方向に沿う距離をZ2とした時、渦巻きポンプ80,90の間では、Y1が等しく、Z1およびZ2が相違している。 As a result, in each of the other centrifugal pumps 80 and 90, the distance along the width direction of the housing 2 from the intersection P1 between the first central axis C1 and the second central axis C2 to the center of the suction port 51 is defined as Y1. When the distance along the height direction of the housing 2 from the intersection P1 to the center of the discharge port 52 is Z1, and the distance along the height direction of the housing 2 from the intersection P1 to the lower surface of the pedestal 48 is Z2, the spiral Between the pumps 80 and 90, Y1 is equal and Z1 and Z2 are different.
 さらに、他の渦巻きポンプ80,90のY1、Z1およびZ2は、標準の渦巻きポンプ45のY1、Z1およびZ2と全て相違している。 Furthermore, Y1, Z1, and Z2 of the other centrifugal pumps 80, 90 are all different from Y1, Z1, and Z2 of the standard centrifugal pump 45.
 このことから、標準の渦巻きポンプ45の代わりに他の渦巻きポンプ80又は90を機械室14の底板13の上に直付けした場合、他の渦巻きポンプ80又は90の夫々において、交点P1が機械室14内の基準点から筐体2の奥行き方向に沿うX方向、筐体2の幅方向に沿うY方向および筐体2の高さ方向に沿うZ方向にずれてしまう。 From this, when another spiral pump 80 or 90 is directly mounted on the bottom plate 13 of the machine chamber 14 instead of the standard spiral pump 45, the intersection P1 is the machine chamber in each of the other spiral pumps 80 or 90. 14 in the X direction along the depth direction of the housing 2, the Y direction along the width direction of the housing 2, and the Z direction along the height direction of the housing 2.
 そこで、本実施形態では、標準の渦巻きポンプ45の代わりに図9Aおよび図9Bに開示された他の渦巻きポンプ80を機械室14に据え付けるに際しては、専用の第1のブラケット81を用いている。第1のブラケット81は、他の渦巻きポンプ80の台座48と底板13との間に介在される板状の要素であって、前記Z方向に沿う所定の厚さt1を有している。 Therefore, in this embodiment, when the other centrifugal pump 80 disclosed in FIGS. 9A and 9B is installed in the machine chamber 14 instead of the standard centrifugal pump 45, a dedicated first bracket 81 is used. The first bracket 81 is a plate-like element interposed between the pedestal 48 and the bottom plate 13 of another centrifugal pump 80, and has a predetermined thickness t1 along the Z direction.
 第1のブラケット81は、他の渦巻きポンプ80の台座48と共に複数のボルトで底板13の上に固定されている。この際、台座48および第1のブラケット81を貫通したボルトがねじ込まれる底板13の側のねじ孔を選択することで、渦巻きポンプ80の前記交点P1が前記基準点と合致するように、底板13に対する渦巻きポンプ80の固定位置を筐体2の奥行き方向(X方向)および幅方向(Y方向)にずらすことができる。それとともに、第1のブラケット81の厚さt1の分だけ底板13に対する渦巻きポンプ80の固定位置を筐体2の高さ方向(Z方向)に押し上げることができる。 The first bracket 81 is fixed on the bottom plate 13 with a plurality of bolts together with a pedestal 48 of another spiral pump 80. At this time, by selecting the screw hole on the side of the bottom plate 13 into which the bolt passing through the pedestal 48 and the first bracket 81 is screwed, the bottom plate 13 so that the intersection point P1 of the vortex pump 80 matches the reference point. The swivel pump 80 can be fixed in the depth direction (X direction) and the width direction (Y direction) of the housing 2. At the same time, the fixed position of the centrifugal pump 80 with respect to the bottom plate 13 can be pushed up in the height direction (Z direction) of the housing 2 by the thickness t1 of the first bracket 81.
 よって、第1のブラケット81を用いることで、他の渦巻きポンプ80の交点P1を機械室14内の基準点に合致させることができる。 Therefore, by using the first bracket 81, the intersection point P1 of the other centrifugal pump 80 can be matched with the reference point in the machine room 14.
 一方、標準の渦巻きポンプ45の代わりに図10Aおよび図10Bに開示された他の渦巻きポンプ90を機械室14に据え付けるに際しては、専用の第2のブラケット91が用いられる。第2のブラケット91は、他の渦巻きポンプ90の台座48と底板13との間に介在される板状の要素であって、前記Z方向に沿う所定の厚さt2を有している。第2のブラケット91の厚さt2は、第1のブラケット81の厚さt1よりも大きい。 On the other hand, when the other centrifugal pump 90 disclosed in FIGS. 10A and 10B is installed in the machine room 14 instead of the standard centrifugal pump 45, a dedicated second bracket 91 is used. The second bracket 91 is a plate-like element interposed between the pedestal 48 and the bottom plate 13 of another spiral pump 90, and has a predetermined thickness t2 along the Z direction. The thickness t2 of the second bracket 91 is larger than the thickness t1 of the first bracket 81.
 第2のブラケット91は、他の渦巻きポンプ90の台座48と共に複数のボルトで底板13の上に固定されている。この際、台座48および第2のブラケット91を貫通したボルトがねじ込まれる底板13の側のねじ孔を選択することで、渦巻きポンプ90の前記交点P1が前記基準点と合致するように、底板13に対する渦巻きポンプ90の固定位置を筐体2の奥行き方向(X方向)および幅方向(Y方向)にずらすことができる。それとともに、第2のブラケット91の厚さt2の分だけ底板13に対する渦巻きポンプ90の固定位置を筐体2の高さ方向(Z方向)に押し上げることができる。 The second bracket 91 is fixed on the bottom plate 13 with a plurality of bolts together with the pedestal 48 of the other centrifugal pump 90. At this time, by selecting a screw hole on the side of the bottom plate 13 into which the bolt passing through the pedestal 48 and the second bracket 91 is screwed, the bottom plate 13 so that the intersection point P1 of the spiral pump 90 matches the reference point. The swivel pump 90 can be fixed in the depth direction (X direction) and the width direction (Y direction) of the housing 2. At the same time, the fixed position of the centrifugal pump 90 with respect to the bottom plate 13 can be pushed up in the height direction (Z direction) of the housing 2 by the thickness t2 of the second bracket 91.
 よって、第2のブラケット91を用いることで、他の渦巻きポンプ90の交点P1を機械室14内の基準点に合致させることができる。 Therefore, by using the second bracket 91, the intersection point P1 of the other centrifugal pump 90 can be matched with the reference point in the machine room 14.
 チリングユニット1では、ポンプ容量が変更された場合でも、水熱交換器25の位置および現場配管に連なるストレーナ56の位置は同一であることが一般的である。本実施形態では、三種類の渦巻きポンプ45,80,90の交点P1が機械室14内の基準点に合致するように、機械室14に対する渦巻きポンプ45,80,90の固定位置を変更することができる。 In the chilling unit 1, even when the pump capacity is changed, the position of the water heat exchanger 25 and the position of the strainer 56 connected to the on-site piping are generally the same. In the present embodiment, the fixing position of the spiral pumps 45, 80, 90 relative to the machine chamber 14 is changed so that the intersection P1 of the three types of spiral pumps 45, 80, 90 matches the reference point in the machine chamber 14. Can do.
  このため、例えば標準の渦巻きポンプ45を容量が異なる他の渦巻きポンプ80又は90に交換する場合においても、吸込口51に接続される第1の水配管46aの長さおよび吐出口52に接続される第2の水配管46bの長さのみを調整すればよいことになる。 For this reason, for example, when the standard centrifugal pump 45 is replaced with another centrifugal pump 80 or 90 having a different capacity, the length of the first water pipe 46a connected to the suction port 51 and the discharge port 52 are connected. It is only necessary to adjust the length of the second water pipe 46b.
 特に他の渦巻きポンプ80,90では、夫々交点P1から吸込口51の中心までの距離Y1が等しいので、第1の水配管26aを共通化することができる。この結果、三種類の渦巻きポンプ45,80,90毎に第1の水配管46aおよび第2の水配管46bの形状が大きく変動したり複雑化するのを回避できる。 Particularly, in the other spiral pumps 80 and 90, since the distance Y1 from the intersection P1 to the center of the suction port 51 is equal, the first water pipe 26a can be shared. As a result, the shapes of the first water pipe 46a and the second water pipe 46b for each of the three types of centrifugal pumps 45, 80, 90 can be prevented from greatly changing or becoming complicated.
 したがって、ポンプ容量に合わせて第1の水配管46aおよび第2の水配管46bの引き回し経路を大幅に変更する必要はなく、圧力損失が抑えられるとともに、省スペース化にも貢献するといった利点がある。 Therefore, it is not necessary to significantly change the routing route of the first water pipe 46a and the second water pipe 46b in accordance with the pump capacity, and there is an advantage that the pressure loss can be suppressed and the space can be saved. .
 次に、チリングユニット1の動作について説明する。 Next, the operation of the chilling unit 1 will be described.
 第1の冷凍サイクルユニット3および第2の冷凍サイクルユニット4が冷却モードで運転を開始すると、第1ないし第4の冷媒回路RA,RB,RC,RDの四方弁21は、図5に実線で示すように、第1ポート21aが第2ポート21bに連通し、第3ポート21cが第4ポート21dに連通するように切り換わる。 When the first refrigeration cycle unit 3 and the second refrigeration cycle unit 4 start operation in the cooling mode, the four-way valves 21 of the first to fourth refrigerant circuits RA, RB, RC, RD are shown by solid lines in FIG. As shown, the first port 21a is switched to communicate with the second port 21b, and the third port 21c is switched to communicate with the fourth port 21d.
 さらに、第1ないし第4の冷媒回路RA,RB,RC,RDの密閉型圧縮機20から高温・高圧の気相冷媒が循環回路27に吐出される。密閉型圧縮機20から吐出された高温・高圧の気相冷媒は、四方弁21を経由して空気熱交換器29a,29bに導かれる。 Furthermore, high-temperature and high-pressure gas-phase refrigerant is discharged from the first to fourth refrigerant circuits RA, RB, RC, and RD into the circulation circuit 27. The high-temperature and high-pressure gas-phase refrigerant discharged from the hermetic compressor 20 is guided to the air heat exchangers 29a and 29b via the four-way valve 21.
 空気熱交換器29a,29bに導かれた気相冷媒は、空気熱交換器29a,29bを通過する空気との熱交換により凝縮し、高圧の液相冷媒に変化する。高圧の液相冷媒は、膨張弁23a,23bを通過する過程で減圧されて、中間圧の気液二相冷媒に変化する。気液二相冷媒は、レシーバ24を経由して水熱交換器25に導かれる。 The gas-phase refrigerant guided to the air heat exchangers 29a and 29b is condensed by heat exchange with the air passing through the air heat exchangers 29a and 29b, and is changed into a high-pressure liquid-phase refrigerant. The high-pressure liquid-phase refrigerant is depressurized in the process of passing through the expansion valves 23a and 23b, and changes to an intermediate-pressure gas-liquid two-phase refrigerant. The gas-liquid two-phase refrigerant is guided to the water heat exchanger 25 via the receiver 24.
 本実施形態では、第1の冷媒回路RAおよび第2の冷媒回路RBが一つの水熱交換器25を共有し、第3の冷媒回路RCおよび第4の冷媒回路RDが他の一つの水熱交換器25を共有している。このため、第1の冷媒回路RAおよび第2の冷媒回路RBでは、水熱交換器25の第1の冷媒流路25aおよび第2の冷媒流路25bに夫々中間圧の気液二相冷媒が導かれ、水流路25cを流れる水と熱交換する。 In the present embodiment, the first refrigerant circuit RA and the second refrigerant circuit RB share one water heat exchanger 25, and the third refrigerant circuit RC and the fourth refrigerant circuit RD share one other water heat. The exchanger 25 is shared. For this reason, in the first refrigerant circuit RA and the second refrigerant circuit RB, a gas-liquid two-phase refrigerant having an intermediate pressure is supplied to the first refrigerant channel 25a and the second refrigerant channel 25b of the water heat exchanger 25, respectively. It is guided and exchanges heat with water flowing through the water flow path 25c.
 この結果、第1の冷媒流路25aおよび第2の冷媒流路25bを流れる気液二相冷媒は、蒸発して水流路25c内の水から熱を受け入れ、蒸発潜熱によって低温・低圧の気液二相冷媒に変化する。水流路25c内の水は、潜熱を奪われることで冷水となる。 As a result, the gas-liquid two-phase refrigerant flowing in the first refrigerant flow path 25a and the second refrigerant flow path 25b evaporates and receives heat from the water in the water flow path 25c, and the low-temperature and low-pressure gas-liquid is generated by latent heat of evaporation. Change to two-phase refrigerant. The water in the water flow path 25c becomes cold water by removing latent heat.
 第1の冷媒回路RAおよび第2の冷媒回路RBが共有する水熱交換器25の水流路25cは、第3の水配管46cを介して第3の冷媒回路RCおよび第4の冷媒回路RDが共有する他の水熱交換器25の水流路25cに直列に接続されている。 The water flow path 25c of the water heat exchanger 25 shared by the first refrigerant circuit RA and the second refrigerant circuit RB is connected to the third refrigerant circuit RC and the fourth refrigerant circuit RD via the third water pipe 46c. The other water heat exchanger 25 to be shared is connected in series to the water flow path 25c.
 このため、第1の冷媒回路RAおよび第2の冷媒回路RBが共有する水熱交換器25で冷やされた水は、第3の冷媒回路RCおよび第4の冷媒回路RDが共有する他の水熱交換器25の水流路25cを通過する過程で、当該水熱交換器25の第1の冷媒流路25aおよび第2の冷媒流路25bを流れる気液二相冷媒との熱交換により再度冷やされる。二段階に亘って冷やされた水は、第4の水配管46dから現場配管を介して利用機器側に供給される。 Therefore, the water cooled in the water heat exchanger 25 shared by the first refrigerant circuit RA and the second refrigerant circuit RB is the other water shared by the third refrigerant circuit RC and the fourth refrigerant circuit RD. In the process of passing through the water flow path 25c of the heat exchanger 25, it is cooled again by heat exchange with the gas-liquid two-phase refrigerant flowing through the first refrigerant flow path 25a and the second refrigerant flow path 25b of the water heat exchanger 25. It is. The water cooled in two stages is supplied from the fourth water pipe 46d to the utilization equipment side via the on-site pipe.
 各水熱交換器25を通過した低温・低圧の気液二相冷媒は、四方弁21を経由して気液分離器26に導かれ、ここで液相冷媒と気相冷媒とに分離される。液相冷媒から分離された気相冷媒は、密閉型圧縮機20に吸い込まれるとともに、再び高温・高圧の気相冷媒となって密閉型圧縮機20から循環回路27に吐出される。 The low-temperature and low-pressure gas-liquid two-phase refrigerant that has passed through each water heat exchanger 25 is guided to the gas-liquid separator 26 via the four-way valve 21, where it is separated into a liquid-phase refrigerant and a gas-phase refrigerant. . The gas-phase refrigerant separated from the liquid-phase refrigerant is sucked into the hermetic compressor 20 and is again discharged as a high-temperature / high-pressure gas-phase refrigerant from the hermetic compressor 20 to the circulation circuit 27.
 一方、第1の冷凍サイクルユニット3および第2の冷凍サイクルユニット4が加熱モードで運転を開始すると、第1ないし第4の冷媒回路RA,RB,RC,RDの四方弁21は、図5に破線で示すように、第1ポート21aが第3ポート21cに連通し、第2ポート21bが第4ポート21dに連通するように切り換わる。 On the other hand, when the first refrigeration cycle unit 3 and the second refrigeration cycle unit 4 start operation in the heating mode, the four-way valves 21 of the first to fourth refrigerant circuits RA, RB, RC, RD are shown in FIG. As indicated by a broken line, the first port 21a is switched to communicate with the third port 21c, and the second port 21b is switched to communicate with the fourth port 21d.
 加熱モードでは、密閉型圧縮機20で圧縮された高温・高圧の気相冷媒が四方弁21を経由して水熱交換器25に導かれる。加熱モードにおいても、第1の冷媒回路RAおよび第2の冷媒回路RBが共有する一つの水熱交換器25の水流路25cと、第3の冷媒回路RCおよび第4の冷媒回路RDが共有する他の一つの水熱交換器25の水流路25cとが直列に接続されているので、水流路25cを流れる水は、第1の冷媒流路25aおよび第2の冷媒流路25bを流れる気相冷媒との熱交換により二段階に亘って加熱される。気相冷媒の熱を受けて加熱された水は、第4の水配管46dから現場配管を介して利用機器側に供給される。 In the heating mode, the high-temperature and high-pressure gas-phase refrigerant compressed by the hermetic compressor 20 is guided to the water heat exchanger 25 via the four-way valve 21. Even in the heating mode, the water flow path 25c of one water heat exchanger 25 shared by the first refrigerant circuit RA and the second refrigerant circuit RB, and the third refrigerant circuit RC and the fourth refrigerant circuit RD are shared. Since the water flow path 25c of the other one water heat exchanger 25 is connected in series, the water flowing through the water flow path 25c is the gas phase flowing through the first refrigerant flow path 25a and the second refrigerant flow path 25b. It is heated in two stages by heat exchange with the refrigerant. The water heated by receiving the heat of the gas-phase refrigerant is supplied from the fourth water pipe 46d to the utilization equipment side via the on-site pipe.
 水熱交換器25を通過した高圧の液相冷媒は、レシーバ24および膨張弁23a,23bを通過する過程で中間圧の気液二相冷媒に変化するとともに、空気熱交換器29a,29bに導かれる。空気熱交換器29a,29bに導かれた気液二相冷媒は、空気熱交換器29a,29bを通過する空気との熱交換により蒸発し、低温・低圧の気液二相冷媒に変化する。 The high-pressure liquid-phase refrigerant that has passed through the water heat exchanger 25 is changed to an intermediate-pressure gas-liquid two-phase refrigerant in the process of passing through the receiver 24 and the expansion valves 23a and 23b, and is also introduced into the air heat exchangers 29a and 29b. It is burned. The gas-liquid two-phase refrigerant guided to the air heat exchangers 29a and 29b evaporates by heat exchange with the air passing through the air heat exchangers 29a and 29b, and changes to a low-temperature and low-pressure gas-liquid two-phase refrigerant.
 空気熱交換器29a,29bを通過した低温・低圧の気液二相冷媒は、四方弁21を経由して気液分離器26に導かれ、ここで液相冷媒と気相冷媒とに分離される。液相冷媒から分離された気相冷媒は、密閉型圧縮機20に吸い込まれるとともに、再び高温・高圧の気相冷媒となって密閉型圧縮機20から循環回路27に吐出される。 The low-temperature and low-pressure gas-liquid two-phase refrigerant that has passed through the air heat exchangers 29a and 29b is guided to the gas-liquid separator 26 via the four-way valve 21, where it is separated into a liquid-phase refrigerant and a gas-phase refrigerant. The The gas-phase refrigerant separated from the liquid-phase refrigerant is sucked into the hermetic compressor 20 and is again discharged as a high-temperature / high-pressure gas-phase refrigerant from the hermetic compressor 20 to the circulation circuit 27.
 本実施形態のチリングユニット1によると、第1の冷媒回路RAおよび第2の冷媒回路RBが共有する水熱交換器25に水を供給する渦巻きポンプ45は、回転軸54の中心を通る回転軸線O1を筐体2の幅方向に沿わせた横置きの姿勢で機械室14の底板13の上に固定されている。これにより、インペラ53を収容したケーシング49とモータ50とが筐体2の幅方向に並ぶように底板13の上に横たわっている。 According to the chilling unit 1 of the present embodiment, the spiral pump 45 that supplies water to the water heat exchanger 25 shared by the first refrigerant circuit RA and the second refrigerant circuit RB has a rotation axis that passes through the center of the rotation shaft 54. The O 1 is fixed on the bottom plate 13 of the machine room 14 in a horizontal posture along the width direction of the casing 2. As a result, the casing 49 housing the impeller 53 and the motor 50 lie on the bottom plate 13 so as to be aligned in the width direction of the housing 2.
 したがって、渦巻きポンプ45が底板13の上方に向けて大きく張り出すのを回避でき、機械室14内の限られたスペースを有効に活用できる。それとともに、機械室14の上に配列された空気熱交換部22を含むチリングユニット1の全高を極力低く抑えることができる。 Therefore, it is possible to avoid the swirl pump 45 from projecting greatly above the bottom plate 13 and to effectively utilize the limited space in the machine room 14. At the same time, the overall height of the chilling unit 1 including the air heat exchange units 22 arranged on the machine room 14 can be suppressed as low as possible.
 さらに、渦巻きポンプ45を横置きとしたことで、モータ50とドレン回収盤62との間に十分な配管スペースS2を確保することができ、当該配管スペースS2を利用して第1の水配管46aおよびチェッキバルブ57を配置することができる。 Furthermore, since the spiral pump 45 is placed horizontally, a sufficient piping space S2 can be secured between the motor 50 and the drain collection board 62, and the first water piping 46a is utilized using the piping space S2. And a check valve 57 can be arranged.
 しかも、渦巻きポンプ45の吐出口52は、ケーシング49の上端部で鉛直方向に沿うように上向きに開口されているので、当該吐出口52と水熱交換器25の水入口28aとの間を結ぶ第2の水配管46bを渦巻きポンプ45の上を通して引き回すことができる。 Moreover, since the discharge port 52 of the spiral pump 45 is opened upward at the upper end portion of the casing 49 so as to be along the vertical direction, the discharge port 52 is connected to the water inlet 28a of the water heat exchanger 25. The second water pipe 46 b can be routed over the centrifugal pump 45.
 言い換えると、第2の水配管46bを渦巻きポンプ45の脇を通して立ち上げる必要はなく、吐出口52と水入口28aとの間を最短距離で接続することができる。したがって、第2の水配管46bの引き回し経路を簡素化することができ、配管作業を容易に行えるとともに、圧力損失を低く抑える上でも好都合となるといった利点がある。 In other words, it is not necessary to raise the second water pipe 46b through the side of the centrifugal pump 45, and the discharge port 52 and the water inlet 28a can be connected at the shortest distance. Therefore, there is an advantage that the routing route of the second water pipe 46b can be simplified, the piping work can be easily performed, and the pressure loss can be reduced.
 上記のような構成は、特にチリングユニットのような大容量の熱輸送を行うヒートポンプ機器において有益である。すなわち、利用機器側で要求される熱量が大きくなればなるほど、渦巻きポンプ、水熱交換器、空気熱交換器の容積も大きくなるが、設置スペース等の兼ね合いからチリングユニットそのものは、小型でありながら熱輸送量を大きくすることが望まれる。 The configuration as described above is particularly useful in a heat pump device that performs large-capacity heat transport such as a chilling unit. In other words, the larger the amount of heat required on the user equipment side, the larger the volume of the centrifugal pump, the water heat exchanger, and the air heat exchanger. It is desirable to increase the amount of heat transport.
 本実施形態のチリングユニット1のように、渦巻きポンプ45および水熱交換器25が収容された筐体2の上に空気熱交換器29a,29bを配置することで、渦巻きポンプ45および水熱交換器25の容積、ならびに空気熱交換器29a,29bの熱交換面積をより大きくしつつ、機械室14内のスペース効率を向上させることができる。したがって、ヒートポンプ機器の小型化を図りながら大容量の熱輸送が可能となる。 As in the chilling unit 1 of the present embodiment, the air heat exchangers 29a and 29b are arranged on the housing 2 in which the spiral pump 45 and the water heat exchanger 25 are accommodated, so that the spiral pump 45 and the water heat exchange are arranged. The space efficiency in the machine chamber 14 can be improved while increasing the volume of the vessel 25 and the heat exchange area of the air heat exchangers 29a and 29b. Therefore, it is possible to transport a large volume of heat while reducing the size of the heat pump device.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
 例えば、渦巻きポンプのモータの回転軸線は、筐体の幅方向に沿うように横置きに配置することに限らず、筐体の奥行き方向に沿うように横置きに配置してもよい。すなわち、ケーシングがモータの背後に位置するようにケーシングおよびモータを筐体の奥行き方向に並べて配置し、ケーシングの吸込口を機械室の後方に向けて開口させるようにしてもよい。 For example, the rotation axis of the motor of the spiral pump is not limited to be placed horizontally so as to be along the width direction of the housing, but may be placed horizontally so as to be along the depth direction of the housing. That is, the casing and the motor may be arranged side by side in the depth direction of the housing so that the casing is located behind the motor, and the suction port of the casing may be opened toward the rear of the machine room.
 この構成によれば、吸込口に接続される第1の水配管を機械室の後方に向けて真っ直ぐに引き出すことができる。そのため、第1の水配管の形状を簡素化することができ、圧力損失を低く抑えることができる。 According to this configuration, the first water pipe connected to the suction port can be drawn straight out toward the rear of the machine room. Therefore, the shape of the first water pipe can be simplified and the pressure loss can be kept low.
 さらに、前記実施形態では、ケーシングの吐出口を鉛直方向に沿うように上向きに開口させたが、吐出口の開口方向は、鉛直線に対し少々傾斜してもよい。 Furthermore, in the said embodiment, although the discharge port of the casing was opened upward so that the vertical direction might be followed, the opening direction of a discharge port may incline a little with respect to a perpendicular line.
 2…筐体、14…機械室、25…水熱交換器、25a,25b…冷媒流路(第1の冷媒流路、第2の冷媒流路)、25c…水流路、28a…水入口、45,80,90…渦巻きポンプ、46b…水配管(第2の水配管)、49…ケーシング、50…動力部(モータ)、51…吸込口、52…吐出口、53…インペラ、O1…回転軸線。 DESCRIPTION OF SYMBOLS 2 ... Housing | casing, 14 ... Machine room, 25 ... Water heat exchanger, 25a, 25b ... Refrigerant flow path (1st refrigerant flow path, 2nd refrigerant flow path), 25c ... Water flow path, 28a ... Water inlet, 45, 80, 90 ... spiral pump, 46b ... water piping (second water piping), 49 ... casing, 50 ... power section (motor), 51 ... suction port, 52 ... discharge port, 53 ... impeller, O1 ... rotation Axis.

Claims (9)

  1.  機械室を有する筐体と、
     前記機械室に収容され、水流路および冷媒流路を有するとともに、前記水流路を流れる水と前記冷媒流路を流れる冷媒との間で熱交換を行なう水熱交換器と、
     前記機械室に収容され、前記水熱交換器の前記水流路に水を供給する渦巻きポンプと、を具備し、
     前記渦巻きポンプは、互いに直交する方向に開口された吸込口および吐出口を有するケーシングと、前記ケーシング内のインペラを回転させる動力部と、を含むとともに、前記吐出口が前記機械室内で上向きに開口するように前記動力部の回転軸線を横置きにした姿勢で前記機械室の底に据え付けられ、
     前記水熱交換器は、前記渦巻きポンプの前記吐出口よりも高い位置に前記水流路の上流端に連なる水入口を有し、
     前記渦巻きポンプの前記吐出口と前記水熱交換器の前記水入口との間が水配管により接続された冷凍サイクル装置。
    A housing having a machine room;
    A water heat exchanger housed in the machine room, having a water channel and a refrigerant channel, and performing heat exchange between water flowing through the water channel and a refrigerant flowing through the refrigerant channel;
    A swirl pump housed in the machine room for supplying water to the water flow path of the water heat exchanger,
    The centrifugal pump includes a casing having a suction port and a discharge port opened in directions orthogonal to each other, and a power unit that rotates an impeller in the casing, and the discharge port opens upward in the machine room Installed on the bottom of the machine room in a posture in which the rotational axis of the power unit is placed horizontally,
    The water heat exchanger has a water inlet connected to an upstream end of the water flow path at a position higher than the discharge port of the spiral pump,
    A refrigeration cycle apparatus in which the discharge port of the spiral pump and the water inlet of the water heat exchanger are connected by a water pipe.
  2.  前記筐体は、奥行き寸法が幅寸法よりも大きな細長い形状を有し、前記渦巻きポンプは、前記動力部の前記回転軸線を前記筐体の幅方向に沿わせた横置きの姿勢で前記機械室の底に据え付けられた請求項1に記載の冷凍サイクル装置。 The casing has an elongated shape whose depth dimension is larger than the width dimension, and the spiral pump is installed in the machine room in a horizontal posture in which the rotation axis of the power unit is along the width direction of the casing. The refrigeration cycle apparatus according to claim 1 installed at the bottom of the refrigeration.
  3.  前記水熱交換器で熱交換された水が流れる吐出配管をさらに備え、前記吐出配管は、前記動力部の上を通して前記機械室の端部から前記筐体の外に突出された請求項2に記載の冷凍サイクル装置。 A discharge pipe through which water heat-exchanged by the water heat exchanger flows is further provided, and the discharge pipe protrudes out of the casing from the end of the machine room through the power unit. The refrigeration cycle apparatus described.
  4.  前記筐体の上に少なくとも一列に並べて配置された複数の空気熱交換部をさらに備え、一列に並んだ前記空気熱交換部のうち最も端に位置する一つの空気熱交換部の下方に前記渦巻きポンプが位置された請求項2又は請求項3に記載の冷凍サイクル装置。 And a plurality of air heat exchange units arranged in at least one row on the housing, and the swirl below one air heat exchange unit located at the end of the air heat exchange units arranged in a row. The refrigeration cycle apparatus according to claim 2 or 3, wherein the pump is located.
  5.  一列に並んだ前記空気熱交換部のうち最も端に位置された前記空気熱交換部の少なくとも一部が、前記機械室の前記端部から前記筐体の奥行き方向に突出された請求項4に記載の冷凍サイクル装置。 5. At least a part of the air heat exchanging portion located at the end of the air heat exchanging portions arranged in a row protrudes from the end portion of the machine room in the depth direction of the housing. The refrigeration cycle apparatus described.
  6.  一列に並んだ前記空気熱交換部のうち最も端に位置する前記空気熱交換部と前記渦巻きポンプとの間に、前記空気熱交換部から滴下する結露水を受け止めるドレン回収盤が配置された請求項4に記載の冷凍サイクル装置。 A drain collection board for receiving dew condensation water dripping from the air heat exchange unit is arranged between the air heat exchange unit located at the end of the air heat exchange units arranged in a row and the spiral pump. Item 5. The refrigeration cycle apparatus according to Item 4.
  7.  前記ドレン回収盤と前記渦巻きポンプの前記動力部との間に配管スペースが形成され、当該配管スペースに前記吐出配管が配置された請求項6に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 6, wherein a piping space is formed between the drain recovery board and the power unit of the centrifugal pump, and the discharge piping is arranged in the piping space.
  8.  前記渦巻きポンプは、前記吸込口の中心を通って横方向に延びる第1の中心軸線と、前記吐出口の中心を通って縦方向に延びる第2の中心軸線と、前記第1の中心軸線と前記第2の中心軸線とが交差する交点と、を有し、前記交点が前記機械室の中に予め規定された基準点と合致するように、前記渦巻きポンプが前記筐体の奥行き方向および幅方向に位置調整可能に前記機械室の底に据え付けられた請求項2に記載の冷凍サイクル装置。 The spiral pump includes a first central axis extending in the lateral direction through the center of the suction port, a second central axis extending in the vertical direction through the center of the discharge port, and the first central axis. An intersecting point intersecting the second central axis, and the spiral pump is arranged in the depth direction and width of the casing so that the intersecting point matches a reference point defined in the machine room in advance. The refrigeration cycle apparatus according to claim 2, wherein the refrigeration cycle apparatus is installed at the bottom of the machine room so as to be positionally adjustable in a direction.
  9.  前記渦巻きポンプとは大きさが異なるとともに、当該渦巻きポンプの代わりに前記機械室の底に選択的に据え付けられる少なくとも一つの他の渦巻きポンプをさらに備え、当該他の渦巻きポンプは、前記吸込口の中心を通って横方向に延びる第1の中心軸線と、前記吐出口の中心を通って縦方向に延びる第2の中心軸線と、前記第1の中心軸線と前記第2の中心軸線とが交差する交点と、を有し、前記交点が前記基準点と合致するように、前記他の渦巻きポンプが専用のブラケットを介して前記筐体の奥行き方向、幅方向および高さ方向に位置調整可能に前記機械室の底に据え付けられた請求項8に記載の冷凍サイクル装置。 The centrifugal pump has a size different from that of the centrifugal pump, and further includes at least one other centrifugal pump that is selectively installed on the bottom of the machine chamber instead of the centrifugal pump. A first central axis that extends laterally through the center, a second central axis that extends longitudinally through the center of the discharge port, and the first central axis and the second central axis intersect. And the position of the other spiral pump can be adjusted in the depth direction, width direction and height direction of the housing via a dedicated bracket so that the intersection point matches the reference point. The refrigeration cycle apparatus according to claim 8, installed at the bottom of the machine room.
PCT/JP2017/034381 2016-09-27 2017-09-22 Refrigeration cycle device WO2018062054A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018542526A JPWO2018062054A1 (en) 2016-09-27 2017-09-22 Refrigeration cycle device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016188248 2016-09-27
JP2016-188248 2016-09-27

Publications (1)

Publication Number Publication Date
WO2018062054A1 true WO2018062054A1 (en) 2018-04-05

Family

ID=61760427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034381 WO2018062054A1 (en) 2016-09-27 2017-09-22 Refrigeration cycle device

Country Status (2)

Country Link
JP (1) JPWO2018062054A1 (en)
WO (1) WO2018062054A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020035943A1 (en) * 2018-08-17 2021-04-30 三菱電機株式会社 Free cooling unit
EP4012292A4 (en) * 2019-08-07 2022-08-10 Mitsubishi Electric Corporation Chilling unit and air conditioner
EP4012277A4 (en) * 2019-08-07 2022-08-17 Mitsubishi Electric Corporation Chilling unit and air conditioning device
WO2022255316A1 (en) * 2021-06-01 2022-12-08 パナソニックIpマネジメント株式会社 Air-conditioning and heat-source machine
WO2023112436A1 (en) * 2021-12-13 2023-06-22 東芝キヤリア株式会社 Refrigeration cycle device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63136300U (en) * 1987-02-26 1988-09-07
JPH0463972A (en) * 1990-07-02 1992-02-28 Kawamoto Seisakusho:Kk Pump device
JP2004116930A (en) * 2002-09-27 2004-04-15 Tokyo Gas Co Ltd Gas heat pump type air conditioner
WO2011099629A1 (en) * 2010-02-15 2011-08-18 東芝キヤリア株式会社 Chilling unit
JP2014219186A (en) * 2013-04-12 2014-11-20 ダイキン工業株式会社 Chiller device
JP2016090083A (en) * 2014-10-30 2016-05-23 日立アプライアンス株式会社 Air conditioner
JP5950010B1 (en) * 2015-08-25 2016-07-13 富士電機株式会社 Heat pump steam generator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014178113A (en) * 2014-06-06 2014-09-25 Toshiba Carrier Corp Heat source apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63136300U (en) * 1987-02-26 1988-09-07
JPH0463972A (en) * 1990-07-02 1992-02-28 Kawamoto Seisakusho:Kk Pump device
JP2004116930A (en) * 2002-09-27 2004-04-15 Tokyo Gas Co Ltd Gas heat pump type air conditioner
WO2011099629A1 (en) * 2010-02-15 2011-08-18 東芝キヤリア株式会社 Chilling unit
JP2014219186A (en) * 2013-04-12 2014-11-20 ダイキン工業株式会社 Chiller device
JP2016090083A (en) * 2014-10-30 2016-05-23 日立アプライアンス株式会社 Air conditioner
JP5950010B1 (en) * 2015-08-25 2016-07-13 富士電機株式会社 Heat pump steam generator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020035943A1 (en) * 2018-08-17 2021-04-30 三菱電機株式会社 Free cooling unit
JP6991343B2 (en) 2018-08-17 2022-01-12 三菱電機株式会社 Free cooling unit
EP4012292A4 (en) * 2019-08-07 2022-08-10 Mitsubishi Electric Corporation Chilling unit and air conditioner
EP4012277A4 (en) * 2019-08-07 2022-08-17 Mitsubishi Electric Corporation Chilling unit and air conditioning device
WO2022255316A1 (en) * 2021-06-01 2022-12-08 パナソニックIpマネジメント株式会社 Air-conditioning and heat-source machine
WO2023112436A1 (en) * 2021-12-13 2023-06-22 東芝キヤリア株式会社 Refrigeration cycle device

Also Published As

Publication number Publication date
JPWO2018062054A1 (en) 2019-07-04

Similar Documents

Publication Publication Date Title
WO2018062054A1 (en) Refrigeration cycle device
US8413461B2 (en) Auxiliary cooling system
JP6873988B2 (en) Refrigeration cycle equipment
TWI826384B (en) Electronics cooling system and heating, ventilation, air conditioning and refrigeration system
JP5884784B2 (en) Chiller device
JP4325714B2 (en) Refrigeration equipment
KR20120135771A (en) Outdoor unit for an air conditioner and a control method the same
JP2011112303A (en) Outdoor unit of air conditioner
JP2012013302A (en) Heat pump type heat source machine
EP3113593A1 (en) Cooling system and method having micro-channel coil with countercurrent circuit
JP6852090B2 (en) Refrigeration cycle equipment
JP6535499B2 (en) Refrigeration cycle device
JP2008075988A (en) Composite heat radiating member, cooling unit, cooling system and cooling system assembly
EP4070631B1 (en) Cooling system of electronic systems, in particular for data centre
KR101694614B1 (en) An air conditioner
JP6935529B2 (en) Refrigeration cycle equipment
JP6767095B2 (en) Refrigeration cycle equipment
KR100544716B1 (en) Water cooling type air conditioner
KR20200067407A (en) Air conditioning system
JP7344130B2 (en) Heat pump hot water heating system
JP2013050234A (en) Outdoor unit for heat pump apparatus
KR20080058782A (en) Multi-airconditioner
JP2012093067A (en) Hybrid chiller
KR20040104771A (en) Water Cooling Type Air Conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856007

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018542526

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17856007

Country of ref document: EP

Kind code of ref document: A1