WO2011099629A1 - Chilling unit - Google Patents

Chilling unit Download PDF

Info

Publication number
WO2011099629A1
WO2011099629A1 PCT/JP2011/053166 JP2011053166W WO2011099629A1 WO 2011099629 A1 WO2011099629 A1 WO 2011099629A1 JP 2011053166 W JP2011053166 W JP 2011053166W WO 2011099629 A1 WO2011099629 A1 WO 2011099629A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
water
refrigeration cycle
unit
air
Prior art date
Application number
PCT/JP2011/053166
Other languages
French (fr)
Japanese (ja)
Inventor
邦雄 室井
英樹 丹野
成浩 岡田
光輔 小澤
裕昭 渡邉
憲二郎 松本
孝光 石黒
Original Assignee
東芝キヤリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝キヤリア株式会社 filed Critical 東芝キヤリア株式会社
Priority to CN201180009461.XA priority Critical patent/CN102753895B/en
Priority to JP2011553918A priority patent/JP5401563B2/en
Priority to KR1020127021053A priority patent/KR101388844B1/en
Publication of WO2011099629A1 publication Critical patent/WO2011099629A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/18Heat exchangers specially adapted for separate outdoor units characterised by their shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/16Arrangement or mounting thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/36Drip trays for outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/46Component arrangements in separate outdoor units
    • F24F1/48Component arrangements in separate outdoor units characterised by air airflow, e.g. inlet or outlet airflow
    • F24F1/50Component arrangements in separate outdoor units characterised by air airflow, e.g. inlet or outlet airflow with outlet air in upward direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/60Arrangement or mounting of the outdoor unit
    • F24F1/68Arrangement of multiple separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/20Casings or covers
    • F24F2013/207Casings or covers with control knobs; Mounting controlling members or control units therein
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/02Compression machines, plants or systems, with several condenser circuits arranged in parallel

Definitions

  • the present invention relates to a chilling unit that constitutes, for example, an air conditioner, a heat pump water heater, or the like applied to a large-scale building or the like.
  • a so-called chilling unit which is a heat exchange unit, is disclosed.
  • the chilling unit (heat exchange unit) is housed in a heat exchange chamber, a machine room, an air heat exchanger disposed in the heat exchange room, a blower for blowing air to the air heat exchanger, and the machine room.
  • Refrigeration cycle components that are used (for example, Japanese Patent Application Laid-Open No. 2007-163017).
  • the air heat exchangers are arranged to face each other in a substantially V shape when viewed from the front.
  • the machine room is formed in a substantially inverted V shape when viewed from the front, and houses a compressor, a four-way valve, an expansion valve that expands the refrigerant, a water heat exchanger that exchanges heat between water and the refrigerant, and the like.
  • the air heat exchanger communicates with the air heat exchanger via the refrigerant pipe.
  • the chilling unit requires a water circulation pump and water piping for guiding water to the water heat exchanger, and receives the control signals from the remote control (remote control panel) and the detection signals from various sensors to A control box that houses electronic components that send control signals to the components is also necessary, but there is no description about them.
  • this type of chilling unit is installed on a large-scale building, for example, on the rooftop or on a dedicated site separately provided.
  • a water supply / drainage facility, a power supply facility, and the like are also installed, and in the case of a rooftop, an elevator driving device and the like are also installed.
  • an elevator driving device and the like are also installed.
  • each side of a plurality of chilling units is provided side by side and arranged in a plurality of rows.
  • this configuration even if there is a space along the outer surface side of the chilling units on both sides, there is no passage on both sides of the chilling unit in the middle row, and maintenance work for the control box becomes extremely inconvenient. End up.
  • the present invention has been made on the basis of the above circumstances, and the object of the present invention is to set a control box that accommodates electronic components for receiving various signals and controlling electric components at an optimal position, An object of the present invention is to provide a chilling unit capable of facilitating maintenance work for a control box and improving workability.
  • the chilling unit of the present invention is housed in a housing in which a heat exchange section having an air heat exchanger is mounted on the upper portion and a machine room is formed therein, and in a machine room in the housing.
  • a plurality of independent refrigeration cycle units composed of refrigeration cycle equipment excluding air heat exchangers, and a control box equipped with one water circulation pump and control electronic components, from the back side of the housing to the front side
  • the water circulation pump, the first refrigeration cycle unit, the second refrigeration cycle unit, and the control box were arranged.
  • FIG. 1 is a perspective view of a chilling unit according to an embodiment of the present invention.
  • FIG. 2 is a side view of the chilling unit in a state where a side panel covering the machine room according to the embodiment is removed.
  • FIG. 3 is a perspective view of the inside of the machine room according to the embodiment, and is a view for explaining a mounting structure from the first drain pan to the fourth drain pan.
  • FIG. 4 is a perspective view of a single heat exchanger module according to the embodiment.
  • FIG. 5 is an exploded perspective view of the heat exchanger module according to the embodiment.
  • FIG. 6 is a perspective view of a first drain pan according to the embodiment.
  • FIG. 7 is a perspective view around the water circulation pump and the water pipe according to the embodiment.
  • FIG. 8 is a configuration diagram of the refrigeration cycle of the chilling unit according to the embodiment.
  • FIG. 9 is a perspective view illustrating an air suction port provided in the lower frame of the housing according to the same embodiment.
  • FIG. 10 is a diagram for explaining the state of the airflow relating to the air suction port according to the embodiment.
  • FIG. 1 is a perspective view of the assembled chilling unit Y
  • FIG. 2 is a side view of the chilling unit Y in a state in which a side panel 2a of a machine room 2 described later is removed.
  • This chilling unit Y generates cold water or hot water, for example, cools the air with the obtained cold water to cool the room (indoor), or warms the air with the obtained hot water to heat the room (indoor). Eggplant.
  • the air conditioner it can be used as a heat pump hot water supply device.
  • the chilling unit Y is formed in a rectangular shape from a longitudinal direction and a short direction parallel to each other in a plan view. And it is inconvenient for the operator to pass along the other direction by forming a passage T through which the worker can pass along one short direction.
  • a passage T through which the worker can pass along one short direction.
  • a space space may be used instead of the passage T.
  • the short side end surface (right side surface in FIG. 2) is “front N”, the back side end surface (left side surface) is “back H”, and the end surface parallel to the longitudinal direction (front side front) is along the passage T in FIG. Determined as “Side E”.
  • the substantially lower half of the chilling unit Y in the vertical direction includes a housing F.
  • the heat exchange unit 1 is placed on the housing F, and the machine room 2 is formed inside the housing F.
  • the heat exchanging section 1 is composed of a plurality (here, four sets) of heat exchanger modules M and the same number of blowers S.
  • a pair (two) of air heat exchangers 3 and 3 are arranged to face each other, and a blower S is arranged between the upper ends of these air heat exchangers 3 and 3. It becomes.
  • a top plate 4 is provided at the upper end of each heat exchanger module M, and the blower S is attached to a position of the top plate 4 facing the heat exchanger module M. If it demonstrates, the cylindrical blowing outlet 5 will protrude upwards from the top plate 4, and the fan guard 6 has covered the protrusion end surface of this blowing outlet 5.
  • the air heat exchangers 3 and 3 constituting the heat exchanger module M face each other so that the top plate 4 side as the upper end portion is wide and the machine room 2 side as the lower end portion is close and close to each other. They are inclined to form a V shape.
  • the housing F on which the heat exchange unit 1 is mounted includes an upper frame Fa, a lower frame Fb, and a vertical frame Fc that connects the upper frame Fa and the lower frame Fb.
  • the upper frame Fa is provided with a crosspiece Fd (see FIG. 3).
  • three side plates 2a are attached to the side surface E along the longitudinal direction of the casing F, and end plates 2b are attached to the front surface N and the rear surface H along the short side direction. Is referred to as the machine room 2.
  • the upper frame Fa and the lower frame Fb are each assembled so as to form a horizontally long rectangular shape in plan view.
  • the short dimension is such that the front frame N and the rear surface H are both shorter in the upper frame Fa and longer in the lower frame Fb. That is, the short direction dimension of the upper frame Fa is short according to the short direction dimension of the heat exchanger module M constituting the heat exchange unit 1. Therefore, the vertical frame Fc connecting the upper frame Fa and the lower frame Fb is provided so as to be inclined so that the dimension in the depth direction sequentially increases from the upper part to the lower part. ) It is formed in a substantially inverted V shape when viewed.
  • the heat exchanging part 1 mounted on the housing F is inclined so that the front view gradually decreases from the upper end to the lower side and is substantially V-shaped, and the housing F is directed from the upper end to the lower side. Therefore, the front view as the chilling unit Y is formed in a substantially drum shape with the central portion constricted.
  • the machine room 2 formed in the housing F includes, in order from the rear surface H to the front surface N, a variable capacity water circulation pump 13, a first refrigeration cycle unit 1 RA, Second refrigeration cycle unit 2RB and control box 8 are arranged.
  • control box 8 is disposed at the position closest to the front face N
  • water circulation pump 13 is disposed at the position closest to the rear face H
  • second refrigeration is provided between the control box 8 and the water circulation pump 13.
  • the cycle unit 2RB and the first refrigeration cycle unit 1RA are arranged.
  • control box 8 the first and second refrigeration cycle units 1RA and 2RB, the water circulation pump 13, the refrigerant pipe and the water pipe are housed in the machine room 2, but all of these are accommodated.
  • the components are housed inside the side plate 2a and the end plate 2b constituting the housing F. That is, there is no member exposed from the housing F in the completed chilling unit Y shown in FIG.
  • FIG. 3 is a perspective view of the inside of the machine room 2 and is a view for explaining an attachment structure from the first drain pan 7a to the third drain pan 7c.
  • first drain pans 7a are placed on the upper frame Fa constituting the housing F. Although not particularly shown, a drain hose is connected to each first drain pan 7a to guide drain water to the second drain pan 7b.
  • the two second drain pans 7b are provided.
  • the first refrigeration cycle unit 1RA is placed on one drain pan 7b
  • the second refrigeration cycle unit 2RB is placed on the other drain pan 7b. Accordingly, the second drain pans 7b are arranged in series between the back H side end of the control box 8 and the back H side end of the lower frame Fb.
  • Second drain pan 7b is supported on the support member has a shown.
  • the support member of the drain pan 7b is provided across the short direction of the lower frame Fb, and is provided at a predetermined interval in the longitudinal direction.
  • the third drain pan 7c is supported on the lower frame Fb with a predetermined interval on the lower side of the second drain pan 7b.
  • the short side dimension of the third drain pan 7c is the same as the same direction dimension of the second drain pan 7b, and the long side dimension is the same as the full length dimension of the two second drain pans 7b arranged in series. .
  • the air heat exchanger 3 exchanges heat with air, and condenses moisture contained in the air to form drain water.
  • the drain water is in the form of water droplets and adheres to the surface, but gradually becomes enlarged and flows down to the respective first drain pans 7a.
  • the drain water is collected in the second drain pan 7b on the lower side through the drain hose.
  • the drain water is also generated in the component parts of the first and second refrigeration cycle units 1RA and 2RB, and is received by the second drain pan 7b, and then collected in the third drain pan 7c and drained to the outside. It has become.
  • the water circulation pump 13 is disposed at the rear H side end of the machine room 2, and the first water heat exchanger 11 is disposed in the vicinity of the water circulation pump 13. And the 1st receiver 10a and the 2nd receiver 10b which are mentioned later along the near side longitudinal direction of the housing
  • the third receiver 10c and the fourth receiver 10d are juxtaposed from the second water heat exchanger 12 along the longitudinal direction of the front side of the housing F, and in particular, the fourth receiver 10d is disposed close to the control box 8. Is done.
  • a first water pipe P1 (shown in FIGS. 2 and 7) is connected to the water circulation pump 13, and this is used as a return pipe from a place to be air-conditioned as an introduction pipe.
  • a second water pipe P ⁇ b> 2 is connected across the water circulation pump 13 and the upper part of the first water heat exchanger 11.
  • a third water pipe P3 is connected across the lower portion of the first water heat exchanger 11 and the upper portion of the second water heat exchanger 12.
  • a lower part of the second water heat exchanger 12 is connected to a fourth water pipe P4 extending in the direction of the water circulation pump 13 and having an end arranged in parallel with the first water pipe P1.
  • the fourth water pipe P4 is extended as a lead-out pipe to a place to be air-conditioned.
  • a refrigeration cycle apparatus 1K consisting of: These are communicated via a refrigerant pipe, and two sets of air heat exchangers 3 each constituting a heat exchanger module M on the rearmost H side and a heat exchanger module M located on the front side. , 3 and two independent refrigeration cycles are connected via a refrigerant pipe to constitute the first refrigeration cycle unit 1RA.
  • a refrigeration cycle device 2K comprising: These are communicated via a refrigerant pipe, and two sets of air heat exchangers 3 respectively constituting a heat exchanger module M on the most front N side and a heat exchanger module M located on the far side. , 3 and 2 are connected via a refrigerant pipe so as to form two independent refrigeration cycles, and the second refrigeration cycle unit 2RB is configured.
  • the machine room 2 in the housing F includes the first refrigeration cycle unit 1RA and the second refrigeration unit which are independent from each other except for the air heat exchangers 3 constituting the four heat exchanger modules M.
  • the cycle unit 2RB is accommodated, and the respective refrigeration cycle units 1RA and 2RB are placed on the second drain pan 7b.
  • the first water heat exchanger 11 and the second water heat exchanger 12 communicate with each other in series via the first water pipe to the fourth water pipes P1 to P4, and the refrigeration cycle units 1RA and 2RB are connected to each other.
  • the two refrigeration cycle devices 1K and 2K are connected in parallel to one water heat exchanger 11 and 12, respectively.
  • FIG. 4 is a perspective view of a single heat exchanger module M
  • FIG. 5 is an exploded perspective view of the heat exchanger module M.
  • the heat exchanging unit 1 shown in FIGS. Is configured.
  • the air heat exchangers 3 constituting the adjacent heat exchanger module M are juxtaposed with each other with a slight gap therebetween.
  • the single heat exchanger module M is composed of a pair of air heat exchangers 3 and 3 as described above.
  • the single air heat exchanger 3 includes a flat plate portion 3a having a substantially rectangular shape when viewed from the side, and a bent piece portion 3b that is bent along the left and right side portions of the flat plate portion 3a.
  • a pair of the air heat exchangers 3 is prepared, the bent pieces 3b are opposed to each other, and are inclined so as to be substantially V-shaped when viewed from the front. Therefore, a substantially V-shaped space portion is formed between the opposed bent piece portions 3b and 3b of the opposed air heat exchangers 3 and 3, and this space portion is cut into a substantially V-shape. It is closed by a shielding plate 15 which is a plate.
  • the shielding plate 15 is provided on both right and left sides of the heat exchanger module M. Therefore, as shown in FIGS. 1 and 2, when the four heat exchanger modules M are arranged in parallel, the shielding plates 15 are provided close to each other in the adjacent heat exchanger modules M.
  • the air heat exchanger 3 is arranged in a state in which substantially strip-shaped fins that are short in the horizontal direction and extremely long in the vertical direction are erected, are arranged with a narrow gap between them, and a heat exchange pipe is passed therethrough. Become.
  • the heat exchange pipes are arranged in a plurality of rows with gaps in the lateral direction of the fins and meandering in the longitudinal direction of the fins.
  • Both sides of the flat plate air heat exchanger 3 are bent in the same direction to form bent pieces 3b along both sides, and the space between the bent pieces 3b remains as a flat plate 3a.
  • the longitudinal dimension of the chilling unit Y can be shortened, the installation space can be reduced, and the heat exchange efficiency can be improved.
  • the fixed frame 16 is stretched over the upper and lower ends of the flat plate portion 3 a of the air heat exchanger 3.
  • the upper end of the fixed frame 16 is bent in a bowl shape (substantially U-shaped) and is hooked over the inner surface upper portion, the upper end surface, and the outer surface upper portion of the flat plate portion 3a.
  • the fixed frame 16 is formed in a ladder shape, and can be used as a scaffold for an operator during maintenance work.
  • a fan base 50 as a connecting member is installed between the upper ends of the fixed frame 16. The inclination angle of the air heat exchanger 3 is maintained.
  • a fan motor 51 constituting the blower S is attached to the fan base 50, and a fan 52 is fitted on the rotating shaft of the fan motor 51. As described above, the fan 52 is disposed so as to face the cylindrical outlet 5 provided in the top plate 4, and the fan guard 6 is provided in the outlet 5.
  • the lower end portion of the fixed frame 16 is attached and fixed to the first drain pan 7a in a state where the air heat exchanger 3 is tilted obliquely. However, since the air heat exchanger 3 is tilted, the air heat exchanger 3 is tilted. 3 and a gap between the lower end surface of the first drain pan 7a. Therefore, the first drain pan 7a is configured as described below.
  • FIG. 6 is a perspective view of the first drain pan 7a.
  • the first drain pan 7a has a rectangular dish shape, and is gradually inclined downward from both side end portions in the lateral direction toward the central portion. Accordingly, a linear deepest portion e is formed in the central portion of the first drain pan 7a along the longitudinal direction, and a drain port 55 to which the drain hose is connected is provided at a part of the deepest portion e.
  • a pair of heat exchanger pedestals 57 are provided opposite to each other on both ends of the first drain pan 7a. Contrary to the inclination direction of the first drain pan 7a, each heat exchanger base 57 is gradually inclined upward from both side end portions in the short direction toward the central portion, and the central portion is the highest. The side edges in the short direction are the lowest.
  • the bent piece portion 3 b constituting the heat exchanger 3 is placed on the heat exchanger base 57. Accordingly, the heat exchanger pedestal 57 fills the gap between the lower end surface of the air heat exchanger 3 and the first drain pan 7a, and the heat exchange efficiency of the air heat exchanger 3 is not affected.
  • the first drain pan 7a is provided with a pair of flat piece portions 58 opposed to each other between the heat exchanger bases 57 provided on the left and right.
  • Each flat piece portion 58 is formed long in a direction orthogonal to the heat exchanger base 57, and the lower end portion of the fixed frame 16 is placed on each flat piece portion 58.
  • the lower end portion of the fixed frame 16 is fixed to the flat piece portion 58 with a screw or the like.
  • Two cylindrical bodies 59 are provided side by side between one end portions of each flat piece portion 58, and a refrigerant pipe connected to the air heat exchanger 3 is inserted into each cylindrical body 59.
  • Small-diameter cylindrical bodies 60 are provided at opposite ends of the flat piece portions 58, and a power cord connected to the fan motor 51 is inserted into the cylindrical bodies 60.
  • FIG. 7 is a perspective view of only the water circuit Z.
  • the water circulation pump 13 is connected to the first water pipe P1 as an introduction pipe, and the water circulation pump 13 and the first water heat exchanger 11 are communicated with each other through the second water pipe P2.
  • a third water pipe P3 communicates with the first water heat exchanger 11 and the second water heat exchanger 12, and a fourth water pipe P4 is provided as a lead-out pipe below the second water heat exchanger 12. Is connected.
  • the water circulation pump 13 is disposed at a substantially intermediate portion between the lowermost portion and the uppermost portion of the water circuit Z. As a result, even if air is mixed into the water circuit Z, the air does not accumulate in the water circulation pump 13. There is always priming water inside the water circulation pump 13, and it is possible to prevent the water circulation pump 13 from being poorly activated due to air contamination.
  • the first water pipe P1 and a part of the second water pipe P2 are present at the highest portion of the water circuit Z in the height from the arrangement surface of the chilling unit Y.
  • the automatic air venting device 61 is provided in a part of the first water pipe P1 and the second water pipe P2 which are the highest parts of the water circuit Z.
  • the automatic air vent device 61 has a float in the valve body, and when air accumulates around the float, the float loses buoyancy and sinks, and the valve opens. That is, the air in the water pipe is automatically removed from the valve body by opening the valve.
  • the automatic air venting device 61 since the automatic air venting device 61 is provided, air is automatically discharged to the outside, and air does not accumulate inside the water circulation pump 13.
  • the water circulation pump 13 always has priming water, which prevents starting failure due to air contamination.
  • the automatic air vent device 61 is provided with a check valve. Since there are many cases where the water pipe Z has a negative pressure, this is provided in order to prevent air mixture (backflow) when a reverse pressure is applied.
  • FIG. 8 is a configuration diagram of the refrigeration cycle of the chilling unit Y including the first to fourth refrigeration cycles R1 to R4.
  • the first and second refrigeration cycles R1 and R2 constitute the first refrigeration cycle unit 1RA
  • the third and fourth refrigeration cycle units R3 and R4 constitute the second refrigeration cycle unit 2RB.
  • the first port of the four-way valve 18 is connected to the discharge side refrigerant pipe of the variable capacity compressor 17, and the refrigerant pipe connected to the second port of the four-way valve 18 is branched to form a pair of air heat exchangers. 3 and 3 are communicated.
  • the pair of air heat exchangers 3, 3 are provided to face each other as described with reference to FIGS. 4 and 5 and constitute a set of heat exchanger modules M.
  • the heat exchange pipes constituting each of the air heat exchangers 3 and 3 are collected into a collecting pipe and communicated with a branched refrigerant pipe provided with an expansion valve 19.
  • the branched refrigerant pipes are also combined into one, and communicated with the first refrigerant flow path 40 provided in the first water heat exchanger 11 via the first receiver 10a.
  • the expansion valve 19 was each provided in the branched refrigerant pipe, it is not limited to this, You may make it provide in the refrigerant pipe which put the branched refrigerant pipe into one. Therefore, one expansion valve 19 may be used.
  • the first refrigerant flow path 40 communicates with the third port of the four-way valve 18 via a refrigerant pipe.
  • the fourth port of the four-way valve 18 communicates with the suction portion of the compressor 17 via the gas-liquid separator 20 via the refrigerant pipe.
  • a first water pipe P1 that is a return pipe from a place to be air-conditioned is connected to the water circulation pump 13.
  • the water circulation pump 13 is connected to the water flow path 33 in the first water heat exchanger 11 through the second water pipe P2.
  • the water flow path 33 of the first water heat exchanger 11 is communicated with the water flow path 33 of the second water heat exchanger 12 via the third water pipe P3.
  • the fourth water pipe P4 communicates with the water flow path 33 and is led from the fourth water pipe P4 to the place to be air-conditioned.
  • the refrigeration cycle R2 of the second system is configured in exactly the same manner, and in particular, a refrigerant pipe communicating the second receiver 10b and the four-way valve 18 is provided in the second refrigerant flow path 41 in the first water heat exchanger 11. Connected. That is, in the first water heat exchanger 11, the first refrigerant flow path 40 and the second refrigerant flow path 41 are alternately provided on both sides of one water flow path 33, and one water heat exchanger 11 11 is shared by the first and second two refrigeration cycles R1 and R2 and connected in parallel.
  • the second water heat exchanger 12 also has a first refrigerant flow path 40 communicating with the third receiver 10c on both sides of one water flow path 33 and a second refrigerant flow communicating with the fourth receiver 10d.
  • the paths 41 are alternately provided, and the third and fourth two refrigeration cycles R3 and R4 share one hydrothermal exchanger 12 and are connected in parallel.
  • the machine room 2 is provided with the water circulation pump 13, the first water heat exchanger 11 and the second water heat exchanger 12, and the first to fourth water pipes P1 to P4 are The water circulation pump 13, the first water heat exchanger 11, and the second water heat exchanger 12 are connected in series.
  • the first refrigeration cycle R1 and the second refrigeration cycle R2 constitute the first refrigeration cycle unit 1RA.
  • the third refrigeration cycle R3 and the fourth refrigeration cycle R4 The second refrigeration cycle unit 2RB is configured.
  • this chilling unit Y in order to obtain cold water in order to perform a cooling action, it will be described below.
  • the compressors 17 of the first to fourth refrigeration cycles R1 to R4 are driven all at once to compress the refrigerant, high-temperature and high-pressure refrigerant gas is discharged.
  • the refrigerant gas is guided from the four-way valve 18 to the pair of air heat exchangers 3 and exchanges heat with the air blown by driving the blower S.
  • the refrigerant gas condenses and is led to the expansion valve 19 and adiabatically expands.
  • the liquid refrigerant merges and temporarily accumulates in each of the receivers 10a to 10d, and then is guided to the first refrigerant flow path 40 and the second refrigerant flow path 41 in the first hydrothermal exchanger 11, and the water flow Heat exchange with water led to the passage 33 is performed.
  • the refrigerant in the refrigerant channels 40 and 41 evaporates and takes latent heat of evaporation from the water in the water channel 33, and the water in the water channel 33 is cooled and converted to cold water.
  • the first and second refrigerant flow paths 40 and 41 communicating with the first and second refrigeration cycles R1 and R2 are provided to efficiently cool the water.
  • the water sent from the water circulation pump 13 is, for example, 12 ° C.
  • it is cooled by 2.5 ° C. by the refrigerant guided to the refrigerant flow paths 40, 41 of the two refrigeration cycles R1, R2 in the first water heat exchanger 11.
  • the temperature drops to 9.5 ° C.
  • the cold water whose temperature has decreased is led to the second water heat exchanger 12 via the first water pipe P1, and the first and second refrigeration cycles R3 and R4, which are also two systems here, communicate with each other.
  • the heat exchange with the second refrigerant channels 40 and 41 is performed.
  • the water introduced at 9.5 ° C. is derived as cold water that is further cooled by 2.5 ° C. and lowered in temperature to 7 ° C. in the second hydrothermal exchanger 12.
  • This cold water is led to a place to be air-conditioned through the second water pipe P2 which is a lead-out pipe, and cools the air led by the indoor fan to perform a cooling action.
  • each of the water heat exchangers 11 and 12 is guided to the gas-liquid separator 20 via the four-way valve 18 and separated from the gas and liquid, and then sucked into the compressor 17 and compressed again to be compressed as described above. repeat.
  • the temperature of the chilled water is lowered in two stages, and thus more effective cooling performance. Can be obtained.
  • the first water heat exchanger 11 is connected to the first refrigeration cycle R1 and the second refrigeration cycle R2, which are two systems, so that one compressor 17 is mounted on each refrigeration cycle R1, R2. It becomes possible to do.
  • the second water heat exchanger 12 is also connected to the third refrigeration cycle R3 and the fourth refrigeration cycle R4, which are two systems, so that one compressor 17 is installed in each of the refrigeration cycles R3 and R4. It becomes possible to do.
  • first refrigerant flow path 40 and the second refrigerant flow path 41 communicating with the two refrigeration cycles are provided in the first water heat exchanger 11 and the second water heat exchanger 12, Efficiently warm water. Since the first water heat exchanger 11 and the second water heat exchanger 12 communicate with each other in series, the temperature of the hot water rises over two stages to improve the heating performance.
  • the liquid refrigerant derived from the first water heat exchanger 11 is led to the first receiver 10a and the expansion valve 19, and after adiabatic expansion, is led to the air heat exchangers 3 and 3 to evaporate.
  • the evaporated refrigerant is sucked into the compressor 17 through the four-way valve 18 and the gas-liquid separator 20, and is compressed again to repeat the above-described refrigeration cycle. In other refrigeration cycles, it circulates in the same route.
  • the refrigerant evaporates in the pair of air heat exchangers 3 and 3 constituting the heat exchanger module M, condenses moisture in the air, and drain water adheres.
  • the attached drain water is frozen and easily becomes frost.
  • the sensor detects this frost formation and sends a signal to the control electronic component in the control box 8.
  • the control electronic component issues an instruction to switch the refrigeration cycle including the air heat exchangers 3 and 3 whose frost formation is detected by the sensor from the heating operation to the cooling operation.
  • the refrigeration cycle including the air heat exchangers 3 and 3 that are not detected by the sensor continues the heating operation as it is.
  • the four-way valve 18 is switched, and the refrigerant is guided from the compressor 17 to the air heat exchangers 3 and 3 through the four-way valve 18 and condensed to be converted into liquid refrigerant. Condensation heat is released as the refrigerant condenses, and the frost adhering to it is melted.
  • the shielding plates 15 and 15 are provided on both sides of each heat exchanger module M, air does not escape from between the air heat exchangers 3 and 3 facing each other, and air from the adjacent heat exchanger module M is also present. To prevent intrusion. Therefore, the air heat exchangers 3 and 3 during the defrosting operation and the air heat exchangers 3 and 3 that continue the heating operation do not affect each other.
  • the refrigerant evaporates in the first refrigerant flow path 40 in the first water heat exchanger 11, and the hot water led to the water flow path 33 is cooled.
  • the second refrigerant flow path 41 in the first water heat exchanger 11 communicates with the second refrigeration cycle R2 that continues the heating operation, and the refrigerant condenses and condenses heat into the hot water in the water flow path W. Released.
  • the temperature drop of the hot water in the state derived from the first water heat exchanger 11 is kept in a very small range. After all, if the defrosting operation is switched only for one set of refrigeration cycles, the temperature drop of the hot water supplied from the first water heat exchanger 11 is only slight. Further, since all the compressors 17 and the water circulation pump 13 are variable in capacity, efficient operation is possible according to the heating load.
  • control box 8 the plurality of refrigeration cycle units 1 RA and 2 RB, the water circulation pump 13, the refrigerant pipe and the water pipe are housed in the machine room 2.
  • the side plate 2a and the end plate 2b are placed inside. That is, as shown in FIG. 1, in the completed chilling unit Y, there is no member exposed from the housing F.
  • a control box 8 In the chilling unit Y, a control box 8, a second refrigeration cycle unit 2RB, a first refrigeration cycle unit 1RA, and a water circulation pump 13 are arranged in this order from the front N front side to the back side of the housing F. At the end on the front N side where the control box 8 is provided, a passage T (or a space) where the chilling unit Y is arranged is provided.
  • the first system refrigeration cycle R1 and the second system refrigeration cycle R2 share the first water heat exchanger 11, and constitute a first refrigeration cycle unit 1RA.
  • the refrigeration cycle R3 of the third system and the refrigeration cycle R4 of the fourth system share the second water heat exchanger 12, and constitute a second refrigeration cycle unit 2RB.
  • Each of the first refrigeration cycle unit 1RA and the second refrigeration cycle unit 2RB accommodated in the machine room 2 includes two compressors 17, two four-way valves 18, and two (actually four). ) Expansion valve 19, two gas-liquid separators 20, and one hydrothermal exchanger 11 or 12, each of which has two refrigeration cycles R 1, one hydrothermal exchanger. R2 or R3 and R4 are connected in parallel. Since the first refrigeration cycle unit 1RA and the second refrigeration cycle unit 2RB are each placed on the second drain pan 7b and the refrigeration cycle is unitized, it is easy to assemble these components. .
  • first water heat exchanger 11 in the first refrigeration cycle unit 1RA and the second water heat exchanger 12 in the second refrigeration cycle unit 2RB are connected in series with each other, cold water or Hot water will be generated, and the overall thermal efficiency of the refrigeration cycle will be improved.
  • One heat exchanger module M includes two air heat exchangers 3 and 3 facing each other.
  • the first refrigeration cycle unit 1RA and the second refrigeration cycle unit 2RB each include two heat exchanger modules M, two in total. And each heat exchanger module M is mounted on the 1st drain pan 7a provided independently.
  • FIG. 9 shows an example in which the apparatus is composed of a plurality of chilling units Y, which is optimal for preparing for a large-scale building. That is, three rows of chilling units Y directly connected to the four heat exchanger modules M described in FIG. 1 are provided in parallel.
  • the chilling unit Y used here is provided with a plurality of air suction ports 65 at predetermined intervals on the side of the lower frame Fb constituting the housing F, particularly along the longitudinal direction.
  • the chilling unit is installed on a support base for piping a local water pipe (return pipe or forward pipe) in the lower part.
  • the lower frames Fb on both the left and right sides are the lower portions of the chilling units Y in both rows, particularly for the chilling unit Y in the middle row. It is almost in close contact with the frame Fb. However, the opening state of the air suction port 65 provided in each lower frame Fb is maintained as it is.
  • the heat exchange air is smoothly drawn in.
  • chilling units Y facing each other on the other side of the chilling units Y in the left and right rows and the left and right sides of the chilling units Y in the middle row.
  • each blower S With the operation of each blower S, air is sucked from one end surface in the longitudinal direction of the chilling unit Y and from the space U between the chilling units Y facing each other. However, since the space U is originally formed along the longitudinal direction of the chilling unit Y, the amount of air sucked tends to be insufficient.
  • a plurality of air suction ports 65 are provided in the lower frame Fb constituting the casing F of the chilling unit Y.
  • air suction port 65 When the blower S is driven, air is also sucked from the air suction port 65 and guided to the heat exchanger module M along the space U. Therefore, the shortage of the heat exchange air amount with respect to the heat exchanger module M is solved, and the heat exchange efficiency is improved.
  • the maintenance work for the control box can be facilitated, and the workability can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

Disclosed is a chilling unit comprised of a housing (F) wherein a heat exchange unit (1) provided with an air heat exchanger (3) is mounted on the top of the housing, and a machine chamber (2) is formed on the inside of the housing; a plurality of independent refrigeration cycle units (1RA), (2RB) which are contained in the machine chamber (2), and are comprised of refrigeration cycle devices excluding the air heat exchanger (3); and a control box (8) provided with a water circulation pump (13) and electronic components for controlling. The water circulation pump (13), the first refrigeration cycle unit (1RA), the second refrigeration cycle unit (2RB), and the control box (8) are arranged in this order from the back side to the front side of the housing (F), so that the control box (8) which contains electronic components that receive various kinds of signals to control electric components, can be located at the most appropriate position. Thus, the maintenance operation for the control box (8) can be easily performed, and the operability can be improved.

Description

チリングユニットChilling unit
 本発明は、例えば大規模建築物等に適用される空気調和装置、ヒートポンプ給湯装置等を構成するチリングユニットに関する。 The present invention relates to a chilling unit that constitutes, for example, an air conditioner, a heat pump water heater, or the like applied to a large-scale building or the like.
 熱交換ユニットである、いわゆるチリングユニットが開示されている。このチリングユニット(熱交換ユニット)は、熱交換室と、機械室と、熱交換室内に配置される空気熱交換器と、この空気熱交換器に空気を送風する送風機及び、上記機械室に収容される冷凍サイクル構成部品からなる(例えば、特開2007-163017号公報)。 A so-called chilling unit, which is a heat exchange unit, is disclosed. The chilling unit (heat exchange unit) is housed in a heat exchange chamber, a machine room, an air heat exchanger disposed in the heat exchange room, a blower for blowing air to the air heat exchanger, and the machine room. Refrigeration cycle components that are used (for example, Japanese Patent Application Laid-Open No. 2007-163017).
 上記空気熱交換器は、正面視で、互いに略V字状に対向して配置される。上記機械室は、正面視で略逆V字状に形成され、圧縮機と、四方弁と、冷媒を膨張する膨張弁と、水と冷媒間の熱交換を行う水熱交換器等が収納され、上記空気熱交換器と冷凍サイクルを構成するよう冷媒管を介して連通される。 The air heat exchangers are arranged to face each other in a substantially V shape when viewed from the front. The machine room is formed in a substantially inverted V shape when viewed from the front, and houses a compressor, a four-way valve, an expansion valve that expands the refrigerant, a water heat exchanger that exchanges heat between water and the refrigerant, and the like. The air heat exchanger communicates with the air heat exchanger via the refrigerant pipe.
 さらにチリングユニットには、水熱交換器に水を導く水循環ポンプと水配管が必要であるとともに、リモコン(遠隔操作盤)からの制御信号及び各種のセンサ類からの検知信号を受けて、上記電動部品へ制御信号を送る電子部品類を収容する制御用ボックスも必要であるが、これらについての記載は無い。 In addition, the chilling unit requires a water circulation pump and water piping for guiding water to the water heat exchanger, and receives the control signals from the remote control (remote control panel) and the detection signals from various sensors to A control box that houses electronic components that send control signals to the components is also necessary, but there is no description about them.
 ところで、圧縮機、送風機、水循環ポンプ等の電動部品に不具合が生じた場合は、上記制御用ボックスに収容される制御用電子部品及び制御基板等のメンテナンスを必要とする。そのため、チリングユニットにおける制御用ボックスの位置設定は、メンテナンス作業上、極めて重要である。 By the way, when troubles occur in the electric parts such as the compressor, the blower, and the water circulation pump, maintenance of the control electronic parts and the control board accommodated in the control box is required. Therefore, the position setting of the control box in the chilling unit is extremely important for maintenance work.
 なお説明すると、この種のチリングユニットは大規模建築物の、例えば屋上あるいは別途備えられる専用敷地に設置されている。ここには、給排水設備や、電力供給設備等も設置され、屋上での場合にはエレベータ駆動装置等も設置される。しかるに、大規模建築物自体のデザイン構造に対する各設備類の規模等の条件から、配置上の制約が多い。 In other words, this type of chilling unit is installed on a large-scale building, for example, on the rooftop or on a dedicated site separately provided. Here, a water supply / drainage facility, a power supply facility, and the like are also installed, and in the case of a rooftop, an elevator driving device and the like are also installed. However, there are many restrictions on the arrangement due to conditions such as the scale of each facility with respect to the design structure of the large-scale building itself.
 例えば、上記文献の図1に示されている単純な1列構造のチリングユニットにおいて、この長手方向に沿う一側部に沿って空間スペースがあれば、制御用ボックス位置の設定に対して何らの問題も無い。しかしながら、通常は手前側もしくは背面側の端部で、長手方向とは直交する方向に通路もしくは空間スペースがある場合が多い。 For example, in the chilling unit having a simple one-row structure shown in FIG. 1 of the above-mentioned document, if there is a space along one side along the longitudinal direction, no setting is made for the control box position setting. There is no problem. However, there are many cases where there is a passage or a space in the direction perpendicular to the longitudinal direction at the end on the near side or the back side.
 さらに、上記文献の図5に示されているように、複数台のチリングユニットの各側面を併設し、複数列に並べる場合もある。この構成では、たとえ両側列のチリングユニットの外面側に沿って空間スペースがあっても、真ん中の列のチリングユニット両側面に通路を備えておらず、制御用ボックスに対するメンテナンス作業が極めて不便になってしまう。 Furthermore, as shown in FIG. 5 of the above document, there are cases in which each side of a plurality of chilling units is provided side by side and arranged in a plurality of rows. In this configuration, even if there is a space along the outer surface side of the chilling units on both sides, there is no passage on both sides of the chilling unit in the middle row, and maintenance work for the control box becomes extremely inconvenient. End up.
 本発明は上記事情にもとづきなされたものであり、その目的とするところは、各種の信号を受けて電動部品を制御するための電子部品類を収容する制御用ボックスを最適位置に設定して、制御用ボックスに対するメンテナンス作業の容易化を図り、作業性の向上を図れるチリングユニットを提供しようとするものである。 The present invention has been made on the basis of the above circumstances, and the object of the present invention is to set a control box that accommodates electronic components for receiving various signals and controlling electric components at an optimal position, An object of the present invention is to provide a chilling unit capable of facilitating maintenance work for a control box and improving workability.
 上記目的を満足するため本発明のチリングユニットは、上部に空気熱交換器を備えた熱交換部が載設され内部に機械室が形成される筐体と、この筐体内の機械室に収容される空気熱交換器を除く冷凍サイクル機器からなる複数の独立した冷凍サイクルユニットと、1台の水循環ポンプ及び制御用電子部品を備えた制御用ボックスとを具備し、筐体の奥側から正面手前へ順に、水循環ポンプ、第1の冷凍サイクルユニット、第2の冷凍サイクルユニット、制御用ボックスを配置した。 In order to satisfy the above object, the chilling unit of the present invention is housed in a housing in which a heat exchange section having an air heat exchanger is mounted on the upper portion and a machine room is formed therein, and in a machine room in the housing. A plurality of independent refrigeration cycle units composed of refrigeration cycle equipment excluding air heat exchangers, and a control box equipped with one water circulation pump and control electronic components, from the back side of the housing to the front side In order, the water circulation pump, the first refrigeration cycle unit, the second refrigeration cycle unit, and the control box were arranged.
図1は、本発明における一実施の形態に係るチリングユニットの斜視図である。FIG. 1 is a perspective view of a chilling unit according to an embodiment of the present invention. 図2は、同実施の形態に係る機械室を覆う側面パネルを取外した状態のチリングユニットの側面図である。FIG. 2 is a side view of the chilling unit in a state where a side panel covering the machine room according to the embodiment is removed. 図3は、同実施の形態に係る機械室内部の斜視図であるとともに、第1のドレンパンから第4のドレンパンの取付け構造を説明する図である。FIG. 3 is a perspective view of the inside of the machine room according to the embodiment, and is a view for explaining a mounting structure from the first drain pan to the fourth drain pan. 図4は、同実施の形態に係る熱交換器モジュール単体の斜視図である。FIG. 4 is a perspective view of a single heat exchanger module according to the embodiment. 図5は、同実施の形態に係る熱交換器モジュールの分解斜視図である。FIG. 5 is an exploded perspective view of the heat exchanger module according to the embodiment. 図6は、同実施の形態に係る第1のドレンパンの斜視図である。FIG. 6 is a perspective view of a first drain pan according to the embodiment. 図7は、同実施の形態に係る水循環ポンプと水配管周りの斜視図である。FIG. 7 is a perspective view around the water circulation pump and the water pipe according to the embodiment. 図8は、同実施の形態に係るチリングユニットの冷凍サイクル構成図である。FIG. 8 is a configuration diagram of the refrigeration cycle of the chilling unit according to the embodiment. 図9は、同実施の形態に係る筐体の下部枠に設けられる空気吸込み口を説明する斜視図である。FIG. 9 is a perspective view illustrating an air suction port provided in the lower frame of the housing according to the same embodiment. 図10は、同実施の形態に係る空気吸込み口に係る気流の状態を説明する図である。FIG. 10 is a diagram for explaining the state of the airflow relating to the air suction port according to the embodiment.
 以下、本発明の実施の形態を、図面にもとづいて説明する。 
 図1は、組立てられたチリングユニットYの斜視図であり、図2は、後述する機械室2の側面パネル2aを取外した状態のチリングユニットYの側面図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a perspective view of the assembled chilling unit Y, and FIG. 2 is a side view of the chilling unit Y in a state in which a side panel 2a of a machine room 2 described later is removed.
 このチリングユニットYは、冷水もしくは温水を生成し、例えば得られた冷水をもって空気を冷却し室内(屋内)の冷房作用をなす、もしくは得られた温水をもって空気を暖め室内(屋内)の暖房作用をなす。空調装置の他にもヒートポンプ給湯装置としての用途が可能である。 This chilling unit Y generates cold water or hot water, for example, cools the air with the obtained cold water to cool the room (indoor), or warms the air with the obtained hot water to heat the room (indoor). Eggplant. In addition to the air conditioner, it can be used as a heat pump hot water supply device.
 ここで上記チリングユニットYは、平面視で、互いに並行な長手方向及び短手方向から矩形状に形成される。そして、一方の短手方向に沿って作業者が通行可能な通路Tが形成され、他の方向に沿うよう作業者が通行することは、不便な状態となっている。 
 なお、図9に示すように複数のチリングユニットYを並列に設けた場合は、チリングユニットY相互間に形成されるスペースの長手方向に沿って作業者が通行することができる。また、通路Tに代って、空間スペースであってもよい。
Here, the chilling unit Y is formed in a rectangular shape from a longitudinal direction and a short direction parallel to each other in a plan view. And it is inconvenient for the operator to pass along the other direction by forming a passage T through which the worker can pass along one short direction.
In addition, when a plurality of chilling units Y are provided in parallel as shown in FIG. 9, an operator can pass along the longitudinal direction of the space formed between the chilling units Y. Further, a space space may be used instead of the passage T.
 図1の通路Tに沿う短手方向端面(図2では、右側側面)を「正面N」、奥側端面(左側側面)を「背面H」、長手方向に並行な端面(手前側正面)を「側面E」と定める。このようなチリングユニットYの上下方向の略下半分は筐体Fからなり、この筐体F上に熱交換部1が載設され、筐体F内部に機械室2が形成される。 The short side end surface (right side surface in FIG. 2) is “front N”, the back side end surface (left side surface) is “back H”, and the end surface parallel to the longitudinal direction (front side front) is along the passage T in FIG. Determined as “Side E”. The substantially lower half of the chilling unit Y in the vertical direction includes a housing F. The heat exchange unit 1 is placed on the housing F, and the machine room 2 is formed inside the housing F.
 上記熱交換部1は、複数(ここでは4組)の熱交換器モジュールMと、同数の送風機Sから構成される。1組の熱交換器モジュールMは、一対(2個)の空気熱交換器3,3が互いに対向して配置され、これら空気熱交換器3,3の上端部相互間に送風機Sが配置されてなる。 The heat exchanging section 1 is composed of a plurality (here, four sets) of heat exchanger modules M and the same number of blowers S. In one set of heat exchanger modules M, a pair (two) of air heat exchangers 3 and 3 are arranged to face each other, and a blower S is arranged between the upper ends of these air heat exchangers 3 and 3. It becomes.
 それぞれの熱交換器モジュールMの上端部に天板4が設けられ、この天板4の熱交換器モジュールM相互間に対向する位置に上記送風機Sが取付けられる。なお説明すると、天板4から上方に円筒状の吹出し口5が突設され、この吹出し口5の突出端面をファンガード6が覆っている。 A top plate 4 is provided at the upper end of each heat exchanger module M, and the blower S is attached to a position of the top plate 4 facing the heat exchanger module M. If it demonstrates, the cylindrical blowing outlet 5 will protrude upwards from the top plate 4, and the fan guard 6 has covered the protrusion end surface of this blowing outlet 5. FIG.
 上記熱交換器モジュールMを構成する空気熱交換器3,3相互は、上端部である天板4側が広く、下端部である機械室2側が狭く近接するよう対向していて、正面視が略V字状になるよう互いに傾斜している。 
 上記熱交換部1を載設する筐体Fは、上部枠Faと、下部枠Fb及び、これら上部枠Faと下部枠Fbを連結する縦枠Fcとで構成される。なお、上部枠Faには桟Fdが設けられている(図3参照)。この筐体Fの長手方向に沿う側面Eに、ここでは3枚の側板2aが取付けられ、短手方向に沿う正面Nと背面Hに端板2bが取付けられていて、これらで囲まれる空間内部を上記機械室2と言う。
The air heat exchangers 3 and 3 constituting the heat exchanger module M face each other so that the top plate 4 side as the upper end portion is wide and the machine room 2 side as the lower end portion is close and close to each other. They are inclined to form a V shape.
The housing F on which the heat exchange unit 1 is mounted includes an upper frame Fa, a lower frame Fb, and a vertical frame Fc that connects the upper frame Fa and the lower frame Fb. The upper frame Fa is provided with a crosspiece Fd (see FIG. 3). In this case, three side plates 2a are attached to the side surface E along the longitudinal direction of the casing F, and end plates 2b are attached to the front surface N and the rear surface H along the short side direction. Is referred to as the machine room 2.
 上部枠Faと下部枠Fbは、それぞれ平面視で横長の矩形状をなすよう組立てられる。互いの長手方向寸法は同一に形成されるが、短手方向寸法は、正面Nと背面Hがともに上部枠Faが短く、下部枠Fbがこれより長い。 
 すなわち、上部枠Faの短手方向寸法は、熱交換部1を構成する熱交換器モジュールMの短手方向寸法に合せて短い。したがって、この上部枠Faと下部枠Fbを連結する縦枠Fcは、上部から下部に向けて奥行き方向寸法が順次拡大するように傾斜して設けられることになり、筐体F自体は正面(背面)視で略逆V字状に形成される。
The upper frame Fa and the lower frame Fb are each assembled so as to form a horizontally long rectangular shape in plan view. Although the longitudinal dimensions of each other are the same, the short dimension is such that the front frame N and the rear surface H are both shorter in the upper frame Fa and longer in the lower frame Fb.
That is, the short direction dimension of the upper frame Fa is short according to the short direction dimension of the heat exchanger module M constituting the heat exchange unit 1. Therefore, the vertical frame Fc connecting the upper frame Fa and the lower frame Fb is provided so as to be inclined so that the dimension in the depth direction sequentially increases from the upper part to the lower part. ) It is formed in a substantially inverted V shape when viewed.
 このように、筐体F上に載設される熱交換部1は正面視が上端から下方に向けて漸次縮小するよう傾斜して略V字状をなし、筐体Fが上端から下方に向けて漸次拡大するよう略逆V字状をなすので、チリングユニットYとしての正面視は、中央部分が括れた略鼓(つづみ)状に形成される。 Thus, the heat exchanging part 1 mounted on the housing F is inclined so that the front view gradually decreases from the upper end to the lower side and is substantially V-shaped, and the housing F is directed from the upper end to the lower side. Therefore, the front view as the chilling unit Y is formed in a substantially drum shape with the central portion constricted.
 特に図2に示すように、筐体F内に形成される機械室2には、背面Hから正面Nに亘って順に、能力可変型の水循環ポンプ13と、第1の冷凍サイクルユニット1RAと、第2の冷凍サイクルユニット2RBと、制御用ボックス8が配置される。 In particular, as shown in FIG. 2, the machine room 2 formed in the housing F includes, in order from the rear surface H to the front surface N, a variable capacity water circulation pump 13, a first refrigeration cycle unit 1 RA, Second refrigeration cycle unit 2RB and control box 8 are arranged.
 換言すれば、最も正面Nに近い位置に制御用ボックス8が配置され、最も背面Hに近い位置に水循環ポンプ13が配置され、これら制御用ボックス8と水循環ポンプ13との間に第2の冷凍サイクルユニット2RBと、第1の冷凍サイクルユニット1RAが配置されることになる。 In other words, the control box 8 is disposed at the position closest to the front face N, the water circulation pump 13 is disposed at the position closest to the rear face H, and the second refrigeration is provided between the control box 8 and the water circulation pump 13. The cycle unit 2RB and the first refrigeration cycle unit 1RA are arranged.
 このようにして機械室2内に、制御用ボックス8と、第1、第2の冷凍サイクルユニット1RA,2RBと、水循環ポンプ13及び、冷媒配管と水回り配管が収容されるが、これら全ての構成部品は筐体Fを構成する側板2aと端板2b内部に納まる。すなわち、図1に示す完成した状態のチリングユニットYにおいて、筐体Fから露出する部材が無い。 In this way, the control box 8, the first and second refrigeration cycle units 1RA and 2RB, the water circulation pump 13, the refrigerant pipe and the water pipe are housed in the machine room 2, but all of these are accommodated. The components are housed inside the side plate 2a and the end plate 2b constituting the housing F. That is, there is no member exposed from the housing F in the completed chilling unit Y shown in FIG.
 さらに、機械室2に収容される構成部品について説明する。 
 図3は、機械室2内部の斜視図であるとともに、第1のドレンパン7aから第3のドレンパン7cの取付け構造を説明する図である。
Furthermore, the components accommodated in the machine room 2 will be described.
FIG. 3 is a perspective view of the inside of the machine room 2 and is a view for explaining an attachment structure from the first drain pan 7a to the third drain pan 7c.
 筐体Fを構成する上部枠Fa上に、4枚の第1のドレンパン7aが載設される。特に図示していないが、それぞれの第1のドレンパン7aにはドレンホースが接続され、ドレン水を第2のドレンパン7bに案内するようになっている。 Four first drain pans 7a are placed on the upper frame Fa constituting the housing F. Although not particularly shown, a drain hose is connected to each first drain pan 7a to guide drain water to the second drain pan 7b.
 上記第2のドレンパン7bは2枚備えられている。一方のドレンパン7bには上記第1の冷凍サイクルユニット1RAが載り、他方のドレンパン7bには上記第2の冷凍サイクルユニット2RBが載る。したがって第2のドレンパン7bは、上記制御用ボックス8の背面H側端部から下部枠Fbの背面H側端部までの間に直列に並べられる。 The two second drain pans 7b are provided. The first refrigeration cycle unit 1RA is placed on one drain pan 7b, and the second refrigeration cycle unit 2RB is placed on the other drain pan 7b. Accordingly, the second drain pans 7b are arranged in series between the back H side end of the control box 8 and the back H side end of the lower frame Fb.
 第2のドレンパン7bは、図示しな支持部材上に支持される。このドレンパン7bの支持部材は下部枠Fbの短手方向に亘って設けられ、長手方向に所定間隔を在して設けられる。この第2のドレンパン7bの下部側に所定間隔を存して、第3のドレンパン7cが下部枠Fb上に支持される。 
 第3のドレンパン7cの短手方向寸法は第2のドレンパン7bの同方向寸法と同一であり、長手方向寸法は2枚の第2のドレンパン7bを直列に並べた全長寸法と同一に形成される。
Second drain pan 7b is supported on the support member has a shown. The support member of the drain pan 7b is provided across the short direction of the lower frame Fb, and is provided at a predetermined interval in the longitudinal direction. The third drain pan 7c is supported on the lower frame Fb with a predetermined interval on the lower side of the second drain pan 7b.
The short side dimension of the third drain pan 7c is the same as the same direction dimension of the second drain pan 7b, and the long side dimension is the same as the full length dimension of the two second drain pans 7b arranged in series. .
 後述する暖房運転時に、空気熱交換器3は空気と熱交換し、空気中に含まれる水分を凝縮させてドレン水となす。はじめドレン水は水滴状をなし表面に付着するが、次第に肥大化して、それぞれの第1のドレンパン7aに流下する。 
 このドレン水は、ドレンホースを介して下部側の第2のドレンパン7bに集められる。第1、第2の冷凍サイクルユニット1RA,2RBの構成部品にもドレン水が生成され、第2のドレンパン7bで受けられた後、第3のドレンパン7cに集められ、外部へ排水されるようになっている。
During the heating operation to be described later, the air heat exchanger 3 exchanges heat with air, and condenses moisture contained in the air to form drain water. Initially, the drain water is in the form of water droplets and adheres to the surface, but gradually becomes enlarged and flows down to the respective first drain pans 7a.
The drain water is collected in the second drain pan 7b on the lower side through the drain hose. The drain water is also generated in the component parts of the first and second refrigeration cycle units 1RA and 2RB, and is received by the second drain pan 7b, and then collected in the third drain pan 7c and drained to the outside. It has become.
 上記機械室2の背面H側端部に上記水循環ポンプ13が配置され、この水循環ポンプ13に近接して第1の水熱交換器11が配置される。そして、第1の水熱交換器11から筐体Fの手前側長手方向に沿い後述する第1のレシーバ10aと第2のレシーバ10bが並置され、第2の水熱交換器12が配置される。 The water circulation pump 13 is disposed at the rear H side end of the machine room 2, and the first water heat exchanger 11 is disposed in the vicinity of the water circulation pump 13. And the 1st receiver 10a and the 2nd receiver 10b which are mentioned later along the near side longitudinal direction of the housing | casing F from the 1st water heat exchanger 11 are juxtaposed, and the 2nd water heat exchanger 12 is arrange | positioned. .
 第2の水熱交換器12から筐体Fの手前側長手方向に沿い第3のレシーバ10cと第4のレシーバ10dが並置され、特に第4のレシーバ10dは制御用ボックス8に近接して配置される。 The third receiver 10c and the fourth receiver 10d are juxtaposed from the second water heat exchanger 12 along the longitudinal direction of the front side of the housing F, and in particular, the fourth receiver 10d is disposed close to the control box 8. Is done.
 上記水循環ポンプ13には、第1の水配管P1(図2及び図7に示す)が接続されていて、これは導入管として空調すべき場所からの戻り管として用いられる。水循環ポンプ13と第1の水熱交換器11上部とに亘って、第2の水配管P2が接続される。 A first water pipe P1 (shown in FIGS. 2 and 7) is connected to the water circulation pump 13, and this is used as a return pipe from a place to be air-conditioned as an introduction pipe. A second water pipe P <b> 2 is connected across the water circulation pump 13 and the upper part of the first water heat exchanger 11.
 さらに、第1の水熱交換器11下部と第2の水熱交換器12上部とに亘って第3の水配管P3が接続される。第2の水熱交換器12下部には、上記水循環ポンプ13方向へ延出され、端部が上記第1の水配管P1と並行に並べられる第4の水配管P4が接続される。この第4の水配管P4は導出管として、空調すべき場所まで延出される。 Furthermore, a third water pipe P3 is connected across the lower portion of the first water heat exchanger 11 and the upper portion of the second water heat exchanger 12. A lower part of the second water heat exchanger 12 is connected to a fourth water pipe P4 extending in the direction of the water circulation pump 13 and having an end arranged in parallel with the first water pipe P1. The fourth water pipe P4 is extended as a lead-out pipe to a place to be air-conditioned.
 上記第1、第2のレシーバ10a、10b及び第1の水熱交換器11の背面側に、2台の能力可変型の圧縮機と、2個の四方弁及び2個の気液分離器等からなる冷凍サイクル機器1Kが配置される。 
 これらは冷媒管を介して連通されるとともに、最も背面H側の熱交換器モジュールMと、この手前側に位置する熱交換器モジュールMとをそれぞれ構成する、2組ずつの空気熱交換器3,3と、2つの独立した冷凍サイクルを構成するよう冷媒管を介して接続され、上記第1の冷凍サイクルユニット1RAが構成される。
On the back side of the first and second receivers 10a and 10b and the first water heat exchanger 11, two variable capacity compressors, two four-way valves, two gas-liquid separators, etc. A refrigeration cycle apparatus 1K consisting of:
These are communicated via a refrigerant pipe, and two sets of air heat exchangers 3 each constituting a heat exchanger module M on the rearmost H side and a heat exchanger module M located on the front side. , 3 and two independent refrigeration cycles are connected via a refrigerant pipe to constitute the first refrigeration cycle unit 1RA.
 上記第3、第4のレシーバ10c、10d及び第2の水熱交換器12の背面側に、2台の能力可変型の圧縮機と、2個の四方弁及び2個の気液分離器等からなる冷凍サイクル機器2Kが配置される。 
 これらは冷媒管を介して連通されるとともに、最も正面N側の熱交換器モジュールMと、この奥側に位置する熱交換器モジュールMとをそれぞれ構成する、2組ずつの空気熱交換器3,3と、2つの独立した冷凍サイクルを構成するよう冷媒管を介して接続され、上記第2の冷凍サイクルユニット2RBが構成される。
On the back side of the third and fourth receivers 10c, 10d and the second water heat exchanger 12, there are two variable capacity compressors, two four-way valves, two gas-liquid separators, etc. A refrigeration cycle device 2K comprising:
These are communicated via a refrigerant pipe, and two sets of air heat exchangers 3 respectively constituting a heat exchanger module M on the most front N side and a heat exchanger module M located on the far side. , 3 and 2 are connected via a refrigerant pipe so as to form two independent refrigeration cycles, and the second refrigeration cycle unit 2RB is configured.
 換言すれば、筐体F内の機械室2には、4台の熱交換器モジュールMを構成する空気熱交換器3を除く、互いに独立した第1の冷凍サイクルユニット1RAと、第2の冷凍サイクルユニット2RBが収容され,それぞれの冷凍サイクルユニット1RA,2RBが第2のドレンパン7b上に載置される。 In other words, the machine room 2 in the housing F includes the first refrigeration cycle unit 1RA and the second refrigeration unit which are independent from each other except for the air heat exchangers 3 constituting the four heat exchanger modules M. The cycle unit 2RB is accommodated, and the respective refrigeration cycle units 1RA and 2RB are placed on the second drain pan 7b.
 第1の水熱交換器11と第2の水熱交換器12は、互いに第1の水配管~第4の水配管P1~P4を介して直列に連通され、各冷凍サイクルユニット1RA,2RBは、それぞれ1台の水熱交換器11,12に対して2組の冷凍サイクル機器1K,2Kが並列に接続されてなる。 The first water heat exchanger 11 and the second water heat exchanger 12 communicate with each other in series via the first water pipe to the fourth water pipes P1 to P4, and the refrigeration cycle units 1RA and 2RB are connected to each other. The two refrigeration cycle devices 1K and 2K are connected in parallel to one water heat exchanger 11 and 12, respectively.
 図4は、単体の熱交換器モジュールMの斜視図であり、図5は、熱交換器モジュールMを分解した斜視図である。 
 各図に示す熱交換器モジュールMを4台、直列に並べ、互いの天板4相互と第1のドレンパン7a相互を互いに密接した状態で、先に図1及び図2に示す熱交換部1が構成される。ただし、隣接する熱交換器モジュールMを構成する空気熱交換器3相互は、互いに若干の隙間を介して並置される。
4 is a perspective view of a single heat exchanger module M, and FIG. 5 is an exploded perspective view of the heat exchanger module M.
In the state where four heat exchanger modules M shown in each figure are arranged in series and the top plates 4 and the first drain pans 7a are in close contact with each other, the heat exchanging unit 1 shown in FIGS. Is configured. However, the air heat exchangers 3 constituting the adjacent heat exchanger module M are juxtaposed with each other with a slight gap therebetween.
 単体の熱交換器モジュールMは、上述したように一対の空気熱交換器3,3から構成される。単体の空気熱交換器3は、側面視で略矩形状をなす平板部3aと、この平板部3aの左右両側部に沿って折り曲げられる折曲げ片部3bからなる。 
 上記空気熱交換器3を一対用意し、互いの折曲げ片部3bを対向させ、正面視で略V字状となるよう傾斜させている。したがって、対向する空気熱交換器3,3の、対向する折曲げ片部3b,3b相互間には略V字状の空間部が形成されるが、この空間部は略V字状にカットされた板体である遮蔽板15によって閉成される。
The single heat exchanger module M is composed of a pair of air heat exchangers 3 and 3 as described above. The single air heat exchanger 3 includes a flat plate portion 3a having a substantially rectangular shape when viewed from the side, and a bent piece portion 3b that is bent along the left and right side portions of the flat plate portion 3a.
A pair of the air heat exchangers 3 is prepared, the bent pieces 3b are opposed to each other, and are inclined so as to be substantially V-shaped when viewed from the front. Therefore, a substantially V-shaped space portion is formed between the opposed bent piece portions 3b and 3b of the opposed air heat exchangers 3 and 3, and this space portion is cut into a substantially V-shape. It is closed by a shielding plate 15 which is a plate.
 上記遮蔽板15は、1組の熱交換器モジュールMにおける左右両側部に設けられている。したがって、図1及び図2に示すように、4組の熱交換器モジュールMが並列に配置されると、隣接する熱交換器モジュールMにおいて遮蔽板15が互いに近接して設けられることになる。 The shielding plate 15 is provided on both right and left sides of the heat exchanger module M. Therefore, as shown in FIGS. 1 and 2, when the four heat exchanger modules M are arranged in parallel, the shielding plates 15 are provided close to each other in the adjacent heat exchanger modules M.
 上記空気熱交換器3は、横方向に短く、縦方向に極端に長い略短冊状のフィンを立てた状態にして、互いに狭小の間隙を存して並べ、ここに熱交換パイプを貫通させてなる。上記熱交換パイプはフィンの横方向に間隙を存して複数列並べられ、フィンの縦方向に蛇行するよう設けられる。 The air heat exchanger 3 is arranged in a state in which substantially strip-shaped fins that are short in the horizontal direction and extremely long in the vertical direction are erected, are arranged with a narrow gap between them, and a heat exchange pipe is passed therethrough. Become. The heat exchange pipes are arranged in a plurality of rows with gaps in the lateral direction of the fins and meandering in the longitudinal direction of the fins.
 平板状の空気熱交換器3の両側部を、互いに同一方向に折り曲げて、両側部に沿って折曲げ片部3bを形成し、折曲げ片部3b相互間は平板部3aとして残る。平面視で略U字状に形成することにより、チリングユニットYの長手方向寸法を短縮でき、据付けスペースの低減化を図ったうえで、熱交換効率の向上を得る。 Both sides of the flat plate air heat exchanger 3 are bent in the same direction to form bent pieces 3b along both sides, and the space between the bent pieces 3b remains as a flat plate 3a. By forming it in a substantially U shape in a plan view, the longitudinal dimension of the chilling unit Y can be shortened, the installation space can be reduced, and the heat exchange efficiency can be improved.
 図5に示すように空気熱交換器3の平板部3a上端と下端に亘って固定枠16が掛け渡される。固定枠16の上端は鉤状(略コ字状)に折曲されて、平板部3aの内面上部と上端面及び外面上部に亘って掛止される。また、固定枠16はハシゴ状に形成されており、メンテナンス作業時に作業者の足場として利用することができる。 As shown in FIG. 5, the fixed frame 16 is stretched over the upper and lower ends of the flat plate portion 3 a of the air heat exchanger 3. The upper end of the fixed frame 16 is bent in a bowl shape (substantially U-shaped) and is hooked over the inner surface upper portion, the upper end surface, and the outer surface upper portion of the flat plate portion 3a. Further, the fixed frame 16 is formed in a ladder shape, and can be used as a scaffold for an operator during maintenance work.
 一対の空気熱交換器3,3を、固定枠16を用いて側面視で略V字状になるよう固定したあと、固定枠16の上端部相互間に連結部材であるファンベース50が架設され、空気熱交換器3の傾斜角度が保持される。 After fixing the pair of air heat exchangers 3 and 3 so as to be substantially V-shaped in a side view using the fixed frame 16, a fan base 50 as a connecting member is installed between the upper ends of the fixed frame 16. The inclination angle of the air heat exchanger 3 is maintained.
 上記ファンベース50には、上記送風機Sを構成するファンモータ51が取付けられ、このファンモータ51の回転軸にファン52が嵌着される。ファン52は天板4に設けられる円筒状の吹出し口5と対向して配置され、吹出し口5にはファンガード6が設けられることは上述した通りである。 A fan motor 51 constituting the blower S is attached to the fan base 50, and a fan 52 is fitted on the rotating shaft of the fan motor 51. As described above, the fan 52 is disposed so as to face the cylindrical outlet 5 provided in the top plate 4, and the fan guard 6 is provided in the outlet 5.
 上記固定枠16の下端部は、第1のドレンパン7aに対して空気熱交換器3を斜めに傾けた状態で取付け固定しているが、空気熱交換器3が傾くために、空気熱交換器3の下端面と第1のドレンパン7aとに隙間が生じてしまう。そこで、第1のドレンパン7aは以下に述べるように構成される。 The lower end portion of the fixed frame 16 is attached and fixed to the first drain pan 7a in a state where the air heat exchanger 3 is tilted obliquely. However, since the air heat exchanger 3 is tilted, the air heat exchanger 3 is tilted. 3 and a gap between the lower end surface of the first drain pan 7a. Therefore, the first drain pan 7a is configured as described below.
 図6は、第1のドレンパン7aの斜視図である。 
 第1のドレンパン7aは矩形の皿状をなし、短手方向の両側端部から、この中央部に向って漸次下方に傾斜している。したがって、第1のドレンパン7aの中央部に長手方向に沿って線状の最深部eが形成され、この最深部eの一部に上記ドレンホースが接続されるドレン口55が設けられる。
FIG. 6 is a perspective view of the first drain pan 7a.
The first drain pan 7a has a rectangular dish shape, and is gradually inclined downward from both side end portions in the lateral direction toward the central portion. Accordingly, a linear deepest portion e is formed in the central portion of the first drain pan 7a along the longitudinal direction, and a drain port 55 to which the drain hose is connected is provided at a part of the deepest portion e.
 第1のドレンパン7a上の両側端部には、互いに対向して一対の熱交換器台座57が設けられる。それぞれの熱交換器台座57は、第1のドレンパン7aの傾斜方向とは逆に、短手方向の両側端部から、この中央部に向って漸次上方へ傾斜していて、中央部が最も高く、短手方向の両側端部が最も低い。 A pair of heat exchanger pedestals 57 are provided opposite to each other on both ends of the first drain pan 7a. Contrary to the inclination direction of the first drain pan 7a, each heat exchanger base 57 is gradually inclined upward from both side end portions in the short direction toward the central portion, and the central portion is the highest. The side edges in the short direction are the lowest.
 第1のドレンパン7a上に傾いて配置されるここでは図示しない上記空気熱交換器3は、この熱交換器3を構成する折曲げ片部3bが熱交換器台座57上に載る。したがって、熱交換器台座57は空気熱交換器3下端面と第1のドレンパン7aとの隙間を埋めることとなり、空気熱交換器3の熱交換効率に影響が出ない。 In the air heat exchanger 3 (not shown) that is disposed on the first drain pan 7 a in an inclined manner, the bent piece portion 3 b constituting the heat exchanger 3 is placed on the heat exchanger base 57. Accordingly, the heat exchanger pedestal 57 fills the gap between the lower end surface of the air heat exchanger 3 and the first drain pan 7a, and the heat exchange efficiency of the air heat exchanger 3 is not affected.
 さらに第1のドレンパン7aには、左右に設けられる熱交換器台座57間に、互いに対向して一対の平片部58が設けられる。各平片部58は、熱交換器台座57と直交する方向に長く形成され、それぞれの平片部58上に、上記固定枠16の下端部が載る。そしてこの平片部58に固定枠16の下端部がねじ等で固定される。 Further, the first drain pan 7a is provided with a pair of flat piece portions 58 opposed to each other between the heat exchanger bases 57 provided on the left and right. Each flat piece portion 58 is formed long in a direction orthogonal to the heat exchanger base 57, and the lower end portion of the fixed frame 16 is placed on each flat piece portion 58. The lower end portion of the fixed frame 16 is fixed to the flat piece portion 58 with a screw or the like.
 各平片部58の一端部相互間に2つの円筒体59が並んで設けられ、それぞれの円筒体59には上記空気熱交換器3に接続される冷媒管が挿通する。互いの平片部58の反対側端部に小径の円筒体60が設けられ、これら円筒体60には上記ファンモータ51に接続する電源コードが挿通する。 Two cylindrical bodies 59 are provided side by side between one end portions of each flat piece portion 58, and a refrigerant pipe connected to the air heat exchanger 3 is inserted into each cylindrical body 59. Small-diameter cylindrical bodies 60 are provided at opposite ends of the flat piece portions 58, and a power cord connected to the fan motor 51 is inserted into the cylindrical bodies 60.
 図7は、水回路Zのみの斜視図である。 
 上述したように、水循環ポンプ13には導入管としての第1の水配管P1が接続され、水循環ポンプ13と第1の水熱交換器11とは第2の水配管P2で連通される。第1の水熱交換器11と第2の水熱交換器12とに第3の水配管P3が連通され、第2の水熱交換器12の下部には導出管として第4の水配管P4が接続される。
FIG. 7 is a perspective view of only the water circuit Z. FIG.
As described above, the water circulation pump 13 is connected to the first water pipe P1 as an introduction pipe, and the water circulation pump 13 and the first water heat exchanger 11 are communicated with each other through the second water pipe P2. A third water pipe P3 communicates with the first water heat exchanger 11 and the second water heat exchanger 12, and a fourth water pipe P4 is provided as a lead-out pipe below the second water heat exchanger 12. Is connected.
 図2や図7に示すように上記水循環ポンプ13は、水回路Zの最下部と最上部との間の、略中間部に配置されている。このことにより、水回路Zに空気が混入しても、その空気が水循環ポンプ13の内部に溜まらずにすむ。水循環ポンプ13の内部に常に呼び水が存在することになり、空気の混入による水循環ポンプ13の起動不良を防ぐことができる。 As shown in FIG. 2 and FIG. 7, the water circulation pump 13 is disposed at a substantially intermediate portion between the lowermost portion and the uppermost portion of the water circuit Z. As a result, even if air is mixed into the water circuit Z, the air does not accumulate in the water circulation pump 13. There is always priming water inside the water circulation pump 13, and it is possible to prevent the water circulation pump 13 from being poorly activated due to air contamination.
 さらに、チリングユニットYの配置面からの高さにおいて、水回路Zの最も高い部位に、第1の水配管P1と、第2の水配管P2一部が存在している。これら水回路Zの最高部位である第1の水配管P1及び第2の水配管P2一部に、自動空気抜き装置61が設けられる。 
 上記自動空気抜き装置61は、弁本体内にフロートを収容してなり、フロートの周りに空気が溜まると、フロートが浮力を失って沈下し、弁が開く。すなわち、弁の開放により弁本体内から水配管の空気が自動的に抜けるようになっている。
Furthermore, the first water pipe P1 and a part of the second water pipe P2 are present at the highest portion of the water circuit Z in the height from the arrangement surface of the chilling unit Y. The automatic air venting device 61 is provided in a part of the first water pipe P1 and the second water pipe P2 which are the highest parts of the water circuit Z.
The automatic air vent device 61 has a float in the valve body, and when air accumulates around the float, the float loses buoyancy and sinks, and the valve opens. That is, the air in the water pipe is automatically removed from the valve body by opening the valve.
 何らかの事情で、水循環ポンプ13の内部にも溜まるようなレベルの大量の空気が混入し得る。しかしながら、上記自動空気抜き装置61を備えたことにより、自動的に空気が外部へ排出され、水循環ポンプ13内部に空気が溜まることがない。水循環ポンプ13には常に呼び水が存在し、空気の混入によるの起動不良を防げる。 
 また、特に図示していないが、上記自動空気抜き装置61には逆止弁が設けられる。これは、水配管Zが負圧になるケースが多々あるため、逆圧がかかった場合に空気の混入(逆流)を防ぐために備えられる。
For some reason, a large amount of air that can accumulate in the water circulation pump 13 may be mixed. However, since the automatic air venting device 61 is provided, air is automatically discharged to the outside, and air does not accumulate inside the water circulation pump 13. The water circulation pump 13 always has priming water, which prevents starting failure due to air contamination.
Although not particularly shown, the automatic air vent device 61 is provided with a check valve. Since there are many cases where the water pipe Z has a negative pressure, this is provided in order to prevent air mixture (backflow) when a reverse pressure is applied.
 図8は、第1系統から第4系統の冷凍サイクルR1~R4を備えたチリングユニットYの冷凍サイクル構成図である。 
 なお、第1、第2系統の冷凍サイクルR1、R2で上記第1の冷凍サイクルユニット1RAを構成し、第3、第4系統の冷凍サイクルユニットR3、R4で上記第2の冷凍サイクルユニット2RBを構成する。
FIG. 8 is a configuration diagram of the refrigeration cycle of the chilling unit Y including the first to fourth refrigeration cycles R1 to R4.
The first and second refrigeration cycles R1 and R2 constitute the first refrigeration cycle unit 1RA, and the third and fourth refrigeration cycle units R3 and R4 constitute the second refrigeration cycle unit 2RB. Constitute.
 一部を除いて各系統とも同一構成の冷凍サイクルであるので、ここでは第1系統の冷凍サイクルR1のみを説明し、第2~第4系統の冷凍サイクルR2~R4については同番号を付して新たな説明を省略する。 
 能力可変型の圧縮機17の吐出側冷媒管に四方弁18の第1のポートが接続され、この四方弁18の第2のポートに接続される冷媒管は分岐して一対の空気熱交換器3,3に連通される。上記一対の空気熱交換器3,3は、図4及び図5で説明したように互いに対向して設けられ、1組の熱交換器モジュールMを構成する。
Since the refrigeration cycle has the same configuration except for a part, only the first refrigeration cycle R1 will be described here, and the second to fourth refrigeration cycles R2 to R4 will be assigned the same numbers. Thus, a new description is omitted.
The first port of the four-way valve 18 is connected to the discharge side refrigerant pipe of the variable capacity compressor 17, and the refrigerant pipe connected to the second port of the four-way valve 18 is branched to form a pair of air heat exchangers. 3 and 3 are communicated. The pair of air heat exchangers 3, 3 are provided to face each other as described with reference to FIGS. 4 and 5 and constitute a set of heat exchanger modules M.
 それぞれの空気熱交換器3,3を構成する熱交換パイプは集合管にまとめられ、膨張弁19が設けられる分岐した冷媒管に連通する。この分岐した冷媒管も1本にまとめられ、第1のレシーバ10aを介して第1の水熱交換器11に設けられる第1の冷媒流路40に連通する。 The heat exchange pipes constituting each of the air heat exchangers 3 and 3 are collected into a collecting pipe and communicated with a branched refrigerant pipe provided with an expansion valve 19. The branched refrigerant pipes are also combined into one, and communicated with the first refrigerant flow path 40 provided in the first water heat exchanger 11 via the first receiver 10a.
 なお、上記膨張弁19は分岐した冷媒管にそれぞれ設けたが、これに限定されるものではなく、分岐した冷媒管を1本にまとめた冷媒管に設けるようにしてもよい。したがって、1個の膨張弁19であってもよい。 
 第1の冷媒流路40は、四方弁18の第3のポートに冷媒管を介して連通する。四方弁18の第4のポートは、気液分離器20を介して圧縮機17の吸込み部に冷媒管を介して連通する。
In addition, although the said expansion valve 19 was each provided in the branched refrigerant pipe, it is not limited to this, You may make it provide in the refrigerant pipe which put the branched refrigerant pipe into one. Therefore, one expansion valve 19 may be used.
The first refrigerant flow path 40 communicates with the third port of the four-way valve 18 via a refrigerant pipe. The fourth port of the four-way valve 18 communicates with the suction portion of the compressor 17 via the gas-liquid separator 20 via the refrigerant pipe.
 このように第1系統の冷凍サイクルR1が構成される一方で、水回路Zとして、例えば空調すべき場所からの戻り管である第1の水配管P1が水循環ポンプ13に接続される。この水循環ポンプ13から、第2の水配管P2を介して第1の水熱交換器11における水流路33に接続される。 Thus, while the refrigeration cycle R1 of the first system is configured, as the water circuit Z, for example, a first water pipe P1 that is a return pipe from a place to be air-conditioned is connected to the water circulation pump 13. The water circulation pump 13 is connected to the water flow path 33 in the first water heat exchanger 11 through the second water pipe P2.
 第1の水熱交換器11の水流路33は、第3の水配管P3を介して第2の水熱交換器12の水流路33に連通される。第2の水熱交換器12では、第4の水配管P4が上記水流路33に連通されていて、第4の水配管P4から空調すべき場所に導かれる。 The water flow path 33 of the first water heat exchanger 11 is communicated with the water flow path 33 of the second water heat exchanger 12 via the third water pipe P3. In the second water heat exchanger 12, the fourth water pipe P4 communicates with the water flow path 33 and is led from the fourth water pipe P4 to the place to be air-conditioned.
 第2系統の冷凍サイクルR2も全く同様に構成されていて、特に第2のレシーバ10bと四方弁18を連通する冷媒管が、第1の水熱交換器11における第2の冷媒流路41に接続される。 
 すなわち、第1の水熱交換器11には、1つの水流路33の両側に第1の冷媒流路40と第2の冷媒流路41が交互に設けられていて、1つの水熱交換器11を第1と第2の2系統の冷凍サイクルR1,R2が共有し、並列に接続される。
The refrigeration cycle R2 of the second system is configured in exactly the same manner, and in particular, a refrigerant pipe communicating the second receiver 10b and the four-way valve 18 is provided in the second refrigerant flow path 41 in the first water heat exchanger 11. Connected.
That is, in the first water heat exchanger 11, the first refrigerant flow path 40 and the second refrigerant flow path 41 are alternately provided on both sides of one water flow path 33, and one water heat exchanger 11 11 is shared by the first and second two refrigeration cycles R1 and R2 and connected in parallel.
 第2の水熱交換器12も同様に、1つの水流路33の両側に第3のレシーバ10cに連通する第1の冷媒流路40と、第4のレシーバ10dに連通する第2の冷媒流路41が交互に設けられていて、1つの水熱交換器12を第3と第4の2系統の冷凍サイクルR3,R4が共有し、並列に接続される。 Similarly, the second water heat exchanger 12 also has a first refrigerant flow path 40 communicating with the third receiver 10c on both sides of one water flow path 33 and a second refrigerant flow communicating with the fourth receiver 10d. The paths 41 are alternately provided, and the third and fourth two refrigeration cycles R3 and R4 share one hydrothermal exchanger 12 and are connected in parallel.
 このように、機械室2には水循環ポンプ13と、第1の水熱交換器11及び、第2の水熱交換器12が備えられ、かつ第1~第4の水配管P1~P4は、水循環ポンプ13と、第1の水熱交換器11と、第2の水熱交換器12を直列に連通する。 
 そして、第1系統の冷凍サイクルR1と、第2系統の冷凍サイクルR2とで、第1の冷凍サイクルユニット1RAが構成され、第3系統の冷凍サイクルR3と、第4系統の冷凍サイクルR4とで、第2の冷凍サイクルユニット2RBが構成されることになる。
Thus, the machine room 2 is provided with the water circulation pump 13, the first water heat exchanger 11 and the second water heat exchanger 12, and the first to fourth water pipes P1 to P4 are The water circulation pump 13, the first water heat exchanger 11, and the second water heat exchanger 12 are connected in series.
The first refrigeration cycle R1 and the second refrigeration cycle R2 constitute the first refrigeration cycle unit 1RA. The third refrigeration cycle R3 and the fourth refrigeration cycle R4 The second refrigeration cycle unit 2RB is configured.
 このチリングユニットYにおいて、冷房作用をなすために冷水を得るには、以下に述べるようになる。 
 例えば第1ないし第4系統の冷凍サイクルR1~R4の、それぞれの圧縮機17を一斉に駆動して冷媒を圧縮させると、高温高圧化した冷媒ガスが吐出される。冷媒ガスは四方弁18から一対の空気熱交換器3に導かれ、送風機Sの駆動により送風される空気と熱交換する。冷媒ガスは凝縮液化し、膨張弁19に導かれて断熱膨張する。
In this chilling unit Y, in order to obtain cold water in order to perform a cooling action, it will be described below.
For example, when the compressors 17 of the first to fourth refrigeration cycles R1 to R4 are driven all at once to compress the refrigerant, high-temperature and high-pressure refrigerant gas is discharged. The refrigerant gas is guided from the four-way valve 18 to the pair of air heat exchangers 3 and exchanges heat with the air blown by driving the blower S. The refrigerant gas condenses and is led to the expansion valve 19 and adiabatically expands.
 そのあと、液冷媒は合流してそれぞれのレシーバ10a~10dに一旦溜まったあと、第1の水熱交換器11における第1の冷媒流路40と第2の冷媒流路41に導かれ、水流路33に導かれる水と熱交換する。冷媒流路40,41の冷媒は蒸発して水流路33の水から蒸発潜熱を奪い、水流路33の水は冷却され冷水に換る。 After that, the liquid refrigerant merges and temporarily accumulates in each of the receivers 10a to 10d, and then is guided to the first refrigerant flow path 40 and the second refrigerant flow path 41 in the first hydrothermal exchanger 11, and the water flow Heat exchange with water led to the passage 33 is performed. The refrigerant in the refrigerant channels 40 and 41 evaporates and takes latent heat of evaporation from the water in the water channel 33, and the water in the water channel 33 is cooled and converted to cold water.
 第1の水熱交換器11では、第1、第2系統の冷凍サイクルR1,R2のそれぞれと連通する第1、第2の冷媒流路40,41を備えることで、効率良く冷水化する。水循環ポンプ13から送られる水が、例えば12℃であるとき、第1の水熱交換器11において2系統の冷凍サイクルR1,R2の冷媒流路40,41に導かれる冷媒によって2.5℃冷却され、9.5℃に温度低下する。 In the first water heat exchanger 11, the first and second refrigerant flow paths 40 and 41 communicating with the first and second refrigeration cycles R1 and R2 are provided to efficiently cool the water. When the water sent from the water circulation pump 13 is, for example, 12 ° C., it is cooled by 2.5 ° C. by the refrigerant guided to the refrigerant flow paths 40, 41 of the two refrigeration cycles R1, R2 in the first water heat exchanger 11. The temperature drops to 9.5 ° C.
 そして、温度低下した冷水が第1の水配管P1を介して第2の水熱交換器12に導かれ、ここでも2系統である第3、第4の冷凍サイクルR3,R4と連通する第1、第2の冷媒流路40,41と熱交換する。 Then, the cold water whose temperature has decreased is led to the second water heat exchanger 12 via the first water pipe P1, and the first and second refrigeration cycles R3 and R4, which are also two systems here, communicate with each other. The heat exchange with the second refrigerant channels 40 and 41 is performed.
 したがって、9,5℃で導入された水が、第2の水熱交換器12において、さらに2.5℃冷却されて7℃に温度低下した冷水となって導出される。この冷水は、導出管である第2の水配管P2を介して空調すべき場所に導かれ、室内ファンにより導かれる空気に冷熱を放出して冷房作用をなす。 Therefore, the water introduced at 9.5 ° C. is derived as cold water that is further cooled by 2.5 ° C. and lowered in temperature to 7 ° C. in the second hydrothermal exchanger 12. This cold water is led to a place to be air-conditioned through the second water pipe P2 which is a lead-out pipe, and cools the air led by the indoor fan to perform a cooling action.
 また、各水熱交換器11,12で蒸発した冷媒は四方弁18を介して気液分離器20に導かれ気液分離された後、圧縮機17に吸込まれて再び圧縮され上述の冷凍サイクルを繰り返す。 
 このように、第1の水熱交換器11と第2の水熱交換器12の水流路33、33を直列に接続することにより、冷水が2段階で温度低下するので、より有効な冷房性能を得られる。
The refrigerant evaporated in each of the water heat exchangers 11 and 12 is guided to the gas-liquid separator 20 via the four-way valve 18 and separated from the gas and liquid, and then sucked into the compressor 17 and compressed again to be compressed as described above. repeat.
In this way, by connecting the water flow paths 33 and 33 of the first water heat exchanger 11 and the second water heat exchanger 12 in series, the temperature of the chilled water is lowered in two stages, and thus more effective cooling performance. Can be obtained.
 第1の水熱交換器11は、2系統である第1の冷凍サイクルR1及び第2の冷凍サイクルR2と連通することで、それぞれの冷凍サイクルR1,R2に1台ずつの圧縮機17を搭載することが可能となる。 
 第2の水熱交換器12も、2系統である第3の冷凍サイクルR3及び第4の冷凍サイクルR4と連通することで、それぞれの冷凍サイクルR3,R4に1台ずつの圧縮機17を搭載することが可能となる。
The first water heat exchanger 11 is connected to the first refrigeration cycle R1 and the second refrigeration cycle R2, which are two systems, so that one compressor 17 is mounted on each refrigeration cycle R1, R2. It becomes possible to do.
The second water heat exchanger 12 is also connected to the third refrigeration cycle R3 and the fourth refrigeration cycle R4, which are two systems, so that one compressor 17 is installed in each of the refrigeration cycles R3 and R4. It becomes possible to do.
 したがって、全ての冷凍サイクルR1~R4が独立し、冷媒回路内を循環する潤滑油の圧縮機17内の均油を行う必要が無くなり、均油による性能の低下を防ぐことができる。たとえ1系統の冷凍サイクルが運転停止しても、他の3系統の冷凍サイクルで運転を継続でき、運転停止の影響を最小限に抑えられ、信頼性の確保を図れる。 
 また、全ての圧縮機17と、水循環ポンプが能力可変型であるため、冷房負荷に応じて効率の良い運転が可能となる。
Therefore, all the refrigeration cycles R1 to R4 are independent, so that it is not necessary to perform the oil leveling in the compressor 17 of the lubricating oil circulating in the refrigerant circuit, and it is possible to prevent the performance from being deteriorated due to the leveling. Even if the refrigeration cycle of one system is stopped, the operation can be continued with the other three refrigeration cycles, the influence of the operation stop can be minimized, and the reliability can be ensured.
In addition, since all the compressors 17 and the water circulation pump are variable in capacity, efficient operation is possible according to the cooling load.
 暖房作用をなすために温水を得るには、以下に述べるようになる。 
 各冷凍サイクルの圧縮機17を一斉に駆動して冷媒を圧縮すると、高温高圧化した冷媒ガスが吐出される。冷媒ガスは、四方弁18から第1の水熱交換器11における第1の冷媒流路40に導かれ、水循環ポンプ13から水流路33に導かれる水と熱交換する。第1の水熱交換器11で冷媒は凝縮液化し、凝縮熱で水流路33の水が加熱される。
In order to obtain hot water for the heating operation, it will be described below.
When the compressor 17 of each refrigeration cycle is driven all at once and the refrigerant is compressed, a high-temperature and high-pressure refrigerant gas is discharged. The refrigerant gas is led from the four-way valve 18 to the first refrigerant flow path 40 in the first water heat exchanger 11 and exchanges heat with water led from the water circulation pump 13 to the water flow path 33. The refrigerant is condensed and liquefied by the first water heat exchanger 11, and the water in the water flow path 33 is heated by the condensation heat.
 ここでも、2系統の冷凍サイクルと連通する第1の冷媒流路40及び第2の冷媒流路41が、第1の水熱交換器11と第2の水熱交換器12に備えられるので、効率良く温水化する。第1の水熱交換器11と第2の水熱交換器12が直列に連通しているので、温水は2段階に亘って温度上昇して暖房性能の向上を得る。 Again, since the first refrigerant flow path 40 and the second refrigerant flow path 41 communicating with the two refrigeration cycles are provided in the first water heat exchanger 11 and the second water heat exchanger 12, Efficiently warm water. Since the first water heat exchanger 11 and the second water heat exchanger 12 communicate with each other in series, the temperature of the hot water rises over two stages to improve the heating performance.
 第1の水熱交換器11から導出される液冷媒は、第1のレシーバ10aと膨張弁19に導かれ、断熱膨張したあと空気熱交換器3,3に導かれて蒸発する。蒸発した冷媒は、四方弁18と気液分離器20を介して圧縮機17に吸込まれ、再び圧縮されて上述の冷凍サイクルを繰り返す。他の冷凍サイクルにおいても同様の経路に循環する。 The liquid refrigerant derived from the first water heat exchanger 11 is led to the first receiver 10a and the expansion valve 19, and after adiabatic expansion, is led to the air heat exchangers 3 and 3 to evaporate. The evaporated refrigerant is sucked into the compressor 17 through the four-way valve 18 and the gas-liquid separator 20, and is compressed again to repeat the above-described refrigeration cycle. In other refrigeration cycles, it circulates in the same route.
 なお、温水を得る暖房運転中は、熱交換器モジュールMを構成する一対の空気熱交換器3,3で冷媒が蒸発し、空気中の水分を凝縮させてドレン水が付着する。外気温が極く低温であると、付着したドレン水が凍結し霜となって付着し易い。この着霜をセンサーが感知し、制御用ボックス8内の制御用電子部品に信号を送る。 In addition, during the heating operation for obtaining hot water, the refrigerant evaporates in the pair of air heat exchangers 3 and 3 constituting the heat exchanger module M, condenses moisture in the air, and drain water adheres. When the outside air temperature is extremely low, the attached drain water is frozen and easily becomes frost. The sensor detects this frost formation and sends a signal to the control electronic component in the control box 8.
 制御用電子部品は、センサーが着霜を感知した空気熱交換器3,3を備えた冷凍サイクルを、暖房運転から冷房運転に切換える指示を出す。センサーが感知しない空気熱交換器3,3を備えた冷凍サイクルは、そのまま暖房運転を継続する。 
 冷房運転に切換った冷凍サイクルにおいては、四方弁18が切換り、冷媒が圧縮機17から四方弁18を介して空気熱交換器3,3に導かれ、凝縮して液冷媒に変る。冷媒の凝縮変化にともなって凝縮熱を放出し、ここに付着していた霜が溶融する。
The control electronic component issues an instruction to switch the refrigeration cycle including the air heat exchangers 3 and 3 whose frost formation is detected by the sensor from the heating operation to the cooling operation. The refrigeration cycle including the air heat exchangers 3 and 3 that are not detected by the sensor continues the heating operation as it is.
In the refrigeration cycle switched to the cooling operation, the four-way valve 18 is switched, and the refrigerant is guided from the compressor 17 to the air heat exchangers 3 and 3 through the four-way valve 18 and condensed to be converted into liquid refrigerant. Condensation heat is released as the refrigerant condenses, and the frost adhering to it is melted.
 各熱交換器モジュールMの両側部に遮蔽板15,15を備えたので、互いに対向する空気熱交換器3,3間から空気が抜けることがないとともに、隣接する熱交換器モジュールMからの空気の侵入を阻止する。したがって、除霜運転中の空気熱交換器3,3と、暖房運転を継続する空気熱交換器3,3が互いに熱影響を及ぼすことがない。 Since the shielding plates 15 and 15 are provided on both sides of each heat exchanger module M, air does not escape from between the air heat exchangers 3 and 3 facing each other, and air from the adjacent heat exchanger module M is also present. To prevent intrusion. Therefore, the air heat exchangers 3 and 3 during the defrosting operation and the air heat exchangers 3 and 3 that continue the heating operation do not affect each other.
 また、例えば第1の水熱交換器11における第1の冷媒流路40において冷媒が蒸発し、水流路33に導かれる温水を冷却する。しかしながら、第1の水熱交換器11における第2の冷媒流路41は、暖房運転を継続する第2の冷凍サイクルR2に連通していて、冷媒が凝縮し凝縮熱を水流路Wの温水に放出している。 Further, for example, the refrigerant evaporates in the first refrigerant flow path 40 in the first water heat exchanger 11, and the hot water led to the water flow path 33 is cooled. However, the second refrigerant flow path 41 in the first water heat exchanger 11 communicates with the second refrigeration cycle R2 that continues the heating operation, and the refrigerant condenses and condenses heat into the hot water in the water flow path W. Released.
 したがって、第1の水熱交換器11から導出された状態での温水の温度低下は極く小範囲に保持される。結局、1組の冷凍サイクルだけの除霜運転切換えであるならば、第1の水熱交換器11から供出される温水の温度低下が僅かですむ。 
 また、全ての圧縮機17と、水循環ポンプ13が能力可変型であるため、暖房負荷に応じて効率の良い運転が可能となる。
Therefore, the temperature drop of the hot water in the state derived from the first water heat exchanger 11 is kept in a very small range. After all, if the defrosting operation is switched only for one set of refrigeration cycles, the temperature drop of the hot water supplied from the first water heat exchanger 11 is only slight.
Further, since all the compressors 17 and the water circulation pump 13 are variable in capacity, efficient operation is possible according to the heating load.
 このように機械室2内に、制御用ボックス8と、複数の冷凍サイクルユニット1RA,2RBと、水循環ポンプ13及び、冷媒配管と水回り配管が収容されるが、これら全ては筐体Fを構成する側板2aと端板2b内部に納まる。すなわち、図1に示すように完成した状態のチリングユニットYにおいては、筐体Fから露出する部材が無い。 As described above, the control box 8, the plurality of refrigeration cycle units 1 RA and 2 RB, the water circulation pump 13, the refrigerant pipe and the water pipe are housed in the machine room 2. The side plate 2a and the end plate 2b are placed inside. That is, as shown in FIG. 1, in the completed chilling unit Y, there is no member exposed from the housing F.
 したがって、チリングユニットYを設置現場に搬入してから行う施工作業の軽減化が得られることは勿論のこと、省スペース化を得られて有利である。特に、水循環ポンプ13を筐体内に収容したことで、風雨・直射日光に晒されることが無くなり、この長寿命化を得られる。 Therefore, not only can the construction work performed after the chilling unit Y is carried into the installation site be reduced, but it is advantageous in that it can save space. In particular, since the water circulation pump 13 is accommodated in the housing, it is not exposed to wind and rain and direct sunlight, and this can increase the life.
 上記チリングユニットYは、筐体Fの正面N手前から奥側へ順に、制御用ボックス8、第2の冷凍サイクルユニット2RB、第1の冷凍サイクルユニット1RA、水循環ポンプ13を配置した。制御用ボックス8が設けられる正面N側の端部には、チリングユニットY配置場所の通路T(もしくは空間スペース)が設けられる。 In the chilling unit Y, a control box 8, a second refrigeration cycle unit 2RB, a first refrigeration cycle unit 1RA, and a water circulation pump 13 are arranged in this order from the front N front side to the back side of the housing F. At the end on the front N side where the control box 8 is provided, a passage T (or a space) where the chilling unit Y is arranged is provided.
 すなわち、メンテナンス作業時に作業者が通路Tから奥に入ることなく、通路T上の位置を保持したままで端板2bを取外せば直ちに制御用ボックス8が現れ、作業性の向上を図れる。 That is, if the end plate 2b is removed while maintaining the position on the passage T without the operator entering the back from the passage T during the maintenance work, the control box 8 appears immediately, and the workability can be improved.
 第1系統の冷凍サイクルR1と第2系統の冷凍サイクルR2は、第1の水熱交換器11を共用していて、これらで第1の冷凍サイクルユニット1RAを構成する。同様に、第3系統の冷凍サイクルR3と第4系統の冷凍サイクルR4は、第2の水熱交換器12を共用していて、これらで第2の冷凍サイクルユニット2RBを構成する。 The first system refrigeration cycle R1 and the second system refrigeration cycle R2 share the first water heat exchanger 11, and constitute a first refrigeration cycle unit 1RA. Similarly, the refrigeration cycle R3 of the third system and the refrigeration cycle R4 of the fourth system share the second water heat exchanger 12, and constitute a second refrigeration cycle unit 2RB.
 機械室2に収容される第1の冷凍サイクルユニット1RA及び第2の冷凍サイクルユニット2RBは、それぞれが2台の圧縮機17と、2個の四方弁18と、2個(実際には4個)の膨張弁19と、2台の気液分離器20及び、1台の水熱交換器11もしくは12を備えて、それぞれが1台の水熱交換器に対して2系統の冷凍サイクルR1,R2もしくはR3,R4が並列に接続される。 
 そして、第1の冷凍サイクルユニット1RAと、第2の冷凍サイクルユニット2RBは、それぞれが第2のドレンパン7b上に載置され、冷凍サイクルをユニット化したので、これら構成部品の組立てが容易となる。
Each of the first refrigeration cycle unit 1RA and the second refrigeration cycle unit 2RB accommodated in the machine room 2 includes two compressors 17, two four-way valves 18, and two (actually four). ) Expansion valve 19, two gas-liquid separators 20, and one hydrothermal exchanger 11 or 12, each of which has two refrigeration cycles R 1, one hydrothermal exchanger. R2 or R3 and R4 are connected in parallel.
Since the first refrigeration cycle unit 1RA and the second refrigeration cycle unit 2RB are each placed on the second drain pan 7b and the refrigeration cycle is unitized, it is easy to assemble these components. .
 第1の冷凍サイクルユニット1RAにおける第1の水熱交換器11と、第2の冷凍サイクルユニット2RBにおける第2の水熱交換器12を、互いに直列に接続したので、2段階に亘って冷水もしくは温水を生成することとなり、全体的に冷凍サイクルの熱効率が良くなる。 Since the first water heat exchanger 11 in the first refrigeration cycle unit 1RA and the second water heat exchanger 12 in the second refrigeration cycle unit 2RB are connected in series with each other, cold water or Hot water will be generated, and the overall thermal efficiency of the refrigeration cycle will be improved.
 1台の熱交換器モジュールMは、互いに対向する2台の空気熱交換器3,3を備える。第1の冷凍サイクルユニット1RAと、第2の冷凍サイクルユニット2RBは、それぞれ2台ずつ、計4台の熱交換器モジュールMを備えている。そして、各熱交換器モジュールMは、独立して備えられる第1のドレンパン7a上に載置される。 One heat exchanger module M includes two air heat exchangers 3 and 3 facing each other. The first refrigeration cycle unit 1RA and the second refrigeration cycle unit 2RB each include two heat exchanger modules M, two in total. And each heat exchanger module M is mounted on the 1st drain pan 7a provided independently.
 このように各熱交換器モジュールMを載置する第1のドレンパン7aは、それぞれが独立しているので、熱交換器モジュールMの組立て作業が容易になる。各冷凍サイクル系統R1~R4において、独立して除霜した場合に、他の冷凍サイクル系統で再氷結することがない。 Since the first drain pans 7a on which the heat exchanger modules M are placed in this way are independent of each other, the assembly work of the heat exchanger modules M is facilitated. In each refrigeration cycle system R1 to R4, when defrosting is performed independently, re-freezing does not occur in other refrigeration cycle systems.
 図9は、大規模建築物に備えるのに最適な、複数のチリングユニットYで装置を構成する一例を示している。すなわち、先に図1で説明した4基の熱交換器モジュールMを直結したチリングユニットYを3列、並列に設けてなる。 FIG. 9 shows an example in which the apparatus is composed of a plurality of chilling units Y, which is optimal for preparing for a large-scale building. That is, three rows of chilling units Y directly connected to the four heat exchanger modules M described in FIG. 1 are provided in parallel.
 ここに用いられるチリングユニットYは、筐体Fを構成する下部枠Fbの、特に長手方向に沿う辺部に、複数の空気吸込み口65が所定間隔を存して設けられている。通常、チリングユニットは下部に現地水配管(戻り管や往き管)等を配管するための支持台上に設置される。チリングユニットYの下部に空気吸込み口65を設けることにより、チリングユニットYの下部枠Fbの上面空間と支持台下部のスペースとが連通される。 The chilling unit Y used here is provided with a plurality of air suction ports 65 at predetermined intervals on the side of the lower frame Fb constituting the housing F, particularly along the longitudinal direction. Usually, the chilling unit is installed on a support base for piping a local water pipe (return pipe or forward pipe) in the lower part. By providing the air suction port 65 at the lower part of the chilling unit Y, the upper surface space of the lower frame Fb of the chilling unit Y and the space at the lower part of the support base are communicated.
 4基の熱交換器モジュールMを直結したチリングユニットYを3列並べた状態にしているから、特に真ん中の列のチリングユニットYにとって、左右両側の下部枠Fbが両側列のチリングユニットYの下部枠Fbとほとんど密着状態になる。ただし、それぞれの下部枠Fbに設けられる上記空気吸込み口65の開口状態はそのまま保持される。 Since the chilling units Y directly connected to the four heat exchanger modules M are arranged in three rows, the lower frames Fb on both the left and right sides are the lower portions of the chilling units Y in both rows, particularly for the chilling unit Y in the middle row. It is almost in close contact with the frame Fb. However, the opening state of the air suction port 65 provided in each lower frame Fb is maintained as it is.
 図10に示すように、全てのチリングユニットYを一斉に作動した状態で、それぞれのチリングユニットYに備えられる4台の送風機Sも一斉に駆動される。したがって、各列チリングユニットYを構成する熱交換器モジュールMの左右両側から空気が吸込まれ、それぞれの熱交換器モジュールMと熱交換した後、この上端部から吹出される。 As shown in FIG. 10, in a state where all the chilling units Y are operated at the same time, the four blowers S provided in each chilling unit Y are also driven at the same time. Therefore, air is sucked in from the left and right sides of the heat exchanger module M constituting each row chilling unit Y, and after heat exchange with each heat exchanger module M, is blown out from the upper end portion.
 特に、左右両側列のチリングユニットYにおける片面には、他の構成部品が存在しないので熱交換空気が円滑に吸込まれる。しかしながら、左右両側列のチリングユニットYにおける他の片面と、真ん中列のチリングユニットYにおける左右両側面には、互いに対向するチリングユニットYが存在している。 Especially, since there are no other components on one side of the chilling unit Y in the left and right side rows, the heat exchange air is smoothly drawn in. However, there are chilling units Y facing each other on the other side of the chilling units Y in the left and right rows and the left and right sides of the chilling units Y in the middle row.
 それぞれの送風機Sの作動にともない、チリングユニットYの長手方向の一端面で、かつ互いに対向するチリングユニットY相互の空間部Uから空気が吸込まれる。ただし、本来、この空間部UはチリングユニットYの長手方向に沿って形成されるので、吸込まれる空気量としては不足がちである。 With the operation of each blower S, air is sucked from one end surface in the longitudinal direction of the chilling unit Y and from the space U between the chilling units Y facing each other. However, since the space U is originally formed along the longitudinal direction of the chilling unit Y, the amount of air sucked tends to be insufficient.
 ここでは、上述したようにチリングユニットYの筐体Fを構成する下部枠Fbに複数の空気吸込み口65を設けている。送風機Sが駆動されれば、上記空気吸込み口65からも空気が吸込まれて空間部Uに沿う熱交換器モジュールMに導かれる。したがって、熱交換器モジュールMに対する熱交換空気量の不足が解消され、熱交換効率の向上化を得る。 Here, as described above, a plurality of air suction ports 65 are provided in the lower frame Fb constituting the casing F of the chilling unit Y. When the blower S is driven, air is also sucked from the air suction port 65 and guided to the heat exchanger module M along the space U. Therefore, the shortage of the heat exchange air amount with respect to the heat exchanger module M is solved, and the heat exchange efficiency is improved.
 なお、本発明は上述した実施の形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。そして、上述した実施の形態に開示されている複数の構成要素の適宜な組合せにより種々の発明を形成できる。 Note that the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above-described embodiments.
 本発明によれば、制御用ボックスに対するメンテナンス作業の容易化を図り、作業性の向上を図れる等の効果を奏する。 According to the present invention, the maintenance work for the control box can be facilitated, and the workability can be improved.

Claims (7)

  1.  上部に空気熱交換器を備えた熱交換部が載設され、内部に機械室が形成される筐体と、
     この筐体内の上記機械室に収容される、上記空気熱交換器を除く冷凍サイクル機器からなる複数の独立した冷凍サイクルユニットと、1台の水循環ポンプ及び、制御用電子部品を備えた制御用ボックスとを具備し、
     上記筐体の奥側から正面手前へ順に、上記水循環ポンプ、第1の冷凍サイクルユニット、第2の冷凍サイクルユニット、上記制御用ボックスを配置した
    ことを特徴とするチリングユニット。
    A housing in which a heat exchanging unit having an air heat exchanger is mounted on the top and a machine room is formed inside,
    A control box including a plurality of independent refrigeration cycle units including a refrigeration cycle apparatus excluding the air heat exchanger, one water circulation pump, and control electronic components housed in the machine room in the housing And
    A chilling unit in which the water circulation pump, the first refrigeration cycle unit, the second refrigeration cycle unit, and the control box are arranged in order from the back side of the housing to the front side.
  2.  上記筐体内の機械室に収容される第1の冷凍サイクルユニット及び第2の冷凍サイクルユニットは、それぞれが水熱交換器を共有して並列に接続される複数の冷凍サイクルを備える
    ことを特徴とする請求項1記載のチリングユニット。
    The first refrigeration cycle unit and the second refrigeration cycle unit housed in the machine room in the housing include a plurality of refrigeration cycles that are connected in parallel with each other sharing a water heat exchanger. The chilling unit according to claim 1.
  3.  上記第1の冷凍サイクルユニットに備えられる水熱交換器と、第2の冷凍サイクルユニットに備えられる水熱交換器は、互いに水配管を介して直列に連通される
    ことを特徴とする請求項2記載のチリングユニット。
    The water heat exchanger provided in the first refrigeration cycle unit and the water heat exchanger provided in the second refrigeration cycle unit are communicated with each other in series via a water pipe. The chilling unit described.
  4.  上記水循環ポンプは、上記水配管及び水熱交換器で構成される水回路の最下部または最下部と最上部との間に配置される
    ことを特徴とする請求項3記載のチリングユニット。
    The chilling unit according to claim 3, wherein the water circulation pump is disposed at a lowermost part of a water circuit including the water pipe and the water heat exchanger or between the lowermost part and the uppermost part.
  5.  上記筐体の上部に載設される熱交換部は、一対の空気熱交換器を対向して配置する熱交換器モジュールを備え、
     上記熱交換器モジュールは、上記第1の冷凍サイクルユニット及び上記第2の冷凍サイクルユニットそれぞれの冷凍サイクルの数に対応して備えられ、
     それぞれの熱交換器モジュールは、互いに独立したドレンパン上に載置される
    ことを特徴とする請求項2及び請求項4のいずれかに記載のチリングユニット。
    The heat exchange unit mounted on the upper part of the housing includes a heat exchanger module that arranges a pair of air heat exchangers facing each other,
    The heat exchanger module is provided corresponding to the number of refrigeration cycles of each of the first refrigeration cycle unit and the second refrigeration cycle unit,
    5. The chilling unit according to claim 2, wherein each of the heat exchanger modules is placed on a drain pan independent of each other.
  6.  上記圧縮機及び上記水循環ポンプは全て能力可変型であることを特徴とする
    請求項1及び請求項4のいずれかに記載のチリングユニット。
    The chilling unit according to any one of claims 1 and 4, wherein the compressor and the water circulation pump are all variable in capacity.
  7.  上記筐体は、筐体設置面に沿う下部枠と、上記空気熱交換器を載置する上部枠と、これら下部枠と上部枠とを連結する縦枠とから構成され、
     上記下部枠には、空気吸込み口が開口される
    ことを特徴とする請求項1記載のチリングユニット。
    The casing is composed of a lower frame along the casing installation surface, an upper frame on which the air heat exchanger is placed, and a vertical frame connecting the lower frame and the upper frame.
    The chilling unit according to claim 1, wherein an air suction port is opened in the lower frame.
PCT/JP2011/053166 2010-02-15 2011-02-15 Chilling unit WO2011099629A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180009461.XA CN102753895B (en) 2010-02-15 2011-02-15 Chilling unit
JP2011553918A JP5401563B2 (en) 2010-02-15 2011-02-15 Chilling unit
KR1020127021053A KR101388844B1 (en) 2010-02-15 2011-02-15 Chilling unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-030527 2010-02-15
JP2010030527 2010-02-15

Publications (1)

Publication Number Publication Date
WO2011099629A1 true WO2011099629A1 (en) 2011-08-18

Family

ID=44367892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053166 WO2011099629A1 (en) 2010-02-15 2011-02-15 Chilling unit

Country Status (4)

Country Link
JP (1) JP5401563B2 (en)
KR (1) KR101388844B1 (en)
CN (2) CN105004027B (en)
WO (1) WO2011099629A1 (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013061115A (en) * 2011-09-13 2013-04-04 Mitsubishi Electric Corp Refrigeration cycle system
JP2013124843A (en) * 2011-12-16 2013-06-24 Mitsubishi Electric Corp Refrigeration cycle system
JP2013148275A (en) * 2012-01-19 2013-08-01 Dainippon Printing Co Ltd Air-cooling chiller system
WO2014047861A1 (en) * 2012-09-28 2014-04-03 Trane International Inc. Air conditioning outdoor unit
WO2014149482A1 (en) * 2013-03-15 2014-09-25 Carrier Corporation Modular coil for air cooled chillers
JP2014219186A (en) * 2013-04-12 2014-11-20 ダイキン工業株式会社 Chiller device
WO2015000114A1 (en) * 2013-07-01 2015-01-08 Trane International Inc. Air conditioning outdoor unit
WO2016051607A1 (en) * 2014-10-03 2016-04-07 三菱電機株式会社 Refrigeration cycle device
JP2016090083A (en) * 2014-10-30 2016-05-23 日立アプライアンス株式会社 Air conditioner
WO2016171177A1 (en) * 2015-04-21 2016-10-27 三菱電機株式会社 Heat source unit
JP2017032177A (en) * 2015-07-29 2017-02-09 ダイキン工業株式会社 Chiller device
WO2018000601A1 (en) * 2016-06-29 2018-01-04 北京丰联奥睿科技有限公司 Multi-branch heat pipe/heat pump composite system
WO2018062054A1 (en) * 2016-09-27 2018-04-05 東芝キヤリア株式会社 Refrigeration cycle device
WO2018070422A1 (en) * 2016-10-14 2018-04-19 三菱重工サーマルシステムズ株式会社 Air chiller
JP2018109455A (en) * 2016-12-28 2018-07-12 株式会社前川製作所 Air-cooled type heat exchange unit and cooler unit
EP3296651A4 (en) * 2015-05-14 2018-12-12 Mitsubishi Electric Corporation Outdoor unit for air conditioner
CN109442721A (en) * 2018-11-16 2019-03-08 无锡同方人工环境有限公司 A kind of air cooling module unit outline border
US20190120506A1 (en) * 2016-04-21 2019-04-25 Daikin Industries, Ltd. Heat source unit
EP3447394A4 (en) * 2016-10-14 2019-06-26 Mitsubishi Heavy Industries Thermal Systems, Ltd. Air-cooled chiller
WO2019138910A1 (en) * 2018-01-12 2019-07-18 三菱重工サーマルシステムズ株式会社 Heat exchange unit
US10563894B2 (en) 2015-08-28 2020-02-18 Mitsubishi Electric Corporation Refrigeration cycle apparatus
EP3502586A4 (en) * 2016-09-30 2020-06-17 Daikin Industries, Ltd. Refrigeration device
EP3594577A4 (en) * 2017-03-30 2021-01-13 Daikin Industries, Ltd. Heat source unit for refrigeration device
WO2021024412A1 (en) * 2019-08-07 2021-02-11 三菱電機株式会社 Chilling unit and air conditioning device
WO2021024410A1 (en) * 2019-08-07 2021-02-11 三菱電機株式会社 Chilling unit and air conditioner
JP2021143789A (en) * 2020-03-12 2021-09-24 日立ジョンソンコントロールズ空調株式会社 Refrigeration device and refrigeration system
WO2022071414A1 (en) 2020-09-30 2022-04-07 ダイキン工業株式会社 Heat transfer method
EP4012295A4 (en) * 2019-08-07 2022-08-17 Mitsubishi Electric Corporation Chilling unit and chilling unit system
JP7132651B1 (en) 2021-05-31 2022-09-07 オリオン機械株式会社 temperature controller
WO2022255316A1 (en) * 2021-06-01 2022-12-08 パナソニックIpマネジメント株式会社 Air-conditioning and heat-source machine
JP7188721B1 (en) 2021-05-31 2022-12-13 オリオン機械株式会社 temperature controller
US20230010232A1 (en) * 2020-02-21 2023-01-12 Mitsubishi Electric Corporation Outdoor unit for refrigeration cycle apparatus
WO2023176518A1 (en) * 2022-03-18 2023-09-21 株式会社富士通ゼネラル Outdoor unit of heat pump cycle device, and heat pump cycle device

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017061010A1 (en) 2015-10-08 2017-04-13 三菱電機株式会社 Refrigeration cycle device
JP2017106643A (en) * 2015-12-07 2017-06-15 三菱重工業株式会社 Chiller unit
JP6725871B2 (en) * 2016-02-29 2020-07-22 株式会社富士通ゼネラル Air conditioner outdoor unit
JP6701515B2 (en) * 2016-02-29 2020-05-27 株式会社富士通ゼネラル Air conditioner outdoor unit
JP6935529B2 (en) * 2016-06-16 2021-09-15 東芝キヤリア株式会社 Refrigeration cycle equipment
KR102237808B1 (en) * 2016-06-16 2021-04-07 도시바 캐리어 가부시키가이샤 Refrigeration cycle device
JP6852090B2 (en) * 2016-12-19 2021-03-31 東芝キヤリア株式会社 Refrigeration cycle equipment
JP6853059B2 (en) * 2017-02-10 2021-03-31 株式会社前川製作所 How to assemble the heat exchange unit
CN107796063A (en) * 2017-10-25 2018-03-13 珠海格力电器股份有限公司 Double-system air conditioner outdoor unit
CN107804211A (en) * 2017-10-25 2018-03-16 珠海格力电器股份有限公司 Air conditioner outdoor unit and shelter vehicle
JP7034251B2 (en) 2018-03-07 2022-03-11 三菱電機株式会社 Heat source equipment and refrigeration cycle equipment
EP4027076A4 (en) * 2019-09-05 2023-10-11 Toshiba Carrier Corporation Refrigeration cycle device
KR102317002B1 (en) * 2021-04-30 2021-10-26 주식회사 원방테크 Drain water tank structure for module type HVA equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09229423A (en) * 1996-02-26 1997-09-05 Sanyo Electric Co Ltd Freezer device
JP2002071227A (en) * 2000-06-13 2002-03-08 Mayekawa Mfg Co Ltd Ammonia cooling unit
JP2002235966A (en) * 2001-02-09 2002-08-23 Sanyo Electric Co Ltd Engine-driven air conditioner
JP2003279074A (en) * 2002-03-22 2003-10-02 Zeneral Heat Pump Kogyo Kk Coupling type heat pump chiller
JP2005315480A (en) * 2004-04-28 2005-11-10 Hitachi Home & Life Solutions Inc Heat pump type water heater
JP2008267722A (en) * 2007-04-23 2008-11-06 Mitsubishi Electric Corp Heat source machine and refrigerating air conditioner

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2115365U (en) * 1991-07-03 1992-09-09 中国人民解放军济南军区空军政治部看守所 Quick-mounted submerged water-supply device
CN1309280A (en) * 2000-02-17 2001-08-22 三洋电机株式会社 Refrigerator unit
JP2004340504A (en) * 2003-05-16 2004-12-02 Mitsubishi Heavy Ind Ltd Outdoor unit for air conditioning and air conditioner comprising the same
CN100381753C (en) * 2004-12-27 2008-04-16 李树生 Recovery apparatus of high temperature condensate
JP4714016B2 (en) * 2005-12-13 2011-06-29 東芝キヤリア株式会社 Heat exchange unit
CN201028861Y (en) * 2007-04-05 2008-02-27 中国扬子集团滁州扬子空调器有限公司 Multi-system module type air-cooled heat pump cold and hot water machine set
CN201037719Y (en) * 2007-05-25 2008-03-19 清华大学 Hot-water heat pump set for gradual increasing water temperature

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09229423A (en) * 1996-02-26 1997-09-05 Sanyo Electric Co Ltd Freezer device
JP2002071227A (en) * 2000-06-13 2002-03-08 Mayekawa Mfg Co Ltd Ammonia cooling unit
JP2002235966A (en) * 2001-02-09 2002-08-23 Sanyo Electric Co Ltd Engine-driven air conditioner
JP2003279074A (en) * 2002-03-22 2003-10-02 Zeneral Heat Pump Kogyo Kk Coupling type heat pump chiller
JP2005315480A (en) * 2004-04-28 2005-11-10 Hitachi Home & Life Solutions Inc Heat pump type water heater
JP2008267722A (en) * 2007-04-23 2008-11-06 Mitsubishi Electric Corp Heat source machine and refrigerating air conditioner

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013061115A (en) * 2011-09-13 2013-04-04 Mitsubishi Electric Corp Refrigeration cycle system
JP2013124843A (en) * 2011-12-16 2013-06-24 Mitsubishi Electric Corp Refrigeration cycle system
JP2013148275A (en) * 2012-01-19 2013-08-01 Dainippon Printing Co Ltd Air-cooling chiller system
WO2014047861A1 (en) * 2012-09-28 2014-04-03 Trane International Inc. Air conditioning outdoor unit
WO2014149482A1 (en) * 2013-03-15 2014-09-25 Carrier Corporation Modular coil for air cooled chillers
US10161658B2 (en) 2013-03-15 2018-12-25 Carrier Corporation Modular coil for air cooled chillers
JP2014219186A (en) * 2013-04-12 2014-11-20 ダイキン工業株式会社 Chiller device
WO2015000114A1 (en) * 2013-07-01 2015-01-08 Trane International Inc. Air conditioning outdoor unit
JPWO2016051607A1 (en) * 2014-10-03 2017-04-27 三菱電機株式会社 Refrigeration cycle equipment
WO2016051607A1 (en) * 2014-10-03 2016-04-07 三菱電機株式会社 Refrigeration cycle device
JP2016090083A (en) * 2014-10-30 2016-05-23 日立アプライアンス株式会社 Air conditioner
JP2019015503A (en) * 2015-04-21 2019-01-31 三菱電機株式会社 Heat source unit
JPWO2016171177A1 (en) * 2015-04-21 2017-07-13 三菱電機株式会社 Heat source unit
WO2016171177A1 (en) * 2015-04-21 2016-10-27 三菱電機株式会社 Heat source unit
EP3287706A4 (en) * 2015-04-21 2019-01-16 Mitsubishi Electric Corporation Heat source unit
US10436458B2 (en) 2015-04-21 2019-10-08 Mitsubishi Electric Corporation Heat source unit
US11022327B2 (en) 2015-05-14 2021-06-01 Mitsubishi Electric Corporation Outdoor unit of air-conditioning apparatus
EP3296651A4 (en) * 2015-05-14 2018-12-12 Mitsubishi Electric Corporation Outdoor unit for air conditioner
JP2017032177A (en) * 2015-07-29 2017-02-09 ダイキン工業株式会社 Chiller device
US10563894B2 (en) 2015-08-28 2020-02-18 Mitsubishi Electric Corporation Refrigeration cycle apparatus
US11022328B2 (en) * 2016-04-21 2021-06-01 Daikin Industries, Ltd. Heat source unit
US20190120506A1 (en) * 2016-04-21 2019-04-25 Daikin Industries, Ltd. Heat source unit
WO2018000601A1 (en) * 2016-06-29 2018-01-04 北京丰联奥睿科技有限公司 Multi-branch heat pipe/heat pump composite system
JPWO2018062054A1 (en) * 2016-09-27 2019-07-04 東芝キヤリア株式会社 Refrigeration cycle device
WO2018062054A1 (en) * 2016-09-27 2018-04-05 東芝キヤリア株式会社 Refrigeration cycle device
EP3502586A4 (en) * 2016-09-30 2020-06-17 Daikin Industries, Ltd. Refrigeration device
US10955173B2 (en) 2016-09-30 2021-03-23 Daikin Industries, Ltd. Refrigeration apparatus
EP3441685A4 (en) * 2016-10-14 2019-05-08 Mitsubishi Heavy Industries Thermal Systems, Ltd. Air chiller
EP3447394A4 (en) * 2016-10-14 2019-06-26 Mitsubishi Heavy Industries Thermal Systems, Ltd. Air-cooled chiller
WO2018070422A1 (en) * 2016-10-14 2018-04-19 三菱重工サーマルシステムズ株式会社 Air chiller
JP2018109455A (en) * 2016-12-28 2018-07-12 株式会社前川製作所 Air-cooled type heat exchange unit and cooler unit
EP3594577A4 (en) * 2017-03-30 2021-01-13 Daikin Industries, Ltd. Heat source unit for refrigeration device
JP2019124373A (en) * 2018-01-12 2019-07-25 三菱重工サーマルシステムズ株式会社 Heat exchange unit
WO2019138910A1 (en) * 2018-01-12 2019-07-18 三菱重工サーマルシステムズ株式会社 Heat exchange unit
JP7313796B2 (en) 2018-01-12 2023-07-25 三菱重工サーマルシステムズ株式会社 heat exchange unit
CN109442721A (en) * 2018-11-16 2019-03-08 无锡同方人工环境有限公司 A kind of air cooling module unit outline border
EP4012295A4 (en) * 2019-08-07 2022-08-17 Mitsubishi Electric Corporation Chilling unit and chilling unit system
WO2021024412A1 (en) * 2019-08-07 2021-02-11 三菱電機株式会社 Chilling unit and air conditioning device
WO2021024410A1 (en) * 2019-08-07 2021-02-11 三菱電機株式会社 Chilling unit and air conditioner
JPWO2021024410A1 (en) * 2019-08-07 2021-12-23 三菱電機株式会社 Chilling unit and air conditioner
US20230010232A1 (en) * 2020-02-21 2023-01-12 Mitsubishi Electric Corporation Outdoor unit for refrigeration cycle apparatus
EP4109000A4 (en) * 2020-02-21 2023-03-29 Mitsubishi Electric Corporation Outdoor unit for refrigeration cycle device
JP2021143789A (en) * 2020-03-12 2021-09-24 日立ジョンソンコントロールズ空調株式会社 Refrigeration device and refrigeration system
WO2022071414A1 (en) 2020-09-30 2022-04-07 ダイキン工業株式会社 Heat transfer method
JP7132651B1 (en) 2021-05-31 2022-09-07 オリオン機械株式会社 temperature controller
JP7188721B1 (en) 2021-05-31 2022-12-13 オリオン機械株式会社 temperature controller
JP2022183431A (en) * 2021-05-31 2022-12-13 オリオン機械株式会社 Temperature control device
JP2022188771A (en) * 2021-05-31 2022-12-21 オリオン機械株式会社 Temperature control device
WO2022255316A1 (en) * 2021-06-01 2022-12-08 パナソニックIpマネジメント株式会社 Air-conditioning and heat-source machine
WO2023176518A1 (en) * 2022-03-18 2023-09-21 株式会社富士通ゼネラル Outdoor unit of heat pump cycle device, and heat pump cycle device
JP2023138152A (en) * 2022-03-18 2023-09-29 株式会社富士通ゼネラル Outdoor unit of heat pump cycle device, and heat pump cycle device

Also Published As

Publication number Publication date
CN105004027B (en) 2019-03-12
CN105004027A (en) 2015-10-28
CN102753895A (en) 2012-10-24
JPWO2011099629A1 (en) 2013-06-17
CN102753895B (en) 2015-07-15
KR101388844B1 (en) 2014-04-23
JP5401563B2 (en) 2014-01-29
KR20120116973A (en) 2012-10-23

Similar Documents

Publication Publication Date Title
JP5401563B2 (en) Chilling unit
JP7247148B2 (en) heat source unit
EP2400230B1 (en) Indoor unit of air conditioner
KR20080003524A (en) Air conditioner
EP3354993A1 (en) Cabinet for housing part of a heat pump
JP2012087954A (en) Heat source apparatus
KR100606733B1 (en) inner unit of multi-air-conditioner
JP2012117755A (en) Air conditioner
KR101280689B1 (en) Air conditioner
KR20160077835A (en) Out door unit of air conditioner
JP4988289B2 (en) Engine driven air conditioner
KR20190115858A (en) Hybrid air conditioning system
KR20020059004A (en) ceiling reclamation beam for a air conditioner
KR101319654B1 (en) Water cooling type air conditioner
KR20020047716A (en) Constant temperature and humidity system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180009461.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11742368

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011553918

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127021053

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 8071/DELNP/2012

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 11742368

Country of ref document: EP

Kind code of ref document: A1