WO2021024410A1 - Chilling unit and air conditioner - Google Patents

Chilling unit and air conditioner Download PDF

Info

Publication number
WO2021024410A1
WO2021024410A1 PCT/JP2019/031087 JP2019031087W WO2021024410A1 WO 2021024410 A1 WO2021024410 A1 WO 2021024410A1 JP 2019031087 W JP2019031087 W JP 2019031087W WO 2021024410 A1 WO2021024410 A1 WO 2021024410A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
pump
refrigerant
heat medium
indoor
Prior art date
Application number
PCT/JP2019/031087
Other languages
French (fr)
Japanese (ja)
Inventor
仁隆 門脇
昂仁 彦根
将宏 中野
善生 山野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP19940472.4A priority Critical patent/EP4012292A4/en
Priority to JP2021538614A priority patent/JPWO2021024410A1/en
Priority to PCT/JP2019/031087 priority patent/WO2021024410A1/en
Publication of WO2021024410A1 publication Critical patent/WO2021024410A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0003Exclusively-fluid systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors

Definitions

  • the present invention relates to a chilling unit and an air conditioner.
  • it relates to a power source used for the chilling unit.
  • the chilling unit has a refrigerant circuit that circulates the refrigerant, and heats or cools the heat medium by heat exchange with the refrigerant to supply heat to the indoor unit.
  • the indoor unit supplies the heat supplied by the heat medium to the heat load.
  • the indoor unit heats or cools the air in the room to perform air conditioning.
  • there is a chilling unit having a pump for applying pressure to the heat medium to circulate the heat medium circulation circuit see, for example, Patent Document 1).
  • the present invention aims to obtain a chilling unit and an air conditioner compatible with power supply from a DC power source.
  • the chilling unit includes a device constituting a refrigerant circuit in which a refrigerant circulates, a plurality of heat medium heat exchangers that exchange heat between a refrigerant and a heat medium serving as a medium for transporting heat, and a DC motor.
  • the machine room is provided with a pump that applies pressure to the heat medium and sends it out, and a control box for a pump that has electrical equipment that is driven by DC power to drive and control the pump.
  • the air conditioner according to the present invention is installed corresponding to the above-mentioned chilling unit and an indoor heat exchanger and an indoor heat exchanger that exchange heat between the indoor air to be air-conditioned and a heat medium, and exchanges indoor heat. It constitutes a heat medium circulation circuit that circulates the heat medium by connecting it to an indoor unit having a flow rate adjusting device for adjusting the flow rate of the heat medium passing through the vessel.
  • a DC motor is applied to the pump, and DC power can be supplied to the electric equipment of the control box for the pump to drive and control the pump. Therefore, it is possible to reduce the size and weight of the pump and the electric equipment that drives and controls the pump. Therefore, the space for arranging the piping of the heat medium circulation circuit in the machine room can be widened, and the arrangement design of the equipment of the heat medium circulation circuit system can be easily performed.
  • FIG. 1 It is a figure which shows the appearance of the chilling unit which concerns on Embodiment 1.
  • FIG. It is a figure which shows the structure of the air conditioner centering on the chilling unit which concerns on Embodiment 1.
  • FIG. It is a figure explaining the arrangement of the apparatus in the machine room of the chilling unit which concerns on Embodiment 1.
  • FIG. It is a figure explaining the refrigerant circuit side control box which concerns on Embodiment 1.
  • FIG. It is a figure explaining the control box for a pump which concerns on Embodiment 1.
  • FIG. 1 is a diagram showing the appearance of the chilling unit according to the first embodiment.
  • FIG. 1 describes a chilling unit 100 as a representative of a heat source unit that supplies heat to an indoor unit 200 that is a load-side device described later. Further, in the first embodiment, it is assumed that the heat medium that transfers the heat supplied from the chilling unit 100 and supplies the heat to the indoor unit 200 is water. However, the present invention is not limited to this, and the heat medium may be a fluid containing brine or the like.
  • the chilling unit 100 has a machine room 1, an air heat exchanger 2, and an outdoor fan 3.
  • the machine room 1 is a housing in which equipment and the like constituting a refrigerant circuit are housed.
  • the machine room 1 of the first embodiment is assumed to be a rectangular parallelepiped housing.
  • the direction extending to the longitudinal side is defined as the longitudinal direction.
  • the direction extending to the short side is the short side.
  • the direction orthogonal to the longitudinal direction and the lateral direction is defined as the height direction.
  • the machine room 1 will be described later.
  • the air heat exchanger 2 is one of the devices constituting the refrigerant circuit, and is a fin-and-tube heat exchanger that exchanges heat between the refrigerant and the outdoor air.
  • the chilling unit 100 of the first embodiment has four refrigerant circuits. Therefore, in the chilling unit 100 of the first embodiment, four air heat exchangers 2A to 2D are installed in the upper part of the machine room 1.
  • the air heat exchanger 2A and the air heat exchanger 2B and the air heat exchanger 2C and the air heat exchanger 2D are paired with each other.
  • the pair of air heat exchangers 2 are arranged to face each other with a wide distance on the upper side so as to form a V shape. Further, in the chilling unit 100 of the first embodiment, two pairs of air heat exchangers 2 are arranged side by side in the longitudinal direction of the machine room 1.
  • the outdoor fan 3 is a propeller fan that allows outdoor air to pass through the air heat exchanger 2.
  • the outdoor fan 3 is arranged on the upper side of the pair of air heat exchangers 2 at a position between the V-shapes of the pair of air heat exchangers 2.
  • the chilling unit 100 of the first embodiment has four outdoor fans 3A to 3D.
  • FIG. 2 is a diagram showing a configuration of an air conditioner centered on a chilling unit according to the first embodiment.
  • the chilling unit 100 of the first embodiment has four refrigerant circuits. Then, the two systems of refrigerant circuits form a group and share one water heat exchanger 60.
  • the chilling unit 100 has two groups of two groups of refrigerant circuits. Then, in the heat medium circulation circuit, two water heat exchangers 60 are connected by piping in series, and water as a heat medium is cooled or heated in two stages.
  • the refrigerant circuit of each system of the chilling unit 100 of the first embodiment includes a compressor 30, a four-way valve 50, an air heat exchanger 2, an expansion valve 70, a water heat exchanger 60, and an accumulator 40. Connect the pipes to form a refrigerant circuit.
  • a refrigerant for example, a single refrigerant such as R-22 and R-134a, a pseudo azeotropic mixed refrigerant such as R-410A and R-404A, and a non-azeotropic mixed refrigerant such as R-407C can be used.
  • the compressor 30 compresses and discharges the sucked refrigerant.
  • the compressor 30 of the first embodiment has a compressor DC motor 31 (compressor DC motor 31A to a compressor DC motor 31D) and is driven via a compressor inverter device 13 described later.
  • the compressor 30 changes the capacity of the compressor 30, which is the amount of refrigerant delivered per unit time, by arbitrarily changing the rotation speed of the motor based on an instruction from the refrigerant circuit side control device 15 described later. be able to.
  • the compressor inverter device 13 and the refrigerant circuit side control device 15 are control system electrical devices housed in the refrigerant circuit side control box 10 described later.
  • the four-way valve 50 (four-way valve 50A to four-way valve 50D), which serves as a flow path switching device, switches the flow of the refrigerant by the executed operation based on the instruction from the refrigerant circuit side control device 15. For example, during a cooling operation or the like, the four-way valve 50 allows the high-temperature and high-pressure refrigerant discharged by the compressor 30 to flow into the air heat exchanger 2. Further, during the heating operation or the like, the high-temperature and high-pressure refrigerant discharged from the compressor 30 is made to flow into the water heat exchanger 60.
  • the air heat exchanger 2 (air heat exchanger 2A to air heat exchanger 2D) exchanges heat between the refrigerant and the outside air as described above.
  • the air heat exchanger 2 functions as an evaporator in the heating operation of heating water, exchanges heat between the low-pressure refrigerant flowing from the expansion valve 70 side and air, and evaporates and vaporizes the refrigerant. Further, in the cooling operation of cooling water, it functions as a condenser, exchanges heat between the low-pressure refrigerant flowing from the compressor 30 side and air, and condenses and liquefies the refrigerant.
  • the outdoor fan 3 (outdoor fan 3A to outdoor fan 3D) sends air to the air heat exchanger 2 as described above to promote heat exchange between the refrigerant and the air.
  • the outdoor fan 3 has a fan DC motor 4 (fan DC motor 4A to fan DC motor 4D), and is driven via a fan inverter device 14 described later.
  • the outdoor fan 3 can change the air volume by arbitrarily changing the rotation speed of the motor based on the instruction from the refrigerant circuit side control device 15.
  • the air heat exchanger 2 and the outdoor fan 3 have a one-to-one correspondence, but the present invention is not particularly limited.
  • the water heat exchanger 60 (water heat exchanger 60A and water heat exchanger 60B) serving as a heat medium heat exchanger exchanges heat between water serving as a heat medium and a refrigerant.
  • the water heat exchanger 60 serves as a flow path for the two systems of the refrigerant circuit and a flow path for the heat medium circulation circuit. Therefore, it is a device that constitutes a refrigerant circuit and a device that constitutes a heat medium circulation circuit.
  • the water heat exchanger 60 functions as a condenser during heating operation, for example, exchanges heat between the refrigerant flowing in from the compressor 30 side and water, and condenses the refrigerant to make it liquefied or gas-liquid two-phase. , Heat the water.
  • it functions as an evaporator, exchanges heat between the refrigerant flowing from the expansion valve 70 side and water, evaporates and vaporizes the refrigerant, and cools the water.
  • the expansion valve 70 (expansion valve 70A to expansion valve 70D) serving as a throttle device adjusts the pressure of the refrigerant passing through the water heat exchanger 60, for example, by changing the opening degree.
  • the expansion valve 70 of the first embodiment is composed of an electronic expansion valve that changes the opening degree based on the instruction from the refrigerant circuit side control device described above. However, it is not limited to this. For example, a temperature-sensitive expansion valve that changes the opening degree based on the temperature of the refrigerant may be used.
  • the accumulators 40 are provided on the suction side of the compressor 30, respectively, and store excess refrigerant in the refrigerant circuit.
  • the pump 80 is one of the devices constituting the heat medium circulation circuit.
  • the pump 80 of the first embodiment has a pump DC motor 81, and in a heat medium circulation circuit, water is sucked, pressure is applied to send it out, and the water is circulated. Since the pump 80 of the first embodiment is connected in series with the two water heat exchangers 60 in the heat medium circulation circuit, the capacity is increased. Further, the pump inverter device 93, which will be described later, can change the capacity of the pump 80 by arbitrarily changing the rotation speed of the motor based on the instruction from the pump side control device 94.
  • the pump inverter device 93 and the pump side control device 94 are control system electrical devices housed in a pump control box 90, which will be described later.
  • the indoor unit 200 is a unit that sends air in harmony with the indoor space that is the object of air conditioning.
  • the indoor units 200 (indoor units 200A and 200B) of the first embodiment shown in FIG. 2 include an indoor heat exchanger 201 (indoor heat exchanger 201A and an indoor heat exchanger 201B) and an indoor flow rate adjusting device 202 (indoor flow rate adjusting device). It has an indoor flow rate adjusting device 202B) and an indoor fan 203 (indoor fan 203A to indoor fan 203B).
  • the indoor heat exchanger 201 and the indoor flow rate adjusting device 202 are devices that constitute a heat medium circulation circuit.
  • FIG. 2 shows an air conditioner having two indoor units 200, but the number of indoor units 200 is not particularly limited.
  • the indoor flow rate adjusting device 202 is composed of, for example, a two-way valve capable of controlling the opening degree (opening area) of the valve.
  • the indoor flow rate adjusting device 202 controls the flow rate of water flowing in and out of the indoor heat exchanger 201 by adjusting the opening degree. Then, the indoor flow rate adjusting device 202 adjusts the amount of water passing through the indoor heat exchanger 201 based on the temperature of the water flowing into the indoor unit 200 and the temperature of the flowing water, and the indoor heat exchanger 201 adjusts the amount of water passing through the indoor heat exchanger 201. Allows heat exchange by the amount of heat according to the heat load in the room.
  • the indoor heat exchanger 201 does not need to exchange heat with the heat load, such as when the indoor flow rate adjusting device 202 is stopped or the thermostat is turned off, the valve is fully closed and the indoor heat exchanger 201 is heated.
  • the supply can be stopped so that water does not flow in and out of the exchanger 201.
  • the indoor flow rate adjusting device 202 is installed in the pipe on the water outflow side of the indoor heat exchanger 201, but the present invention is not limited to this.
  • the indoor flow rate adjusting device 202 may be installed on the water inflow side of the indoor heat exchanger 201.
  • the indoor heat exchanger 201 exchanges heat between indoor air and water in the indoor space supplied from the indoor fan 203.
  • water which is colder than air
  • the indoor fan 203 passes the air in the indoor space through the indoor heat exchanger 201 and generates a flow of air returning to the indoor space.
  • FIG. 3 is a diagram illustrating an arrangement of equipment in the machine chamber of the chilling unit according to the first embodiment.
  • FIG. 3 is a view of the inside of the machine room 1 as viewed from the upper surface side.
  • the machine room 1 of the chilling unit 100 of the first embodiment includes a device constituting a refrigerant circuit, a device constituting a heat medium circulation circuit, a control system device for controlling these devices, and the like.
  • four compressors 30 compressor 30A to compressor 30D
  • four accumulators 40 accumulator 40A to accumulator 40D
  • four four-way valves 50 four-way valves 50A to four-way valves 50D
  • two water heat exchangers 60 water heat exchanger 60A and water heat exchanger 60B
  • it also has four expansion valves 70 (expansion valves 70A to 70D).
  • the machine room 1 has a pump 80 which is a device constituting a heat medium circulation circuit in which water as a heat medium circulates. Then, the machine room 1 includes two refrigerant circuit side control boxes 10 (refrigerant circuit side control box 10A and refrigerant circuit side control box 10B), a pump control box 90, and a power supply terminal box 20 for accommodating control system electrical equipment and the like. Have.
  • the power supply terminal box 20 is arranged in the foreground from the arrow A side shown in FIGS. 1 and 3.
  • a plurality of refrigerant circuit-side control boxes 10 are arranged side by side in the longitudinal direction of the machine room 1 along one side surface extending in the longitudinal direction of the machine room 1.
  • one refrigerant circuit side control box 10 contains an electric device for driving and controlling two groups of refrigerant circuits. Therefore, in the chilling unit 100 of the first embodiment, two refrigerant circuit side control boxes 10A and a refrigerant circuit side control box 10B are housed in the machine room 1. Then, wiring (not shown) for supplying DC power from the power supply terminal box 20 is connected to each refrigerant circuit side control box 10.
  • the equipment constituting the refrigerant circuit is arranged on the other side surface opposite to the arrangement side of the plurality of refrigerant circuit side control boxes 10.
  • the compressor 30, the accumulator 40, the four-way valve 50, and the expansion valve 70 are grouped together for each system and arranged side by side in the longitudinal direction. Since the compressor 30 and the accumulator 40 have a large volume, they are arranged side by side in order along the other side surface.
  • a plurality of water heat exchangers 60 which are devices constituting the refrigerant circuit and devices constituting the heat medium circulation circuit, are arranged next to the plurality of refrigerant circuit side control boxes 10, the compressor 30, and the accumulator 40.
  • a plurality of water heat exchangers 60 which are devices constituting the refrigerant circuit and devices constituting the heat medium circulation circuit, are arranged. ..
  • the pump 80 and the pump control box 90 constituting the heat medium circulation circuit are arranged at the positions farthest from the arrow A side. Therefore, the equipment of the refrigerant circuit system and the equipment of the heat medium circulation circuit system are separately arranged with the water heat exchanger 60 as a boundary.
  • the power supply terminal box 20 is a box in which power supply terminals (not shown) are housed.
  • electrical equipment such as an inverter device having a power module for driving the equipment and a control board having a control device is connected to an external wiring via a power supply terminal. And power is supplied.
  • the power supply terminal for direct current is provided and power is supplied by a direct current voltage of 12 V.
  • DC power can be supplied to the device in the pump control box 90. Therefore, the power supply terminal box 20 of the first embodiment does not need to be provided with a power supply terminal for AC power.
  • the power supply terminal box 20 is provided from the lateral side of the machine room 1 so that the external wiring and the power supply terminal can be easily connected. It is housed in the frontmost end from the arrow A side so that the power supply terminal can be seen.
  • the pump 80 which is one of the devices constituting the heat medium circulation circuit, is located. Is housed.
  • a plurality of water heat exchangers 60 which are devices constituting the refrigerant circuit and the heat medium circulation circuit, are arranged.
  • the pump 80 and the plurality of water heat exchangers 60 housed in the machine room 1 of the chilling unit 100 need to be pipe-connected to other devices having equipment constituting the heat medium circulation circuit.
  • the pump 80 is located farthest from the arrow A side so that the heat medium pipes connected to the pump 80 and the plurality of water heat exchangers 60 can be seen from the side on the short side, and the pipes can be easily connected. It is housed in the other end of the machine room 1.
  • the pump control box 90 is arranged adjacent to the pump 80 on one side surface extending in the longitudinal direction on the same side as the side on which the plurality of refrigerant circuit side control boxes 10 are arranged.
  • one refrigerant circuit side control box 10 houses an electric device that drives and controls two groups of refrigerant circuits. Therefore, in the chilling unit 100 of the first embodiment, two refrigerant circuit side control boxes 10A and a refrigerant circuit side control box 10B are housed in the machine room 1. Then, a power supply line (not shown) from the power supply terminal box 20 is connected to each refrigerant circuit side control box 10.
  • FIG. 4 is a diagram for explaining the refrigerant circuit side control box according to the first embodiment.
  • FIG. 4A is a diagram showing a device arranged on a substrate inside the box of the refrigerant circuit side control box 10.
  • the refrigerant circuit side control box 10 has two refrigerant circuit side DC reactors 11 (refrigerant circuit side DC reactor 11A and refrigerant circuit side DC reactor 11B).
  • the refrigerant circuit side control box 10 has two refrigerant circuit side noise filters 12 (refrigerant circuit side noise filter 12A and refrigerant circuit side noise filter 12B).
  • the refrigerant circuit side control box 10 has two compressor inverter devices 13 (compressor inverter device 13A and compressor inverter device 13B). Further, the refrigerant circuit side control box 10 has a fan inverter device 14. The refrigerant circuit side control box 10 has a refrigerant circuit side control device 15.
  • the DC reactor 11 on the refrigerant circuit side has an inductor and performs boosting, power factor improvement, harmonic reduction, and the like. Since the device in the control box 10 on the refrigerant circuit side receives DC power from the power supply terminal box 20, it is assumed that it is a reactor related to DC. Further, the refrigerant circuit side noise filter 12 is a filter having a capacitor or the like and suppressing a noise component generated in the inverter device.
  • the refrigerant circuit side DC reactor 11 and the refrigerant circuit side noise filter 12 are installed corresponding to the compressor inverter device 13A and the compressor inverter device 13B, respectively.
  • the compressor inverter device 13 is a device provided with a power module or the like having a switching element or the like, performing voltage conversion or the like, and supplying electric power related to the conversion to the compressor 30.
  • the compressor 30 since the compressor 30 is driven in the two groups of refrigerant circuits, the compressor 30 is provided with two compressor inverter devices 13.
  • the fan inverter device 14 is a device including a power module having a switching element or the like, performing voltage conversion or the like, and supplying electric power related to the conversion to the outdoor fan 3.
  • the fan inverter device 14 having a small output includes a DC reactor and a noise filter.
  • the two outdoor fans 3 are driven by the fan inverter device 14.
  • the refrigerant circuit side control device 15 controls the entire refrigerant circuit. In the first embodiment, the refrigerant circuit side control device 15 controls the two groups of refrigerant circuits.
  • FIG. 4B is a diagram for explaining the equipment arranged outside the box of the refrigerant circuit side control box 10. As shown in FIG. 4B, each refrigerant circuit side control box 10 has a compressor heat sink 16 (compressor heat sink 16A and compressor heat sink 16B) and a fan heat sink 17 outside the box.
  • compressor heat sink 16 compressor heat sink 16A and compressor heat sink 16B
  • fan heat sink 17 outside the box.
  • the compressor heat sink 16 comes into contact with the power module of the compressor inverter device 13 housed in the refrigerant circuit side control box 10, and the power module is moved. It dissipates the heat generated by driving. Further, the fan heat sink 17 comes into contact with the power module of the fan inverter device 14 housed in the refrigerant circuit side control box 10 and dissipates heat generated by driving the power module.
  • These heat sinks are air-cooled by a cooling fan (not shown) installed under the heat sink.
  • FIG. 5 is a diagram illustrating a control box for a pump according to the first embodiment.
  • FIG. 5A is a diagram showing equipment arranged inside the pump control box 90.
  • the control box 90 for a pump has a DC power supply terminal 90A, and has an electric device that receives, drives, and controls DC power through the power supply terminal box 20.
  • the pump control box 90 includes a pump-side DC reactor 91, a pump-side noise filter 92, a pump-side inverter device 93, and a pump-side control device 94.
  • the pump side DC reactor 91 has an inductor, and performs boosting, power factor improvement, harmonic reduction, and the like.
  • the device in the pump control box 90 is also supplied with DC power from the power supply terminal box 20. Therefore, the pump-side DC reactor 91 is assumed to be a DC-related reactor.
  • the DC reactor has a higher power factor improving effect and harmonic reduction effect than the AC reactor.
  • the size of the device can be made smaller by adopting the DC reactor than by adopting the AC reactor. Therefore, the space inside the pump control box 90 can be saved, and the pump control box 90 can be made smaller and lighter.
  • the space for arranging the piping of the heat medium circulation circuit connected to the water heat exchanger 60 and the pump 80 becomes wider in the machine room 1. Therefore, especially in the machine room 1, the layout design of the equipment of the heat medium circulation circuit system can be easily performed. Further, by directly receiving the supply of DC power, elements such as a transformer can be reduced in the pump control box 90, and the space for arranging the elements and the cost can be reduced.
  • the pump-side noise filter 92 is a filter having a capacitor or the like and suppressing a noise component generated in the pump inverter device 93.
  • the pump inverter device 93 is a device including a power module having a switching element or the like, performing voltage conversion or the like, and supplying electric power related to the conversion to the pump 80.
  • the pump inverter device 93 of the first embodiment has a terminal for connecting the DC reactor 91 on the pump side.
  • the pump-side control device 94 drives the pump inverter device 93 to control the pump 80.
  • FIG. 5B is a diagram illustrating equipment arranged outside the box of the pump control box 90.
  • the pump control box 90 has a pump heat sink 95 outside the box.
  • the pump heat sink 95 comes into contact with the power module or the like of the pump inverter device 93, and dissipates heat generated by driving the power module.
  • the electric device in the control box 90 for the pump directly receives the supply of DC electric power, so that the amount of heat generated is reduced. Therefore, the heat sink 95 for a pump has a simpler configuration and a smaller volume than a conventional heat sink.
  • the space for arranging the piping of the heat medium circulation circuit becomes wider as well as the miniaturization and weight reduction of the control box 90 for the pump. Then, the layout design of the equipment of the heat medium circulation circuit system can be easily performed.
  • the pump 80 is configured to have the pump DC motor 81 so that the DC power can be directly supplied to the device included in the pump control box 90. Drive and control are performed. Therefore, the pump-side DC reactor 91 having a high power factor improving effect and a harmonic reducing effect can be arranged in the pump control box 90.
  • the pump-side DC reactor 91 has a smaller device size than the AC reactor. Moreover, it is not necessary to install parts such as a transformer. Therefore, the pump control box 90 can be miniaturized. By reducing the size of the control box 90 for the pump, the volume is reduced, and the space for arranging the piping of the heat medium circulation circuit connected to the water heat exchanger 60 and the pump 80 is increased in the machine room 1.
  • the layout design of the equipment of the heat medium circulation circuit system can be easily performed. Further, by making the pump 80 and the control box 90 for the pump compatible with DC power, the weight can be reduced. Therefore, the degree of robustness required when attaching the legs to the control box 90 for the pump can be relaxed.
  • the volume of the pump heat sink 95 can be reduced. Therefore, in the machine room 1, the space where the piping on the heat medium circulation circuit side can be routed can be widened, and the arrangement design of the equipment of the heat medium circulation circuit system can be easily performed. In particular, interference of the heat sink 95 for the pump with the water heat exchanger 60 can be suppressed. In addition, it also facilitates the arrangement of the entire machine room 1. Further, the power supply terminal box 20 does not need to be provided with a power supply terminal or the like for AC power.
  • Embodiment 2 In the above-described first embodiment, the so-called dual configuration chilling unit 100 in which two systems of refrigerant circuits are grouped and one water heat exchanger 60 is shared has been described, but the present invention is not limited to this. It may be a so-called single-structured chilling unit 100 in which a refrigerant is circulated in one system of refrigerant circuits and heat is exchanged with a heat medium in one water heat exchanger 60.

Abstract

This chilling unit has a mechanical compartment provided with: devices forming a refrigerant circuit through which a refrigerant circulates; a plurality of heat medium heat exchangers that exchange heat between the refrigerant and a heat medium which serves as a medium for carrying heat; a pump that has a DC motor and applies pressure to the heat medium to feed the heat medium; and a pump control box having electrical equipment that is driven by DC power and that drives and controls the pump.

Description

チリングユニットおよび空気調和装置Chilling unit and air conditioner
 この発明は、チリングユニットおよび空気調和装置に係るものである。特に、チリングユニットに用いる電源に関するものである。 The present invention relates to a chilling unit and an air conditioner. In particular, it relates to a power source used for the chilling unit.
 熱源ユニットとなるチリングユニットと負荷側に設置された室内ユニットとの間で、水またはブラインを含む熱媒体を循環させる熱媒体循環回路を構成して、空気調和などを行うシステムがある。チリングユニットは、冷媒を循環させる冷媒回路を有し、冷媒との熱交換により、熱媒体を加熱または冷却して、室内ユニットに熱を供給する。室内ユニットは、熱媒体により供給された熱を、熱負荷に対して供給する。空気調和システムの場合には、室内ユニットは、室内の空気を加熱または冷却して空気調和を行う。ここで、熱媒体に圧力を加えて熱媒体循環回路を循環させるためのポンプを有するチリングユニットがある(たとえば、特許文献1参照)。 There is a system that performs air conditioning by configuring a heat medium circulation circuit that circulates a heat medium containing water or brine between the chilling unit that is the heat source unit and the indoor unit installed on the load side. The chilling unit has a refrigerant circuit that circulates the refrigerant, and heats or cools the heat medium by heat exchange with the refrigerant to supply heat to the indoor unit. The indoor unit supplies the heat supplied by the heat medium to the heat load. In the case of an air conditioning system, the indoor unit heats or cools the air in the room to perform air conditioning. Here, there is a chilling unit having a pump for applying pressure to the heat medium to circulate the heat medium circulation circuit (see, for example, Patent Document 1).
特許第5401563号公報Japanese Patent No. 5401563
 近年、商用電源などの交流電源だけでなく、太陽光発電電源などの直流電源と配線接続し、直流電圧の電力供給を受けて運転が可能な空気調和装置がある。したがって、冷媒回路を有するチリングユニットにおいて、直流電源と配線接続して電力供給を受けることは可能である。しかしながら、チリングユニットが有するポンプおよびポンプを駆動などする電気機器は、直流電源による電力供給には対応していなかった。 In recent years, there is an air conditioner that can be operated by connecting to a DC power source such as a photovoltaic power generation power source as well as an AC power source such as a commercial power source and receiving a DC voltage power supply. Therefore, in a chilling unit having a refrigerant circuit, it is possible to receive power by connecting the wiring to a DC power supply. However, the pump of the chilling unit and the electric equipment for driving the pump did not support the power supply by the DC power supply.
 そこで、この発明は、上記のような課題を解決するため、直流電源からの電力供給に対応したチリングユニットおよび空気調和装置を得ることを目的とする。 Therefore, in order to solve the above-mentioned problems, the present invention aims to obtain a chilling unit and an air conditioner compatible with power supply from a DC power source.
 この発明に係るチリングユニットは、冷媒が循環する冷媒回路を構成する機器と、冷媒と熱を搬送する媒体となる熱媒体との熱交換を行う複数の熱媒体熱交換器と、直流モータを有し、熱媒体に圧力を加えて送り出すポンプと、直流電力により駆動し、ポンプの駆動および制御を行う電気機器を有するポンプ用制御箱とを機械室に備えるものである。 The chilling unit according to the present invention includes a device constituting a refrigerant circuit in which a refrigerant circulates, a plurality of heat medium heat exchangers that exchange heat between a refrigerant and a heat medium serving as a medium for transporting heat, and a DC motor. The machine room is provided with a pump that applies pressure to the heat medium and sends it out, and a control box for a pump that has electrical equipment that is driven by DC power to drive and control the pump.
 また、この発明に係る空気調和装置は、上記のチリングユニットと、空気調和対象の室内空気と熱媒体とを熱交換する室内熱交換器および室内熱交換器に対応して設置され、室内熱交換器を通過する熱媒体の流量を調整する流量調整装置を有する室内ユニットとを配管接続して熱媒体を循環させる熱媒体循環回路を構成するものである。 Further, the air conditioner according to the present invention is installed corresponding to the above-mentioned chilling unit and an indoor heat exchanger and an indoor heat exchanger that exchange heat between the indoor air to be air-conditioned and a heat medium, and exchanges indoor heat. It constitutes a heat medium circulation circuit that circulates the heat medium by connecting it to an indoor unit having a flow rate adjusting device for adjusting the flow rate of the heat medium passing through the vessel.
 この発明においては、ポンプに直流モータを適用し、また、ポンプ用制御箱が有する電気機器に直流電力を供給できるようにして、駆動および制御などを行うようにした。このため、ポンプおよびポンプを駆動および制御する電気機器の小型化および軽量化をはかることができる。したがって、機械室内における熱媒体循環回路の配管の取り回しを行う空間を広くし、熱媒体循環回路系の機器の配置設計を容易に行うことができる。 In the present invention, a DC motor is applied to the pump, and DC power can be supplied to the electric equipment of the control box for the pump to drive and control the pump. Therefore, it is possible to reduce the size and weight of the pump and the electric equipment that drives and controls the pump. Therefore, the space for arranging the piping of the heat medium circulation circuit in the machine room can be widened, and the arrangement design of the equipment of the heat medium circulation circuit system can be easily performed.
実施の形態1に係るチリングユニットの外観を示す図である。It is a figure which shows the appearance of the chilling unit which concerns on Embodiment 1. FIG. 実施の形態1に係るチリングユニットを中心とする空気調和装置の構成を示す図である。It is a figure which shows the structure of the air conditioner centering on the chilling unit which concerns on Embodiment 1. FIG. 実施の形態1に係るチリングユニットの機械室内における機器の配置について説明する図である。It is a figure explaining the arrangement of the apparatus in the machine room of the chilling unit which concerns on Embodiment 1. FIG. 実施の形態1に係る冷媒回路側制御箱について説明する図である。It is a figure explaining the refrigerant circuit side control box which concerns on Embodiment 1. FIG. 実施の形態1に係るポンプ用制御箱について説明する図である。It is a figure explaining the control box for a pump which concerns on Embodiment 1. FIG.
 以下、発明の実施の形態に係るチリングユニットおよび空気調和装置について、図面などを参照しながら説明する。以下の図面において、同一の符号を付したものは、同一またはこれに相当するものであり、以下に記載する実施の形態の全文において共通することとする。また、図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。そして、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、明細書に記載された形態に限定するものではない。特に構成要素の組み合わせは、各実施の形態における組み合わせのみに限定するものではなく、他の実施の形態に記載した構成要素を別の実施の形態に適用することができる。また、圧力および温度の高低については、特に絶対的な値との関係で高低が定まっているものではなく、装置などにおける状態および動作などにおいて相対的に定まるものとする。また、添字で区別などしている複数の同種の機器などについて、特に区別したり、特定したりする必要がない場合には、添字などを省略して記載する場合がある。 Hereinafter, the chilling unit and the air conditioner according to the embodiment of the invention will be described with reference to drawings and the like. In the following drawings, those having the same reference numerals are the same or equivalent thereof, and are common to the entire text of the embodiments described below. Further, in the drawings, the relationship between the sizes of the constituent members may differ from the actual one. The form of the component represented in the entire specification is merely an example, and is not limited to the form described in the specification. In particular, the combination of components is not limited to the combination in each embodiment, and the components described in other embodiments can be applied to other embodiments. In addition, the high and low pressure and temperature are not fixed in relation to the absolute values, but are relatively fixed in the state and operation of the device and the like. In addition, when it is not necessary to distinguish or specify a plurality of devices of the same type that are distinguished by subscripts, the subscripts and the like may be omitted.
実施の形態1.
 図1は、実施の形態1に係るチリングユニットの外観を示す図である。図1は、後述する負荷側装置となる室内ユニット200に対し、熱の供給を行う熱源ユニットの代表として、チリングユニット100について説明する。また、実施の形態1では、チリングユニット100から供給された熱を搬送して、室内ユニット200に熱を供給する熱媒体が水であるものとする。ただし、これに限定するものではなく、熱媒体がブラインなどを含む流体であってもよい。
Embodiment 1.
FIG. 1 is a diagram showing the appearance of the chilling unit according to the first embodiment. FIG. 1 describes a chilling unit 100 as a representative of a heat source unit that supplies heat to an indoor unit 200 that is a load-side device described later. Further, in the first embodiment, it is assumed that the heat medium that transfers the heat supplied from the chilling unit 100 and supplies the heat to the indoor unit 200 is water. However, the present invention is not limited to this, and the heat medium may be a fluid containing brine or the like.
 チリングユニット100は、機械室1、空気熱交換器2および室外ファン3を有する。機械室1は、冷媒回路を構成する機器などが収容される筐体である。実施の形態1の機械室1は、直方体形状の筐体であるものとする。ここで、機械室1の筐体において、長手側に延びる方向を長手方向とする。また、短手側に延びる方向を短手方向とする。そして、長手方向と短手方向とに直交する方向を高さ方向とする。機械室1については後述する。 The chilling unit 100 has a machine room 1, an air heat exchanger 2, and an outdoor fan 3. The machine room 1 is a housing in which equipment and the like constituting a refrigerant circuit are housed. The machine room 1 of the first embodiment is assumed to be a rectangular parallelepiped housing. Here, in the housing of the machine room 1, the direction extending to the longitudinal side is defined as the longitudinal direction. In addition, the direction extending to the short side is the short side. Then, the direction orthogonal to the longitudinal direction and the lateral direction is defined as the height direction. The machine room 1 will be described later.
 空気熱交換器2は、冷媒回路を構成する機器の1つであり、冷媒と室外の空気とを熱交換するフィンアンドチューブ式の熱交換器である。後述するように、実施の形態1のチリングユニット100は、4系統の冷媒回路を有する。このため、実施の形態1のチリングユニット100では、機械室1の上部に、4つの空気熱交換器2A~空気熱交換器2Dが設置される。空気熱交換器2Aと空気熱交換器2Bおよび空気熱交換器2Cと空気熱交換器2Dとがそれぞれ対をなす。そして、矢印Aで示す機械室1の短手側から見たときに、一対の空気熱交換器2がV字状になるように、上部側の間隔を広げて対向配置される。また、実施の形態1のチリングユニット100では、二対の空気熱交換器2が機械室1の長手方向に並んで配置される。 The air heat exchanger 2 is one of the devices constituting the refrigerant circuit, and is a fin-and-tube heat exchanger that exchanges heat between the refrigerant and the outdoor air. As will be described later, the chilling unit 100 of the first embodiment has four refrigerant circuits. Therefore, in the chilling unit 100 of the first embodiment, four air heat exchangers 2A to 2D are installed in the upper part of the machine room 1. The air heat exchanger 2A and the air heat exchanger 2B and the air heat exchanger 2C and the air heat exchanger 2D are paired with each other. Then, when viewed from the short side of the machine room 1 indicated by the arrow A, the pair of air heat exchangers 2 are arranged to face each other with a wide distance on the upper side so as to form a V shape. Further, in the chilling unit 100 of the first embodiment, two pairs of air heat exchangers 2 are arranged side by side in the longitudinal direction of the machine room 1.
 室外ファン3は、空気熱交換器2に室外の空気を通過させるプロペラファンである。室外ファン3は、一対の空気熱交換器2の上部側であって、一対の空気熱交換器2のV字状の間となる位置に配置される。実施の形態1のチリングユニット100は、4つの室外ファン3A~室外ファン3Dを有する。 The outdoor fan 3 is a propeller fan that allows outdoor air to pass through the air heat exchanger 2. The outdoor fan 3 is arranged on the upper side of the pair of air heat exchangers 2 at a position between the V-shapes of the pair of air heat exchangers 2. The chilling unit 100 of the first embodiment has four outdoor fans 3A to 3D.
 図2は、実施の形態1に係るチリングユニットを中心とする空気調和装置の構成を示す図である。図2に示すように、実施の形態1のチリングユニット100は、4系統の冷媒回路を有する。そして、2系統の冷媒回路がグループとなって、1台の水熱交換器60を共有する。チリングユニット100は、2系統の冷媒回路を2グループ有する。そして、熱媒体循環回路では、2台の水熱交換器60を直列に配管接続し、熱媒体である水を2段階で冷却または加熱する。 FIG. 2 is a diagram showing a configuration of an air conditioner centered on a chilling unit according to the first embodiment. As shown in FIG. 2, the chilling unit 100 of the first embodiment has four refrigerant circuits. Then, the two systems of refrigerant circuits form a group and share one water heat exchanger 60. The chilling unit 100 has two groups of two groups of refrigerant circuits. Then, in the heat medium circulation circuit, two water heat exchangers 60 are connected by piping in series, and water as a heat medium is cooled or heated in two stages.
 図2に示すように、実施の形態1のチリングユニット100の各系統の冷媒回路は、圧縮機30、四方弁50、空気熱交換器2、膨張弁70、水熱交換器60およびアキュムレータ40を配管接続し、冷媒回路を構成する。冷媒としては、たとえば、R-22、R-134aなどの単一冷媒、R-410A、R-404Aなどの擬似共沸混合冷媒、R-407Cなどの非共沸混合冷媒を用いることができる。また、化学式内に二重結合を含む、CFCF=CHなどの地球温暖化係数が比較的小さい値とされている冷媒、その混合物またはCO、プロパンなどの自然冷媒などを用いることができる。 As shown in FIG. 2, the refrigerant circuit of each system of the chilling unit 100 of the first embodiment includes a compressor 30, a four-way valve 50, an air heat exchanger 2, an expansion valve 70, a water heat exchanger 60, and an accumulator 40. Connect the pipes to form a refrigerant circuit. As the refrigerant, for example, a single refrigerant such as R-22 and R-134a, a pseudo azeotropic mixed refrigerant such as R-410A and R-404A, and a non-azeotropic mixed refrigerant such as R-407C can be used. In addition, a refrigerant containing a double bond in the chemical formula and having a relatively small global warming potential such as CF 3 CF = CH 2 , a mixture thereof, or a natural refrigerant such as CO 2 or propane can be used. it can.
 圧縮機30(圧縮機30A~圧縮機30D)は、吸入した冷媒を圧縮して吐出する。実施の形態1の圧縮機30は、圧縮機直流モータ31(圧縮機直流モータ31A~圧縮機直流モータ31D)を有し、後述する圧縮機用インバータ装置13を介して駆動される。圧縮機30は、後述する冷媒回路側制御装置15からの指示に基づいて、モータの回転数を任意に変化させることにより、単位時間あたりの冷媒を送り出す量となる圧縮機30の容量を変化させることができる。ここで、圧縮機用インバータ装置13および冷媒回路側制御装置15は、後述する冷媒回路側制御箱10に収容されている制御系電気機器である。 The compressor 30 (compressor 30A to compressor 30D) compresses and discharges the sucked refrigerant. The compressor 30 of the first embodiment has a compressor DC motor 31 (compressor DC motor 31A to a compressor DC motor 31D) and is driven via a compressor inverter device 13 described later. The compressor 30 changes the capacity of the compressor 30, which is the amount of refrigerant delivered per unit time, by arbitrarily changing the rotation speed of the motor based on an instruction from the refrigerant circuit side control device 15 described later. be able to. Here, the compressor inverter device 13 and the refrigerant circuit side control device 15 are control system electrical devices housed in the refrigerant circuit side control box 10 described later.
 また、流路切替装置となる四方弁50(四方弁50A~四方弁50D)は、冷媒回路側制御装置15からの指示に基づいて、実行する運転によって冷媒の流れを切り替える。たとえば、冷房運転などのときには、四方弁50は、圧縮機30が吐出した高温高圧の冷媒が空気熱交換器2に流入するようにする。また、暖房運転などのときには、圧縮機30の吐出した高温高圧の冷媒が水熱交換器60に流入するようにする。 Further, the four-way valve 50 (four-way valve 50A to four-way valve 50D), which serves as a flow path switching device, switches the flow of the refrigerant by the executed operation based on the instruction from the refrigerant circuit side control device 15. For example, during a cooling operation or the like, the four-way valve 50 allows the high-temperature and high-pressure refrigerant discharged by the compressor 30 to flow into the air heat exchanger 2. Further, during the heating operation or the like, the high-temperature and high-pressure refrigerant discharged from the compressor 30 is made to flow into the water heat exchanger 60.
 空気熱交換器2(空気熱交換器2A~空気熱交換器2D)は、前述したように、冷媒と外部の空気との熱交換を行う。空気熱交換器2は、水を加熱する加熱運転においては、蒸発器として機能し、膨張弁70側から流入した低圧の冷媒と空気との熱交換を行い、冷媒を蒸発させて気化させる。また、水を冷却する冷却運転においては、凝縮器として機能し、圧縮機30側から流入した低圧の冷媒と空気との熱交換を行い、冷媒を凝縮させて液化させる。また、室外ファン3(室外ファン3A~室外ファン3D)は、前述したように、空気熱交換器2に空気を送り込み、冷媒と空気との熱交換を促す。ここで、室外ファン3は、ファン直流モータ4(ファン直流モータ4A~ファン直流モータ4D)を有し、後述するファン用インバータ装置14を介して駆動される。室外ファン3は、冷媒回路側制御装置15からの指示に基づいて、モータの回転数を任意に変化させることにより、風量を変化させることができる。図2では、空気熱交換器2と室外ファン3とを1対1で対応させているが、特に限定するものではない。 The air heat exchanger 2 (air heat exchanger 2A to air heat exchanger 2D) exchanges heat between the refrigerant and the outside air as described above. The air heat exchanger 2 functions as an evaporator in the heating operation of heating water, exchanges heat between the low-pressure refrigerant flowing from the expansion valve 70 side and air, and evaporates and vaporizes the refrigerant. Further, in the cooling operation of cooling water, it functions as a condenser, exchanges heat between the low-pressure refrigerant flowing from the compressor 30 side and air, and condenses and liquefies the refrigerant. Further, the outdoor fan 3 (outdoor fan 3A to outdoor fan 3D) sends air to the air heat exchanger 2 as described above to promote heat exchange between the refrigerant and the air. Here, the outdoor fan 3 has a fan DC motor 4 (fan DC motor 4A to fan DC motor 4D), and is driven via a fan inverter device 14 described later. The outdoor fan 3 can change the air volume by arbitrarily changing the rotation speed of the motor based on the instruction from the refrigerant circuit side control device 15. In FIG. 2, the air heat exchanger 2 and the outdoor fan 3 have a one-to-one correspondence, but the present invention is not particularly limited.
 熱媒体熱交換器となる水熱交換器60(水熱交換器60Aおよび水熱交換器60B)は、熱媒体となる水と冷媒との熱交換を行う。水熱交換器60は、2系統の冷媒回路の流路および熱媒体循環回路の流路となる。したがって、冷媒回路を構成する機器および熱媒体循環回路を構成する機器となる。水熱交換器60は、たとえば、暖房運転時においては凝縮器として機能し、圧縮機30側から流入した冷媒と水との熱交換を行い、冷媒を凝縮させて液化または気液二相化させ、水を加熱する。一方、冷房運転時においては蒸発器として機能し、膨張弁70側から流入した冷媒と水との熱交換を行い、冷媒を蒸発させて気化させ、水を冷却する。 The water heat exchanger 60 (water heat exchanger 60A and water heat exchanger 60B) serving as a heat medium heat exchanger exchanges heat between water serving as a heat medium and a refrigerant. The water heat exchanger 60 serves as a flow path for the two systems of the refrigerant circuit and a flow path for the heat medium circulation circuit. Therefore, it is a device that constitutes a refrigerant circuit and a device that constitutes a heat medium circulation circuit. The water heat exchanger 60 functions as a condenser during heating operation, for example, exchanges heat between the refrigerant flowing in from the compressor 30 side and water, and condenses the refrigerant to make it liquefied or gas-liquid two-phase. , Heat the water. On the other hand, during the cooling operation, it functions as an evaporator, exchanges heat between the refrigerant flowing from the expansion valve 70 side and water, evaporates and vaporizes the refrigerant, and cools the water.
 絞り装置となる膨張弁70(膨張弁70A~膨張弁70D)は、たとえば、開度を変化させることで、水熱交換器60を通過する冷媒の圧力などを調整する。実施の形態1の膨張弁70は、前述した冷媒回路側制御装置からの指示に基づいて開度を変化させる電子式膨張弁で構成する。ただし、これに限定するものではない。たとえば、冷媒の温度に基づいて開度を変化する感温式膨張弁などであってもよいが、 The expansion valve 70 (expansion valve 70A to expansion valve 70D) serving as a throttle device adjusts the pressure of the refrigerant passing through the water heat exchanger 60, for example, by changing the opening degree. The expansion valve 70 of the first embodiment is composed of an electronic expansion valve that changes the opening degree based on the instruction from the refrigerant circuit side control device described above. However, it is not limited to this. For example, a temperature-sensitive expansion valve that changes the opening degree based on the temperature of the refrigerant may be used.
 アキュムレータ40(アキュムレータ40A~アキュムレータ40D)は、それぞれ圧縮機30の吸入側に設けられており、冷媒回路において余剰となる冷媒を貯留する。 The accumulators 40 (accumulators 40A to 40D) are provided on the suction side of the compressor 30, respectively, and store excess refrigerant in the refrigerant circuit.
 ポンプ80は、熱媒体循環回路を構成する機器の1つである。実施の形態1のポンプ80は、ポンプ直流モータ81を有し、熱媒体循環回路において、水を吸引し、圧力を加えて送り出して循環させる。実施の形態1のポンプ80は、熱媒体循環回路において、2台の水熱交換器60と直列に接続されることになるため、容量が大きくなる。また、後述するポンプ用インバータ装置93は、ポンプ側制御装置94からの指示に基づいて、モータの回転数を任意に変化させることにより、ポンプ80の容量を変化させることができる。ここで、ポンプ用インバータ装置93およびポンプ側制御装置94は、後述するポンプ用制御箱90に収容されている制御系電気機器である。 The pump 80 is one of the devices constituting the heat medium circulation circuit. The pump 80 of the first embodiment has a pump DC motor 81, and in a heat medium circulation circuit, water is sucked, pressure is applied to send it out, and the water is circulated. Since the pump 80 of the first embodiment is connected in series with the two water heat exchangers 60 in the heat medium circulation circuit, the capacity is increased. Further, the pump inverter device 93, which will be described later, can change the capacity of the pump 80 by arbitrarily changing the rotation speed of the motor based on the instruction from the pump side control device 94. Here, the pump inverter device 93 and the pump side control device 94 are control system electrical devices housed in a pump control box 90, which will be described later.
 室内ユニット200は、空気調和対象である室内空間に調和した空気を送るユニットである。図2で示す実施の形態1の室内ユニット200(室内ユニット200Aおよび200B)は、室内熱交換器201(室内熱交換器201Aおよび室内熱交換器201B)、室内流量調整装置202(室内流量調整装置202A~室内流量調整装置202B)および室内ファン203(室内ファン203A~室内ファン203B)を有する。室内熱交換器201および室内流量調整装置202は、熱媒体循環回路を構成する機器となる。図2は、2台の室内ユニット200を有する空気調和装置を示しているが、室内ユニット200の台数は、特に限定しない。 The indoor unit 200 is a unit that sends air in harmony with the indoor space that is the object of air conditioning. The indoor units 200 (indoor units 200A and 200B) of the first embodiment shown in FIG. 2 include an indoor heat exchanger 201 (indoor heat exchanger 201A and an indoor heat exchanger 201B) and an indoor flow rate adjusting device 202 (indoor flow rate adjusting device). It has an indoor flow rate adjusting device 202B) and an indoor fan 203 (indoor fan 203A to indoor fan 203B). The indoor heat exchanger 201 and the indoor flow rate adjusting device 202 are devices that constitute a heat medium circulation circuit. FIG. 2 shows an air conditioner having two indoor units 200, but the number of indoor units 200 is not particularly limited.
 室内流量調整装置202は、たとえば、弁の開度(開口面積)を制御することができる二方弁などで構成されている。室内流量調整装置202は、開度を調整することで、室内熱交換器201を流入出する水の流量を制御する。そして、室内流量調整装置202は、室内ユニット200へ流入する水の温度および流出する水の温度に基づいて、室内熱交換器201を通過させる水の量を調整し、室内熱交換器201が、室内の熱負荷に応じた熱量による熱交換を行えるようにする。ここで、室内流量調整装置202は、停止、サーモOFFなどのときのように、室内熱交換器201が熱負荷との熱交換をする必要がないときは、弁を全閉にして、室内熱交換器201に水が流入出しないように供給を止めることができる。図2において、室内流量調整装置202は、室内熱交換器201の水流出側の配管に設置されているが、これに限定するものではない。たとえば、室内流量調整装置202が、室内熱交換器201の水流入側に設置されてもよい。 The indoor flow rate adjusting device 202 is composed of, for example, a two-way valve capable of controlling the opening degree (opening area) of the valve. The indoor flow rate adjusting device 202 controls the flow rate of water flowing in and out of the indoor heat exchanger 201 by adjusting the opening degree. Then, the indoor flow rate adjusting device 202 adjusts the amount of water passing through the indoor heat exchanger 201 based on the temperature of the water flowing into the indoor unit 200 and the temperature of the flowing water, and the indoor heat exchanger 201 adjusts the amount of water passing through the indoor heat exchanger 201. Allows heat exchange by the amount of heat according to the heat load in the room. Here, when the indoor heat exchanger 201 does not need to exchange heat with the heat load, such as when the indoor flow rate adjusting device 202 is stopped or the thermostat is turned off, the valve is fully closed and the indoor heat exchanger 201 is heated. The supply can be stopped so that water does not flow in and out of the exchanger 201. In FIG. 2, the indoor flow rate adjusting device 202 is installed in the pipe on the water outflow side of the indoor heat exchanger 201, but the present invention is not limited to this. For example, the indoor flow rate adjusting device 202 may be installed on the water inflow side of the indoor heat exchanger 201.
 また、室内熱交換器201は、室内ファン203から供給される室内空間における室内空気と水との間で熱交換を行う。空気よりも冷たい水が伝熱管内を通過すれば、空気は冷却され、室内空間は冷房される。室内ファン203は、室内空間の空気を室内熱交換器201に通過させ、室内空間に戻す空気の流れを生成する。 Further, the indoor heat exchanger 201 exchanges heat between indoor air and water in the indoor space supplied from the indoor fan 203. When water, which is colder than air, passes through the heat transfer tube, the air is cooled and the indoor space is cooled. The indoor fan 203 passes the air in the indoor space through the indoor heat exchanger 201 and generates a flow of air returning to the indoor space.
 図3は、実施の形態1に係るチリングユニットの機械室内における機器の配置について説明する図である。図3は、機械室1内を上面側から見た図である。実施の形態1のチリングユニット100の機械室1は、前述したように、冷媒回路を構成する機器および熱媒体循環回路を構成する機器およびこれらの機器を制御する制御系機器などを有する。図3では、4つの圧縮機30(圧縮機30A~圧縮機30D)、4つのアキュムレータ40(アキュムレータ40A~アキュムレータ40D)、4つの四方弁50(四方弁50A~四方弁50D)が示されている。また、2つの水熱交換器60(水熱交換器60Aおよび水熱交換器60B)が示されている。ここで、図3には示されていないが、4つの膨張弁70(膨張弁70A~膨張弁70D)も有する。 FIG. 3 is a diagram illustrating an arrangement of equipment in the machine chamber of the chilling unit according to the first embodiment. FIG. 3 is a view of the inside of the machine room 1 as viewed from the upper surface side. As described above, the machine room 1 of the chilling unit 100 of the first embodiment includes a device constituting a refrigerant circuit, a device constituting a heat medium circulation circuit, a control system device for controlling these devices, and the like. In FIG. 3, four compressors 30 (compressor 30A to compressor 30D), four accumulators 40 (accumulator 40A to accumulator 40D), and four four-way valves 50 (four-way valves 50A to four-way valves 50D) are shown. .. Further, two water heat exchangers 60 (water heat exchanger 60A and water heat exchanger 60B) are shown. Here, although not shown in FIG. 3, it also has four expansion valves 70 (expansion valves 70A to 70D).
 さらに、機械室1は、熱媒体である水が循環する熱媒体循環回路を構成する機器となるポンプ80を有する。そして、機械室1は、制御系電気機器などを収容する2つの冷媒回路側制御箱10(冷媒回路側制御箱10Aおよび冷媒回路側制御箱10B)、ポンプ用制御箱90および電源端子箱20を有する。 Further, the machine room 1 has a pump 80 which is a device constituting a heat medium circulation circuit in which water as a heat medium circulates. Then, the machine room 1 includes two refrigerant circuit side control boxes 10 (refrigerant circuit side control box 10A and refrigerant circuit side control box 10B), a pump control box 90, and a power supply terminal box 20 for accommodating control system electrical equipment and the like. Have.
 実施の形態1のチリングユニット100における機械室1は、図1および図3に示す矢印A側から最も手前に、電源端子箱20が配置される。次に、機械室1の長手方向に延びる一方の側面に沿って、複数の冷媒回路側制御箱10が、機械室1の長手方向に並んで配置される。実施の形態1では、1つの冷媒回路側制御箱10内には、グループとなった2系統の冷媒回路の駆動および制御を行う電気機器が収容されている。したがって、実施の形態1のチリングユニット100は、機械室1内に、2つの冷媒回路側制御箱10Aおよび冷媒回路側制御箱10Bが収容される。そして、電源端子箱20から直流電力を供給するための配線(図示せず)が、各冷媒回路側制御箱10に接続される。 In the machine room 1 of the chilling unit 100 of the first embodiment, the power supply terminal box 20 is arranged in the foreground from the arrow A side shown in FIGS. 1 and 3. Next, a plurality of refrigerant circuit-side control boxes 10 are arranged side by side in the longitudinal direction of the machine room 1 along one side surface extending in the longitudinal direction of the machine room 1. In the first embodiment, one refrigerant circuit side control box 10 contains an electric device for driving and controlling two groups of refrigerant circuits. Therefore, in the chilling unit 100 of the first embodiment, two refrigerant circuit side control boxes 10A and a refrigerant circuit side control box 10B are housed in the machine room 1. Then, wiring (not shown) for supplying DC power from the power supply terminal box 20 is connected to each refrigerant circuit side control box 10.
 また、複数の冷媒回路側制御箱10の配置側とは反対となる他方の側面には、冷媒回路を構成する機器が配置される。実施の形態1の機械室1内では、圧縮機30、アキュムレータ40、四方弁50および膨張弁70が、系統毎にまとまって、長手方向に並んで配置される。圧縮機30とアキュムレータ40とは、容積が大きいため、他方の側面に沿って順に並んで配置される。さらに、複数の冷媒回路側制御箱10並びに圧縮機30およびアキュムレータ40の隣には、冷媒回路を構成する機器および熱媒体循環回路を構成する機器となる複数の水熱交換器60が配置される。そして、矢印A側から最も遠い位置に、熱媒体循環回路を構成するポンプ80およびポンプ用制御箱90が配置される。したがって、冷媒回路系の機器と熱媒体循環回路系の機器とが、水熱交換器60を境界として分かれて配置される。 Further, the equipment constituting the refrigerant circuit is arranged on the other side surface opposite to the arrangement side of the plurality of refrigerant circuit side control boxes 10. In the machine room 1 of the first embodiment, the compressor 30, the accumulator 40, the four-way valve 50, and the expansion valve 70 are grouped together for each system and arranged side by side in the longitudinal direction. Since the compressor 30 and the accumulator 40 have a large volume, they are arranged side by side in order along the other side surface. Further, next to the plurality of refrigerant circuit side control boxes 10, the compressor 30, and the accumulator 40, a plurality of water heat exchangers 60, which are devices constituting the refrigerant circuit and devices constituting the heat medium circulation circuit, are arranged. .. Then, the pump 80 and the pump control box 90 constituting the heat medium circulation circuit are arranged at the positions farthest from the arrow A side. Therefore, the equipment of the refrigerant circuit system and the equipment of the heat medium circulation circuit system are separately arranged with the water heat exchanger 60 as a boundary.
 電源端子箱20は、電源端子(図示せず)が収容される箱である。冷媒回路側制御箱10内およびポンプ用制御箱90内において、機器を駆動させるパワーモジュールを有するインバータ装置、制御装置を有する制御基板などの電気機器は、外部の配線と接続される電源端子を介して、電力供給される。たとえば、実施の形態1では、直流用の電源端子を有し、12Vの直流電圧による電力が供給されるものとする。そして、後述するように、ポンプ用制御箱90内の装置に対して、直流電力を供給することができる。このため、実施の形態1の電源端子箱20は、交流電力用の電源端子を備える必要はない。ここで、複数のチリングユニット100が短手方向に並んで設置される場合、外部の配線と電源端子とを接続しやすいように、電源端子箱20は、機械室1の短手側の面から電源端子が見えるように、矢印A側から最も手前側の端部に収容される。 The power supply terminal box 20 is a box in which power supply terminals (not shown) are housed. In the refrigerant circuit side control box 10 and the pump control box 90, electrical equipment such as an inverter device having a power module for driving the equipment and a control board having a control device is connected to an external wiring via a power supply terminal. And power is supplied. For example, in the first embodiment, it is assumed that the power supply terminal for direct current is provided and power is supplied by a direct current voltage of 12 V. Then, as will be described later, DC power can be supplied to the device in the pump control box 90. Therefore, the power supply terminal box 20 of the first embodiment does not need to be provided with a power supply terminal for AC power. Here, when a plurality of chilling units 100 are installed side by side in the lateral direction, the power supply terminal box 20 is provided from the lateral side of the machine room 1 so that the external wiring and the power supply terminal can be easily connected. It is housed in the frontmost end from the arrow A side so that the power supply terminal can be seen.
 一方、矢印A側から最も遠い位置にある、電源端子箱20が収容された端部とは反対側となる他方の端部には、熱媒体循環回路を構成する機器の1つであるポンプ80が収容される。そして、その隣には、冷媒回路および熱媒体循環回路を構成する機器となる複数の水熱交換器60が配置される。たとえば、チリングユニット100の機械室1内に収容されたポンプ80および複数の水熱交換器60は、熱媒体循環回路を構成する機器を有する他の装置と配管接続する必要がある。このため、短手側の面からポンプ80および複数の水熱交換器60と接続された熱媒体配管が見えるようにし、配管接続しやすいように、ポンプ80は、矢印A側から最も遠くに位置する機械室1内の他方の端部に収容される。そして、ポンプ用制御箱90は、ポンプ80に隣接する位置であって、長手方向に延びる一方の側面において、複数の冷媒回路側制御箱10が配置された側と同じ側に配置される。 On the other hand, at the other end, which is the farthest position from the arrow A side and is opposite to the end where the power supply terminal box 20 is housed, the pump 80, which is one of the devices constituting the heat medium circulation circuit, is located. Is housed. Next to it, a plurality of water heat exchangers 60, which are devices constituting the refrigerant circuit and the heat medium circulation circuit, are arranged. For example, the pump 80 and the plurality of water heat exchangers 60 housed in the machine room 1 of the chilling unit 100 need to be pipe-connected to other devices having equipment constituting the heat medium circulation circuit. Therefore, the pump 80 is located farthest from the arrow A side so that the heat medium pipes connected to the pump 80 and the plurality of water heat exchangers 60 can be seen from the side on the short side, and the pipes can be easily connected. It is housed in the other end of the machine room 1. The pump control box 90 is arranged adjacent to the pump 80 on one side surface extending in the longitudinal direction on the same side as the side on which the plurality of refrigerant circuit side control boxes 10 are arranged.
 実施の形態1では、1つの冷媒回路側制御箱10内には、グループとなった2系統の冷媒回路の駆動および制御を行う電気機器が収容されている。したがって、実施の形態1のチリングユニット100は、機械室1内に、2つの冷媒回路側制御箱10Aおよび冷媒回路側制御箱10Bが収容される。そして、電源端子箱20からの電力供給線(図示せず)が、各冷媒回路側制御箱10と接続される。 In the first embodiment, one refrigerant circuit side control box 10 houses an electric device that drives and controls two groups of refrigerant circuits. Therefore, in the chilling unit 100 of the first embodiment, two refrigerant circuit side control boxes 10A and a refrigerant circuit side control box 10B are housed in the machine room 1. Then, a power supply line (not shown) from the power supply terminal box 20 is connected to each refrigerant circuit side control box 10.
 図4は、実施の形態1に係る冷媒回路側制御箱について説明する図である。図4(a)は、冷媒回路側制御箱10の箱内部の基板に配置された機器について示す図である。図4(a)に示すように、冷媒回路側制御箱10は、2つの冷媒回路側直流リアクトル11(冷媒回路側直流リアクトル11Aおよび冷媒回路側直流リアクトル11B)を有する。また、冷媒回路側制御箱10は、2つの冷媒回路側ノイズフィルタ12(冷媒回路側ノイズフィルタ12Aおよび冷媒回路側ノイズフィルタ12B)を有する。さらに、冷媒回路側制御箱10は、2つの圧縮機用インバータ装置13(圧縮機用インバータ装置13Aおよび圧縮機用インバータ装置13B)を有する。また、冷媒回路側制御箱10は、ファン用インバータ装置14を有する。そして、冷媒回路側制御箱10は、冷媒回路側制御装置15を有する。 FIG. 4 is a diagram for explaining the refrigerant circuit side control box according to the first embodiment. FIG. 4A is a diagram showing a device arranged on a substrate inside the box of the refrigerant circuit side control box 10. As shown in FIG. 4A, the refrigerant circuit side control box 10 has two refrigerant circuit side DC reactors 11 (refrigerant circuit side DC reactor 11A and refrigerant circuit side DC reactor 11B). Further, the refrigerant circuit side control box 10 has two refrigerant circuit side noise filters 12 (refrigerant circuit side noise filter 12A and refrigerant circuit side noise filter 12B). Further, the refrigerant circuit side control box 10 has two compressor inverter devices 13 (compressor inverter device 13A and compressor inverter device 13B). Further, the refrigerant circuit side control box 10 has a fan inverter device 14. The refrigerant circuit side control box 10 has a refrigerant circuit side control device 15.
 冷媒回路側直流リアクトル11は、インダクタを有し、昇圧、力率改善、高調波低減などを行う。冷媒回路側制御箱10内の装置は、電源端子箱20から直流電力の供給を受けるため、直流に係るリアクトルであるものとする。また、冷媒回路側ノイズフィルタ12は、コンデンサなどを有し、インバータ装置に発生するノイズ成分を抑えるフィルタである。ここで、実施の形態1では、冷媒回路側直流リアクトル11および冷媒回路側ノイズフィルタ12は、圧縮機用インバータ装置13Aおよび圧縮機用インバータ装置13Bに対応して、それぞれ設置されている。 The DC reactor 11 on the refrigerant circuit side has an inductor and performs boosting, power factor improvement, harmonic reduction, and the like. Since the device in the control box 10 on the refrigerant circuit side receives DC power from the power supply terminal box 20, it is assumed that it is a reactor related to DC. Further, the refrigerant circuit side noise filter 12 is a filter having a capacitor or the like and suppressing a noise component generated in the inverter device. Here, in the first embodiment, the refrigerant circuit side DC reactor 11 and the refrigerant circuit side noise filter 12 are installed corresponding to the compressor inverter device 13A and the compressor inverter device 13B, respectively.
 圧縮機用インバータ装置13は、スイッチング素子などを有するパワーモジュールなどを備え、電圧変換などを行って、変換に係る電力を圧縮機30に供給する装置である。実施の形態1では、前述したように、グループとなった2系統の冷媒回路における圧縮機30の駆動が行われるため、2つの圧縮機用インバータ装置13を有する。また、ファン用インバータ装置14は、スイッチング素子などを有するパワーモジュールなどを備え、電圧変換などを行って、変換に係る電力を室外ファン3に供給する装置である。ここで、出力の小さいファン用インバータ装置14は、直流リアクトルおよびノイズフィルタを含んでいる。本実施の形態では、ファン用インバータ装置14により、2つの室外ファン3を駆動させる。冷媒回路側制御装置15は、冷媒回路全体の制御を行う。実施の形態1では、冷媒回路側制御装置15は、グループとなった2系統の冷媒回路における制御を行う。 The compressor inverter device 13 is a device provided with a power module or the like having a switching element or the like, performing voltage conversion or the like, and supplying electric power related to the conversion to the compressor 30. In the first embodiment, as described above, since the compressor 30 is driven in the two groups of refrigerant circuits, the compressor 30 is provided with two compressor inverter devices 13. Further, the fan inverter device 14 is a device including a power module having a switching element or the like, performing voltage conversion or the like, and supplying electric power related to the conversion to the outdoor fan 3. Here, the fan inverter device 14 having a small output includes a DC reactor and a noise filter. In the present embodiment, the two outdoor fans 3 are driven by the fan inverter device 14. The refrigerant circuit side control device 15 controls the entire refrigerant circuit. In the first embodiment, the refrigerant circuit side control device 15 controls the two groups of refrigerant circuits.
 図4(b)は、冷媒回路側制御箱10の箱外部に配置された機器について説明する図である。図4(b)に示すように、各冷媒回路側制御箱10は、箱外部に、圧縮機用ヒートシンク16(圧縮機用ヒートシンク16Aおよび圧縮機用ヒートシンク16B)およびファン用ヒートシンク17を有する。 FIG. 4B is a diagram for explaining the equipment arranged outside the box of the refrigerant circuit side control box 10. As shown in FIG. 4B, each refrigerant circuit side control box 10 has a compressor heat sink 16 (compressor heat sink 16A and compressor heat sink 16B) and a fan heat sink 17 outside the box.
 圧縮機用ヒートシンク16(圧縮機用ヒートシンク16Aおよび圧縮機用ヒートシンク16B)は、冷媒回路側制御箱10内に収容された、圧縮機用インバータ装置13が有するパワーモジュールなどと接触し、パワーモジュールが駆動して発する熱を放熱する。また、ファン用ヒートシンク17は、冷媒回路側制御箱10内に収容された、前述したファン用インバータ装置14が有するパワーモジュールなどと接触し、パワーモジュールが駆動して発する熱を放熱する。これらのヒートシンクは、ヒートシンク下部に設置された冷却ファン(図示せず)により、空冷される。 The compressor heat sink 16 (compressor heat sink 16A and compressor heat sink 16B) comes into contact with the power module of the compressor inverter device 13 housed in the refrigerant circuit side control box 10, and the power module is moved. It dissipates the heat generated by driving. Further, the fan heat sink 17 comes into contact with the power module of the fan inverter device 14 housed in the refrigerant circuit side control box 10 and dissipates heat generated by driving the power module. These heat sinks are air-cooled by a cooling fan (not shown) installed under the heat sink.
 図5は、実施の形態1に係るポンプ用制御箱について説明する図である。図5(a)は、ポンプ用制御箱90の箱内部に配置された機器について示す図である。ポンプ用制御箱90は、直流電源端子90Aを有し、電源端子箱20を介して、直流電力の供給を受け、駆動および制御を行う電気機器を有する。図5(a)に示すように、ポンプ用制御箱90は、ポンプ側直流リアクトル91、ポンプ側ノイズフィルタ92、ポンプ用インバータ装置93およびポンプ側制御装置94を有する。 FIG. 5 is a diagram illustrating a control box for a pump according to the first embodiment. FIG. 5A is a diagram showing equipment arranged inside the pump control box 90. The control box 90 for a pump has a DC power supply terminal 90A, and has an electric device that receives, drives, and controls DC power through the power supply terminal box 20. As shown in FIG. 5A, the pump control box 90 includes a pump-side DC reactor 91, a pump-side noise filter 92, a pump-side inverter device 93, and a pump-side control device 94.
 ポンプ側直流リアクトル91は、冷媒回路側直流リアクトル11と同様に、インダクタを有し、昇圧、力率改善、高調波低減などを行う。実施の形態1のチリングユニット100では、ポンプ用制御箱90内の装置についても、電源端子箱20から直流電力の供給を受ける。このため、ポンプ側直流リアクトル91は、直流に係るリアクトルであるものとする。直流リアクトルは、交流リアクトルと比較して、力率改善効果および高調波低減効果が高い。また、直流リアクトルを採用する方が、交流リアクトルよりも装置のサイズを小さくすることができる。このため、ポンプ用制御箱90内の省スペース化をはかり、ポンプ用制御箱90を小型化および軽量化することができる。ポンプ用制御箱90の容積が少なくなることで、機械室1内において、水熱交換器60およびポンプ80と接続される熱媒体循環回路の配管の取り回しを行う空間が広くなる。したがって、特に、機械室1において、熱媒体循環回路系の機器の配置設計を容易に行うことができる。また、直流電力の供給を直接受けることで、ポンプ用制御箱90内において、トランスなどの素子が削減され、素子の配置スペースおよびコストの低減をはかることができる。 Like the refrigerant circuit side DC reactor 11, the pump side DC reactor 91 has an inductor, and performs boosting, power factor improvement, harmonic reduction, and the like. In the chilling unit 100 of the first embodiment, the device in the pump control box 90 is also supplied with DC power from the power supply terminal box 20. Therefore, the pump-side DC reactor 91 is assumed to be a DC-related reactor. The DC reactor has a higher power factor improving effect and harmonic reduction effect than the AC reactor. In addition, the size of the device can be made smaller by adopting the DC reactor than by adopting the AC reactor. Therefore, the space inside the pump control box 90 can be saved, and the pump control box 90 can be made smaller and lighter. By reducing the volume of the control box 90 for the pump, the space for arranging the piping of the heat medium circulation circuit connected to the water heat exchanger 60 and the pump 80 becomes wider in the machine room 1. Therefore, especially in the machine room 1, the layout design of the equipment of the heat medium circulation circuit system can be easily performed. Further, by directly receiving the supply of DC power, elements such as a transformer can be reduced in the pump control box 90, and the space for arranging the elements and the cost can be reduced.
 また、ポンプ側ノイズフィルタ92は、コンデンサなどを有し、ポンプ用インバータ装置93に発生するノイズ成分を抑えるフィルタである。ポンプ用インバータ装置93は、スイッチング素子などを有するパワーモジュールなどを備え、電圧変換などを行って、変換に係る電力をポンプ80に供給する装置である。ここで、実施の形態1のポンプ用インバータ装置93は、ポンプ側直流リアクトル91を接続する端子を有する。ポンプ側制御装置94は、ポンプ用インバータ装置93を駆動させてポンプ80の制御を行う。 Further, the pump-side noise filter 92 is a filter having a capacitor or the like and suppressing a noise component generated in the pump inverter device 93. The pump inverter device 93 is a device including a power module having a switching element or the like, performing voltage conversion or the like, and supplying electric power related to the conversion to the pump 80. Here, the pump inverter device 93 of the first embodiment has a terminal for connecting the DC reactor 91 on the pump side. The pump-side control device 94 drives the pump inverter device 93 to control the pump 80.
 図5(b)は、ポンプ用制御箱90の箱外部に配置された機器について説明する図である。図5(b)に示すように、ポンプ用制御箱90は、箱外部に、ポンプ用ヒートシンク95を有する。ポンプ用ヒートシンク95は、ポンプ用インバータ装置93が有するパワーモジュールなどと接触し、パワーモジュールが駆動して発する熱を放熱する。ここで、ポンプ用制御箱90内の電気機器は、直流電力の供給を直接受けることで、発熱量が少なくなる。このため、ポンプ用ヒートシンク95は、従来のヒートシンクよりも構成が簡単になり、容積が少なくなる。容積が少なくなることで、ポンプ用制御箱90の小型化および軽量化と同様に、熱媒体循環回路の配管の取り回しを行う空間が広くなる。そして、熱媒体循環回路系の機器の配置設計を容易に行うことができる。 FIG. 5B is a diagram illustrating equipment arranged outside the box of the pump control box 90. As shown in FIG. 5B, the pump control box 90 has a pump heat sink 95 outside the box. The pump heat sink 95 comes into contact with the power module or the like of the pump inverter device 93, and dissipates heat generated by driving the power module. Here, the electric device in the control box 90 for the pump directly receives the supply of DC electric power, so that the amount of heat generated is reduced. Therefore, the heat sink 95 for a pump has a simpler configuration and a smaller volume than a conventional heat sink. By reducing the volume, the space for arranging the piping of the heat medium circulation circuit becomes wider as well as the miniaturization and weight reduction of the control box 90 for the pump. Then, the layout design of the equipment of the heat medium circulation circuit system can be easily performed.
 以上のように、実施の形態1のチリングユニット100においては、ポンプ80がポンプ直流モータ81を有するようにし、ポンプ用制御箱90が有する装置に、直流電力を直接供給できるように構成して、駆動および制御などを行うようにした。このため、ポンプ用制御箱90内に、力率改善効果および高調波低減効果が高いポンプ側直流リアクトル91を配置することができる。ポンプ側直流リアクトル91は、交流リアクトルよりも装置のサイズが小さい。また、トランスなどの部品を設置しなくてもよい。このため、ポンプ用制御箱90を小型化することができる。ポンプ用制御箱90を小型化することで容積が少なくなり、機械室1内において、水熱交換器60およびポンプ80と接続する熱媒体循環回路の配管の取り回しを行う空間が広くなる。したがって、特に、機械室1において、熱媒体循環回路系の機器の配置設計を容易に行うことができる。また、ポンプ80およびポンプ用制御箱90を直流電力対応することで、軽量化をはかることができる。このため、ポンプ用制御箱90に脚を付する場合に要求される頑丈度合を緩和することができる。 As described above, in the chilling unit 100 of the first embodiment, the pump 80 is configured to have the pump DC motor 81 so that the DC power can be directly supplied to the device included in the pump control box 90. Drive and control are performed. Therefore, the pump-side DC reactor 91 having a high power factor improving effect and a harmonic reducing effect can be arranged in the pump control box 90. The pump-side DC reactor 91 has a smaller device size than the AC reactor. Moreover, it is not necessary to install parts such as a transformer. Therefore, the pump control box 90 can be miniaturized. By reducing the size of the control box 90 for the pump, the volume is reduced, and the space for arranging the piping of the heat medium circulation circuit connected to the water heat exchanger 60 and the pump 80 is increased in the machine room 1. Therefore, especially in the machine room 1, the layout design of the equipment of the heat medium circulation circuit system can be easily performed. Further, by making the pump 80 and the control box 90 for the pump compatible with DC power, the weight can be reduced. Therefore, the degree of robustness required when attaching the legs to the control box 90 for the pump can be relaxed.
 また、ポンプ用制御箱90における発熱量が少なくなるため、ポンプ用ヒートシンク95の容積を減らすことができる。このため、機械室1内において、熱媒体循環回路側の配管の取り回しを行うことができる空間を広くすることができ、熱媒体循環回路系の機器の配置設計を容易に行うことができる。特に、ポンプ用ヒートシンク95の水熱交換器60への干渉を抑えることができる。また、機械室1内全体の配置などを容易にすることにもつながる。そして、電源端子箱20において、交流電力用の電源端子などを備える必要がない。 Further, since the amount of heat generated in the pump control box 90 is reduced, the volume of the pump heat sink 95 can be reduced. Therefore, in the machine room 1, the space where the piping on the heat medium circulation circuit side can be routed can be widened, and the arrangement design of the equipment of the heat medium circulation circuit system can be easily performed. In particular, interference of the heat sink 95 for the pump with the water heat exchanger 60 can be suppressed. In addition, it also facilitates the arrangement of the entire machine room 1. Further, the power supply terminal box 20 does not need to be provided with a power supply terminal or the like for AC power.
実施の形態2.
 前述した実施の形態1では、2系統の冷媒回路をグループとし、1台の水熱交換器60を共有する、いわゆるデュアル構成のチリングユニット100について説明したが、これに限定するものではない。1系統の冷媒回路で冷媒を循環させ、1台の水熱交換器60において熱媒体との熱交換を行う、いわゆるシングル構成のチリングユニット100であってもよい。
Embodiment 2.
In the above-described first embodiment, the so-called dual configuration chilling unit 100 in which two systems of refrigerant circuits are grouped and one water heat exchanger 60 is shared has been described, but the present invention is not limited to this. It may be a so-called single-structured chilling unit 100 in which a refrigerant is circulated in one system of refrigerant circuits and heat is exchanged with a heat medium in one water heat exchanger 60.
 1 機械室、2,2A,2B,2C,2D 空気熱交換器、3,3A,3B,3C,3D 室外ファン、4,4A,4B,4C,4D ファン直流モータ、10,10A,10B 冷媒回路側制御箱、11,11A,11B 冷媒回路側直流リアクトル、12,12A,12B 冷媒回路側ノイズフィルタ、13,13A,13B 圧縮機用インバータ装置、14,14A,14B ファン用インバータ装置、15,15A,15B 冷媒回路側制御装置、16,16A,16B 圧縮機用ヒートシンク、17 ファン用ヒートシンク、20 電源端子箱、30,30A,30B,30C,30D 圧縮機、31,31A,31B,31C,31D 圧縮機直流モータ、40,40A,40B,40C,40D アキュムレータ、50,50A,50B,50C,50D 四方弁、60,60A,60B 水熱交換器、70,70A,70B,70C,70D 膨張弁、80 ポンプ、81 ポンプ直流モータ、90 ポンプ用制御箱、90A 直流電源端子、91 ポンプ側直流リアクトル、92 ポンプ側ノイズフィルタ、93 ポンプ用インバータ装置、94 ポンプ側制御装置、95 ポンプ用ヒートシンク、100 チリングユニット、200,200A,200B 室内ユニット、201,201A,201B 室内熱交換器、202,202A,202B 室内流量調整装置、203,203A,203B 室内ファン。 1 Machine room, 2,2A, 2B, 2C, 2D air heat exchanger, 3,3A, 3B, 3C, 3D outdoor fan, 4,4A, 4B, 4C, 4D fan DC motor, 10,10A, 10B refrigerant circuit Side control box, 11, 11A, 11B Refrigerator circuit side DC reactor, 12, 12A, 12B Refrigerator circuit side noise filter, 13, 13A, 13B Compressor inverter device, 14, 14A, 14B Fan inverter device, 15, 15A , 15B Refrigerator circuit side control device, 16, 16A, 16B Compressor heat sink, 17 Fan heat sink, 20 Power supply terminal box, 30, 30A, 30B, 30C, 30D Compressor, 31, 31A, 31B, 31C, 31D compression Machine DC motor, 40, 40A, 40B, 40C, 40D accumulator, 50, 50A, 50B, 50C, 50D four-way valve, 60, 60A, 60B water heat exchanger, 70, 70A, 70B, 70C, 70D expansion valve, 80 Pump, 81 pump DC motor, 90 pump control box, 90A DC power supply terminal, 91 pump side DC reactor, 92 pump side noise filter, 93 pump inverter device, 94 pump side control device, 95 pump heat sink, 100 chilling unit , 200, 200A, 200B indoor unit, 201, 201A, 201B indoor heat exchanger, 202, 202A, 202B indoor flow rate regulator, 203, 203A, 203B indoor fan.

Claims (5)

  1.  冷媒が循環する冷媒回路を構成する機器と、
     前記冷媒と熱を搬送する媒体となる熱媒体との熱交換を行う複数の熱媒体熱交換器と、
     直流モータを有し、前記熱媒体に圧力を加えて送り出すポンプと、
     直流電力により駆動し、前記ポンプの駆動および制御を行う電気機器を有するポンプ用制御箱と
    を機械室に備えるチリングユニット。
    The equipment that constitutes the refrigerant circuit in which the refrigerant circulates,
    A plurality of heat medium heat exchangers that exchange heat between the refrigerant and a heat medium serving as a medium for transporting heat.
    A pump that has a DC motor and applies pressure to the heat medium to send it out.
    A chilling unit provided in a machine room with a control box for a pump having an electric device that is driven by DC electric power to drive and control the pump.
  2.  前記ポンプ用制御箱は、前記電気機器が発する熱を放熱させるヒートシンクが箱外部に設置される請求項1に記載のチリングユニット。 The chilling unit according to claim 1, wherein the control box for a pump is a chilling unit in which a heat sink for dissipating heat generated by the electric device is installed outside the box.
  3.  前記機械室は、
     直流モータで駆動する圧縮機を前記冷媒回路を構成する機器として有し、
     直流電力により駆動し、前記圧縮機を含む前記冷媒回路を構成する機器の駆動および制御を行う電気機器を有する冷媒回路側制御箱を備える請求項1または請求項2に記載のチリングユニット。
    The machine room
    It has a compressor driven by a DC motor as a device that constitutes the refrigerant circuit.
    The chilling unit according to claim 1 or 2, further comprising a refrigerant circuit-side control box having an electric device that is driven by DC power and that drives and controls the device that constitutes the refrigerant circuit including the compressor.
  4.  複数の前記熱媒体熱交換器が前記熱媒体の流路に対して前記ポンプと直列に接続される請求項1~請求項3のいずれか一項に記載のチリングユニット。 The chilling unit according to any one of claims 1 to 3, wherein a plurality of the heat medium heat exchangers are connected in series with the pump to the flow path of the heat medium.
  5.  請求項1~請求項4のいずれか一項に記載のチリングユニットと、
     空気調和対象の室内空気と熱媒体とを熱交換する室内熱交換器および前記室内熱交換器に対応して設置され、前記室内熱交換器を通過する前記熱媒体の流量を調整する流量調整装置を有する室内ユニットと
    を配管接続して前記熱媒体を循環させる熱媒体循環回路を構成する空気調和装置。
    The chilling unit according to any one of claims 1 to 4.
    An indoor heat exchanger that exchanges heat between the indoor air to be air-conditioned and a heat medium, and a flow rate adjusting device that is installed corresponding to the indoor heat exchanger and adjusts the flow rate of the heat medium passing through the indoor heat exchanger. An air conditioner that constitutes a heat medium circulation circuit that circulates the heat medium by connecting the indoor unit with a pipe.
PCT/JP2019/031087 2019-08-07 2019-08-07 Chilling unit and air conditioner WO2021024410A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19940472.4A EP4012292A4 (en) 2019-08-07 2019-08-07 Chilling unit and air conditioner
JP2021538614A JPWO2021024410A1 (en) 2019-08-07 2019-08-07 Chilling unit and air conditioner
PCT/JP2019/031087 WO2021024410A1 (en) 2019-08-07 2019-08-07 Chilling unit and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/031087 WO2021024410A1 (en) 2019-08-07 2019-08-07 Chilling unit and air conditioner

Publications (1)

Publication Number Publication Date
WO2021024410A1 true WO2021024410A1 (en) 2021-02-11

Family

ID=74503127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031087 WO2021024410A1 (en) 2019-08-07 2019-08-07 Chilling unit and air conditioner

Country Status (3)

Country Link
EP (1) EP4012292A4 (en)
JP (1) JPWO2021024410A1 (en)
WO (1) WO2021024410A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS541563B2 (en) 1973-11-05 1979-01-26
JP2007327725A (en) * 2006-06-09 2007-12-20 Hitachi Appliances Inc Heat pump type water heater
WO2011013672A1 (en) * 2009-07-28 2011-02-03 東芝キヤリア株式会社 Heat source unit
WO2011099629A1 (en) * 2010-02-15 2011-08-18 東芝キヤリア株式会社 Chilling unit
JP2012233605A (en) * 2011-04-28 2012-11-29 Mitsubishi Electric Corp Liquid circulation heating system
JP2013113476A (en) * 2011-11-28 2013-06-10 Mitsubishi Electric Corp Air conditioner
JP2014222113A (en) * 2013-05-13 2014-11-27 三菱電機株式会社 Outdoor unit of air conditioning device
JP2016080245A (en) * 2014-10-16 2016-05-16 富士電機株式会社 Cooling device
JP2016090178A (en) * 2014-11-07 2016-05-23 日立アプライアンス株式会社 Air conditioner and its renewal method
JP2017203575A (en) * 2016-05-10 2017-11-16 三菱重工サーマルシステムズ株式会社 Electrical component cooling device, outdoor unit of air conditioning system comprising the same
JP2018054248A (en) * 2016-09-30 2018-04-05 ダイキン工業株式会社 Refrigeration device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5659560B2 (en) * 2010-05-28 2015-01-28 株式会社デンソー Refrigeration cycle equipment
JP6494659B2 (en) * 2014-04-16 2019-04-03 ジョンソン コントロールズ テクノロジー カンパニーJohnson Controls Technology Company How to operate the cooler
JP2014178113A (en) * 2014-06-06 2014-09-25 Toshiba Carrier Corp Heat source apparatus
JPWO2018062054A1 (en) * 2016-09-27 2019-07-04 東芝キヤリア株式会社 Refrigeration cycle device
JP6365615B2 (en) * 2016-09-30 2018-08-01 ダイキン工業株式会社 Refrigeration equipment
JP6732126B2 (en) * 2017-06-22 2020-07-29 三菱電機株式会社 Refrigeration cycle equipment

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS541563B2 (en) 1973-11-05 1979-01-26
JP2007327725A (en) * 2006-06-09 2007-12-20 Hitachi Appliances Inc Heat pump type water heater
WO2011013672A1 (en) * 2009-07-28 2011-02-03 東芝キヤリア株式会社 Heat source unit
WO2011099629A1 (en) * 2010-02-15 2011-08-18 東芝キヤリア株式会社 Chilling unit
JP2012233605A (en) * 2011-04-28 2012-11-29 Mitsubishi Electric Corp Liquid circulation heating system
JP2013113476A (en) * 2011-11-28 2013-06-10 Mitsubishi Electric Corp Air conditioner
JP2014222113A (en) * 2013-05-13 2014-11-27 三菱電機株式会社 Outdoor unit of air conditioning device
JP2016080245A (en) * 2014-10-16 2016-05-16 富士電機株式会社 Cooling device
JP2016090178A (en) * 2014-11-07 2016-05-23 日立アプライアンス株式会社 Air conditioner and its renewal method
JP2017203575A (en) * 2016-05-10 2017-11-16 三菱重工サーマルシステムズ株式会社 Electrical component cooling device, outdoor unit of air conditioning system comprising the same
JP2018054248A (en) * 2016-09-30 2018-04-05 ダイキン工業株式会社 Refrigeration device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4012292A4

Also Published As

Publication number Publication date
EP4012292A4 (en) 2022-08-10
JPWO2021024410A1 (en) 2021-12-23
EP4012292A1 (en) 2022-06-15

Similar Documents

Publication Publication Date Title
US7640763B2 (en) Hot water supply system
EP2206422B1 (en) Cooling system for variable speed drives and inductors
JP5842905B2 (en) Refrigeration equipment
CN116261308A (en) Electronic device cooling system
WO2011067905A1 (en) Outdoor unit for air conditioner
CN106461278B (en) Method for operating a cooler
CN105371389A (en) Outdoor machine and air conditioner
WO2010098071A1 (en) Heat pump system
CA3017820C (en) Heat transfer and hydronic systems
WO2021024410A1 (en) Chilling unit and air conditioner
JP7158590B2 (en) Chilling unit and air conditioner
JP5781220B2 (en) Indoor unit and air conditioner equipped with the same
WO2010109619A1 (en) Load-side relay unit and compound air conditioning/hot water supply system mounting load-side relay unit thereon
JP6854979B2 (en) Refrigeration cycle equipment
CN219741003U (en) Multi-connected air conditioning system
EP2833073A1 (en) Outdoor unit and air conditioning device with outdoor unit
WO2023166558A1 (en) Air conditioning device
JP6458400B2 (en) Air conditioner
JP5575083B2 (en) Air conditioner outdoor unit and air conditioner equipped with the outdoor unit
CN219367765U (en) Air conditioner outdoor system
JP6169363B2 (en) Heat medium control device, cooling / heating system, temperature adjusting device, and method for adding cooling / heating system
JP2008121930A (en) Refrigeration system
JP2011127805A (en) Air conditioning device
JP5500292B2 (en) Heat pump system
KR20060134544A (en) Air-conditioner having indoor heat exchanger of multi type

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19940472

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021538614

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019940472

Country of ref document: EP

Effective date: 20220307