JP2012233605A - Liquid circulation heating system - Google Patents

Liquid circulation heating system Download PDF

Info

Publication number
JP2012233605A
JP2012233605A JP2011101040A JP2011101040A JP2012233605A JP 2012233605 A JP2012233605 A JP 2012233605A JP 2011101040 A JP2011101040 A JP 2011101040A JP 2011101040 A JP2011101040 A JP 2011101040A JP 2012233605 A JP2012233605 A JP 2012233605A
Authority
JP
Japan
Prior art keywords
liquid
temperature
circulation
refrigerant
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011101040A
Other languages
Japanese (ja)
Inventor
Haruyuki Hirasawa
晴之 平澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011101040A priority Critical patent/JP2012233605A/en
Publication of JP2012233605A publication Critical patent/JP2012233605A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a liquid circulation heating system for forming liquid of a use side, at high temperature and stably.SOLUTION: The liquid circulation heating system includes: a compressor 3 for circulating a refrigerant in a heat source side and regulating a circulation flow rate; a circulation pump 6 for circulating liquid via a heat radiator 22 installed in a room and regulating the circulating flow rate; a heat exchanger 4 for exchanging heat between the refrigerant and the liquid; a forward liquid temperature setting means 23 for setting a preset temperature of temperature of the liquid to be fed to the heat radiator 22; a forward temperature detection means 7 for detecting a temperature of the liquid to be fed to the heat radiator 22; and a return liquid temperature detection means 8 for detecting a temperature of the liquid having returned through the heat radiator 22. The circulation pump 6 regulates a circulation flow rate of the liquid so that a difference of temperatures respectively detected by the forward liquid temperature detection means 7 and the return liquid temperature detection means 8 will fall within a desired range, and the compressor 3 regulates the circulation flow rate of the refrigerant so that the temperature detected by the forward liquid temperature detection means 7 will fall within a desired range including the preset temperature.

Description

本発明は、熱源側の冷媒と利用側の液体を熱交換器を介して熱交換するヒートポンプサイクルを構成した液体循環暖房システムの、利用側の液体の温度生成に関する。   The present invention relates to temperature generation of a use-side liquid in a liquid circulation heating system that constitutes a heat pump cycle that exchanges heat between a heat-source-side refrigerant and a use-side liquid via a heat exchanger.

従来から灯油を熱源とするボイラー等によって利用側液体を加熱し、利用側液体を室内に設置された床暖房パネル等の放熱器に搬送して暖房を行う液体循環暖房システムが知られているが、近年では液体を加熱する熱源としてヒートポンプを利用するヒートポンプ式温水暖房システムとも称される液体循環暖房システムが広まってきた。ヒートポンプは、熱源側の媒体としてフロンに代表される冷媒を循環させ、外気等から熱を採熱し、利用側の液体と熱交換を行うものであり、入力に対し高い出力が得られることから、効率がよい熱源として従来のボイラーに替わる熱源として注目されている。   Conventionally, there has been known a liquid circulation heating system that heats a use-side liquid by a boiler using kerosene as a heat source and transports the use-side liquid to a radiator such as a floor heating panel installed in a room for heating. In recent years, a liquid circulation heating system called a heat pump type hot water heating system that uses a heat pump as a heat source for heating a liquid has become widespread. The heat pump circulates a refrigerant represented by chlorofluorocarbon as a medium on the heat source side, collects heat from the outside air, etc., and performs heat exchange with the liquid on the usage side, and because a high output is obtained with respect to the input, As an efficient heat source, it is attracting attention as a heat source that replaces conventional boilers.

ここで、従来の灯油等を燃焼させるボイラーで加熱できる利用側の液体温度は70℃程度まで可能だが、ヒートポンプ式温水暖房システムとして使用されているR410A等の冷媒で生成される利用側の液体温度は最大で60℃程度となっている。また特に給湯用のヒートポンプ式の加熱冷媒として、二酸化炭素を使用した70℃以上の高温の液体を生成する技術が開示されている。   Here, the liquid temperature on the usage side that can be heated by a boiler that burns conventional kerosene or the like can be up to about 70 ° C., but the liquid temperature on the usage side that is generated by a refrigerant such as R410A used as a heat pump hot water heating system. Is about 60 ° C. at the maximum. In particular, as a heat pump heating refrigerant for hot water supply, a technique for generating a high-temperature liquid of 70 ° C. or higher using carbon dioxide is disclosed.

特開2003−106691号公報JP 2003-106691 A

三菱ヒートポンプ式温水暖房システムカタログ 2010年10月Mitsubishi Heat Pump Hot Water Heating System Catalog October 2010

ところで、上記従来の技術によれば、故障や維持費削減等から、放熱器はそのままに熱源機を従来のボイラーからヒートポンプ式に置換えるケースが発生した場合に、利用側の液体温度を従来使用していたボイラー並の高温に生成できないと、利用側の放熱器で温まらないといった不具合が生じることになる。   By the way, according to the above-mentioned conventional technology, when there is a case where the heat source is replaced with a heat pump type from a conventional boiler due to failure or maintenance cost reduction, the use side liquid temperature is conventionally used. If it cannot be generated at the same high temperature as the boiler, it will cause a problem that it will not be heated by the radiator on the use side.

しかしながらヒートポンプ式の液体循環暖房システムの冷媒としてよく用いられているR410A等の冷媒は、臨界温度が低くそもそも冷媒の特性として60℃を超える高温生成ができない。また利用側の液体の生成水温は、室内で放熱され戻ってきた液体の温度、循環流量と熱源側の冷媒が持つ熱量とのバランスで決まるため、仮に臨界温度が更に高い特性の冷媒を用いたとしても、高温水の生成ができるとは限らない。   However, the refrigerant such as R410A, which is often used as a refrigerant in a heat pump type liquid circulation heating system, has a low critical temperature and cannot generate a high temperature exceeding 60 ° C. in the first place. In addition, the water temperature of the liquid on the use side is determined by the balance between the temperature of the liquid that has been radiated and returned in the room, the circulation flow rate, and the amount of heat that the refrigerant on the heat source side has, so a refrigerant with a higher critical temperature was used. However, it is not always possible to generate high-temperature water.

特に利用側の液体の循環流量が不必要に多過ぎると、高温水が生成できないのみならず、放熱器へ向かう往きの温度と放熱器からの戻りの温度の差がつかず、熱交換する熱源側の効率の悪化を招く。   In particular, if the circulation flow rate of the liquid on the user side is unnecessarily large, not only high-temperature water cannot be generated, but also the difference between the temperature going back to the radiator and the temperature returning from the radiator is not possible, and the heat source that exchanges heat Side efficiency will be reduced.

また臨界温度を越えた領域(超臨界)を使用し低い温度を高い温度に上げる使い方には効率がよい二酸化炭素等の冷媒では、利用側の液体を循環させるシステムにおいては戻り水温が比較的高いため、発揮性能(能力、効率)が大幅に低下し液体循環暖房システムでの使用には適さない。   In addition, in the system that circulates the liquid on the use side, the return water temperature is relatively high for a refrigerant such as carbon dioxide, which is efficient for using the region exceeding the critical temperature (supercritical) and raising the low temperature to a high temperature. For this reason, the performance (capacity and efficiency) is greatly reduced, and it is not suitable for use in a liquid circulation heating system.

本発明は、上記に鑑みてなされたものであって、ヒートポンプサイクルの効率を落とすことなく、利用側の液体を高温かつ安定に生成する液体循環暖房システムを得ることを目的とする。   This invention is made | formed in view of the above, Comprising: It aims at obtaining the liquid circulation heating system which produces | generates the liquid of a utilization side stably at high temperature, without reducing the efficiency of a heat pump cycle.

上述した課題を解決し、目的を達成するために、本発明は、冷媒を熱源側にて循環させ循環流量を調節する圧縮機と、室内に設置された放熱器を介して液体を循環させ循環流量を調節する循環ポンプと、前記冷媒と前記液体に熱交換をさせる熱交換器と、前記放熱器へ送る前記液体の温度の設定温度を設定する往き液体温度設定手段と、前記放熱器へ送る前記液体の温度を検知する往き液体温度検知手段と、前記放熱器を経て戻ってきた前記液体の温度を検知する戻り液体温度検知手段と、を備え、前記往き液体温度検知手段および前記戻り液体温度検知手段がそれぞれ検知した温度の差が所望の範囲となるよう前記循環ポンプが前記液体の循環流量を調節し、前記往き液体温度検知手段で検知された温度が前記設定温度を含んだ所望の範囲となるよう前記圧縮機が前記冷媒の循環流量を調節することを特徴とする。   In order to solve the above-described problems and achieve the object, the present invention circulates by circulating a liquid through a compressor that circulates refrigerant on the heat source side and adjusts the circulation flow rate, and a radiator installed indoors. A circulation pump for adjusting the flow rate, a heat exchanger for exchanging heat between the refrigerant and the liquid, a forward liquid temperature setting means for setting a temperature of the liquid sent to the radiator, and a radiator A forward liquid temperature detection means for detecting the temperature of the liquid; and a return liquid temperature detection means for detecting the temperature of the liquid returned through the radiator, the forward liquid temperature detection means and the return liquid temperature. The circulating pump adjusts the circulation flow rate of the liquid so that the difference between the temperatures detected by the detecting means falls within a desired range, and the temperature detected by the forward liquid temperature detecting means includes a desired range including the set temperature. So as the compressor and adjusting the circulation flow rate of the refrigerant.

本発明によれば、臨界温度の高い冷媒を用いるとともに、利用側の液体の往き戻り温度差をある一定の範囲内となるよう循環流量を調節することで、放熱器に対して適正な循環流量を流すことから、ヒートポンプの効率を落とさず高温生成が可能な液体循環暖房システムを得るという効果を奏する。
となる。
According to the present invention, a refrigerant having a high critical temperature is used, and the circulation flow rate is adjusted so that the difference in the return and return temperature of the liquid on the use side is within a certain range. As a result, it is possible to obtain a liquid circulation heating system capable of generating high temperatures without reducing the efficiency of the heat pump.
It becomes.

図1は、本発明の実施の形態にかかる液体循環暖房システムの構成を示す図である。FIG. 1 is a diagram showing a configuration of a liquid circulation heating system according to an embodiment of the present invention. 図2は、本発明の実施の形態にかかる簡略化した冷媒のモリエル線図を示す図である。FIG. 2 is a diagram illustrating a simplified Mollier diagram of the refrigerant according to the embodiment of the present invention. 図3は、本発明の実施の形態にかかる液体循環暖房システムの循環ポンプの制御動作を示すフローチャートである。FIG. 3 is a flowchart showing the control operation of the circulation pump of the liquid circulation heating system according to the embodiment of the present invention. 図4は、本発明の実施の形態にかかる液体循環暖房システムの圧縮機の制御動作を示すフローチャートである。FIG. 4 is a flowchart showing the control operation of the compressor of the liquid circulation heating system according to the embodiment of the present invention.

以下に、本発明にかかる液体循環暖房システムの実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Embodiments of a liquid circulation heating system according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

実施の形態.
図1は、本発明の実施の形態にかかる液体循環暖房システム100の構成を示す図である。液体循環暖房システム100は、ヒートポンプ熱源機21、ヒートポンプ熱源機21と接続配管24にて接続された室内放熱器22とを備える。
Embodiment.
FIG. 1 is a diagram showing a configuration of a liquid circulation heating system 100 according to an embodiment of the present invention. The liquid circulation heating system 100 includes a heat pump heat source device 21, an indoor radiator 22 connected to the heat pump heat source device 21 and a connection pipe 24.

ヒートポンプサイクルにより採熱した熱で暖房に使う液体熱媒を生成するヒートポンプ熱源機21は、図1に示すように熱源側送風ファン1と、熱源側送風ファン1の送風により室外空気から熱を採熱する熱源側熱交換器2と、ヒートポンプサイクル内を循環し熱を搬送する冷媒を圧縮する圧縮機3と、冷媒の流量を調整する冷媒流量調節弁10、並びに冷媒と液体熱媒の熱交換をする冷媒-液体熱交換器4の一次流路で構成された熱媒循環閉路である熱源側の回路と、液体熱媒を循環させる送水手段としての循環ポンプ6と、液体熱媒を冷媒-液体熱交換器4を介して加熱する利用側の回路を備えている。   As shown in FIG. 1, the heat pump heat source unit 21 that generates a liquid heat medium used for heating with heat collected by the heat pump cycle collects heat from the outdoor air by blowing air from the heat source side blower fan 1 and the heat source side blower fan 1. Heat source side heat exchanger 2 that heats, compressor 3 that compresses the refrigerant that circulates in the heat pump cycle and conveys heat, refrigerant flow rate adjustment valve 10 that adjusts the flow rate of the refrigerant, and heat exchange between the refrigerant and the liquid heat medium The refrigerant on the heat source side is a closed circuit of the heat medium constituted by the primary flow path of the liquid heat exchanger 4, the circulation pump 6 as the water supply means for circulating the liquid heat medium, and the liquid heat medium as the refrigerant— A circuit on the use side for heating through the liquid heat exchanger 4 is provided.

ヒートポンプサイクルの冷媒と室内放熱器循環サイクルの液体熱媒とは相互に独立し、混じり合うことはないが冷媒-液体熱交換器4により熱的には接続している。   The refrigerant of the heat pump cycle and the liquid heat medium of the indoor radiator circulation cycle are independent from each other and are not thermally mixed but are thermally connected by the refrigerant-liquid heat exchanger 4.

利用側の回路には、ヒートポンプ熱源機21から供給される液体熱媒により暖房運転を行う室内放熱器22が接続配管24を通して接続される。   An indoor radiator 22 that performs heating operation with a liquid heat medium supplied from the heat pump heat source device 21 is connected to the circuit on the use side through a connection pipe 24.

室内放熱器22から戻ってきた液体熱媒は循環ポンプ6を介し、冷媒-液体熱交換器4に送られ熱源側の冷媒と熱交換し加熱され、室内放熱器22へ搬送される。   The liquid heat medium returned from the indoor radiator 22 is sent to the refrigerant-liquid heat exchanger 4 through the circulation pump 6, exchanges heat with the refrigerant on the heat source side, is heated, and is conveyed to the indoor radiator 22.

循環ポンプ6はインペラを有し、このインペラを回転させることにより循環回路内の液体熱媒を強制循環させ、室内放熱器22に液体熱媒を循環させるものである。本発明の実施の形態においては、循環ポンプ6や圧縮機3及び室外空気の熱を採熱する熱源側送風ファン1等を制御するマイコンを含む制御手段9によってPWM制御されるモータを備え、速度指令電圧によりインペラの回転数が任意に可変できる直流電源で駆動するポンプを循環ポンプ6として用いる。   The circulation pump 6 has an impeller. By rotating the impeller, the liquid heat medium in the circulation circuit is forcedly circulated, and the liquid heat medium is circulated through the indoor radiator 22. The embodiment of the present invention includes a motor that is PWM controlled by a control means 9 including a microcomputer that controls the circulation pump 6, the compressor 3, and the heat source side fan 1 that collects the heat of outdoor air, and the like. A pump that is driven by a DC power source that can arbitrarily change the rotation speed of the impeller by a command voltage is used as the circulation pump 6.

また、室内にはヒートポンプ熱源機21から供給される液体熱媒により暖房運転を行う1機または複数機の室内放熱器22とそれに対応するコントローラ23が備えられる。室内放熱器22は床下に設置され、詳細は図示しないが、輻射暖房を行う床暖房パネル、室内壁面に設置され輻射暖房を行うパネルヒーター、室内空気循環用の送風機、室内空気と液体熱媒とが熱交換をする熱交換器、および強制対流により暖房を行うファンコンベクターなどを含んだ構成である。   In addition, one or a plurality of indoor radiators 22 that perform a heating operation by a liquid heat medium supplied from the heat pump heat source unit 21 and a controller 23 corresponding to the indoor radiators 22 are provided in the room. The indoor radiator 22 is installed under the floor. Although not shown in detail, a floor heating panel that performs radiant heating, a panel heater that is installed on the wall surface of the room and performs radiant heating, a blower for circulating indoor air, indoor air and a liquid heat medium, Includes a heat exchanger that performs heat exchange, a fan convector that performs heating by forced convection, and the like.

コントローラ23は室温を検知する室温検知手段と目標とする室温を設定する室温設定手段と液体熱媒の温度を設定する液体温度設定手段が備えられる。液体温度設定手段は任意の液体温度で固定して運転する液体温度固定運転と、設定室温と現在室温から推定される暖房負荷に応じて、暖房負荷が高い場合は高い液体温度で運転し、暖房負荷が小さい場合は低い液体温度で運転するように自動的に液体温度を可変する液体温度自動運転の切り替えが可能となっている。   The controller 23 includes room temperature detecting means for detecting the room temperature, room temperature setting means for setting the target room temperature, and liquid temperature setting means for setting the temperature of the liquid heat medium. The liquid temperature setting means is operated at a fixed liquid temperature for operation at a fixed liquid temperature, and according to the heating load estimated from the set room temperature and the current room temperature. When the load is small, it is possible to switch to the liquid temperature automatic operation in which the liquid temperature is automatically varied so as to operate at a low liquid temperature.

制御手段9は室内に設置されたコントローラ23と双方向の通信が可能となるように無線あるいは有線にて接続されている。制御手段9には、コントローラ23からの設定室温、現在室温、および設定液体温度に関する情報、冷媒-液体熱交換器4の出口の液体熱媒温度を検知する往き液体温度検知手段7および室内放熱器22からの戻り液体温度を検知する戻り液体温度検知手段8の出力が制御情報として取込まれる。制御手段9は、これらの制御情報に基づいてヒートポンプ熱源機21の循環ポンプ6や圧縮機3及び熱源側送風ファン1等を制御する。   The control means 9 is connected to the controller 23 installed in the room by wireless or wired so that bidirectional communication is possible. The control means 9 includes information on the set room temperature, the current room temperature and the set liquid temperature from the controller 23, the forward liquid temperature detection means 7 for detecting the liquid heat medium temperature at the outlet of the refrigerant-liquid heat exchanger 4, and the indoor radiator. The output of the return liquid temperature detecting means 8 for detecting the return liquid temperature from 22 is taken in as control information. The control means 9 controls the circulation pump 6, the compressor 3, the heat source side blower fan 1 and the like of the heat pump heat source unit 21 based on these control information.

図2は冷媒の特性を示すモリエル線図の略図である。図2の上の記号CPが冷媒の臨界点、記号A−B−C−Dで結ばれる線が冷凍サイクルの状態を示す。本発明の実施の形態においては図2に示すように臨界点を超えない冷凍サイクルを形成し、記号B−C間が冷媒-液体熱交換器4で利用側の液体と熱交換される熱量となる。ここで、石油ボイラー並みの60℃を超えるような高温液体を生成するためには、冷媒の凝縮温度を必要な液体温度60℃より高くして用いる必要があるため、臨界点CPの温度が必要な液体温度60℃より高い70℃程度以上の冷媒を用いることになるが、ここでは特に冷媒の組成には言及しない。   FIG. 2 is a schematic diagram of the Mollier diagram showing the characteristics of the refrigerant. The upper symbol CP in FIG. 2 indicates the critical point of the refrigerant, and the line connected by the symbols ABCD indicates the state of the refrigeration cycle. In the embodiment of the present invention, as shown in FIG. 2, a refrigeration cycle not exceeding the critical point is formed, and the amount of heat exchanged between the symbols B and C with the liquid on the use side in the refrigerant-liquid heat exchanger 4 Become. Here, in order to generate a high-temperature liquid exceeding 60 ° C., which is equivalent to that of a petroleum boiler, it is necessary to use a refrigerant condensing temperature higher than the required liquid temperature 60 ° C., so the temperature of the critical point CP is necessary. A refrigerant having a liquid temperature higher than 60 ° C. and having a temperature of about 70 ° C. or higher is used, but here the refrigerant composition is not particularly mentioned.

次に本発明の実施の形態にかかる液体循環暖房システム100の制御動作について、図3および図4に示したフローチャートに基づいて説明する。   Next, the control operation of the liquid circulation heating system 100 according to the embodiment of the present invention will be described based on the flowcharts shown in FIGS. 3 and 4.

図3において、ステップS1で室内放熱器22のコントローラ23のいずれかが運転開始操作されるとヒートポンプ熱源機21の制御手段9に運転開始情報、設定室温、現在室温、設定液体温度情報(液体温度固定運転の場合はコントローラ23で設定された任意の液体温度、液体温度自動運転の場合は液体温度自動運転が選択されているという情報)が伝達される。   In FIG. 3, when any of the controllers 23 of the indoor radiator 22 is started to operate in step S1, the operation start information, set room temperature, current room temperature, set liquid temperature information (liquid temperature) are sent to the control means 9 of the heat pump heat source unit 21. In the case of the fixed operation, an arbitrary liquid temperature set by the controller 23 is transmitted, and in the case of the liquid temperature automatic operation, information that the liquid temperature automatic operation is selected is transmitted.

次に、ステップS2で制御手段9は循環ポンプ6が制御手段9に予め記憶された初期回転数で運転するように速度指令を与えるとともに往き液体水温が目標の液体温度となるように圧縮機3の回転数を制御する。圧縮機3の回転数の制御についての詳細は図4を用いて後述する。なお、上記初期回転数は一定ではなく目標とする往き液体水温に応じて可変してもかまわない。   Next, in step S2, the control means 9 gives a speed command so that the circulating pump 6 operates at the initial rotational speed stored in advance in the control means 9, and the compressor 3 so that the outgoing liquid water temperature becomes the target liquid temperature. Control the number of revolutions. Details of the control of the rotation speed of the compressor 3 will be described later with reference to FIG. Note that the initial rotational speed is not constant and may be varied according to the target outgoing liquid water temperature.

次に、ステップS3において往き液体温度検知手段7により往き液体温度を検知する。   Next, the forward liquid temperature is detected by the forward liquid temperature detection means 7 in step S3.

次に、ステップS4において戻り液体温度検知手段8により戻り液体温度を検知する。   Next, the return liquid temperature is detected by the return liquid temperature detection means 8 in step S4.

次に、ステップS5で、ステップS3で検知した往き液体温度とステップS4で検知した戻り液体温度との差である往き戻り液体温度差(ΔTa)(往き液体温度−戻り液体温度)が往き戻り液体温度差下限(ΔTaL:第1の閾値)以上であるか否かを判断する。   Next, in step S5, the difference between the return liquid temperature detected in step S3 and the return liquid temperature detected in step S4 (ΔTa) (forward liquid temperature−return liquid temperature) is the return liquid temperature. It is determined whether the temperature difference is equal to or higher than the lower limit of temperature difference (ΔTaL: first threshold).

往き戻り液体温度差(ΔTa)が往き戻り液体温度差下限(ΔTaL)未満である場合(ステップS5:No)は、ステップS8に進み、循環ポンプ6の回転数を所定の回転数下げる処理を行う。ここで、往き戻り液体温度差下限(ΔTaL)はヒートポンプの効率を向上するために最低限必要な温度差である。   When the return liquid temperature difference (ΔTa) is less than the return liquid temperature difference lower limit (ΔTaL) (step S5: No), the process proceeds to step S8 to perform a process of reducing the rotational speed of the circulation pump 6 by a predetermined rotational speed. . Here, the back and forth liquid temperature difference lower limit (ΔTaL) is the minimum temperature difference necessary to improve the efficiency of the heat pump.

ステップS5で往き戻り液体温度差(ΔTa)が往き戻り液体温度差下限(ΔTaL)以上である場合(ステップS5:Yes)は、ステップS6に進む。ステップS6では、往き戻り液体温度差(ΔTa)が往き戻り液体温度差上限(ΔTaH:第2の閾値)以下であるか否かを判断する。ここで、往き戻り液体温度差(ΔTa)が往き戻り液体温度差上限(ΔTaH)を超える場合(ステップS6:No)は、ステップS9に進み、循環ポンプ6の回転数を所定の回転数上げる処理を行う。   When the return liquid temperature difference (ΔTa) is equal to or larger than the return liquid temperature difference lower limit (ΔTaL) in step S5 (step S5: Yes), the process proceeds to step S6. In step S6, it is determined whether or not the return liquid temperature difference (ΔTa) is less than or equal to the upper limit of the return liquid temperature difference (ΔTaH: second threshold). Here, when the return liquid temperature difference (ΔTa) exceeds the upper limit of the return liquid temperature difference (ΔTaH) (step S6: No), the process proceeds to step S9 to increase the rotational speed of the circulation pump 6 by a predetermined rotational speed. I do.

往き戻り液体温度差(ΔTa)が往き戻り液体温度差上限(ΔTaH)以下である場合(ステップS6:Yes)は、ステップS7に進み、循環ポンプ6の現状回転数を維持する。往き戻り液体温度差上限(ΔTaH)は流量低下により室内放熱器22が放熱量不足とならないために許容できる最大の温度差である。   When the return liquid temperature difference (ΔTa) is equal to or less than the return liquid temperature difference upper limit (ΔTaH) (step S6: Yes), the process proceeds to step S7, and the current rotational speed of the circulation pump 6 is maintained. The upper limit of the return liquid temperature difference (ΔTaH) is the maximum temperature difference that can be tolerated in order that the indoor radiator 22 does not have a shortage of heat dissipation due to a decrease in flow rate.

往き戻り液体温度差下限(ΔTaL)と往き戻り液体温度差上限(ΔTaH)は室内放熱器22の放熱特性により定まるもので、ここでは具体的な値は言及しない。往き戻り液体温度差(ΔTa)が大きすぎる場合は利用側の液体の循環流量が不足しており室内放熱器22の能力不足の状態である。逆に、往き戻り液体温度差(ΔTa)が小さすぎる場合は利用側の液体の循環流量過多の状態であり、必要以上に室内放熱器22へ利用側の液体を搬送している状態である。図3に示す制御フローは、これらの状態を是正する制御を説明するものである。   The return liquid temperature difference lower limit (ΔTaL) and the return liquid temperature difference upper limit (ΔTaH) are determined by the heat dissipation characteristics of the indoor radiator 22, and no specific values are mentioned here. When the return liquid temperature difference (ΔTa) is too large, the circulation flow rate of the liquid on the use side is insufficient and the capacity of the indoor radiator 22 is insufficient. Conversely, when the return liquid temperature difference (ΔTa) is too small, the use-side liquid circulation flow rate is excessive, and the use-side liquid is being conveyed to the indoor radiator 22 more than necessary. The control flow shown in FIG. 3 explains the control for correcting these conditions.

次に図4のフローチャートについて説明する。   Next, the flowchart of FIG. 4 will be described.

図4において、ステップS11で室内放熱器22のコントローラ23のいずれかが運転開始操作されるとヒートポンプ熱源機21の制御手段9に運転開始情報、設定室温、現在室温、設定液体温度情報(液体温度固定運転の場合はコントローラ23で設定された任意の液体温度、液体温度自動運転の場合は液体温度自動運転が選択されているという情報)が伝達される。   In FIG. 4, when any of the controllers 23 of the indoor radiator 22 is started to operate in step S <b> 11, operation start information, set room temperature, current room temperature, set liquid temperature information (liquid temperature In the case of the fixed operation, an arbitrary liquid temperature set by the controller 23 is transmitted, and in the case of the liquid temperature automatic operation, information that the liquid temperature automatic operation is selected is transmitted.

次に、ステップS12において、制御手段9は圧縮機3が制御手段9に予め記憶された初期回転数で運転するように運転指令を与える。   Next, in step S <b> 12, the control unit 9 gives an operation command so that the compressor 3 operates at the initial rotational speed stored in advance in the control unit 9.

次に、ステップS13において、往き液体温度検知手段7で往き液体温度(Ta)を検知する。   Next, in step S13, the forward liquid temperature detecting means 7 detects the forward liquid temperature (Ta).

次に、ステップS14において、往き液体温度(Ta)と目標とする往き液体温度(Ttgt)とを比較する。往き液体温度(Ta)が目標往き液体温度(Ttgt−α)未満である場合(Ta<Ttgt−α)はステップS15に進み、圧縮機3の回転数を所定の回転数上げる処理を行う。   Next, in step S14, the forward liquid temperature (Ta) is compared with the target forward liquid temperature (Ttgt). When the outgoing liquid temperature (Ta) is lower than the target outgoing liquid temperature (Ttgt-α) (Ta <Ttgt-α), the process proceeds to step S15, and a process of increasing the rotational speed of the compressor 3 by a predetermined rotational speed is performed.

ステップS14で、往き液体温度(Ta)が目標とする往き液体温度(Ttgt+α)を超えている場合(Ta>Ttgt+α)には、ステップS16に進み、圧縮機の回転数を所定の回転数下げる処理を行う。上記した(Ttgt)にα(マージン値)を加算或いは減算した値は圧縮機3の回転数制御を収束させるために目標値に幅を持たせるためのものである。   In step S14, when the forward liquid temperature (Ta) exceeds the target forward liquid temperature (Ttgt + α) (Ta> Ttgt + α), the process proceeds to step S16, and a process for reducing the rotational speed of the compressor by a predetermined rotational speed. I do. The value obtained by adding or subtracting α (margin value) to (Ttgt) described above is for giving a range to the target value in order to converge the rotational speed control of the compressor 3.

そして、ステップS14で往き液体温度(Ta)が目標とする往き戻り液体温度(Ttgt)±αの範囲内にある場合(Ttgt+α≧Ta≧Ttgt−α)、ステップS17に進み、圧縮機3の現状回転数を維持する。   When the forward liquid temperature (Ta) is within the target forward liquid temperature (Ttgt) ± α in step S14 (Ttgt + α ≧ Ta ≧ Ttgt−α), the process proceeds to step S17, and the current state of the compressor 3 is reached. Maintain speed.

目標とする往き液体温度(Ttgt)(設定温度)とは液体温度固定の場合はコントローラ23で設定された液体温度、液体温度自動の場合は設定室温、現在室温情報から演算される液体温度である。設定される温度範囲の上下限温度は既定しないが、少なくとも上限温度はボイラーで生成可能な温度範囲である60℃〜70℃までは設定することができる。   The target forward liquid temperature (Ttgt) (set temperature) is the liquid temperature set by the controller 23 when the liquid temperature is fixed, the set room temperature when the liquid temperature is automatic, and the liquid temperature calculated from the current room temperature information. . The upper and lower limits of the temperature range to be set are not defined, but at least the upper limit temperature can be set up to 60 ° C to 70 ° C, which is a temperature range that can be generated by the boiler.

以上説明したように、本実施の形態においては、石油ボイラー並の高温生成が可能な臨界温度が高い冷媒を用い、行き液体温度を臨界温度を超えない範囲で目標の往き液体温度(Ttgt)となるよう圧縮機3の回転数を制御する。それと共に、熱源側の冷媒と熱交換され放熱器へ送られる利用側の液体の温度と放熱器から戻ってきた液体の温度との温度差である往き戻り温度差がある一定の範囲内の温度となるように循環ポンプ6の回転数を制御して循環流量を調節する。これにより、流量低下による室内放熱器22が放熱量不足を招くことなく、またヒートポンプサイクルの効率を落とすことなく、利用側液体として60℃を超える高温水を生成することが実現可能となる。   As described above, in the present embodiment, a refrigerant having a high critical temperature capable of generating as high a temperature as that of an oil boiler is used, and the target liquid temperature (Ttgt) is set within a range not exceeding the critical temperature. The rotational speed of the compressor 3 is controlled so that it becomes. At the same time, the temperature within a certain range where the difference between the return temperature, which is the temperature difference between the temperature of the liquid on the use side that is exchanged with the refrigerant on the heat source side and sent to the radiator, and the temperature of the liquid returned from the radiator The circulation flow rate is adjusted by controlling the rotational speed of the circulation pump 6 so that This makes it possible to generate high-temperature water exceeding 60 ° C. as the use-side liquid without causing the indoor radiator 22 due to a decrease in flow rate to cause a shortage of heat dissipation and without reducing the efficiency of the heat pump cycle.

更に、本願発明は上記実施の形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、上記実施の形態には種々の段階の発明が含まれており、開示される複数の構成要件における適宜な組み合わせにより種々の発明が抽出されうる。   Furthermore, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention in the implementation stage. Further, the above embodiments include inventions at various stages, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent requirements.

例えば、上記実施の形態においてそれぞれに示される全構成要件からいくつかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題が解決でき、発明の効果の欄で述べられている効果が得られる場合には、この構成要件が削除された構成が発明として抽出されうる。更に、上記実施の形態における構成要件を適宜組み合わせてもよい。   For example, even if some constituent elements are deleted from all the constituent elements shown in each of the above embodiments, the problem described in the column of the problem to be solved by the invention can be solved, and described in the column of the effect of the invention. In the case where the obtained effect can be obtained, a configuration in which this configuration requirement is deleted can be extracted as an invention. Furthermore, you may combine the structural requirements in the said embodiment suitably.

以上のように、本発明にかかる液体循環暖房システムは、液体を加熱する熱源としてヒートポンプを利用するヒートポンプ式温水暖房システムに有用であり、特に、ヒートポンプサイクルの効率を落とすことなく、利用側の液体を高温かつ安定に生成する液体循環暖房システムに適している。   As described above, the liquid circulation heating system according to the present invention is useful for a heat pump type hot water heating system that uses a heat pump as a heat source for heating a liquid, and in particular, without reducing the efficiency of the heat pump cycle. It is suitable for a liquid circulation heating system that generates high temperature and stability.

1 熱源側送風ファン
2 熱源側熱交換器
3 圧縮機
4 冷媒-液体熱交換器
6 循環ポンプ
7 往き液体温度検知手段
8 戻り液体温度検知手段
9 制御手段
10 冷媒流量調整弁
21 ヒートポンプ熱源機
22 室内放熱器
23 コントローラ
24 接続配管
100 液体循環暖房システム
S1〜S9、S11〜S17 ステップ
DESCRIPTION OF SYMBOLS 1 Heat source side ventilation fan 2 Heat source side heat exchanger 3 Compressor 4 Refrigerant-liquid heat exchanger 6 Circulation pump 7 Forward liquid temperature detection means 8 Return liquid temperature detection means 9 Control means 10 Refrigerant flow rate adjustment valve 21 Heat pump heat source machine 22 Indoor Radiator 23 Controller 24 Connection piping 100 Liquid circulation heating system S1 to S9, S11 to S17 Steps

Claims (4)

冷媒を熱源側にて循環させ循環流量を調節する圧縮機と、
室内に設置された放熱器を介して液体を循環させ循環流量を調節する循環ポンプと、
前記冷媒と前記液体に熱交換をさせる熱交換器と、
前記放熱器へ送る前記液体の温度の設定温度を設定する往き液体温度設定手段と、
前記放熱器へ送る前記液体の温度を検知する往き液体温度検知手段と、
前記放熱器を経て戻ってきた前記液体の温度を検知する戻り液体温度検知手段と、
を備え、
前記往き液体温度検知手段および前記戻り液体温度検知手段がそれぞれ検知した温度の差が所望の範囲となるよう前記循環ポンプが前記液体の循環流量を調節し、
前記往き液体温度検知手段で検知された温度が前記設定温度を含んだ所望の範囲となるよう前記圧縮機が前記冷媒の循環流量を調節する
ことを特徴とする液体循環暖房システム。
A compressor that circulates refrigerant on the heat source side and adjusts the circulation flow rate;
A circulation pump that circulates liquid through a radiator installed in the room and adjusts the circulation flow rate;
A heat exchanger for exchanging heat between the refrigerant and the liquid;
Forward liquid temperature setting means for setting a set temperature of the temperature of the liquid to be sent to the radiator;
Outward liquid temperature detection means for detecting the temperature of the liquid sent to the radiator,
Return liquid temperature detection means for detecting the temperature of the liquid returned through the radiator,
With
The circulating pump adjusts the circulating flow rate of the liquid so that the difference between the temperatures detected by the forward liquid temperature detecting means and the return liquid temperature detecting means falls within a desired range;
The liquid circulation heating system, wherein the compressor adjusts the circulation flow rate of the refrigerant so that the temperature detected by the forward liquid temperature detection means falls within a desired range including the set temperature.
前記温度の差が第1の閾値より小さい場合は、前記循環ポンプの回転数を下げ、
前記温度の差が第1の閾値より大きい第2の閾値より大きい場合は、前記循環ポンプの回転数を上げる
ことを特徴とする請求項1に記載の液体循環暖房システム。
If the temperature difference is less than the first threshold, reduce the number of revolutions of the circulation pump,
The liquid circulation heating system according to claim 1, wherein when the temperature difference is greater than a second threshold value that is greater than a first threshold value, the number of revolutions of the circulation pump is increased.
前記往き液体温度検知手段で検知された温度が前記設定温度よりマージン値だけ低い温度より低い場合は、前記圧縮機の回転数を上げ、
前記往き液体温度検知手段で検知された温度が前記設定温度よりマージン値だけ高い温度より高い場合は、前記圧縮機の回転数を下げる
ことを特徴とする請求項1または2に記載の液体循環暖房システム。
If the temperature detected by the forward liquid temperature detection means is lower than the temperature lower than the set temperature by a margin value, increase the rotational speed of the compressor,
3. The liquid circulation heating according to claim 1, wherein when the temperature detected by the forward liquid temperature detection unit is higher than a temperature higher than the set temperature by a margin value, the rotational speed of the compressor is decreased. system.
前記冷媒は70℃以上の臨界温度を有し、臨界温度以下の温度に維持されて循環させられている
ことを特徴とする請求項1、2または3に記載の液体循環暖房システム。
The liquid circulation heating system according to claim 1, 2 or 3, wherein the refrigerant has a critical temperature of 70 ° C or higher and is circulated while being maintained at a temperature lower than the critical temperature.
JP2011101040A 2011-04-28 2011-04-28 Liquid circulation heating system Pending JP2012233605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011101040A JP2012233605A (en) 2011-04-28 2011-04-28 Liquid circulation heating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011101040A JP2012233605A (en) 2011-04-28 2011-04-28 Liquid circulation heating system

Publications (1)

Publication Number Publication Date
JP2012233605A true JP2012233605A (en) 2012-11-29

Family

ID=47434089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011101040A Pending JP2012233605A (en) 2011-04-28 2011-04-28 Liquid circulation heating system

Country Status (1)

Country Link
JP (1) JP2012233605A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014163594A (en) * 2013-02-26 2014-09-08 Mitsubishi Electric Corp Flow control device and fluid circuit system
JP2015017748A (en) * 2013-07-10 2015-01-29 サンポット株式会社 Heat pump heat source machine
JP2015017751A (en) * 2013-07-10 2015-01-29 サンポット株式会社 Heat pump heat source machine
JP2016003789A (en) * 2014-06-16 2016-01-12 パナソニックIpマネジメント株式会社 Hot water generation device
JP2016166715A (en) * 2015-03-10 2016-09-15 リンナイ株式会社 Heat pump heating device
JP2018004130A (en) * 2016-06-29 2018-01-11 三菱電機株式会社 Hot water heat source machine
WO2018127969A1 (en) * 2017-01-06 2018-07-12 三菱電機株式会社 Heat source system
WO2021024410A1 (en) * 2019-08-07 2021-02-11 三菱電機株式会社 Chilling unit and air conditioner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10176867A (en) * 1996-12-13 1998-06-30 Toshiba Corp Air conditioner
JP2005201538A (en) * 2004-01-15 2005-07-28 Sunpot Co Ltd Heat pump type water heater
JP2010196946A (en) * 2009-02-24 2010-09-09 Daikin Ind Ltd Heat pump system
JPWO2010050001A1 (en) * 2008-10-29 2012-03-29 三菱電機株式会社 Air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10176867A (en) * 1996-12-13 1998-06-30 Toshiba Corp Air conditioner
JP2005201538A (en) * 2004-01-15 2005-07-28 Sunpot Co Ltd Heat pump type water heater
JPWO2010050001A1 (en) * 2008-10-29 2012-03-29 三菱電機株式会社 Air conditioner
JP2010196946A (en) * 2009-02-24 2010-09-09 Daikin Ind Ltd Heat pump system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014163594A (en) * 2013-02-26 2014-09-08 Mitsubishi Electric Corp Flow control device and fluid circuit system
JP2015017748A (en) * 2013-07-10 2015-01-29 サンポット株式会社 Heat pump heat source machine
JP2015017751A (en) * 2013-07-10 2015-01-29 サンポット株式会社 Heat pump heat source machine
JP2016003789A (en) * 2014-06-16 2016-01-12 パナソニックIpマネジメント株式会社 Hot water generation device
JP2016166715A (en) * 2015-03-10 2016-09-15 リンナイ株式会社 Heat pump heating device
JP2018004130A (en) * 2016-06-29 2018-01-11 三菱電機株式会社 Hot water heat source machine
WO2018127969A1 (en) * 2017-01-06 2018-07-12 三菱電機株式会社 Heat source system
JPWO2018127969A1 (en) * 2017-01-06 2019-07-11 三菱電機株式会社 Heat source system
WO2021024410A1 (en) * 2019-08-07 2021-02-11 三菱電機株式会社 Chilling unit and air conditioner
JPWO2021024410A1 (en) * 2019-08-07 2021-12-23 三菱電機株式会社 Chilling unit and air conditioner

Similar Documents

Publication Publication Date Title
JP5063486B2 (en) Heat pump hot water heating system
JP2012233605A (en) Liquid circulation heating system
JP5984784B2 (en) Hot / cold water air conditioning system
JP5310431B2 (en) Heat pump type hot water heater
JP6079507B2 (en) Hot / cold water air conditioning system
JP5524571B2 (en) Heat pump equipment
JP5920251B2 (en) Heating and hot water supply equipment
JP6103144B2 (en) Heat pump heating system
JP2009014218A (en) Hot water heating device
JP4026654B2 (en) Water heater
JP6354627B2 (en) Heat pump hot water heating and heating system
JP5310432B2 (en) Heat pump type hot water heater
JP2019066138A (en) Cogeneration system
JP6533717B2 (en) Hot water supply system
JP2009287898A (en) Heat pump type hot water heat utilizing system
JPWO2017138133A1 (en) Hot / cold water air conditioning system
JP5097054B2 (en) Heat pump water heater
JP5248437B2 (en) Hot water storage heater
JP2016040500A (en) Composite heat source heat pump device
JP6890727B1 (en) Air conditioning system and control method
JP6013738B2 (en) Heating system
JP2011237111A (en) Heat pump hot water heating apparatus
JP2017040452A (en) Heat pump hot water heating system
JP4354389B2 (en) Hot water storage water heater
JP3908668B2 (en) Heat pump water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140520