WO2010109619A1 - Load-side relay unit and compound air conditioning/hot water supply system mounting load-side relay unit thereon - Google Patents

Load-side relay unit and compound air conditioning/hot water supply system mounting load-side relay unit thereon Download PDF

Info

Publication number
WO2010109619A1
WO2010109619A1 PCT/JP2009/056049 JP2009056049W WO2010109619A1 WO 2010109619 A1 WO2010109619 A1 WO 2010109619A1 JP 2009056049 W JP2009056049 W JP 2009056049W WO 2010109619 A1 WO2010109619 A1 WO 2010109619A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
hot water
water supply
load
air
Prior art date
Application number
PCT/JP2009/056049
Other languages
French (fr)
Japanese (ja)
Inventor
宏典 薮内
純一 亀山
博文 ▲高▼下
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2011505742A priority Critical patent/JPWO2010109619A1/en
Priority to PCT/JP2009/056049 priority patent/WO2010109619A1/en
Publication of WO2010109619A1 publication Critical patent/WO2010109619A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers

Definitions

  • the present invention relates to a load-side relay unit that houses a plurality of heat exchangers and an air-conditioning and hot-water supply complex system equipped with the same.
  • a heat source unit equipped with a first compressor, a flow path switching valve, a heat source side heat exchanger, a first flow control device, a first load side heat exchanger, A first load-side unit including a two-compressor, a second load-side heat exchanger, and a second flow rate control device, the first compressor, the flow path switching valve, and the heat source-side heat.
  • the exchanger, the first flow control device, and the first load-side heat exchanger are sequentially connected by a refrigerant pipe to form a main circuit, and the second compressor and the second load-side heat exchange.
  • a heat pump device is proposed in which a load-side refrigerant circuit is configured by sequentially connecting a condenser, the second flow rate control device, and the first load-side heat exchanger with refrigerant piping (see, for example, Patent Document 1). ).
  • the heat pump device described in Patent Document 1 is provided with a load-side refrigerant circuit, whereby the capacity of the main circuit can be enhanced and the operation efficiency is improved.
  • various refrigeration devices constituting the load-side refrigerant circuit are mounted on a load-side unit (conceived by the load-side relay unit according to the present invention).
  • the load-side unit includes a control board that uses an inverter as a drive source such as a hot water compressor or a fan motor. In such a case, it is necessary to cool the control board in order to protect the control board from the heat generated by the inverter.
  • a cooling air passage for supplying cooling air to the control board is provided in the unit. If it is a normal unit (for example, indoor unit etc.), since the air passage space is secured, it does not matter so much.
  • a load side unit as described in Patent Document 1 a plurality of heat exchangers (first load side heat exchanger and second load side heat exchanger) are mounted, and a hot water supply compressor, Since a fan motor or the like is also mounted, there remains a problem that internal space is greatly restricted in forming the cooling air passage.
  • the present invention has been made in order to solve the above-described problem.
  • the load-side relay unit accommodates a plurality of heat exchangers and a control board and has an optimum air path design, and an air-conditioning hot water supply equipped with the load-side relay unit. It aims to provide a complex system.
  • the load-side relay unit according to the present invention is equipped with at least two heat exchangers and a control board, and exhausts air that sucks air for cooling the control board and air that has cooled the control board.
  • a load-side relay unit of a refrigeration cycle apparatus in which an exhaust port is formed, wherein the intake port is formed on a bottom surface and the exhaust port is formed above a side surface.
  • an air conditioning compressor, a flow path switching unit, an outdoor heat exchanger, an indoor heat exchanger, and an air conditioning throttle unit are connected in series and connected in series.
  • the refrigerant-refrigerant heat exchanger and the hot water supply heat source throttle means include a first refrigerant circuit connected in parallel to the indoor heat exchanger and the air conditioning throttle means, and circulates the air-conditioning refrigerant in the first refrigerant circuit.
  • An air conditioning refrigeration cycle for circulating hot water supply refrigerant in the refrigerant circuit, a water circulation pump, the heat medium-refrigerant heat exchanger, and a water circuit in which a hot water storage tank is connected in series, the hot water supply water in the water circuit Hot water supply load that circulates
  • the load side relay unit According to the load side relay unit according to the present invention, it is possible to design an optimum air path according to the realization of downsizing.
  • FIG. 1 is a refrigerant circuit diagram illustrating a refrigerant circuit configuration (particularly, a refrigerant circuit configuration during heating-main operation) of an air-conditioning and hot water supply combined system 100 according to an embodiment of the present invention. Based on FIG. 1, the refrigerant circuit configuration of the combined air-conditioning and hot water supply system 100, particularly the refrigerant circuit configuration during heating-main operation will be described.
  • This air conditioning and hot water supply complex system 100 is installed in a building, a condominium, etc., and can supply a cooling load, a heating load, and a hot water supply load simultaneously by using a refrigeration cycle (heat pump cycle) that circulates refrigerant (air conditioning refrigerant). is there.
  • a refrigeration cycle heat pump cycle
  • refrigerant air conditioning refrigerant
  • An air conditioning and hot water supply combined system 100 includes an air conditioning refrigeration cycle 1, a hot water supply refrigeration cycle 2, and a hot water supply load 3, and includes an air conditioning refrigeration cycle 1 and a hot water supply refrigeration cycle 2.
  • a refrigerant-refrigerant heat exchanger 41, and the hot water supply refrigeration cycle 2 and the hot water supply load 3 are heat medium-refrigerant heat exchangers 51, and are configured to exchange heat without mutual refrigerant or water mixing.
  • a load-side relay unit F is mounted on the air conditioning and hot water supply complex system 100 (described in detail in FIG. 2). In FIG.
  • the load on the cooling indoor unit B is smaller than the total load on the heating indoor unit C and the hot water supply heat source circuit D, and the outdoor heat exchanger 103 serves as an evaporator.
  • the state of the cycle when working (for convenience, referred to as heating main operation) is shown.
  • the air-conditioning refrigeration cycle 1 includes a heat source unit A, a cooling indoor unit B in charge of a cooling load, a heating indoor unit C in charge of a heating load, a hot water supply heat source circuit D serving as a heat source of the hot water supply refrigeration cycle 2, And a repeater E.
  • the cooling indoor unit B, the heating indoor unit C, and the hot water supply heat source circuit D are connected and mounted in parallel to the heat source unit A.
  • the relay machine E installed between the heat source unit A, the cooling indoor unit B, the heating indoor unit C, and the hot water supply heat source circuit D switches the flow of the refrigerant, so that the cooling indoor unit B, the heating indoor unit The functions as C and hot water supply heat source circuit D are exhibited.
  • the heat source machine A is configured by connecting an air conditioning compressor 101, a four-way valve 102 as a flow path switching unit, an outdoor heat exchanger 103, and an accumulator 104 in series.
  • the cooling indoor unit B, the heating indoor unit C, and the hot water supply heat source circuit D have a function of supplying cold heat.
  • a blower such as a fan for supplying air to the outdoor heat exchanger 103 may be provided in the vicinity of the outdoor heat exchanger 103.
  • the flow of the air-conditioning refrigerant is allowed only in a predetermined direction (the direction from the heat source unit A to the relay unit E) in the high-pressure side connection pipe 106 between the outdoor heat exchanger 103 and the relay unit E.
  • the reverse check valve 105a that allows the flow of the air-conditioning refrigerant only in a predetermined direction (direction from the relay machine E to the heat source machine A) in the low-pressure side connection pipe 107 between the four-way valve 102 and the relay machine E. Stop valves 105b are provided respectively.
  • the high-pressure side connection pipe 106 and the low-pressure side connection pipe 107 are opposite to the first connection pipe 130 that connects the upstream side of the check valve 105a and the upstream side of the check valve 105b, and the downstream side of the check valve 105a.
  • the second connection pipe 131 is connected to the downstream side of the stop valve 105b. That is, the connection part a between the high-pressure side connection pipe 106 and the first connection pipe 130 is upstream of the connection part b between the high-pressure side connection pipe 106 and the second connection pipe 131 across the check valve 105a.
  • the connection part c between the low-pressure side connection pipe 107 and the first connection pipe 130 is also upstream of the connection part d between the low-pressure side connection pipe 107 and the second connection pipe 131 across the check valve 105b. Yes.
  • the first connection pipe 130 is provided with a check valve 105 c that allows the air-conditioning refrigerant to flow only in the direction from the low-pressure side connection pipe 107 to the high-pressure side connection pipe 106.
  • the second connection pipe 131 is also provided with a check valve 105 d that allows the air-conditioning refrigerant to flow only in the direction from the low-pressure side connection pipe 107 to the high-pressure side connection pipe 106.
  • the check valve 105a and the check valve 105b are in a closed state (shown in black), the check valve 105b and the check valve 105c. Is open (shown in white).
  • the air-conditioning compressor 101 sucks air-conditioning refrigerant and compresses the air-conditioning refrigerant to a high temperature and high pressure state.
  • the four-way valve 102 switches the flow of the air conditioning refrigerant.
  • the outdoor heat exchanger 103 functions as an evaporator or a radiator (condenser), performs heat exchange between air supplied from a blower (not shown) and the air conditioning refrigerant, and converts the air conditioning refrigerant into evaporated gas or Condensed liquid.
  • the accumulator 104 is disposed between the four-way valve 102 and the air-conditioning compressor 101 during heating-main operation, and stores excess air-conditioning refrigerant.
  • the accumulator 104 may be any container that can store excess air-conditioning refrigerant.
  • the cooling indoor unit B and the heating indoor unit C are mounted with an air conditioning throttle means 117 and an indoor heat exchanger 118 connected in series. Further, in the cooling indoor unit B and the heating indoor unit C, an example is shown in which two air conditioning throttle means 117 and two indoor heat exchangers 118 are mounted in parallel.
  • the cooling indoor unit B receives a supply of cold from the heat source unit A and takes charge of the cooling load
  • the heating indoor unit C has a function of receiving the supply of cold heat from the heat source unit A and taking charge of the heating load. Yes.
  • connection pipe 133 the connection pipe connected from the relay E to the indoor heat exchanger 118
  • connection pipe 134 the connection pipe connected from the relay E to the air conditioning throttle means 117
  • the air conditioning throttle means 117 functions as a pressure reducing valve or an expansion valve, and decompresses and expands the air conditioning refrigerant.
  • the air-conditioning throttle means 117 may be constituted by a controllable opening degree, for example, a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary tube, or the like.
  • the indoor heat exchanger 118 functions as a radiator (condenser) or an evaporator, and performs heat exchange between air supplied from an air blower (not shown) and the air conditioning refrigerant to condense or liquefy the air conditioning refrigerant. Evaporative gasification.
  • the air conditioning throttle means 117 and the indoor heat exchanger 118 are connected in series.
  • the hot water supply heat source circuit D includes a hot water supply heat source throttle means 119 and a refrigerant-refrigerant heat exchanger 41 connected in series. It has the function to supply to the hot water supply refrigeration cycle 2 via the. That is, the air-conditioning refrigeration cycle 1 and the hot water supply refrigeration cycle 2 are cascade-connected by the refrigerant-refrigerant heat exchanger 41.
  • the connecting pipe connecting the relay E to the refrigerant-refrigerant heat exchanger 41 is connected to the connecting pipe 135, and the connecting pipe connecting the relay E to the hot water supply heat source throttle means 119 is connected to the connecting pipe. It shall be described as 136.
  • the hot water supply heat source throttling means 119 functions as a pressure reducing valve or an expansion valve, like the air conditioning throttling means 117, and decompresses and expands the air conditioning refrigerant.
  • the hot water supply heat source throttling means 119 is preferably constituted by a controllable opening degree, such as a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary.
  • the refrigerant-refrigerant heat exchanger 41 functions as a radiator (condenser) and an evaporator, and serves as a hot water supply refrigerant that circulates through the refrigeration cycle of the hot water supply refrigeration cycle 2 and an air conditioner that circulates through the refrigeration cycle of the air conditioning refrigeration cycle 1. Heat exchange is performed with the refrigerant for use.
  • the relay unit E has a function of connecting each of the cooling indoor unit B, the heating indoor unit C, and the hot water supply heat source circuit D to the heat source unit A, and also has the valve means 109a or the valve means 109b of the first distribution unit 109. Is selectively opened or closed to determine whether the indoor heat exchanger 118 is a radiator or an evaporator, and whether the refrigerant-refrigerant heat exchanger 41 is a chiller or a water heater. It has a function to do.
  • the relay E includes a gas-liquid separator 108, a first distributor 109, a second distributor 110, a first internal heat exchanger 111, a first relay throttle means 112, and a second internal heat.
  • the exchanger 113 and the second relay stop means 114 are configured.
  • connection pipe 133 and the connection pipe 135 are branched into two, one (the connection pipe 133b and the connection pipe 135b) is connected to the low-pressure side connection pipe 107, and the other (the connection pipe 133a and the connection pipe).
  • the pipe 135a) is connected to a connection pipe (referred to as a connection pipe 132) connected to the gas-liquid separator 108.
  • the valve means 109a that is controlled to open / close the connection pipe 133a and the connection pipe 135a so as not to conduct the refrigerant is controlled to open / close to the connection pipe 133b and the connection pipe 135b and conducts the refrigerant.
  • Valve means 109b that may or may not be provided is provided.
  • the open / closed states of the valve means 109a and the valve means 109b are represented by white (open state) and black (closed state).
  • connection pipe 134 and the connection pipe 136 are branched into two, one (the connection pipe 134a and the connection pipe 136a) is connected at the first meeting part 115, and the other (the connection pipe 134b and the connection pipe).
  • a pipe 136b) is connected at the second meeting part 116.
  • the check valve 110a that allows only one of the refrigerant to flow in the connecting pipe 134a and the connecting pipe 136a is reverse to allow only one of the refrigerant to flow in the connecting pipe 134b and the connecting pipe 136b.
  • a stop valve 110b is provided.
  • the open / closed states of the check valve 110a and the check valve 110b are indicated by white (open state) and black (closed state).
  • the first meeting unit 115 is connected from the second distribution unit 110 to the gas-liquid separator 108 via the first relay squeezing means 112 and the first internal heat exchanger 111.
  • the second meeting unit 116 branches between the second distribution unit 110 and the second internal heat exchanger 113, one of which is for the second distribution unit 110 and the first relay device via the second internal heat exchanger 113.
  • the second meeting section 116a is connected to the first meeting section 115 between the throttling means 112, and the other (second meeting section 116a) is connected to the second relay throttling means 114, the second internal heat exchanger 113, and the first internal heat exchanger 111.
  • the gas-liquid separator 108 separates the air-conditioning refrigerant into a gas refrigerant and a liquid refrigerant.
  • the gas-liquid separator 108 is provided in the high-pressure side connection pipe 106, one of which is connected to the valve means 109 a of the first distribution unit 109, and the other.
  • the first distributor 115 is connected to the second distributor 110.
  • the first distribution unit 109 has a function of allowing the air conditioning refrigerant to flow into the indoor heat exchanger 118 and the refrigerant-refrigerant heat exchanger 41 by selectively opening or closing either the valve means 109a or the valve means 109b. Yes.
  • the 2nd distribution part 110 has a function which permits the flow of the refrigerant for air-conditioning to either one by check valve 110a and check valve 110b.
  • the first internal heat exchanger 111 is provided in the first meeting portion 115 between the gas-liquid separator 108 and the first relay throttle means 112, and is used for air conditioning in which the first meeting portion 115 is conducted. Heat exchange is performed between the refrigerant and the air-conditioning refrigerant that is conducted through the second meeting part 116a from which the second meeting part 116 is branched.
  • the first repeater throttle means 112 is provided in the first meeting section 115 between the first internal heat exchanger 111 and the second distribution section 110, and decompresses and expands the air-conditioning refrigerant. .
  • the first repeater throttle means 112 may be configured with a variable opening degree controllable means, for example, a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary tube, or the like.
  • the second internal heat exchanger 113 is provided in the second meeting part 116, and includes an air conditioning refrigerant that is conducted through the second meeting part 116, and a second meeting part 116a from which the second meeting part 116 is branched. Heat exchange is performed with the air-conditioning refrigerant that is conducted.
  • the second relay throttling means 114 is provided in the second meeting section 116 between the second internal heat exchanger 113 and the second distribution section 110, functions as a pressure reducing valve and an expansion valve, and is an air conditioning refrigerant. Is expanded under reduced pressure.
  • the second relay unit throttle unit 114 can be controlled to have a variable opening, for example, a precise flow rate control unit using an electronic expansion valve, or a low cost such as a capillary tube.
  • the refrigerant flow rate adjusting means may be used.
  • the air-conditioning refrigeration cycle 1 includes the air-conditioning compressor 101, the four-way valve 102, the indoor heat exchanger 118, the air-conditioning throttle means 117, and the outdoor heat exchanger 103 connected in series, and the air-conditioning compression cycle.
  • Machine 101, four-way valve 102, refrigerant-refrigerant heat exchanger 41, hot water supply heat source throttling means 119, and outdoor heat exchanger 103 are connected in series, and the indoor heat exchanger 118 and refrigerant-refrigerant are connected via relay E. This is established by connecting the heat exchanger 41 in parallel to form a first refrigerant circuit, and circulating the air-conditioning refrigerant in the first refrigerant circuit.
  • the air conditioning compressor 101 is not particularly limited as long as it can compress the sucked refrigerant into a high pressure state.
  • the air-conditioning compressor 101 can be configured using various types such as reciprocating, rotary, scroll, or screw.
  • the air-conditioning compressor 101 may be configured as a type in which the rotational speed can be variably controlled by an inverter, or may be configured as a type in which the rotational speed is fixed.
  • the type of refrigerant circulating in the air-conditioning refrigeration cycle 1 is not particularly limited.
  • natural refrigerants such as carbon dioxide (CO 2 ), hydrocarbons, and helium, and alternatives that do not contain chlorine such as HFC410A, HFC407C, and HFC404A
  • HFC410A, HFC407C, and HFC404A Either a refrigerant or a fluorocarbon refrigerant such as R22 or R134a used in existing products may be used.
  • the air-conditioning refrigerant heated to a high temperature and high pressure by the air-conditioning compressor 101 is discharged from the air-conditioning compressor 101, passes through the four-way valve 102, passes through the check valve 105 c, and enters the high-pressure side connection pipe 106. It is guided and flows into the gas-liquid separator 108 of the relay E in the superheated gas state.
  • the superheated gas-conditioning refrigerant flowing into the gas-liquid separator 108 is distributed to a circuit in which the valve means 109a of the first distribution unit 109 is open.
  • the refrigerant for air conditioning in the superheated gas state flows into the heating indoor unit C and the hot water supply heat source circuit D.
  • the air-conditioning refrigerant flowing into the heating indoor unit C dissipates heat in the indoor heat exchanger 118 (that is, warms the room air), is depressurized by the air-conditioning throttle means 117, and joins at the first meeting unit 115.
  • the air-conditioning refrigerant that has flowed into the hot water supply heat source circuit D dissipates heat in the refrigerant-refrigerant heat exchanger 41 (that is, gives heat to the hot water supply refrigeration cycle 2), and is depressurized by the hot water supply heat source throttling means 119.
  • the air-conditioning refrigerant that has flowed out of the indoor unit C merges at the first meeting unit 115.
  • a part of the air-conditioning refrigerant in the superheated gas state that has flowed into the gas-liquid separator 108 is the air-conditioning refrigerant expanded to low temperature and low pressure by the second relay expansion means 114 in the first internal heat exchanger 111.
  • the degree of supercooling is obtained by heat exchange.
  • the air-conditioning refrigerant used for air-conditioning flows into the indoor heat exchanger 118 or refrigerant-refrigerant heat exchange. And the first meeting part 115 merge. It should be noted that a part of the superheated gas conditioning refrigerant that passes through the first repeater throttle means 112 may be eliminated by fully closing the first repeater throttle means 112. Thereafter, the second internal heat exchanger 113 performs heat exchange with the air-conditioning refrigerant expanded to low temperature and low pressure by the second relay throttle unit 114 to obtain a degree of supercooling. This refrigerant for air conditioning is distributed to the second meeting part 116 side and the second relay unit throttle means 114 side.
  • the air-conditioning refrigerant that conducts through the second meeting portion 116 is distributed to a circuit in which the valve means 109b is open.
  • the air-conditioning refrigerant that conducts through the second meeting portion 116 flows into the cooling indoor unit B, is expanded to low temperature and low pressure by the air-conditioning throttle means 117, is evaporated by the indoor heat exchanger 118, and the valve means 109 b. After that, the low pressure side connecting pipe 107 joins.
  • the air-conditioning refrigerant that has passed through the second repeater throttle means 114 evaporates by exchanging heat in the second internal heat exchanger 113 and the first internal heat exchanger 111, and in the cooling chamber through the low-pressure side connection pipe 107.
  • the air-conditioning refrigerant merged in the low-pressure side connection pipe 107 is led to the outdoor heat exchanger 103 through the check valve 105d, and depending on the operating conditions, the remaining liquid refrigerant is evaporated, and the four-way valve 102, accumulator Return to the air-conditioning compressor 101 via the radiator 104.
  • the hot water supply refrigeration cycle 2 includes a hot water supply compressor 21, a heat medium-refrigerant heat exchanger 51, hot water supply throttle means 22, and a refrigerant-refrigerant heat exchanger 41. That is, the hot water supply refrigeration cycle 2 includes a hot water supply compressor 21, a heat medium-refrigerant heat exchanger 51, a hot water supply throttle means 22, and a refrigerant-refrigerant heat exchanger 41 connected in series by the refrigerant pipe 45. This is established by constituting a two refrigerant circuit and circulating a hot water supply refrigerant in the second refrigerant circuit. The operation of the hot water supply refrigeration cycle 2 does not differ depending on the operating state of the air conditioning refrigeration cycle 1, that is, whether the cooling main operation is being executed or the heating main operation is being executed.
  • the hot water supply compressor 21 sucks in the hot water supply refrigerant and compresses the hot water supply refrigerant to a high temperature and high pressure state.
  • the hot water supply compressor 21 may be configured as a type in which the rotation speed can be variably controlled by an inverter, or may be configured as a type in which the rotation speed is fixed. Further, the hot water supply compressor 21 is not particularly limited as long as it can compress the sucked refrigerant into a high pressure state.
  • the hot water supply compressor 21 can be configured using various types such as reciprocating, rotary, scroll, or screw.
  • the heat medium-refrigerant heat exchanger 51 performs heat exchange between a heat medium (fluid such as water) circulating through the hot water supply load 3 and a hot water supply refrigerant circulating through the hot water supply refrigeration cycle 2. . That is, the hot water supply refrigeration cycle 2 and the hot water supply load 3 are cascade-connected by the heat medium-refrigerant heat exchanger 51.
  • the hot water supply throttling means 22 functions as a pressure reducing valve and an expansion valve, and decompresses the hot water supply refrigerant to expand it.
  • the hot water supply throttling means 22 may be constituted by a controllable opening degree, such as a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary.
  • the refrigerant-refrigerant heat exchanger 41 performs heat exchange between the hot water supply refrigerant circulating in the hot water supply refrigeration cycle 2 and the air conditioning refrigerant circulating in the air conditioning refrigeration cycle 1.
  • the type of refrigerant circulating in the hot water supply refrigeration cycle 2 is not particularly limited.
  • natural refrigerants such as carbon dioxide, hydrocarbons and helium, alternative refrigerants not containing chlorine such as HFC410A, HFC407C, and HFC404A, or existing Any of chlorofluorocarbon refrigerants such as R22 and R134a used in this product may be used.
  • the hot water supply refrigerant that has been heated to a high temperature and high pressure by the hot water supply compressor 21 is discharged from the hot water supply compressor 21 and flows into the heat medium-refrigerant heat exchanger 51.
  • the flowing hot water supply refrigerant radiates heat by heating the water circulating in the hot water supply load 3.
  • This hot water supply refrigerant is expanded by the hot water supply throttling means 22 to a temperature equal to or lower than the outlet temperature of the refrigerant-refrigerant heat exchanger 41 in the hot water supply heat source circuit D of the air conditioning refrigeration cycle 1.
  • the expanded hot water supply refrigerant receives and evaporates from the air conditioning refrigerant flowing through the hot water supply heat source circuit D constituting the air conditioning refrigeration cycle 1 in the refrigerant-refrigerant heat exchanger 41, and returns to the hot water supply compressor 21.
  • the hot water supply load 3 includes a water circulation pump 31, a heat medium-refrigerant heat exchanger 51, and a hot water storage tank 32. That is, in the hot water supply load 3, the water circulation pump 31, the heat medium-refrigerant heat exchanger 51, and the hot water storage tank 32 are connected in series by the hot water storage water circulation pipe 203 to form a water circuit (heat medium circuit). This is achieved by circulating hot water supply water in this water circuit.
  • the operation of the hot water supply load 3 does not differ depending on the operating state of the air conditioning refrigeration cycle 1, that is, whether the cooling main operation is executed or the heating main operation is executed.
  • the hot water circulating pipe 203 constituting the water circuit is constituted by a copper pipe, a stainless pipe, a steel pipe, a vinyl chloride pipe, or the like.
  • the water circulation pump 31 sucks the water stored in the hot water storage tank 32, pressurizes the water, and circulates the inside of the hot water supply load 3.
  • the water circulation pump 31 is of a type whose rotational speed is controlled by an inverter. Configure.
  • the heat medium-refrigerant heat exchanger 51 exchanges heat between the heat medium (fluid such as water) circulating through the hot water supply load 3 and the hot water supply refrigerant circulating through the hot water supply refrigeration cycle 2. Is to do.
  • the hot water storage tank 32 stores water heated by the heat medium-refrigerant heat exchanger 51.
  • the relatively low temperature water stored in the hot water storage tank 32 is drawn from the bottom of the hot water storage tank 32 and pressurized by the water circulation pump 31.
  • the water pressurized by the water circulation pump 31 flows into the heat medium-refrigerant heat exchanger 51, and receives heat from the hot water supply refrigerant circulating in the hot water supply refrigeration cycle 2 by the heat medium-refrigerant heat exchanger 51. . That is, the water flowing into the heat medium-refrigerant heat exchanger 51 is boiled by the hot water supply refrigerant circulating in the hot water supply refrigeration cycle 2, and the temperature rises. Then, the boiled water returns to the relatively hot upper portion of the hot water storage tank 32 and is stored in the hot water storage tank 32.
  • the air conditioning refrigeration cycle 1 and the hot water supply refrigeration cycle 2 are independent refrigerant circuit configurations (the first refrigerant circuit constituting the air conditioning refrigeration cycle 1 and the hot water supply refrigeration cycle 2 constituting the first refrigerant circuit 1).
  • the refrigerant circulating through each refrigerant circuit may be the same type or different types. That is, the refrigerant in each refrigerant circuit flows so as to exchange heat with each other in the refrigerant-refrigerant heat exchanger 41 and the heat medium-refrigerant heat exchanger 51 without being mixed.
  • a refrigerant having a low critical temperature when used as the hot water supply refrigerant, it is assumed that the hot water supply refrigerant in the heat dissipation process in the heat medium-refrigerant heat exchanger 51 enters a supercritical state when hot water supply is performed. .
  • the COP fluctuates greatly due to changes in the radiator pressure and the outlet temperature of the radiator, and more advanced control is required in order to obtain a high COP.
  • a refrigerant having a low critical temperature has a high saturation pressure for the same temperature, and accordingly, it is necessary to increase the thickness of the piping and the compressor, which causes an increase in cost.
  • the target temperature of hot water supply is often 60 ° C. or higher at a minimum. Is done.
  • a refrigerant having a critical temperature of 60 ° C. or higher is adopted as the hot water supply refrigerant. This is because, if such a refrigerant is employed as the hot water supply refrigerant of the hot water supply refrigeration cycle 2, a high COP can be obtained more stably at a lower cost.
  • the refrigerant is regularly used in the vicinity of the critical temperature, it is assumed that the refrigerant circuit has a high temperature and a high pressure. Therefore, the hot water supply compressor 21 is stabilized by using a compressor of a type using a high pressure shell. Driving is possible.
  • FIG. 1 shows an example in which two or more cooling indoor units B and heating indoor units C are connected, but the number of connected units is not particularly limited. It is only necessary that there is no heating indoor unit C or one or more is connected. And the capacity
  • the hot water supply load system is configured in a two-way cycle, and therefore when supplying high-temperature hot water supply demand (for example, 80 ° C.), What is necessary is just to make the temperature of the heat radiator of the refrigerating cycle 2 high temperature (for example, condensing temperature 85 degreeC), and when there is another heating load, it does not increase even to the condensing temperature (for example, 50 degreeC) of the heating indoor unit C. Energy saving. Also, for example, when there was a demand for hot water supply during the air conditioning and cooling operation in summer, it was necessary to provide it with a boiler, etc., but it was necessary to collect hot water that had been discharged into the atmosphere and reuse it. Therefore, the system COP is greatly improved and energy is saved.
  • high-temperature hot water supply demand for example, 80 ° C.
  • the load-side relay unit F includes a refrigerant-refrigerant heat exchanger 41, a hot water supply heat source throttle means 119, a heat medium-refrigerant heat exchanger 51, a hot water supply compressor 21, and a hot water supply throttle means 22. Contained. In other words, the load-side relay unit F has a part of the air-conditioning refrigeration cycle 1 through the refrigerant-refrigerant heat exchanger 41, the whole hot water supply refrigeration cycle 2, and the heat medium-refrigerant heat exchanger 51. A part of the hot water supply load 3 is accommodated.
  • the load-side relay unit F includes a control board that uses an inverter as a drive source for the hot water supply compressor 21 and a fan motor (not shown) (see FIG. 4).
  • the load-side relay unit F tends to be large because a plurality of heat exchangers (refrigerant-refrigerant heat exchanger 41 and heat medium-refrigerant heat exchanger 51) are accommodated. Therefore, in the load-side relay unit F according to the present embodiment, the load-side relay unit F is miniaturized as described below, and an optimal air path is formed inside to efficiently control the control board. It can be cooled.
  • FIG. 2 is an enlarged circuit diagram showing an enlarged portion of the load side relay unit F according to the embodiment of the present invention.
  • FIG. 3 is a perspective external view schematically showing the external appearance of the load-side relay unit F.
  • FIG. 4 is an exploded perspective view schematically showing a state in which the control board is disassembled.
  • FIG. 5 is an explanatory diagram for explaining the flow of air in the load-side relay unit F.
  • the load-side relay unit F includes a hot water supply compressor 21, a refrigerant-refrigerant heat exchanger 41, a heat medium-refrigerant heat exchanger 51, a hot water supply throttle means 22, and a hot water supply heat source throttle.
  • a means 119 is accommodated.
  • the load-side relay unit F houses the refrigerant-refrigerant heat exchanger 41, the hot water supply heat source throttle means 119, the heat medium-refrigerant heat exchanger 51, the hot water supply compressor 21, and the hot water supply throttle means 22. It has a function as a housing.
  • an intake port 60 is formed at a part of the bottom surface, and an exhaust port 61 is formed at a part above the side surface. That is, in the load-side relay unit F, air is sucked in from the intake port 60 by a blower (not shown), guided upward inside, and exhausted from the exhaust port 61.
  • the exhaust port 61 is formed in the vicinity of an inverter cooler 25d described later.
  • the control board 25 is usually composed of a main board 25a on which a control circuit and the like are mounted, a relay board 25b, a high-power part 25c, and an inverter cooler 25d.
  • the high power unit 25c and the inverter cooler 25d are provided on one substrate (hereinafter referred to as a heat sink substrate).
  • these substrates are arranged and mounted in a plane. If it does so, the internal volume of the load side relay unit F must be enlarged, and it cannot reduce in size. Therefore, the control board 25 is mounted such that the main board 25a, the relay board 25b, and the heat sink board are sequentially stacked from the left side of the drawing. By doing so, the length and height of the control board 25 are shortened.
  • control board 25 is installed so that the main board 25a is on the front side of the load-side relay unit F. Therefore, the main board 25a can be maintained simply by opening a cover (not shown) provided on the front side of the load-side relay unit F, thereby facilitating maintenance.
  • the high-power portion 25c is installed on the rear rear side of the relay board 25b, it is possible to reduce the danger to the worker during maintenance.
  • the control board 25 ⁇ By making the control board 25 a laminated structure, it is possible to facilitate the replacement work of the components inside the load-side relay unit F.
  • the set of the control box can be removed by removing the screws fixing the control box in which the control board 25 is accommodated, and the hot water supply compressor can be easily removed. 21 can be exchanged. Therefore, even when the load-side relay unit F is installed in a narrow space such as a washroom and the space for maintenance is very small, it can be easily attached and detached in units of control boxes, so that maintenance work efficiency is improved. There is no worsening.
  • the load side relay unit F is formed with the intake port 60 on the bottom surface and the exhaust port 61 on the side surface.
  • the air paths (air path A and air path B) formed in the load-side relay unit F are indicated by arrows. Specifically, the flow of air in the load-side relay unit F will be described.
  • the cooling air sucked by the fan from the intake port 60 is conducted through the air path A.
  • this cooling air is guided upward inside and conducts the air path B formed in the heat sink board. This cooling air cools the high voltage section 25c and the inverter cooler 25d, and then is exhausted together with heat to the outside of the load side relay unit F through the exhaust port 61.
  • the air inlets of such units are formed symmetrically with respect to the air outlets formed on one side of the cooling path.
  • both the downsizing and the cooling efficiency are achieved by forming the intake port and the exhaust port at symmetrical positions. Feasibility is low. Therefore, in the load-side relay unit F, as shown in FIG. 2, the intake port 60 is formed in the lower part and the exhaust port 61 is formed in the upper part of the side surface (near the inverter cooler 25d).
  • the noise that leaks outside through the air intake port 60 can be reduced by forming the air intake port 60 in the lower part instead of forming it on the side surface of the load-side relay unit F. Further, by forming the intake port 60 at the lower part of the load-side relay unit F, the intake port 60 is surrounded by a housing leg portion (not shown), and the amount of suction of dust and the like that is sucked together with the suction of air. Can also be reduced.
  • the opening area of the exhaust port 61 is set so that the wind speed of the air passing through the inverter cooler 25d is optimized.
  • the exhaust port 61 is composed of a plurality of small openings. By doing so, it is possible to optimize the wind speed of the cooling air conducted to the inverter cooler 25d and to suppress the invasion of insects. If insects enter the load-side relay unit F, there is a possibility that an electrical circuit provided on the control board 25 may be short-circuited or an unexpected injury may occur when an operator inadvertently puts a finger or the like. Therefore, the intrusion of insects can be suppressed by configuring the exhaust port 61 with a plurality of small openings. For example, it is good to avoid the slight gap (generally 3 mm or less) preferred by cockroaches or the like and to form the opening with a diameter of 3 mm or more and 4 mm or less.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

A load-side relay unit which houses a plurality of heat exchangers and a control board and has an air duct designed optimally, and a compound air conditioning/hot water supply system mounting the load-side relay unit thereon. The load-side relay unit (F) has mounted thereon at least two heat exchangers (a refrigerant-refrigerant heat exchanger (41), a heat carrier- refrigerant heat exchanger (51)) and a control board (25), wherein an intake opening (60) for sucking air to cool the control board (25) and an exhaust opening (61) for discharging the air that has cooled the control board (25) are formed, the intake opening (60) being formed in the base and the exhaust opening (61) at an upper part of the side surface.

Description

負荷側中継ユニット及びそれを搭載した空調給湯複合システムLoad-side relay unit and combined air conditioning and hot water supply system
 本発明は、複数台の熱交換器を収容した負荷側中継ユニット及びそれを搭載した空調給湯複合システムに関するものである。 The present invention relates to a load-side relay unit that houses a plurality of heat exchangers and an air-conditioning and hot-water supply complex system equipped with the same.
 従来から、冷房負荷、暖房負荷及び給湯負荷を同時に供給できる空調給湯複合システムも存在している。そのようなものとして、「第1圧縮機と、流路切替弁と、熱源側熱交換器とを搭載した熱源側ユニットと、第1流量制御装置と、第1負荷側熱交換器と、第2圧縮機と、第2負荷側熱交換器と、第2流量制御装置とを搭載した第1負荷側ユニットとを備え、前記第1圧縮機と、前記流路切替弁と、前記熱源側熱交換器と、前記第1流量制御装置と、前記第1負荷側熱交換器とを冷媒配管で順次接続し、主回路を構成するとともに、前記第2圧縮機と、前記第2負荷側熱交換器と、前記第2流量制御装置と、前記第1負荷側熱交換器とを冷媒配管で順次接続し、負荷側冷媒回路を構成した」ヒートポンプ装置が提案されている(たとえば、特許文献1参照)。 Conventionally, there are air-conditioning and hot-water supply complex systems that can simultaneously supply a cooling load, a heating load, and a hot water supply load. As such, “a heat source unit equipped with a first compressor, a flow path switching valve, a heat source side heat exchanger, a first flow control device, a first load side heat exchanger, A first load-side unit including a two-compressor, a second load-side heat exchanger, and a second flow rate control device, the first compressor, the flow path switching valve, and the heat source-side heat. The exchanger, the first flow control device, and the first load-side heat exchanger are sequentially connected by a refrigerant pipe to form a main circuit, and the second compressor and the second load-side heat exchange. A heat pump device is proposed in which a load-side refrigerant circuit is configured by sequentially connecting a condenser, the second flow rate control device, and the first load-side heat exchanger with refrigerant piping (see, for example, Patent Document 1). ).
国際公開WO2008/117408号公報(図1等)International Publication WO2008 / 117408 (FIG. 1 etc.)
 特許文献1に記載のヒートポンプ装置は、負荷側冷媒回路を備えることによって、主回路の能力を増強することができ、運転効率を向上させるようにしたものである。このようなヒートポンプ装置において、負荷側冷媒回路を構成する各種冷凍機器を負荷側ユニット(本発明に係る負荷側中継ユニットに想到する)に搭載するようになっている。また、負荷側ユニットには、給湯用圧縮機やファンモータ等の駆動源としてインバーターを用いる制御基板を備えることが多い。そうした場合、インバーターの発熱から制御基板を保護するために、制御基板を冷却する必要がある。 The heat pump device described in Patent Document 1 is provided with a load-side refrigerant circuit, whereby the capacity of the main circuit can be enhanced and the operation efficiency is improved. In such a heat pump device, various refrigeration devices constituting the load-side refrigerant circuit are mounted on a load-side unit (conceived by the load-side relay unit according to the present invention). In many cases, the load-side unit includes a control board that uses an inverter as a drive source such as a hot water compressor or a fan motor. In such a case, it is necessary to cool the control board in order to protect the control board from the heat generated by the inverter.
 一般的に、制御基板に冷却空気を供給するための冷却風路がユニット内に設けられている。通常のユニット(たとえば、室内ユニット等)であれば、風路スペースが確保されているため、さほど問題とならない。しかしながら、特許文献1に記載のような負荷側ユニットには、複数の熱交換器(第1負荷側熱交換器及び第2負荷側熱交換器)が搭載された上に、給湯用圧縮機やファンモータ等も搭載されるため、冷却風路を形成する上での内部スペースの制約が大きいという課題が残る。 Generally, a cooling air passage for supplying cooling air to the control board is provided in the unit. If it is a normal unit (for example, indoor unit etc.), since the air passage space is secured, it does not matter so much. However, in the load side unit as described in Patent Document 1, a plurality of heat exchangers (first load side heat exchanger and second load side heat exchanger) are mounted, and a hot water supply compressor, Since a fan motor or the like is also mounted, there remains a problem that internal space is greatly restricted in forming the cooling air passage.
 本発明は、上記の課題を解決するためになされたもので、複数の熱交換器及び制御基板を収容するとともに、最適な風路設計がされている負荷側中継ユニット及びそれを搭載した空調給湯複合システムを提供することを目的としている。 The present invention has been made in order to solve the above-described problem. The load-side relay unit accommodates a plurality of heat exchangers and a control board and has an optimum air path design, and an air-conditioning hot water supply equipped with the load-side relay unit. It aims to provide a complex system.
 本発明に係る負荷側中継ユニットは、少なくとも2台以上の熱交換器と制御基板とが搭載され、前記制御基板を冷却するための空気を吸い込む吸気口及び前記制御基板を冷却した空気を排気するための排気口が形成されている冷凍サイクル装置の負荷側中継ユニットであって、前記吸気口が底面に形成され、前記排気口が側面上方に形成されていることを特徴とする。 The load-side relay unit according to the present invention is equipped with at least two heat exchangers and a control board, and exhausts air that sucks air for cooling the control board and air that has cooled the control board. A load-side relay unit of a refrigeration cycle apparatus in which an exhaust port is formed, wherein the intake port is formed on a bottom surface and the exhaust port is formed above a side surface.
 本発明に係る空調給湯複合システムは、空調用圧縮機、流路切替手段、室外熱交換器、室内熱交換器、及び、空調用絞り手段が直列に接続されているとともに、直列に接続された冷媒-冷媒熱交換器及び給湯熱源用絞り手段が前記室内熱交換器及び前記空調用絞り手段に並列に接続されている第1冷媒回路を備え、前記第1冷媒回路に空調用冷媒を循環させる空調用冷凍サイクルと、給湯用圧縮機、熱媒体-冷媒熱交換器、給湯用絞り手段、及び、前記冷媒-冷媒熱交換器が直列に接続されている第2冷媒回路を備え、前記第2冷媒回路に給湯用冷媒を循環させる給湯用冷凍サイクルと、水循環用ポンプ、前記熱媒体-冷媒熱交換器、及び、貯湯タンクが直列に接続されている水回路を備え、前記水回路に給湯用水を循環させる給湯用負荷と、を備え、前記冷媒-冷媒熱交換器、前記給湯熱源用絞り手段、前記熱媒体-冷媒熱交換器、前記給湯用圧縮機、及び、前記給湯用絞り手段は、前記請求項1~5のいずれか一項に記載の負荷側中継ユニットに収容されていることを特徴とする。 In the combined air conditioning and hot water supply system according to the present invention, an air conditioning compressor, a flow path switching unit, an outdoor heat exchanger, an indoor heat exchanger, and an air conditioning throttle unit are connected in series and connected in series. The refrigerant-refrigerant heat exchanger and the hot water supply heat source throttle means include a first refrigerant circuit connected in parallel to the indoor heat exchanger and the air conditioning throttle means, and circulates the air-conditioning refrigerant in the first refrigerant circuit. An air conditioning refrigeration cycle, a hot water supply compressor, a heat medium-refrigerant heat exchanger, hot water supply throttle means, and a second refrigerant circuit in which the refrigerant-refrigerant heat exchanger is connected in series, A hot water supply refrigeration cycle for circulating hot water supply refrigerant in the refrigerant circuit, a water circulation pump, the heat medium-refrigerant heat exchanger, and a water circuit in which a hot water storage tank is connected in series, the hot water supply water in the water circuit Hot water supply load that circulates The refrigerant-refrigerant heat exchanger, the hot water supply heat source throttle means, the heat medium-refrigerant heat exchanger, the hot water supply compressor, and the hot water supply throttle means according to claim 1 to 5. It is accommodated in the load side relay unit as described in any one of the items.
 本発明に係る負荷側中継ユニットによれば、小型化の実現に応じて最適な風路設計を可能としている。 According to the load side relay unit according to the present invention, it is possible to design an optimum air path according to the realization of downsizing.
 本発明に係る空調給湯複合システムによれば、上記の負荷側中継ユニットを搭載しているので、同様に、小型化の実現に応じた最適な風路設計が施されている。 According to the combined air conditioning and hot water supply system according to the present invention, since the load-side relay unit is mounted, similarly, an optimum air path design according to the realization of miniaturization is performed.
実施の形態に係る空調給湯複合システムの冷媒回路構成を示す冷媒回路図である。It is a refrigerant circuit figure which shows the refrigerant circuit structure of the air-conditioning / hot-water supply complex system which concerns on embodiment. 実施の形態に係る負荷側中継ユニット部分を拡大して示す拡大回路図である。It is an enlarged circuit diagram which expands and shows the load side relay unit part which concerns on embodiment. 負荷側中継ユニットの外観を模式的に透視して示す透視外観図である。It is a see-through | perspective external view which shows typically the external appearance of a load side relay unit transparently. 制御基板を分解した状態の概略を示す分解斜視図である。It is a disassembled perspective view which shows the outline of the state which decomposed | disassembled the control board. 負荷側中継ユニット内における空気の流れを説明するための説明図である。It is explanatory drawing for demonstrating the flow of the air in a load side relay unit.
符号の説明Explanation of symbols
 1 空調用冷凍サイクル、2 給湯用冷凍サイクル、3 給湯用負荷、21 給湯用圧縮機、22 給湯用絞り手段、25 制御基板、25a メイン基板、25b 中継基板、25c 強電部、25d インバーター用冷却器、31 水循環用ポンプ、32 貯湯タンク、41 冷媒-冷媒熱交換器、45 冷媒配管、51 熱媒体-冷媒熱交換器、60 吸気口、61 排気口、100 空調給湯複合システム、101 空調用圧縮機、102 四方弁、103 室外熱交換器、103a 分割熱交換器、104 アキュムレーター、105a 逆止弁、105b 逆止弁、105c 逆止弁、105d 逆止弁、106 高圧側接続配管、107 低圧側接続配管、108 気液分離器、109 分配部、109a 弁手段、109b 弁手段、110 分配部、110a 逆止弁、110b 逆止弁、111 内部熱交換器、112 第1中継機用絞り手段、113 内部熱交換器、114 第2中継機用絞り手段、115 会合部、116 会合部、116a 第2会合部、117 空調用絞り手段、118 室内熱交換器、119 給湯熱源用絞り手段、130 接続配管、131 接続配管、132 接続配管、133 接続配管、133a 接続配管、133b 接続配管、134 接続配管、134a 接続配管、134b 接続配管、135 接続配管、135a 接続配管、135b 接続配管、136 接続配管、136a 接続配管、136b 接続配管、203 貯湯水循環用配管、A 熱源機、B 冷房室内機、C 暖房室内機、D 給湯熱源用回路、E 中継機、F 負荷側中継ユニット、a 接続部分、b 接続部分、c 接続部分、d 接続部分。 1 Refrigeration cycle for air conditioning, 2 Refrigeration cycle for hot water supply, 3 Load for hot water supply, 21 Compressor for hot water supply, 22 Throttle means for hot water supply, 25 Control board, 25a Main board, 25b Relay board, 25c High power section, 25d Cooler for inverter , 31 Water circulation pump, 32 Hot water storage tank, 41 Refrigerant-refrigerant heat exchanger, 45 Refrigerant piping, 51 Heat medium-refrigerant heat exchanger, 60 Intake port, 61 Exhaust port, 100 Air conditioning hot water supply combined system, 101 Air conditioning compressor , 102 four-way valve, 103 outdoor heat exchanger, 103a split heat exchanger, 104 accumulator, 105a check valve, 105b check valve, 105c check valve, 105d check valve, 106 high pressure side connection pipe, 107 low pressure side Connection piping, 108 gas-liquid separator, 109 distributor, 109a valve means, 109 Valve means, 110 distribution section, 110a check valve, 110b check valve, 111 internal heat exchanger, 112 first throttle equipment throttle means, 113 internal heat exchanger, 114 second relay throttle equipment, 115 meeting section 116 meeting part, 116a second meeting part, 117 air conditioning throttle means, 118 indoor heat exchanger, 119 hot water heat source throttle means, 130 connection pipe, 131 connection pipe, 132 connection pipe, 133 connection pipe, 133a connection pipe, 133b connecting piping, 134 connecting piping, 134a connecting piping, 134b connecting piping, 135 connecting piping, 135a connecting piping, 135b connecting piping, 136 connecting piping, 136a connecting piping, 136b connecting piping, 203 hot water circulation piping, A heat source machine, B Cooling indoor unit, C Heating indoor unit, D For hot water supply Road, E repeater, F load relay unit, a connection portion, b connecting portion, c connecting portion, d connecting portion.
 以下、図面に基づいて本発明の実施の形態について説明する。
 図1は、本発明の実施の形態に係る空調給湯複合システム100の冷媒回路構成(特に、暖房主体運転時の冷媒回路構成)を示す冷媒回路図である。図1に基づいて、空調給湯複合システム100の冷媒回路構成、特に暖房主体運転時の冷媒回路構成について説明する。この空調給湯複合システム100は、ビルやマンション等に設置され、冷媒(空調用冷媒)を循環させる冷凍サイクル(ヒートポンプサイクル)を利用することで冷房負荷、暖房負荷及び給湯負荷を同時に供給できるものである。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
Hereinafter, embodiments of the present invention will be described based on the drawings.
FIG. 1 is a refrigerant circuit diagram illustrating a refrigerant circuit configuration (particularly, a refrigerant circuit configuration during heating-main operation) of an air-conditioning and hot water supply combined system 100 according to an embodiment of the present invention. Based on FIG. 1, the refrigerant circuit configuration of the combined air-conditioning and hot water supply system 100, particularly the refrigerant circuit configuration during heating-main operation will be described. This air conditioning and hot water supply complex system 100 is installed in a building, a condominium, etc., and can supply a cooling load, a heating load, and a hot water supply load simultaneously by using a refrigeration cycle (heat pump cycle) that circulates refrigerant (air conditioning refrigerant). is there. In addition, in the following drawings including FIG. 1, the relationship of the size of each component may be different from the actual one.
 この実施の形態に係る空調給湯複合システム100は、空調用冷凍サイクル1と、給湯用冷凍サイクル2と、給湯用負荷3とで構成されており、空調用冷凍サイクル1と給湯用冷凍サイクル2とは冷媒-冷媒熱交換器41で、給湯用冷凍サイクル2と給湯用負荷3とは熱媒体-冷媒熱交換器51で、互いの冷媒や水が混ざることなく熱交換を行なうように構成されている。また、空調給湯複合システム100には、負荷側中継ユニットFが搭載されている(図2で詳細に説明する)。なお、図1では、空調用冷凍サイクル1において、暖房室内機Cと給湯熱源用回路Dとに対する負荷の合計よりも冷房室内機Bに対する負荷の方が小さく、室外熱交換器103が蒸発器として働く場合のサイクルの状態(便宜上、暖房主体運転と称する)を示している。 An air conditioning and hot water supply combined system 100 according to this embodiment includes an air conditioning refrigeration cycle 1, a hot water supply refrigeration cycle 2, and a hot water supply load 3, and includes an air conditioning refrigeration cycle 1 and a hot water supply refrigeration cycle 2. Is a refrigerant-refrigerant heat exchanger 41, and the hot water supply refrigeration cycle 2 and the hot water supply load 3 are heat medium-refrigerant heat exchangers 51, and are configured to exchange heat without mutual refrigerant or water mixing. Yes. In addition, a load-side relay unit F is mounted on the air conditioning and hot water supply complex system 100 (described in detail in FIG. 2). In FIG. 1, in the air-conditioning refrigeration cycle 1, the load on the cooling indoor unit B is smaller than the total load on the heating indoor unit C and the hot water supply heat source circuit D, and the outdoor heat exchanger 103 serves as an evaporator. The state of the cycle when working (for convenience, referred to as heating main operation) is shown.
[空調用冷凍サイクル1]
 空調用冷凍サイクル1は、熱源機Aと、冷房負荷を担当する冷房室内機Bと、暖房負荷を担当する暖房室内機Cと、給湯用冷凍サイクル2の熱源となる給湯熱源用回路Dと、中継機Eと、によって構成されている。このうち、冷房室内機B、暖房室内機C及び給湯熱源用回路Dは、熱源機Aに対して並列となるように接続されて搭載されている。そして、熱源機Aと、冷房室内機B、暖房室内機C及び給湯熱源用回路Dとの、間に設置される中継機Eが冷媒の流れを切り換えることで、冷房室内機B、暖房室内機C及び給湯熱源用回路Dとしての機能を発揮させるようになっている。
[Refrigeration cycle 1 for air conditioning]
The air-conditioning refrigeration cycle 1 includes a heat source unit A, a cooling indoor unit B in charge of a cooling load, a heating indoor unit C in charge of a heating load, a hot water supply heat source circuit D serving as a heat source of the hot water supply refrigeration cycle 2, And a repeater E. Among these, the cooling indoor unit B, the heating indoor unit C, and the hot water supply heat source circuit D are connected and mounted in parallel to the heat source unit A. And the relay machine E installed between the heat source unit A, the cooling indoor unit B, the heating indoor unit C, and the hot water supply heat source circuit D switches the flow of the refrigerant, so that the cooling indoor unit B, the heating indoor unit The functions as C and hot water supply heat source circuit D are exhibited.
{熱源機A}
 熱源機Aは、空調用圧縮機101と、流路切替手段である四方弁102と、室外熱交換器103と、アキュムレーター104とが直列に接続されて構成されており、この熱源機Aは、冷房室内機B、暖房室内機C及び給湯熱源用回路Dに冷熱を供給する機能を有している。なお、室外熱交換器103の近傍に、この室外熱交換器103に空気を供給するためのファン等の送風機を設けるとよい。また、熱源機Aでは、室外熱交換器103と中継機Eとの間における高圧側接続配管106に所定の方向(熱源機Aから中継機Eへの方向)のみに空調用冷媒の流れを許容する逆止弁105aが、四方弁102と中継機Eとの間における低圧側接続配管107に所定の方向(中継機Eから熱源機Aへの方向)のみに空調用冷媒の流れを許容する逆止弁105bが、それぞれ設けられている。
{Heat source machine A}
The heat source machine A is configured by connecting an air conditioning compressor 101, a four-way valve 102 as a flow path switching unit, an outdoor heat exchanger 103, and an accumulator 104 in series. The cooling indoor unit B, the heating indoor unit C, and the hot water supply heat source circuit D have a function of supplying cold heat. A blower such as a fan for supplying air to the outdoor heat exchanger 103 may be provided in the vicinity of the outdoor heat exchanger 103. Further, in the heat source unit A, the flow of the air-conditioning refrigerant is allowed only in a predetermined direction (the direction from the heat source unit A to the relay unit E) in the high-pressure side connection pipe 106 between the outdoor heat exchanger 103 and the relay unit E. The reverse check valve 105a that allows the flow of the air-conditioning refrigerant only in a predetermined direction (direction from the relay machine E to the heat source machine A) in the low-pressure side connection pipe 107 between the four-way valve 102 and the relay machine E. Stop valves 105b are provided respectively.
 そして、高圧側接続配管106と低圧側接続配管107とは、逆止弁105aの上流側と逆止弁105bの上流側を接続する第1接続配管130と、逆止弁105aの下流側と逆止弁105bの下流側を接続する第2接続配管131とで接続されている。つまり、高圧側接続配管106と第1接続配管130との接続部分aは、逆止弁105aを挟んで高圧側接続配管106と第2接続配管131との接続部分bよりも上流側になっており、低圧側接続配管107と第1接続配管130との接続部分cも、逆止弁105bを挟んで低圧側接続配管107と第2接続配管131との接続部分dよりも上流側になっている。 The high-pressure side connection pipe 106 and the low-pressure side connection pipe 107 are opposite to the first connection pipe 130 that connects the upstream side of the check valve 105a and the upstream side of the check valve 105b, and the downstream side of the check valve 105a. The second connection pipe 131 is connected to the downstream side of the stop valve 105b. That is, the connection part a between the high-pressure side connection pipe 106 and the first connection pipe 130 is upstream of the connection part b between the high-pressure side connection pipe 106 and the second connection pipe 131 across the check valve 105a. The connection part c between the low-pressure side connection pipe 107 and the first connection pipe 130 is also upstream of the connection part d between the low-pressure side connection pipe 107 and the second connection pipe 131 across the check valve 105b. Yes.
 第1接続配管130には、低圧側接続配管107から高圧側接続配管106の方向のみに空調用冷媒の流通を許容する逆止弁105cが設けられている。第2接続配管131にも、低圧側接続配管107から高圧側接続配管106の方向のみに空調用冷媒の流通を許容する逆止弁105dが設けられている。なお、図1では、暖房主体運転時における冷媒回路構成を示しているため、逆止弁105a及び逆止弁105bが閉状態(黒塗りで示している)、逆止弁105b及び逆止弁105cが開状態(白抜きで示している)となっている。 The first connection pipe 130 is provided with a check valve 105 c that allows the air-conditioning refrigerant to flow only in the direction from the low-pressure side connection pipe 107 to the high-pressure side connection pipe 106. The second connection pipe 131 is also provided with a check valve 105 d that allows the air-conditioning refrigerant to flow only in the direction from the low-pressure side connection pipe 107 to the high-pressure side connection pipe 106. In addition, since the refrigerant circuit structure at the time of heating main operation is shown in FIG. 1, the check valve 105a and the check valve 105b are in a closed state (shown in black), the check valve 105b and the check valve 105c. Is open (shown in white).
 空調用圧縮機101は、空調用冷媒を吸入し、その空調用冷媒を圧縮して高温・高圧の状態にするものである。四方弁102は、空調用冷媒の流れを切り替えるものである。室外熱交換器103は、蒸発器や放熱器(凝縮器)として機能し、図示省略の送風機から供給される空気と空調用冷媒との間で熱交換を行ない、空調用冷媒を蒸発ガス化又は凝縮液化するものである。アキュムレーター104は、暖房主体運転時において、四方弁102と空調用圧縮機101との間に配置され、過剰な空調用冷媒を貯留するものである。なお、アキュムレーター104は、過剰な空調用冷媒を貯留できる容器であればよい。 The air-conditioning compressor 101 sucks air-conditioning refrigerant and compresses the air-conditioning refrigerant to a high temperature and high pressure state. The four-way valve 102 switches the flow of the air conditioning refrigerant. The outdoor heat exchanger 103 functions as an evaporator or a radiator (condenser), performs heat exchange between air supplied from a blower (not shown) and the air conditioning refrigerant, and converts the air conditioning refrigerant into evaporated gas or Condensed liquid. The accumulator 104 is disposed between the four-way valve 102 and the air-conditioning compressor 101 during heating-main operation, and stores excess air-conditioning refrigerant. The accumulator 104 may be any container that can store excess air-conditioning refrigerant.
{冷房室内機B及び暖房室内機C}
 冷房室内機B及び暖房室内機Cには、空調用絞り手段117と、室内熱交換器118とが、直列に接続されて搭載されている。また、冷房室内機B及び暖房室内機Cには、2台の空調用絞り手段117と、2台の室内熱交換器118とが、それぞれ並列に搭載されている場合を例に示している。冷房室内機Bは、熱源機Aからの冷熱の供給を受けて冷房負荷を担当し、暖房室内機Cは、熱源機Aからの冷熱の供給を受けて暖房負荷を担当する機能を有している。
{Cooling indoor unit B and heating indoor unit C}
The cooling indoor unit B and the heating indoor unit C are mounted with an air conditioning throttle means 117 and an indoor heat exchanger 118 connected in series. Further, in the cooling indoor unit B and the heating indoor unit C, an example is shown in which two air conditioning throttle means 117 and two indoor heat exchangers 118 are mounted in parallel. The cooling indoor unit B receives a supply of cold from the heat source unit A and takes charge of the cooling load, and the heating indoor unit C has a function of receiving the supply of cold heat from the heat source unit A and taking charge of the heating load. Yes.
 つまり、実施の形態では、中継機Eによって、冷房室内機Bが冷房負荷を担当するように決定され、暖房室内機Cが暖房負荷を担当するように決定された状態を示しているのである。なお、室内熱交換器118の近傍に、この室内熱交換器118に空気を供給するためのファン等の送風機を設けるとよい。また、便宜的に、中継機Eから室内熱交換器118に接続している接続配管を接続配管133と、中継機Eから空調用絞り手段117に接続している接続配管を接続配管134と称して説明するものとする。 That is, in the embodiment, a state is shown in which the air conditioner indoor unit B is determined to be in charge of the cooling load and the heating indoor unit C is determined to be in charge of the heating load by the relay device E. A blower such as a fan for supplying air to the indoor heat exchanger 118 may be provided in the vicinity of the indoor heat exchanger 118. For convenience, the connection pipe connected from the relay E to the indoor heat exchanger 118 is referred to as a connection pipe 133, and the connection pipe connected from the relay E to the air conditioning throttle means 117 is referred to as a connection pipe 134. Shall be explained.
 空調用絞り手段117は、減圧弁や膨張弁として機能し、空調用冷媒を減圧して膨張させるものである。この空調用絞り手段117は、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。室内熱交換器118は、放熱器(凝縮器)や蒸発器として機能し、図示省略の送風手段から供給される空気と空調用冷媒との間で熱交換を行ない、空調用冷媒を凝縮液化又は蒸発ガス化するものである。なお、空調用絞り手段117及び室内熱交換器118は、直列に接続されている。 The air conditioning throttle means 117 functions as a pressure reducing valve or an expansion valve, and decompresses and expands the air conditioning refrigerant. The air-conditioning throttle means 117 may be constituted by a controllable opening degree, for example, a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary tube, or the like. The indoor heat exchanger 118 functions as a radiator (condenser) or an evaporator, and performs heat exchange between air supplied from an air blower (not shown) and the air conditioning refrigerant to condense or liquefy the air conditioning refrigerant. Evaporative gasification. The air conditioning throttle means 117 and the indoor heat exchanger 118 are connected in series.
{給湯熱源用回路D}
 給湯熱源用回路Dは、給湯熱源用絞り手段119と、冷媒-冷媒熱交換器41とが、直列に接続されて構成されており、熱源機Aからの冷熱を冷媒-冷媒熱交換器41を介して給湯用冷凍サイクル2に供給する機能を有している。つまり、空調用冷凍サイクル1と給湯用冷凍サイクル2とは、冷媒-冷媒熱交換器41でカスケード接続されているのである。なお、便宜的に、中継機Eから冷媒-冷媒熱交換器41に接続している接続配管を接続配管135と、中継機Eから給湯熱源用絞り手段119に接続している接続配管を接続配管136と称して説明するものとする。
{Circuit D for hot water supply heat source}
The hot water supply heat source circuit D includes a hot water supply heat source throttle means 119 and a refrigerant-refrigerant heat exchanger 41 connected in series. It has the function to supply to the hot water supply refrigeration cycle 2 via the. That is, the air-conditioning refrigeration cycle 1 and the hot water supply refrigeration cycle 2 are cascade-connected by the refrigerant-refrigerant heat exchanger 41. For convenience, the connecting pipe connecting the relay E to the refrigerant-refrigerant heat exchanger 41 is connected to the connecting pipe 135, and the connecting pipe connecting the relay E to the hot water supply heat source throttle means 119 is connected to the connecting pipe. It shall be described as 136.
 給湯熱源用絞り手段119は、空調用絞り手段117と同様に、減圧弁や膨張弁として機能し、空調用冷媒を減圧して膨張させるものである。この給湯熱源用絞り手段119は、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。冷媒-冷媒熱交換器41は、放熱器(凝縮器)や蒸発器として機能し、給湯用冷凍サイクル2の冷凍サイクルを循環する給湯用冷媒と、空調用冷凍サイクル1の冷凍サイクルを循環する空調用冷媒との、間で熱交換を行なうようになっている。 The hot water supply heat source throttling means 119 functions as a pressure reducing valve or an expansion valve, like the air conditioning throttling means 117, and decompresses and expands the air conditioning refrigerant. The hot water supply heat source throttling means 119 is preferably constituted by a controllable opening degree, such as a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary. The refrigerant-refrigerant heat exchanger 41 functions as a radiator (condenser) and an evaporator, and serves as a hot water supply refrigerant that circulates through the refrigeration cycle of the hot water supply refrigeration cycle 2 and an air conditioner that circulates through the refrigeration cycle of the air conditioning refrigeration cycle 1. Heat exchange is performed with the refrigerant for use.
{中継機E}
 中継機Eは、冷房室内機B、暖房室内機C及び給湯熱源用回路Dのそれぞれと、熱源機Aとを、接続する機能を有すると共に、第1分配部109の弁手段109a又は弁手段109bの何れかを択一的に開閉することにより、室内熱交換器118を放熱器とするか蒸発器とするか、冷媒-冷媒熱交換器41を冷水器とするか給湯機とするかを決定する機能を有している。この中継機Eは、気液分離器108と、第1分配部109と、第2分配部110と、第1内部熱交換器111と、第1中継機用絞り手段112と、第2内部熱交換器113と、第2中継機用絞り手段114とで、構成されている。
{Repeater E}
The relay unit E has a function of connecting each of the cooling indoor unit B, the heating indoor unit C, and the hot water supply heat source circuit D to the heat source unit A, and also has the valve means 109a or the valve means 109b of the first distribution unit 109. Is selectively opened or closed to determine whether the indoor heat exchanger 118 is a radiator or an evaporator, and whether the refrigerant-refrigerant heat exchanger 41 is a chiller or a water heater. It has a function to do. The relay E includes a gas-liquid separator 108, a first distributor 109, a second distributor 110, a first internal heat exchanger 111, a first relay throttle means 112, and a second internal heat. The exchanger 113 and the second relay stop means 114 are configured.
 第1分配部109では、接続配管133及び接続配管135が2つに分岐されており、一方(接続配管133b及び接続配管135b)が低圧側接続配管107に接続し、他方(接続配管133a及び接続配管135a)が気液分離器108に接続している接続配管(接続配管132と称する)に接続するようになっている。また、第1分配部109では、接続配管133a及び接続配管135aに開閉制御されて冷媒を導通したりしなかったりする弁手段109aが、接続配管133b及び接続配管135bに開閉制御されて冷媒を導通したりしなかったりする弁手段109bがそれぞれ設けられている。なお、弁手段109a及び弁手段109bの開閉状態を白抜き(開状態)及び黒塗り(閉状態)で表している。 In the first distribution unit 109, the connection pipe 133 and the connection pipe 135 are branched into two, one (the connection pipe 133b and the connection pipe 135b) is connected to the low-pressure side connection pipe 107, and the other (the connection pipe 133a and the connection pipe). The pipe 135a) is connected to a connection pipe (referred to as a connection pipe 132) connected to the gas-liquid separator 108. Further, in the first distribution unit 109, the valve means 109a that is controlled to open / close the connection pipe 133a and the connection pipe 135a so as not to conduct the refrigerant is controlled to open / close to the connection pipe 133b and the connection pipe 135b and conducts the refrigerant. Valve means 109b that may or may not be provided is provided. The open / closed states of the valve means 109a and the valve means 109b are represented by white (open state) and black (closed state).
 第2分配部110では、接続配管134及び接続配管136が2つに分岐されており、一方(接続配管134a及び接続配管136a)が第1会合部115で接続され、他方(接続配管134b及び接続配管136b)が第2会合部116で接続されるようになっている。また、第2分配部110では、接続配管134a及び接続配管136aに冷媒の流通を一方のみに許容する逆止弁110aが、接続配管134b及び接続配管136bに冷媒の流通を一方のみに許容する逆止弁110bがそれぞれ設けられている。なお、逆止弁110a及び逆止弁110bの開閉状態を白抜き(開状態)及び黒塗り(閉状態)で表している。 In the second distribution unit 110, the connection pipe 134 and the connection pipe 136 are branched into two, one (the connection pipe 134a and the connection pipe 136a) is connected at the first meeting part 115, and the other (the connection pipe 134b and the connection pipe). A pipe 136b) is connected at the second meeting part 116. In the second distribution unit 110, the check valve 110a that allows only one of the refrigerant to flow in the connecting pipe 134a and the connecting pipe 136a is reverse to allow only one of the refrigerant to flow in the connecting pipe 134b and the connecting pipe 136b. A stop valve 110b is provided. The open / closed states of the check valve 110a and the check valve 110b are indicated by white (open state) and black (closed state).
 第1会合部115は、第2分配部110から第1中継機用絞り手段112及び第1内部熱交換器111を介して気液分離器108に接続している。第2会合部116は、第2分配部110と第2内部熱交換器113との間で分岐し、一方が第2内部熱交換器113を介して第2分配部110と第1中継機用絞り手段112との間における第1会合部115に接続され、他方(第2会合部116a)が第2中継機用絞り手段114、第2内部熱交換器113及び第1内部熱交換器111を介して低圧側接続配管107に接続されている。 The first meeting unit 115 is connected from the second distribution unit 110 to the gas-liquid separator 108 via the first relay squeezing means 112 and the first internal heat exchanger 111. The second meeting unit 116 branches between the second distribution unit 110 and the second internal heat exchanger 113, one of which is for the second distribution unit 110 and the first relay device via the second internal heat exchanger 113. The second meeting section 116a is connected to the first meeting section 115 between the throttling means 112, and the other (second meeting section 116a) is connected to the second relay throttling means 114, the second internal heat exchanger 113, and the first internal heat exchanger 111. To the low-pressure side connection pipe 107.
 気液分離器108は、空調用冷媒をガス冷媒と液冷媒とに分離するものであり、高圧側接続配管106に設けられ、一方が第1分配部109の弁手段109aに接続され、他方が第1会合部115を経て第2分配部110に接続されている。第1分配部109は、弁手段109a又は弁手段109bの何れかが択一的に開閉され、室内熱交換器118及び冷媒-冷媒熱交換器41に空調用冷媒を流入させる機能を有している。第2分配部110は、逆止弁110a及び逆止弁110bによって、空調用冷媒の流れをいずれか一方に許容する機能を有している。 The gas-liquid separator 108 separates the air-conditioning refrigerant into a gas refrigerant and a liquid refrigerant. The gas-liquid separator 108 is provided in the high-pressure side connection pipe 106, one of which is connected to the valve means 109 a of the first distribution unit 109, and the other. The first distributor 115 is connected to the second distributor 110. The first distribution unit 109 has a function of allowing the air conditioning refrigerant to flow into the indoor heat exchanger 118 and the refrigerant-refrigerant heat exchanger 41 by selectively opening or closing either the valve means 109a or the valve means 109b. Yes. The 2nd distribution part 110 has a function which permits the flow of the refrigerant for air-conditioning to either one by check valve 110a and check valve 110b.
 第1内部熱交換器111は、気液分離器108と第1中継機用絞り手段112との間における第1会合部115に設けられており、第1会合部115を導通している空調用冷媒と、第2会合部116が分岐された第2会合部116aを導通している空調用冷媒と、の間で熱交換を実行するものである。第1中継機用絞り手段112は、第1内部熱交換器111と第2分配部110との間における第1会合部115に設けられており、空調用冷媒を減圧して膨張させるものである。この第1中継機用絞り手段112は、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。 The first internal heat exchanger 111 is provided in the first meeting portion 115 between the gas-liquid separator 108 and the first relay throttle means 112, and is used for air conditioning in which the first meeting portion 115 is conducted. Heat exchange is performed between the refrigerant and the air-conditioning refrigerant that is conducted through the second meeting part 116a from which the second meeting part 116 is branched. The first repeater throttle means 112 is provided in the first meeting section 115 between the first internal heat exchanger 111 and the second distribution section 110, and decompresses and expands the air-conditioning refrigerant. . The first repeater throttle means 112 may be configured with a variable opening degree controllable means, for example, a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary tube, or the like.
 第2内部熱交換器113は、第2会合部116に設けられており、第2会合部116を導通している空調用冷媒と、第2会合部116が分岐された第2会合部116aを導通している空調用冷媒と、の間で熱交換を実行するものである。第2中継機用絞り手段114は、第2内部熱交換器113と第2分配部110との間における第2会合部116に設けられており、減圧弁や膨張弁として機能し、空調用冷媒を減圧して膨張させるものである。この第2中継機用絞り手段114は、第1中継機用絞り手段112と同様に、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。 The second internal heat exchanger 113 is provided in the second meeting part 116, and includes an air conditioning refrigerant that is conducted through the second meeting part 116, and a second meeting part 116a from which the second meeting part 116 is branched. Heat exchange is performed with the air-conditioning refrigerant that is conducted. The second relay throttling means 114 is provided in the second meeting section 116 between the second internal heat exchanger 113 and the second distribution section 110, functions as a pressure reducing valve and an expansion valve, and is an air conditioning refrigerant. Is expanded under reduced pressure. As with the first relay unit throttle unit 112, the second relay unit throttle unit 114 can be controlled to have a variable opening, for example, a precise flow rate control unit using an electronic expansion valve, or a low cost such as a capillary tube. The refrigerant flow rate adjusting means may be used.
 以上のように、空調用冷凍サイクル1は、空調用圧縮機101、四方弁102、室内熱交換器118、空調用絞り手段117及び室外熱交換器103が直列に接続されるとともに、空調用圧縮機101、四方弁102、冷媒-冷媒熱交換器41、給湯熱源用絞り手段119及び室外熱交換器103が直列に接続されており、中継機Eを介して室内熱交換器118と冷媒-冷媒熱交換器41とが並列に接続されて第1冷媒回路を構成し、この第1冷媒回路に空調用冷媒を循環させることで成立している。 As described above, the air-conditioning refrigeration cycle 1 includes the air-conditioning compressor 101, the four-way valve 102, the indoor heat exchanger 118, the air-conditioning throttle means 117, and the outdoor heat exchanger 103 connected in series, and the air-conditioning compression cycle. Machine 101, four-way valve 102, refrigerant-refrigerant heat exchanger 41, hot water supply heat source throttling means 119, and outdoor heat exchanger 103 are connected in series, and the indoor heat exchanger 118 and refrigerant-refrigerant are connected via relay E. This is established by connecting the heat exchanger 41 in parallel to form a first refrigerant circuit, and circulating the air-conditioning refrigerant in the first refrigerant circuit.
 なお、空調用圧縮機101は、吸入した冷媒を高圧状態に圧縮できるものであればよく、特にタイプを限定するものではない。たとえば、レシプロ、ロータリー、スクロールあるいはスクリューなどの各種タイプを利用して空調用圧縮機101を構成することができる。この空調用圧縮機101は、インバーターにより回転数が可変に制御可能なタイプとして構成してもよく、回転数が固定されているタイプとして構成してもよい。また、空調用冷凍サイクル1を循環する冷媒の種類を特に限定するものではなく、たとえば二酸化炭素(CO)や炭化水素、ヘリウムなどの自然冷媒、HFC410AやHFC407C、HFC404Aなどの塩素を含まない代替冷媒、若しくは既存の製品に使用されているR22やR134aなどのフロン系冷媒のいずれを使用してもよい。 The air conditioning compressor 101 is not particularly limited as long as it can compress the sucked refrigerant into a high pressure state. For example, the air-conditioning compressor 101 can be configured using various types such as reciprocating, rotary, scroll, or screw. The air-conditioning compressor 101 may be configured as a type in which the rotational speed can be variably controlled by an inverter, or may be configured as a type in which the rotational speed is fixed. Further, the type of refrigerant circulating in the air-conditioning refrigeration cycle 1 is not particularly limited. For example, natural refrigerants such as carbon dioxide (CO 2 ), hydrocarbons, and helium, and alternatives that do not contain chlorine such as HFC410A, HFC407C, and HFC404A Either a refrigerant or a fluorocarbon refrigerant such as R22 or R134a used in existing products may be used.
 ここで、空調用冷凍サイクル1の暖房主体運転動作について説明する。
 まず、空調用圧縮機101で高温・高圧にされた空調用冷媒は、空調用圧縮機101から吐出して、四方弁102を経由し、逆止弁105cを導通し、高圧側接続配管106に導かれ、過熱ガス状態で中継機Eの気液分離器108へ流入する。気液分離器108に流入した過熱ガス状態の空調用冷媒は、第1分配部109の弁手段109aが開いている回路に分配される。ここでは、過熱ガス状態の空調用冷媒は、暖房室内機Cや給湯熱源用回路Dに流入するようになっている。
Here, the heating main operation of the air-conditioning refrigeration cycle 1 will be described.
First, the air-conditioning refrigerant heated to a high temperature and high pressure by the air-conditioning compressor 101 is discharged from the air-conditioning compressor 101, passes through the four-way valve 102, passes through the check valve 105 c, and enters the high-pressure side connection pipe 106. It is guided and flows into the gas-liquid separator 108 of the relay E in the superheated gas state. The superheated gas-conditioning refrigerant flowing into the gas-liquid separator 108 is distributed to a circuit in which the valve means 109a of the first distribution unit 109 is open. Here, the refrigerant for air conditioning in the superheated gas state flows into the heating indoor unit C and the hot water supply heat source circuit D.
 暖房室内機Cに流入した空調用冷媒は、室内熱交換器118で放熱し(つまり、室内空気を暖め)、空調用絞り手段117で減圧され、第1会合部115で合流する。また、給湯熱源用回路Dに流入した空調用冷媒は、冷媒-冷媒熱交換器41で放熱し(つまり、給湯用冷凍サイクル2に熱を与え)、給湯熱源用絞り手段119で減圧され、暖房室内機Cから流出した空調用冷媒と第1会合部115で合流する。一方、気液分離器108に流入した過熱ガス状態の空調用冷媒の一部は、第1内部熱交換器111で第2中継機用絞り手段114にて低温・低圧に膨張した空調用冷媒と熱交換を行なうことにより過冷却度を得る。 The air-conditioning refrigerant flowing into the heating indoor unit C dissipates heat in the indoor heat exchanger 118 (that is, warms the room air), is depressurized by the air-conditioning throttle means 117, and joins at the first meeting unit 115. The air-conditioning refrigerant that has flowed into the hot water supply heat source circuit D dissipates heat in the refrigerant-refrigerant heat exchanger 41 (that is, gives heat to the hot water supply refrigeration cycle 2), and is depressurized by the hot water supply heat source throttling means 119. The air-conditioning refrigerant that has flowed out of the indoor unit C merges at the first meeting unit 115. On the other hand, a part of the air-conditioning refrigerant in the superheated gas state that has flowed into the gas-liquid separator 108 is the air-conditioning refrigerant expanded to low temperature and low pressure by the second relay expansion means 114 in the first internal heat exchanger 111. The degree of supercooling is obtained by heat exchange.
 それから、第1中継機用絞り手段112を通過して、空調用として利用された空調用冷媒(暖房室内機Cや給湯熱源用回路Dに流入し、室内熱交換器118や冷媒-冷媒熱交換器41で放熱した空調用冷媒)と第1会合部115で合流する。なお、第1中継機用絞り手段112を通る一部の過熱ガス状態の空調用冷媒は、第1中継機用絞り手段112を全閉にして、皆無にしてもよい。その後、第2内部熱交換器113で、第2中継機用絞り手段114にて低温・低圧に膨張した空調用冷媒と熱交換を行なうことにより過冷却度を得る。この空調用冷媒は、第2会合部116側と第2中継機用絞り手段114側とに分配される。 Then, the air-conditioning refrigerant used for air-conditioning (flowing into the heating indoor unit C or the hot water supply heat source circuit D through the first repeater throttle means 112 flows into the indoor heat exchanger 118 or refrigerant-refrigerant heat exchange. And the first meeting part 115 merge. It should be noted that a part of the superheated gas conditioning refrigerant that passes through the first repeater throttle means 112 may be eliminated by fully closing the first repeater throttle means 112. Thereafter, the second internal heat exchanger 113 performs heat exchange with the air-conditioning refrigerant expanded to low temperature and low pressure by the second relay throttle unit 114 to obtain a degree of supercooling. This refrigerant for air conditioning is distributed to the second meeting part 116 side and the second relay unit throttle means 114 side.
 第2会合部116を導通する空調用冷媒は、弁手段109bが開いている回路に分配される。ここでは、第2会合部116を導通する空調用冷媒は、冷房室内機Bに流入し、空調用絞り手段117にて低温・低圧に膨張され、室内熱交換器118で蒸発し、弁手段109bを経て低圧側接続配管107で合流する。また、第2中継機用絞り手段114を導通した空調用冷媒は、第2内部熱交換器113及び第1内部熱交換器111で熱交換を行なって蒸発し、低圧側接続配管107で冷房室内機Bを流出した空調用冷媒と合流する。そして、低圧側接続配管107で合流した空調用冷媒は、逆止弁105dを通って室外熱交換器103に導かれ、運転条件によっては残留している液冷媒を蒸発させ、四方弁102、アキュムレーター104を経て空調用圧縮機101へ戻る。 The air-conditioning refrigerant that conducts through the second meeting portion 116 is distributed to a circuit in which the valve means 109b is open. Here, the air-conditioning refrigerant that conducts through the second meeting portion 116 flows into the cooling indoor unit B, is expanded to low temperature and low pressure by the air-conditioning throttle means 117, is evaporated by the indoor heat exchanger 118, and the valve means 109 b. After that, the low pressure side connecting pipe 107 joins. The air-conditioning refrigerant that has passed through the second repeater throttle means 114 evaporates by exchanging heat in the second internal heat exchanger 113 and the first internal heat exchanger 111, and in the cooling chamber through the low-pressure side connection pipe 107. It merges with the air conditioning refrigerant that has flowed out of the machine B. The air-conditioning refrigerant merged in the low-pressure side connection pipe 107 is led to the outdoor heat exchanger 103 through the check valve 105d, and depending on the operating conditions, the remaining liquid refrigerant is evaporated, and the four-way valve 102, accumulator Return to the air-conditioning compressor 101 via the radiator 104.
[給湯用冷凍サイクル2]
 給湯用冷凍サイクル2は、給湯用圧縮機21と、熱媒体-冷媒熱交換器51と、給湯用絞り手段22と、冷媒-冷媒熱交換器41と、によって構成されている。つまり、給湯用冷凍サイクル2は、給湯用圧縮機21、熱媒体-冷媒熱交換器51、給湯用絞り手段22、及び、冷媒-冷媒熱交換器41が冷媒配管45で直列に接続されて第2冷媒回路を構成し、この第2冷媒回路に給湯用冷媒を循環させることで成立している。なお、給湯用冷凍サイクル2の動作は、空調用冷凍サイクル1の運転状態、つまり冷房主体運転を実行しているか、暖房主体運転を実行しているかで相違するものではない。
[Refrigeration cycle 2 for hot water supply]
The hot water supply refrigeration cycle 2 includes a hot water supply compressor 21, a heat medium-refrigerant heat exchanger 51, hot water supply throttle means 22, and a refrigerant-refrigerant heat exchanger 41. That is, the hot water supply refrigeration cycle 2 includes a hot water supply compressor 21, a heat medium-refrigerant heat exchanger 51, a hot water supply throttle means 22, and a refrigerant-refrigerant heat exchanger 41 connected in series by the refrigerant pipe 45. This is established by constituting a two refrigerant circuit and circulating a hot water supply refrigerant in the second refrigerant circuit. The operation of the hot water supply refrigeration cycle 2 does not differ depending on the operating state of the air conditioning refrigeration cycle 1, that is, whether the cooling main operation is being executed or the heating main operation is being executed.
 給湯用圧縮機21は、給湯用冷媒を吸入し、その給湯用冷媒を圧縮して高温・高圧の状態にするものである。この給湯用圧縮機21は、インバーターにより回転数が可変に制御可能なタイプとして構成してもよく、回転数が固定されているタイプとして構成してもよい。また、給湯用圧縮機21は、吸入した冷媒を高圧状態に圧縮できるものであればよく、特にタイプを限定するものではない。たとえば、レシプロ、ロータリー、スクロールあるいはスクリューなどの各種タイプを利用して給湯用圧縮機21を構成することができる。 The hot water supply compressor 21 sucks in the hot water supply refrigerant and compresses the hot water supply refrigerant to a high temperature and high pressure state. The hot water supply compressor 21 may be configured as a type in which the rotation speed can be variably controlled by an inverter, or may be configured as a type in which the rotation speed is fixed. Further, the hot water supply compressor 21 is not particularly limited as long as it can compress the sucked refrigerant into a high pressure state. For example, the hot water supply compressor 21 can be configured using various types such as reciprocating, rotary, scroll, or screw.
 熱媒体-冷媒熱交換器51は、給湯用負荷3を循環する熱媒体(水等の流体)と、給湯用冷凍サイクル2を循環する給湯用冷媒との、間で熱交換を行なうものである。つまり、給湯用冷凍サイクル2と給湯用負荷3とは、熱媒体-冷媒熱交換器51でカスケード接続されている。給湯用絞り手段22は、減圧弁や膨張弁として機能し、給湯用冷媒を減圧して膨張させるものである。この給湯用絞り手段22は、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。 The heat medium-refrigerant heat exchanger 51 performs heat exchange between a heat medium (fluid such as water) circulating through the hot water supply load 3 and a hot water supply refrigerant circulating through the hot water supply refrigeration cycle 2. . That is, the hot water supply refrigeration cycle 2 and the hot water supply load 3 are cascade-connected by the heat medium-refrigerant heat exchanger 51. The hot water supply throttling means 22 functions as a pressure reducing valve and an expansion valve, and decompresses the hot water supply refrigerant to expand it. The hot water supply throttling means 22 may be constituted by a controllable opening degree, such as a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary.
 冷媒-冷媒熱交換器41は、給湯用冷凍サイクル2を循環する給湯用冷媒と、空調用冷凍サイクル1を循環する空調用冷媒との、間で熱交換を行なうものである。なお、給湯用冷凍サイクル2を循環する冷媒の種類を特に限定するものではなく、たとえば二酸化炭素や炭化水素、ヘリウムなどの自然冷媒、HFC410AやHFC407C、HFC404Aなどの塩素を含まない代替冷媒、若しくは既存の製品に使用されているR22やR134aなどのフロン系冷媒のいずれを使用してもよい。 The refrigerant-refrigerant heat exchanger 41 performs heat exchange between the hot water supply refrigerant circulating in the hot water supply refrigeration cycle 2 and the air conditioning refrigerant circulating in the air conditioning refrigeration cycle 1. The type of refrigerant circulating in the hot water supply refrigeration cycle 2 is not particularly limited. For example, natural refrigerants such as carbon dioxide, hydrocarbons and helium, alternative refrigerants not containing chlorine such as HFC410A, HFC407C, and HFC404A, or existing Any of chlorofluorocarbon refrigerants such as R22 and R134a used in this product may be used.
 ここで、給湯用冷凍サイクル2の運転動作について説明する。
 まず、給湯用圧縮機21で高温・高圧にされた給湯用冷媒は、給湯用圧縮機21から吐出して、熱媒体-冷媒熱交換器51に流入する。この熱媒体-冷媒熱交換器51では、流入した給湯用冷媒が、給湯用負荷3を循環している水を加熱することで放熱する。この給湯用冷媒は、給湯用絞り手段22で空調用冷凍サイクル1の給湯熱源用回路Dにおける冷媒-冷媒熱交換器41の出口温度以下まで膨張される。膨張された給湯用冷媒は、冷媒-冷媒熱交換器41で、空調用冷凍サイクル1を構成する給湯熱源用回路Dを流れる空調用冷媒から受熱して蒸発し、給湯用圧縮機21へ戻る。
Here, the operation of the hot water supply refrigeration cycle 2 will be described.
First, the hot water supply refrigerant that has been heated to a high temperature and high pressure by the hot water supply compressor 21 is discharged from the hot water supply compressor 21 and flows into the heat medium-refrigerant heat exchanger 51. In the heat medium-refrigerant heat exchanger 51, the flowing hot water supply refrigerant radiates heat by heating the water circulating in the hot water supply load 3. This hot water supply refrigerant is expanded by the hot water supply throttling means 22 to a temperature equal to or lower than the outlet temperature of the refrigerant-refrigerant heat exchanger 41 in the hot water supply heat source circuit D of the air conditioning refrigeration cycle 1. The expanded hot water supply refrigerant receives and evaporates from the air conditioning refrigerant flowing through the hot water supply heat source circuit D constituting the air conditioning refrigeration cycle 1 in the refrigerant-refrigerant heat exchanger 41, and returns to the hot water supply compressor 21.
[給湯用負荷3]
 給湯用負荷3は、水循環用ポンプ31と、熱媒体-冷媒熱交換器51と、貯湯タンク32と、によって構成されている。つまり、給湯用負荷3は、水循環用ポンプ31、熱媒体-冷媒熱交換器51、及び、貯湯タンク32が貯湯水循環用配管203で直列に接続されて水回路(熱媒体回路)を構成し、この水回路に給湯用水を循環させることで成立している。なお、給湯用負荷3の動作は、空調用冷凍サイクル1の運転状態、つまり冷房主体運転を実行しているか、暖房主体運転を実行しているかで相違するものではない。また、水回路を構成する貯湯水循環用配管203は、銅管やステンレス管、鋼管、塩化ビニル系配管などによって構成されている。
[Load 3 for hot water supply]
The hot water supply load 3 includes a water circulation pump 31, a heat medium-refrigerant heat exchanger 51, and a hot water storage tank 32. That is, in the hot water supply load 3, the water circulation pump 31, the heat medium-refrigerant heat exchanger 51, and the hot water storage tank 32 are connected in series by the hot water storage water circulation pipe 203 to form a water circuit (heat medium circuit). This is achieved by circulating hot water supply water in this water circuit. The operation of the hot water supply load 3 does not differ depending on the operating state of the air conditioning refrigeration cycle 1, that is, whether the cooling main operation is executed or the heating main operation is executed. The hot water circulating pipe 203 constituting the water circuit is constituted by a copper pipe, a stainless pipe, a steel pipe, a vinyl chloride pipe, or the like.
 水循環用ポンプ31は、貯湯タンク32に蓄えられている水を吸入し、その水を加圧し、給湯用負荷3内を循環させるものであり、たとえばインバーターにより回転数が制御されるタイプのもので構成するとよい。熱媒体-冷媒熱交換器51は、上述したように、給湯用負荷3を循環する熱媒体(水等の流体)と、給湯用冷凍サイクル2を循環する給湯用冷媒との、間で熱交換を行なうものである。貯湯タンク32は、熱媒体-冷媒熱交換器51で加熱された水を貯えておくものである。 The water circulation pump 31 sucks the water stored in the hot water storage tank 32, pressurizes the water, and circulates the inside of the hot water supply load 3. For example, the water circulation pump 31 is of a type whose rotational speed is controlled by an inverter. Configure. As described above, the heat medium-refrigerant heat exchanger 51 exchanges heat between the heat medium (fluid such as water) circulating through the hot water supply load 3 and the hot water supply refrigerant circulating through the hot water supply refrigeration cycle 2. Is to do. The hot water storage tank 32 stores water heated by the heat medium-refrigerant heat exchanger 51.
 まず、貯湯タンク32に蓄えられている比較的低温な水は、水循環用ポンプ31によって貯湯タンク32の底部から引き出されるとともに加圧される。水循環用ポンプ31で加圧された水は、熱媒体-冷媒熱交換器51に流入し、この熱媒体-冷媒熱交換器51で給湯用冷凍サイクル2を循環している給湯用冷媒から受熱する。すなわち、熱媒体-冷媒熱交換器51に流入した水は、給湯用冷凍サイクル2を循環している給湯用冷媒によって沸き上げられて、温度が上昇するのである。そして、沸き上げられた水は、貯湯タンク32の比較的高温な上部へ戻り、この貯湯タンク32に蓄えられることになる。 First, the relatively low temperature water stored in the hot water storage tank 32 is drawn from the bottom of the hot water storage tank 32 and pressurized by the water circulation pump 31. The water pressurized by the water circulation pump 31 flows into the heat medium-refrigerant heat exchanger 51, and receives heat from the hot water supply refrigerant circulating in the hot water supply refrigeration cycle 2 by the heat medium-refrigerant heat exchanger 51. . That is, the water flowing into the heat medium-refrigerant heat exchanger 51 is boiled by the hot water supply refrigerant circulating in the hot water supply refrigeration cycle 2, and the temperature rises. Then, the boiled water returns to the relatively hot upper portion of the hot water storage tank 32 and is stored in the hot water storage tank 32.
 なお、空調用冷凍サイクル1と給湯用冷凍サイクル2とは、上述したように、それぞれ独立した冷媒回路構成(空調用冷凍サイクル1を構成する第1冷媒回路及び給湯用冷凍サイクル2を構成する第2冷媒回路)になっているため、各冷媒回路を循環させる冷媒を同じ種類のものとしてもよいし、別の種類のものとしてもよい。つまり、各冷媒回路の冷媒は、それぞれ混ざることなく冷媒-冷媒熱交換器41及び熱媒体-冷媒熱交換器51にて互いに熱交換するように流れている。 Note that, as described above, the air conditioning refrigeration cycle 1 and the hot water supply refrigeration cycle 2 are independent refrigerant circuit configurations (the first refrigerant circuit constituting the air conditioning refrigeration cycle 1 and the hot water supply refrigeration cycle 2 constituting the first refrigerant circuit 1). 2 refrigerant circuits), the refrigerant circulating through each refrigerant circuit may be the same type or different types. That is, the refrigerant in each refrigerant circuit flows so as to exchange heat with each other in the refrigerant-refrigerant heat exchanger 41 and the heat medium-refrigerant heat exchanger 51 without being mixed.
 また、給湯用冷媒として臨界温度の低い冷媒を用いた場合、高温の給湯を行なう際に熱媒体-冷媒熱交換器51における放熱過程での給湯用冷媒が超臨界状態となることが想定される。しかしながら、一般に放熱過程の冷媒が超臨界状態にある場合、放熱器圧力や放熱器出口温度の変化によるCOPの変動が大きく、高いCOPを得る運転を行なうためには、より高度な制御が要求される。一方、一般に、臨界温度の低い冷媒は、同一温度に対する飽和圧力が高く、その分、配管や圧縮機の肉厚を大きくする必要があるので、コスト増の要因ともなる。 In addition, when a refrigerant having a low critical temperature is used as the hot water supply refrigerant, it is assumed that the hot water supply refrigerant in the heat dissipation process in the heat medium-refrigerant heat exchanger 51 enters a supercritical state when hot water supply is performed. . However, generally, when the refrigerant in the heat dissipation process is in a supercritical state, the COP fluctuates greatly due to changes in the radiator pressure and the outlet temperature of the radiator, and more advanced control is required in order to obtain a high COP. The On the other hand, in general, a refrigerant having a low critical temperature has a high saturation pressure for the same temperature, and accordingly, it is necessary to increase the thickness of the piping and the compressor, which causes an increase in cost.
 さらに、レジオネラ菌等の繁殖を抑えるための貯湯タンク32内に蓄えられる水の推奨温度が60℃以上であることを鑑みると、給湯の目標温度が最低でも60℃以上となることが多いと想定される。以上のことを踏まえ、給湯用冷媒には、最低でも60℃以上の臨界温度を持つ冷媒を採用している。このような冷媒を給湯用冷凍サイクル2の給湯用冷媒として採用すれば、より低コストで、より安定的に、高いCOPを得ることができるからである。冷媒を臨界温度付近で常用する場合、冷媒回路内が高温・高圧になることが想定されるため、給湯用圧縮機21は、高圧シェルを用いたタイプの圧縮機を使用することで、安定した運転が可能となる。 Furthermore, considering that the recommended temperature of water stored in the hot water storage tank 32 for suppressing the growth of Legionella bacteria and the like is 60 ° C. or higher, it is assumed that the target temperature of hot water supply is often 60 ° C. or higher at a minimum. Is done. Based on the above, a refrigerant having a critical temperature of 60 ° C. or higher is adopted as the hot water supply refrigerant. This is because, if such a refrigerant is employed as the hot water supply refrigerant of the hot water supply refrigeration cycle 2, a high COP can be obtained more stably at a lower cost. When the refrigerant is regularly used in the vicinity of the critical temperature, it is assumed that the refrigerant circuit has a high temperature and a high pressure. Therefore, the hot water supply compressor 21 is stabilized by using a compressor of a type using a high pressure shell. Driving is possible.
 また、空調用冷凍サイクル1において余剰冷媒を受液器(アキュムレーター104)によって貯蔵する場合を示したが、これに限るものではなく、冷凍サイクルにおいて放熱器となる熱交換器にて貯蔵するようにすれば、アキュムレーター104を取り除いてもよい。さらに、図1では、冷房室内機Bと暖房室内機Cとが2台以上接続されている場合を例に示しているが、接続台数を特に限定するものではなく、たとえば冷房室内機Bが1台以上、暖房室内機Cがないか若しくは1台以上を接続されていればよい。そして、空調用冷凍サイクル1を構成している各室内機の容量は、全部を同一としてもよく、大から小まで異なるようにしてもよい。 Moreover, although the case where the excess refrigerant | coolant was stored by the liquid receiver (accumulator 104) in the refrigerating cycle 1 for an air conditioning was shown, it is not restricted to this, It is stored with the heat exchanger used as a heat radiator in a refrigerating cycle. In this case, the accumulator 104 may be removed. Further, FIG. 1 shows an example in which two or more cooling indoor units B and heating indoor units C are connected, but the number of connected units is not particularly limited. It is only necessary that there is no heating indoor unit C or one or more is connected. And the capacity | capacitance of each indoor unit which comprises the refrigerating cycle 1 for an air conditioning may be made all the same, and you may make it differ from large to small.
 以上のように、この実施の形態に係る空調給湯複合システム100では、給湯負荷系統を二元サイクルで構成しているため、高温の給湯需要(たとえば、80℃)を提供する場合に、給湯用冷凍サイクル2の放熱器の温度を高温(たとえば、凝縮温度85℃)にすればよく、他に暖房負荷がある場合に、暖房室内機Cの凝縮温度(たとえば、50℃)までも増加させずに済むので、省エネとなる。また、たとえば夏期の空調冷房運転中に高温の給湯需要があった場合、従来はボイラーなどによって提供する必要があったが、従来大気中に排出していた温熱を回収し、再利用して給湯を行なうので、システムCOPが大幅に向上し、省エネとなる。 As described above, in the combined air conditioning and hot water supply system 100 according to this embodiment, the hot water supply load system is configured in a two-way cycle, and therefore when supplying high-temperature hot water supply demand (for example, 80 ° C.), What is necessary is just to make the temperature of the heat radiator of the refrigerating cycle 2 high temperature (for example, condensing temperature 85 degreeC), and when there is another heating load, it does not increase even to the condensing temperature (for example, 50 degreeC) of the heating indoor unit C. Energy saving. Also, for example, when there was a demand for hot water supply during the air conditioning and cooling operation in summer, it was necessary to provide it with a boiler, etc., but it was necessary to collect hot water that had been discharged into the atmosphere and reuse it. Therefore, the system COP is greatly improved and energy is saved.
[負荷側中継ユニットF]
 負荷側中継ユニットFには、冷媒-冷媒熱交換器41と、給湯熱源用絞り手段119と、熱媒体-冷媒熱交換器51と、給湯用圧縮機21と、給湯用絞り手段22と、が収容されている。つまり、負荷側中継ユニットFには、冷媒-冷媒熱交換器41を介して空調用冷凍サイクル1の一部、給湯用冷凍サイクル2の全部、及び、熱媒体-冷媒熱交換器51を介して給湯用負荷3の一部が収容されているのである。この負荷側中継ユニットFには、給湯用圧縮機21や図示省略のファンモータ等の駆動源としてインバーターを用いる制御基板を備えている(図4参照)。
[Load side relay unit F]
The load-side relay unit F includes a refrigerant-refrigerant heat exchanger 41, a hot water supply heat source throttle means 119, a heat medium-refrigerant heat exchanger 51, a hot water supply compressor 21, and a hot water supply throttle means 22. Contained. In other words, the load-side relay unit F has a part of the air-conditioning refrigeration cycle 1 through the refrigerant-refrigerant heat exchanger 41, the whole hot water supply refrigeration cycle 2, and the heat medium-refrigerant heat exchanger 51. A part of the hot water supply load 3 is accommodated. The load-side relay unit F includes a control board that uses an inverter as a drive source for the hot water supply compressor 21 and a fan motor (not shown) (see FIG. 4).
 また、インバーター排熱から制御基板を保護するために、制御基板を冷却する必要がある。しかしながら、負荷側中継ユニットFには、複数の熱交換器(冷媒-冷媒熱交換器41及び熱媒体-冷媒熱交換器51)が収容されるために大型化してしまう傾向にある。そこで、本実施の形態に係る負荷側中継ユニットFでは、以下に説明するようにして負荷側中継ユニットFの小型化を図るとともに、内部に最適な風路を形成して制御基板を効率的に冷却できるようにしている。 Also, in order to protect the control board from the inverter exhaust heat, it is necessary to cool the control board. However, the load-side relay unit F tends to be large because a plurality of heat exchangers (refrigerant-refrigerant heat exchanger 41 and heat medium-refrigerant heat exchanger 51) are accommodated. Therefore, in the load-side relay unit F according to the present embodiment, the load-side relay unit F is miniaturized as described below, and an optimal air path is formed inside to efficiently control the control board. It can be cooled.
 図2は、本発明の実施の形態に係る負荷側中継ユニットF部分を拡大して示す拡大回路図である。図3は、負荷側中継ユニットFの外観を模式的に透視して示す透視外観図である。図4は、制御基板を分解した状態の概略を示す分解斜視図である。図5は、負荷側中継ユニットF内における空気の流れを説明するための説明図である。図2~図5に基づいて、本実施の形態の特徴事項である負荷側中継ユニットF内の風路について詳細に説明する。図2に示すように、負荷側中継ユニットFには、給湯用圧縮機21、冷媒-冷媒熱交換器41、熱媒体-冷媒熱交換器51、給湯用絞り手段22、及び、給湯熱源用絞り手段119が収容されている。 FIG. 2 is an enlarged circuit diagram showing an enlarged portion of the load side relay unit F according to the embodiment of the present invention. FIG. 3 is a perspective external view schematically showing the external appearance of the load-side relay unit F. FIG. 4 is an exploded perspective view schematically showing a state in which the control board is disassembled. FIG. 5 is an explanatory diagram for explaining the flow of air in the load-side relay unit F. FIG. Based on FIGS. 2 to 5, the air path in the load-side relay unit F, which is a feature of the present embodiment, will be described in detail. As shown in FIG. 2, the load-side relay unit F includes a hot water supply compressor 21, a refrigerant-refrigerant heat exchanger 41, a heat medium-refrigerant heat exchanger 51, a hot water supply throttle means 22, and a hot water supply heat source throttle. A means 119 is accommodated.
 すなわち、負荷側中継ユニットFは、冷媒-冷媒熱交換器41、給湯熱源用絞り手段119、熱媒体-冷媒熱交換器51、給湯用圧縮機21、及び、給湯用絞り手段22、を収容する筐体としての機能を有している。この負荷側中継ユニットFには、底面の一部に吸気口60が、側面上方の一部に排気口61が、それぞれ形成されている。つまり、負荷側中継ユニットFでは、図示省略の送風機によって空気が吸気口60より吸い込まれ、内部上方に導かれて排気口61から排気されるようになっている。この排気口61は、後述するインバーター用冷却器25dの近傍に開口形成されている。 That is, the load-side relay unit F houses the refrigerant-refrigerant heat exchanger 41, the hot water supply heat source throttle means 119, the heat medium-refrigerant heat exchanger 51, the hot water supply compressor 21, and the hot water supply throttle means 22. It has a function as a housing. In the load-side relay unit F, an intake port 60 is formed at a part of the bottom surface, and an exhaust port 61 is formed at a part above the side surface. That is, in the load-side relay unit F, air is sucked in from the intake port 60 by a blower (not shown), guided upward inside, and exhausted from the exhaust port 61. The exhaust port 61 is formed in the vicinity of an inverter cooler 25d described later.
 制御基板25は、通常、制御回路等が搭載されているメイン基板25a、中継基板25b、強電部25c、及び、インバーター用冷却器25dで構成されている。強電部25cとインバーター用冷却器25dは、1つの基板(以下、ヒートシンク基板と称する)に設けられている。これらの基板は、一般的には、平面的に並べられて搭載されるようになっている。そうすると、負荷側中継ユニットFの内部容積を大きくしなければならず、小型化することができない。そこで、制御基板25は、メイン基板25a、中継基板25b、及び、ヒートシンク基板が、紙面左側から順次重ねられるように搭載されている。こうすることによって、制御基板25の長さ及び高さを短くしている。 The control board 25 is usually composed of a main board 25a on which a control circuit and the like are mounted, a relay board 25b, a high-power part 25c, and an inverter cooler 25d. The high power unit 25c and the inverter cooler 25d are provided on one substrate (hereinafter referred to as a heat sink substrate). In general, these substrates are arranged and mounted in a plane. If it does so, the internal volume of the load side relay unit F must be enlarged, and it cannot reduce in size. Therefore, the control board 25 is mounted such that the main board 25a, the relay board 25b, and the heat sink board are sequentially stacked from the left side of the drawing. By doing so, the length and height of the control board 25 are shortened.
 また、制御基板25は、メイン基板25aが負荷側中継ユニットFの正面側となるように設置される。したがって、負荷側中継ユニットFの正面側に設けられているカバー(図示省略)を開けるだけでメイン基板25aのメンテナンスが可能になり、メンテナンス性の容易化を実現できる。また、強電部25cが中継基板25bの後方背面側に設置されることになるので、メンテナンス時において作業員に対する危険性を低減することが可能になる。 Further, the control board 25 is installed so that the main board 25a is on the front side of the load-side relay unit F. Therefore, the main board 25a can be maintained simply by opening a cover (not shown) provided on the front side of the load-side relay unit F, thereby facilitating maintenance. In addition, since the high-power portion 25c is installed on the rear rear side of the relay board 25b, it is possible to reduce the danger to the worker during maintenance.
 制御基板25を積層構造にすることで、負荷側中継ユニットF内部の部品の交換作業の容易化も実現できる。たとえば、給湯用圧縮機21などを交換する際には、制御基板25が収容されている制御ボックスを固定しているネジを取り外せば、制御ボックス一式を取り外すことができ、容易に給湯用圧縮機21を交換できることになる。したがって、負荷側中継ユニットFがたとえば洗面所などのように狭い箇所に設置されており、メンテナンスを施すスペースが非常に狭い場合においても、制御ボックス単位で着脱が容易にできるので、メンテナンス作業効率を悪化させることがない。 ¡By making the control board 25 a laminated structure, it is possible to facilitate the replacement work of the components inside the load-side relay unit F. For example, when replacing the hot water supply compressor 21 or the like, the set of the control box can be removed by removing the screws fixing the control box in which the control board 25 is accommodated, and the hot water supply compressor can be easily removed. 21 can be exchanged. Therefore, even when the load-side relay unit F is installed in a narrow space such as a washroom and the space for maintenance is very small, it can be easily attached and detached in units of control boxes, so that maintenance work efficiency is improved. There is no worsening.
 そして、制御基板25を効率的に冷却するために、負荷側中継ユニットFでは吸気口60を底面に、排気口61を側面上方に、それぞれ形成しているのである。図5には、負荷側中継ユニットF内に形成される風路(風路A及び風路B)を矢印で図示している。具体的に負荷側中継ユニットF内における空気の流れについて説明する。吸気口60よりファンによって吸い込まれた冷却空気は、風路Aを導通する。この冷却空気は、メイン基板25aを冷却した後、内部上方に導かれ、ヒートシンク基板に形成されている風路Bを導通することになる。この冷却空気は、強電部25c及びインバーター用冷却器25dを冷却した後、排気口61を介して負荷側中継ユニットFの外部に熱とともに排気される。 In order to efficiently cool the control board 25, the load side relay unit F is formed with the intake port 60 on the bottom surface and the exhaust port 61 on the side surface. In FIG. 5, the air paths (air path A and air path B) formed in the load-side relay unit F are indicated by arrows. Specifically, the flow of air in the load-side relay unit F will be described. The cooling air sucked by the fan from the intake port 60 is conducted through the air path A. After cooling the main board 25a, this cooling air is guided upward inside and conducts the air path B formed in the heat sink board. This cooling air cools the high voltage section 25c and the inverter cooler 25d, and then is exhausted together with heat to the outside of the load side relay unit F through the exhaust port 61.
 このようなユニットの吸気口は、冷却経路の一方に形成される排気口に対して対称位置に形成されることが大半であった。しかしながら、負荷側中継ユニットFのように小型化を実現しつつ制御基板25を効率的に冷却しようとすると、吸気口及び排気口を対称位置に形成したのでは、小型化及び冷却効率のいずれも実現可能性が低いものとなる。そこで、負荷側中継ユニットFでは、図2に示すように吸気口60を下部に、排気口61を側面上部(インバーター用冷却器25dの近傍)に、それぞれ形成するようにしているのである。 Most of the air inlets of such units are formed symmetrically with respect to the air outlets formed on one side of the cooling path. However, if the control board 25 is to be efficiently cooled while realizing downsizing as in the load-side relay unit F, both the downsizing and the cooling efficiency are achieved by forming the intake port and the exhaust port at symmetrical positions. Feasibility is low. Therefore, in the load-side relay unit F, as shown in FIG. 2, the intake port 60 is formed in the lower part and the exhaust port 61 is formed in the upper part of the side surface (near the inverter cooler 25d).
 吸気口60を負荷側中継ユニットFの側面に形成せずに、下部に形成することによって、吸気口60を介して外部に漏洩してしまう騒音を軽減することができる。また、吸気口60を負荷側中継ユニットFの下部に形成することによって、吸気口60が図示省略の筐体脚部で囲まれることになり、空気の吸い込みとともに吸い込まれてしまうほこり等の吸い込み量も軽減することが可能になる。 The noise that leaks outside through the air intake port 60 can be reduced by forming the air intake port 60 in the lower part instead of forming it on the side surface of the load-side relay unit F. Further, by forming the intake port 60 at the lower part of the load-side relay unit F, the intake port 60 is surrounded by a housing leg portion (not shown), and the amount of suction of dust and the like that is sucked together with the suction of air. Can also be reduced.
 排気口61は、インバーター用冷却器25dを通過する空気の風速が最適になるように開口面積が設定されている。また、排気口61は、複数の小さな開口部で構成されている。こうすることによって、インバーター用冷却器25dに導通させる冷却空気の風速を最適とすることができるとともに、虫の侵入を抑制することができる。負荷側中継ユニットF内部に虫が侵入すると、制御基板25に設けられている電気回路のショートや、作業員が不意に指等を入れた際に予期せぬ怪我が発生する可能性がある。そこで、排気口61を複数の小さな開口部で構成することによって、虫の侵入を抑制可能にしている。たとえば、ゴキブリなどが好むわずかな隙間(一般的には3mm以下)を避け、3mm以上かつ4mm以下の径で開口部を形成するとよい。 The opening area of the exhaust port 61 is set so that the wind speed of the air passing through the inverter cooler 25d is optimized. The exhaust port 61 is composed of a plurality of small openings. By doing so, it is possible to optimize the wind speed of the cooling air conducted to the inverter cooler 25d and to suppress the invasion of insects. If insects enter the load-side relay unit F, there is a possibility that an electrical circuit provided on the control board 25 may be short-circuited or an unexpected injury may occur when an operator inadvertently puts a finger or the like. Therefore, the intrusion of insects can be suppressed by configuring the exhaust port 61 with a plurality of small openings. For example, it is good to avoid the slight gap (generally 3 mm or less) preferred by cockroaches or the like and to form the opening with a diameter of 3 mm or more and 4 mm or less.

Claims (6)

  1.  少なくとも2台以上の熱交換器と制御基板とが搭載され、前記制御基板を冷却するための空気を吸い込む吸気口及び前記制御基板を冷却した空気を排気するための排気口が形成されている冷凍サイクル装置の負荷側中継ユニットであって、
     前記吸気口が底面に形成され、前記排気口が側面上方に形成されている
     ことを特徴とする負荷側中継ユニット。
    Refrigeration in which at least two heat exchangers and a control board are mounted, and an intake port for sucking air for cooling the control board and an exhaust port for exhausting air that has cooled the control board are formed A load side relay unit of the cycle device,
    The load-side relay unit, wherein the intake port is formed on a bottom surface and the exhaust port is formed above a side surface.
  2.  前記制御基板は、
     少なくとも制御回路が搭載されているメイン基板、強電部基板、及び、ヒートシンク部基板を備え、
     前記吸気口側にメイン基板が、前記排気口側に前記ヒートシンク部基板が、それぞれ配置される
     ことを特徴とする請求項1に記載の負荷側中継ユニット。
    The control board is
    At least a main board on which a control circuit is mounted, a high-power board, and a heat sink board,
    The load-side relay unit according to claim 1, wherein the main board is disposed on the intake port side, and the heat sink part substrate is disposed on the exhaust port side.
  3.  前記ヒートシンク部基板にはインバーター用冷却器が設けられており、
     前記インバーター用冷却器の近傍に前記排気口が形成されている
     ことを特徴とする請求項2に記載の負荷側中継ユニット。
    The heat sink board is provided with an inverter cooler,
    The load-side relay unit according to claim 2, wherein the exhaust port is formed in the vicinity of the inverter cooler.
  4.  前記排気口は、
     前記インバーター用冷却器を通過する空気の風速が最適になるように開口面積が設定されている
     ことを特徴とする請求項3に記載の負荷側中継ユニット。
    The exhaust port is
    The load-side relay unit according to claim 3, wherein an opening area is set so that an air velocity of air passing through the inverter cooler is optimized.
  5.  前記排気口は、
     複数の小さな開口部で構成されている
     ことを特徴とする請求項4に記載の負荷側中継ユニット。
    The exhaust port is
    The load-side relay unit according to claim 4, wherein the load-side relay unit includes a plurality of small openings.
  6.  空調用圧縮機、流路切替手段、室外熱交換器、室内熱交換器、及び、空調用絞り手段が直列に接続されているとともに、直列に接続された冷媒-冷媒熱交換器及び給湯熱源用絞り手段が前記室内熱交換器及び前記空調用絞り手段に並列に接続されている第1冷媒回路を備え、前記第1冷媒回路に空調用冷媒を循環させる空調用冷凍サイクルと、
     給湯用圧縮機、熱媒体-冷媒熱交換器、給湯用絞り手段、及び、前記冷媒-冷媒熱交換器が直列に接続されている第2冷媒回路を備え、前記第2冷媒回路に給湯用冷媒を循環させる給湯用冷凍サイクルと、
     水循環用ポンプ、前記熱媒体-冷媒熱交換器、及び、貯湯タンクが直列に接続されている水回路を備え、前記水回路に給湯用水を循環させる給湯用負荷と、を備え、
     前記冷媒-冷媒熱交換器、前記給湯熱源用絞り手段、前記熱媒体-冷媒熱交換器、前記給湯用圧縮機、及び、前記給湯用絞り手段は、前記請求項1~5のいずれか一項に記載の負荷側中継ユニットに収容されている
     ことを特徴とする空調給湯複合システム。
     
     
     
    The compressor for air conditioning, the flow path switching means, the outdoor heat exchanger, the indoor heat exchanger, and the throttle means for air conditioning are connected in series, and for the refrigerant-refrigerant heat exchanger and hot water supply heat source connected in series. An air-conditioning refrigeration cycle, wherein the throttle means comprises a first refrigerant circuit connected in parallel to the indoor heat exchanger and the air-conditioning throttle means, and circulates the air-conditioning refrigerant in the first refrigerant circuit;
    A hot water supply compressor, a heat medium-refrigerant heat exchanger, hot water supply throttling means, and a second refrigerant circuit in which the refrigerant-refrigerant heat exchanger is connected in series, and the second refrigerant circuit has a hot water supply refrigerant Refrigeration cycle for hot water supply that circulates
    A water circulation pump, a water circuit in which the heat medium-refrigerant heat exchanger, and a hot water storage tank are connected in series, and a hot water supply load for circulating hot water in the water circuit,
    The refrigerant-refrigerant heat exchanger, the hot water supply heat source throttle means, the heat medium-refrigerant heat exchanger, the hot water supply compressor, and the hot water supply throttle means are any one of the first to fifth aspects. It is housed in the load side relay unit described in 1.


PCT/JP2009/056049 2009-03-26 2009-03-26 Load-side relay unit and compound air conditioning/hot water supply system mounting load-side relay unit thereon WO2010109619A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011505742A JPWO2010109619A1 (en) 2009-03-26 2009-03-26 Load-side relay unit and combined air conditioning and hot water supply system
PCT/JP2009/056049 WO2010109619A1 (en) 2009-03-26 2009-03-26 Load-side relay unit and compound air conditioning/hot water supply system mounting load-side relay unit thereon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/056049 WO2010109619A1 (en) 2009-03-26 2009-03-26 Load-side relay unit and compound air conditioning/hot water supply system mounting load-side relay unit thereon

Publications (1)

Publication Number Publication Date
WO2010109619A1 true WO2010109619A1 (en) 2010-09-30

Family

ID=42780328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056049 WO2010109619A1 (en) 2009-03-26 2009-03-26 Load-side relay unit and compound air conditioning/hot water supply system mounting load-side relay unit thereon

Country Status (2)

Country Link
JP (1) JPWO2010109619A1 (en)
WO (1) WO2010109619A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104359247A (en) * 2014-11-08 2015-02-18 合肥天鹅制冷科技有限公司 Heat pump device
JP5954511B1 (en) * 2016-03-04 2016-07-20 富士電機株式会社 Heat pump steam generator
JP2017015381A (en) * 2015-06-29 2017-01-19 パナソニックIpマネジメント株式会社 Outdoor unit of air conditioner
EP2629022A4 (en) * 2010-10-12 2018-04-04 Mitsubishi Electric Corporation Heating medium converter and air conditioning apparatus having the heating medium converter mounted thereon
KR20190134181A (en) * 2018-05-25 2019-12-04 엘지전자 주식회사 Outdoor Unit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63142621U (en) * 1987-03-12 1988-09-20
JP2003106569A (en) * 2001-09-27 2003-04-09 Toshiba Kyaria Kk Outdoor unit of air conditioner
WO2008117408A1 (en) * 2007-03-27 2008-10-02 Mitsubishi Electric Corporation Heat pump device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3925383B2 (en) * 2002-10-11 2007-06-06 ダイキン工業株式会社 Hot water supply device, air conditioning hot water supply system, and hot water supply system
JP2006118793A (en) * 2004-10-21 2006-05-11 Denso Corp Electronic control device for water heater
JP4816089B2 (en) * 2006-01-12 2011-11-16 パナソニック株式会社 Heat pump water heater

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63142621U (en) * 1987-03-12 1988-09-20
JP2003106569A (en) * 2001-09-27 2003-04-09 Toshiba Kyaria Kk Outdoor unit of air conditioner
WO2008117408A1 (en) * 2007-03-27 2008-10-02 Mitsubishi Electric Corporation Heat pump device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2629022A4 (en) * 2010-10-12 2018-04-04 Mitsubishi Electric Corporation Heating medium converter and air conditioning apparatus having the heating medium converter mounted thereon
CN104359247A (en) * 2014-11-08 2015-02-18 合肥天鹅制冷科技有限公司 Heat pump device
JP2017015381A (en) * 2015-06-29 2017-01-19 パナソニックIpマネジメント株式会社 Outdoor unit of air conditioner
JP5954511B1 (en) * 2016-03-04 2016-07-20 富士電機株式会社 Heat pump steam generator
KR20190134181A (en) * 2018-05-25 2019-12-04 엘지전자 주식회사 Outdoor Unit
KR102509997B1 (en) 2018-05-25 2023-03-15 엘지전자 주식회사 Outdoor Unit

Also Published As

Publication number Publication date
JPWO2010109619A1 (en) 2012-09-20

Similar Documents

Publication Publication Date Title
JP5084903B2 (en) Air conditioning and hot water supply complex system
JP5239824B2 (en) Refrigeration equipment
WO2009122477A1 (en) Air-conditioning and hot water complex system
EP2541169A1 (en) Air conditioner and air-conditioning hot-water-supplying system
JP2010501826A (en) Air conditioner for communication equipment
EP2541170A1 (en) Air-conditioning hot-water-supply system
WO2010109619A1 (en) Load-side relay unit and compound air conditioning/hot water supply system mounting load-side relay unit thereon
KR102122574B1 (en) An accumulator and an air conditioner using thereof
KR100667517B1 (en) Air conditioner equipped with variable capacity type compressor
JP2013185741A (en) Heat pump type water heater
JP5216557B2 (en) Refrigeration cycle equipment
JPWO2010109620A1 (en) Load-side relay unit and combined air conditioning and hot water supply system
JP5157307B2 (en) vending machine
JP2007051788A (en) Refrigerating device
KR100528292B1 (en) Heat-pump type air conditioner
KR102549600B1 (en) Air conditioner
JP6613404B2 (en) Refrigeration system
KR102509997B1 (en) Outdoor Unit
KR102274194B1 (en) An air conditioner
JP2010038408A (en) Outdoor heat exchanger and refrigerating cycle device mounted with the same
JP2004293889A (en) Ice thermal storage unit, ice thermal storage type air conditioner and its operating method
KR100626756B1 (en) Heat pump air-conditioner
CN219572353U (en) Temperature control system
WO2010109618A1 (en) Load-side relay unit and compound air conditioning/hot water supply system mounting load-side relay unit thereon
KR102137175B1 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09842233

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011505742

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09842233

Country of ref document: EP

Kind code of ref document: A1