WO2010109618A1 - Load-side relay unit and compound air conditioning/hot water supply system mounting load-side relay unit thereon - Google Patents

Load-side relay unit and compound air conditioning/hot water supply system mounting load-side relay unit thereon Download PDF

Info

Publication number
WO2010109618A1
WO2010109618A1 PCT/JP2009/056047 JP2009056047W WO2010109618A1 WO 2010109618 A1 WO2010109618 A1 WO 2010109618A1 JP 2009056047 W JP2009056047 W JP 2009056047W WO 2010109618 A1 WO2010109618 A1 WO 2010109618A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
hot water
water supply
load
heat exchanger
Prior art date
Application number
PCT/JP2009/056047
Other languages
French (fr)
Japanese (ja)
Inventor
智一 川越
宏典 薮内
純一 亀山
博文 ▲高▼下
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2009/056047 priority Critical patent/WO2010109618A1/en
Publication of WO2010109618A1 publication Critical patent/WO2010109618A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/005Mounting of control devices

Definitions

  • the present invention relates to a load-side relay unit that houses a plurality of heat exchangers and an air-conditioning and hot-water supply complex system equipped with the same.
  • a heat source unit equipped with a first compressor, a flow path switching valve, a heat source side heat exchanger, a first flow control device, a first load side heat exchanger, A first load-side unit including a two-compressor, a second load-side heat exchanger, and a second flow rate control device, the first compressor, the flow path switching valve, and the heat source-side heat.
  • the exchanger, the first flow control device, and the first load-side heat exchanger are sequentially connected by a refrigerant pipe to form a main circuit, and the second compressor and the second load-side heat exchange.
  • a heat pump device is proposed in which a load-side refrigerant circuit is configured by sequentially connecting a condenser, the second flow rate control device, and the first load-side heat exchanger with refrigerant piping (see, for example, Patent Document 1). ).
  • the heat pump device described in Patent Document 1 is provided with a load-side refrigerant circuit, whereby the capacity of the main circuit can be enhanced and the operation efficiency is improved.
  • various refrigeration devices constituting the load-side refrigerant circuit are mounted on a load-side unit (conceived by the load-side relay unit according to the present invention).
  • the load-side unit includes a control board that uses an inverter as a drive source such as a hot water compressor or a fan motor.
  • the control board is usually accommodated in a control box.
  • the control box is designed to be arranged in a plane in consideration of cost performance.
  • the present invention has been made to solve the above-described problems, and accommodates a plurality of heat exchangers and a control box, and is intended to reduce size, facilitate transportation, and facilitate maintenance. It aims at providing a load side relay unit and an air-conditioning hot-water supply complex system carrying it.
  • a load-side relay unit is a load-side relay unit of a refrigeration cycle apparatus in which at least two heat exchangers and a control board are mounted, and the control board includes a plurality of parts divided for each function.
  • the plurality of substrates are arranged from the front side to the back side of the unit.
  • an air conditioning compressor, a flow path switching unit, an outdoor heat exchanger, an indoor heat exchanger, and an air conditioning throttle unit are connected in series and connected in series.
  • the refrigerant-refrigerant heat exchanger and the hot water supply heat source throttle means include a first refrigerant circuit connected in parallel to the indoor heat exchanger and the air conditioning throttle means, and circulates the air-conditioning refrigerant in the first refrigerant circuit.
  • An air conditioning refrigeration cycle for circulating hot water supply refrigerant in the refrigerant circuit, a water circulation pump, the heat medium-refrigerant heat exchanger, and a water circuit in which a hot water storage tank is connected in series, the hot water supply water in the water circuit Hot water supply load that circulates
  • the refrigerant-refrigerant heat exchanger, the hot water supply heat source throttle means, the heat medium-refrigerant heat exchanger, the hot water supply compressor, and the hot water supply throttle means are connected to the load-side relay unit. It is housed.
  • each board since the plurality of boards divided for each function constitute the control board arranged from the front side to the back side of the unit, each board is arranged in a plane.
  • the height can be shortened compared to the above, and the size can be reduced accordingly.
  • the load-side relay unit is provided with a reduced size, it is possible to widen an empty space such as a machine room in which the load-side relay unit is arranged. Therefore, space saving can be realized. In addition, facilities can be concentrated in one place, and maintainability can be improved. Furthermore, the volume of the machine room can be reduced, and the living space other than the machine room can be increased.
  • FIG. 1 is a refrigerant circuit diagram illustrating a refrigerant circuit configuration (particularly, a refrigerant circuit configuration during heating-main operation) of an air-conditioning and hot water supply combined system 100 according to an embodiment of the present invention. Based on FIG. 1, the refrigerant circuit configuration of the combined air-conditioning and hot water supply system 100, particularly the refrigerant circuit configuration during heating-main operation will be described.
  • This air conditioning and hot water supply complex system 100 is installed in a building, a condominium, etc., and can supply a cooling load, a heating load, and a hot water supply load simultaneously by using a refrigeration cycle (heat pump cycle) that circulates refrigerant (air conditioning refrigerant). is there.
  • a refrigeration cycle heat pump cycle
  • refrigerant air conditioning refrigerant
  • An air conditioning and hot water supply combined system 100 includes an air conditioning refrigeration cycle 1, a hot water supply refrigeration cycle 2, and a hot water supply load 3, and includes an air conditioning refrigeration cycle 1 and a hot water supply refrigeration cycle 2.
  • a refrigerant-refrigerant heat exchanger 41, and the hot water supply refrigeration cycle 2 and the hot water supply load 3 are heat medium-refrigerant heat exchangers 51, and are configured to exchange heat without mutual refrigerant or water mixing.
  • a load-side relay unit F is mounted on the air conditioning and hot water supply complex system 100 (described in detail in FIG. 2). In FIG.
  • the load on the cooling indoor unit B is smaller than the total load on the heating indoor unit C and the hot water supply heat source circuit D, and the outdoor heat exchanger 103 serves as an evaporator.
  • the state of the cycle when working (for convenience, referred to as heating main operation) is shown.
  • the air-conditioning refrigeration cycle 1 includes a heat source unit A, a cooling indoor unit B in charge of a cooling load, a heating indoor unit C in charge of a heating load, a hot water supply heat source circuit D serving as a heat source of the hot water supply refrigeration cycle 2, And a repeater E.
  • the cooling indoor unit B, the heating indoor unit C, and the hot water supply heat source circuit D are connected and mounted in parallel to the heat source unit A.
  • the relay machine E installed between the heat source unit A, the cooling indoor unit B, the heating indoor unit C, and the hot water supply heat source circuit D switches the flow of the refrigerant, so that the cooling indoor unit B, the heating indoor unit The functions as C and hot water supply heat source circuit D are exhibited.
  • the heat source machine A is configured by connecting a compressor 101 for air conditioning, a four-way valve 102 that is a flow path switching unit, an outdoor heat exchanger 103, and an accumulator 104 in series. It has the function of supplying cold heat to the cooling indoor unit B, the heating indoor unit C, and the hot water supply heat source circuit D.
  • a blower such as a fan for supplying air to the outdoor heat exchanger 103 may be provided in the vicinity of the outdoor heat exchanger 103.
  • the flow of the air-conditioning refrigerant is allowed only in a predetermined direction (the direction from the heat source unit A to the relay unit E) in the high-pressure side connection pipe 106 between the outdoor heat exchanger 103 and the relay unit E.
  • the reverse check valve 105a that allows the flow of the air-conditioning refrigerant only in a predetermined direction (direction from the relay machine E to the heat source machine A) in the low-pressure side connection pipe 107 between the four-way valve 102 and the relay machine E. Stop valves 105b are provided respectively.
  • the high-pressure side connection pipe 106 and the low-pressure side connection pipe 107 are opposite to the first connection pipe 130 that connects the upstream side of the check valve 105a and the upstream side of the check valve 105b, and the downstream side of the check valve 105a.
  • the second connection pipe 131 is connected to the downstream side of the stop valve 105b. That is, the connection part a between the high-pressure side connection pipe 106 and the first connection pipe 130 is upstream of the connection part b between the high-pressure side connection pipe 106 and the second connection pipe 131 across the check valve 105a.
  • the connection part c between the low-pressure side connection pipe 107 and the first connection pipe 130 is also upstream of the connection part d between the low-pressure side connection pipe 107 and the second connection pipe 131 across the check valve 105b. Yes.
  • the first connection pipe 130 is provided with a check valve 105 c that allows the air-conditioning refrigerant to flow only in the direction from the low-pressure side connection pipe 107 to the high-pressure side connection pipe 106.
  • the second connection pipe 131 is also provided with a check valve 105 d that allows the air-conditioning refrigerant to flow only in the direction from the low-pressure side connection pipe 107 to the high-pressure side connection pipe 106.
  • the check valve 105a and the check valve 105b are in a closed state (shown in black), the check valve 105b and the check valve 105c. Is open (shown in white).
  • the air-conditioning compressor 101 sucks air-conditioning refrigerant and compresses the air-conditioning refrigerant to a high temperature and high pressure state.
  • the four-way valve 102 switches the flow of the air conditioning refrigerant.
  • the outdoor heat exchanger 103 functions as an evaporator or a radiator (condenser), performs heat exchange between air supplied from a blower (not shown) and the air conditioning refrigerant, and converts the air conditioning refrigerant into evaporated gas or Condensed liquid.
  • the accumulator 104 is disposed between the four-way valve 102 and the air-conditioning compressor 101 during heating-main operation, and stores excess air-conditioning refrigerant.
  • the accumulator 104 may be any container that can store excess air-conditioning refrigerant.
  • the cooling indoor unit B and the heating indoor unit C are mounted with an air conditioning throttle means 117 and an indoor heat exchanger 118 connected in series. Further, in the cooling indoor unit B and the heating indoor unit C, an example is shown in which two air conditioning throttle means 117 and two indoor heat exchangers 118 are mounted in parallel.
  • the cooling indoor unit B receives a supply of cold from the heat source unit A and takes charge of the cooling load
  • the heating indoor unit C has a function of receiving the supply of cold heat from the heat source unit A and taking charge of the heating load. Yes.
  • connection pipe 133 the connection pipe connected from the relay E to the indoor heat exchanger 118
  • connection pipe 134 the connection pipe connected from the relay E to the air conditioning throttle means 117
  • the air conditioning throttle means 117 functions as a pressure reducing valve or an expansion valve, and decompresses and expands the air conditioning refrigerant.
  • the air-conditioning throttle means 117 may be constituted by a controllable opening degree, for example, a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary tube, or the like.
  • the indoor heat exchanger 118 functions as a radiator (condenser) or an evaporator, and performs heat exchange between air supplied from an air blower (not shown) and the air conditioning refrigerant to condense or liquefy the air conditioning refrigerant. Evaporative gasification.
  • the air conditioning throttle means 117 and the indoor heat exchanger 118 are connected in series.
  • the hot water supply heat source circuit D includes a hot water supply heat source throttle means 119 and a refrigerant-refrigerant heat exchanger 41 connected in series. It has the function to supply to the hot water supply refrigeration cycle 2 via the. That is, the air-conditioning refrigeration cycle 1 and the hot water supply refrigeration cycle 2 are cascade-connected by the refrigerant-refrigerant heat exchanger 41.
  • the connecting pipe connecting the relay E to the refrigerant-refrigerant heat exchanger 41 is connected to the connecting pipe 135, and the connecting pipe connecting the relay E to the hot water supply heat source throttle means 119 is connected to the connecting pipe. It shall be described as 136.
  • the hot water supply heat source throttling means 119 functions as a pressure reducing valve or an expansion valve, like the air conditioning throttling means 117, and decompresses and expands the air conditioning refrigerant.
  • the hot water supply heat source throttling means 119 is preferably constituted by a controllable opening degree, such as a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary.
  • the refrigerant-refrigerant heat exchanger 41 functions as a radiator (condenser) and an evaporator, and serves as a hot water supply refrigerant that circulates through the refrigeration cycle of the hot water supply refrigeration cycle 2 and an air conditioner that circulates through the refrigeration cycle of the air conditioning refrigeration cycle 1. Heat exchange is performed with the refrigerant for use.
  • the relay unit E has a function of connecting each of the cooling indoor unit B, the heating indoor unit C, and the hot water supply heat source circuit D to the heat source unit A, and also has the valve means 109a or the valve means 109b of the first distribution unit 109. Is selectively opened or closed to determine whether the indoor heat exchanger 118 is a radiator or an evaporator, and whether the refrigerant-refrigerant heat exchanger 41 is a chiller or a water heater. It has a function to do.
  • the relay E includes a gas-liquid separator 108, a first distributor 109, a second distributor 110, a first internal heat exchanger 111, a first relay throttle means 112, and a second internal heat.
  • the exchanger 113 and the second relay stop means 114 are configured.
  • connection pipe 133 and the connection pipe 135 are branched into two, one (the connection pipe 133b and the connection pipe 135b) is connected to the low-pressure side connection pipe 107, and the other (the connection pipe 133a and the connection pipe).
  • the pipe 135a) is connected to a connection pipe (referred to as a connection pipe 132) connected to the gas-liquid separator 108.
  • the valve means 109a that is controlled to open / close the connection pipe 133a and the connection pipe 135a so as not to conduct the refrigerant is controlled to open / close to the connection pipe 133b and the connection pipe 135b and conducts the refrigerant.
  • Valve means 109b that may or may not be provided is provided.
  • the open / closed states of the valve means 109a and the valve means 109b are represented by white (open state) and black (closed state).
  • connection pipe 134 and the connection pipe 136 are branched into two, one (the connection pipe 134a and the connection pipe 136a) is connected at the first meeting part 115, and the other (the connection pipe 134b and the connection pipe).
  • a pipe 136b) is connected at the second meeting part 116.
  • the check valve 110a that allows only one of the refrigerant to flow in the connecting pipe 134a and the connecting pipe 136a is reverse to allow only one of the refrigerant to flow in the connecting pipe 134b and the connecting pipe 136b.
  • a stop valve 110b is provided.
  • the open / closed states of the check valve 110a and the check valve 110b are indicated by white (open state) and black (closed state).
  • the first meeting unit 115 is connected from the second distribution unit 110 to the gas-liquid separator 108 via the first relay squeezing means 112 and the first internal heat exchanger 111.
  • the second meeting unit 116 branches between the second distribution unit 110 and the second internal heat exchanger 113, one of which is for the second distribution unit 110 and the first relay device via the second internal heat exchanger 113.
  • the second meeting section 116a is connected to the first meeting section 115 between the throttling means 112, and the other (second meeting section 116a) is connected to the second relay throttling means 114, the second internal heat exchanger 113, and the first internal heat exchanger 111.
  • the gas-liquid separator 108 separates the air-conditioning refrigerant into a gas refrigerant and a liquid refrigerant.
  • the gas-liquid separator 108 is provided in the high-pressure side connection pipe 106, one of which is connected to the valve means 109 a of the first distribution unit 109, and the other.
  • the first distributor 115 is connected to the second distributor 110.
  • the first distribution unit 109 has a function of allowing the air conditioning refrigerant to flow into the indoor heat exchanger 118 and the refrigerant-refrigerant heat exchanger 41 by selectively opening or closing either the valve means 109a or the valve means 109b. Yes.
  • the 2nd distribution part 110 has a function which permits the flow of the refrigerant for air-conditioning to either one by check valve 110a and check valve 110b.
  • the first internal heat exchanger 111 is provided in the first meeting portion 115 between the gas-liquid separator 108 and the first relay throttle means 112, and is used for air conditioning in which the first meeting portion 115 is conducted. Heat exchange is performed between the refrigerant and the air-conditioning refrigerant that is conducted through the second meeting part 116a from which the second meeting part 116 is branched.
  • the first repeater throttle means 112 is provided in the first meeting section 115 between the first internal heat exchanger 111 and the second distribution section 110, and decompresses and expands the air-conditioning refrigerant. .
  • the first repeater throttle means 112 may be configured with a variable opening degree controllable means, for example, a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary tube, or the like.
  • the second internal heat exchanger 113 is provided in the second meeting part 116, and includes an air conditioning refrigerant that is conducted through the second meeting part 116, and a second meeting part 116a from which the second meeting part 116 is branched. Heat exchange is performed with the air-conditioning refrigerant that is conducted.
  • the second relay throttling means 114 is provided in the second meeting section 116 between the second internal heat exchanger 113 and the second distribution section 110, functions as a pressure reducing valve and an expansion valve, and is an air conditioning refrigerant. Is expanded under reduced pressure.
  • the second relay unit throttle unit 114 can be controlled to have a variable opening, for example, a precise flow rate control unit using an electronic expansion valve, or a low cost such as a capillary tube.
  • the refrigerant flow rate adjusting means may be used.
  • the air-conditioning refrigeration cycle 1 includes the air-conditioning compressor 101, the four-way valve 102, the indoor heat exchanger 118, the air-conditioning throttle means 117, and the outdoor heat exchanger 103 connected in series, and the air-conditioning compression cycle.
  • Machine 101, four-way valve 102, refrigerant-refrigerant heat exchanger 41, hot water supply heat source throttling means 119, and outdoor heat exchanger 103 are connected in series, and the indoor heat exchanger 118 and refrigerant-refrigerant are connected via relay E. This is established by connecting the heat exchanger 41 in parallel to form a first refrigerant circuit, and circulating the air-conditioning refrigerant in the first refrigerant circuit.
  • the air conditioning compressor 101 is not particularly limited as long as it can compress the sucked refrigerant into a high pressure state.
  • the air-conditioning compressor 101 can be configured using various types such as reciprocating, rotary, scroll, or screw.
  • the air-conditioning compressor 101 may be configured as a type in which the rotational speed can be variably controlled by an inverter, or may be configured as a type in which the rotational speed is fixed.
  • the type of refrigerant circulating in the air-conditioning refrigeration cycle 1 is not particularly limited.
  • natural refrigerants such as carbon dioxide (CO 2 ), hydrocarbons, and helium, and alternatives that do not contain chlorine such as HFC410A, HFC407C, and HFC404A
  • HFC410A, HFC407C, and HFC404A Either a refrigerant or a fluorocarbon refrigerant such as R22 or R134a used in existing products may be used.
  • the air-conditioning refrigerant heated to a high temperature and high pressure by the air-conditioning compressor 101 is discharged from the air-conditioning compressor 101, passes through the four-way valve 102, passes through the check valve 105 c, and enters the high-pressure side connection pipe 106. It is guided and flows into the gas-liquid separator 108 of the relay E in the superheated gas state.
  • the superheated gas-conditioning refrigerant flowing into the gas-liquid separator 108 is distributed to a circuit in which the valve means 109a of the first distribution unit 109 is open.
  • the refrigerant for air conditioning in the superheated gas state flows into the heating indoor unit C and the hot water supply heat source circuit D.
  • the air-conditioning refrigerant flowing into the heating indoor unit C dissipates heat in the indoor heat exchanger 118 (that is, warms the room air), is depressurized by the air-conditioning throttle means 117, and joins at the first meeting unit 115.
  • the air-conditioning refrigerant that has flowed into the hot water supply heat source circuit D dissipates heat in the refrigerant-refrigerant heat exchanger 41 (that is, gives heat to the hot water supply refrigeration cycle 2), and is depressurized by the hot water supply heat source throttling means 119.
  • the air-conditioning refrigerant that has flowed out of the indoor unit C merges at the first meeting unit 115.
  • a part of the air-conditioning refrigerant in the superheated gas state that has flowed into the gas-liquid separator 108 is the air-conditioning refrigerant expanded to low temperature and low pressure by the second relay expansion means 114 in the first internal heat exchanger 111.
  • the degree of supercooling is obtained by heat exchange.
  • the air-conditioning refrigerant used for air-conditioning flows into the indoor heat exchanger 118 or refrigerant-refrigerant heat exchange. And the first meeting part 115 merge. It should be noted that a part of the superheated gas conditioning refrigerant that passes through the first repeater throttle means 112 may be eliminated by fully closing the first repeater throttle means 112. Thereafter, the second internal heat exchanger 113 performs heat exchange with the air-conditioning refrigerant expanded to low temperature and low pressure by the second relay throttle unit 114 to obtain a degree of supercooling. This refrigerant for air conditioning is distributed to the second meeting part 116 side and the second relay unit throttle means 114 side.
  • the air-conditioning refrigerant that conducts through the second meeting portion 116 is distributed to a circuit in which the valve means 109b is open.
  • the air-conditioning refrigerant that conducts through the second meeting portion 116 flows into the cooling indoor unit B, is expanded to low temperature and low pressure by the air-conditioning throttle means 117, is evaporated by the indoor heat exchanger 118, and the valve means 109 b. After that, the low pressure side connecting pipe 107 joins.
  • the air-conditioning refrigerant that has passed through the second repeater throttle means 114 evaporates by exchanging heat in the second internal heat exchanger 113 and the first internal heat exchanger 111, and in the cooling chamber through the low-pressure side connection pipe 107.
  • the air-conditioning refrigerant merged in the low-pressure side connection pipe 107 is led to the outdoor heat exchanger 103 through the check valve 105d, and depending on the operating conditions, the remaining liquid refrigerant is evaporated, and the four-way valve 102, the accumulator The process returns to the air conditioning compressor 101 via 104.
  • the hot water supply refrigeration cycle 2 includes a hot water supply compressor 21, a heat medium-refrigerant heat exchanger 51, hot water supply throttle means 22, and a refrigerant-refrigerant heat exchanger 41. That is, the hot water supply refrigeration cycle 2 includes a hot water supply compressor 21, a heat medium-refrigerant heat exchanger 51, a hot water supply throttle means 22, and a refrigerant-refrigerant heat exchanger 41 connected in series by the refrigerant pipe 45. This is established by constituting a two refrigerant circuit and circulating a hot water supply refrigerant in the second refrigerant circuit. The operation of the hot water supply refrigeration cycle 2 does not differ depending on the operating state of the air conditioning refrigeration cycle 1, that is, whether the cooling main operation is being executed or the heating main operation is being executed.
  • the hot water supply compressor 21 sucks in the hot water supply refrigerant and compresses the hot water supply refrigerant to a high temperature and high pressure state.
  • the hot water supply compressor 21 may be configured as a type in which the rotation speed can be variably controlled by an inverter, or may be configured as a type in which the rotation speed is fixed. Further, the hot water supply compressor 21 is not particularly limited as long as it can compress the sucked refrigerant into a high pressure state.
  • the hot water supply compressor 21 can be configured using various types such as reciprocating, rotary, scroll, or screw.
  • the heat medium-refrigerant heat exchanger 51 performs heat exchange between a heat medium (fluid such as water) circulating through the hot water supply load 3 and a hot water supply refrigerant circulating through the hot water supply refrigeration cycle 2. . That is, the hot water supply refrigeration cycle 2 and the hot water supply load 3 are cascade-connected by the heat medium-refrigerant heat exchanger 51.
  • the hot water supply throttling means 22 functions as a pressure reducing valve and an expansion valve, and decompresses the hot water supply refrigerant to expand it.
  • the hot water supply throttling means 22 may be constituted by a controllable opening degree, such as a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary.
  • the refrigerant-refrigerant heat exchanger 41 performs heat exchange between the hot water supply refrigerant circulating in the hot water supply refrigeration cycle 2 and the air conditioning refrigerant circulating in the air conditioning refrigeration cycle 1.
  • the type of refrigerant circulating in the hot water supply refrigeration cycle 2 is not particularly limited.
  • natural refrigerants such as carbon dioxide, hydrocarbons and helium, alternative refrigerants not containing chlorine such as HFC410A, HFC407C, and HFC404A, or existing Any of chlorofluorocarbon refrigerants such as R22 and R134a used in this product may be used.
  • the hot water supply refrigerant that has been heated to a high temperature and high pressure by the hot water supply compressor 21 is discharged from the hot water supply compressor 21 and flows into the heat medium-refrigerant heat exchanger 51.
  • the flowing hot water supply refrigerant radiates heat by heating the water circulating in the hot water supply load 3.
  • This hot water supply refrigerant is expanded by the hot water supply throttling means 22 to a temperature equal to or lower than the outlet temperature of the refrigerant-refrigerant heat exchanger 41 in the hot water supply heat source circuit D of the air conditioning refrigeration cycle 1.
  • the expanded hot water supply refrigerant receives and evaporates from the air conditioning refrigerant flowing through the hot water supply heat source circuit D constituting the air conditioning refrigeration cycle 1 in the refrigerant-refrigerant heat exchanger 41, and returns to the hot water supply compressor 21.
  • the hot water supply load 3 includes a water circulation pump 31, a heat medium-refrigerant heat exchanger 51, and a hot water storage tank 32. That is, in the hot water supply load 3, the water circulation pump 31, the heat medium-refrigerant heat exchanger 51, and the hot water storage tank 32 are connected in series by the hot water storage water circulation pipe 203 to form a water circuit (heat medium circuit). This is achieved by circulating hot water supply water in this water circuit.
  • the operation of the hot water supply load 3 does not differ depending on the operating state of the air conditioning refrigeration cycle 1, that is, whether the cooling main operation is executed or the heating main operation is executed.
  • the hot water circulating pipe 203 constituting the water circuit is constituted by a copper pipe, a stainless pipe, a steel pipe, a vinyl chloride pipe, or the like.
  • the water circulation pump 31 sucks the water stored in the hot water storage tank 32, pressurizes the water, and circulates the inside of the hot water supply load 3.
  • the water circulation pump 31 is of a type whose rotational speed is controlled by an inverter. Configure.
  • the heat medium-refrigerant heat exchanger 51 exchanges heat between the heat medium (fluid such as water) circulating through the hot water supply load 3 and the hot water supply refrigerant circulating through the hot water supply refrigeration cycle 2. Is to do.
  • the hot water storage tank 32 stores water heated by the heat medium-refrigerant heat exchanger 51.
  • the relatively low temperature water stored in the hot water storage tank 32 is drawn from the bottom of the hot water storage tank 32 and pressurized by the water circulation pump 31.
  • the water pressurized by the water circulation pump 31 flows into the heat medium-refrigerant heat exchanger 51, and receives heat from the hot water supply refrigerant circulating in the hot water supply refrigeration cycle 2 by the heat medium-refrigerant heat exchanger 51. . That is, the water flowing into the heat medium-refrigerant heat exchanger 51 is boiled by the hot water supply refrigerant circulating in the hot water supply refrigeration cycle 2, and the temperature rises. Then, the boiled water returns to the relatively hot upper portion of the hot water storage tank 32 and is stored in the hot water storage tank 32.
  • the air conditioning refrigeration cycle 1 and the hot water supply refrigeration cycle 2 are independent refrigerant circuit configurations (the first refrigerant circuit constituting the air conditioning refrigeration cycle 1 and the hot water supply refrigeration cycle 2 constituting the first refrigerant circuit 1).
  • the refrigerant circulating through each refrigerant circuit may be the same type or different types. That is, the refrigerant in each refrigerant circuit flows so as to exchange heat with each other in the refrigerant-refrigerant heat exchanger 41 and the heat medium-refrigerant heat exchanger 51 without being mixed.
  • a refrigerant having a low critical temperature when used as the hot water supply refrigerant, it is assumed that the hot water supply refrigerant in the heat dissipation process in the heat medium-refrigerant heat exchanger 51 enters a supercritical state when hot water supply is performed. .
  • the COP fluctuates greatly due to changes in the radiator pressure and the outlet temperature of the radiator, and more advanced control is required in order to obtain a high COP.
  • a refrigerant having a low critical temperature has a high saturation pressure for the same temperature, and accordingly, it is necessary to increase the thickness of the piping and the compressor, which causes an increase in cost.
  • the target temperature of hot water supply is often 60 ° C. or higher at a minimum. Is done.
  • a refrigerant having a critical temperature of 60 ° C. or higher is adopted as the hot water supply refrigerant. This is because, if such a refrigerant is employed as the hot water supply refrigerant of the hot water supply refrigeration cycle 2, a high COP can be obtained more stably at a lower cost.
  • the refrigerant is regularly used in the vicinity of the critical temperature, it is assumed that the refrigerant circuit has a high temperature and a high pressure. Therefore, the hot water supply compressor 21 is stabilized by using a compressor of a type using a high pressure shell. Driving is possible.
  • FIG. 1 shows an example in which two or more cooling indoor units B and heating indoor units C are connected, but the number of connected units is not particularly limited. It is only necessary that there is no heating indoor unit C or one or more is connected. And the capacity
  • the hot water supply load system is configured in a two-way cycle, and therefore when supplying high-temperature hot water supply demand (for example, 80 ° C.), What is necessary is just to make the temperature of the heat radiator of the refrigerating cycle 2 high temperature (for example, condensing temperature 85 degreeC), and when there is another heating load, it does not increase even to the condensing temperature (for example, 50 degreeC) of the heating indoor unit C. Energy saving.
  • the load-side relay unit F includes a refrigerant-refrigerant heat exchanger 41, a hot water supply heat source throttle means 119, a heat medium-refrigerant heat exchanger 51, a hot water supply compressor 21, and a hot water supply throttle means 22. Contained. In other words, the load-side relay unit F has a part of the air-conditioning refrigeration cycle 1 through the refrigerant-refrigerant heat exchanger 41, the whole hot water supply refrigeration cycle 2, and the heat medium-refrigerant heat exchanger 51. A part of the hot water supply load 3 is accommodated. This load-side relay unit F tends to be large because a plurality of heat exchangers are accommodated. Therefore, in the present embodiment, as described below, the load-side relay unit F is miniaturized and piping construction is simplified.
  • FIG. 2 is an explanatory diagram for explaining the transport mode of the load-side relay unit F. Based on FIG. 2, the transport mode of the load-side relay unit F will be described in comparison with the transport mode of the conventional unit.
  • 2A shows a state in which a conventional unit (hereinafter referred to as unit F ′) is stored in the container 300
  • FIG. 2B shows a state in which the load-side relay unit F is stored in the container 300.
  • the load-side relay unit F is also stored in the container 300 and transported in the same manner as the unit F ′.
  • a dry container having a type such as a 20-foot container or a 40-foot container is generally used as the container 300.
  • the internal dimensions of the 20-foot container are about 5.93m long, about 2.35m high, and about 2.38m deep.
  • the inner dimensions of the 40 foot container are approximately twice the length of the 20 foot container.
  • FIG. 2 shows an example in which a 20-foot container is used as the container 300.
  • a predetermined number of units F ′ are collectively placed on the container 300 on the pallet 313, and the side surfaces of the units F are fixed with a fixing tool 314 so as not to fall down during transportation.
  • the dimensions of the unit F ′ are generally about 0.70 m in length, about 1.04 m in height, and about 0.32 m in depth. Accordingly, when the pallet 313 (height 0.15 m) is inserted, the height becomes about 1.19 m. If two stages are stacked, the height is 2.38 m, which exceeds the inner height of the container 300. That is, at present, the unit F ′ can physically transport only one stack. As a result, the space above the unit F ′ stored in the container 300 is wasted, and the cost performance required for transportation is reduced.
  • the load-side relay unit F has a height of about 0.85 m. Therefore, the load-side relay unit F can be made lower by about 0.19 m than the unit F ′, and the height including the pallet 313 is about 1.00 m. Even if two layers are stacked, the total height is about 2.00 m, which is within the inner height of the container 300. In other words, the load-side relay unit F can be stacked in two stages, and can transport a large number of units (for example, double the unit F ′) at a time. Since many units can be transported at once, the cost required for transportation can be reduced. The reason why the load-side relay unit F has a height of about 0.85 m will be described below.
  • FIG. 3 is an explanatory diagram for explaining the dimensions of the control box 25 mounted in the load-side relay unit F.
  • FIG. 4 is an exploded perspective view showing an outline of a state in which the control board accommodated in the control box 25 is disassembled. Based on FIGS. 3 and 4, the reason why the height of the load-side relay unit F can be about 0.85 m will be described in comparison with the unit F ′.
  • FIG. 3A shows the dimensions of the unit F ′
  • FIG. 3B shows the dimensions of the load-side relay unit F.
  • a control box 25 ' is provided in the upper part and a drain pan 23 is provided in the lower part in the unit F'.
  • the load-side relay unit F although the control box 25 is provided in the upper part, the drain pan is not provided in the lower part. By doing so, the load-side relay unit F can delete the drain pan height (0.07 m). In the load-side relay unit F, the length and height of the control box 25 are shorter than the length and height of the control box 25 '. By doing so, the load-side relay unit F can delete the length (0.32 m) and height (0.12 m) of the control box 25.
  • the control board accommodated in the control box 25 is usually a service board 25a on which a control circuit or the like is mounted, a high voltage part 25b (high voltage part board), and a heat sink part 25c in which an air path part is combined. (Heat sink part substrate).
  • the control box 25 ' accommodates a control board composed of a service board 25a', a high voltage part 25b ', and a heat sink part 25c'.
  • the service board 25 a ′, the high voltage part 25 b ′, and the heat sink part 25 c ′ are arranged in a plane.
  • the service board 25a, the high voltage part 25b, and the heat sink part 25c are arranged sequentially from the left side of the drawing.
  • the length (0.41 m) and height (0.43 m) of the control box 25 are made shorter than the length (0.73 m) and height (0.55 m) of the control box 25 ′. It is possible. That is, in the load side relay unit F, it is possible to delete the length (0.32 m) and height (0.12 m) of the control box 25. As described above, the load-side relay unit F can be lower than the unit F ′ by the height of the drain pan (0.07 m) and the height of the control box 25 (0.12 m). Therefore, as described in FIG. 2, the load-side relay unit F is 0.19 m lower than the height of the unit F ′.
  • control box 25 is installed so that the service board 25a is on the front side of the load-side relay unit F. Therefore, the maintenance of the service board 25a can be performed only by opening the cover (not shown) provided on the front side of the load-side relay unit F, and the ease of maintenance can be realized. Moreover, since the high voltage part 25b will be installed in the back back side of the service board 25a, it becomes possible to reduce the danger to an operator at the time of a maintenance.
  • FIG. 5 is a schematic diagram for explaining an example of pipe connection of the unit F ′.
  • FIG. 6 is a schematic diagram showing the overall configuration of the male screw pipe 29.
  • FIG. 7 is a perspective view for explaining a pipe connection portion of the load side relay unit F.
  • FIG. A pipe connection to the load-side relay unit F will be described with reference to FIGS.
  • the unit F ′ is equipped with a heat medium-refrigerant heat exchanger (same as the heat medium-refrigerant heat exchanger 51), and the hot water circulation pipe for conducting the heat medium (same as the hot water circulation pipe 203). ) Is connected.
  • the unit F ′ is connected to the inlet side of the heat medium for the purpose of protecting the heat medium-refrigerant heat exchanger (for example, protecting the heat medium flow path from being blocked by dust).
  • a strainer 27 is installed in the female screw pipe 26 via a connection pipe 28. As described above, it is common to use the female screw pipe 26 for the connection portion of the unit F ′ and the connection pipe 28 for the connection of the strainer 27.
  • the strainer 27 is directly connected to the male screw pipe 29 by connecting the male screw pipe 29 as shown in FIG. 5 to the inlet side of the heat medium. .
  • the connection pipe 28 is not necessary, and the pipe connection portion on the inlet side of the heat medium can be simplified.
  • the number of pipe connection points is reduced, it is possible to efficiently suppress heat medium leakage from the pipe connection portion.
  • the strainer 27 by attaching the strainer 27 to the male screw pipe 29 connected to the inlet side of the heat medium, it is possible to prevent clogging of dust and the like, and it is possible to improve the reliability and extend the life.
  • a heat medium inlet side opening (heat medium inlet 61) and a heat medium outlet side opening (heat medium outlet 62) are provided in the lower part.
  • the heat medium piping (pipe 203 for circulating hot water) can be consolidated, and the piping design before construction is easy to decide.
  • the pipe can be shortened compared to the structure having the heat medium inlet 61 and the heat medium outlet 62 above and below the unit. The piping material is reduced, and the cost can be reduced accordingly.
  • FIG. 8 is a schematic explanatory diagram for explaining an example of use of a conventional system. Based on FIG. 8, while describing the specific usage example of the conventional system, the usage example of the air-conditioning and hot water supply complex system 100 will be described.
  • FIG. 8A shows an example of a conventional system in which the air conditioning equipment and the hot water supply equipment are separated
  • FIG. 8B shows a separate chiller unit 79 in which the air conditioning equipment and the hot water supply equipment are integrated. Examples of conventional systems are shown respectively.
  • an air conditioner composed of an outdoor unit 71 and an indoor unit 72, a boiler 76 for boiling water, a hot water storage tank 75, a shower 73, a faucet 74, and hot water / floor.
  • a hot water supply facility constituted by the heating 75 is separated.
  • the air conditioning equipment and the hot water supply equipment must be provided separately, which increases the labor and cost required for installation.
  • the installation space of the heat source machine (the outdoor unit 71 and the boiler 76) must be taken into consideration.
  • the indoor unit 72, the hot water supply unit 78, and the chiller unit necessary for cooling are provided via the branch unit 77. 79 is connected.
  • the hot water supply equipment equipment comprising hot water storage tank 75, shower 73 and faucet 74, and equipment comprising hot water / floor heating 75.
  • the hot water supply unit 78 and the chiller unit 79 must be provided separately, which requires a lot of labor and cost for installation, and the installation space for these units must be taken into consideration.
  • the air conditioning facility and the hot water supply facility can be integrated without providing a chiller unit (described in detail with reference to FIG. 9).
  • a chiller unit described in detail with reference to FIG. 9.
  • FIG. 9 is an explanatory diagram for explaining an example of use of the air conditioning and hot water supply complex system 100. Based on FIG. 9, the specific usage example of the air-conditioning hot-water supply complex system 100 is demonstrated in detail.
  • FIG. 9A shows a usage example of the conventional system
  • FIG. 9B shows a usage example of the air conditioning and hot water supply complex system 100
  • FIG. 9C shows another usage example of the air conditioning and hot water supply complex system 100.
  • FIG. 9A shows an example of use when the boiler 76 constituting the conventional system described in FIG. 8 is installed.
  • the boiler 76 and the hot water storage tank 75 are provided in the machine room 90.
  • the boiler 76 is provided with an exhaust port 81. Then, in the conventional system, since the heat source is provided together with the boiler 76, the empty space 86 is narrowed.
  • the machine room 90 includes a load-side relay unit F and a hot water storage tank 32 that function as a hot water supply unit.
  • a hot water storage tank 32 connected by a hot water circulation pipe 203 is provided in the vicinity of the load-side relay unit F. Then, since the load-side relay unit F is not provided with the heat source unit A, the load side relay unit F is smaller than the boiler 76 of the conventional system. Therefore, the empty space 86 in the machine room 90 is widened.
  • the machine room 90 includes a wall-mounted load-side relay unit F that functions as a hot water supply unit and a hot water storage tank 32.
  • a hot water storage tank 32 connected by a hot water circulation pipe 203 is provided below the load-side relay unit F.
  • the load-side relay unit F is not provided with the heat source unit A, and is used for hanging on the wall using the upper space of the machine room 90, so that the empty space 86 in the machine room 90 is further widened.
  • the load-side relay unit F is supported by a support base 85 fixed to the wall surface of the machine room 90.
  • the use of the load-side relay unit F makes the empty space 86 wide, and space saving can be realized.
  • space saving facilities can be concentrated in one place, and maintainability can be improved.
  • the volume of the machine room 90 can be reduced, and the living space other than the machine room 90 can be increased.
  • equipment such as the boiler 76 and the chiller unit 79 can be reduced, the process, time and cost required for construction can be reduced. Material costs for construction (for example, for piping materials) can also be reduced.
  • FIG. 10 is an explanatory diagram for explaining an installation example of the load-side relay unit F.
  • the state which installed the several load side relay unit F and the several hot water storage tank 32 in the machine room 90 is demonstrated.
  • 10A shows a state where the load-side relay unit F is placed horizontally in the machine room 90
  • FIG. 10B shows a state where the load-side relay unit F is stacked and installed in the machine room 90. Yes.
  • a plurality of load-side relay units F can be connected via a relay E. That is, as shown in FIG. 10, a case where a plurality of load-side relay units F are installed is assumed.
  • a plurality of load-side relay units F are also installed according to the number of hot water storage tanks 32. As described above, the load-side relay unit F itself is downsized. However, if a plurality of load-side relay units F are installed in the machine room 90, that much space is required (see FIG. 10A). Thus, by stacking the load-side relay units F, the space in the machine room 90 can be saved.
  • the load-side relay unit F is downsized, so that the cost required for transportation can be reduced (see FIG. 2).
  • the control box 25 is improved, so that maintenance and safety can be improved (see FIG. 4).
  • the piping connection portion of the load-side relay unit F can be simplified, so that leakage of the heat medium from the piping connection portion can be suppressed (see FIG. 6).
  • the strainer 27 can be attached to the male screw pipe 29 connected to the load-side relay unit F, the reliability can be improved and the life can be extended (see FIG. 6).
  • the hot water storage water circulation pipes 203 connected to the load-side relay unit F can be consolidated, so that it is easy to determine the piping design before construction, and the hot water hot water circulation pipes 203 can be shortened (see FIG. 7).
  • this air conditioning and hot water supply complex system 100 space saving of the machine room 90 in which the load-side relay unit F is installed can be realized, so that the facilities can be concentrated in one place and the maintainability can be improved.
  • the volume of the machine room 90 can be reduced, so that the living space other than the machine room 90 can be increased (see FIG. 9).
  • Boiler hot water supply heat source e.g., boiler 76 of conventional systems
  • combustion system such as, many boilers
  • CO 2 emissions are concerned
  • the air conditioning and hot water supply complex system 100 electricity is mainly used as an operating source, so that CO 2 emission can be greatly reduced.
  • CO 2 emissions are 53% in the air conditioning and hot water supply complex system 100.
  • air conditioning and hot water supply complex system 100 since air conditioning systems such as a boiler system and a chiller system can be integrated into the same system, monitoring and maintenance work of the system can be facilitated.
  • leisure facilities in FIG. 8 it is not limited to it, For example, a restaurant, a department store, a gym, a hospital, etc. can acquire the same effect.
  • the air conditioning hot water supply complex system 100 is configured to be able to exchange heat with a low temperature equipment system, it can be used alone or in combination with outdoor air conditioning or water.
  • the heat source machine can also be frozen.
  • heat can be stored if the obtained water heat source is stored.
  • the heat source of the air-conditioning / hot-water supply combined system 100 by outdoor air-conditioning, if the obtained hot water is periodically supplied to the heat exchanger in winter, the operation stop due to the defrosting operation can be suppressed.
  • hot water obtained by the air conditioning and hot water supply complex system 100 can be used for snow removal.
  • the object of heat transfer to the hot water supply is water
  • a solution in which other substances are dissolved in water or a medium other than water may be used.
  • it may be a milk drink such as milk instead of water.
  • a milk beverage is used as a heat medium, it can be used as a high temperature sterilization facility.
  • the outdoor heat exchanger 103 mounted on the heat source unit A performs heat exchange between air and refrigerant
  • the heat source is not limited to air, but water, antifreeze liquid (brine, etc.), geothermal heat, etc.
  • Other heat sources may be used. If necessary, it may be used in combination with other heat source methods.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

A load-side relay unit which houses a plurality of heat exchangers and a control box, and is designed for downsizing, easier transportation and easier maintenance; and a compound air conditioning/hot water supply system mounting the load-side relay unit thereon. The load-side relay unit (F) has mounted thereon at least two heat exchangers (a refrigerant-refrigerant heat exchanger (41), a heat carrier-refrigerant heat exchanger (51)) and a control board (25), wherein the control board (25) is divided into a plurality of function-specific boards that are arranged from the front side to the back side of the unit.

Description

負荷側中継ユニット及びそれを搭載した空調給湯複合システムLoad-side relay unit and combined air conditioning and hot water supply system
 本発明は、複数台の熱交換器を収容した負荷側中継ユニット及びそれを搭載した空調給湯複合システムに関するものである。 The present invention relates to a load-side relay unit that houses a plurality of heat exchangers and an air-conditioning and hot-water supply complex system equipped with the same.
 従来から、冷房負荷、暖房負荷及び給湯負荷を同時に供給できる空調給湯複合システムも存在している。そのようなものとして、「第1圧縮機と、流路切替弁と、熱源側熱交換器とを搭載した熱源側ユニットと、第1流量制御装置と、第1負荷側熱交換器と、第2圧縮機と、第2負荷側熱交換器と、第2流量制御装置とを搭載した第1負荷側ユニットとを備え、前記第1圧縮機と、前記流路切替弁と、前記熱源側熱交換器と、前記第1流量制御装置と、前記第1負荷側熱交換器とを冷媒配管で順次接続し、主回路を構成するとともに、前記第2圧縮機と、前記第2負荷側熱交換器と、前記第2流量制御装置と、前記第1負荷側熱交換器とを冷媒配管で順次接続し、負荷側冷媒回路を構成した」ヒートポンプ装置が提案されている(たとえば、特許文献1参照)。 Conventionally, there are air-conditioning and hot-water supply complex systems that can simultaneously supply a cooling load, a heating load, and a hot water supply load. As such, “a heat source unit equipped with a first compressor, a flow path switching valve, a heat source side heat exchanger, a first flow control device, a first load side heat exchanger, A first load-side unit including a two-compressor, a second load-side heat exchanger, and a second flow rate control device, the first compressor, the flow path switching valve, and the heat source-side heat. The exchanger, the first flow control device, and the first load-side heat exchanger are sequentially connected by a refrigerant pipe to form a main circuit, and the second compressor and the second load-side heat exchange. A heat pump device is proposed in which a load-side refrigerant circuit is configured by sequentially connecting a condenser, the second flow rate control device, and the first load-side heat exchanger with refrigerant piping (see, for example, Patent Document 1). ).
国際公開WO2008/117408号公報(図1等)International Publication WO2008 / 117408 (FIG. 1 etc.)
 特許文献1に記載のヒートポンプ装置は、負荷側冷媒回路を備えることによって、主回路の能力を増強することができ、運転効率を向上させるようにしたものである。このようなヒートポンプ装置において、負荷側冷媒回路を構成する各種冷凍機器を負荷側ユニット(本発明に係る負荷側中継ユニットに想到する)に搭載するようになっている。また、負荷側ユニットには、給湯用圧縮機やファンモータ等の駆動源としてインバーターを用いる制御基板を備えることが多い。制御基板は、通常、制御ボックスに収容されている。そして、制御ボックスは、コストパフォーマンスを考慮して、平面配置されるように設計されことが一般的になっている。 The heat pump device described in Patent Document 1 is provided with a load-side refrigerant circuit, whereby the capacity of the main circuit can be enhanced and the operation efficiency is improved. In such a heat pump device, various refrigeration devices constituting the load-side refrigerant circuit are mounted on a load-side unit (conceived by the load-side relay unit according to the present invention). In many cases, the load-side unit includes a control board that uses an inverter as a drive source such as a hot water compressor or a fan motor. The control board is usually accommodated in a control box. In general, the control box is designed to be arranged in a plane in consideration of cost performance.
 通常のユニット(たとえば、室内ユニット等)であれば、制御ボックスのスペースが確保されているため、さほど問題とならない。しかしながら、特許文献1に記載のような負荷側ユニットで制御ボックスを平面配置にすると、負荷側ユニットの高さ及び長さとも大きくなり、負荷側ユニットをコンテナに段積みすることができず、搬送に要する負荷が大きくなってしまうことが想定される。また、負荷側ユニットには複数の熱交換器(第1負荷側熱交換器及び第2負荷側熱交換器)が搭載された上に、給湯用圧縮機やファンモータ等も搭載されるため、制御ボックスを設置する上での内部スペースの制約が大きいという課題もある。 If it is a normal unit (for example, an indoor unit), the space for the control box is secured. However, when the control box is arranged in a plane with the load side unit as described in Patent Document 1, the height and length of the load side unit increase, and the load side unit cannot be stacked in a container, It is assumed that the load required for this will increase. In addition, since a plurality of heat exchangers (first load side heat exchanger and second load side heat exchanger) are mounted on the load side unit, a hot water supply compressor, a fan motor, and the like are also mounted. There is also a problem that internal space is greatly restricted in installing the control box.
 本発明は、上記の課題を解決するためになされたもので、複数の熱交換器及び制御ボックスを収容するとともに、小型化、搬送の容易化、及び、メンテナンス性の容易化を図るようにした負荷側中継ユニット及びそれを搭載した空調給湯複合システムを提供することを目的としている。 The present invention has been made to solve the above-described problems, and accommodates a plurality of heat exchangers and a control box, and is intended to reduce size, facilitate transportation, and facilitate maintenance. It aims at providing a load side relay unit and an air-conditioning hot-water supply complex system carrying it.
 本発明に係る負荷側中継ユニットは、2台以上の熱交換器と制御基板とが少なくとも搭載される冷凍サイクル装置の負荷側中継ユニットであって、前記制御基板は、機能毎に分割された複数の基板を備え、前記複数の基板は、前記ユニットの正面側から背面側にかけて配置されていることを特徴とする。 A load-side relay unit according to the present invention is a load-side relay unit of a refrigeration cycle apparatus in which at least two heat exchangers and a control board are mounted, and the control board includes a plurality of parts divided for each function. The plurality of substrates are arranged from the front side to the back side of the unit.
 本発明に係る空調給湯複合システムは、空調用圧縮機、流路切替手段、室外熱交換器、室内熱交換器、及び、空調用絞り手段が直列に接続されているとともに、直列に接続された冷媒-冷媒熱交換器及び給湯熱源用絞り手段が前記室内熱交換器及び前記空調用絞り手段に並列に接続されている第1冷媒回路を備え、前記第1冷媒回路に空調用冷媒を循環させる空調用冷凍サイクルと、給湯用圧縮機、熱媒体-冷媒熱交換器、給湯用絞り手段、及び、前記冷媒-冷媒熱交換器が直列に接続されている第2冷媒回路を備え、前記第2冷媒回路に給湯用冷媒を循環させる給湯用冷凍サイクルと、水循環用ポンプ、前記熱媒体-冷媒熱交換器、及び、貯湯タンクが直列に接続されている水回路を備え、前記水回路に給湯用水を循環させる給湯用負荷と、を備え、前記冷媒-冷媒熱交換器、前記給湯熱源用絞り手段、前記熱媒体-冷媒熱交換器、前記給湯用圧縮機、及び、前記給湯用絞り手段は、上記の負荷側中継ユニットに収容されていることを特徴とする。 In the combined air conditioning and hot water supply system according to the present invention, an air conditioning compressor, a flow path switching unit, an outdoor heat exchanger, an indoor heat exchanger, and an air conditioning throttle unit are connected in series and connected in series. The refrigerant-refrigerant heat exchanger and the hot water supply heat source throttle means include a first refrigerant circuit connected in parallel to the indoor heat exchanger and the air conditioning throttle means, and circulates the air-conditioning refrigerant in the first refrigerant circuit. An air conditioning refrigeration cycle, a hot water supply compressor, a heat medium-refrigerant heat exchanger, hot water supply throttle means, and a second refrigerant circuit in which the refrigerant-refrigerant heat exchanger is connected in series, A hot water supply refrigeration cycle for circulating hot water supply refrigerant in the refrigerant circuit, a water circulation pump, the heat medium-refrigerant heat exchanger, and a water circuit in which a hot water storage tank is connected in series, the hot water supply water in the water circuit Hot water supply load that circulates The refrigerant-refrigerant heat exchanger, the hot water supply heat source throttle means, the heat medium-refrigerant heat exchanger, the hot water supply compressor, and the hot water supply throttle means are connected to the load-side relay unit. It is housed.
 本発明に係る負荷側中継ユニットによれば、機能毎に分割した複数の基板がユニットの正面側から背面側にかけて配置される制御基板を構成したので、各基板が平面的に配置されているものと比べ高さ分を短くすることができ、その分小型化することが可能になる。 According to the load-side relay unit according to the present invention, since the plurality of boards divided for each function constitute the control board arranged from the front side to the back side of the unit, each board is arranged in a plane. The height can be shortened compared to the above, and the size can be reduced accordingly.
 本発明に係る空調給湯複合システムによれば、小型化した負荷側中継ユニットを備えているので、負荷側中継ユニットが配置される機械室などの空きスペースを広くすることができる。したがって、その分の省スペース化を実現することができる。また、設備を一箇所に集中することができ、メンテナンス性を向上することができる。さらに、機械室の容積を小さくすることができ、機械室以外の居住空間を大きくすることが可能になる。 According to the combined air conditioning and hot water supply system according to the present invention, since the load-side relay unit is provided with a reduced size, it is possible to widen an empty space such as a machine room in which the load-side relay unit is arranged. Therefore, space saving can be realized. In addition, facilities can be concentrated in one place, and maintainability can be improved. Furthermore, the volume of the machine room can be reduced, and the living space other than the machine room can be increased.
実施の形態に係る空調給湯複合システムの冷媒回路構成を示す冷媒回路図である。It is a refrigerant circuit figure which shows the refrigerant circuit structure of the air-conditioning / hot-water supply complex system which concerns on embodiment. 負荷側中継ユニットの輸送形態を説明するための説明図である。It is explanatory drawing for demonstrating the transport form of a load side relay unit. 負荷側中継ユニット内に搭載される制御ボックスの寸法を説明するための説明図である。It is explanatory drawing for demonstrating the dimension of the control box mounted in a load side relay unit. 制御ボックスを分解した状態の概略を示す分解斜視図である。It is a disassembled perspective view which shows the outline of the state which decomposed | disassembled the control box. 従来ユニットの配管接続例を説明するための概略図である。It is the schematic for demonstrating the example of piping connection of the conventional unit. 雄ネジ配管の全体構成を示す概略図である。It is the schematic which shows the whole structure of external thread piping. 負荷側中継ユニットの配管接続部を説明するための斜視図である。It is a perspective view for demonstrating the piping connection part of a load side relay unit. 従来システムの使用例を説明するための概略説明図である。It is a schematic explanatory drawing for demonstrating the usage example of a conventional system. 空調給湯複合システムの使用例を説明するための説明図である。It is explanatory drawing for demonstrating the usage example of an air conditioning hot-water supply complex system. 負荷側中継ユニットの設置例を説明するための説明図である。It is explanatory drawing for demonstrating the installation example of a load side relay unit.
符号の説明Explanation of symbols
 1 空調用冷凍サイクル、2 給湯用冷凍サイクル、3 給湯用負荷、21 給湯用圧縮機、22 給湯用絞り手段、23 ドレンパン、25 制御ボックス、25’ 制御ボックス、25a サービス基板、25a’ サービス基板、25b 高電圧部、25b’ 高電圧部、25c ヒートシンク部、25c’ ヒートシンク部、26 雌ネジ配管、27 ストレーナー、28 接続配管、29 雄ネジ配管、31 水循環用ポンプ、32 貯湯タンク、41 冷媒-冷媒熱交換器、45 冷媒配管、51 熱媒体-冷媒熱交換器、61 熱媒体入口部、62 熱媒体出口部、71 室外ユニット、72 室内ユニット、73 シャワー、74 蛇口、75 温水・床暖房、75 貯湯タンク、76 ボイラー、77 分岐ユニット、78 給湯ユニット、79 チラーユニット、81 排気口、82 水配管、85 支持台、86 空きスペース、90 機械室、100 空調給湯複合システム、101 空調用圧縮機、102 四方弁、103 室外熱交換器、103a 分割熱交換器、104 アキュムレータ、105a 逆止弁、105b 逆止弁、105c 逆止弁、105d 逆止弁、106 高圧側接続配管、107 低圧側接続配管、108 気液分離器、109 分配部、109a 弁手段、109b 弁手段、110 分配部、110a 逆止弁、110b 逆止弁、111 内部熱交換器、112 第1中継機用絞り手段、113 内部熱交換器、114 第2中継機用絞り手段、115 会合部、116 会合部、116a 第2会合部、117 空調用絞り手段、118 室内熱交換器、119 給湯熱源用絞り手段、130 接続配管、131 接続配管、132 接続配管、133 接続配管、133a 接続配管、133b 接続配管、134 接続配管、134a 接続配管、134b 接続配管、135 接続配管、135a 接続配管、135b 接続配管、136 接続配管、136a 接続配管、136b 接続配管、203 貯湯水循環用配管、300 コンテナ、313 パレット、314 固定具、A 熱源機、B 冷房室内機、C 暖房室内機、D 給湯熱源用回路、E 中継機、F 負荷側中継ユニット、F’ ユニット、a 接続部分、b 接続部分、c 接続部分、d 接続部分。 1 Refrigeration cycle for air conditioning, 2 Refrigeration cycle for hot water supply, 3 Load for hot water supply, 21 Compressor for hot water supply, 22 Throttling means for hot water supply, 23 Drain pan, 25 Control box, 25 'Control box, 25a Service board, 25a' Service board, 25b high voltage section, 25b 'high voltage section, 25c heat sink section, 25c' heat sink section, 26 female thread piping, 27 strainer, 28 connection piping, 29 male thread piping, 31 water circulation pump, 32 hot water storage tank, 41 refrigerant-refrigerant Heat exchanger, 45 refrigerant piping, 51 heat medium-refrigerant heat exchanger, 61 heat medium inlet, 62 heat medium outlet, 71 outdoor unit, 72 indoor unit, 73 shower, 74 faucet, 75 hot water / floor heating, 75 Hot water storage tank, 76 boiler, 77 branch unit, 8 hot water supply unit, 79 chiller unit, 81 exhaust port, 82 water piping, 85 support base, 86 empty space, 90 machine room, 100 air conditioning hot water supply complex system, 101 air conditioning compressor, 102 four-way valve, 103 outdoor heat exchanger, 103a split heat exchanger, 104 accumulator, 105a check valve, 105b check valve, 105c check valve, 105d check valve, 106 high pressure side connection pipe, 107 low pressure side connection pipe, 108 gas-liquid separator, 109 distribution part 109a valve means, 109b valve means, 110 distributor, 110a check valve, 110b check valve, 111 internal heat exchanger, 112 first throttle device throttle means, 113 internal heat exchanger, 114 second relay device Narrowing means, 115 meeting part, 116 meeting part, 116a second meeting part, 117 Conditioning throttle means, 118 indoor heat exchanger, 119 hot water heat source throttle means, 130 connection piping, 131 connection piping, 132 connection piping, 133 connection piping, 133a connection piping, 133b connection piping, 134 connection piping, 134a connection piping, 134b Connection piping, 135 connection piping, 135a connection piping, 135b connection piping, 136 connection piping, 136a connection piping, 136b connection piping, 203 hot water circulation piping, 300 container, 313 pallet, 314 fixture, A heat source machine, B cooling room Machine, C heating indoor unit, D hot water supply heat source circuit, E relay machine, F load side relay unit, F 'unit, a connection part, b connection part, c connection part, d connection part.
 以下、図面に基づいて本発明の実施の形態について説明する。
 図1は、本発明の実施の形態に係る空調給湯複合システム100の冷媒回路構成(特に、暖房主体運転時の冷媒回路構成)を示す冷媒回路図である。図1に基づいて、空調給湯複合システム100の冷媒回路構成、特に暖房主体運転時の冷媒回路構成について説明する。この空調給湯複合システム100は、ビルやマンション等に設置され、冷媒(空調用冷媒)を循環させる冷凍サイクル(ヒートポンプサイクル)を利用することで冷房負荷、暖房負荷及び給湯負荷を同時に供給できるものである。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
Hereinafter, embodiments of the present invention will be described based on the drawings.
FIG. 1 is a refrigerant circuit diagram illustrating a refrigerant circuit configuration (particularly, a refrigerant circuit configuration during heating-main operation) of an air-conditioning and hot water supply combined system 100 according to an embodiment of the present invention. Based on FIG. 1, the refrigerant circuit configuration of the combined air-conditioning and hot water supply system 100, particularly the refrigerant circuit configuration during heating-main operation will be described. This air conditioning and hot water supply complex system 100 is installed in a building, a condominium, etc., and can supply a cooling load, a heating load, and a hot water supply load simultaneously by using a refrigeration cycle (heat pump cycle) that circulates refrigerant (air conditioning refrigerant). is there. In addition, in the following drawings including FIG. 1, the relationship of the size of each component may be different from the actual one.
 この実施の形態に係る空調給湯複合システム100は、空調用冷凍サイクル1と、給湯用冷凍サイクル2と、給湯用負荷3とで構成されており、空調用冷凍サイクル1と給湯用冷凍サイクル2とは冷媒-冷媒熱交換器41で、給湯用冷凍サイクル2と給湯用負荷3とは熱媒体-冷媒熱交換器51で、互いの冷媒や水が混ざることなく熱交換を行なうように構成されている。また、空調給湯複合システム100には、負荷側中継ユニットFが搭載されている(図2で詳細に説明する)。なお、図1では、空調用冷凍サイクル1において、暖房室内機Cと給湯熱源用回路Dとに対する負荷の合計よりも冷房室内機Bに対する負荷の方が小さく、室外熱交換器103が蒸発器として働く場合のサイクルの状態(便宜上、暖房主体運転と称する)を示している。 An air conditioning and hot water supply combined system 100 according to this embodiment includes an air conditioning refrigeration cycle 1, a hot water supply refrigeration cycle 2, and a hot water supply load 3, and includes an air conditioning refrigeration cycle 1 and a hot water supply refrigeration cycle 2. Is a refrigerant-refrigerant heat exchanger 41, and the hot water supply refrigeration cycle 2 and the hot water supply load 3 are heat medium-refrigerant heat exchangers 51, and are configured to exchange heat without mutual refrigerant or water mixing. Yes. In addition, a load-side relay unit F is mounted on the air conditioning and hot water supply complex system 100 (described in detail in FIG. 2). In FIG. 1, in the air-conditioning refrigeration cycle 1, the load on the cooling indoor unit B is smaller than the total load on the heating indoor unit C and the hot water supply heat source circuit D, and the outdoor heat exchanger 103 serves as an evaporator. The state of the cycle when working (for convenience, referred to as heating main operation) is shown.
[空調用冷凍サイクル1]
 空調用冷凍サイクル1は、熱源機Aと、冷房負荷を担当する冷房室内機Bと、暖房負荷を担当する暖房室内機Cと、給湯用冷凍サイクル2の熱源となる給湯熱源用回路Dと、中継機Eと、によって構成されている。このうち、冷房室内機B、暖房室内機C及び給湯熱源用回路Dは、熱源機Aに対して並列となるように接続されて搭載されている。そして、熱源機Aと、冷房室内機B、暖房室内機C及び給湯熱源用回路Dとの、間に設置される中継機Eが冷媒の流れを切り換えることで、冷房室内機B、暖房室内機C及び給湯熱源用回路Dとしての機能を発揮させるようになっている。
[Refrigeration cycle 1 for air conditioning]
The air-conditioning refrigeration cycle 1 includes a heat source unit A, a cooling indoor unit B in charge of a cooling load, a heating indoor unit C in charge of a heating load, a hot water supply heat source circuit D serving as a heat source of the hot water supply refrigeration cycle 2, And a repeater E. Among these, the cooling indoor unit B, the heating indoor unit C, and the hot water supply heat source circuit D are connected and mounted in parallel to the heat source unit A. And the relay machine E installed between the heat source unit A, the cooling indoor unit B, the heating indoor unit C, and the hot water supply heat source circuit D switches the flow of the refrigerant, so that the cooling indoor unit B, the heating indoor unit The functions as C and hot water supply heat source circuit D are exhibited.
{熱源機A}
 熱源機Aは、空調用圧縮機101と、流路切替手段である四方弁102と、室外熱交換器103と、アキュムレータ104とが直列に接続されて構成されており、この熱源機Aは、冷房室内機B、暖房室内機C及び給湯熱源用回路Dに冷熱を供給する機能を有している。なお、室外熱交換器103の近傍に、この室外熱交換器103に空気を供給するためのファン等の送風機を設けるとよい。また、熱源機Aでは、室外熱交換器103と中継機Eとの間における高圧側接続配管106に所定の方向(熱源機Aから中継機Eへの方向)のみに空調用冷媒の流れを許容する逆止弁105aが、四方弁102と中継機Eとの間における低圧側接続配管107に所定の方向(中継機Eから熱源機Aへの方向)のみに空調用冷媒の流れを許容する逆止弁105bが、それぞれ設けられている。
{Heat source machine A}
The heat source machine A is configured by connecting a compressor 101 for air conditioning, a four-way valve 102 that is a flow path switching unit, an outdoor heat exchanger 103, and an accumulator 104 in series. It has the function of supplying cold heat to the cooling indoor unit B, the heating indoor unit C, and the hot water supply heat source circuit D. A blower such as a fan for supplying air to the outdoor heat exchanger 103 may be provided in the vicinity of the outdoor heat exchanger 103. Further, in the heat source unit A, the flow of the air-conditioning refrigerant is allowed only in a predetermined direction (the direction from the heat source unit A to the relay unit E) in the high-pressure side connection pipe 106 between the outdoor heat exchanger 103 and the relay unit E. The reverse check valve 105a that allows the flow of the air-conditioning refrigerant only in a predetermined direction (direction from the relay machine E to the heat source machine A) in the low-pressure side connection pipe 107 between the four-way valve 102 and the relay machine E. Stop valves 105b are provided respectively.
 そして、高圧側接続配管106と低圧側接続配管107とは、逆止弁105aの上流側と逆止弁105bの上流側を接続する第1接続配管130と、逆止弁105aの下流側と逆止弁105bの下流側を接続する第2接続配管131とで接続されている。つまり、高圧側接続配管106と第1接続配管130との接続部分aは、逆止弁105aを挟んで高圧側接続配管106と第2接続配管131との接続部分bよりも上流側になっており、低圧側接続配管107と第1接続配管130との接続部分cも、逆止弁105bを挟んで低圧側接続配管107と第2接続配管131との接続部分dよりも上流側になっている。 The high-pressure side connection pipe 106 and the low-pressure side connection pipe 107 are opposite to the first connection pipe 130 that connects the upstream side of the check valve 105a and the upstream side of the check valve 105b, and the downstream side of the check valve 105a. The second connection pipe 131 is connected to the downstream side of the stop valve 105b. That is, the connection part a between the high-pressure side connection pipe 106 and the first connection pipe 130 is upstream of the connection part b between the high-pressure side connection pipe 106 and the second connection pipe 131 across the check valve 105a. The connection part c between the low-pressure side connection pipe 107 and the first connection pipe 130 is also upstream of the connection part d between the low-pressure side connection pipe 107 and the second connection pipe 131 across the check valve 105b. Yes.
 第1接続配管130には、低圧側接続配管107から高圧側接続配管106の方向のみに空調用冷媒の流通を許容する逆止弁105cが設けられている。第2接続配管131にも、低圧側接続配管107から高圧側接続配管106の方向のみに空調用冷媒の流通を許容する逆止弁105dが設けられている。なお、図1では、暖房主体運転時における冷媒回路構成を示しているため、逆止弁105a及び逆止弁105bが閉状態(黒塗りで示している)、逆止弁105b及び逆止弁105cが開状態(白抜きで示している)となっている。 The first connection pipe 130 is provided with a check valve 105 c that allows the air-conditioning refrigerant to flow only in the direction from the low-pressure side connection pipe 107 to the high-pressure side connection pipe 106. The second connection pipe 131 is also provided with a check valve 105 d that allows the air-conditioning refrigerant to flow only in the direction from the low-pressure side connection pipe 107 to the high-pressure side connection pipe 106. In addition, since the refrigerant circuit structure at the time of heating main operation is shown in FIG. 1, the check valve 105a and the check valve 105b are in a closed state (shown in black), the check valve 105b and the check valve 105c. Is open (shown in white).
 空調用圧縮機101は、空調用冷媒を吸入し、その空調用冷媒を圧縮して高温・高圧の状態にするものである。四方弁102は、空調用冷媒の流れを切り替えるものである。室外熱交換器103は、蒸発器や放熱器(凝縮器)として機能し、図示省略の送風機から供給される空気と空調用冷媒との間で熱交換を行ない、空調用冷媒を蒸発ガス化又は凝縮液化するものである。アキュムレータ104は、暖房主体運転時において、四方弁102と空調用圧縮機101との間に配置され、過剰な空調用冷媒を貯留するものである。なお、アキュムレータ104は、過剰な空調用冷媒を貯留できる容器であればよい。 The air-conditioning compressor 101 sucks air-conditioning refrigerant and compresses the air-conditioning refrigerant to a high temperature and high pressure state. The four-way valve 102 switches the flow of the air conditioning refrigerant. The outdoor heat exchanger 103 functions as an evaporator or a radiator (condenser), performs heat exchange between air supplied from a blower (not shown) and the air conditioning refrigerant, and converts the air conditioning refrigerant into evaporated gas or Condensed liquid. The accumulator 104 is disposed between the four-way valve 102 and the air-conditioning compressor 101 during heating-main operation, and stores excess air-conditioning refrigerant. The accumulator 104 may be any container that can store excess air-conditioning refrigerant.
{冷房室内機B及び暖房室内機C}
 冷房室内機B及び暖房室内機Cには、空調用絞り手段117と、室内熱交換器118とが、直列に接続されて搭載されている。また、冷房室内機B及び暖房室内機Cには、2台の空調用絞り手段117と、2台の室内熱交換器118とが、それぞれ並列に搭載されている場合を例に示している。冷房室内機Bは、熱源機Aからの冷熱の供給を受けて冷房負荷を担当し、暖房室内機Cは、熱源機Aからの冷熱の供給を受けて暖房負荷を担当する機能を有している。
{Cooling indoor unit B and heating indoor unit C}
The cooling indoor unit B and the heating indoor unit C are mounted with an air conditioning throttle means 117 and an indoor heat exchanger 118 connected in series. Further, in the cooling indoor unit B and the heating indoor unit C, an example is shown in which two air conditioning throttle means 117 and two indoor heat exchangers 118 are mounted in parallel. The cooling indoor unit B receives a supply of cold from the heat source unit A and takes charge of the cooling load, and the heating indoor unit C has a function of receiving the supply of cold heat from the heat source unit A and taking charge of the heating load. Yes.
 つまり、実施の形態では、中継機Eによって、冷房室内機Bが冷房負荷を担当するように決定され、暖房室内機Cが暖房負荷を担当するように決定された状態を示しているのである。なお、室内熱交換器118の近傍に、この室内熱交換器118に空気を供給するためのファン等の送風機を設けるとよい。また、便宜的に、中継機Eから室内熱交換器118に接続している接続配管を接続配管133と、中継機Eから空調用絞り手段117に接続している接続配管を接続配管134と称して説明するものとする。 That is, in the embodiment, a state is shown in which the air conditioner indoor unit B is determined to be in charge of the cooling load and the heating indoor unit C is determined to be in charge of the heating load by the relay device E. A blower such as a fan for supplying air to the indoor heat exchanger 118 may be provided in the vicinity of the indoor heat exchanger 118. For convenience, the connection pipe connected from the relay E to the indoor heat exchanger 118 is referred to as a connection pipe 133, and the connection pipe connected from the relay E to the air conditioning throttle means 117 is referred to as a connection pipe 134. Shall be explained.
 空調用絞り手段117は、減圧弁や膨張弁として機能し、空調用冷媒を減圧して膨張させるものである。この空調用絞り手段117は、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。室内熱交換器118は、放熱器(凝縮器)や蒸発器として機能し、図示省略の送風手段から供給される空気と空調用冷媒との間で熱交換を行ない、空調用冷媒を凝縮液化又は蒸発ガス化するものである。なお、空調用絞り手段117及び室内熱交換器118は、直列に接続されている。 The air conditioning throttle means 117 functions as a pressure reducing valve or an expansion valve, and decompresses and expands the air conditioning refrigerant. The air-conditioning throttle means 117 may be constituted by a controllable opening degree, for example, a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary tube, or the like. The indoor heat exchanger 118 functions as a radiator (condenser) or an evaporator, and performs heat exchange between air supplied from an air blower (not shown) and the air conditioning refrigerant to condense or liquefy the air conditioning refrigerant. Evaporative gasification. The air conditioning throttle means 117 and the indoor heat exchanger 118 are connected in series.
{給湯熱源用回路D}
 給湯熱源用回路Dは、給湯熱源用絞り手段119と、冷媒-冷媒熱交換器41とが、直列に接続されて構成されており、熱源機Aからの冷熱を冷媒-冷媒熱交換器41を介して給湯用冷凍サイクル2に供給する機能を有している。つまり、空調用冷凍サイクル1と給湯用冷凍サイクル2とは、冷媒-冷媒熱交換器41でカスケード接続されているのである。なお、便宜的に、中継機Eから冷媒-冷媒熱交換器41に接続している接続配管を接続配管135と、中継機Eから給湯熱源用絞り手段119に接続している接続配管を接続配管136と称して説明するものとする。
{Circuit D for hot water supply heat source}
The hot water supply heat source circuit D includes a hot water supply heat source throttle means 119 and a refrigerant-refrigerant heat exchanger 41 connected in series. It has the function to supply to the hot water supply refrigeration cycle 2 via the. That is, the air-conditioning refrigeration cycle 1 and the hot water supply refrigeration cycle 2 are cascade-connected by the refrigerant-refrigerant heat exchanger 41. For convenience, the connecting pipe connecting the relay E to the refrigerant-refrigerant heat exchanger 41 is connected to the connecting pipe 135, and the connecting pipe connecting the relay E to the hot water supply heat source throttle means 119 is connected to the connecting pipe. It shall be described as 136.
 給湯熱源用絞り手段119は、空調用絞り手段117と同様に、減圧弁や膨張弁として機能し、空調用冷媒を減圧して膨張させるものである。この給湯熱源用絞り手段119は、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。冷媒-冷媒熱交換器41は、放熱器(凝縮器)や蒸発器として機能し、給湯用冷凍サイクル2の冷凍サイクルを循環する給湯用冷媒と、空調用冷凍サイクル1の冷凍サイクルを循環する空調用冷媒との、間で熱交換を行なうようになっている。 The hot water supply heat source throttling means 119 functions as a pressure reducing valve or an expansion valve, like the air conditioning throttling means 117, and decompresses and expands the air conditioning refrigerant. The hot water supply heat source throttling means 119 is preferably constituted by a controllable opening degree, such as a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary. The refrigerant-refrigerant heat exchanger 41 functions as a radiator (condenser) and an evaporator, and serves as a hot water supply refrigerant that circulates through the refrigeration cycle of the hot water supply refrigeration cycle 2 and an air conditioner that circulates through the refrigeration cycle of the air conditioning refrigeration cycle 1. Heat exchange is performed with the refrigerant for use.
{中継機E}
 中継機Eは、冷房室内機B、暖房室内機C及び給湯熱源用回路Dのそれぞれと、熱源機Aとを、接続する機能を有すると共に、第1分配部109の弁手段109a又は弁手段109bの何れかを択一的に開閉することにより、室内熱交換器118を放熱器とするか蒸発器とするか、冷媒-冷媒熱交換器41を冷水器とするか給湯機とするかを決定する機能を有している。この中継機Eは、気液分離器108と、第1分配部109と、第2分配部110と、第1内部熱交換器111と、第1中継機用絞り手段112と、第2内部熱交換器113と、第2中継機用絞り手段114とで、構成されている。
{Repeater E}
The relay unit E has a function of connecting each of the cooling indoor unit B, the heating indoor unit C, and the hot water supply heat source circuit D to the heat source unit A, and also has the valve means 109a or the valve means 109b of the first distribution unit 109. Is selectively opened or closed to determine whether the indoor heat exchanger 118 is a radiator or an evaporator, and whether the refrigerant-refrigerant heat exchanger 41 is a chiller or a water heater. It has a function to do. The relay E includes a gas-liquid separator 108, a first distributor 109, a second distributor 110, a first internal heat exchanger 111, a first relay throttle means 112, and a second internal heat. The exchanger 113 and the second relay stop means 114 are configured.
 第1分配部109では、接続配管133及び接続配管135が2つに分岐されており、一方(接続配管133b及び接続配管135b)が低圧側接続配管107に接続し、他方(接続配管133a及び接続配管135a)が気液分離器108に接続している接続配管(接続配管132と称する)に接続するようになっている。また、第1分配部109では、接続配管133a及び接続配管135aに開閉制御されて冷媒を導通したりしなかったりする弁手段109aが、接続配管133b及び接続配管135bに開閉制御されて冷媒を導通したりしなかったりする弁手段109bがそれぞれ設けられている。なお、弁手段109a及び弁手段109bの開閉状態を白抜き(開状態)及び黒塗り(閉状態)で表している。 In the first distribution unit 109, the connection pipe 133 and the connection pipe 135 are branched into two, one (the connection pipe 133b and the connection pipe 135b) is connected to the low-pressure side connection pipe 107, and the other (the connection pipe 133a and the connection pipe). The pipe 135a) is connected to a connection pipe (referred to as a connection pipe 132) connected to the gas-liquid separator 108. Further, in the first distribution unit 109, the valve means 109a that is controlled to open / close the connection pipe 133a and the connection pipe 135a so as not to conduct the refrigerant is controlled to open / close to the connection pipe 133b and the connection pipe 135b and conducts the refrigerant. Valve means 109b that may or may not be provided is provided. The open / closed states of the valve means 109a and the valve means 109b are represented by white (open state) and black (closed state).
 第2分配部110では、接続配管134及び接続配管136が2つに分岐されており、一方(接続配管134a及び接続配管136a)が第1会合部115で接続され、他方(接続配管134b及び接続配管136b)が第2会合部116で接続されるようになっている。また、第2分配部110では、接続配管134a及び接続配管136aに冷媒の流通を一方のみに許容する逆止弁110aが、接続配管134b及び接続配管136bに冷媒の流通を一方のみに許容する逆止弁110bがそれぞれ設けられている。なお、逆止弁110a及び逆止弁110bの開閉状態を白抜き(開状態)及び黒塗り(閉状態)で表している。 In the second distribution unit 110, the connection pipe 134 and the connection pipe 136 are branched into two, one (the connection pipe 134a and the connection pipe 136a) is connected at the first meeting part 115, and the other (the connection pipe 134b and the connection pipe). A pipe 136b) is connected at the second meeting part 116. In the second distribution unit 110, the check valve 110a that allows only one of the refrigerant to flow in the connecting pipe 134a and the connecting pipe 136a is reverse to allow only one of the refrigerant to flow in the connecting pipe 134b and the connecting pipe 136b. A stop valve 110b is provided. The open / closed states of the check valve 110a and the check valve 110b are indicated by white (open state) and black (closed state).
 第1会合部115は、第2分配部110から第1中継機用絞り手段112及び第1内部熱交換器111を介して気液分離器108に接続している。第2会合部116は、第2分配部110と第2内部熱交換器113との間で分岐し、一方が第2内部熱交換器113を介して第2分配部110と第1中継機用絞り手段112との間における第1会合部115に接続され、他方(第2会合部116a)が第2中継機用絞り手段114、第2内部熱交換器113及び第1内部熱交換器111を介して低圧側接続配管107に接続されている。 The first meeting unit 115 is connected from the second distribution unit 110 to the gas-liquid separator 108 via the first relay squeezing means 112 and the first internal heat exchanger 111. The second meeting unit 116 branches between the second distribution unit 110 and the second internal heat exchanger 113, one of which is for the second distribution unit 110 and the first relay device via the second internal heat exchanger 113. The second meeting section 116a is connected to the first meeting section 115 between the throttling means 112, and the other (second meeting section 116a) is connected to the second relay throttling means 114, the second internal heat exchanger 113, and the first internal heat exchanger 111. To the low-pressure side connection pipe 107.
 気液分離器108は、空調用冷媒をガス冷媒と液冷媒とに分離するものであり、高圧側接続配管106に設けられ、一方が第1分配部109の弁手段109aに接続され、他方が第1会合部115を経て第2分配部110に接続されている。第1分配部109は、弁手段109a又は弁手段109bの何れかが択一的に開閉され、室内熱交換器118及び冷媒-冷媒熱交換器41に空調用冷媒を流入させる機能を有している。第2分配部110は、逆止弁110a及び逆止弁110bによって、空調用冷媒の流れをいずれか一方に許容する機能を有している。 The gas-liquid separator 108 separates the air-conditioning refrigerant into a gas refrigerant and a liquid refrigerant. The gas-liquid separator 108 is provided in the high-pressure side connection pipe 106, one of which is connected to the valve means 109 a of the first distribution unit 109, and the other. The first distributor 115 is connected to the second distributor 110. The first distribution unit 109 has a function of allowing the air conditioning refrigerant to flow into the indoor heat exchanger 118 and the refrigerant-refrigerant heat exchanger 41 by selectively opening or closing either the valve means 109a or the valve means 109b. Yes. The 2nd distribution part 110 has a function which permits the flow of the refrigerant for air-conditioning to either one by check valve 110a and check valve 110b.
 第1内部熱交換器111は、気液分離器108と第1中継機用絞り手段112との間における第1会合部115に設けられており、第1会合部115を導通している空調用冷媒と、第2会合部116が分岐された第2会合部116aを導通している空調用冷媒と、の間で熱交換を実行するものである。第1中継機用絞り手段112は、第1内部熱交換器111と第2分配部110との間における第1会合部115に設けられており、空調用冷媒を減圧して膨張させるものである。この第1中継機用絞り手段112は、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。 The first internal heat exchanger 111 is provided in the first meeting portion 115 between the gas-liquid separator 108 and the first relay throttle means 112, and is used for air conditioning in which the first meeting portion 115 is conducted. Heat exchange is performed between the refrigerant and the air-conditioning refrigerant that is conducted through the second meeting part 116a from which the second meeting part 116 is branched. The first repeater throttle means 112 is provided in the first meeting section 115 between the first internal heat exchanger 111 and the second distribution section 110, and decompresses and expands the air-conditioning refrigerant. . The first repeater throttle means 112 may be configured with a variable opening degree controllable means, for example, a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary tube, or the like.
 第2内部熱交換器113は、第2会合部116に設けられており、第2会合部116を導通している空調用冷媒と、第2会合部116が分岐された第2会合部116aを導通している空調用冷媒と、の間で熱交換を実行するものである。第2中継機用絞り手段114は、第2内部熱交換器113と第2分配部110との間における第2会合部116に設けられており、減圧弁や膨張弁として機能し、空調用冷媒を減圧して膨張させるものである。この第2中継機用絞り手段114は、第1中継機用絞り手段112と同様に、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。 The second internal heat exchanger 113 is provided in the second meeting part 116, and includes an air conditioning refrigerant that is conducted through the second meeting part 116, and a second meeting part 116a from which the second meeting part 116 is branched. Heat exchange is performed with the air-conditioning refrigerant that is conducted. The second relay throttling means 114 is provided in the second meeting section 116 between the second internal heat exchanger 113 and the second distribution section 110, functions as a pressure reducing valve and an expansion valve, and is an air conditioning refrigerant. Is expanded under reduced pressure. As with the first relay unit throttle unit 112, the second relay unit throttle unit 114 can be controlled to have a variable opening, for example, a precise flow rate control unit using an electronic expansion valve, or a low cost such as a capillary tube. The refrigerant flow rate adjusting means may be used.
 以上のように、空調用冷凍サイクル1は、空調用圧縮機101、四方弁102、室内熱交換器118、空調用絞り手段117及び室外熱交換器103が直列に接続されるとともに、空調用圧縮機101、四方弁102、冷媒-冷媒熱交換器41、給湯熱源用絞り手段119及び室外熱交換器103が直列に接続されており、中継機Eを介して室内熱交換器118と冷媒-冷媒熱交換器41とが並列に接続されて第1冷媒回路を構成し、この第1冷媒回路に空調用冷媒を循環させることで成立している。 As described above, the air-conditioning refrigeration cycle 1 includes the air-conditioning compressor 101, the four-way valve 102, the indoor heat exchanger 118, the air-conditioning throttle means 117, and the outdoor heat exchanger 103 connected in series, and the air-conditioning compression cycle. Machine 101, four-way valve 102, refrigerant-refrigerant heat exchanger 41, hot water supply heat source throttling means 119, and outdoor heat exchanger 103 are connected in series, and the indoor heat exchanger 118 and refrigerant-refrigerant are connected via relay E. This is established by connecting the heat exchanger 41 in parallel to form a first refrigerant circuit, and circulating the air-conditioning refrigerant in the first refrigerant circuit.
 なお、空調用圧縮機101は、吸入した冷媒を高圧状態に圧縮できるものであればよく、特にタイプを限定するものではない。たとえば、レシプロ、ロータリー、スクロールあるいはスクリューなどの各種タイプを利用して空調用圧縮機101を構成することができる。この空調用圧縮機101は、インバーターにより回転数が可変に制御可能なタイプとして構成してもよく、回転数が固定されているタイプとして構成してもよい。また、空調用冷凍サイクル1を循環する冷媒の種類を特に限定するものではなく、たとえば二酸化炭素(CO)や炭化水素、ヘリウムなどの自然冷媒、HFC410AやHFC407C、HFC404Aなどの塩素を含まない代替冷媒、若しくは既存の製品に使用されているR22やR134aなどのフロン系冷媒のいずれを使用してもよい。 The air conditioning compressor 101 is not particularly limited as long as it can compress the sucked refrigerant into a high pressure state. For example, the air-conditioning compressor 101 can be configured using various types such as reciprocating, rotary, scroll, or screw. The air-conditioning compressor 101 may be configured as a type in which the rotational speed can be variably controlled by an inverter, or may be configured as a type in which the rotational speed is fixed. Further, the type of refrigerant circulating in the air-conditioning refrigeration cycle 1 is not particularly limited. For example, natural refrigerants such as carbon dioxide (CO 2 ), hydrocarbons, and helium, and alternatives that do not contain chlorine such as HFC410A, HFC407C, and HFC404A Either a refrigerant or a fluorocarbon refrigerant such as R22 or R134a used in existing products may be used.
 ここで、空調用冷凍サイクル1の暖房主体運転動作について説明する。
 まず、空調用圧縮機101で高温・高圧にされた空調用冷媒は、空調用圧縮機101から吐出して、四方弁102を経由し、逆止弁105cを導通し、高圧側接続配管106に導かれ、過熱ガス状態で中継機Eの気液分離器108へ流入する。気液分離器108に流入した過熱ガス状態の空調用冷媒は、第1分配部109の弁手段109aが開いている回路に分配される。ここでは、過熱ガス状態の空調用冷媒は、暖房室内機Cや給湯熱源用回路Dに流入するようになっている。
Here, the heating main operation of the air-conditioning refrigeration cycle 1 will be described.
First, the air-conditioning refrigerant heated to a high temperature and high pressure by the air-conditioning compressor 101 is discharged from the air-conditioning compressor 101, passes through the four-way valve 102, passes through the check valve 105 c, and enters the high-pressure side connection pipe 106. It is guided and flows into the gas-liquid separator 108 of the relay E in the superheated gas state. The superheated gas-conditioning refrigerant flowing into the gas-liquid separator 108 is distributed to a circuit in which the valve means 109a of the first distribution unit 109 is open. Here, the refrigerant for air conditioning in the superheated gas state flows into the heating indoor unit C and the hot water supply heat source circuit D.
 暖房室内機Cに流入した空調用冷媒は、室内熱交換器118で放熱し(つまり、室内空気を暖め)、空調用絞り手段117で減圧され、第1会合部115で合流する。また、給湯熱源用回路Dに流入した空調用冷媒は、冷媒-冷媒熱交換器41で放熱し(つまり、給湯用冷凍サイクル2に熱を与え)、給湯熱源用絞り手段119で減圧され、暖房室内機Cから流出した空調用冷媒と第1会合部115で合流する。一方、気液分離器108に流入した過熱ガス状態の空調用冷媒の一部は、第1内部熱交換器111で第2中継機用絞り手段114にて低温・低圧に膨張した空調用冷媒と熱交換を行なうことにより過冷却度を得る。 The air-conditioning refrigerant flowing into the heating indoor unit C dissipates heat in the indoor heat exchanger 118 (that is, warms the room air), is depressurized by the air-conditioning throttle means 117, and joins at the first meeting unit 115. The air-conditioning refrigerant that has flowed into the hot water supply heat source circuit D dissipates heat in the refrigerant-refrigerant heat exchanger 41 (that is, gives heat to the hot water supply refrigeration cycle 2), and is depressurized by the hot water supply heat source throttling means 119. The air-conditioning refrigerant that has flowed out of the indoor unit C merges at the first meeting unit 115. On the other hand, a part of the air-conditioning refrigerant in the superheated gas state that has flowed into the gas-liquid separator 108 is the air-conditioning refrigerant expanded to low temperature and low pressure by the second relay expansion means 114 in the first internal heat exchanger 111. The degree of supercooling is obtained by heat exchange.
 それから、第1中継機用絞り手段112を通過して、空調用として利用された空調用冷媒(暖房室内機Cや給湯熱源用回路Dに流入し、室内熱交換器118や冷媒-冷媒熱交換器41で放熱した空調用冷媒)と第1会合部115で合流する。なお、第1中継機用絞り手段112を通る一部の過熱ガス状態の空調用冷媒は、第1中継機用絞り手段112を全閉にして、皆無にしてもよい。その後、第2内部熱交換器113で、第2中継機用絞り手段114にて低温・低圧に膨張した空調用冷媒と熱交換を行なうことにより過冷却度を得る。この空調用冷媒は、第2会合部116側と第2中継機用絞り手段114側とに分配される。 Then, the air-conditioning refrigerant used for air-conditioning (flowing into the heating indoor unit C or the hot water supply heat source circuit D through the first repeater throttle means 112 flows into the indoor heat exchanger 118 or refrigerant-refrigerant heat exchange. And the first meeting part 115 merge. It should be noted that a part of the superheated gas conditioning refrigerant that passes through the first repeater throttle means 112 may be eliminated by fully closing the first repeater throttle means 112. Thereafter, the second internal heat exchanger 113 performs heat exchange with the air-conditioning refrigerant expanded to low temperature and low pressure by the second relay throttle unit 114 to obtain a degree of supercooling. This refrigerant for air conditioning is distributed to the second meeting part 116 side and the second relay unit throttle means 114 side.
 第2会合部116を導通する空調用冷媒は、弁手段109bが開いている回路に分配される。ここでは、第2会合部116を導通する空調用冷媒は、冷房室内機Bに流入し、空調用絞り手段117にて低温・低圧に膨張され、室内熱交換器118で蒸発し、弁手段109bを経て低圧側接続配管107で合流する。また、第2中継機用絞り手段114を導通した空調用冷媒は、第2内部熱交換器113及び第1内部熱交換器111で熱交換を行なって蒸発し、低圧側接続配管107で冷房室内機Bを流出した空調用冷媒と合流する。そして、低圧側接続配管107で合流した空調用冷媒は、逆止弁105dを通って室外熱交換器103に導かれ、運転条件によっては残留している液冷媒を蒸発させ、四方弁102、アキュムレータ104を経て空調用圧縮機101へ戻る。 The air-conditioning refrigerant that conducts through the second meeting portion 116 is distributed to a circuit in which the valve means 109b is open. Here, the air-conditioning refrigerant that conducts through the second meeting portion 116 flows into the cooling indoor unit B, is expanded to low temperature and low pressure by the air-conditioning throttle means 117, is evaporated by the indoor heat exchanger 118, and the valve means 109 b. After that, the low pressure side connecting pipe 107 joins. The air-conditioning refrigerant that has passed through the second repeater throttle means 114 evaporates by exchanging heat in the second internal heat exchanger 113 and the first internal heat exchanger 111, and in the cooling chamber through the low-pressure side connection pipe 107. It merges with the air conditioning refrigerant that has flowed out of the machine B. The air-conditioning refrigerant merged in the low-pressure side connection pipe 107 is led to the outdoor heat exchanger 103 through the check valve 105d, and depending on the operating conditions, the remaining liquid refrigerant is evaporated, and the four-way valve 102, the accumulator The process returns to the air conditioning compressor 101 via 104.
[給湯用冷凍サイクル2]
 給湯用冷凍サイクル2は、給湯用圧縮機21と、熱媒体-冷媒熱交換器51と、給湯用絞り手段22と、冷媒-冷媒熱交換器41と、によって構成されている。つまり、給湯用冷凍サイクル2は、給湯用圧縮機21、熱媒体-冷媒熱交換器51、給湯用絞り手段22、及び、冷媒-冷媒熱交換器41が冷媒配管45で直列に接続されて第2冷媒回路を構成し、この第2冷媒回路に給湯用冷媒を循環させることで成立している。なお、給湯用冷凍サイクル2の動作は、空調用冷凍サイクル1の運転状態、つまり冷房主体運転を実行しているか、暖房主体運転を実行しているかで相違するものではない。
[Refrigeration cycle 2 for hot water supply]
The hot water supply refrigeration cycle 2 includes a hot water supply compressor 21, a heat medium-refrigerant heat exchanger 51, hot water supply throttle means 22, and a refrigerant-refrigerant heat exchanger 41. That is, the hot water supply refrigeration cycle 2 includes a hot water supply compressor 21, a heat medium-refrigerant heat exchanger 51, a hot water supply throttle means 22, and a refrigerant-refrigerant heat exchanger 41 connected in series by the refrigerant pipe 45. This is established by constituting a two refrigerant circuit and circulating a hot water supply refrigerant in the second refrigerant circuit. The operation of the hot water supply refrigeration cycle 2 does not differ depending on the operating state of the air conditioning refrigeration cycle 1, that is, whether the cooling main operation is being executed or the heating main operation is being executed.
 給湯用圧縮機21は、給湯用冷媒を吸入し、その給湯用冷媒を圧縮して高温・高圧の状態にするものである。この給湯用圧縮機21は、インバーターにより回転数が可変に制御可能なタイプとして構成してもよく、回転数が固定されているタイプとして構成してもよい。また、給湯用圧縮機21は、吸入した冷媒を高圧状態に圧縮できるものであればよく、特にタイプを限定するものではない。たとえば、レシプロ、ロータリー、スクロールあるいはスクリューなどの各種タイプを利用して給湯用圧縮機21を構成することができる。 The hot water supply compressor 21 sucks in the hot water supply refrigerant and compresses the hot water supply refrigerant to a high temperature and high pressure state. The hot water supply compressor 21 may be configured as a type in which the rotation speed can be variably controlled by an inverter, or may be configured as a type in which the rotation speed is fixed. Further, the hot water supply compressor 21 is not particularly limited as long as it can compress the sucked refrigerant into a high pressure state. For example, the hot water supply compressor 21 can be configured using various types such as reciprocating, rotary, scroll, or screw.
 熱媒体-冷媒熱交換器51は、給湯用負荷3を循環する熱媒体(水等の流体)と、給湯用冷凍サイクル2を循環する給湯用冷媒との、間で熱交換を行なうものである。つまり、給湯用冷凍サイクル2と給湯用負荷3とは、熱媒体-冷媒熱交換器51でカスケード接続されている。給湯用絞り手段22は、減圧弁や膨張弁として機能し、給湯用冷媒を減圧して膨張させるものである。この給湯用絞り手段22は、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。 The heat medium-refrigerant heat exchanger 51 performs heat exchange between a heat medium (fluid such as water) circulating through the hot water supply load 3 and a hot water supply refrigerant circulating through the hot water supply refrigeration cycle 2. . That is, the hot water supply refrigeration cycle 2 and the hot water supply load 3 are cascade-connected by the heat medium-refrigerant heat exchanger 51. The hot water supply throttling means 22 functions as a pressure reducing valve and an expansion valve, and decompresses the hot water supply refrigerant to expand it. The hot water supply throttling means 22 may be constituted by a controllable opening degree, such as a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary.
 冷媒-冷媒熱交換器41は、給湯用冷凍サイクル2を循環する給湯用冷媒と、空調用冷凍サイクル1を循環する空調用冷媒との、間で熱交換を行なうものである。なお、給湯用冷凍サイクル2を循環する冷媒の種類を特に限定するものではなく、たとえば二酸化炭素や炭化水素、ヘリウムなどの自然冷媒、HFC410AやHFC407C、HFC404Aなどの塩素を含まない代替冷媒、若しくは既存の製品に使用されているR22やR134aなどのフロン系冷媒のいずれを使用してもよい。 The refrigerant-refrigerant heat exchanger 41 performs heat exchange between the hot water supply refrigerant circulating in the hot water supply refrigeration cycle 2 and the air conditioning refrigerant circulating in the air conditioning refrigeration cycle 1. The type of refrigerant circulating in the hot water supply refrigeration cycle 2 is not particularly limited. For example, natural refrigerants such as carbon dioxide, hydrocarbons and helium, alternative refrigerants not containing chlorine such as HFC410A, HFC407C, and HFC404A, or existing Any of chlorofluorocarbon refrigerants such as R22 and R134a used in this product may be used.
 ここで、給湯用冷凍サイクル2の運転動作について説明する。
 まず、給湯用圧縮機21で高温・高圧にされた給湯用冷媒は、給湯用圧縮機21から吐出して、熱媒体-冷媒熱交換器51に流入する。この熱媒体-冷媒熱交換器51では、流入した給湯用冷媒が、給湯用負荷3を循環している水を加熱することで放熱する。この給湯用冷媒は、給湯用絞り手段22で空調用冷凍サイクル1の給湯熱源用回路Dにおける冷媒-冷媒熱交換器41の出口温度以下まで膨張される。膨張された給湯用冷媒は、冷媒-冷媒熱交換器41で、空調用冷凍サイクル1を構成する給湯熱源用回路Dを流れる空調用冷媒から受熱して蒸発し、給湯用圧縮機21へ戻る。
Here, the operation of the hot water supply refrigeration cycle 2 will be described.
First, the hot water supply refrigerant that has been heated to a high temperature and high pressure by the hot water supply compressor 21 is discharged from the hot water supply compressor 21 and flows into the heat medium-refrigerant heat exchanger 51. In the heat medium-refrigerant heat exchanger 51, the flowing hot water supply refrigerant radiates heat by heating the water circulating in the hot water supply load 3. This hot water supply refrigerant is expanded by the hot water supply throttling means 22 to a temperature equal to or lower than the outlet temperature of the refrigerant-refrigerant heat exchanger 41 in the hot water supply heat source circuit D of the air conditioning refrigeration cycle 1. The expanded hot water supply refrigerant receives and evaporates from the air conditioning refrigerant flowing through the hot water supply heat source circuit D constituting the air conditioning refrigeration cycle 1 in the refrigerant-refrigerant heat exchanger 41, and returns to the hot water supply compressor 21.
[給湯用負荷3]
 給湯用負荷3は、水循環用ポンプ31と、熱媒体-冷媒熱交換器51と、貯湯タンク32と、によって構成されている。つまり、給湯用負荷3は、水循環用ポンプ31、熱媒体-冷媒熱交換器51、及び、貯湯タンク32が貯湯水循環用配管203で直列に接続されて水回路(熱媒体回路)を構成し、この水回路に給湯用水を循環させることで成立している。なお、給湯用負荷3の動作は、空調用冷凍サイクル1の運転状態、つまり冷房主体運転を実行しているか、暖房主体運転を実行しているかで相違するものではない。また、水回路を構成する貯湯水循環用配管203は、銅管やステンレス管、鋼管、塩化ビニル系配管などによって構成されている。
[Load 3 for hot water supply]
The hot water supply load 3 includes a water circulation pump 31, a heat medium-refrigerant heat exchanger 51, and a hot water storage tank 32. That is, in the hot water supply load 3, the water circulation pump 31, the heat medium-refrigerant heat exchanger 51, and the hot water storage tank 32 are connected in series by the hot water storage water circulation pipe 203 to form a water circuit (heat medium circuit). This is achieved by circulating hot water supply water in this water circuit. The operation of the hot water supply load 3 does not differ depending on the operating state of the air conditioning refrigeration cycle 1, that is, whether the cooling main operation is executed or the heating main operation is executed. The hot water circulating pipe 203 constituting the water circuit is constituted by a copper pipe, a stainless pipe, a steel pipe, a vinyl chloride pipe, or the like.
 水循環用ポンプ31は、貯湯タンク32に蓄えられている水を吸入し、その水を加圧し、給湯用負荷3内を循環させるものであり、たとえばインバーターにより回転数が制御されるタイプのもので構成するとよい。熱媒体-冷媒熱交換器51は、上述したように、給湯用負荷3を循環する熱媒体(水等の流体)と、給湯用冷凍サイクル2を循環する給湯用冷媒との、間で熱交換を行なうものである。貯湯タンク32は、熱媒体-冷媒熱交換器51で加熱された水を貯えておくものである。 The water circulation pump 31 sucks the water stored in the hot water storage tank 32, pressurizes the water, and circulates the inside of the hot water supply load 3. For example, the water circulation pump 31 is of a type whose rotational speed is controlled by an inverter. Configure. As described above, the heat medium-refrigerant heat exchanger 51 exchanges heat between the heat medium (fluid such as water) circulating through the hot water supply load 3 and the hot water supply refrigerant circulating through the hot water supply refrigeration cycle 2. Is to do. The hot water storage tank 32 stores water heated by the heat medium-refrigerant heat exchanger 51.
 まず、貯湯タンク32に蓄えられている比較的低温な水は、水循環用ポンプ31によって貯湯タンク32の底部から引き出されるとともに加圧される。水循環用ポンプ31で加圧された水は、熱媒体-冷媒熱交換器51に流入し、この熱媒体-冷媒熱交換器51で給湯用冷凍サイクル2を循環している給湯用冷媒から受熱する。すなわち、熱媒体-冷媒熱交換器51に流入した水は、給湯用冷凍サイクル2を循環している給湯用冷媒によって沸き上げられて、温度が上昇するのである。そして、沸き上げられた水は、貯湯タンク32の比較的高温な上部へ戻り、この貯湯タンク32に蓄えられることになる。 First, the relatively low temperature water stored in the hot water storage tank 32 is drawn from the bottom of the hot water storage tank 32 and pressurized by the water circulation pump 31. The water pressurized by the water circulation pump 31 flows into the heat medium-refrigerant heat exchanger 51, and receives heat from the hot water supply refrigerant circulating in the hot water supply refrigeration cycle 2 by the heat medium-refrigerant heat exchanger 51. . That is, the water flowing into the heat medium-refrigerant heat exchanger 51 is boiled by the hot water supply refrigerant circulating in the hot water supply refrigeration cycle 2, and the temperature rises. Then, the boiled water returns to the relatively hot upper portion of the hot water storage tank 32 and is stored in the hot water storage tank 32.
 なお、空調用冷凍サイクル1と給湯用冷凍サイクル2とは、上述したように、それぞれ独立した冷媒回路構成(空調用冷凍サイクル1を構成する第1冷媒回路及び給湯用冷凍サイクル2を構成する第2冷媒回路)になっているため、各冷媒回路を循環させる冷媒を同じ種類のものとしてもよいし、別の種類のものとしてもよい。つまり、各冷媒回路の冷媒は、それぞれ混ざることなく冷媒-冷媒熱交換器41及び熱媒体-冷媒熱交換器51にて互いに熱交換するように流れている。 Note that, as described above, the air conditioning refrigeration cycle 1 and the hot water supply refrigeration cycle 2 are independent refrigerant circuit configurations (the first refrigerant circuit constituting the air conditioning refrigeration cycle 1 and the hot water supply refrigeration cycle 2 constituting the first refrigerant circuit 1). 2 refrigerant circuits), the refrigerant circulating through each refrigerant circuit may be the same type or different types. That is, the refrigerant in each refrigerant circuit flows so as to exchange heat with each other in the refrigerant-refrigerant heat exchanger 41 and the heat medium-refrigerant heat exchanger 51 without being mixed.
 また、給湯用冷媒として臨界温度の低い冷媒を用いた場合、高温の給湯を行なう際に熱媒体-冷媒熱交換器51における放熱過程での給湯用冷媒が超臨界状態となることが想定される。しかしながら、一般に放熱過程の冷媒が超臨界状態にある場合、放熱器圧力や放熱器出口温度の変化によるCOPの変動が大きく、高いCOPを得る運転を行なうためには、より高度な制御が要求される。一方、一般に、臨界温度の低い冷媒は、同一温度に対する飽和圧力が高く、その分、配管や圧縮機の肉厚を大きくする必要があるので、コスト増の要因ともなる。 In addition, when a refrigerant having a low critical temperature is used as the hot water supply refrigerant, it is assumed that the hot water supply refrigerant in the heat dissipation process in the heat medium-refrigerant heat exchanger 51 enters a supercritical state when hot water supply is performed. . However, generally, when the refrigerant in the heat dissipation process is in a supercritical state, the COP fluctuates greatly due to changes in the radiator pressure and the outlet temperature of the radiator, and more advanced control is required in order to obtain a high COP. The On the other hand, in general, a refrigerant having a low critical temperature has a high saturation pressure for the same temperature, and accordingly, it is necessary to increase the thickness of the piping and the compressor, which causes an increase in cost.
 さらに、レジオネラ菌等の繁殖を抑えるための貯湯タンク32内に蓄えられる水の推奨温度が60℃以上であることを鑑みると、給湯の目標温度が最低でも60℃以上となることが多いと想定される。以上のことを踏まえ、給湯用冷媒には、最低でも60℃以上の臨界温度を持つ冷媒を採用している。このような冷媒を給湯用冷凍サイクル2の給湯用冷媒として採用すれば、より低コストで、より安定的に、高いCOPを得ることができるからである。冷媒を臨界温度付近で常用する場合、冷媒回路内が高温・高圧になることが想定されるため、給湯用圧縮機21は、高圧シェルを用いたタイプの圧縮機を使用することで、安定した運転が可能となる。 Furthermore, considering that the recommended temperature of water stored in the hot water storage tank 32 for suppressing the growth of Legionella bacteria and the like is 60 ° C. or higher, it is assumed that the target temperature of hot water supply is often 60 ° C. or higher at a minimum. Is done. Based on the above, a refrigerant having a critical temperature of 60 ° C. or higher is adopted as the hot water supply refrigerant. This is because, if such a refrigerant is employed as the hot water supply refrigerant of the hot water supply refrigeration cycle 2, a high COP can be obtained more stably at a lower cost. When the refrigerant is regularly used in the vicinity of the critical temperature, it is assumed that the refrigerant circuit has a high temperature and a high pressure. Therefore, the hot water supply compressor 21 is stabilized by using a compressor of a type using a high pressure shell. Driving is possible.
 また、空調用冷凍サイクル1において余剰冷媒を受液器(アキュムレータ104)によって貯蔵する場合を示したが、これに限るものではなく、冷凍サイクルにおいて放熱器となる熱交換器にて貯蔵するようにすれば、アキュムレータ104を取り除いてもよい。さらに、図1では、冷房室内機Bと暖房室内機Cとが2台以上接続されている場合を例に示しているが、接続台数を特に限定するものではなく、たとえば冷房室内機Bが1台以上、暖房室内機Cがないか若しくは1台以上を接続されていればよい。そして、空調用冷凍サイクル1を構成している各室内機の容量は、全部を同一としてもよく、大から小まで異なるようにしてもよい。 Moreover, although the case where the surplus refrigerant | coolant was stored by the liquid receiver (accumulator 104) in the refrigerating cycle 1 for an air conditioning was shown, it is not restricted to this, It should be stored with the heat exchanger used as a heat radiator in a refrigerating cycle. If so, the accumulator 104 may be removed. Further, FIG. 1 shows an example in which two or more cooling indoor units B and heating indoor units C are connected, but the number of connected units is not particularly limited. It is only necessary that there is no heating indoor unit C or one or more is connected. And the capacity | capacitance of each indoor unit which comprises the refrigerating cycle 1 for an air conditioning may be made all the same, and you may make it differ from large to small.
 以上のように、この実施の形態に係る空調給湯複合システム100では、給湯負荷系統を二元サイクルで構成しているため、高温の給湯需要(たとえば、80℃)を提供する場合に、給湯用冷凍サイクル2の放熱器の温度を高温(たとえば、凝縮温度85℃)にすればよく、他に暖房負荷がある場合に、暖房室内機Cの凝縮温度(たとえば、50℃)までも増加させずに済むので、省エネとなる。また、たとえば夏期の空調冷房運転中に高温の給湯需要があった場合、従来はボイラーーなどによって提供する必要があったが、従来大気中に排出していた温熱を回収し、再利用して給湯を行なうので、システムCOPが大幅に向上し、省エネとなる。 As described above, in the combined air conditioning and hot water supply system 100 according to this embodiment, the hot water supply load system is configured in a two-way cycle, and therefore when supplying high-temperature hot water supply demand (for example, 80 ° C.), What is necessary is just to make the temperature of the heat radiator of the refrigerating cycle 2 high temperature (for example, condensing temperature 85 degreeC), and when there is another heating load, it does not increase even to the condensing temperature (for example, 50 degreeC) of the heating indoor unit C. Energy saving. Also, for example, when there was a demand for hot water supply during the air conditioning and cooling operation in summer, it was necessary to provide it with a boiler, etc., but it was necessary to collect the hot heat that had been discharged into the atmosphere and reuse it. Therefore, the system COP is greatly improved and energy is saved.
[負荷側中継ユニットF]
 負荷側中継ユニットFには、冷媒-冷媒熱交換器41と、給湯熱源用絞り手段119と、熱媒体-冷媒熱交換器51と、給湯用圧縮機21と、給湯用絞り手段22と、が収容されている。つまり、負荷側中継ユニットFには、冷媒-冷媒熱交換器41を介して空調用冷凍サイクル1の一部、給湯用冷凍サイクル2の全部、及び、熱媒体-冷媒熱交換器51を介して給湯用負荷3の一部が収容されているのである。この負荷側中継ユニットFは、複数の熱交換器が収容されるために大型化してしまう傾向にある。そこで、本実施の形態では、以下に説明するようにして負荷側中継ユニットFの小型化及び配管施工の簡素化を図るようにしている。
[Load side relay unit F]
The load-side relay unit F includes a refrigerant-refrigerant heat exchanger 41, a hot water supply heat source throttle means 119, a heat medium-refrigerant heat exchanger 51, a hot water supply compressor 21, and a hot water supply throttle means 22. Contained. In other words, the load-side relay unit F has a part of the air-conditioning refrigeration cycle 1 through the refrigerant-refrigerant heat exchanger 41, the whole hot water supply refrigeration cycle 2, and the heat medium-refrigerant heat exchanger 51. A part of the hot water supply load 3 is accommodated. This load-side relay unit F tends to be large because a plurality of heat exchangers are accommodated. Therefore, in the present embodiment, as described below, the load-side relay unit F is miniaturized and piping construction is simplified.
 図2は、負荷側中継ユニットFの輸送形態を説明するための説明図である。図2に基づいて、負荷側中継ユニットFの輸送形態について、従来ユニットの輸送形態と比較しながら説明する。図2(a)が従来ユニット(以下、ユニットF’と称する)をコンテナ300に格納した状態を、図2(b)が負荷側中継ユニットFをコンテナ300に格納した状態を、それぞれ示している。図2に示すように、負荷側中継ユニットFも、ユニットF’と同様にコンテナ300に格納されて輸送されるようになっている。 FIG. 2 is an explanatory diagram for explaining the transport mode of the load-side relay unit F. Based on FIG. 2, the transport mode of the load-side relay unit F will be described in comparison with the transport mode of the conventional unit. 2A shows a state in which a conventional unit (hereinafter referred to as unit F ′) is stored in the container 300, and FIG. 2B shows a state in which the load-side relay unit F is stored in the container 300. . As shown in FIG. 2, the load-side relay unit F is also stored in the container 300 and transported in the same manner as the unit F ′.
 コンテナ300には、20フィートコンテナ又は40フィートコンテナ等の種類があるドライ・コンテナが用いられるのが一般的である。20フィートコンテナの内寸は、長さ約5.93m、高さ約2.35m、奥行約2.38mとなっている。40フィートコンテナの内寸は、20フィートコンテナの長さの約2倍となっている。図2では、コンテナ300に20フィートコンテナを用いている場合を例に示している。このコンテナ300に、所定台数のユニットF’をパレット313の上に一まとめにして載置し、輸送時に倒れないようにユニットFの側面を固定具314で固定し格納する。 As the container 300, a dry container having a type such as a 20-foot container or a 40-foot container is generally used. The internal dimensions of the 20-foot container are about 5.93m long, about 2.35m high, and about 2.38m deep. The inner dimensions of the 40 foot container are approximately twice the length of the 20 foot container. FIG. 2 shows an example in which a 20-foot container is used as the container 300. A predetermined number of units F ′ are collectively placed on the container 300 on the pallet 313, and the side surfaces of the units F are fixed with a fixing tool 314 so as not to fall down during transportation.
 ユニットF’の寸法は、一般的に、長さ約0.70m、高さ約1.04m、奥行約0.32mとなっている。したがって、パレット313(高さ0.15m)を入れると高さが約1.19mとなる。2段積すると、高さは2.38mとなってしまい、コンテナ300の内寸高さをオーバーしてしまう。すなわち、ユニットF’では、物理的に1段積みの輸送しかできないのが現状である。そうすると、コンテナ300内に格納されたユニットF’の上方スペースが無駄になってしまい、輸送に要するコストパフォーマンスを低減させることになる。 The dimensions of the unit F ′ are generally about 0.70 m in length, about 1.04 m in height, and about 0.32 m in depth. Accordingly, when the pallet 313 (height 0.15 m) is inserted, the height becomes about 1.19 m. If two stages are stacked, the height is 2.38 m, which exceeds the inner height of the container 300. That is, at present, the unit F ′ can physically transport only one stack. As a result, the space above the unit F ′ stored in the container 300 is wasted, and the cost performance required for transportation is reduced.
 それに対し、負荷側中継ユニットFでは、高さ寸法を約0.85mとしている。したがって、負荷側中継ユニットFは、ユニットF’よりも約0.19m低くすることができ、パレット313を入れた高さが約1.00mとなる。2段積みしても、全体の高さが約2.00mとなりコンテナ300の内寸高さ以内に収まることになる。すなわち、負荷側中継ユニットFでは、2段積みを可能とし、一度に多くの台数(たとえば、ユニットF’の倍)を輸送することができるようになる。一度に多くの台数を輸送できるので、輸送に要するコストが削減できる。負荷側中継ユニットFの高さ寸法を約0.85mとできた理由について以下に説明する。 In contrast, the load-side relay unit F has a height of about 0.85 m. Therefore, the load-side relay unit F can be made lower by about 0.19 m than the unit F ′, and the height including the pallet 313 is about 1.00 m. Even if two layers are stacked, the total height is about 2.00 m, which is within the inner height of the container 300. In other words, the load-side relay unit F can be stacked in two stages, and can transport a large number of units (for example, double the unit F ′) at a time. Since many units can be transported at once, the cost required for transportation can be reduced. The reason why the load-side relay unit F has a height of about 0.85 m will be described below.
 図3は、負荷側中継ユニットF内に搭載される制御ボックス25の寸法を説明するための説明図である。図4は、制御ボックス25内に収容される制御基板を分解した状態の概略を示す分解斜視図である。図3及び図4に基づいて、負荷側中継ユニットFの高さ寸法を約0.85mとできた理由について、ユニットF’と比較しながら説明する。図3(a)がユニットF’の寸法を、図3(b)が負荷側中継ユニットFの寸法を、それぞれ示している。図3(a)に示すように、ユニットF’内には、上部に制御ボックス25’が、下部にドレンパン23が、それぞれ設けられている。 FIG. 3 is an explanatory diagram for explaining the dimensions of the control box 25 mounted in the load-side relay unit F. FIG. 4 is an exploded perspective view showing an outline of a state in which the control board accommodated in the control box 25 is disassembled. Based on FIGS. 3 and 4, the reason why the height of the load-side relay unit F can be about 0.85 m will be described in comparison with the unit F ′. FIG. 3A shows the dimensions of the unit F ′, and FIG. 3B shows the dimensions of the load-side relay unit F. As shown in FIG. 3A, a control box 25 'is provided in the upper part and a drain pan 23 is provided in the lower part in the unit F'.
 それに対し、負荷側中継ユニットF内には、上部に制御ボックス25が設けられているものの、下部にドレンパンが設けられていない。こうすることによって、負荷側中継ユニットFでは、ドレンパンの高さ分(0.07m)を削除することを可能にしている。また、負荷側中継ユニットFでは、制御ボックス25の長さ及び高さが、制御ボックス25’の長さ及び高さよりも短くなっている。こうすることによって、負荷側中継ユニットFでは、制御ボックス25の長さ分(0.32m)及び高さ分(0.12m)を削除することを可能にしている。 On the other hand, in the load side relay unit F, although the control box 25 is provided in the upper part, the drain pan is not provided in the lower part. By doing so, the load-side relay unit F can delete the drain pan height (0.07 m). In the load-side relay unit F, the length and height of the control box 25 are shorter than the length and height of the control box 25 '. By doing so, the load-side relay unit F can delete the length (0.32 m) and height (0.12 m) of the control box 25.
 制御ボックス25内に収容される制御基板は、通常、制御回路等が搭載されているサービス基板25a、高電圧部25b(高電圧部基板)、及び、風路部が併せられているヒートシンク部25c(ヒートシンク部基板)で構成されている。制御ボックス25’にも同様にサービス基板25a’、高電圧部25b’、及び、ヒートシンク部25c’で構成される制御基板が収容されている。そして、制御ボックス25’では、サービス基板25a’、高電圧部25b’、及び、ヒートシンク部25c’が平面的に並べられるようになっている。それに対し、制御ボックス25では、サービス基板25a、高電圧部25b、及び、ヒートシンク部25cが、紙面左側から順次配置されるようになっている。 The control board accommodated in the control box 25 is usually a service board 25a on which a control circuit or the like is mounted, a high voltage part 25b (high voltage part board), and a heat sink part 25c in which an air path part is combined. (Heat sink part substrate). Similarly, the control box 25 'accommodates a control board composed of a service board 25a', a high voltage part 25b ', and a heat sink part 25c'. In the control box 25 ′, the service board 25 a ′, the high voltage part 25 b ′, and the heat sink part 25 c ′ are arranged in a plane. On the other hand, in the control box 25, the service board 25a, the high voltage part 25b, and the heat sink part 25c are arranged sequentially from the left side of the drawing.
 こうすることによって、制御ボックス25の長さ(0.41m)及び高さ(0.43m)を、制御ボックス25’の長さ(0.73m)及び高さ(0.55m)よりも短くすることが可能になっている。すなわち、負荷側中継ユニットFでは、制御ボックス25の長さ分(0.32m)及び高さ分(0.12m)を削除することを可能にしている。以上より、負荷側中継ユニットFは、ユニットF’よりもドレンパンの高さ分(0.07m)及び制御ボックス25の高さ分(0.12m)だけ低いものとすることができる。よって、図2で説明したように、負荷側中継ユニットFは、ユニットF’の高さよりも0.19m低いものになる。 By doing so, the length (0.41 m) and height (0.43 m) of the control box 25 are made shorter than the length (0.73 m) and height (0.55 m) of the control box 25 ′. It is possible. That is, in the load side relay unit F, it is possible to delete the length (0.32 m) and height (0.12 m) of the control box 25. As described above, the load-side relay unit F can be lower than the unit F ′ by the height of the drain pan (0.07 m) and the height of the control box 25 (0.12 m). Therefore, as described in FIG. 2, the load-side relay unit F is 0.19 m lower than the height of the unit F ′.
 また、制御ボックス25は、サービス基板25aが負荷側中継ユニットFの正面側となるように設置される。したがって、負荷側中継ユニットFの正面側に設けられているカバー(図示省略)を開けるだけでサービス基板25aのメンテナンスが可能になり、メンテナンス性の容易化を実現できる。また、高電圧部25bがサービス基板25aの後方背面側に設置されることになるので、メンテナンス時において作業員に対する危険性を低減することが可能になる。 In addition, the control box 25 is installed so that the service board 25a is on the front side of the load-side relay unit F. Therefore, the maintenance of the service board 25a can be performed only by opening the cover (not shown) provided on the front side of the load-side relay unit F, and the ease of maintenance can be realized. Moreover, since the high voltage part 25b will be installed in the back back side of the service board 25a, it becomes possible to reduce the danger to an operator at the time of a maintenance.
 図5は、ユニットF’の配管接続例を説明するための概略図である。図6は、雄ネジ配管29の全体構成を示す概略図である。図7は、負荷側中継ユニットFの配管接続部を説明するための斜視図である。図5~図7に基づいて、負荷側中継ユニットFへの配管接続について説明する。なお、ユニットF’には、熱媒体-冷媒熱交換器(熱媒体-冷媒熱交換器51に同じ)が搭載されており、熱媒体を導通させる貯湯水循環用配管(貯湯水循環用配管203に同じ)が接続されている。 FIG. 5 is a schematic diagram for explaining an example of pipe connection of the unit F ′. FIG. 6 is a schematic diagram showing the overall configuration of the male screw pipe 29. FIG. 7 is a perspective view for explaining a pipe connection portion of the load side relay unit F. FIG. A pipe connection to the load-side relay unit F will be described with reference to FIGS. The unit F ′ is equipped with a heat medium-refrigerant heat exchanger (same as the heat medium-refrigerant heat exchanger 51), and the hot water circulation pipe for conducting the heat medium (same as the hot water circulation pipe 203). ) Is connected.
 図5に示すように、ユニットF’は、熱媒体-冷媒熱交換器の保護(たとえば、ゴミ噛みによる熱媒体流路閉塞からの保護)を目的として、熱媒体の入口側へ接続されている雌ネジ配管26に接続配管28を介してストレーナー27を設置することが一般的である。このように、ユニットF’の接続部には雌ネジ配管26を用い、ストレーナー27の接続には接続配管28を用いることが一般的になっている。 As shown in FIG. 5, the unit F ′ is connected to the inlet side of the heat medium for the purpose of protecting the heat medium-refrigerant heat exchanger (for example, protecting the heat medium flow path from being blocked by dust). Generally, a strainer 27 is installed in the female screw pipe 26 via a connection pipe 28. As described above, it is common to use the female screw pipe 26 for the connection portion of the unit F ′ and the connection pipe 28 for the connection of the strainer 27.
 この実施の形態に係る負荷側中継ユニットFでは、熱媒体の入口側に図5に示すような雄ネジ配管29を接続することで、ストレーナー27を雄ネジ配管29に直接接続するようにしている。こうすることで、接続配管28が不要になり、熱媒体の入口側における配管接続部分の簡素化を図ることができる。また、配管の接続箇所が少なくなることから、配管接続部からの熱媒体漏れを効率的に抑制することが可能になる。さらに、熱媒体の入口側に接続した雄ネジ配管29にストレーナー27を取り付けることで、ゴミ詰まりなどを防ぐことができ、信頼性の向上及び長寿命化を実現できる。 In the load-side relay unit F according to this embodiment, the strainer 27 is directly connected to the male screw pipe 29 by connecting the male screw pipe 29 as shown in FIG. 5 to the inlet side of the heat medium. . By doing so, the connection pipe 28 is not necessary, and the pipe connection portion on the inlet side of the heat medium can be simplified. In addition, since the number of pipe connection points is reduced, it is possible to efficiently suppress heat medium leakage from the pipe connection portion. Furthermore, by attaching the strainer 27 to the male screw pipe 29 connected to the inlet side of the heat medium, it is possible to prevent clogging of dust and the like, and it is possible to improve the reliability and extend the life.
 負荷側中継ユニットFでは、熱媒体の入口側開口部(熱媒体入口部61)、及び、熱媒体の出口側開口部(熱媒体出口部62)を下部に設けるようにしている。こうすることによって、熱媒体配管(貯湯水循環用配管203)の集約ができることになり、施工前での配管設計が決めやすい。また、貯湯水循環用配管203を負荷側中継ユニットFの下部に集約することで、熱媒体入口部61及び熱媒体出口部62をユニットの上下にもつ構造に対して、配管を短くすることができ、配管材料が減少し、その分のコストを削減することができる。 In the load-side relay unit F, a heat medium inlet side opening (heat medium inlet 61) and a heat medium outlet side opening (heat medium outlet 62) are provided in the lower part. By doing so, the heat medium piping (pipe 203 for circulating hot water) can be consolidated, and the piping design before construction is easy to decide. Also, by consolidating the hot water circulation pipe 203 at the lower part of the load-side relay unit F, the pipe can be shortened compared to the structure having the heat medium inlet 61 and the heat medium outlet 62 above and below the unit. The piping material is reduced, and the cost can be reduced accordingly.
 ここから空調給湯複合システム100の使用例について説明する。
 図8は、従来システムの使用例を説明するための概略説明図である。図8に基づいて、従来システムの具体的な使用例を説明するとともに、空調給湯複合システム100の使用例について説明する。図8(a)が空調設備と給湯設備とが別々になっている従来システム例を、図8(b)が空調設備と給湯設備とが一体的になっているもののチラーユニット79が別途設けられている従来システム例を、それぞれ示している。
From here, the usage example of the air-conditioning hot-water supply complex system 100 is demonstrated.
FIG. 8 is a schematic explanatory diagram for explaining an example of use of a conventional system. Based on FIG. 8, while describing the specific usage example of the conventional system, the usage example of the air-conditioning and hot water supply complex system 100 will be described. FIG. 8A shows an example of a conventional system in which the air conditioning equipment and the hot water supply equipment are separated, and FIG. 8B shows a separate chiller unit 79 in which the air conditioning equipment and the hot water supply equipment are integrated. Examples of conventional systems are shown respectively.
 図8(a)に示すような従来システムでは、室外ユニット71及び室内ユニット72で構成される空調設備と、水を沸き上げるためのボイラー76、貯湯タンク75、シャワー73、蛇口74及び温水・床暖房75で構成される給湯設備と、が別々になっている。このようなシステムでは、たとえばホテルやアパート、マンション、ビル等のように複数の部屋がある建物において、空調設備と給湯設備とを別個独立に備えなければならず、設置に要する手間及び費用を多く要することになるとともに、熱源機(室外ユニット71及びボイラー76)の設置スペースを考慮しなければならない。 In the conventional system as shown in FIG. 8 (a), an air conditioner composed of an outdoor unit 71 and an indoor unit 72, a boiler 76 for boiling water, a hot water storage tank 75, a shower 73, a faucet 74, and hot water / floor. A hot water supply facility constituted by the heating 75 is separated. In such a system, for example, in a building having a plurality of rooms such as a hotel, an apartment, a condominium, and a building, the air conditioning equipment and the hot water supply equipment must be provided separately, which increases the labor and cost required for installation. In addition, the installation space of the heat source machine (the outdoor unit 71 and the boiler 76) must be taken into consideration.
 図8(b)に示すような従来システムでは、空調設備及び給湯設備が一体的になっているものの、分岐ユニット77を介して室内ユニット72、給湯ユニット78、及び、冷却用に必要なチラーユニット79を接続するようになっている。このようなシステムでは、空調設備と給湯設備とを別個に備える必要はないが、給湯設備(貯湯タンク75、シャワー73及び蛇口74からなる設備、及び、温水・床暖房75からなる設備)毎に給湯ユニット78やチラーユニット79を別途設けなければならず、設置に要する手間及び費用を多く要することになるとともに、それらユニットの設置スペースを考慮しなければならない。 In the conventional system as shown in FIG. 8B, although the air conditioning equipment and the hot water supply equipment are integrated, the indoor unit 72, the hot water supply unit 78, and the chiller unit necessary for cooling are provided via the branch unit 77. 79 is connected. In such a system, it is not necessary to separately provide air conditioning equipment and hot water supply equipment, but for each hot water supply equipment (equipment comprising hot water storage tank 75, shower 73 and faucet 74, and equipment comprising hot water / floor heating 75). The hot water supply unit 78 and the chiller unit 79 must be provided separately, which requires a lot of labor and cost for installation, and the installation space for these units must be taken into consideration.
 それに対して、空調給湯複合システム100では、負荷側中継ユニットFを設けることによって、チラーユニットを設けることなく、空調設備及び給湯設備を一体的にすることができる(図9で具体的に説明する)。たとえば、レジャー施設に備えられているプールや大型入浴施設等に給湯を実行する場合、従来システムではボイラー76やチラーユニット79を別途設ける必要があるが、空調給湯複合システム100ではボイラー76やチラーユニット79を別途設ける必要がない。したがって、ボイラー76やチラーユニット79のような機器を削減することができる。また、それらの設置スペースを考慮しなくて済む。 In contrast, in the air conditioning and hot water supply complex system 100, by providing the load-side relay unit F, the air conditioning facility and the hot water supply facility can be integrated without providing a chiller unit (described in detail with reference to FIG. 9). ). For example, when hot water is supplied to a pool or a large bathing facility provided in a leisure facility, it is necessary to separately provide a boiler 76 and a chiller unit 79 in the conventional system. 79 need not be provided separately. Therefore, devices such as the boiler 76 and the chiller unit 79 can be reduced. Moreover, it is not necessary to consider the installation space.
 図9は、空調給湯複合システム100の使用例を説明するための説明図である。図9に基づいて、空調給湯複合システム100の具体的な使用例について詳細に説明する。図9(a)が従来システムの使用例を、図9(b)が空調給湯複合システム100の使用例を、図9(c)が空調給湯複合システム100の別の使用例を、それぞれ示している。なお、図9(a)では、図8で説明した従来システムを構成しているボイラー76を設置する場合の使用例を示している。 FIG. 9 is an explanatory diagram for explaining an example of use of the air conditioning and hot water supply complex system 100. Based on FIG. 9, the specific usage example of the air-conditioning hot-water supply complex system 100 is demonstrated in detail. FIG. 9A shows a usage example of the conventional system, FIG. 9B shows a usage example of the air conditioning and hot water supply complex system 100, and FIG. 9C shows another usage example of the air conditioning and hot water supply complex system 100. Yes. FIG. 9A shows an example of use when the boiler 76 constituting the conventional system described in FIG. 8 is installed.
 図9(a)では、ボイラー76及び貯湯タンク75が機械室90に備えられている。そして、ボイラー76の近傍に水配管82(空調給湯複合システム100の貯湯水循環用配管203に想到する)で接続されている貯湯タンク75が設けられている。また、ボイラー76には排気口81が設けられている。そうすると、従来システムでは、ボイラー76と一緒に熱源も設けられることになるため、空きスペース86が狭くなってしまう。 9A, the boiler 76 and the hot water storage tank 75 are provided in the machine room 90. A hot water storage tank 75 connected to the boiler 76 by a water pipe 82 (conceived by the hot water storage water circulation pipe 203 of the air conditioning and hot water supply complex system 100) is provided. Further, the boiler 76 is provided with an exhaust port 81. Then, in the conventional system, since the heat source is provided together with the boiler 76, the empty space 86 is narrowed.
 図9(b)では、給湯ユニットとして機能する負荷側中継ユニットF及び貯湯タンク32が機械室90に備えられている。そして、負荷側中継ユニットFの近傍に貯湯水循環用配管203で接続されている貯湯タンク32が設けられている。そうすると、負荷側中継ユニットFには熱源機Aが設けられていないので、従来システムのボイラー76に比較して小型になっている。したがって、機械室90内の空きスペース86が広くなる。 In FIG. 9B, the machine room 90 includes a load-side relay unit F and a hot water storage tank 32 that function as a hot water supply unit. A hot water storage tank 32 connected by a hot water circulation pipe 203 is provided in the vicinity of the load-side relay unit F. Then, since the load-side relay unit F is not provided with the heat source unit A, the load side relay unit F is smaller than the boiler 76 of the conventional system. Therefore, the empty space 86 in the machine room 90 is widened.
 図9(c)では、給湯ユニットとして機能する壁掛け用の負荷側中継ユニットF及び貯湯タンク32が機械室90に備えられている。そして、負荷側中継ユニットFの下方に貯湯水循環用配管203で接続されている貯湯タンク32が設けられている。そうすると、負荷側中継ユニットFは、熱源機Aが設けられていない上、機械室90の上部空間を利用して壁掛け用となっているので、機械室90内の空きスペース86が更に広くなる。なお、負荷側中継ユニットFは、機械室90の壁面に固定されている支持台85によって支持されている。 In FIG. 9 (c), the machine room 90 includes a wall-mounted load-side relay unit F that functions as a hot water supply unit and a hot water storage tank 32. A hot water storage tank 32 connected by a hot water circulation pipe 203 is provided below the load-side relay unit F. As a result, the load-side relay unit F is not provided with the heat source unit A, and is used for hanging on the wall using the upper space of the machine room 90, so that the empty space 86 in the machine room 90 is further widened. The load-side relay unit F is supported by a support base 85 fixed to the wall surface of the machine room 90.
 図9の比較により、負荷側中継ユニットFを用いることで空きスペース86が広くなり、その分の省スペース化を実現することができる。省スペース化を実現することで、設備を一箇所に集中することができ、メンテナンス性を向上することができる。また、省スペース化を実現することで、機械室90の容積を小さくすることができ、機械室90以外の居住空間を大きくすることができる。さらに、機械室90が狭くても設置可能であるため、ボイラー76やチラーユニット79の導入が困難だった箇所にも設置することができる。ボイラー76やチラーユニット79のような機器を削減することができるので、施工に要する工程、時間及びコストを削減できる。施工にかかる材料費(たとえば、配管の材料用)を削減できることにもなる。 According to the comparison of FIG. 9, the use of the load-side relay unit F makes the empty space 86 wide, and space saving can be realized. By realizing space saving, facilities can be concentrated in one place, and maintainability can be improved. Further, by realizing space saving, the volume of the machine room 90 can be reduced, and the living space other than the machine room 90 can be increased. Furthermore, since it can be installed even if the machine room 90 is small, it can also be installed in places where it is difficult to introduce the boiler 76 and the chiller unit 79. Since equipment such as the boiler 76 and the chiller unit 79 can be reduced, the process, time and cost required for construction can be reduced. Material costs for construction (for example, for piping materials) can also be reduced.
 図10は、負荷側中継ユニットFの設置例を説明するための説明図である。図10に基づいて、複数台の負荷側中継ユニットFと複数台の貯湯タンク32を機械室90に設置した状態について説明する。図10(a)が負荷側中継ユニットFを機械室90に横置きした状態を、図10(b)が負荷側中継ユニットFを段積みして機械室90に設置した状態を、それぞれ示している。図1に示すように、負荷側中継ユニットFは、中継機Eを介して複数台接続することが可能になっている。つまり、図10に示すように、複数台の負荷側中継ユニットFを設置する場合が想定される。 FIG. 10 is an explanatory diagram for explaining an installation example of the load-side relay unit F. Based on FIG. 10, the state which installed the several load side relay unit F and the several hot water storage tank 32 in the machine room 90 is demonstrated. 10A shows a state where the load-side relay unit F is placed horizontally in the machine room 90, and FIG. 10B shows a state where the load-side relay unit F is stacked and installed in the machine room 90. Yes. As shown in FIG. 1, a plurality of load-side relay units F can be connected via a relay E. That is, as shown in FIG. 10, a case where a plurality of load-side relay units F are installed is assumed.
 複数台の貯湯タンク32を機械室90に設置する場合、貯湯タンク32の台数に応じて負荷側中継ユニットFも複数台設置することになる。上述したように、負荷側中継ユニットFは、それ自体で小型化を実現している。ただし、複数台の負荷側中継ユニットFを機械室90に設置すれば、その分のスペースが必要になる(図10(a)参照)。そこで、負荷側中継ユニットFを段積みすることで、機械室90の省スペース化を図ることができる。 When installing a plurality of hot water storage tanks 32 in the machine room 90, a plurality of load-side relay units F are also installed according to the number of hot water storage tanks 32. As described above, the load-side relay unit F itself is downsized. However, if a plurality of load-side relay units F are installed in the machine room 90, that much space is required (see FIG. 10A). Thus, by stacking the load-side relay units F, the space in the machine room 90 can be saved.
 以上より、空調給湯複合システム100では、負荷側中継ユニットFの小型化を実現しているので輸送に要する費用を削減することができる(図2参照)。この空調給湯複合システム100では、制御ボックス25を改良したのでメンテナンス性及び安全性の向上を図ることができる(図4参照)。この空調給湯複合システム100では、負荷側中継ユニットFの配管接続部分の簡素化を図ることができるので、配管接続部からの熱媒体漏れを抑制することができる(図6参照)。この空調給湯複合システム100では、負荷側中継ユニットFに接続する雄ネジ配管29にストレーナー27を取り付けることができるので、信頼性の向上及び長寿命化を実現できる(図6参照)。 As described above, in the air conditioning and hot water supply complex system 100, the load-side relay unit F is downsized, so that the cost required for transportation can be reduced (see FIG. 2). In this air conditioning and hot water supply complex system 100, the control box 25 is improved, so that maintenance and safety can be improved (see FIG. 4). In this air conditioning and hot water supply complex system 100, the piping connection portion of the load-side relay unit F can be simplified, so that leakage of the heat medium from the piping connection portion can be suppressed (see FIG. 6). In this air conditioning and hot water supply complex system 100, since the strainer 27 can be attached to the male screw pipe 29 connected to the load-side relay unit F, the reliability can be improved and the life can be extended (see FIG. 6).
 この空調給湯複合システム100では、負荷側中継ユニットFに接続する貯湯水循環用配管203の集約ができるので、施工前での配管設計が決めやすく、貯湯水循環用配管203を短くすることができる(図7参照)。この空調給湯複合システム100では、負荷側中継ユニットFを設置する機械室90の省スペース化を実現できるので、設備を一箇所に集中することができ、メンテナンス性を向上することができる。この空調給湯複合システム100では、機械室90の容積を小さくすることができるので、機械室90以外の居住空間を大きくすることができる(図9参照)。 In this air-conditioning and hot water supply complex system 100, the hot water storage water circulation pipes 203 connected to the load-side relay unit F can be consolidated, so that it is easy to determine the piping design before construction, and the hot water hot water circulation pipes 203 can be shortened (see FIG. 7). In this air conditioning and hot water supply complex system 100, space saving of the machine room 90 in which the load-side relay unit F is installed can be realized, so that the facilities can be concentrated in one place and the maintainability can be improved. In this air conditioning and hot water supply complex system 100, the volume of the machine room 90 can be reduced, so that the living space other than the machine room 90 can be increased (see FIG. 9).
 給湯熱源にボイラー(たとえば、従来システムのボイラー76)等の燃焼方式を用いた場合、多くのボイラーは、化石燃料を燃やすことで高温熱源を作成することから、CO排出量の増加が懸念される。それに対し、空調給湯複合システム100では、主に電気を稼働源として使用することから、CO排出量を大幅に削減できる。(財)日本原子力文化振興財団の調べによれば、空調給湯複合システム100では、CO排出量が53%となることが分かっている。 Boiler hot water supply heat source (e.g., boiler 76 of conventional systems) is used combustion system, such as, many boilers, by creating a high-temperature heat source by burning fossil fuels, increased CO 2 emissions are concerned The On the other hand, in the air conditioning and hot water supply complex system 100, electricity is mainly used as an operating source, so that CO 2 emission can be greatly reduced. According to a survey by the Japan Atomic Energy Culture Foundation, it is known that CO 2 emissions are 53% in the air conditioning and hot water supply complex system 100.
 燃焼方式の場合、燃焼により生じたガスを大気に放出するための排気(図9(a)で示した排気口81)が必要であることに対し、空調給湯複合システム100の場合、ガスが生じることがないため、吸排気設備を設置する必要性がなく、設置や施工のコストを安価にできる。燃焼方式の場合、投入エネルギーに対して得られる熱量の効率が悪いのに対し、空調給湯複合システム100の場合、ヒートポンプ方式を用いているため、投入エネルギーよりも多くの熱量を取り出すことができる。 In the case of the combustion method, exhaust (for the exhaust port 81 shown in FIG. 9A) for discharging the gas generated by combustion to the atmosphere is necessary, whereas in the case of the air conditioning and hot water supply complex system 100, gas is generated. Therefore, there is no need to install intake / exhaust equipment, and installation and construction costs can be reduced. In the case of the combustion system, the efficiency of the amount of heat obtained with respect to the input energy is poor, whereas in the case of the air conditioning and hot water supply combined system 100, since the heat pump system is used, it is possible to extract more heat than the input energy.
 稼動源を同じ電気としている電熱ヒータに対しても、消費電力に対して得られる熱量が大きく、効率がよいため、コストを安く抑えることが可能である。また、電熱ヒータは、電熱コイルの取り替え作業を定期的に行なう必要があるため、メンテナンスに要する手間及び費用が多くかかることになる。それに対し、空調給湯複合システム100では、メンテナンスを定期的に行なうにしても、消費電力に対して得られる熱量が大きく、ランニングコストを安く抑えることができる。 Even for electric heaters that use the same electricity as the operating source, the amount of heat obtained with respect to power consumption is large and efficient, so the cost can be kept low. Moreover, since it is necessary for the electric heater to periodically replace the electric heating coil, it takes a lot of labor and cost for maintenance. In contrast, in the air-conditioning and hot water supply complex system 100, even if maintenance is performed periodically, the amount of heat obtained for power consumption is large, and the running cost can be reduced.
 空調給湯複合システム100では、ボイラー系統やチラー系統等の空調系統がまとめて同系統に一元化することができるため、系統の監視作業やメンテナンス作業の容易化を実現できる。なお、図8ではレジャー施設として説明したが、それに限定するものではなく、たとえば飲食店や、デパート、ジム、病院等でも同様の効果を得ることができる。また、飲食店や食料品店に代表される食品を扱う施設においては、空調給湯複合システム100に対し、低温設備系統と熱の授受ができるように構成すれば、単独または組合せの室外空調または水熱源機にて、冷凍も行なうことが可能になる。 In the air conditioning and hot water supply complex system 100, since air conditioning systems such as a boiler system and a chiller system can be integrated into the same system, monitoring and maintenance work of the system can be facilitated. In addition, although demonstrated as leisure facilities in FIG. 8, it is not limited to it, For example, a restaurant, a department store, a gym, a hospital, etc. can acquire the same effect. In addition, in facilities that handle foods such as restaurants and grocery stores, if the air conditioning hot water supply complex system 100 is configured to be able to exchange heat with a low temperature equipment system, it can be used alone or in combination with outdoor air conditioning or water. The heat source machine can also be frozen.
 空調給湯複合システム100の熱源を水熱源機にて授受する場合、得られた水熱源を貯蓄すれば、熱の貯蓄を行うことができる。また、空調給湯複合システム100の熱源を室外空調にて授受する場合、得られた温水を冬季に定期的に熱交換器に供給すれば、除霜運転による運転停止を抑制することができる。さらに、積雪がある地帯においては、空調給湯複合システム100にて得られた温水を除雪に用いることもできる。 When the heat source of the air conditioning and hot water supply complex system 100 is transferred by a water heat source machine, heat can be stored if the obtained water heat source is stored. Moreover, when exchanging the heat source of the air-conditioning / hot-water supply combined system 100 by outdoor air-conditioning, if the obtained hot water is periodically supplied to the heat exchanger in winter, the operation stop due to the defrosting operation can be suppressed. Furthermore, in areas where there is snow, hot water obtained by the air conditioning and hot water supply complex system 100 can be used for snow removal.
 給湯に対しての熱授受の対象は水であるが、水に他物質が溶解した溶液や水以外の媒体にしてもよい。たとえば、水ではなく牛乳等の乳飲料にしてもよい。乳飲料を熱媒体として用いた場合、高温殺菌設備として使用することができる。また、熱源機Aに搭載されている室外熱交換器103が空気と冷媒とで熱交換する場合を例に説明したが、熱源を空気に限らず、水や不凍液(ブライン等)、地熱等の他熱源を使用してもよい。なお、必要がある場合、他熱源方式と組合せて使用してもよい。 Although the object of heat transfer to the hot water supply is water, a solution in which other substances are dissolved in water or a medium other than water may be used. For example, it may be a milk drink such as milk instead of water. When a milk beverage is used as a heat medium, it can be used as a high temperature sterilization facility. Moreover, although the case where the outdoor heat exchanger 103 mounted on the heat source unit A performs heat exchange between air and refrigerant has been described as an example, the heat source is not limited to air, but water, antifreeze liquid (brine, etc.), geothermal heat, etc. Other heat sources may be used. If necessary, it may be used in combination with other heat source methods.

Claims (9)

  1.  2台以上の熱交換器と制御基板とが少なくとも搭載される冷凍サイクル装置の負荷側中継ユニットであって、
     前記制御基板は、機能毎に分割された複数の基板を備え、
     前記複数の基板は、前記ユニットの正面側から背面側にかけて配置されている
     ことを特徴とする負荷側中継ユニット。
    A load-side relay unit of a refrigeration cycle apparatus in which at least two heat exchangers and a control board are mounted,
    The control board includes a plurality of boards divided for each function,
    The plurality of substrates are arranged from the front side to the back side of the unit.
  2.  前記制御基板は、
     制御ボックスに収容されている
     ことを特徴とする請求項1に記載の負荷側中継ユニット。
    The control board is
    The load-side relay unit according to claim 1, wherein the load-side relay unit is housed in a control box.
  3.  前記制御基板は、
     制御回路が搭載されているサービス基板、高電圧部基板、及び、ヒートシンク部基板で構成されており、
     前記サービス基板が正面側に、ヒートシンク部基板が背面側に、それぞれ配置される
     ことを特徴とする請求項1又は2に記載の負荷側中継ユニット。
    The control board is
    It consists of a service board on which the control circuit is mounted, a high voltage part board, and a heat sink part board,
    The load-side relay unit according to claim 1 or 2, wherein the service board is arranged on the front side and the heat sink unit board is arranged on the back side.
  4.  前記熱交換器のうちの少なくとも1台を熱媒体と前記熱媒体とは異なる冷媒との間で熱交換器を実行する熱媒体-冷媒熱交換器としたものにおいて、
     前記熱媒体-冷媒熱交換器に流入させる熱媒体の入口側に雄ネジ配管を接続している
     ことを特徴とする請求項1~3のいずれか一項に記載の負荷側中継ユニット。
    At least one of the heat exchangers is a heat medium-refrigerant heat exchanger that executes a heat exchanger between a heat medium and a refrigerant different from the heat medium.
    The load-side relay unit according to any one of claims 1 to 3, wherein a male screw pipe is connected to an inlet side of a heat medium flowing into the heat medium-refrigerant heat exchanger.
  5.  前記雄ネジ配管にストレーナーを直接接続している
     ことを特徴とする請求項4に記載の負荷側中継ユニット。
    The load-side relay unit according to claim 4, wherein a strainer is directly connected to the male screw pipe.
  6.  前記熱媒体-冷媒熱交換器に流入させる熱媒体の入口、及び、前記熱媒体-冷媒熱交換器から流出させる熱媒体の出口の双方を下方に設けている
     ことを特徴とする請求項4又は5に記載の負荷側中継ユニット。
    5. The heat medium inlet flowing into the heat medium-refrigerant heat exchanger and the heat medium outlet flowing out of the heat medium-refrigerant heat exchanger are both provided below. 5. The load side relay unit according to 5.
  7.  空調用圧縮機、流路切替手段、室外熱交換器、室内熱交換器、及び、空調用絞り手段が直列に接続されているとともに、直列に接続された冷媒-冷媒熱交換器及び給湯熱源用絞り手段が前記室内熱交換器及び前記空調用絞り手段に並列に接続されている第1冷媒回路を備え、前記第1冷媒回路に空調用冷媒を循環させる空調用冷凍サイクルと、
     給湯用圧縮機、熱媒体-冷媒熱交換器、給湯用絞り手段、及び、前記冷媒-冷媒熱交換器が直列に接続されている第2冷媒回路を備え、前記第2冷媒回路に給湯用冷媒を循環させる給湯用冷凍サイクルと、
     水循環用ポンプ、前記熱媒体-冷媒熱交換器、及び、貯湯タンクが直列に接続されている水回路を備え、前記水回路に給湯用水を循環させる給湯用負荷と、を備え、
     前記冷媒-冷媒熱交換器、前記給湯熱源用絞り手段、前記熱媒体-冷媒熱交換器、前記給湯用圧縮機、及び、前記給湯用絞り手段は、前記請求項1~6のいずれか一項に記載の負荷側中継ユニットに収容されている
     ことを特徴とする空調給湯複合システム。
    The compressor for air conditioning, the flow path switching means, the outdoor heat exchanger, the indoor heat exchanger, and the throttle means for air conditioning are connected in series, and for the refrigerant-refrigerant heat exchanger and hot water supply heat source connected in series. An air-conditioning refrigeration cycle, wherein the throttle means comprises a first refrigerant circuit connected in parallel to the indoor heat exchanger and the air-conditioning throttle means, and circulates the air-conditioning refrigerant in the first refrigerant circuit;
    A hot water supply compressor, a heat medium-refrigerant heat exchanger, hot water supply throttling means, and a second refrigerant circuit in which the refrigerant-refrigerant heat exchanger is connected in series, and the second refrigerant circuit has a hot water supply refrigerant Refrigeration cycle for hot water supply that circulates
    A water circulation pump, a water circuit in which the heat medium-refrigerant heat exchanger, and a hot water storage tank are connected in series, and a hot water supply load for circulating hot water in the water circuit,
    The refrigerant-refrigerant heat exchanger, the hot water supply heat source throttle means, the heat medium-refrigerant heat exchanger, the hot water supply compressor, and the hot water supply throttle means are any one of the first to sixth aspects. It is housed in the load side relay unit described in 1.
  8.  前記負荷側熱交換器は、
     床面又は壁面に設置される
     ことを特徴とする請求項7に記載の空調給湯複合システム。
    The load-side heat exchanger is
    It is installed on a floor surface or a wall surface. The air conditioning and hot water supply combined system according to claim 7.
  9.  前記負荷側熱交換器を複数台接続するものにおいて、
     前記負荷側中継ユニットを横並び又は段積みに配置している
     ことを特徴とする請求項7に記載の空調給湯複合システム。
    In connecting a plurality of the load side heat exchangers,
    The air-conditioning and hot-water supply complex system according to claim 7, wherein the load-side relay units are arranged side by side or stacked.
PCT/JP2009/056047 2009-03-26 2009-03-26 Load-side relay unit and compound air conditioning/hot water supply system mounting load-side relay unit thereon WO2010109618A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/056047 WO2010109618A1 (en) 2009-03-26 2009-03-26 Load-side relay unit and compound air conditioning/hot water supply system mounting load-side relay unit thereon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/056047 WO2010109618A1 (en) 2009-03-26 2009-03-26 Load-side relay unit and compound air conditioning/hot water supply system mounting load-side relay unit thereon

Publications (1)

Publication Number Publication Date
WO2010109618A1 true WO2010109618A1 (en) 2010-09-30

Family

ID=42780327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056047 WO2010109618A1 (en) 2009-03-26 2009-03-26 Load-side relay unit and compound air conditioning/hot water supply system mounting load-side relay unit thereon

Country Status (1)

Country Link
WO (1) WO2010109618A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2902726A4 (en) * 2012-09-25 2016-06-08 Mitsubishi Electric Corp Combined air-conditioning and hot-water supply system
CN112703351A (en) * 2018-09-21 2021-04-23 三菱电机株式会社 Repeater

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5338843U (en) * 1976-09-09 1978-04-05
JPS61116961U (en) * 1984-12-29 1986-07-23
JPH05203235A (en) * 1992-01-28 1993-08-10 Hitachi Ltd Air conditioner
JPH09257276A (en) * 1996-03-25 1997-09-30 Daikin Ind Ltd Outdoor apparatus for air conditioning device
JP2003065563A (en) * 2001-08-23 2003-03-05 Toshiba Kyaria Kk Outdoor unit of air conditioner
WO2008117408A1 (en) * 2007-03-27 2008-10-02 Mitsubishi Electric Corporation Heat pump device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5338843U (en) * 1976-09-09 1978-04-05
JPS61116961U (en) * 1984-12-29 1986-07-23
JPH05203235A (en) * 1992-01-28 1993-08-10 Hitachi Ltd Air conditioner
JPH09257276A (en) * 1996-03-25 1997-09-30 Daikin Ind Ltd Outdoor apparatus for air conditioning device
JP2003065563A (en) * 2001-08-23 2003-03-05 Toshiba Kyaria Kk Outdoor unit of air conditioner
WO2008117408A1 (en) * 2007-03-27 2008-10-02 Mitsubishi Electric Corporation Heat pump device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2902726A4 (en) * 2012-09-25 2016-06-08 Mitsubishi Electric Corp Combined air-conditioning and hot-water supply system
CN112703351A (en) * 2018-09-21 2021-04-23 三菱电机株式会社 Repeater
US20210215383A1 (en) * 2018-09-21 2021-07-15 Mitsubishi Electric Corporation Relay
EP3855083A4 (en) * 2018-09-21 2021-09-22 Mitsubishi Electric Corporation Relaying unit
CN112703351B (en) * 2018-09-21 2022-04-26 三菱电机株式会社 Repeater
US11808476B2 (en) 2018-09-21 2023-11-07 Mitsubishi Electric Corporation Relay unit heat exchanger

Similar Documents

Publication Publication Date Title
JP5518101B2 (en) Air conditioning and hot water supply complex system
JP5084903B2 (en) Air conditioning and hot water supply complex system
JP5121922B2 (en) Air conditioning and hot water supply complex system
CN103229006B (en) Supplying hot water air-conditioning set composite
AU2005261038B2 (en) Heat conveyance system
CN101809383A (en) Air-conditioning and water-heating complex system
JP5642085B2 (en) Refrigeration cycle apparatus and information transmission method applied thereto
JP5373964B2 (en) Air conditioning and hot water supply system
JP5455521B2 (en) Air conditioning and hot water supply system
CN103328909A (en) Air-conditioning device
WO2008113121A1 (en) A thermal transfer, recovery and management system
JP5264936B2 (en) Air conditioning and hot water supply complex system
JP5761857B2 (en) Dual refrigeration cycle equipment
EP2584285A1 (en) Refrigerating air-conditioning device
JP5202726B2 (en) Load-side relay unit and combined air conditioning and hot water supply system
WO2010109619A1 (en) Load-side relay unit and compound air conditioning/hot water supply system mounting load-side relay unit thereon
WO2010109618A1 (en) Load-side relay unit and compound air conditioning/hot water supply system mounting load-side relay unit thereon
KR100540362B1 (en) Heating, cooling and hot water supply system with heat pump
JP5627559B2 (en) Air conditioner
KR20100128539A (en) Cool and hot water generating apparatus using heat pump in large building
JP2009109061A (en) Heat pump type air conditioning device comprising heating panel
KR20180075016A (en) Heat pump type cooling apparatus for automatic vending machine
KR20100035313A (en) Heat pump system
JPH1047716A (en) Method of reforming heating system to heating and cooling system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09842232

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09842232

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP