JP6613404B2 - Refrigeration system - Google Patents

Refrigeration system Download PDF

Info

Publication number
JP6613404B2
JP6613404B2 JP2015115672A JP2015115672A JP6613404B2 JP 6613404 B2 JP6613404 B2 JP 6613404B2 JP 2015115672 A JP2015115672 A JP 2015115672A JP 2015115672 A JP2015115672 A JP 2015115672A JP 6613404 B2 JP6613404 B2 JP 6613404B2
Authority
JP
Japan
Prior art keywords
refrigerant
adsorption
hot water
unit
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015115672A
Other languages
Japanese (ja)
Other versions
JP2017003157A (en
Inventor
潤一郎 粕谷
宣伯 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Retail Systems Corp
Original Assignee
Sanden Retail Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Retail Systems Corp filed Critical Sanden Retail Systems Corp
Priority to JP2015115672A priority Critical patent/JP6613404B2/en
Priority to PCT/JP2016/066421 priority patent/WO2016199671A1/en
Publication of JP2017003157A publication Critical patent/JP2017003157A/en
Application granted granted Critical
Publication of JP6613404B2 publication Critical patent/JP6613404B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B17/00Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type
    • F25B17/08Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type the absorbent or adsorbent being a solid, e.g. salt
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Description

本発明は、主冷凍サイクルの主冷媒を過冷却する吸着式冷凍サイクルを備える冷凍システムに関する。   The present invention relates to a refrigeration system including an adsorption refrigeration cycle for supercooling a main refrigerant of a main refrigeration cycle.

主冷凍サイクルの主冷媒を吸着式冷凍サイクルを用いて過冷却することにより、冷凍能力を向上させるようにした冷凍システムは、特許文献1により知られている。   Patent Document 1 discloses a refrigeration system in which a refrigeration capacity is improved by supercooling a main refrigerant of a main refrigeration cycle using an adsorption refrigeration cycle.

吸着式冷凍サイクルは、冷却されることにより吸着冷媒を吸着し、加熱されることにより吸着冷媒を脱離する吸着材を備える吸着部と、前記吸着材が吸着冷媒を脱離する冷媒脱離モードにて、脱離した吸着冷媒を凝縮させる凝縮部と、前記吸着材が吸着冷媒を吸着する冷媒吸着モードにて、前記凝縮部により凝縮された吸着冷媒を蒸発させて前記吸着部に供給する蒸発部と、を含んで構成される。   The adsorption refrigeration cycle includes an adsorbing unit including an adsorbent that adsorbs adsorbed refrigerant by being cooled and desorbed adsorbed refrigerant by being heated, and a refrigerant desorption mode in which the adsorbent desorbs the adsorbed refrigerant. In the condensing unit for condensing the adsorbed adsorbed refrigerant and the refrigerant adsorbing mode in which the adsorbent adsorbs the adsorbed refrigerant, the adsorbed refrigerant condensed by the condensing unit is evaporated and supplied to the adsorbing unit Part.

吸着式冷凍サイクルの吸着部は、吸着冷媒の吸着と脱離とを交互に繰り返すため、通常は、吸着部を2組設け、交互に切換えることで、蒸発部での吸着冷媒の蒸発が連続的に行われるようにする。しかし、吸着部を2組設けることで、冷凍装置の体格が大型化する。そこで、特許文献1に記載の技術では、1組の吸着部のみとし、冷媒脱離モードでは、凝縮部冷却用の冷却水により、主冷凍サイクルの主冷媒を過冷却している。   Since the adsorption section of the adsorption refrigeration cycle repeats the adsorption and desorption of the adsorbed refrigerant alternately, normally, by providing two sets of adsorbing sections and switching them alternately, the evaporation of the adsorbed refrigerant in the evaporation section is continuous. To be done. However, providing two sets of adsorption parts increases the size of the refrigeration apparatus. Therefore, in the technique described in Patent Document 1, only one set of adsorption units is used, and in the refrigerant desorption mode, the main refrigerant of the main refrigeration cycle is supercooled with cooling water for cooling the condensing unit.

特開2013−096586号公報JP2013-096586A

しかしながら、特許文献1に記載の技術は、吸着式冷凍サイクルの蒸発部に生成される冷熱で2次媒体(冷却水)を冷却し、この2次媒体で主冷媒サイクルの主冷媒を過冷却する構成であるため、2次媒体を介する分のロスが発生し、効率が悪かった。 However, the technique described in Patent Document 1 cools the secondary medium (cooling water) with cold heat generated in the evaporation section of the adsorption refrigeration cycle, and supercools the main refrigerant of the main refrigerant cycle with this secondary medium. Since it is a structure, the loss through the secondary medium occurred and the efficiency was poor.

また、特許文献1に記載の技術は、車両用であり、冷媒脱離モード実現のための加熱源は、エンジンの排熱であり、冷媒吸着モードでは不要のため、本来備えるラジエータで放熱すればよい。しかし、定置用の場合、特にコジェネレーションシステムなどの場合、発電と排熱の総合エネルギー効率を高めるのが目的であるため、熱を外気に棄てることは問題がある。   The technique described in Patent Document 1 is for vehicles, and the heat source for realizing the refrigerant desorption mode is the exhaust heat of the engine, and is unnecessary in the refrigerant adsorption mode. Good. However, in the case of stationary use, particularly in the case of a cogeneration system or the like, the purpose is to increase the total energy efficiency of power generation and exhaust heat, so it is problematic to dissipate heat to the outside air.

本発明は、このような従来の問題点に鑑み、主冷凍サイクルの主冷媒をより効率的に過冷却することができる、定置用の冷凍サイクルを提供することを課題とする。   This invention makes it a subject to provide the stationary refrigeration cycle which can supercool the main refrigerant | coolant of a main refrigeration cycle more efficiently in view of such a conventional problem.

上記の課題を解決するために、本発明に係る冷凍システムは、
冷却されることにより吸着冷媒を吸着し、加熱されることにより吸着冷媒を脱離する吸着材を備える吸着部と、
前記吸着材が吸着冷媒を脱離する冷媒脱離モードにて、脱離した吸着冷媒を凝縮させる凝縮部と、
前記吸着材が吸着冷媒を吸着する冷媒吸着モードにて、前記凝縮部により凝縮された吸着冷媒を蒸発させて前記吸着部に供給する蒸発部と、
前記冷媒吸着モードにて加熱用媒体に蓄熱する蓄熱部を有し、前記冷媒脱離モードにて前記蓄熱部から前記吸着部に加熱用媒体を供給可能な熱源と、
前記冷媒吸着モードにて前記吸着部に冷却用媒体を供給可能で、前記冷媒脱離モードにて前記凝縮部に冷却用媒体を供給可能な冷却器と、
主冷凍サイクルに組み込まれ前記冷媒吸着モードにて前記蒸発部にて蒸発する吸着冷媒と主冷媒とを熱交換させて主冷媒を過冷却可能な第1の過冷却熱交換器と、
主冷凍サイクルに組み込まれ前記冷媒脱離モードにて前記冷却器から供給される冷却用媒体の少なくとも一部と主冷媒とを熱交換させて主冷媒を過冷却可能な第2の過冷却熱交換器と、
を含んで構成される。
In order to solve the above problems, a refrigeration system according to the present invention includes:
An adsorbing portion comprising an adsorbent that adsorbs the adsorbing refrigerant by being cooled and desorbing the adsorbing refrigerant by being heated;
A condensing part for condensing the adsorbed adsorbed refrigerant in a refrigerant desorption mode in which the adsorbent desorbs the adsorbed refrigerant;
An evaporating unit that evaporates the adsorbed refrigerant condensed by the condensing unit and supplies it to the adsorbing unit in a refrigerant adsorption mode in which the adsorbent adsorbs the adsorbed refrigerant;
A heat storage unit that stores heat in the heating medium in the refrigerant adsorption mode, and a heat source capable of supplying the heating medium from the heat storage unit to the adsorption unit in the refrigerant desorption mode;
A cooler capable of supplying a cooling medium to the adsorption unit in the refrigerant adsorption mode and capable of supplying a cooling medium to the condensing unit in the refrigerant desorption mode;
A first supercooling heat exchanger capable of supercooling the main refrigerant by exchanging heat between the main refrigerant and the adsorbed refrigerant that is incorporated in the main refrigeration cycle and evaporates in the evaporator in the refrigerant adsorption mode;
A second subcooling heat exchange that can be supercooled by at least a part of the cooling medium incorporated in the main refrigeration cycle and supplied from the cooler in the refrigerant desorption mode with the main refrigerant. and the vessel,
It is comprised including.

本発明によれば、主冷凍サイクルに2つの過冷却熱交換器を組み込み、冷媒吸着モードでは、前記蒸発部にて蒸発する吸着冷媒と主冷媒とを熱交換させ、冷媒脱離モードでは、前記冷却器からの冷却用媒体と主冷媒とを熱交換させる。従って、2次媒体を介することがなく、エネルギーロスを低減できる。
また、本発明によれば、前記吸着部に加熱用媒体を供給可能な熱源に蓄熱部を持たせ、冷媒吸着モードにて加熱用媒体に蓄熱する構成のため、熱を棄てることなく、有効利用でき、エネルギー効率向上等を図ることができる。
According to the present invention, two subcooling heat exchangers are incorporated in the main refrigeration cycle, and in the refrigerant adsorption mode, heat exchange is performed between the adsorbed refrigerant evaporated in the evaporating unit and the main refrigerant, and in the refrigerant desorption mode, Heat exchange is performed between the cooling medium from the cooler and the main refrigerant. Therefore, energy loss can be reduced without using a secondary medium.
Further, according to the present invention, the heat source capable of supplying the heating medium to the adsorption unit has a heat storage unit, and heat is stored in the heating medium in the refrigerant adsorption mode. It is possible to improve energy efficiency.

本発明の一実施形態を示す冷凍システムの回路図1 is a circuit diagram of a refrigeration system showing an embodiment of the present invention. 図1の実施形態での冷媒吸着モードの説明図Explanatory drawing of the refrigerant | coolant adsorption mode in embodiment of FIG. 図1の実施形態での冷媒脱離モードの説明図Explanatory drawing of the refrigerant | coolant desorption mode in embodiment of FIG. 他の実施形態を示す冷凍システムの回路図Circuit diagram of a refrigeration system showing another embodiment 図4の実施形態での冷凍装置の運転停止モードの説明図Explanatory drawing of the operation stop mode of the freezing apparatus in embodiment of FIG.

以下、本発明の実施の形態について、詳細に説明する。
本発明に係る冷凍システムは、室内の冷房や庫内の食品等の冷蔵・冷凍を行う定置用の冷凍システムで、主冷凍サイクル(蒸気圧縮式冷凍装置)とは別に、吸着式冷凍サイクル(吸着式冷凍装置)を備える。吸着式冷凍サイクルは、主冷凍サイクルの主冷媒の過冷却に用いられ、主冷凍サイクルの冷凍能力を向上させる。
Hereinafter, embodiments of the present invention will be described in detail.
The refrigeration system according to the present invention is a stationary refrigeration system for refrigeration and freezing of indoor air conditioners and foods in a warehouse, and separate from the main refrigeration cycle (vapor compression refrigeration system), an adsorption refrigeration cycle (adsorption) Type refrigeration equipment). The adsorption refrigeration cycle is used for supercooling the main refrigerant of the main refrigeration cycle, and improves the refrigeration capacity of the main refrigeration cycle.

主冷凍サイクルを構成する蒸気圧縮式冷凍装置1は、回路内を循環する主冷媒の蒸発作用により、室内の冷房や庫内の食品等の冷蔵・冷凍を行うもので、圧縮機2、凝縮器3、減圧手段をなす膨張弁4、蒸発器5を含んで構成される。   The vapor compression refrigeration apparatus 1 constituting the main refrigeration cycle performs the indoor cooling and refrigeration / freezing of food in the refrigerator by the evaporating action of the main refrigerant circulating in the circuit. The compressor 2, the condenser 3. An expansion valve 4 serving as a decompression unit and an evaporator 5 are included.

圧縮機2は、低圧低温気体の主冷媒を圧縮して、高圧高温気体の主冷媒を得る。その電源としては、後述する発電装置21を用いることができる。
凝縮器3は、ファン3aを用い、圧縮機2からの高圧高温気体の主冷媒を室外空気で凝縮点まで冷却して、高圧常温液体の主冷媒に還元する。
膨張弁4は、凝縮器3からの高圧常温液体の主冷媒を急激に減圧膨張させて、低圧低温液体(霧状)の主冷媒を得る。
蒸発器5は、ファン5aによる空気の送風路(吸込み口と吹出し口との間)に配置され、膨張弁4からの低圧低温液体の主冷媒を周囲から熱を奪いながら蒸発させる。これにより、冷房あるいは冷蔵・冷凍用の空気を冷却する。
The compressor 2 compresses the main refrigerant of low pressure and low temperature gas to obtain the main refrigerant of high pressure and high temperature gas. As the power source, a power generation device 21 described later can be used.
The condenser 3 uses the fan 3a, cools the main refrigerant of high-pressure and high-temperature gas from the compressor 2 to the condensation point with outdoor air, and reduces it to the main refrigerant of high-pressure and normal-temperature liquid.
The expansion valve 4 rapidly decompresses and expands the high-pressure and normal-temperature liquid main refrigerant from the condenser 3 to obtain a low-pressure and low-temperature liquid (mist-like) main refrigerant.
The evaporator 5 is disposed in the air blowing path (between the suction port and the blowout port) by the fan 5a, and evaporates the main refrigerant of the low-pressure low-temperature liquid from the expansion valve 4 while taking heat from the surroundings. Thereby, air for cooling or refrigeration / freezing is cooled.

ここで、蒸気圧縮式冷凍装置1における凝縮器3の後段(凝縮器3と膨張弁4との間)に、吸着式冷凍サイクルを構成する吸着式冷凍装置10を用いて主冷媒を過冷却する第1及び第2の過冷却熱交換器7、8が配置されている。   Here, the main refrigerant is supercooled by using the adsorption refrigeration apparatus 10 constituting the adsorption refrigeration cycle at the subsequent stage of the condenser 3 in the vapor compression refrigeration apparatus 1 (between the condenser 3 and the expansion valve 4). First and second supercooling heat exchangers 7 and 8 are arranged.

第1の過冷却熱交換器7は、蒸気圧縮式冷凍装置1の循環回路に直列に介装される熱交換通路7aを有し、熱交換通路7aを流通する主冷媒を、後述のように、吸着式冷凍装置10の冷媒吸着モードにて、蒸発部13内の吸着冷媒との熱交換により、過冷却する。   The first subcooling heat exchanger 7 has a heat exchange passage 7a interposed in series in the circulation circuit of the vapor compression refrigeration apparatus 1, and the main refrigerant flowing through the heat exchange passage 7a is used as described later. In the refrigerant adsorption mode of the adsorption refrigeration apparatus 10, the refrigerant is supercooled by heat exchange with the adsorbed refrigerant in the evaporator 13.

第2の過冷却熱交換器8は、蒸気圧縮式冷凍装置1の循環回路に直列に介装される熱交換通路8aを有し、熱交換通路8aを流通する主冷媒を、後述のように、吸着式冷凍装置10の冷媒脱離モードにて、凝縮部12冷却用の冷却水との熱交換により、過冷却する。すなわち、第2の過冷却熱交換器8は、蒸気圧縮式冷凍装置1の主冷媒が流通する熱交換通路8aと、冷却水が流通可能な熱交換通路8bとを有し、これらが熱的に接している。   The second subcooling heat exchanger 8 has a heat exchange passage 8a interposed in series in the circulation circuit of the vapor compression refrigeration apparatus 1, and the main refrigerant flowing through the heat exchange passage 8a is used as described later. Then, in the refrigerant desorption mode of the adsorption refrigeration apparatus 10, supercooling is performed by heat exchange with the cooling water for cooling the condenser 12. That is, the second subcooling heat exchanger 8 has a heat exchange passage 8a through which the main refrigerant of the vapor compression refrigeration apparatus 1 flows and a heat exchange passage 8b through which cooling water can flow, which are thermally Is in contact with

第1又は第2の過冷却熱交換器7、8により、蒸気圧縮式冷凍装置1の凝縮器3出口側の主冷媒が、凝縮器3単体の場合に比べて更に冷却されることで、蒸発器5入口側の主冷媒のエンタルピ及び乾き度を下げることができるので、冷凍能力を向上させることができる。延いては、圧縮機2の吐出容量を減少させることができるので、圧縮機2の消費電力を削減し、省エネ性能を向上させることができる。   The main refrigerant on the outlet side of the condenser 3 of the vapor compression refrigeration apparatus 1 is further cooled by the first or second supercooling heat exchangers 7 and 8 as compared with the case of the condenser 3 alone, thereby evaporating. Since the enthalpy and dryness of the main refrigerant on the inlet side of the vessel 5 can be lowered, the refrigeration capacity can be improved. As a result, since the discharge capacity of the compressor 2 can be reduced, the power consumption of the compressor 2 can be reduced and the energy saving performance can be improved.

吸着式冷凍サイクルを構成する吸着式冷凍装置10は、吸着部11と、凝縮部12と、蒸発部13とを含んで構成される。
これらは、下(低位)から上(高位)に、蒸発部13、吸着部11、凝縮部12の順で配置される。蒸発部13と吸着部11とは、蒸発部13側から吸着部11側への流れのみを許容する一方向弁14を介して配管接続される。吸着部11と凝縮部12とは、吸着部11側から凝縮部12側への流れのみを許容する一方向弁15を介して配管接続される。凝縮部12と蒸発部13とは、凝縮部12側から蒸発部13側へ、ポンプ16を介して配管接続される。
従って、これらは、蒸発部13→吸着部11→凝縮部12→蒸発部13の閉回路を構成する。そして、この閉回路内には真空下で吸着冷媒としての水(蒸気)が封入される。
尚、一方向弁14の代わりに、冷媒吸着モードで開く開閉弁を設けてもよい。また、一方向弁15の代わりに、冷媒脱離モードで開く開閉弁を設けてもよい。
The adsorption refrigeration apparatus 10 constituting the adsorption refrigeration cycle includes an adsorption unit 11, a condensing unit 12, and an evaporation unit 13.
These are arranged in the order of the evaporation unit 13, the adsorption unit 11, and the condensation unit 12 from the bottom (low level) to the top (high level). The evaporating unit 13 and the adsorbing unit 11 are connected by piping via a one-way valve 14 that allows only the flow from the evaporating unit 13 side to the adsorbing unit 11 side. The adsorbing unit 11 and the condensing unit 12 are pipe-connected via a one-way valve 15 that allows only a flow from the adsorbing unit 11 side to the condensing unit 12 side. The condensing unit 12 and the evaporating unit 13 are connected via a pump 16 from the condensing unit 12 side to the evaporating unit 13 side.
Accordingly, these constitute a closed circuit of the evaporation unit 13 → the adsorption unit 11 → the condensing unit 12 → the evaporation unit 13. And in this closed circuit, water (steam) as an adsorption refrigerant is enclosed under vacuum.
Instead of the one-way valve 14, an open / close valve that opens in the refrigerant adsorption mode may be provided. Further, instead of the one-way valve 15, an on-off valve that opens in the refrigerant desorption mode may be provided.

吸着部11は、冷却されることにより吸着冷媒を吸着し、加熱されることにより吸着冷媒を脱離する吸着材を備える。吸着部11は、詳しくは下記のように構成される。
吸着部11は、その内部にフィンアンドチューブ式熱交換器を備える。すなわち、吸着部11を貫通するチューブ11aと、吸着部11内でチューブ11aの外面に取付けられた多数のフィン11bとを備える。そして、フィン11bの表面に吸着材(ゼオライト、シリカゲルなどの水吸着材)が接着されている。
The adsorption unit 11 includes an adsorbent that adsorbs the adsorbed refrigerant when cooled and desorbs the adsorbed refrigerant when heated. The adsorption unit 11 is configured in detail as follows.
The adsorption unit 11 includes a fin-and-tube heat exchanger therein. That is, the tube 11a which penetrates the adsorption | suction part 11 and the many fins 11b attached to the outer surface of the tube 11a in the adsorption | suction part 11 are provided. An adsorbent (water adsorbent such as zeolite or silica gel) is bonded to the surface of the fin 11b.

吸着材は、これが収納された雰囲気の相対湿度が高くなるほど、吸着可能な冷媒量(吸着容量)が増大する性質を有している。
このため、吸着材(吸着材付きのフィン11b)を加熱すると、吸着材の表面近傍の相対湿度が低下して吸着容量が減少するので、その減少分、吸着していた冷媒を脱離放出する。その一方、吸着材(吸着材付きのフィン11b)を冷却すると、吸着材の表面近傍の相対湿度が上昇して吸着容量が増加するので、その増加分、冷媒を吸着する。尚、吸着材は、蒸気冷媒を吸着する際に冷媒の凝縮熱より大きい吸着熱を発生する。
The adsorbent has the property that the amount of adsorbable refrigerant (adsorption capacity) increases as the relative humidity of the atmosphere in which the adsorbent is stored increases.
For this reason, when the adsorbent (fin 11b with adsorbent) is heated, the relative humidity in the vicinity of the surface of the adsorbent decreases and the adsorption capacity decreases, so that the adsorbed refrigerant is desorbed and released. . On the other hand, when the adsorbent (fin 11b with adsorbent) is cooled, the relative humidity in the vicinity of the surface of the adsorbent increases and the adsorption capacity increases. Therefore, the refrigerant is adsorbed by the increase. The adsorbent generates heat of adsorption larger than the heat of condensation of the refrigerant when adsorbing the vapor refrigerant.

吸着部11内のチューブ11aには、吸着材を加熱又は冷却するため、加熱用媒体としての温水、又は冷却用媒体としての冷却水(比較的低温の水)が選択的に流通される。チューブ11aに温水を流通させることで、吸着材を加熱可能であり、チューブ11aに冷却水を流通させることで、吸着材を冷却可能である。   In order to heat or cool the adsorbent, the hot water as the heating medium or the cooling water (relatively low temperature water) as the cooling medium is selectively circulated through the tube 11a in the adsorption unit 11. The adsorbent can be heated by circulating hot water through the tube 11a, and the adsorbent can be cooled by circulating cooling water through the tube 11a.

凝縮部12は、吸着部11にて吸着材が吸着冷媒を脱離する冷媒脱離モードにて、脱離した吸着冷媒を凝縮させる。凝縮部12は、詳しくは下記のように構成される。
凝縮部12は、その内部に、冷却水が流通可能な熱交換通路12aを備える。これにより、吸着部11にて吸着材から脱離放出されて凝縮部12に流入した蒸気冷媒を冷却して凝縮液化することができる。
The condensing unit 12 condenses the adsorbed adsorbed refrigerant in the refrigerant desorption mode in which the adsorbent desorbs the adsorbed refrigerant in the adsorbing unit 11. The condensing part 12 is comprised in detail as follows.
The condensing unit 12 includes therein a heat exchange passage 12a through which cooling water can flow. As a result, the vapor refrigerant that has been desorbed and released from the adsorbent by the adsorbing unit 11 and has flowed into the condensing unit 12 can be cooled and condensed into a liquid.

蒸発部13は、吸着部11にて吸着材が吸着冷媒を吸着する冷媒吸着モードにて、凝縮部12により凝縮された吸着冷媒を蒸発させて吸着部11に供給する。蒸発部13は、詳しくは下記のように構成される。
蒸発部13は、第1の過冷却熱交換器7として機能するもので、蒸発部13の内部には、蒸気圧縮式冷凍装置1の主冷媒が流通する熱交換通路7aが貫通している。
蒸発部13は、その内部(底部)に吸着冷媒としての水が貯留される。熱交換通路7aは、水面より上方に配置される。そして、蒸発部13内の熱交換通路7aの上方に冷媒撒布管17が配置される。
The evaporation unit 13 evaporates the adsorbed refrigerant condensed by the condensing unit 12 and supplies it to the adsorbing unit 11 in the refrigerant adsorption mode in which the adsorbent adsorbs the adsorbed refrigerant in the adsorbing unit 11. In detail, the evaporation part 13 is comprised as follows.
The evaporation unit 13 functions as the first subcooling heat exchanger 7, and a heat exchange passage 7 a through which the main refrigerant of the vapor compression refrigeration apparatus 1 flows passes through the evaporation unit 13.
The evaporation unit 13 stores water as an adsorbed refrigerant inside (bottom) thereof. The heat exchange passage 7a is disposed above the water surface. And the refrigerant | coolant distribution pipe | tube 17 is arrange | positioned above the heat exchange channel | path 7a in the evaporation part 13. FIG.

ここにおいて、凝縮部12底部からの液冷媒戻し通路18と蒸発部13底部からの液冷媒取出し通路19とを合流させて、ポンプ16の吸入口に接続してある。そして、ポンプ16の吐出側を蒸発部13内の冷媒撒布管17に接続してある。冷媒撒布管17は、水平に配置される管体の下面に複数の小孔を形成したもので、熱交換通路7aの構成体上に液冷媒を降り注ぐことができる。これにより、蒸発部13は、いわゆる「流下液膜式」の蒸発器を構成している。
尚、熱交換通路7aを液面下に設けて水没させる方式としてもよい。この場合はポンプ16が不要となる。但し、水頭圧が発生するため、蒸発温度が高くなってしまう。
Here, the liquid refrigerant return passage 18 from the bottom of the condenser 12 and the liquid refrigerant take-out passage 19 from the bottom of the evaporator 13 are joined together and connected to the suction port of the pump 16. The discharge side of the pump 16 is connected to the refrigerant distribution tube 17 in the evaporator 13. The refrigerant distribution tube 17 is formed by forming a plurality of small holes on the lower surface of a horizontally disposed tube body, and can pour liquid refrigerant onto the constituent body of the heat exchange passage 7a. Thereby, the evaporation unit 13 constitutes a so-called “falling liquid film type” evaporator.
The heat exchange passage 7a may be provided under the liquid level and submerged. In this case, the pump 16 becomes unnecessary. However, since the water head pressure is generated, the evaporation temperature becomes high.

次に吸着部11の加熱手段及び冷却手段について説明する。
加熱手段の熱源としては、燃料電池やガスタービン発電機などの発電装置21が用いられる。そして、発電装置21から発電に伴って発生する熱を回収するため、蓄熱部として、貯湯タンク22が設けられる。
発電装置21の熱発生部(発電部又は排気通路)と、貯湯タンク22との間には、循環ポンプ23を含む熱回収回路24が形成される。
熱回収回路24は、循環ポンプ23により貯湯タンク22の底部から比較的低温の湯水を取り出して、発電装置21の熱発生部に送り、熱を回収する。熱の回収により高温となった湯水は、貯湯タンク22の上部に戻して、貯留させる。
Next, heating means and cooling means of the adsorption unit 11 will be described.
As a heat source of the heating means, a power generation device 21 such as a fuel cell or a gas turbine generator is used. And in order to collect | recover the heat which generate | occur | produces with electric power generation from the electric power generating apparatus 21, the hot water storage tank 22 is provided as a heat storage part.
A heat recovery circuit 24 including a circulation pump 23 is formed between the heat generation unit (power generation unit or exhaust passage) of the power generation device 21 and the hot water storage tank 22.
The heat recovery circuit 24 takes out a relatively low temperature hot water from the bottom of the hot water storage tank 22 by the circulation pump 23 and sends it to the heat generation part of the power generation device 21 to recover the heat. The hot water having a high temperature due to the heat recovery is returned to the upper part of the hot water storage tank 22 and stored.

加熱手段として、貯湯タンク22内の温水を用いるため、温水ポンプ25を含む温水回路26が形成される。
温水回路26は、温水ポンプ25と貯湯タンク22との直列回路であり、貯湯タンク22の上部より温水を取り出して、加熱に供し、加熱に供した温水を温水ポンプ25により貯湯タンク22の底部に戻す。
Since the hot water in the hot water storage tank 22 is used as the heating means, a hot water circuit 26 including the hot water pump 25 is formed.
The hot water circuit 26 is a series circuit of the hot water pump 25 and the hot water storage tank 22. The hot water is taken out from the upper part of the hot water storage tank 22 and used for heating. The hot water used for heating is supplied to the bottom of the hot water storage tank 22 by the hot water pump 25. return.

冷却手段としては、空冷式の冷却器27が用いられる。冷却器27は、ファン27aを用い、通流する水を冷却する。尚、密閉式の冷却器とする他、開放式の冷却器、いわゆるクーリングタワーを用いてもよい。クーリングタワーの場合は、外気への冷却水の蒸発が発生するため、より低温を作成することができる。
冷却手段として、冷却器27による冷却水を用いるため、冷却水ポンプ28を含む冷却水回路29が形成される。
冷却水回路29は、冷却器27と冷却水ポンプ28との直列回路であり、冷却器27による冷却水を冷却水ポンプ28により吸入吐出して、冷却に供し、冷却に供した冷却水を冷却器27に戻す。
An air-cooled cooler 27 is used as the cooling means. The cooler 27 uses a fan 27a to cool the flowing water. In addition to the hermetic cooler, an open cooler, a so-called cooling tower may be used. In the case of the cooling tower, since the cooling water evaporates to the outside air, a lower temperature can be created.
Since cooling water from the cooler 27 is used as cooling means, a cooling water circuit 29 including a cooling water pump 28 is formed.
The cooling water circuit 29 is a series circuit of a cooler 27 and a cooling water pump 28, and the cooling water from the cooler 27 is sucked and discharged by the cooling water pump 28, is used for cooling, and the cooling water used for cooling is cooled. Return to vessel 27.

吸着部11の加熱・冷却用チューブ11aは、吸着材の加熱・冷却のため、三方切替弁31、32を介し、温水回路26又は冷却水回路29と選択的に接続される。尚、便宜上、温水回路26には温水が流れ、冷却水回路29には冷却水が流れるものとして説明するが、これらの回路26、29は共用している加熱・冷却用チューブ11aで実質的につながっており、媒体自体は同じ水で、温度が違うのみである。   The heating / cooling tube 11a of the adsorption unit 11 is selectively connected to the hot water circuit 26 or the cooling water circuit 29 via the three-way switching valves 31 and 32 for heating / cooling the adsorbent. For convenience, it is assumed that hot water flows in the hot water circuit 26 and cooling water flows in the cooling water circuit 29. However, these circuits 26 and 29 are substantially constituted by a common heating / cooling tube 11a. Connected, the medium itself is the same water, only the temperature is different.

三方切替弁31、32の一位置(冷媒脱離モード)では、吸着部11の加熱・冷却用チューブ11aに温水回路26が接続される。すなわち、加熱・冷却用チューブ11aの一端(入口端)に貯湯タンク22上部からの温水配管が三方切替弁31を介して接続され、加熱・冷却用チューブ11aの他端(出口端)が、三方切替弁32を介して貯湯タンク22底部(温水ポンプ25の吸入口)に接続される。
三方切替弁31、32の他位置(冷媒吸着モード)では、吸着部11の加熱・冷却用チューブ11aに冷却水回路29が接続される。すなわち、加熱・冷却用チューブ11aの一端(入口端)に冷却器27の出口側(冷却水ポンプ28の吐出口)が三方切替弁31を介して接続され、加熱・冷却用チューブ11aの他端(出口端)が、三方切替弁32を介して冷却器27の入口側に接続される。
At one position of the three-way switching valves 31 and 32 (refrigerant desorption mode), the hot water circuit 26 is connected to the heating / cooling tube 11 a of the adsorption unit 11. That is, a hot water pipe from the upper part of the hot water storage tank 22 is connected to one end (inlet end) of the heating / cooling tube 11a via the three-way switching valve 31, and the other end (outlet end) of the heating / cooling tube 11a is connected to the three-way switching valve 31. The hot water tank 22 is connected to the bottom (the inlet of the hot water pump 25) via the switching valve 32.
At other positions (refrigerant adsorption mode) of the three-way switching valves 31, 32, the cooling water circuit 29 is connected to the heating / cooling tube 11 a of the adsorption unit 11. That is, the outlet side of the cooler 27 (discharge port of the cooling water pump 28) is connected to one end (inlet end) of the heating / cooling tube 11a via the three-way switching valve 31, and the other end of the heating / cooling tube 11a. The (exit end) is connected to the inlet side of the cooler 27 via the three-way switching valve 32.

冷却水回路29は、上記のように、三方切替弁31、32の他位置(冷媒吸着モード)にて、冷却器27→冷却水ポンプ28→三方切替弁31→加熱・冷却用チューブ11a→三方切替弁32→冷却器27という循環回路を形成する。
冷却水回路29は、また、冷却水ポンプ28下流で、三方切替弁31上流から、開閉弁33を介して分岐する分岐回路34を有する。開閉弁33は冷媒脱離モードで開となる。
分岐回路34は、第2の過冷却熱交換器8の熱交換通路8bと、凝縮部12の熱交換通路12aとをこの順で通り、冷却器27に戻るように構成されている。
As described above, the cooling water circuit 29 is located at the other position (refrigerant adsorption mode) of the three-way switching valves 31 and 32, the cooler 27 → the cooling water pump 28 → the three-way switching valve 31 → the heating / cooling tube 11a → the three-way. A circulation circuit of switching valve 32 → cooler 27 is formed.
The cooling water circuit 29 also has a branch circuit 34 that branches from the upstream of the three-way switching valve 31 via the on-off valve 33 downstream of the cooling water pump 28. The on-off valve 33 is opened in the refrigerant desorption mode.
The branch circuit 34 is configured to pass through the heat exchange passage 8b of the second subcooling heat exchanger 8 and the heat exchange passage 12a of the condensing unit 12 in this order and return to the cooler 27.

次に作用を説明する。
吸着式冷凍装置10は、冷媒吸着モード(放冷モード)と冷媒脱離モード(蓄冷モード)とを周期的に繰り返す。
図2及び図3は、それぞれ、冷媒吸着モード及び冷媒脱離モードでの冷媒等の流れを示す図であり、弁及びポンプについて、開弁状態又は作動状態のものは白抜きで示し、閉弁状態又は非作動状態のものは黒塗りで示している。
Next, the operation will be described.
The adsorption refrigeration apparatus 10 periodically repeats the refrigerant adsorption mode (cooling mode) and the refrigerant desorption mode (cold storage mode).
2 and 3 are diagrams showing the flow of the refrigerant and the like in the refrigerant adsorption mode and the refrigerant desorption mode, respectively. Regarding the valve and the pump, those in the opened state or the activated state are shown in white, and the valve is closed. The state or inactive state is shown in black.

〔冷媒吸着モード:図2〕
冷媒吸着モード又は冷媒脱離モードのいずれの場合も、熱回収回路24の循環ポンプ23、及び、冷却水回路29の冷却水ポンプ28は、運転される。
冷媒吸着モードの場合は、吸着部11の冷却のため、三方切替弁31、32を冷却水回路29選択側に切り替える。開閉弁33は閉じ、分岐回路34(第2の過冷却熱交換器8及び凝縮部12)への冷却水の供給は停止する。また、温水回路26の温水ポンプ25の運転は停止する。また、蒸発部13への冷媒供給用のポンプ16の運転は行う。
[Refrigerant adsorption mode: Fig. 2]
In either case of the refrigerant adsorption mode or the refrigerant desorption mode, the circulation pump 23 of the heat recovery circuit 24 and the cooling water pump 28 of the cooling water circuit 29 are operated.
In the case of the refrigerant adsorption mode, the three-way switching valves 31 and 32 are switched to the cooling water circuit 29 selection side in order to cool the adsorption unit 11. The on-off valve 33 is closed, and the supply of cooling water to the branch circuit 34 (second subcooling heat exchanger 8 and condensing unit 12) is stopped. Further, the operation of the hot water pump 25 of the hot water circuit 26 is stopped. Further, the operation of the refrigerant supply pump 16 to the evaporation unit 13 is performed.

これにより、冷却器27→冷却水ポンプ28→三方切替弁31→吸着部11の加熱・冷却用チューブ11a→三方切替弁32→冷却器27という冷却水の循環流が形成され、吸着部11の加熱・冷却用チューブ11aに冷却水が流れる。この結果、吸着部11の吸着材が冷却され(常温に戻され)、吸着部11内で蒸気冷媒が吸着材に吸着される。吸着反応に伴って吸着発熱を生じるが、冷却水による冷却によって除去できる。吸着に伴って、吸着部11内の圧力が低下する。これにより、凝縮部12との間の一方向弁15は閉じるが、蒸発部13との間の一方向弁14が開き、蒸発部13から吸着部11への冷媒の流れを生じる。これにより、蒸発部13内の圧力も低下して、蒸発部13内で熱交換通路7aの外側の冷媒が蒸発し、熱交換通路7a内の主冷媒(低沸点冷媒)が冷やされる。
また、このとき、ポンプ16の運転により、凝縮部12底部の液冷媒と蒸発部13底部の液冷媒が冷媒撒布管17により熱交換通路7aの外側に供給されて、冷媒の蒸発が促進される。
As a result, a circulating flow of cooling water of the cooler 27 → the cooling water pump 28 → the three-way switching valve 31 → the heating / cooling tube 11a of the adsorption unit 11 → the three-way switching valve 32 → the cooler 27 is formed. Cooling water flows through the heating / cooling tube 11a. As a result, the adsorbent of the adsorption unit 11 is cooled (returned to normal temperature), and the vapor refrigerant is adsorbed by the adsorbent in the adsorption unit 11. Adsorption heat is generated with the adsorption reaction, but can be removed by cooling with cooling water. Along with the suction, the pressure in the suction part 11 decreases. As a result, the one-way valve 15 between the condensing unit 12 is closed, but the one-way valve 14 between the condensing unit 12 is opened and the refrigerant flows from the evaporating unit 13 to the adsorbing unit 11. Thereby, the pressure in the evaporation part 13 also falls, the refrigerant outside the heat exchange passage 7a evaporates in the evaporation part 13, and the main refrigerant (low boiling point refrigerant) in the heat exchange passage 7a is cooled.
At this time, the operation of the pump 16 causes the liquid refrigerant at the bottom of the condensing unit 12 and the liquid refrigerant at the bottom of the evaporating unit 13 to be supplied to the outside of the heat exchange passage 7a through the refrigerant distribution tube 17, thereby promoting the evaporation of the refrigerant. .

従って、冷媒吸着モードでは、第1の過冷却熱交換器7、すなわち吸着式冷凍装置10の蒸発部13により、蒸気圧縮式冷凍装置1の主冷媒の過冷却を行うことができる。この場合、蒸発部13で蒸気圧縮式ヒートポンプ回路の低沸点冷媒を直接冷却しているので、蒸発部13で冷水を作り、それで蒸気圧縮式ヒートポンプ回路の低沸点冷媒を冷却する場合よりも効率が良い。   Therefore, in the refrigerant adsorption mode, the main refrigerant of the vapor compression refrigeration apparatus 1 can be supercooled by the first supercooling heat exchanger 7, that is, the evaporation section 13 of the adsorption refrigeration apparatus 10. In this case, the evaporating unit 13 directly cools the low boiling point refrigerant of the vapor compression heat pump circuit, so that the evaporating unit 13 makes cold water, and thus the efficiency is lower than when the low boiling point refrigerant of the vapor compression heat pump circuit is cooled. good.

冷媒吸着モードでは、温水回路26は使用しないが、熱回収回路24の循環ポンプ23の運転は継続されるので、貯湯タンク22内の温水への蓄熱が継続される。これにより、発電装置21は適度に冷却され、一定の出力を維持することが容易となる。   In the refrigerant adsorption mode, the hot water circuit 26 is not used, but since the operation of the circulation pump 23 of the heat recovery circuit 24 is continued, the heat storage in the hot water in the hot water storage tank 22 is continued. Thereby, the electric power generating apparatus 21 is cooled moderately, and it becomes easy to maintain a fixed output.

〔冷媒脱離モード:図3〕
冷媒脱離モードの場合は、吸着部11の加熱のため、温水回路26の温水ポンプ25を運転すると共に、三方切替弁31、32を温水回路26選択側に切り替える。開閉弁33は開き、分岐回路34(第2の過冷却熱交換器8及び凝縮部12)への冷却水の供給を行う。また、蒸発部13への冷媒供給用のポンプ16の運転は停止する。
この場合、温水ポンプ25は、熱回収回路24の循環ポンプ23の略2倍の流量で運転する。冷媒吸着モードにて蓄熱した温水を余すところなく利用するためである。
[Refrigerant desorption mode: Fig. 3]
In the refrigerant desorption mode, the hot water pump 25 of the hot water circuit 26 is operated to heat the adsorption unit 11 and the three-way switching valves 31 and 32 are switched to the hot water circuit 26 selection side. The on-off valve 33 opens and supplies cooling water to the branch circuit 34 (second subcooling heat exchanger 8 and condensing unit 12). In addition, the operation of the refrigerant supply pump 16 to the evaporation unit 13 is stopped.
In this case, the hot water pump 25 is operated at a flow rate approximately twice that of the circulation pump 23 of the heat recovery circuit 24. This is to make full use of the hot water stored in the refrigerant adsorption mode.

これにより、貯湯タンク22→三方切替弁31→吸着部11の加熱・冷却用チューブ11a→三方切替弁32→温水ポンプ25→貯湯タンク22という温水の循環流が形成され、吸着部11の加熱・冷却用チューブ11aに温水が流れる。従って、冷媒吸着モードにて蓄えた温水を利用して、吸着部11を十分に加熱することができる。この結果、吸着部11の吸着材が加熱され、吸着部11で吸着材から蒸気冷媒が脱離放出される。これにより、吸着部11内の圧力が上昇し、蒸発部13との間の一方向弁14は閉じるが、凝縮部12との間の一方向弁15が開く。この結果、吸着部11内で吸着材から脱離した蒸気冷媒は、凝縮部12へ流入する。これにより、凝縮部12内の圧力も上昇し、凝縮部12内の熱交換通路7aの周りで冷媒が凝縮液化する。   As a result, a hot water circulation flow of the hot water storage tank 22 → the three-way switching valve 31 → the heating / cooling tube 11a of the adsorption unit 11 → the three-way switching valve 32 → the hot water pump 25 → the hot water storage tank 22 is formed. Hot water flows through the cooling tube 11a. Therefore, the adsorption part 11 can be sufficiently heated using the hot water stored in the refrigerant adsorption mode. As a result, the adsorbent of the adsorption unit 11 is heated, and the vapor refrigerant is desorbed and released from the adsorbent in the adsorption unit 11. Thereby, the pressure in the adsorption part 11 rises, and the one-way valve 14 between the evaporation part 13 is closed, but the one-way valve 15 between the condensation part 12 is opened. As a result, the vapor refrigerant desorbed from the adsorbent in the adsorption unit 11 flows into the condensation unit 12. Thereby, the pressure in the condensation part 12 also rises and the refrigerant condenses and liquefies around the heat exchange passage 7a in the condensation part 12.

また、冷却水回路29の冷却水ポンプ28の運転下で、開閉弁33が開くことで、冷却器27による冷却水は、分岐回路34(第2の過冷却熱交換器8及び凝縮部12)へ供給される。
従って、凝縮部12へ流入した蒸気冷媒は、凝縮部12内の熱交換通路12aを流れる冷却水によって冷却されることで、凝縮液化が促進される。
Further, when the on-off valve 33 is opened under the operation of the cooling water pump 28 of the cooling water circuit 29, the cooling water by the cooler 27 is diverted to the branch circuit 34 (the second supercooling heat exchanger 8 and the condensing unit 12). Supplied to.
Therefore, the vapor refrigerant that has flowed into the condensing unit 12 is cooled by the cooling water flowing through the heat exchange passage 12a in the condensing unit 12, thereby promoting condensing and liquefaction.

このとき、第2の過冷却熱交換器8(その熱交換通路8b)へ冷却器27による冷却水が供給されることで、熱交換通路8aを流通する主冷媒を過冷却することができる。
従って、冷媒脱離モードでは、第1の過冷却熱交換器7、すなわち吸着式冷凍装置10の蒸発部13による、主冷媒の過冷却は行われないが、第2の過冷却熱交換器8により、冷却器27による冷却水を用いて、蒸気圧縮式冷凍装置1の主冷媒の過冷却を行うことができる。
At this time, the cooling water by the cooler 27 is supplied to the second supercooling heat exchanger 8 (its heat exchange passage 8b), so that the main refrigerant flowing through the heat exchange passage 8a can be supercooled.
Accordingly, in the refrigerant desorption mode, the main refrigerant is not supercooled by the first supercooling heat exchanger 7, that is, the evaporator 13 of the adsorption refrigeration apparatus 10, but the second supercooling heat exchanger 8 is not used. Thus, the main refrigerant of the vapor compression refrigeration apparatus 1 can be supercooled using the cooling water from the cooler 27.

冷却器27は、冷媒吸着モードにおいて、吸着部11での吸着発熱を除去するために用いられ、冷媒脱離モードにおいては、凝縮部12を冷却するために用いられる。
一般的に水の単位重量当たりの吸着発熱は、水の単位重量当たりの潜熱量より大きいため、凝縮部12を冷却するだけでは余裕がある。
冷媒吸着モードにおいて、吸着部11での吸着発熱量が例えば7.4kWで、冷却器27に7.4kWの能力が求められるとすると、冷媒脱離モードにおいて、凝縮部12の冷却に求められる能力はそれより低く、例えば4.4kWで、7.4−4.4=3.0kWの余裕がある。この余裕分を用いて、第2の過冷却熱交換器8に過冷却を行わせることができる。
The cooler 27 is used for removing heat generated by adsorption at the adsorption unit 11 in the refrigerant adsorption mode, and is used for cooling the condensing unit 12 in the refrigerant desorption mode.
Generally, the adsorption heat generation per unit weight of water is larger than the amount of latent heat per unit weight of water, so that there is a margin only by cooling the condensing unit 12.
In the refrigerant adsorption mode, if the adsorption heat generation amount at the adsorption unit 11 is 7.4 kW, for example, and the cooling unit 27 is required to have a capacity of 7.4 kW, the capability required for cooling the condensing unit 12 in the refrigerant desorption mode. Is lower than that, for example, 4.4 kW, and there is a margin of 7.4-4.4 = 3.0 kW. Using this margin, the second supercooling heat exchanger 8 can be supercooled.

本実施形態では、冷却器27は、冷媒脱離モードにて、第2の過冷却熱交換器8、凝縮部12の順で、直列に、冷却水を供給する構成としている。
これによれば、第2の過冷却熱交換器8での熱交換に際し、主冷媒との温度差が大きくなり、過冷却効果をより大きくすることができる。
但し、順序を逆にしてもよいし、並列にしてもよい。
In the present embodiment, the cooler 27 is configured to supply cooling water in series in the order of the second supercooling heat exchanger 8 and the condensing unit 12 in the refrigerant desorption mode.
According to this, at the time of heat exchange in the second supercooling heat exchanger 8, the temperature difference from the main refrigerant becomes large, and the supercooling effect can be further increased.
However, the order may be reversed or parallel.

本実施形態では、加熱手段の熱源として発電装置21を用い、発電装置21にて発電に伴って発生する熱を蓄熱部としての貯湯タンク22に回収し、これを吸着式冷凍装置10に用いている。発電装置21としては、燃料電池(SOFC、PEFCなど)、あるいはガスタービン発電機などを用いることができる。
発電装置21を含むコジェネレーションシステムは、通常、発電に伴って発生する熱を給湯に利用する。従って、クリーニング店、ファミリーレストランなど、熱を使う所へのコジェネレーションシステムの導入は、比較的容易である。
これに対し、コンビニエンスストアなど、熱をあまり使わない所でも、冷房や冷蔵・冷凍などに、冷熱の要求は高い。このような場合に、発電装置21と吸着式冷凍装置10との組み合わせによるコジェネレーションシステムは、有効であり、コジェネレーションシステムの導入促進が期待できる。
In this embodiment, the power generation device 21 is used as a heat source for the heating means, and heat generated by the power generation device 21 along with power generation is recovered in a hot water storage tank 22 as a heat storage unit, and this is used for the adsorption refrigeration device 10. Yes. As the power generation device 21, a fuel cell (SOFC, PEFC, etc.), a gas turbine generator, or the like can be used.
The cogeneration system including the power generation device 21 normally uses heat generated by power generation for hot water supply. Therefore, it is relatively easy to install a cogeneration system in a place where heat is used, such as a cleaning shop or a family restaurant.
On the other hand, there is a high demand for refrigeration for cooling, refrigeration and freezing even in places that do not use much heat, such as convenience stores. In such a case, the cogeneration system by the combination of the power generator 21 and the adsorption refrigeration apparatus 10 is effective, and the introduction promotion of the cogeneration system can be expected.

本実施形態では、温水回路26は、冷媒脱離モードにおいてのみ利用するが、常時循環する熱回収回路24の循環流量より大流量(例えば2倍の流量)で循環させている。これにより、蓄熱した温水を余すところなく利用することができる。   In this embodiment, the hot water circuit 26 is used only in the refrigerant desorption mode, but is circulated at a larger flow rate (for example, twice the flow rate) than the circulation flow rate of the heat recovery circuit 24 that circulates constantly. Thereby, the warm water which stored heat can be fully utilized.

尚、本実施形態では、凝縮部12からの液冷媒戻し通路18はポンプ16の吸入口に接続したが、ポンプ16をバイパスして蒸発部13に直接接続してもよい。また、ポンプ16は常時運転してもよい。   In the present embodiment, the liquid refrigerant return passage 18 from the condensing unit 12 is connected to the suction port of the pump 16, but the pump 16 may be bypassed and directly connected to the evaporation unit 13. The pump 16 may be always operated.

次に図4の実施形態について説明する。
蒸気圧縮式冷凍装置1の運転停止時について考える。例えばコンビニエンスストアで冷凍ショーケースに利用する場合、6時間に30分程度の頻度で、除霜のため、圧縮機2を停止する。この場合、吸着式冷凍装置10の運転も停止される。メンテナンス時も同様である。
その一方、発電装置21の運転は継続するため、熱回収回路24の循環ポンプ23の運転は継続し、発電に伴って発生する熱を回収すると同時に、発電装置21を適度に冷却する。
しかし、時間経過により、貯湯タンク22内の温水の温度が過度に上昇してしまう。このような場合に、貯湯タンク22内の湯水を適度に冷却可能とする必要がある。
Next, the embodiment of FIG. 4 will be described.
Consider a case where the operation of the vapor compression refrigeration apparatus 1 is stopped. For example, when using it for a freezer showcase in a convenience store, the compressor 2 is stopped for defrosting at a frequency of about 30 minutes in 6 hours. In this case, the operation of the adsorption refrigeration apparatus 10 is also stopped. The same applies to maintenance.
On the other hand, since the operation of the power generator 21 is continued, the operation of the circulation pump 23 of the heat recovery circuit 24 is continued, and the heat generated by the power generation is recovered, and at the same time, the power generator 21 is appropriately cooled.
However, the temperature of the hot water in the hot water storage tank 22 increases excessively with time. In such a case, it is necessary to appropriately cool the hot water in the hot water storage tank 22.

そこで、図4の実施形態では、図1の実施形態に対し、太線部の構成を追加している。すなわち、冷却器27の出口側に、常閉の開閉弁41を介して分岐する分岐回路42を設けている。分岐回路42は、温水ポンプ25の吸入口に接続している。
冷媒吸着モード及び冷媒脱離モードでの作用は、開閉弁41が閉じていて、分岐回路42は機能せず、冷媒等の流れは、既に説明した通りである。
Therefore, in the embodiment of FIG. 4, the configuration of the thick line portion is added to the embodiment of FIG. That is, a branch circuit 42 that branches through a normally closed on-off valve 41 is provided on the outlet side of the cooler 27. The branch circuit 42 is connected to the suction port of the hot water pump 25.
In the refrigerant adsorption mode and the refrigerant desorption mode, the on-off valve 41 is closed, the branch circuit 42 does not function, and the flow of the refrigerant and the like is as described above.

蒸気圧縮式冷凍装置1の運転停止時で発電装置21の運転中の作用について説明する。
図5は冷凍装置の運転停止モードにおける冷却水等の流れを示す図であり、弁、ポンプ及びファンについて、開弁状態又は作動状態のものは白抜きで示し、閉弁状態又は非作動状態ものは黒塗りで示している。
The operation during operation of the power generator 21 when the operation of the vapor compression refrigeration apparatus 1 is stopped will be described.
FIG. 5 is a diagram showing the flow of cooling water or the like in the operation stop mode of the refrigeration apparatus. Regarding the valves, pumps and fans, those in the valve open state or in the operating state are shown in white, and those in the valve closed state or inactive state Is shown in black.

冷凍装置の運転停止モードでは、熱回収回路24の循環ポンプ23は運転を継続する。また、冷却器27のファン27aを運転し、開閉弁41を開き、温水ポンプ25を運転する。また、三方切替弁31については温水回路26選択状態とし、三方切替弁32については冷却水回路29選択状態とする。   In the operation stop mode of the refrigeration apparatus, the circulation pump 23 of the heat recovery circuit 24 continues to operate. Further, the fan 27a of the cooler 27 is operated, the on-off valve 41 is opened, and the hot water pump 25 is operated. In addition, the hot water circuit 26 is selected for the three-way switching valve 31, and the cooling water circuit 29 is selected for the three-way switching valve 32.

従って、冷却器27による冷却水は、開閉弁41から分岐回路42を経て温水ポンプ25に至り、貯湯タンク22の底部に供給される。貯湯タンク22の上部から温水回路26へ押出された温水は、三方切替弁31から吸着部11のチューブ11aを通り、出口側の三方切替弁32から冷却器27に送られて冷却される。
これにより、貯湯タンク22内の温水の過度の温度上昇を抑制し、発電装置21を適度に冷却することが可能となる。
開閉弁41及び分岐回路42等は、冷却器27から供給される冷却用媒体(冷却水)で蓄熱部(貯湯タンク22)の過熱を抑制する過熱抑制回路に相当する。
Therefore, the cooling water by the cooler 27 reaches the hot water pump 25 from the on-off valve 41 through the branch circuit 42 and is supplied to the bottom of the hot water storage tank 22. The hot water extruded from the upper part of the hot water storage tank 22 to the hot water circuit 26 passes through the tube 11a of the adsorption part 11 from the three-way switching valve 31 and is sent to the cooler 27 from the three-way switching valve 32 on the outlet side to be cooled.
Thereby, the excessive temperature rise of the hot water in the hot water storage tank 22 is suppressed, and the power generation device 21 can be appropriately cooled.
The on-off valve 41, the branch circuit 42, and the like correspond to an overheat suppression circuit that suppresses overheating of the heat storage unit (hot water storage tank 22) with the cooling medium (cooling water) supplied from the cooler 27.

尚、主冷凍サイクルは、CO2冷媒を利用した超臨界サイクルでもよい。この場合、凝縮器3はガスクーラーに置き換えることができる。超臨界サイクルの場合、ガスクーラー出口冷媒を過冷却すると、圧縮機の吐出容量を減少させることに加え、圧縮機の吐出圧力を低下させることができるため、効果的である。 The main refrigeration cycle may be a supercritical cycle using a CO 2 refrigerant. In this case, the condenser 3 can be replaced with a gas cooler. In the case of a supercritical cycle, if the refrigerant at the gas cooler outlet is supercooled, it is effective because the discharge pressure of the compressor can be lowered in addition to reducing the discharge capacity of the compressor.

以上のように、図示の実施形態はあくまで本発明を例示するものであり、本発明は、説明した実施形態により直接的に示されるものに加え、特許請求の範囲内で当業者によりなされる各種の改良・変更を包含するものであることは言うまでもない。   As described above, the illustrated embodiment is merely an example of the present invention, and the present invention is not limited to the embodiment described directly, and various modifications made by those skilled in the art within the scope of the claims. Needless to say, this includes improvements and changes.

1 蒸気圧縮式冷凍装置
2 圧縮機
3 凝縮器
4 膨張弁
5 蒸発器
7 第1の過冷却熱交換器
8 第2の過冷却熱交換器
10 吸着式冷凍装置
11 吸着部
11a チューブ
11b 吸着材付きのフィン
12 凝縮部
13 蒸発部
14、15 一方向弁
16 ポンプ
17 冷媒撒布管
18 液冷媒戻し通路
19 液冷媒取出し通路
21 発電装置
22 貯湯タンク
23 循環ポンプ
24 熱回収回路
25 温水ポンプ
26 温水回路
27 冷却器
28 冷却水ポンプ
29 冷却水回路
31、32 三方切替弁
33 開閉弁
34 分岐回路
41 開閉弁
42 分岐回路
DESCRIPTION OF SYMBOLS 1 Vapor compression refrigeration apparatus 2 Compressor 3 Condenser 4 Expansion valve 5 Evaporator 7 1st supercooling heat exchanger 8 2nd supercooling heat exchanger 10 Adsorption-type refrigeration apparatus 11 Adsorption part 11a Tube 11b With adsorbent Fin 12 Condenser 13 Evaporator 14, 15 One-way valve 16 Pump 17 Refrigerant spray pipe 18 Liquid refrigerant return passage 19 Liquid refrigerant take-out passage 21 Power generator 22 Hot water storage tank 23 Circulation pump 24 Heat recovery circuit 25 Hot water pump 26 Hot water circuit 27 Cooler 28 Cooling water pump 29 Cooling water circuits 31 and 32 Three-way switching valve 33 On-off valve 34 Branch circuit 41 On-off valve 42 Branch circuit

Claims (5)

主冷凍サイクルの主冷媒を過冷却する吸着式冷凍サイクルを備える冷凍システムであって、
冷却されることにより吸着冷媒を吸着し、加熱されることにより吸着冷媒を脱離する吸着材を備える吸着部と、
前記吸着材が吸着冷媒を脱離する冷媒脱離モードにて、脱離した吸着冷媒を凝縮させる凝縮部と、
前記吸着材が吸着冷媒を吸着する冷媒吸着モードにて、前記凝縮部により凝縮された吸着冷媒を蒸発させて前記吸着部に供給する蒸発部と、
前記冷媒吸着モードにて加熱用媒体に蓄熱する蓄熱部を有し、前記冷媒脱離モードにて前記蓄熱部から前記吸着部に加熱用媒体を供給可能な熱源と、
前記冷媒吸着モードにて前記吸着部に冷却用媒体を供給可能で、前記冷媒脱離モードにて前記凝縮部に冷却用媒体を供給可能な冷却器と、
主冷凍サイクルに組み込まれ前記冷媒吸着モードにて前記蒸発部にて蒸発する吸着冷媒と主冷媒とを熱交換させて主冷媒を過冷却可能な第1の過冷却熱交換器と、
主冷凍サイクルに組み込まれ前記冷媒脱離モードにて前記冷却器から供給される冷却用媒体の少なくとも一部と主冷媒とを熱交換させて主冷媒を過冷却可能な第2の過冷却熱交換器と、
を含んで構成される、冷凍システム。
A refrigeration system comprising an adsorption refrigeration cycle for supercooling a main refrigerant of a main refrigeration cycle,
An adsorbing portion comprising an adsorbent that adsorbs the adsorbing refrigerant by being cooled and desorbing the adsorbing refrigerant by being heated;
A condensing part for condensing the adsorbed adsorbed refrigerant in a refrigerant desorption mode in which the adsorbent desorbs the adsorbed refrigerant;
An evaporating unit that evaporates the adsorbed refrigerant condensed by the condensing unit and supplies it to the adsorbing unit in a refrigerant adsorption mode in which the adsorbent adsorbs the adsorbed refrigerant;
A heat storage unit that stores heat in the heating medium in the refrigerant adsorption mode, and a heat source capable of supplying the heating medium from the heat storage unit to the adsorption unit in the refrigerant desorption mode;
A cooler capable of supplying a cooling medium to the adsorption unit in the refrigerant adsorption mode and capable of supplying a cooling medium to the condensing unit in the refrigerant desorption mode;
A first supercooling heat exchanger capable of supercooling the main refrigerant by exchanging heat between the main refrigerant and the adsorbed refrigerant that is incorporated in the main refrigeration cycle and evaporates in the evaporator in the refrigerant adsorption mode;
A second subcooling heat exchange that can be supercooled by at least a part of the cooling medium incorporated in the main refrigeration cycle and supplied from the cooler in the refrigerant desorption mode with the main refrigerant. and the vessel,
A refrigeration system comprising a refrigeration system.
前記冷却器は、前記冷媒脱離モードにて、前記第2の過冷却熱交換器、前記凝縮部の順で、直列に、冷却用媒体を供給することを特徴とする、請求項1記載の冷凍システム。   2. The cooling device according to claim 1, wherein the cooler supplies a cooling medium in series in the order of the second supercooling heat exchanger and the condensing unit in the refrigerant desorption mode. Refrigeration system. 前記熱源は、発電に伴って熱を発生する発電装置であり、前記蓄熱部は加熱用媒体として温水を貯留する貯湯タンクであり、
前記貯湯タンクと前記発電装置の熱発生部との間で湯水を循環させる熱回収回路と、前記貯湯タンクと前記吸着部との間で前記冷媒脱離モードにて温水を循環させる温水回路とを更に含んで構成されることを特徴とする、請求項1又は請求項2記載の冷凍システム。
The heat source is a power generation device that generates heat with power generation, and the heat storage unit is a hot water storage tank that stores hot water as a heating medium,
A heat recovery circuit for circulating hot water between the hot water storage tank and the heat generation unit of the power generation device, and a hot water circuit for circulating hot water between the hot water storage tank and the adsorption unit in the refrigerant desorption mode. The refrigeration system according to claim 1 or 2, further comprising a refrigeration system.
前記熱回収回路は、前記冷媒吸着モード及び前記冷媒脱離モードのいずれにおいても湯水を循環させ、
前記温水回路は、前記冷媒脱離モードにおいてのみ、前記熱回収回路の循環流量より大流量で、温水を循環させることを特徴とする、請求項3記載の冷凍システム。
The heat recovery circuit circulates hot water in both the refrigerant adsorption mode and the refrigerant desorption mode,
The refrigeration system according to claim 3, wherein the hot water circuit circulates hot water at a flow rate larger than a circulation flow rate of the heat recovery circuit only in the refrigerant desorption mode.
主冷凍サイクルの運転停止時に、前記冷却器から供給される冷却用媒体で前記蓄熱部の過熱を抑制する過熱抑制回路を更に含んで構成される、請求項1〜請求項4のいずれか1つに記載の冷凍システム。 5. The apparatus according to claim 1, further comprising an overheat suppression circuit that suppresses overheating of the heat storage unit with a cooling medium supplied from the cooler when the operation of the main refrigeration cycle is stopped. The refrigeration system described in.
JP2015115672A 2015-06-08 2015-06-08 Refrigeration system Active JP6613404B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015115672A JP6613404B2 (en) 2015-06-08 2015-06-08 Refrigeration system
PCT/JP2016/066421 WO2016199671A1 (en) 2015-06-08 2016-06-02 Refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015115672A JP6613404B2 (en) 2015-06-08 2015-06-08 Refrigeration system

Publications (2)

Publication Number Publication Date
JP2017003157A JP2017003157A (en) 2017-01-05
JP6613404B2 true JP6613404B2 (en) 2019-12-04

Family

ID=57503585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015115672A Active JP6613404B2 (en) 2015-06-08 2015-06-08 Refrigeration system

Country Status (2)

Country Link
JP (1) JP6613404B2 (en)
WO (1) WO2016199671A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL260159B (en) * 2018-06-19 2022-02-01 N A M Tech Ltd Multi cascade cooling system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004132690A (en) * 2002-08-15 2004-04-30 Denso Corp Adsorbent for thermal storage system, thermal storage system using it, iron aluminophosphate, and its manufacturing method
JP2013096586A (en) * 2011-10-28 2013-05-20 Sanden Corp Adsorption type refrigeration device
JP2014001876A (en) * 2012-06-18 2014-01-09 Sanden Corp Adsorptive refrigeration device and engine-driven air conditioner

Also Published As

Publication number Publication date
WO2016199671A1 (en) 2016-12-15
JP2017003157A (en) 2017-01-05

Similar Documents

Publication Publication Date Title
CN100419349C (en) Refrigeration system
KR101638675B1 (en) Combined binary refrigeration cycle apparatus
US20100242534A1 (en) Hybrid cascade vapor compression regrigeration system
JP2010501826A (en) Air conditioner for communication equipment
JP4298990B2 (en) Refrigeration equipment using carbon dioxide as refrigerant
JP4317793B2 (en) Cooling system
KR20100059170A (en) Heat pump storage system
KR20100059176A (en) Storage system
KR101138970B1 (en) Defrosting system using air cooling refrigerant evaporator and condenser
KR20080103855A (en) Refrigerating system
JP2013185741A (en) Heat pump type water heater
JP5240040B2 (en) Refrigeration equipment
JP6613404B2 (en) Refrigeration system
JP5402186B2 (en) Refrigeration equipment
JPWO2010109619A1 (en) Load-side relay unit and combined air conditioning and hot water supply system
JP2005090825A (en) Complex air-conditioner
KR20100005734U (en) Heat pump storage system
JP4670576B2 (en) vending machine
JP2007051788A (en) Refrigerating device
JP2006038306A (en) Freezer
KR20100005735U (en) storage system
JP2018063058A (en) Refrigerator and control method for the same
JP2004251557A (en) Refrigeration device using carbon dioxide as refrigerant
JP5434207B2 (en) Refrigeration equipment
JP3821286B2 (en) Refrigeration system combining absorption type and compression type and its operating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190820

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190911

R150 Certificate of patent or registration of utility model

Ref document number: 6613404

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250