JP2008121930A - Refrigeration system - Google Patents

Refrigeration system Download PDF

Info

Publication number
JP2008121930A
JP2008121930A JP2006304024A JP2006304024A JP2008121930A JP 2008121930 A JP2008121930 A JP 2008121930A JP 2006304024 A JP2006304024 A JP 2006304024A JP 2006304024 A JP2006304024 A JP 2006304024A JP 2008121930 A JP2008121930 A JP 2008121930A
Authority
JP
Japan
Prior art keywords
refrigeration system
thermal siphon
compressor
liquid
compression refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006304024A
Other languages
Japanese (ja)
Inventor
Jiro Iizuka
二郎 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2006304024A priority Critical patent/JP2008121930A/en
Priority to PCT/JP2007/071295 priority patent/WO2008056594A1/en
Publication of JP2008121930A publication Critical patent/JP2008121930A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • F04C29/045Heating; Cooling; Heat insulation of the electric motor in hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigeration system capable of considerably improving the efficiency and durability of a refrigerating cycle by efficiently cooling a high temperature part of a compression refrigerating machine to a desired state, and shifting a working region to a lower temperature region by cooling. <P>SOLUTION: The refrigeration system is formed as a closed circuit filled with liquid and having an evaporating section and a condensing section for the liquid to cool the high temperature part of the compression refrigerating machine, and is provided with a thermal siphon for repeating a cycle of movement and phase change of the liquid in the closed circuit so that, after the liquid in the evaporating section receives heat and is evaporated, it is liquefied by heat radiation in the condensing section and returned to the evaporating section. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、冷凍システムに関し、とくに、圧縮式冷凍機の高温部を効率よく冷却できるようにした冷凍システムに関する。   The present invention relates to a refrigeration system, and more particularly, to a refrigeration system that can efficiently cool a high-temperature part of a compression refrigerator.

近年開発が盛んになっている二酸化炭素冷媒を用いた圧縮式冷凍機では、成績係数COPを良好に確保するために、冷凍サイクル内に内部熱交換器を設けるのが一般的になっているが(例えば、特許文献1)、圧縮機の吸入ガス温度が高いことと二酸化炭素冷媒の比熱比が大きいことにより吐出ガス温度が非常に高く、圧縮機の消費動力が大きく、圧縮機全体として高温高圧に対応した材質選定や強度確保が必要であり、コストや生産性を悪化させる要因となっていた。   In a compression type refrigerator using a carbon dioxide refrigerant which has been actively developed in recent years, it is common to provide an internal heat exchanger in the refrigeration cycle in order to ensure a good coefficient of performance COP. (For example, Patent Document 1), the suction gas temperature of the compressor is high and the specific heat ratio of the carbon dioxide refrigerant is large, so that the discharge gas temperature is very high, the power consumption of the compressor is large, and the compressor as a whole has high temperature and high pressure. Therefore, it is necessary to select materials and ensure strength to meet the requirements, which has been a factor in reducing cost and productivity.

従来の二酸化炭素冷媒を使用した冷凍システムは、例えば図7に車両用空調装置における冷凍システムの場合の例を示すように、圧縮機101で圧縮され吐出された二酸化炭素冷媒がガスクーラ102に送られ、ガスクーラ102からの高圧側冷媒が、内部熱交換器103により低圧側冷媒と熱交換された後、膨張弁104を介して蒸発器105に送られ、蒸発器105からの冷媒がアキュムレータ106を通した後、内部熱交換器103により高圧側冷媒と熱交換され、圧縮機101に吸入される。   In a conventional refrigeration system using carbon dioxide refrigerant, for example, as shown in the example of the refrigeration system in the vehicle air conditioner, the carbon dioxide refrigerant compressed and discharged by the compressor 101 is sent to the gas cooler 102. After the high-pressure side refrigerant from the gas cooler 102 is heat-exchanged with the low-pressure side refrigerant by the internal heat exchanger 103, the refrigerant is sent to the evaporator 105 through the expansion valve 104, and the refrigerant from the evaporator 105 passes through the accumulator 106. After that, the internal heat exchanger 103 exchanges heat with the high-pressure side refrigerant and sucks it into the compressor 101.

このような冷凍システムにおける冷凍サイクルは、例えば図8に示すようなモリエル線図で表すことができる。図8に示した二酸化炭素冷媒を使用した圧縮冷凍サイクルにおいては、1−2間が圧縮機101の圧縮仕事、2−3間がガスクーラ102による放熱、3−4間および7−1間が内部熱交換器103による熱交換、4−5間が膨張弁104による膨張、5−6間が蒸発器105による蒸発をそれぞれ示しており、6、7はアキュムレータ106における同圧状態での気液分離を示している。   The refrigeration cycle in such a refrigeration system can be represented by a Mollier diagram as shown in FIG. 8, for example. In the compression refrigeration cycle using the carbon dioxide refrigerant shown in FIG. 8, between 1-2, the compression work of the compressor 101, 2-3, heat radiation by the gas cooler 102, 3-4, and 7-1 are internal. Heat exchange by the heat exchanger 103, expansion between 4-5 by expansion valve 104, and evaporation by evaporator 105 between 5-6 are shown, and 6 and 7 are gas-liquid separation in the accumulator 106 under the same pressure state. Is shown.

このような冷凍システムにおいては、上述の如く、圧縮機部が高温高圧となるので、消費動力低減等のために適切に冷却されることが望ましい。また、電動モータで駆動される圧縮機については、吸入ガスによりモータの冷却するものが知られているが、そうすると実質的に吸入ガス過熱度が上がり(同時にガス密度低下もあり)、結果的に圧縮機での消費動力の増大や吐出ガス温度の上昇が生じることがあった。また、効率よくモータを駆動するためモータをインバータ駆動する方式もあるが、このインバータについても冷却が必要であり、上述のモータと同様のことが生じることがあった。   In such a refrigeration system, as described above, since the compressor section is at a high temperature and a high pressure, it is desirable that the compressor is appropriately cooled in order to reduce power consumption. As for a compressor driven by an electric motor, one that cools the motor by suction gas is known. However, if this is done, the degree of superheat of the suction gas is substantially increased (at the same time there is a decrease in gas density). In some cases, the power consumption in the compressor increases and the discharge gas temperature rises. In addition, there is a system in which the motor is driven by an inverter in order to drive the motor efficiently, but this inverter also needs to be cooled, and the same thing as the above-mentioned motor may occur.

圧縮機の冷却、特に二酸化炭素冷媒を使うシステムでは、吐出ガスは例えば150℃超、12MPa超となることがあり、高温高圧に起因する耐久性低下や強度低下が懸念されている。また、電気機器等の冷却をブラインの顕熱をつかったシステム(一般的には水冷)も知られているが、ポンプ等の機器が追加となり、コストや故障リスクおよび消費エネルギーの増加が懸念される。さらに、電動モータ一体型の圧縮機では、モータ廃熱やインバータ廃熱の影響を受けて吸入ガスの過熱度が高くなり(同時にガス密度が小さくなり)、圧縮効率が低下するおそれがある。また、特に熱負荷の小さい状況では、循環冷媒量が少なくモータやインバータの冷却が不十分になるおそれがある。   In a cooling system for a compressor, particularly in a system using a carbon dioxide refrigerant, the discharge gas may be, for example, more than 150 ° C. and more than 12 MPa, and there is a concern that durability and strength may be reduced due to high temperature and pressure. In addition, a system that uses sensible heat of brine to cool electrical equipment, etc. (generally, water cooling) is also known, but additional equipment such as pumps is a concern, leading to increased costs, failure risks, and increased energy consumption. The Furthermore, in an electric motor integrated compressor, the degree of superheat of the suction gas increases (at the same time the gas density decreases) under the influence of motor waste heat and inverter waste heat, and compression efficiency may decrease. In particular, in a situation where the heat load is small, there is a concern that the amount of circulating refrigerant is small and the cooling of the motor or inverter becomes insufficient.

一方、外部動力なしで封入媒体の相変化によって熱の移動を行い、それによって機器の冷却が可能なものとして、サーマルサイフォンが知られている。しかし、圧縮式冷凍機構成の冷凍システムに、サーマルサイフォンを適用した例は見当たらない。
特開平11−193967号公報
On the other hand, a thermal siphon is known as a device capable of transferring heat by phase change of an encapsulating medium without external power and thereby cooling the device. However, there is no example in which a thermal siphon is applied to a refrigeration system having a compression refrigerator configuration.
JP 11-193967 A

そこで本発明の課題は、上記のような圧縮式冷凍機の高温部における冷却不足に伴う問題と、簡素な構成で特定部位の冷却が可能なサーマルサイフォンの特性に着目し、圧縮式冷凍機の高温部を効率よく所望の状態まで冷却でき、該冷却により使用領域をより低温領域にシフトさせて冷凍サイクルの効率や耐久性を大幅に向上可能な冷凍システムを提供することにある。   Therefore, the object of the present invention is to focus on the problems associated with insufficient cooling in the high temperature part of the compression refrigerator as described above and the characteristics of the thermal siphon capable of cooling a specific part with a simple configuration. An object of the present invention is to provide a refrigeration system capable of efficiently cooling a high temperature part to a desired state and shifting the use region to a lower temperature region by the cooling, thereby greatly improving the efficiency and durability of the refrigeration cycle.

上記課題を解決するために、本発明に係る冷凍システムは、圧縮式冷凍機の高温部を冷却するために、液体が封入され該液体の蒸発部と凝縮部とを有する閉回路に構成され、蒸発部内部の液体が受熱気化した後、凝縮部での放熱により液化し蒸発部に帰還するように、閉回路で液体の移動と相変化のサイクルを繰り返すサーマルサイフォンを設けたことを特徴とするものからなる。   In order to solve the above problems, a refrigeration system according to the present invention is configured in a closed circuit having a liquid enclosed therein and a liquid evaporation unit and a condensation unit in order to cool a high-temperature part of a compression refrigerator. A thermal siphon that repeats the cycle of liquid movement and phase change in a closed circuit is provided so that the liquid inside the evaporation unit is vaporized by heat reception and then liquefied by heat dissipation in the condensation unit and returned to the evaporation unit. It consists of what to do.

ここで、外部動力なしで封入媒体としての封入液体の相変化によって熱の移動を行うものをサーマルサイフォンと呼ぶ。代表的な封入液体として、水の場合について説明するに、水は66661Paの圧力下では 87℃で沸騰する。これをサーマルサイフォン閉回路中で利用することにより、87℃以上に発熱する機器を87℃にまで無動力で冷却することが可能となる(ただし、サーマルサイフォンシステムとの熱交換効率が100%と仮定)。つまり、サーマルサイフォンを二元冷凍システムの二次側に使用することもできるし、更には一次側の例えば圧縮機の冷却に使用することもできる。   Here, what moves heat | fever by the phase change of the enclosure liquid as an enclosure medium without external power is called a thermal siphon. As a typical encapsulated liquid, the case of water will be described. Water boils at 87 ° C under a pressure of 66661 Pa. By using this in a thermal siphon closed circuit, it becomes possible to cool equipment that generates heat above 87 ° C to 87 ° C without power (however, the heat exchange efficiency with the thermal siphon system is 100%. Assumption). That is, the thermal siphon can be used on the secondary side of the binary refrigeration system, and further, for example, on the primary side, for example, for cooling the compressor.

例えば閉回路内を純粋な水で満たし圧力を66661Paとする。この状態での水の沸騰温度は87℃である。凝縮部の雰囲気温度を例えば25℃前後とする。冷却を必要とする機器の温度が87℃を超える状態でこれに接するサーマルサイフォンの蒸発部内部では、例えば蒸発部下部のヘッダー部により複数の熱交換管部に水が分配され、液体が気化(潜熱変化)する。気化し密度が小さくなった水は、上昇して凝縮部に流入する。蒸発部内部で液体が残った場合には、蒸発部内上部のヘッダー部タンク内に液面が形成されて下方に滞留し、凝縮部へは流出しないようになっている。水は凝縮部で放熱後液化し、重力により蒸発部に帰還する。このような水の移動と相変化のサイクルを繰り返すサーマルサイフォンにより、圧縮冷凍機の高温部、とくに圧縮機の冷却を効率よく行うことが可能になる。なお、サーマルサイフォンは、上下に配置されたヘッダー部とそれらをつなぐ熱交換を行う複数の管部とで構成された凝縮部および満液式蒸発部を備えた構造に構成できる。そして、サーマルサイフォンは熱負荷に応じて封入液体の蒸発量が増すため、これに応じた熱交換を凝縮部で行い、例えばファン風量によりその熱交換量を調整するようにすることもできる。この場合、凝縮部を圧縮式冷凍機の高圧側熱交換器の上方に並べて配置し、共通のファンで冷却するようにしてもよい。   For example, the closed circuit is filled with pure water and the pressure is 66661 Pa. The boiling temperature of water in this state is 87 ° C. The atmospheric temperature of the condensing part is set to around 25 ° C., for example. Inside the evaporator part of the thermal siphon that comes into contact with the equipment in need of cooling exceeding 87 ° C, for example, water is distributed to a plurality of heat exchange pipe parts by the header part below the evaporator part, and the liquid is vaporized ( (Latent heat change). The water that is vaporized and has a reduced density rises and flows into the condensing part. When liquid remains inside the evaporation unit, a liquid level is formed in the header tank in the upper part of the evaporation unit and stays downward, so that it does not flow out to the condensing unit. Water is liquefied after heat dissipation in the condensing part, and returns to the evaporation part by gravity. The thermal siphon that repeats such a cycle of water movement and phase change makes it possible to efficiently cool the high-temperature portion of the compression refrigerator, particularly the compressor. The thermal siphon can be configured as a structure including a condensing unit and a full liquid evaporation unit that are composed of header sections arranged above and below and a plurality of pipe sections that perform heat exchange connecting the header sections. Since the thermal siphon increases the evaporation amount of the sealed liquid in accordance with the heat load, heat exchange corresponding to this can be performed in the condensing unit, and the heat exchange amount can be adjusted by the fan air volume, for example. In this case, the condensing unit may be arranged above the high-pressure side heat exchanger of the compression refrigerator and cooled by a common fan.

この本発明に係る冷凍システムにおいては、上記サーマルサイフォンは内圧を調整することにより液体の蒸発温度が調整可能に構成されている形態とすることもできる。例えば、サーマルサイフォンに、その内容積を調整する調圧室を設け、サーマルサイフォン内圧を増減し、冷却温度を調整するのである。具体的には、例えば、サーマルサイフォンが、少なくとも可撓性部材よりなる隔壁と、隔壁内の圧力に応じて弾性的にストロークを変える隔壁支持部材と、および隔壁支持部材のストロークの設定を調整する調整ねじを備えた調圧室を有する形態である。より具体的には、例えば、ゴムや金属ベローズ、金属ダイアフラム等の可撓性部材で形成された隔壁と弾性部材で形成された隔壁支持部材(例えば、スプリング)を備えた調圧室を設け、水を100℃以下で沸騰させる場合には隔壁内圧力と大気圧の差圧分をスプリングおよび調整ねじでバランスさせる。水を100℃以上で沸騰させる場合にはスプリングの取付け方が逆になる。   In the refrigeration system according to the present invention, the thermal siphon may be configured such that the evaporation temperature of the liquid can be adjusted by adjusting the internal pressure. For example, a pressure adjustment chamber for adjusting the internal volume is provided in the thermal siphon, the internal pressure of the thermal siphon is increased or decreased, and the cooling temperature is adjusted. Specifically, for example, the thermal siphon adjusts the setting of the partition wall made of at least a flexible member, the partition wall support member that elastically changes the stroke according to the pressure in the partition wall, and the stroke setting of the partition wall support member. It is the form which has a pressure regulation chamber provided with the adjustment screw. More specifically, for example, a pressure regulating chamber including a partition wall formed of a flexible member such as rubber, a metal bellows, and a metal diaphragm and a partition wall support member (for example, a spring) formed of an elastic member is provided. When water is boiled at 100 ° C. or less, the differential pressure between the pressure in the partition wall and the atmospheric pressure is balanced by a spring and an adjusting screw. When water is boiled at 100 ° C. or higher, the spring mounting method is reversed.

上記サーマルサイフォンにより冷却される圧縮式冷凍機の高温部としては、とくに圧縮機を冷却対象とできる。また、冷却対象となる圧縮式冷凍機の高温部に、圧縮機に一体に組み込まれた電動モータを含めてもよい。さらに、冷却対象となる圧縮式冷凍機の高温部に、圧縮機を駆動する電動モータを制御するインバータを含めてもよい。   As a high temperature part of the compression refrigerator cooled by the thermal siphon, the compressor can be a cooling target. Moreover, you may include the electric motor integrated in the compressor in the high temperature part of the compression refrigerator used as cooling object. Furthermore, you may include the inverter which controls the electric motor which drives a compressor in the high temperature part of the compression type refrigerator used as cooling object.

このような圧縮式冷凍機の圧縮機部を冷却する場合には、例えば、該圧縮機がその壁面を介して、サーマルサイフォンの蒸発部により冷却されるようにすればよい。このような配置により、冷却対象としての圧縮機が効率よく冷却される。   When cooling the compressor part of such a compression type refrigerator, for example, the compressor may be cooled by the evaporation part of the thermal siphon through its wall surface. With such an arrangement, the compressor as a cooling target is efficiently cooled.

また、本発明に係る冷凍システムにおけるサーマルサイフォンに封入される液体としては、本発明で目標とする冷却が達成される限りとくに限定されないが、取扱いが容易であり、特性を予め明瞭に把握できる液体であることが望ましく、前述の如く、水あるいは水を主体とする液体であることが望ましい。例えば、水を50%以上含む液体からなることが好ましい。   Further, the liquid enclosed in the thermal siphon in the refrigeration system according to the present invention is not particularly limited as long as the target cooling is achieved in the present invention. However, the liquid is easy to handle and can clearly grasp the characteristics in advance. As described above, water or a liquid mainly composed of water is desirable. For example, it is preferably made of a liquid containing 50% or more of water.

また、サーマルサイフォンは、銅又はアルミニウム管を実質的にエンドレス状につないだものに、二酸化炭素又はブタン等の冷媒ガスを充填したものも存在していたが、例えば二酸化炭素の実質的な蒸発温度(あるいは凝縮温度)は−8℃と常温域になくサーマルサイフォンが成立するためにかえって圧縮式冷凍機の熱負荷が高くなるという矛盾が生じてくるおそれがある。したがって、このような面からも、適切な温度で気液の相変化(潜熱変化)が可能な封入液体、例えば上記の如く水を50%以上含む液体、を選定することが好ましい。   In addition, some thermal siphons have copper or aluminum tubes connected substantially in an endless manner and are filled with a refrigerant gas such as carbon dioxide or butane. (Or condensing temperature) is not in the room temperature range of −8 ° C., and a thermal siphon is established, which may cause a contradiction that the heat load of the compression refrigerator becomes higher. Therefore, from this aspect, it is preferable to select a sealed liquid capable of changing the phase of gas and liquid (latent heat change) at an appropriate temperature, for example, a liquid containing 50% or more of water as described above.

本発明における圧縮式冷凍機に使用される冷媒としても特に限定はしないが、本発明では圧縮式冷凍機の高温部を効率よく冷却できることから、冷媒が二酸化炭素からなる場合に、つまり、冷凍サイクル中に高温高圧部を有する場合に、とくに本発明は効果的である。あるいは別の表現をすれば、圧縮式冷凍機内を循環する冷媒が、地球温暖化係数(GWP)150以下の冷媒である場合、本発明はとくに効果的である。ただし、HFC134a等の冷媒を使用する圧縮式冷凍機も、本発明の対象とすることができる。   The refrigerant used in the compression refrigerator in the present invention is not particularly limited, but in the present invention, since the high temperature portion of the compression refrigerator can be efficiently cooled, when the refrigerant is made of carbon dioxide, that is, in the refrigeration cycle. The present invention is particularly effective when it has a high-temperature and high-pressure part. In other words, the present invention is particularly effective when the refrigerant circulating in the compression refrigerator is a refrigerant having a global warming potential (GWP) of 150 or less. However, a compression refrigerator using a refrigerant such as HFC134a can also be the subject of the present invention.

また、本発明に係る冷凍システムにおいては、とくに、上記サーマルサイフォンにより圧縮式冷凍機の圧縮機動力相当分の熱交換が行われることが好ましい。このようにすれば、後述のモリエル線図で説明するように、極めて効率のよい冷凍サイクルの実現が可能になり、場合によっては、従来サイクルにおけるガスクーラを省略できる可能性まで生じてくる。   In the refrigeration system according to the present invention, it is particularly preferable that heat exchange corresponding to the compressor power of the compression chiller is performed by the thermal siphon. This makes it possible to realize an extremely efficient refrigeration cycle, as will be described with reference to the Mollier diagram to be described later. In some cases, there is a possibility that the gas cooler in the conventional cycle can be omitted.

また、本発明に係る冷凍システムは、特別な外部動力を要しないサーマルサイフォンを利用したものであるから、とくに新たな動力源等の搭載が好まれない、車両用空調装置に用いられる冷凍システム等に好適なものである。ただし、本発明に係る冷凍システムは、車両用空調装置に限らず、他の装置、例えば電子機器等の冷却にも適用可能である。   In addition, since the refrigeration system according to the present invention uses a thermal siphon that does not require any special external power, a refrigeration system used in a vehicle air conditioner or the like that is not particularly preferred to install a new power source or the like. It is suitable for. However, the refrigeration system according to the present invention is not limited to a vehicle air conditioner, and can be applied to cooling other devices such as electronic devices.

本発明における作用を、封入液体が水の場合について説明するに、例えば車両用空調装置の場合、通常の運転モードでは圧縮機のハウジング表面温度の下限は90℃前後で、圧縮機の回転速度が高まるにつれて上昇し条件によっては160℃にまで達することがある。しかし本発明におけるサーマルサイフォンが作動すると、どのような条件であってもサーマルサイフォン内での水の沸騰温度以上に温度が上昇することはない。つまり、望ましくない高温化を防止するために、適切な冷却が行われることになる。   The operation of the present invention will be described in the case where the sealed liquid is water. For example, in the case of a vehicle air conditioner, the lower limit of the compressor housing surface temperature is about 90 ° C. in the normal operation mode, and the rotational speed of the compressor is As it increases, it may rise up to 160 ° C depending on the conditions. However, when the thermal siphon according to the present invention operates, the temperature does not rise above the boiling temperature of water in the thermal siphon under any conditions. That is, appropriate cooling is performed to prevent an undesirably high temperature.

冷媒に二酸化炭素を用いた圧縮式冷凍機の場合には、臨界点が約30℃という低い温度で約7MPaという高い圧力であるという冷媒の特性があり、通常の内部熱交換器を使わないサイクル構成では蒸発器入口での乾き度が大きく冷凍システムとしての効率が良くない。これを補うため設けられた内部熱交換器は、ガスクーラ下流と蒸発器下流の配管を接触させるため、圧縮機の吸入ガス温度を上昇させ、ひいては吐出ガス温度も上昇させる。本発明では、例えば後述の如く、圧縮式冷凍機の圧縮機の壁面を覆うように水が循環する空間(ジャケット)を設け、該ジャケットより上方にあるサーマルサイフォンの凝縮部と配管で接続するように構成される。ジャケット内に下方から液体として入ってきた水は圧縮機の熱を受け気化する。このときジャケット内の圧力が66661Paであれば温度は87℃に保たれることになり、前述のような高温に至ることは確実に防止される。   In the case of a compression refrigerator using carbon dioxide as a refrigerant, the critical point is a low temperature of about 30 ° C. and a high pressure of about 7 MPa, and the cycle does not use a normal internal heat exchanger. In the configuration, the dryness at the evaporator inlet is large and the efficiency as a refrigeration system is not good. An internal heat exchanger provided to compensate for this raises the intake gas temperature of the compressor and thus the discharge gas temperature in order to bring the gas cooler downstream pipe and the evaporator downstream pipe into contact with each other. In the present invention, as will be described later, for example, a space (jacket) in which water circulates is provided so as to cover the wall surface of the compressor of the compression refrigerator, and is connected to the condenser portion of the thermal siphon above the jacket by piping. Configured. The water that has entered the jacket as a liquid from below is vaporized by the heat of the compressor. At this time, if the pressure in the jacket is 66661 Pa, the temperature is maintained at 87 ° C., and the high temperature as described above is surely prevented.

また、調圧室を設けることにより、サーマルサイフォンに対する熱負荷が増加した際に沸騰した後の気体の量が増加しても、沸点が変動せず安定した冷却性能が得られるようになる。これを、高圧側が超臨界となる二酸化炭素冷媒を使った圧縮式冷凍機の高圧側機器の冷却に用いると、高圧側圧力が安定し、高度な制御をしなくても安定した運転が可能となる。   Further, by providing the pressure adjusting chamber, even if the amount of gas after boiling when the thermal load on the thermal siphon increases, the boiling point does not fluctuate and stable cooling performance can be obtained. If this is used to cool the high-pressure side equipment of a compression refrigerator using a carbon dioxide refrigerant whose high-pressure side is supercritical, the high-pressure side pressure will be stable and stable operation will be possible without advanced control. Become.

このように、本発明に係る冷凍システムによれば、サーマルサイフォンを設けてそれに封入された液体の相変化の際の潜熱を利用するため、閉回路内の圧力により決定される沸騰温度(凝縮温度)で被冷却部の温度を所望の一定温度に保つことが可能になり、目標とする冷却が効率よく確実に行われることになる。   As described above, according to the refrigeration system of the present invention, the boiling temperature (condensation temperature) determined by the pressure in the closed circuit is used in order to use the latent heat at the time of the phase change of the liquid enclosed in the thermal siphon. ), The temperature of the cooled part can be maintained at a desired constant temperature, and the target cooling can be performed efficiently and reliably.

また、圧縮式冷凍機の圧縮機のハウジングに関しては、成形性や切削性の良さや熱伝導率の高さから軽合金材料が一般的に使用されている。しかし軽合金は高温になるにつれて強度が著しく低下する特性がある。本発明による冷却の結果、圧縮機ハウジング温度を低下させることができるので、実質的に高い強度の領域での使用が可能となる。   For the compressor housing of the compression refrigerator, a light alloy material is generally used because of its good formability and machinability and high thermal conductivity. However, light alloys have the property that the strength decreases significantly as the temperature rises. As a result of the cooling according to the present invention, the compressor housing temperature can be lowered, so that it can be used in a substantially high strength region.

また、サーマルサイフォンの温度を一定に保つ冷却特性を活かせば、シール材質の高温劣化も防止できる。   Moreover, if the cooling characteristic that keeps the temperature of the thermal siphon constant is utilized, the high temperature deterioration of the seal material can be prevented.

また、サーマルサイフォンの温度を一定に保つ冷却特性を活かせば、冷凍機油粘度低下防止により潤滑油膜厚が確保されるので、シール摺動部や軸受け部の耐久性を向上することもできる。   Further, if the cooling characteristic for keeping the temperature of the thermal siphon constant is utilized, the lubricating oil film thickness is secured by preventing the refrigerating machine oil viscosity from being lowered, so that the durability of the seal sliding portion and the bearing portion can be improved.

このサーマルサイフォンは可動部を持たないため極めて信頼性が高く、静粛性にも優れている。また、特別な外部駆動源も必要としないため、安価にかつ大きなスペースを要することなく本発明を実施できる。   Since this thermal siphon has no moving parts, it is extremely reliable and quiet. Further, since no special external drive source is required, the present invention can be implemented at low cost and without requiring a large space.

また、サーマルサイフォンは大気圧よりも低い圧力で作動するため、外部に対する漏れがなく、この面でも極めて信頼性が高い。   Further, since the thermal siphon operates at a pressure lower than the atmospheric pressure, there is no leakage to the outside, and this aspect is extremely reliable.

また、サーマルサイフォンによる適切な冷却により、圧縮式冷凍機の高圧側熱交換器を小さくすることが可能になり、その分封入冷媒量を低減することも可能になる。   Further, by appropriate cooling by the thermal siphon, it is possible to reduce the high-pressure side heat exchanger of the compression refrigeration machine, and it is possible to reduce the amount of enclosed refrigerant accordingly.

さらに、熱負荷の少ない状況で例えば電動モータ一体の圧縮機を備えた圧縮式冷凍機を使用する場合であっても、圧縮機の性能や耐久性の低下が無い。   Further, even when a compression type refrigerator having a compressor integrated with an electric motor is used in a state where the heat load is small, there is no deterioration in the performance and durability of the compressor.

以下に、本発明の望ましい実施の形態を、図面を参照して説明する。
図1は、本発明の一実施態様に係る冷凍システムを車両用空調装置に適用した場合の機器配置を示している。図1において、圧縮機11で圧縮され吐出された二酸化炭素冷媒がガスクーラ12に送られ、ガスクーラ12からの高圧側冷媒が、内部熱交換器13により低圧側冷媒と熱交換された後、膨張弁14を介して蒸発器15に送られ、蒸発器15からの冷媒がアキュムレータ16を通した後、内部熱交換器13により高圧側冷媒と熱交換され、圧縮機11に吸入される。このように構成された冷凍システムの圧縮機11、またはその部分に対して、本発明におけるサーマルサイフォン17が設けられている。このサーマルサイフォン17は、圧縮機11の周囲にジャケット18の形態に形成された封入液体の蒸発部19と、上方に位置する凝縮部20とを備えている。蒸発部19は圧縮機11の周囲に配置されるが、凝縮部20は圧縮機11よりも上方に配置されている。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a device arrangement when a refrigeration system according to an embodiment of the present invention is applied to a vehicle air conditioner. In FIG. 1, the carbon dioxide refrigerant compressed and discharged by the compressor 11 is sent to the gas cooler 12, and after the high-pressure side refrigerant from the gas cooler 12 is heat-exchanged with the low-pressure side refrigerant by the internal heat exchanger 13, the expansion valve 14, the refrigerant from the evaporator 15 passes through the accumulator 16, and is then heat-exchanged with the high-pressure side refrigerant by the internal heat exchanger 13 and sucked into the compressor 11. The thermal siphon 17 according to the present invention is provided for the compressor 11 of the refrigeration system configured as described above, or a portion thereof. The thermal siphon 17 includes an evaporation unit 19 for the sealed liquid formed in the form of a jacket 18 around the compressor 11 and a condensing unit 20 positioned above. The evaporator 19 is disposed around the compressor 11, but the condenser 20 is disposed above the compressor 11.

上記のようにサーマルサイフォン17を備えた冷凍システムにおける冷凍サイクルは、例えば図2に示すようなモリエル線図で表すことができる。図2に示した二酸化炭素冷媒を使用した圧縮冷凍サイクルにおいては、サーマルサイフォン17に封入された液体の沸騰冷却が圧縮機11の冷却に利用される。図2において、1−1’〜2間が圧縮機11によるの圧縮仕事相当分(仮想分)であるが、サーマルサイフォン17による沸騰冷却により、1’−2’間のように、圧縮機11が冷却されて圧縮機11の高温化が防止されている。2’−3間はガスクーラ12による放熱、3−4間および7−1間が内部熱交換器13による熱交換、4−5間が膨張弁14による膨張、5−6間が蒸発器15による蒸発をそれぞれ示しており、6、7はアキュムレータ16における同圧状態での気液分離を示している。このように、サーマルサイフォン17により、モリエル線図上からも効率のよい圧縮機11の冷却が行われることが明らかであり、2’が3の位置にくれば、場合によってはガスクーラ12の省略も可能となる。   The refrigeration cycle in the refrigeration system provided with the thermal siphon 17 as described above can be represented by, for example, a Mollier diagram as shown in FIG. In the compression refrigeration cycle using the carbon dioxide refrigerant shown in FIG. 2, boiling cooling of the liquid sealed in the thermal siphon 17 is used for cooling the compressor 11. In FIG. 2, a portion between 1-1 ′ and 2 is a portion equivalent to a compression work (virtual portion) by the compressor 11, but the compressor 11 is boiled and cooled by the thermal siphon 17 as between 1 ′ and 2 ′. As a result, the compressor 11 is prevented from being heated at a high temperature. Between 2'-3, heat is radiated by the gas cooler 12, between 3-4 and 7-1 is heat exchange by the internal heat exchanger 13, between 4-5 is expanded by the expansion valve 14, and between 5-6 is by the evaporator 15. Evaporation is shown, and 6 and 7 show gas-liquid separation in the accumulator 16 under the same pressure state. Thus, it is clear that the compressor 11 is efficiently cooled by the thermal siphon 17 even on the Mollier diagram. If 2 ′ is at the position 3, the gas cooler 12 may be omitted in some cases. It becomes possible.

上記サーマルサイフォン17は、例えば図3に示すような基本構成を有する。すなわち、封入液体が液相状態で流動される蒸発部19が下部側に位置し、その上方に封入液体が気相状態で流動され放熱により液化される凝縮部20が配置されている。これらは閉回路に構成されており、蒸発部19内部の液体が受熱気化した後、凝縮部20での放熱により液化し蒸発部19に帰還するように、閉回路で液体の移動と相変化のサイクルを繰り返すように構成されており、蒸発部19での気化(潜熱変化)による吸熱により、圧縮式冷凍機の高温部が冷却されるようになっている。このように、サーマルサイフォン17は、特別な外部動力を与えなくても、封入液体が循環する。   The thermal siphon 17 has a basic configuration as shown in FIG. 3, for example. That is, the evaporating part 19 in which the sealed liquid flows in the liquid phase is located on the lower side, and the condensing part 20 in which the sealed liquid flows in the gas phase and is liquefied by heat dissipation is disposed above it. These are configured in a closed circuit, and after the liquid in the evaporation unit 19 is heat-received and vaporized, the liquid moves and phase changes in the closed circuit so that it is liquefied by heat dissipation in the condensation unit 20 and returned to the evaporation unit 19. This cycle is repeated, and the high-temperature portion of the compression refrigerator is cooled by heat absorption due to vaporization (latent heat change) in the evaporation portion 19. In this manner, the encapsulated liquid circulates in the thermal siphon 17 without applying special external power.

図4は、サーマルサイフォン17に調圧室21を設けた場合を例示している。本例では、調圧室21は、可撓性部材よりなり、内部にサーマルサイフォン17内の封入液体が流通される隔壁としての、ゴムや金属製ベローズ22と、ベローズ22内の圧力に応じて弾性的にストロークを変える隔壁支持部材としてのスプリング23と、スプリング23のストロークの設定を調整する調整ねじ24を備えた形態に構成されている。例えば封入液体としての水を100℃以下で沸騰させる場合には、ベローズ22内圧力と大気圧の差圧分をスプリング23および調整ねじ24でバランスさせればよい。水を100℃以上で沸騰させる場合にはスプリング23の取付け方が逆になる。   FIG. 4 illustrates a case where the pressure adjustment chamber 21 is provided in the thermal siphon 17. In this example, the pressure regulation chamber 21 is made of a flexible member, and a rubber or metal bellows 22 as a partition wall through which the liquid inside the thermal siphon 17 circulates, and the pressure in the bellows 22. A spring 23 serving as a partition wall supporting member that elastically changes the stroke and an adjusting screw 24 that adjusts the stroke setting of the spring 23 are provided. For example, in the case where water as the sealed liquid is boiled at 100 ° C. or lower, the difference between the pressure inside the bellows 22 and the atmospheric pressure may be balanced by the spring 23 and the adjusting screw 24. When the water is boiled at 100 ° C. or higher, the attachment method of the spring 23 is reversed.

図5は、従来の圧縮機31の一例を比較のために示したものである。この圧縮機31は、圧縮機構32とそれを駆動する電動モータ33(例えば、DCブラシレスモータ)が一体に組み込まれたものからなり、電動モータ33はインバータ34によって制御されている。この圧縮機31においては、吸入冷媒35が電動モータ33を通して圧縮機構32へと吸入され、それによって圧縮機31とともに電動モータ33も冷却されるようになっている。圧縮機構32で圧縮された冷媒は、圧縮冷媒36として吐出される。   FIG. 5 shows an example of a conventional compressor 31 for comparison. The compressor 31 is formed by integrating a compression mechanism 32 and an electric motor 33 (for example, a DC brushless motor) that drives the compression mechanism 32, and the electric motor 33 is controlled by an inverter 34. In the compressor 31, the suction refrigerant 35 is sucked into the compression mechanism 32 through the electric motor 33, thereby cooling the electric motor 33 together with the compressor 31. The refrigerant compressed by the compression mechanism 32 is discharged as a compressed refrigerant 36.

これに対し本発明を適用した、圧縮式冷凍機の冷却対象としての圧縮機は、例えば図6に示すように構成される。図6は、図1に示した圧縮機11およびその周囲の構成として示してある。この圧縮機11は、図5に示した圧縮機31と同様、圧縮機構41が内蔵された電動モータ42によって駆動されるものであるが、吸入冷媒43は電動モータ42を通すことなく直接的に圧縮機構41部に導入され、圧縮機構41で圧縮された冷媒が、圧縮冷媒44として吐出されるようになっている。そして、この圧縮機11に対して、前述のジャケット18の構造にて、サーマルサイフォン17の蒸発部19が配置されており、蒸発部19と凝縮部20との間で、封入液体の循環が、つまり、前述したような閉回路内での液体の移動と相変化のサイクルが繰り返されるように構成されている。また本例では、冷却のためのジャケット18は、電動モータ42部分を覆うことにより電動モータ42部分を冷却できるように配置されているとともに、電動モータ42を制御するインバータ45も冷却できるように配置されており、圧縮機11、電動モータ42、インバータ45がともに効率よく冷却されるようになっている。   On the other hand, a compressor as a cooling target of a compression refrigerator to which the present invention is applied is configured as shown in FIG. 6, for example. FIG. 6 shows the compressor 11 shown in FIG. 1 and the configuration around it. Like the compressor 31 shown in FIG. 5, the compressor 11 is driven by an electric motor 42 with a built-in compression mechanism 41, but the suction refrigerant 43 is directly passed through the electric motor 42. The refrigerant introduced into the compression mechanism 41 and compressed by the compression mechanism 41 is discharged as the compressed refrigerant 44. And with respect to this compressor 11, the evaporation part 19 of the thermal siphon 17 is arrange | positioned by the structure of the above-mentioned jacket 18, Between the evaporation part 19 and the condensation part 20, circulation of the sealing liquid is carried out. That is, the liquid movement and the phase change cycle in the closed circuit as described above are repeated. In this example, the cooling jacket 18 is arranged so as to cool the electric motor 42 portion by covering the electric motor 42 portion, and is arranged so that the inverter 45 that controls the electric motor 42 can also be cooled. Thus, the compressor 11, the electric motor 42, and the inverter 45 are all efficiently cooled.

このように、圧縮式冷凍機の高温部に対してサーマルサイフォンを配設することにより、冷却が必要とされる高温部が効率よく冷却されることになり、冷凍システムの冷凍サイクルの効率が大幅に向上されることになる。   In this way, by disposing the thermal siphon to the high temperature part of the compression refrigerator, the high temperature part that needs to be cooled is efficiently cooled, and the efficiency of the refrigeration cycle of the refrigeration system is greatly increased. Will be improved.

なお、上記実施態様は車両塔空調装置における圧縮機部分の冷却に本発明を適用した場合を例示したが、本発明は同装置のその他の部位に対しても適用可能であり、さらに、車両塔空調装置に限らず、他の冷凍システムにも適用可能である。   In addition, although the said embodiment illustrated the case where this invention was applied to cooling of the compressor part in a vehicle tower air conditioner, this invention is applicable also to the other site | part of this apparatus, and also a vehicle tower Not only the air conditioner but also other refrigeration systems can be applied.

本発明に係る冷凍システムは、とくに常温下で使用され常温レベルまでの冷却が必要とされる用途に好適である。例えば電子機器の冷却や二酸化炭素冷媒を用いた圧縮式冷凍機を構成する圧縮機の冷却に好適である。   The refrigeration system according to the present invention is particularly suitable for applications that are used at room temperature and require cooling to a room temperature level. For example, it is suitable for cooling an electronic device and a compressor constituting a compression refrigerator using a carbon dioxide refrigerant.

本発明の一実施態様に係る冷凍システムを車両用空調装置に適用した場合の機器系統図である。It is an equipment system diagram at the time of applying a refrigeration system concerning one embodiment of the present invention to a vehicle air conditioner. 図1の冷凍システムのモリエル線図である。FIG. 2 is a Mollier diagram of the refrigeration system of FIG. 1. 図1におけるサーマルサイフォンの基本構成を示す概略構成図である。It is a schematic block diagram which shows the basic composition of the thermal siphon in FIG. 調圧室を備えたサーマルサイフォンの一例を示す概略構成図である。It is a schematic block diagram which shows an example of the thermal siphon provided with the pressure regulation chamber. 比較のために示した従来の圧縮機の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the conventional compressor shown for the comparison. 本発明を適用した圧縮機部の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the compressor part to which this invention is applied. 従来の冷凍システムを適用した車両用空調装置の一例を示す機器系統図である。It is an equipment distribution diagram showing an example of a vehicle air conditioner to which a conventional refrigeration system is applied. 図7の冷凍システムのモリエル線図である。FIG. 8 is a Mollier diagram of the refrigeration system of FIG. 7.

符号の説明Explanation of symbols

11 圧縮機
12 ガスクーラ
13 内部熱交換器
14 膨張弁
15 蒸発器
16 アキュムレータ
17 サーマルサイフォン
18 ジャケット
19 蒸発部
20 凝縮部
21 調圧室
22 隔壁としてのベローズ
23 隔壁支持部材としてのスプリング
24 調整ねじ
41 圧縮機構
42 電動モータ
43 吸入冷媒
44 圧縮冷媒
45 インバータ
DESCRIPTION OF SYMBOLS 11 Compressor 12 Gas cooler 13 Internal heat exchanger 14 Expansion valve 15 Evaporator 16 Accumulator 17 Thermal siphon 18 Jacket 19 Evaporating part 20 Condensing part 21 Pressure regulation chamber 22 Bellows 23 as a partition wall Spring 24 as a partition wall supporting member Adjustment screw 41 Compression Mechanism 42 Electric motor 43 Suction refrigerant 44 Compressed refrigerant 45 Inverter

Claims (11)

圧縮式冷凍機の高温部を冷却するために、液体が封入され該液体の蒸発部と凝縮部とを有する閉回路に構成され、蒸発部内部の液体が受熱気化した後、凝縮部での放熱により液化し蒸発部に帰還するように、閉回路で液体の移動と相変化のサイクルを繰り返すサーマルサイフォンを設けたことを特徴とする冷凍システム。   In order to cool the high-temperature part of the compression refrigerator, the liquid is enclosed, and is configured in a closed circuit having an evaporation part and a condensation part of the liquid. A refrigeration system comprising a thermal siphon that repeats a liquid movement and phase change cycle in a closed circuit so as to be liquefied by heat radiation and returned to the evaporation section. 前記サーマルサイフォンは内圧を調整することにより液体の蒸発温度が調整可能に構成されている、請求項1に記載の冷凍システム。   The refrigeration system according to claim 1, wherein the thermal siphon is configured to be capable of adjusting a liquid evaporation temperature by adjusting an internal pressure. 前記サーマルサイフォンは、少なくとも可撓性部材よりなる隔壁と、隔壁内の圧力に応じて弾性的にストロークを変える隔壁支持部材と、および隔壁支持部材のストロークの設定を調整する調整ねじを備えた調圧室を有する、請求項2に記載の冷凍システム。   The thermal siphon includes a partition made of at least a flexible member, a partition support member that elastically changes its stroke in accordance with the pressure in the partition, and an adjustment screw that adjusts the stroke setting of the partition support member. The refrigeration system according to claim 2, comprising a pressure chamber. 前記サーマルサイフォンにより冷却される圧縮式冷凍機の高温部が圧縮機からなる、請求項1〜3のいずれかに記載の冷凍システム。   The refrigeration system according to any one of claims 1 to 3, wherein a high-temperature portion of the compression refrigerator that is cooled by the thermal siphon is a compressor. 前記サーマルサイフォンにより冷却される圧縮式冷凍機の高温部が、圧縮機に一体に組み込まれた電動モータを含む、請求項1〜4のいずれかに記載の冷凍システム。   The refrigeration system according to any one of claims 1 to 4, wherein the high-temperature portion of the compression refrigerator that is cooled by the thermal siphon includes an electric motor integrated with the compressor. 前記サーマルサイフォンにより冷却される圧縮式冷凍機の高温部が、圧縮機を駆動する電動モータを制御するインバータを含む、請求項1〜5のいずれかに記載の冷凍システム。   The refrigeration system according to any one of claims 1 to 5, wherein the high-temperature portion of the compression refrigerator cooled by the thermal siphon includes an inverter that controls an electric motor that drives the compressor. 前記圧縮式冷凍機の圧縮機がその壁面を介して、前記サーマルサイフォンの蒸発器部により冷却される、請求項1〜6のいずれかに記載の冷凍システム。   The refrigeration system according to any one of claims 1 to 6, wherein a compressor of the compression refrigerator is cooled by an evaporator unit of the thermal siphon through a wall surface thereof. 前記サーマルサイフォンに封入される液体が、水を50%以上含む液体からなる、請求項1〜7のいずれかに記載の冷凍システム。   The refrigeration system according to any one of claims 1 to 7, wherein the liquid sealed in the thermal siphon is made of a liquid containing 50% or more of water. 前記圧縮式冷凍機に使用される冷媒が二酸化炭素からなる、請求項1〜8のいずれかに記載の冷凍システム。   The refrigeration system according to any one of claims 1 to 8, wherein a refrigerant used in the compression refrigerator is made of carbon dioxide. 前記サーマルサイフォンにより前記圧縮式冷凍機の圧縮機動力相当分の熱交換が行われる、請求項1〜9のいずれかに記載の冷凍システム。   The refrigeration system according to any one of claims 1 to 9, wherein heat exchange corresponding to compressor power of the compression refrigerator is performed by the thermal siphon. 車両用空調装置に用いられるものからなる、請求項1〜10のいずれかに記載の冷凍システム。   The refrigeration system according to any one of claims 1 to 10, wherein the refrigeration system is used for a vehicle air conditioner.
JP2006304024A 2006-11-09 2006-11-09 Refrigeration system Pending JP2008121930A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006304024A JP2008121930A (en) 2006-11-09 2006-11-09 Refrigeration system
PCT/JP2007/071295 WO2008056594A1 (en) 2006-11-09 2007-11-01 Refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006304024A JP2008121930A (en) 2006-11-09 2006-11-09 Refrigeration system

Publications (1)

Publication Number Publication Date
JP2008121930A true JP2008121930A (en) 2008-05-29

Family

ID=39364412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006304024A Pending JP2008121930A (en) 2006-11-09 2006-11-09 Refrigeration system

Country Status (2)

Country Link
JP (1) JP2008121930A (en)
WO (1) WO2008056594A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9154018B2 (en) 2010-10-07 2015-10-06 Abb Research Ltd. Cooling of an electric machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021121424A1 (en) * 2021-08-18 2023-02-23 Zf Cv Systems Global Gmbh Multi-stage, electrically driven compressor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5169255A (en) * 1974-12-12 1976-06-15 Akihiro Saito
JPS57206793A (en) * 1981-06-15 1982-12-18 Mitsubishi Heavy Ind Ltd Closed compressor
JP2000161794A (en) * 1998-11-27 2000-06-16 Calsonic Corp Air conditioner for vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9154018B2 (en) 2010-10-07 2015-10-06 Abb Research Ltd. Cooling of an electric machine

Also Published As

Publication number Publication date
WO2008056594A1 (en) 2008-05-15

Similar Documents

Publication Publication Date Title
US11585608B2 (en) Climate-control system having thermal storage tank
US9557080B2 (en) Refrigeration cycle apparatus
WO2003095906A1 (en) Thermo siphon chiller refrigerator for use in cold district
JP2007278666A (en) Binary refrigerating device
EP1130344A1 (en) Domestic refrigerator with peltier effect, heat accumulators and evaporative thermosyphons
JP2009068728A (en) Cooling apparatus
US10962011B2 (en) Scroll compressor with integrated refrigerant pump
JP2012247136A (en) Booster unit, and air conditioning apparatus combined with water heater including the same
TW202303057A (en) Cooling apparatus, system and method of manufacture
JP5862460B2 (en) Air conditioner
US10156384B2 (en) Heat pump system
KR200281266Y1 (en) Heat pump system
JP2008121930A (en) Refrigeration system
EP3502587A1 (en) Refrigerant system provided with direct contact heat exchanger, and control method of refrigerant system
KR200281265Y1 (en) Multi Heat pump system
JP2010243055A (en) Refrigerator
KR200426794Y1 (en) Heat pump
JP2018146144A (en) Refrigeration cycle device and operating method for the same
JP2014066381A (en) Refrigeration cycle apparatus
WO2018100711A1 (en) Refrigeration device
JP2007198681A (en) Heat pump device
JP5176874B2 (en) Refrigeration equipment
WO2022249452A1 (en) Refrigeration cycle device
JP6169363B2 (en) Heat medium control device, cooling / heating system, temperature adjusting device, and method for adding cooling / heating system
KR100685459B1 (en) 2 cycle heat pump