US20230010232A1 - Outdoor unit for refrigeration cycle apparatus - Google Patents

Outdoor unit for refrigeration cycle apparatus Download PDF

Info

Publication number
US20230010232A1
US20230010232A1 US17/786,202 US202017786202A US2023010232A1 US 20230010232 A1 US20230010232 A1 US 20230010232A1 US 202017786202 A US202017786202 A US 202017786202A US 2023010232 A1 US2023010232 A1 US 2023010232A1
Authority
US
United States
Prior art keywords
heat exchanger
outdoor unit
drain pan
support
top frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/786,202
Inventor
Tsukine MATSUGAMI
Akinori Kurachi
Yuji Tarumi
Katsunori Horiuchi
Kimitaka Kadowaki
Takuya Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Assigned to MITSUBISHI ELECTRIC CORPORATION reassignment MITSUBISHI ELECTRIC CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KADOWAKI, Kimitaka, MATSUGAMI, Tsukine, ITO, TAKUYA, TARUMI, Yuji, HORIUCHI, KATSUNORI, KURACHI, Akinori
Publication of US20230010232A1 publication Critical patent/US20230010232A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/16Arrangement or mounting thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/36Drip trays for outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/56Casing or covers of separate outdoor units, e.g. fan guards
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/20Casings or covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/32Supports for air-conditioning, air-humidification or ventilation units

Definitions

  • the present disclosure relates to an outdoor unit for a refrigeration cycle apparatus.
  • the outdoor unit is usable as, for example, a heat source unit for a heat pump apparatus.
  • Patent Literature 1 discloses an outdoor unit for a refrigeration cycle apparatus.
  • the outdoor unit includes an oblong box forming a machine chamber, a plurality of heat exchangers set in the long-side direction of the box, and fan guards that are set at the plurality of heat exchangers and that accommodate respective fans.
  • the plurality of heat exchangers are each disposed to face each other.
  • the plurality of heat exchangers are set on the box such that each outer surface thereof faces obliquely downward.
  • Patent Literature 1 When the outdoor unit for a refrigeration cycle apparatus in Patent Literature 1 is used for, for example, a large building, a plurality of the outdoor units are disposed side by side in the short-side direction of the box, and spaces are formed between the boxes of the outdoor units adjacent to each other and between the heat exchangers of the outdoor units adjacent to each other.
  • the spaces formed between the boxes of the outdoor units adjacent to each other and between the heat exchangers of the outdoor units adjacent to each other are usable as workspaces for maintenance checks of the outdoor units.
  • a top frame is set on each pair of the plurality of heat exchangers of the outdoor unit for a refrigeration cycle apparatus in Patent Literature 1.
  • the fan is set on the top frame.
  • the fan has to be detached before the top frame is detached.
  • the fan has to be detached in a space above the top frame.
  • not all the steps of the heat exchanger replacement can be performed in the workspace formed between the outdoor units adjacent to each other.
  • the present disclosure has been made to solve the above problem, and an object of the present disclosure is to provide an outdoor unit for a refrigeration cycle apparatus, all the steps of heat exchanger replacement being able to be performed in the workspace formed between the outdoor units adjacent to each other.
  • An outdoor unit for a refrigeration cycle apparatus includes: a heat exchanger having an outer surface inclined downward; a drain pan on which the heat exchanger is set; a top frame on which a fan is set, the top frame being disposed at a top of the heat exchanger; and a support attached to the drain pan and the top frame, the support extending between the drain pan and the top frame.
  • the outdoor unit for a refrigeration cycle apparatus includes the support joined to the drain pan and the top frame to be located therebetween.
  • the support joined to the drain pan and the top frame to be located therebetween.
  • FIG. 1 is a perspective view illustrating an example of the external structure of an outdoor unit for a refrigeration cycle apparatus according to Embodiment 1.
  • FIG. 2 is an exploded perspective view of a fan in FIG. 1 .
  • FIG. 3 is an enlarged perspective view illustrating part of the structure of a top frame from which a fan has been detached.
  • FIG. 4 is a side view of a modification example of the outdoor unit in FIG. 1 when viewed in the long-side direction from a side thereof.
  • FIG. 5 is a schematic top view illustrating an example of the disposition pattern of a first heat exchanger and a second heat exchanger of the outdoor unit according to Embodiment 1.
  • FIG. 6 illustrates a first modification example of the disposition pattern of the first heat exchanger and the second heat exchanger in FIG. 5 .
  • FIG. 7 illustrates a second modification example of the disposition pattern of the first heat exchanger and the second heat exchanger in FIG. 5 .
  • FIG. 8 is an exploded view illustrating the positional relationship between the second heat exchanger and a support of the outdoor unit in Embodiment 1.
  • FIG. 9 is a perspective view illustrating an example of the structure of the support in Embodiment 1.
  • FIG. 10 is a perspective view illustrating the positional relationship between a drain pan and the supports when viewed from the inside of the outdoor unit.
  • FIG. 11 is a perspective view illustrating the structure of a base to be attached to the drain pan.
  • FIG. 12 is a perspective view illustrating the positional relationship between the top frame and the support when viewed from the outside of the outdoor unit.
  • FIG. 13 illustrates another modification example of the outdoor unit in FIG. 1 .
  • FIG. 14 is a schematic view illustrating the positional relationship between the drain pan and the supports when the outdoor unit is viewed in the long-side direction from a side of the outdoor unit.
  • FIG. 15 is a perspective view illustrating the outdoor unit in FIG. 1 from which the supports have been detached.
  • FIG. 16 is a perspective view illustrating the outdoor unit in FIG. 15 from which one first heat exchanger has been detached.
  • FIG. 17 is a perspective view illustrating an example of the attachment mode of a design panel different from that in the outdoor unit in FIG. 1 .
  • FIG. 18 is a perspective view illustrating an example of the positional relationship between the design panel and the base when viewed from the inside of the outdoor unit.
  • FIG. 19 is an enlarged front view of the part in FIG. 18 where a drain pan maintenance panel is attached.
  • FIG. 20 is a perspective view illustrating the structure of the drain pan maintenance panel.
  • FIG. 21 is a perspective view illustrating an example of the attachment mode of the drain pan maintenance panel when viewed from the inside of the outdoor unit.
  • FIG. 22 is a sectional view taken along line A-A in FIG. 19 .
  • FIG. 1 is a perspective view illustrating an example of the external structure of the outdoor unit 100 for a refrigeration cycle apparatus according to Embodiment 1.
  • the size relationships or the shapes of the components may differ from those of actual ones.
  • the same components or parts or components or parts having the same functions have the same reference signs or have no reference signs.
  • the positional relationships between the components of the outdoor unit 100 in, for example, an up-down direction, a left-right direction, or a front-rear direction are directions when the outdoor unit 100 is set in a usable state.
  • the outdoor unit 100 for a refrigeration cycle apparatus is connected to an indoor unit by heat medium pipes.
  • a heat medium such as water or brine is circulated, by, for example, operation of a pump apparatus, between the outdoor unit 100 and the indoor unit.
  • high-temperature or low-temperature heat is discharged from a high-temperature or low-temperature heat medium passing through the inside thereof.
  • the outdoor unit 100 has an oblong shape in top view.
  • a refrigeration cycle apparatus is used for, for example, a large building, a plurality of the outdoor units 100 are disposed side by side in the short-side direction.
  • Such an outdoor unit 100 for a refrigeration cycle apparatus is also referred to as a chilling unit and is usable as, for example, a heat source unit for a heat pump apparatus.
  • the outdoor unit 100 includes a box 1 , which is set on a floor, heat exchangers 3 , which are disposed at the top of the box 1 , and top frames 5 , which are disposed at the top of heat exchanger 3 .
  • a drain pan 7 on which the heat exchangers 3 are set, is disposed at the top of the box 1 .
  • Fans 6 are set on the top frames 5 .
  • the box 1 has an oblong rectangular shape.
  • the box 1 is formed of frames 1 a and side walls 1 b , which close the spaces between the frames 1 a adjacent to each other.
  • a machine chamber of the outdoor unit 100 is formed in the internal space of the box 1 .
  • a compressor, a pressure reducing device, and a water-cooled heat exchanger are accommodated in the machine chamber.
  • the compressor, the heat exchangers 3 , the pressure reducing device, and the water-cooled heat exchanger are connected by refrigerant pipes to circulate refrigerant. Most of the refrigerant pipes are accommodated in the machine chamber.
  • the compressor sucks low-pressure refrigerant and discharges high-pressure refrigerant.
  • a scroll compressor is used as the compressor.
  • the pressure reducing device decompresses and expands high-pressure liquid refrigerant.
  • an expansion valve is used as the pressure reducing device.
  • the water-cooled heat exchanger causes heat exchange to be performed between a heat medium and refrigerant flowing in an internal passage thereof.
  • a plate heat exchanger is used as the water-cooled heat exchanger.
  • the width of the box 1 in the short-side direction is set to be smaller than the width of the top frame 5 in the short-side direction.
  • an electrical component box in which, for example, a controller configured to control operation of the compressor and an expansion device is accommodated is accommodated in the machine chamber.
  • a controller configured to control operation of the compressor and an expansion device is accommodated
  • a microcomputer is used as the controller.
  • the drain pan 7 is a water container for discharging drain water produced in the heat exchangers 3 to the outside of the outdoor unit 100 .
  • the drain pan 7 is disposed at the top of the box 1 and is provided below the heat exchangers 3 .
  • the drain pan 7 functions as a top plate of the box 1 and partitions off the machine chamber from the space in which the heat exchangers 3 are disposed.
  • the drain pan 7 is attached to the frames 1 a of the box 1 by screwing or other methods.
  • a drain pipe that is connected to the drain pan 7 and through which drain water received by the drain pan 7 is discharged to the outside can be provided in a space below the drain pan 7 , that is, closer to the machine chamber.
  • the heat exchangers 3 cause heat exchange to be performed between air passing through the heat exchangers 3 and refrigerant flowing in the heat exchangers 3 .
  • the heat exchangers 3 are set on a heat exchanger setting plate 7 a , which will be described later in FIG. 10 , of the drain pan 7 .
  • the heat exchangers 3 are detachably attached to supports 9 and design panels 10 via attachments attached to the supports 9 and the design panels 10 by screwing or other methods.
  • First heat exchangers 3 a and second heat exchangers 3 b are used as the heat exchangers 3 .
  • the first heat exchangers 3 a and the second heat exchangers 3 b are disposed along a pair of edges extending in the long-side direction of the drain pan 7 to face each other with spaces therebetween.
  • Two first heat exchangers 3 a and two second heat exchangers 3 b are disposed in the outdoor unit 100 in FIG. 1 , but each of the numbers of the first heat exchangers 3 a and the second heat exchangers 3 b provided therein may be one or three or more.
  • an air-cooled finned tube heat exchanger is used as each of the first heat exchanger 3 a and the second heat exchanger 3 b . Details of the heat exchangers 3 will be described later.
  • the first heat exchanger 3 a and the second heat exchanger 3 b are referred to as the heat exchangers 3 when it is unnecessary to particularly distinguish the first heat exchanger 3 a and the second heat exchanger 3 b.
  • the top frames 5 and the fans 6 form the top of the outdoor unit 100 .
  • the top frames 5 are each made of a rectangular metal plate and cover the tops of the heat exchangers 3 .
  • the top frame 5 includes a setting surface 5 a , on which the fans 6 are set, and edge surfaces 5 b , which extend downward from respective edges of the setting surface 5 a .
  • the edge surfaces 5 b of the top frame 5 extend downward to cover the tops of the heat exchangers 3 .
  • FIG. 2 is an exploded perspective view of the fan 6 in FIG. 1 .
  • FIG. 3 is an enlarged perspective view illustrating part of the structure of the top frame 5 from which the fan 6 has been detached.
  • the fan 6 includes a bell mouth 6 a , which defines an air passage of the outdoor unit 100 , a fan guard 6 b , which is disposed at the top of the bell mouth 6 a and which has vent holes, and a fan body 6 c , which is accommodated in the bell mouth 6 a .
  • four fans 6 are set on the top frames 5 , but the number of the fans 6 is not limited to four as long as the number thereof is one or more.
  • an axial fan such as a propeller fan is used as the fan body 6 c.
  • the setting surface 5 a of the top frame 5 has an opening 5 a 1 , which is in communication with the inside of the bell mouth 6 a .
  • the top frame 5 includes fan setting racks 5 c , which cross the opening 5 a 1 and are attached to the setting surface 5 a .
  • the fan body 6 c is attached to the fan setting rack 5 c by screwing or other methods.
  • the bell mouth 6 a is attached to the setting surface 5 a , which is around the opening 5 a 1 , by screwing or other methods.
  • two top frames 5 are provided, and two fans 6 are set on each of the top frames 5 .
  • the configuration is not limited thereto.
  • top frames 5 may be provided, and one fan 6 may be set on each of the top frames 5 .
  • one top frame 5 may be provided, and four fans 6 may be set on the top frame 5 .
  • the top frames 5 can be joined to each other by welding, screwing, or other methods.
  • the first heat exchangers 3 a and the second heat exchangers 3 b are disposed such that each outer surface of the first heat exchangers 3 a and the second heat exchangers 3 b , that is, each surface thereof into which air flows, is inclined downward.
  • each outer surface of the first heat exchangers 3 a and the second heat exchangers 3 b that is, each surface thereof into which air flows.
  • both the outer surfaces of the first heat exchanger 3 a and the second heat exchanger 3 b are inclined downward, but the configuration is not limited thereto. It is sufficient that at least one of the outer surfaces of the first heat exchanger 3 a and the second heat exchanger 3 b be inclined downward.
  • FIG. 4 is a side view of a modification example of the outdoor unit 100 in FIG. 1 when viewed in the long-side direction from a side thereof.
  • the outdoor unit 100 in FIG. 4 only the outer surface of the second heat exchanger 3 b is inclined downward.
  • the first heat exchanger 3 a is attached in the direction perpendicular to a floor.
  • the outdoor unit 100 disposed as the rightmost row can have a configuration in which only the outer surface of the first heat exchanger 3 a is inclined downward and in which the second heat exchanger 3 b is attached in the direction perpendicular to a floor.
  • FIG. 5 is a schematic top view illustrating an example of the disposition pattern of the first heat exchanger 3 a and the second heat exchanger 3 b of the outdoor unit 100 according to Embodiment 1.
  • FIG. 6 illustrates a first modification example of the disposition pattern of the first heat exchanger 3 a and the second heat exchanger 3 b in FIG. 5 .
  • FIG. 7 illustrates a second modification example of the disposition pattern of the first heat exchanger 3 a and the second heat exchanger 3 b in FIG. 5 .
  • FIGS. 5 to 7 are schematic views for illustrating the disposition pattern of the first heat exchanger 3 a and the second heat exchanger 3 b .
  • the actual shapes of the first heat exchanger 3 a and the second heat exchanger 3 b in top view differ from the shapes in FIGS. 5 to 7 because at least surfaces thereof into which air flows are inclined downward.
  • the first heat exchanger 3 a and the second heat exchanger 3 b each having a flat shape are disposed so as to face each other.
  • two or more first heat exchangers 3 a and two or more second heat exchangers 3 b have been arranged as rows.
  • air that has passed through the first heat exchanger 3 a and the second heat exchanger 3 b as outer rows passes through the first heat exchanger 3 a and the second heat exchanger 3 b as inner rows.
  • the outdoor unit 100 is increased in size to secure the space in which the first heat exchangers 3 a and the second heat exchangers 3 b are accommodated.
  • Examples of a method for achieving sufficient heat exchange performance without increasing the numbers of the first heat exchangers 3 a and the second heat exchangers 3 b as rows include a method using the first heat exchanger 3 a and the second heat exchanger 3 b each having an L shape in FIG. 6 instead of the first heat exchanger 3 a and the second heat exchanger 3 b each having a flat shape in FIG. 5 .
  • the use of the first heat exchanger 3 a and the second heat exchanger 3 b each having an L shape in FIG. 6 instead of the first heat exchanger 3 a and the second heat exchanger 3 b each having a flat shape in FIG. 5 enables an increase in the heat exchange region without impairing heat exchange performance.
  • FIGS. 1 and 4 illustrate examples using the second heat exchanger 3 b having an L shape in FIG. 6 .
  • first heat exchanger 3 a and the second heat exchanger 3 b each having a U shape in FIG. 7 instead of the first heat exchangers 3 a and the second heat exchangers 3 b in FIGS. 5 and 6 enables a further increase in the heat exchange region without impairing heat exchange performance.
  • Each lower right bent region of the second heat exchangers 3 b in FIGS. 6 and 7 corresponds to a bent portion 3 b 1 illustrated in FIGS. 8 , 15 , and 16 described later.
  • each lower end flat heat exchange region of the second heat exchangers 3 b in FIGS. 6 and 7 corresponds to a short-side heat exchange region 3 b 2 illustrated in FIGS. 8 , 15 , and 16 described later and in FIGS. 1 and 4 .
  • the bent portion 3 b 1 and the short-side heat exchange region 3 b 2 will be described later.
  • the supports 9 which are attached to the drain pan 7 and the top frames 5 and which extend from the drain pan 7 to the top frames 5 , are provided in the outdoor unit 100 in Embodiment 1.
  • the structure and the disposition of the supports 9 will be described with reference to FIGS. 1 and 8 to 12 .
  • FIG. 8 is an exploded perspective view illustrating the positional relationship between the second heat exchanger 3 b and the support 9 of the outdoor unit 100 in Embodiment 1 when viewed from above the drain pan 7 .
  • FIG. 9 is a perspective view illustrating an example of the structure of the support 9 in Embodiment 1.
  • FIG. 10 is a perspective view illustrating the positional relationship between the drain pan 7 and the supports 9 when viewed from the inside of the outdoor unit 100 .
  • FIG. 11 is a perspective view illustrating the structure of a base 11 to be attached to the drain pan 7 .
  • FIG. 12 is a perspective view illustrating the positional relationship between the top frame 5 and the support 9 when viewed from the outside of the outdoor unit 100 .
  • the supports 9 are capable of supporting the top frame 5 when the heat exchangers 3 are detached.
  • the supports 9 are disposed not to interfere with the heat exchangers 3 .
  • the supports 9 are disposed to support four corners of the setting surface 5 a of the top frame 5 .
  • the support 9 includes a beam 9 a , which has an L shape, a first attachment component 9 b , and a second attachment component 9 c , the first attachment component 9 b and the second attachment component 9 c being disposed at respective ends of the beam 9 a .
  • the beam 9 a having an L shape enables an increase in the strength of the support 9 , whereby the top frame 5 is stably supported.
  • the shape of the beam 9 a is not limited to an L shape and may be a flat shape as long as the support 9 is capable of stably supporting the top frame 5 .
  • the drain pan 7 includes the heat exchanger setting plate 7 a , on which the heat exchangers 3 are set.
  • the heat exchanger setting plate 7 a is a metal plate made of stainless steel or other materials and is integrally formed with the drain pan 7 .
  • the heat exchanger setting plate 7 a has a plurality of holes 7 b , which guide water droplets produced in the heat exchangers 3 to the drain pan 7 .
  • the base 11 which includes a body surface 11 a having a triangular shape, is attached to the drain pan 7 .
  • the base 11 includes two attachment plates 11 b , which are continuous with the body surface 11 a and which are disposed to be apart from each other.
  • the base 11 is attached to the drain pan 7 via the attachment plates 11 b by screwing, welding, or other methods.
  • the base 11 includes support surfaces 11 c , which are disposed along oblique sides of the body surface 11 a having a triangular shape. As illustrated in FIG. 10 , when the heat exchanger setting plate 7 a is set on the support surfaces 11 c , upper surfaces of the heat exchanger setting plate 7 a are surfaces inclined downward from the center of the outdoor unit 100 toward the outside.
  • the second attachment component 9 c of the support 9 is attached to the support surface 11 c of the base 11 via the heat exchanger setting plate 7 a by screwing or other methods.
  • the base 11 is also referred to as a pillar and can be integrally formed with the drain pan 7 to serve as part of the drain pan 7 .
  • the above configuration enables the drain pan 7 to support the heat exchanger 3 such that the outer surface of the heat exchanger 3 is inclined downward.
  • the support 9 is supported to extend, along the outer surface of the heat exchanger 3 , from the drain pan 7 to the top frame 5 .
  • the above configuration enables the drain pan 7 to stably support both the heat exchanger 3 and the support 9 .
  • the first attachment component 9 b includes a top frame setting surface 9 b 1 , which is disposed at an end of the beam 9 a to form an L shape, and a top frame attachment surface 9 b 2 , which is joined to the top frame setting surface 9 b 1 .
  • the top frame setting surface 9 b 1 supports a lower edge corner 5 b 1 of the edge surface 5 b of the top frame 5 .
  • the top frame attachment surface 9 b 2 is attached to the outer side of the edge surface 5 b of the top frame 5 by screwing or other methods.
  • the support 9 is disposed, along the outer surface of the second heat exchanger 3 b , outside the bent portion 3 b 1 of the second heat exchanger 3 b .
  • the bent portion 3 b 1 of the second heat exchanger 3 b denotes the boundary region in top view between a heat exchange region of the second heat exchanger 3 b extending in the long-side direction of the drain pan 7 and the short-side heat exchange region 3 b 2 of the second heat exchanger 3 b extending in the short-side direction of the drain pan 7 .
  • the space between fins adjacent to each other of the bent portion 3 b 1 of the second heat exchanger 3 b is larger than that of any other heat exchange region of the second heat exchanger 3 b .
  • the number of fins of the bent portion 3 b 1 is smaller than that of any other heat exchange region of the second heat exchanger 3 b.
  • the support 9 when viewed in the short-side direction of the box 1 , the support 9 is inclined from the top frame 5 toward the drain pan 7 , is disposed along the outer surface of the second heat exchanger 3 b , and is provided at a position that does not interfere with the second heat exchanger 3 b.
  • the support 9 does not interfere with the second heat exchanger 3 b .
  • the support 9 does not have to be replaced. Accordingly, the outdoor unit 100 can be formed by using the same support 9 . As a result, with the above configuration, it is possible to improve the serviceability of the outdoor unit 100 , to reduce the number of man-hours for designing the support 9 , and to reduce costs due to the use of the common support 9 .
  • the support 9 when the support 9 is disposed outside the bent portion 3 b 1 of the second heat exchanger 3 b , it is possible to minimize the amount of airflow that passes through the second heat exchanger 3 b and that is blocked by the support 9 .
  • the space between fins adjacent to each other of the bent portion 3 b 1 is larger than that of any other heat exchange region of the second heat exchanger 3 b , and the number of fins of the bent portion 3 b 1 is smaller than that of any other heat exchange region of the second heat exchanger 3 b . Accordingly, the effect of the bent portion 3 b 1 on the heat exchange performance of the second heat exchanger 3 b is small.
  • the support 9 when the support 9 is disposed outside the bent portion 3 b 1 of the second heat exchanger 3 b , it is possible to minimize impairment of the heat exchange performance of the second heat exchanger 3 b.
  • FIG. 13 illustrates another modification example of the outdoor unit 100 in FIG. 1 .
  • the example in which the supports 9 are disposed to support four corners of the setting surface 5 a of the top frame 5 has been described above.
  • the supports 9 may be disposed to support two corners on a diagonal line of the setting surface 5 a of the top frame 5 .
  • the supports 9 are disposed to support two corners on a diagonal line of the setting surface 5 a of the top frame 5 .
  • the heat exchanger 3 having an L shape in FIG. 6 or the heat exchanger 3 having a U shape in FIG. 7 is used, for example, it is possible to inhibit ventilation in a part such as the bent portion 3 b 1 of the second heat exchanger 3 b from being prevented by the support 9 .
  • FIG. 14 is a schematic view illustrating the positional relationship between the drain pan 7 and the supports 9 when the outdoor unit 100 is viewed in the long-side direction from a side of the outdoor unit 100 .
  • FIG. 15 is a perspective view illustrating the outdoor unit 100 in FIG. 1 from which the supports 9 have been detached.
  • FIG. 16 is a perspective view illustrating the outdoor unit 100 in FIG. 15 from which one first heat exchanger 3 a has been detached.
  • the support 9 is attached to the inside of each of the drain pan 7 and the top frame 5 .
  • a depth hd of the drain pan 7 has to be adjusted to detach the support 9 from the drain pan 7 .
  • the dimension from an upper end of the drain pan 7 to a lower end of the top frame 5 is an opening dimension he
  • the dimension of a long side of the support 9 is a length L
  • the dimension of a short side of the bottom of the support 9 is a length d.
  • the inclination of a long side of the support 9 relative to the vertical direction is an angle ⁇
  • the inclination of the short side of the support 9 relative to the horizontal direction is an angle ⁇ .
  • a distance H from the lower end of the top frame 5 to the bottom of the drain pan 7 is expressed by the sum of the depth hd of the drain pan 7 and the opening dimension he from the upper end of the drain pan 7 to the lower end of the top frame 5 .
  • a lower part of the outdoor unit 100 has to be detached from the support 9 .
  • the distance H from the lower end of the top frame 5 to the bottom of the drain pan 7 has to be larger than the length L of the long side of the support 9 . Accordingly, the relationship between the distance H from the lower end of the top frame 5 to the bottom of the drain pan 7 and the length L of the long side of the support 9 is expressed by an expression (1):
  • the opening dimension he from the upper end of the drain pan 7 to the lower end of the top frame 5 is expressed by the following expression.
  • the drain pan 7 is formed such that the depth hd of the drain pan 7 satisfies the expression (3), it is possible to easily detach the support 9 in the workspace between the outdoor units 100 adjacent to each other.
  • the variable d of the expression (3) can be small. This further facilitates detachment of the support 9 and enables a size reduction of the drain pan 7 . Furthermore, the supports 9 other than the detached support 9 are attached to the top frame 5 , and the top frame 5 is thus kept supported by the supports 9 .
  • the width of the drain pan 7 in the short-side direction is set such that a lower end of the support 9 does not interfere with the upper end of the drain pan 7 during detachment of the support 9 .
  • the relational expression (3) holds for the case of detachment of the first heat exchanger 3 a or the second heat exchanger 3 b .
  • the depth hd of the drain pan 7 can be calculated by using the expression (3) in which the dimension of a long side of the first heat exchanger 3 a is a length L, the dimension of a short side of the bottom of the first heat exchanger 3 a is a length d, the inclination of a long side of the first heat exchanger 3 a relative to the vertical direction is an angle ⁇ , and the inclination of the short side of the first heat exchanger 3 a relative to the horizontal direction is an angle ⁇ .
  • the drain pan 7 when the drain pan 7 is formed such that the depth hd of the drain pan 7 satisfies the expression (3), it is possible to easily detach the first heat exchanger 3 a in the workspace between the outdoor units 100 adjacent to each other.
  • the drain pan 7 when the drain pan 7 is formed such that the depth hd of the drain pan 7 satisfies the expression (3), it is possible to easily detach the second heat exchanger 3 b in the workspace between the outdoor units 100 adjacent to each other.
  • the top frame 5 is kept supported by the supports 9 .
  • the design panel 10 which is attached between the first heat exchanger 3 a and the second heat exchanger 3 b and which forms some of the contours of the outdoor unit 100 , will be described with reference to FIGS. 1 , 17 , and 18 .
  • FIG. 17 is a perspective view illustrating an example of the attachment mode of the design panel 10 different from that in the outdoor unit 100 in FIG. 1 .
  • FIG. 18 is a perspective view illustrating an example of the positional relationship between the design panel 10 and the base 11 when viewed from the inside of the outdoor unit 100 .
  • the design panel 10 is formed by a main panel 10 a , a sub panel 10 b , which is attached to a side of the main panel 10 a , and a drain pan maintenance panel 10 c , which is disposed below the main panel 10 a .
  • the main panel 10 a is formed as a plate-like component having a trapezoidal shape whose upper end is longer than a lower end thereof.
  • an upper end of the main panel 10 a is attached to the edge surface 5 b of the top frame 5 by screwing or other methods.
  • a left end of the main panel 10 a is joined to the sub panel 10 b by screwing or other methods, and a right end of the main panel 10 a is joined to the short-side heat exchange region 3 b 2 of the second heat exchanger 3 b .
  • the right end of the main panel 10 a is joined to the sub panel 10 b by screwing or other methods.
  • the sub panel 10 b is formed as a plate-like component having a quadrilateral shape.
  • an upper end of the sub panel 10 b is attached to the edge surface 5 b of the top frame 5 by screwing or other methods.
  • a lower end of the sub panel 10 b is set on the base 11 .
  • a left end of the sub panel 10 b is joined to the support 9 by screwing or other methods.
  • a right end of the sub panel 10 b is joined to the support 9 by screwing or other methods.
  • FIG. 19 is an enlarged front view of the part in FIG. 18 where the drain pan maintenance panel 10 c is attached.
  • the drain pan maintenance panel 10 c is disposed to close the opening formed between the main panel 10 a , the sub panel 10 b , the base 11 , and the short-side heat exchange region 3 b 2 of the second heat exchanger 3 b .
  • the drain pan maintenance panel 10 c is detachably attached to the main panel 10 a by screwing or other methods.
  • Provision of the design panel 10 in the outdoor unit 100 enables inhibition of so-called short cycling that airflow blown out from the vent holes of the fan guards 6 b is directly taken into the air passage of the outdoor unit 100 without passing through the heat exchangers 3 .
  • the first heat exchanger 3 a and the second heat exchanger 3 b each having an L shape in FIG. 6 are used in FIG. 1 .
  • the design panel 10 is formed by three panels of the main panel 10 a , the sub panel 10 b , and the drain pan maintenance panel 10 c .
  • the short-side heat exchange region 3 b 2 of the second heat exchanger 3 b having an L shape is located between the main panel 10 a and the support 9 .
  • a heat exchange region of the first heat exchanger 3 a is formed at the position of the sub panel 10 b in FIG. 1 .
  • the design panel 10 is formed by the main panel 10 a and the drain pan maintenance panel 10 c and does not include the sub panel 10 b.
  • the design panel 10 includes the main panel 10 a and the drain pan maintenance panel 10 c . Whether a plurality of sub panels 10 b , one sub panel 10 b , or no sub panel 10 b is used can be selected according to the shapes of the first heat exchanger 3 a and the second heat exchanger 3 b . Thus, the design panel 10 can be formed by combining a plurality of identical panels according to the shapes of the first heat exchanger 3 a and the second heat exchanger 3 b .
  • manufacture of the main panel 10 a , the drain pan maintenance panel 10 c , and a plurality of sub panels 10 b enables the first heat exchanger 3 a and the second heat exchanger 3 b to be flexibly replaced and thus enables provision of the outdoor unit 100 having a high degree of freedom in design.
  • FIG. 20 is a perspective view illustrating the structure of the drain pan maintenance panel 10 c .
  • FIG. 21 is a perspective view illustrating an example of the attachment mode of the drain pan maintenance panel 10 c when viewed from the inside of the outdoor unit 100 .
  • FIG. 22 is a sectional view taken along line A-A in FIG. 19 .
  • the drain pan maintenance panel 10 c is continuous with a guide component 12 , which is configured to guide, to the drain pan 7 , water droplets flowing from the main panel 10 a and the sub panel 10 b to the drain pan maintenance panel 10 c .
  • the guide component 12 is a plate-like component inclined from a joint portion 12 b , where the guide component 12 and the drain pan maintenance panel 10 c are joined to each other, toward an end portion 12 a .
  • the guide component 12 is attached to the body surface 11 a of the base 11 such that water droplets flow in the space between the guide component 12 and the body surface 11 a of the base 11 .
  • the space between the guide component 12 and the body surface 11 a of the base 11 in which water droplets flow is adjusted by changing the joint strength produced by screwing or other methods.
  • the guide component 12 is inclined from the joint portion 12 b , where the guide component 12 and the drain pan maintenance panel 10 c are joined to each other, toward the end portion 12 a.
  • drain pan maintenance panel 10 c When the drain pan maintenance panel 10 c is provided with the guide component 12 , as represented by solid arrows in FIGS. 21 and 22 , paths along which water droplets adhered to an inner surface of the design panel 10 are guided to the drain pan 7 are formed between the guide component 12 and the body surface 11 a of the base 11 . Water droplets that have dripped from the guide component 12 pass through the space between the two attachment plates 11 b , which are illustrated in FIG. 11 and which are disposed to be apart from each other, and flow out to the drain pan 7 . Thus, it is possible to inhibit the drain pan 7 and the design panel 10 from being soiled due to water dripping from the design panel 10 or splashes of dripped water.
  • drain pan maintenance panel 10 c when the drain pan maintenance panel 10 c is attached, it is possible to inhibit so-called short cycling that airflow blown out from the vent holes of the fan guards 6 b is directly taken into the air passage chamber of the outdoor unit 100 . Furthermore, when the drain pan maintenance panel 10 c is detached, an opening is formed close to the drain pan 7 . Thus, it is possible to facilitate maintenance such as cleaning of the drain pan 7 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

An outdoor unit for a refrigeration cycle apparatus includes: a heat exchanger having an outer surface inclined downward; a drain pan on which the heat exchanger is set; a top frame on which a fan is set, the top frame being disposed at a top of the heat exchanger; and a support attached to the drain pan and the top frame, the support extending between the drain pan and the top frame.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is a U.S. National Stage Application of International Application No. PCT/JP2020/006953 filed on Feb. 21, 2020 the contents of which are incorporated herein by reference.
  • TECHNICAL FIELD
  • The present disclosure relates to an outdoor unit for a refrigeration cycle apparatus. The outdoor unit is usable as, for example, a heat source unit for a heat pump apparatus.
  • BACKGROUND
  • Patent Literature 1 discloses an outdoor unit for a refrigeration cycle apparatus. The outdoor unit includes an oblong box forming a machine chamber, a plurality of heat exchangers set in the long-side direction of the box, and fan guards that are set at the plurality of heat exchangers and that accommodate respective fans. The plurality of heat exchangers are each disposed to face each other. The plurality of heat exchangers are set on the box such that each outer surface thereof faces obliquely downward.
  • When the outdoor unit for a refrigeration cycle apparatus in Patent Literature 1 is used for, for example, a large building, a plurality of the outdoor units are disposed side by side in the short-side direction of the box, and spaces are formed between the boxes of the outdoor units adjacent to each other and between the heat exchangers of the outdoor units adjacent to each other. The spaces formed between the boxes of the outdoor units adjacent to each other and between the heat exchangers of the outdoor units adjacent to each other are usable as workspaces for maintenance checks of the outdoor units.
  • PATENT LITERATURE
    • Patent Literature 1: International Publication No. 2011/013672
  • A top frame is set on each pair of the plurality of heat exchangers of the outdoor unit for a refrigeration cycle apparatus in Patent Literature 1. The fan is set on the top frame. Thus, for heat exchanger replacement, the fan has to be detached before the top frame is detached. However, the fan has to be detached in a space above the top frame. Thus, not all the steps of the heat exchanger replacement can be performed in the workspace formed between the outdoor units adjacent to each other.
  • SUMMARY
  • The present disclosure has been made to solve the above problem, and an object of the present disclosure is to provide an outdoor unit for a refrigeration cycle apparatus, all the steps of heat exchanger replacement being able to be performed in the workspace formed between the outdoor units adjacent to each other.
  • An outdoor unit for a refrigeration cycle apparatus according to an embodiment of the present disclosure includes: a heat exchanger having an outer surface inclined downward; a drain pan on which the heat exchanger is set; a top frame on which a fan is set, the top frame being disposed at a top of the heat exchanger; and a support attached to the drain pan and the top frame, the support extending between the drain pan and the top frame.
  • The outdoor unit for a refrigeration cycle apparatus according to the embodiment of the present disclosure includes the support joined to the drain pan and the top frame to be located therebetween. Thus, it is possible to attach and detach the heat exchanger in the space between the outdoor units adjacent to each other with the top frame supported by the support. Accordingly, the fan does not have to be detached from the outdoor unit for a refrigeration cycle apparatus according to the embodiment of the present disclosure. As a result, all the steps of heat exchange unit replacement can be performed in the space formed between the outdoor units adjacent to each other.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is a perspective view illustrating an example of the external structure of an outdoor unit for a refrigeration cycle apparatus according to Embodiment 1.
  • FIG. 2 is an exploded perspective view of a fan in FIG. 1 .
  • FIG. 3 is an enlarged perspective view illustrating part of the structure of a top frame from which a fan has been detached.
  • FIG. 4 is a side view of a modification example of the outdoor unit in FIG. 1 when viewed in the long-side direction from a side thereof.
  • FIG. 5 is a schematic top view illustrating an example of the disposition pattern of a first heat exchanger and a second heat exchanger of the outdoor unit according to Embodiment 1.
  • FIG. 6 illustrates a first modification example of the disposition pattern of the first heat exchanger and the second heat exchanger in FIG. 5 .
  • FIG. 7 illustrates a second modification example of the disposition pattern of the first heat exchanger and the second heat exchanger in FIG. 5 .
  • FIG. 8 is an exploded view illustrating the positional relationship between the second heat exchanger and a support of the outdoor unit in Embodiment 1.
  • FIG. 9 is a perspective view illustrating an example of the structure of the support in Embodiment 1.
  • FIG. 10 is a perspective view illustrating the positional relationship between a drain pan and the supports when viewed from the inside of the outdoor unit.
  • FIG. 11 is a perspective view illustrating the structure of a base to be attached to the drain pan.
  • FIG. 12 is a perspective view illustrating the positional relationship between the top frame and the support when viewed from the outside of the outdoor unit.
  • FIG. 13 illustrates another modification example of the outdoor unit in FIG. 1 .
  • FIG. 14 is a schematic view illustrating the positional relationship between the drain pan and the supports when the outdoor unit is viewed in the long-side direction from a side of the outdoor unit.
  • FIG. 15 is a perspective view illustrating the outdoor unit in FIG. 1 from which the supports have been detached.
  • FIG. 16 is a perspective view illustrating the outdoor unit in FIG. 15 from which one first heat exchanger has been detached.
  • FIG. 17 is a perspective view illustrating an example of the attachment mode of a design panel different from that in the outdoor unit in FIG. 1 .
  • FIG. 18 is a perspective view illustrating an example of the positional relationship between the design panel and the base when viewed from the inside of the outdoor unit.
  • FIG. 19 is an enlarged front view of the part in FIG. 18 where a drain pan maintenance panel is attached.
  • FIG. 20 is a perspective view illustrating the structure of the drain pan maintenance panel.
  • FIG. 21 is a perspective view illustrating an example of the attachment mode of the drain pan maintenance panel when viewed from the inside of the outdoor unit.
  • FIG. 22 is a sectional view taken along line A-A in FIG. 19 .
  • DETAILED DESCRIPTION Embodiment 1
  • An outdoor unit 100 for a refrigeration cycle apparatus according to Embodiment 1 will be described. FIG. 1 is a perspective view illustrating an example of the external structure of the outdoor unit 100 for a refrigeration cycle apparatus according to Embodiment 1. In the following drawings including FIG. 1 , the size relationships or the shapes of the components may differ from those of actual ones. In addition, in the following drawings, the same components or parts or components or parts having the same functions have the same reference signs or have no reference signs. Basically, the positional relationships between the components of the outdoor unit 100 in, for example, an up-down direction, a left-right direction, or a front-rear direction are directions when the outdoor unit 100 is set in a usable state.
  • Although not illustrated, the outdoor unit 100 for a refrigeration cycle apparatus is connected to an indoor unit by heat medium pipes. A heat medium such as water or brine is circulated, by, for example, operation of a pump apparatus, between the outdoor unit 100 and the indoor unit. In the outdoor unit 100, high-temperature or low-temperature heat is discharged from a high-temperature or low-temperature heat medium passing through the inside thereof. The outdoor unit 100 has an oblong shape in top view. When a refrigeration cycle apparatus is used for, for example, a large building, a plurality of the outdoor units 100 are disposed side by side in the short-side direction. Such an outdoor unit 100 for a refrigeration cycle apparatus is also referred to as a chilling unit and is usable as, for example, a heat source unit for a heat pump apparatus.
  • The outdoor unit 100 includes a box 1, which is set on a floor, heat exchangers 3, which are disposed at the top of the box 1, and top frames 5, which are disposed at the top of heat exchanger 3. A drain pan 7, on which the heat exchangers 3 are set, is disposed at the top of the box 1. Fans 6 are set on the top frames 5.
  • The box 1 has an oblong rectangular shape. The box 1 is formed of frames 1 a and side walls 1 b, which close the spaces between the frames 1 a adjacent to each other. A machine chamber of the outdoor unit 100 is formed in the internal space of the box 1. Although not illustrated, for example, a compressor, a pressure reducing device, and a water-cooled heat exchanger are accommodated in the machine chamber. The compressor, the heat exchangers 3, the pressure reducing device, and the water-cooled heat exchanger are connected by refrigerant pipes to circulate refrigerant. Most of the refrigerant pipes are accommodated in the machine chamber. The compressor sucks low-pressure refrigerant and discharges high-pressure refrigerant. For example, a scroll compressor is used as the compressor. The pressure reducing device decompresses and expands high-pressure liquid refrigerant. For example, an expansion valve is used as the pressure reducing device. The water-cooled heat exchanger causes heat exchange to be performed between a heat medium and refrigerant flowing in an internal passage thereof. For example, a plate heat exchanger is used as the water-cooled heat exchanger. The width of the box 1 in the short-side direction is set to be smaller than the width of the top frame 5 in the short-side direction.
  • In addition, although not illustrated, an electrical component box in which, for example, a controller configured to control operation of the compressor and an expansion device is accommodated is accommodated in the machine chamber. For example, a microcomputer is used as the controller.
  • The drain pan 7 is a water container for discharging drain water produced in the heat exchangers 3 to the outside of the outdoor unit 100. The drain pan 7 is disposed at the top of the box 1 and is provided below the heat exchangers 3. In addition, the drain pan 7 functions as a top plate of the box 1 and partitions off the machine chamber from the space in which the heat exchangers 3 are disposed. For example, the drain pan 7 is attached to the frames 1 a of the box 1 by screwing or other methods. Although not illustrated, a drain pipe that is connected to the drain pan 7 and through which drain water received by the drain pan 7 is discharged to the outside can be provided in a space below the drain pan 7, that is, closer to the machine chamber.
  • The heat exchangers 3 cause heat exchange to be performed between air passing through the heat exchangers 3 and refrigerant flowing in the heat exchangers 3. The heat exchangers 3 are set on a heat exchanger setting plate 7 a, which will be described later in FIG. 10 , of the drain pan 7. Although not illustrated, for example, the heat exchangers 3 are detachably attached to supports 9 and design panels 10 via attachments attached to the supports 9 and the design panels 10 by screwing or other methods. First heat exchangers 3 a and second heat exchangers 3 b are used as the heat exchangers 3. The first heat exchangers 3 a and the second heat exchangers 3 b are disposed along a pair of edges extending in the long-side direction of the drain pan 7 to face each other with spaces therebetween. Two first heat exchangers 3 a and two second heat exchangers 3 b are disposed in the outdoor unit 100 in FIG. 1 , but each of the numbers of the first heat exchangers 3 a and the second heat exchangers 3 b provided therein may be one or three or more. For example, an air-cooled finned tube heat exchanger is used as each of the first heat exchanger 3 a and the second heat exchanger 3 b. Details of the heat exchangers 3 will be described later. In the following description, the first heat exchanger 3 a and the second heat exchanger 3 b are referred to as the heat exchangers 3 when it is unnecessary to particularly distinguish the first heat exchanger 3 a and the second heat exchanger 3 b.
  • The top frames 5 and the fans 6 form the top of the outdoor unit 100. The top frames 5 are each made of a rectangular metal plate and cover the tops of the heat exchangers 3. The top frame 5 includes a setting surface 5 a, on which the fans 6 are set, and edge surfaces 5 b, which extend downward from respective edges of the setting surface 5 a. The edge surfaces 5 b of the top frame 5 extend downward to cover the tops of the heat exchangers 3.
  • FIG. 2 is an exploded perspective view of the fan 6 in FIG. 1 . FIG. 3 is an enlarged perspective view illustrating part of the structure of the top frame 5 from which the fan 6 has been detached. The fan 6 includes a bell mouth 6 a, which defines an air passage of the outdoor unit 100, a fan guard 6 b, which is disposed at the top of the bell mouth 6 a and which has vent holes, and a fan body 6 c, which is accommodated in the bell mouth 6 a. In FIG. 1 , four fans 6 are set on the top frames 5, but the number of the fans 6 is not limited to four as long as the number thereof is one or more. For example, an axial fan such as a propeller fan is used as the fan body 6 c.
  • The setting surface 5 a of the top frame 5 has an opening 5 a 1, which is in communication with the inside of the bell mouth 6 a. The top frame 5 includes fan setting racks 5 c, which cross the opening 5 a 1 and are attached to the setting surface 5 a. The fan body 6 c is attached to the fan setting rack 5 c by screwing or other methods. The bell mouth 6 a is attached to the setting surface 5 a, which is around the opening 5 a 1, by screwing or other methods. In FIG. 1 , two top frames 5 are provided, and two fans 6 are set on each of the top frames 5. However, the configuration is not limited thereto. For example, four top frames 5 may be provided, and one fan 6 may be set on each of the top frames 5. Alternatively, one top frame 5 may be provided, and four fans 6 may be set on the top frame 5. When a plurality of top frames 5 are provided, the top frames 5 can be joined to each other by welding, screwing, or other methods.
  • By rotation of the fan bodies 6 c, air outside the outdoor unit 100 is guided, from the outside of the outdoor unit 100, into the internal space surrounded by the first heat exchangers 3 a, the second heat exchangers 3 b, and the drain pan 7 and is subjected to heat exchange in the first heat exchangers 3 a and the second heat exchangers 3 b. The air that has been subjected to heat exchange in the first heat exchangers 3 a and the second heat exchangers 3 b is blown out from the vent holes of the fan guards 6 b via the openings 5 a 1, which are provided in the respective top frames 5, and the bell mouths 6 a. That is, an air passage is formed in the space surrounded by the first heat exchangers 3 a, the second heat exchangers 3 b, and the drain pan 7 of the outdoor unit 100.
  • Next, the disposition and the configuration of the heat exchangers 3 will be described with reference to FIG. 1 .
  • In FIG. 1 , the first heat exchangers 3 a and the second heat exchangers 3 b are disposed such that each outer surface of the first heat exchangers 3 a and the second heat exchangers 3 b, that is, each surface thereof into which air flows, is inclined downward. Thus, when a plurality of the outdoor units 100 are disposed side by side in the short-side direction, an inverted V-shaped space is formed between the heat exchangers 3 of the outdoor units 100 adjacent to each other, and airflow can be guided, from the inverted V-shaped space, into the first heat exchangers 3 a and the second heat exchangers 3 b. Accordingly, even when a plurality of the outdoor units 100 are disposed side by side in the short-side direction of the box 1, a space does not have to be provided between the top frames 5 adjacent to each other. As a result, it is possible to effectively use the space in which the outdoor units 100 are disposed. In addition, as described above, since the width of the box 1 in the short-side direction is set to be smaller than the width of the top frame 5 in the short-side direction, a space is formed between the boxes 1 of the outdoor units 100 adjacent to each other. As a result, it is possible to secure a workspace for, for example, maintenance checks of the machine chambers.
  • In the outdoor unit 100 in FIG. 1 , both the outer surfaces of the first heat exchanger 3 a and the second heat exchanger 3 b are inclined downward, but the configuration is not limited thereto. It is sufficient that at least one of the outer surfaces of the first heat exchanger 3 a and the second heat exchanger 3 b be inclined downward.
  • FIG. 4 is a side view of a modification example of the outdoor unit 100 in FIG. 1 when viewed in the long-side direction from a side thereof. In the outdoor unit 100 in FIG. 4 , only the outer surface of the second heat exchanger 3 b is inclined downward. The first heat exchanger 3 a is attached in the direction perpendicular to a floor. When a plurality of the outdoor units 100 are disposed side by side in the short-side direction, and the outdoor unit 100 in FIG. 4 is disposed as the leftmost row, it is possible to inhibit a space that cannot be effectively used from being formed at the left of the outdoor unit 100 in FIG. 4 . In addition, when a plurality of the outdoor units 100 are disposed side by side in the short-side direction, the outdoor unit 100 disposed as the rightmost row can have a configuration in which only the outer surface of the first heat exchanger 3 a is inclined downward and in which the second heat exchanger 3 b is attached in the direction perpendicular to a floor.
  • FIG. 5 is a schematic top view illustrating an example of the disposition pattern of the first heat exchanger 3 a and the second heat exchanger 3 b of the outdoor unit 100 according to Embodiment 1. FIG. 6 illustrates a first modification example of the disposition pattern of the first heat exchanger 3 a and the second heat exchanger 3 b in FIG. 5 . FIG. 7 illustrates a second modification example of the disposition pattern of the first heat exchanger 3 a and the second heat exchanger 3 b in FIG. 5 . FIGS. 5 to 7 are schematic views for illustrating the disposition pattern of the first heat exchanger 3 a and the second heat exchanger 3 b. The actual shapes of the first heat exchanger 3 a and the second heat exchanger 3 b in top view differ from the shapes in FIGS. 5 to 7 because at least surfaces thereof into which air flows are inclined downward.
  • In FIG. 5 , the first heat exchanger 3 a and the second heat exchanger 3 b each having a flat shape are disposed so as to face each other. To improve the heat exchange performance of the first heat exchanger 3 a and the second heat exchanger 3 b, two or more first heat exchangers 3 a and two or more second heat exchangers 3 b have been arranged as rows. However, air that has passed through the first heat exchanger 3 a and the second heat exchanger 3 b as outer rows passes through the first heat exchanger 3 a and the second heat exchanger 3 b as inner rows. Thus, there has been a case in which sufficient heat exchange performance cannot be achieved. In addition, there has been a case in which the outdoor unit 100 is increased in size to secure the space in which the first heat exchangers 3 a and the second heat exchangers 3 b are accommodated.
  • Examples of a method for achieving sufficient heat exchange performance without increasing the numbers of the first heat exchangers 3 a and the second heat exchangers 3 b as rows include a method using the first heat exchanger 3 a and the second heat exchanger 3 b each having an L shape in FIG. 6 instead of the first heat exchanger 3 a and the second heat exchanger 3 b each having a flat shape in FIG. 5 . The use of the first heat exchanger 3 a and the second heat exchanger 3 b each having an L shape in FIG. 6 instead of the first heat exchanger 3 a and the second heat exchanger 3 b each having a flat shape in FIG. 5 enables an increase in the heat exchange region without impairing heat exchange performance. FIGS. 1 and 4 illustrate examples using the second heat exchanger 3 b having an L shape in FIG. 6 .
  • In addition, the use of the first heat exchanger 3 a and the second heat exchanger 3 b each having a U shape in FIG. 7 instead of the first heat exchangers 3 a and the second heat exchangers 3 b in FIGS. 5 and 6 enables a further increase in the heat exchange region without impairing heat exchange performance.
  • Each lower right bent region of the second heat exchangers 3 b in FIGS. 6 and 7 corresponds to a bent portion 3 b 1 illustrated in FIGS. 8, 15, and 16 described later. In addition, each lower end flat heat exchange region of the second heat exchangers 3 b in FIGS. 6 and 7 corresponds to a short-side heat exchange region 3 b 2 illustrated in FIGS. 8, 15, and 16 described later and in FIGS. 1 and 4 . The bent portion 3 b 1 and the short-side heat exchange region 3 b 2 will be described later.
  • To facilitate replacement of the first heat exchangers 3 a and the second heat exchangers 3 b, the supports 9, which are attached to the drain pan 7 and the top frames 5 and which extend from the drain pan 7 to the top frames 5, are provided in the outdoor unit 100 in Embodiment 1. The structure and the disposition of the supports 9 will be described with reference to FIGS. 1 and 8 to 12 .
  • FIG. 8 is an exploded perspective view illustrating the positional relationship between the second heat exchanger 3 b and the support 9 of the outdoor unit 100 in Embodiment 1 when viewed from above the drain pan 7. FIG. 9 is a perspective view illustrating an example of the structure of the support 9 in Embodiment 1. FIG. 10 is a perspective view illustrating the positional relationship between the drain pan 7 and the supports 9 when viewed from the inside of the outdoor unit 100. FIG. 11 is a perspective view illustrating the structure of a base 11 to be attached to the drain pan 7. FIG. 12 is a perspective view illustrating the positional relationship between the top frame 5 and the support 9 when viewed from the outside of the outdoor unit 100.
  • The supports 9 are capable of supporting the top frame 5 when the heat exchangers 3 are detached. The supports 9 are disposed not to interfere with the heat exchangers 3. For example, the supports 9 are disposed to support four corners of the setting surface 5 a of the top frame 5.
  • As illustrated in FIG. 9 , for example, the support 9 includes a beam 9 a, which has an L shape, a first attachment component 9 b, and a second attachment component 9 c, the first attachment component 9 b and the second attachment component 9 c being disposed at respective ends of the beam 9 a. The beam 9 a having an L shape enables an increase in the strength of the support 9, whereby the top frame 5 is stably supported. The shape of the beam 9 a is not limited to an L shape and may be a flat shape as long as the support 9 is capable of stably supporting the top frame 5.
  • As illustrated in FIG. 10 , the drain pan 7 includes the heat exchanger setting plate 7 a, on which the heat exchangers 3 are set. For example, the heat exchanger setting plate 7 a is a metal plate made of stainless steel or other materials and is integrally formed with the drain pan 7. The heat exchanger setting plate 7 a has a plurality of holes 7 b, which guide water droplets produced in the heat exchangers 3 to the drain pan 7.
  • In addition, the base 11, which includes a body surface 11 a having a triangular shape, is attached to the drain pan 7. As illustrated in FIG. 11 , the base 11 includes two attachment plates 11 b, which are continuous with the body surface 11 a and which are disposed to be apart from each other. The base 11 is attached to the drain pan 7 via the attachment plates 11 b by screwing, welding, or other methods.
  • In addition, as illustrated in FIGS. 10 and 11 , the base 11 includes support surfaces 11 c, which are disposed along oblique sides of the body surface 11 a having a triangular shape. As illustrated in FIG. 10 , when the heat exchanger setting plate 7 a is set on the support surfaces 11 c, upper surfaces of the heat exchanger setting plate 7 a are surfaces inclined downward from the center of the outdoor unit 100 toward the outside. The second attachment component 9 c of the support 9 is attached to the support surface 11 c of the base 11 via the heat exchanger setting plate 7 a by screwing or other methods. The base 11 is also referred to as a pillar and can be integrally formed with the drain pan 7 to serve as part of the drain pan 7.
  • The above configuration enables the drain pan 7 to support the heat exchanger 3 such that the outer surface of the heat exchanger 3 is inclined downward. In addition, with the above configuration, the support 9 is supported to extend, along the outer surface of the heat exchanger 3, from the drain pan 7 to the top frame 5. Thus, the above configuration enables the drain pan 7 to stably support both the heat exchanger 3 and the support 9.
  • As illustrated in FIGS. 9 and 12 , the first attachment component 9 b includes a top frame setting surface 9 b 1, which is disposed at an end of the beam 9 a to form an L shape, and a top frame attachment surface 9 b 2, which is joined to the top frame setting surface 9 b 1. The top frame setting surface 9 b 1 supports a lower edge corner 5 b 1 of the edge surface 5 b of the top frame 5. The top frame attachment surface 9 b 2 is attached to the outer side of the edge surface 5 b of the top frame 5 by screwing or other methods.
  • As illustrated in FIG. 8 , the support 9 is disposed, along the outer surface of the second heat exchanger 3 b, outside the bent portion 3 b 1 of the second heat exchanger 3 b. Here, the bent portion 3 b 1 of the second heat exchanger 3 b denotes the boundary region in top view between a heat exchange region of the second heat exchanger 3 b extending in the long-side direction of the drain pan 7 and the short-side heat exchange region 3 b 2 of the second heat exchanger 3 b extending in the short-side direction of the drain pan 7. The space between fins adjacent to each other of the bent portion 3 b 1 of the second heat exchanger 3 b is larger than that of any other heat exchange region of the second heat exchanger 3 b. The number of fins of the bent portion 3 b 1 is smaller than that of any other heat exchange region of the second heat exchanger 3 b.
  • As illustrated in FIG. 1 , when viewed in the short-side direction of the box 1, the support 9 is inclined from the top frame 5 toward the drain pan 7, is disposed along the outer surface of the second heat exchanger 3 b, and is provided at a position that does not interfere with the second heat exchanger 3 b.
  • With the above configuration, even when the second heat exchanger 3 b in FIG. 8 , that is, the second heat exchanger 3 b having an L shape in FIG. 6 , is replaced with the second heat exchanger 3 b having a flat shape in FIG. 5 or the second heat exchanger 3 b having a U shape in FIG. 7 , the support 9 does not interfere with the second heat exchanger 3 b. Thus, even when the second heat exchanger 3 b is changed, the support 9 does not have to be replaced. Accordingly, the outdoor unit 100 can be formed by using the same support 9. As a result, with the above configuration, it is possible to improve the serviceability of the outdoor unit 100, to reduce the number of man-hours for designing the support 9, and to reduce costs due to the use of the common support 9.
  • In addition, when the support 9 is disposed outside the bent portion 3 b 1 of the second heat exchanger 3 b, it is possible to minimize the amount of airflow that passes through the second heat exchanger 3 b and that is blocked by the support 9. The space between fins adjacent to each other of the bent portion 3 b 1 is larger than that of any other heat exchange region of the second heat exchanger 3 b, and the number of fins of the bent portion 3 b 1 is smaller than that of any other heat exchange region of the second heat exchanger 3 b. Accordingly, the effect of the bent portion 3 b 1 on the heat exchange performance of the second heat exchanger 3 b is small. Thus, when the support 9 is disposed outside the bent portion 3 b 1 of the second heat exchanger 3 b, it is possible to minimize impairment of the heat exchange performance of the second heat exchanger 3 b.
  • FIG. 13 illustrates another modification example of the outdoor unit 100 in FIG. 1 . The example in which the supports 9 are disposed to support four corners of the setting surface 5 a of the top frame 5 has been described above. For example, as illustrated in FIG. 13 , the supports 9 may be disposed to support two corners on a diagonal line of the setting surface 5 a of the top frame 5. When the supports 9 are disposed to support two corners on a diagonal line of the setting surface 5 a of the top frame 5, it is possible to reduce the number of components of the outdoor unit 100 and to thus reduce the manufacturing cost of the outdoor unit 100. In addition, when the heat exchanger 3 having an L shape in FIG. 6 or the heat exchanger 3 having a U shape in FIG. 7 is used, for example, it is possible to inhibit ventilation in a part such as the bent portion 3 b 1 of the second heat exchanger 3 b from being prevented by the support 9.
  • FIG. 14 is a schematic view illustrating the positional relationship between the drain pan 7 and the supports 9 when the outdoor unit 100 is viewed in the long-side direction from a side of the outdoor unit 100. FIG. 15 is a perspective view illustrating the outdoor unit 100 in FIG. 1 from which the supports 9 have been detached. FIG. 16 is a perspective view illustrating the outdoor unit 100 in FIG. 15 from which one first heat exchanger 3 a has been detached.
  • As described above, the support 9 is attached to the inside of each of the drain pan 7 and the top frame 5. Thus, a depth hd of the drain pan 7 has to be adjusted to detach the support 9 from the drain pan 7.
  • In the following description, the dimension from an upper end of the drain pan 7 to a lower end of the top frame 5 is an opening dimension he, the dimension of a long side of the support 9 is a length L, and the dimension of a short side of the bottom of the support 9 is a length d. In addition, the inclination of a long side of the support 9 relative to the vertical direction is an angle θ, and the inclination of the short side of the support 9 relative to the horizontal direction is an angle α.
  • A distance H from the lower end of the top frame 5 to the bottom of the drain pan 7 is expressed by the sum of the depth hd of the drain pan 7 and the opening dimension he from the upper end of the drain pan 7 to the lower end of the top frame 5. To detach the support 9 in the workspace between the outdoor units 100 adjacent to each other, first, a lower part of the outdoor unit 100 has to be detached from the support 9. Thus, the distance H from the lower end of the top frame 5 to the bottom of the drain pan 7 has to be larger than the length L of the long side of the support 9. Accordingly, the relationship between the distance H from the lower end of the top frame 5 to the bottom of the drain pan 7 and the length L of the long side of the support 9 is expressed by an expression (1):

  • H=he+hd>L  (1)
  • On the other hand, in view of the relationship illustrated in FIG. 14 , the opening dimension he from the upper end of the drain pan 7 to the lower end of the top frame 5 is expressed by the following expression.

  • he=L×cos θ−d×sin α  (2)
  • Thus, the following relational expression (3) holds when the expression (2) is substituted into the expression (1):

  • hd>L×(1−cos θ)+d×sin α  (3)
  • Accordingly, when the drain pan 7 is formed such that the depth hd of the drain pan 7 satisfies the expression (3), it is possible to easily detach the support 9 in the workspace between the outdoor units 100 adjacent to each other.
  • In addition, when the length of the short side of the bottom of the support 9 is smaller than the length of a short side of the top of the support 9, the variable d of the expression (3) can be small. This further facilitates detachment of the support 9 and enables a size reduction of the drain pan 7. Furthermore, the supports 9 other than the detached support 9 are attached to the top frame 5, and the top frame 5 is thus kept supported by the supports 9. The width of the drain pan 7 in the short-side direction is set such that a lower end of the support 9 does not interfere with the upper end of the drain pan 7 during detachment of the support 9.
  • Similarly, the relational expression (3) holds for the case of detachment of the first heat exchanger 3 a or the second heat exchanger 3 b. For example, the depth hd of the drain pan 7 can be calculated by using the expression (3) in which the dimension of a long side of the first heat exchanger 3 a is a length L, the dimension of a short side of the bottom of the first heat exchanger 3 a is a length d, the inclination of a long side of the first heat exchanger 3 a relative to the vertical direction is an angle θ, and the inclination of the short side of the first heat exchanger 3 a relative to the horizontal direction is an angle α. Then, when the drain pan 7 is formed such that the depth hd of the drain pan 7 satisfies the expression (3), it is possible to easily detach the first heat exchanger 3 a in the workspace between the outdoor units 100 adjacent to each other. In addition, when the drain pan 7 is formed such that the depth hd of the drain pan 7 satisfies the expression (3), it is possible to easily detach the second heat exchanger 3 b in the workspace between the outdoor units 100 adjacent to each other. In this case, the top frame 5 is kept supported by the supports 9. Thus, it is possible to replace the first heat exchanger 3 a and the second heat exchanger 3 b with the top frame 5 attached.
  • Next, the design panel 10, which is attached between the first heat exchanger 3 a and the second heat exchanger 3 b and which forms some of the contours of the outdoor unit 100, will be described with reference to FIGS. 1, 17, and 18 .
  • FIG. 17 is a perspective view illustrating an example of the attachment mode of the design panel 10 different from that in the outdoor unit 100 in FIG. 1 . FIG. 18 is a perspective view illustrating an example of the positional relationship between the design panel 10 and the base 11 when viewed from the inside of the outdoor unit 100.
  • The design panel 10 is formed by a main panel 10 a, a sub panel 10 b, which is attached to a side of the main panel 10 a, and a drain pan maintenance panel 10 c, which is disposed below the main panel 10 a. For example, the main panel 10 a is formed as a plate-like component having a trapezoidal shape whose upper end is longer than a lower end thereof. For example, an upper end of the main panel 10 a is attached to the edge surface 5 b of the top frame 5 by screwing or other methods. In the example of the outdoor unit 100 in FIG. 1 , a left end of the main panel 10 a is joined to the sub panel 10 b by screwing or other methods, and a right end of the main panel 10 a is joined to the short-side heat exchange region 3 b 2 of the second heat exchanger 3 b. In the example in FIG. 17 , the right end of the main panel 10 a is joined to the sub panel 10 b by screwing or other methods.
  • For example, the sub panel 10 b is formed as a plate-like component having a quadrilateral shape. For example, an upper end of the sub panel 10 b is attached to the edge surface 5 b of the top frame 5 by screwing or other methods. As illustrated in FIG. 18 , a lower end of the sub panel 10 b is set on the base 11. In the example of the outdoor unit 100 in FIG. 1 , a left end of the sub panel 10 b is joined to the support 9 by screwing or other methods. In the example in FIG. 17 , a right end of the sub panel 10 b is joined to the support 9 by screwing or other methods.
  • FIG. 19 is an enlarged front view of the part in FIG. 18 where the drain pan maintenance panel 10 c is attached. The drain pan maintenance panel 10 c is disposed to close the opening formed between the main panel 10 a, the sub panel 10 b, the base 11, and the short-side heat exchange region 3 b 2 of the second heat exchanger 3 b. As illustrated in FIG. 19 , for example, the drain pan maintenance panel 10 c is detachably attached to the main panel 10 a by screwing or other methods.
  • Provision of the design panel 10 in the outdoor unit 100 enables inhibition of so-called short cycling that airflow blown out from the vent holes of the fan guards 6 b is directly taken into the air passage of the outdoor unit 100 without passing through the heat exchangers 3.
  • The first heat exchanger 3 a and the second heat exchanger 3 b each having an L shape in FIG. 6 are used in FIG. 1 . Thus, the design panel 10 is formed by three panels of the main panel 10 a, the sub panel 10 b, and the drain pan maintenance panel 10 c. In the case in FIG. 1 , the short-side heat exchange region 3 b 2 of the second heat exchanger 3 b having an L shape is located between the main panel 10 a and the support 9.
  • On the other hand, when the second heat exchanger 3 b having a flat shape in FIG. 5 is used in FIG. 1 , there is no region corresponding to the short-side heat exchange region 3 b 2 of the second heat exchanger 3 b having an L shape in FIGS. 1 and 6 . Thus, the space between the main panel 10 a and the support 9 has to be closed to prevent short cycling of airflow. However, the space between the left end of the main panel 10 a and the support 9 can be closed with a panel shaped to form a pair with the sub panel 10 b.
  • In addition, when the first heat exchanger 3 a having a U shape in FIG. 7 is used in FIG. 1 , a heat exchange region of the first heat exchanger 3 a, the heat exchange region being not illustrated and being shaped to form a pair with the short-side heat exchange region 3 b 2, is formed at the position of the sub panel 10 b in FIG. 1 . Thus, the design panel 10 is formed by the main panel 10 a and the drain pan maintenance panel 10 c and does not include the sub panel 10 b.
  • As described above, the design panel 10 includes the main panel 10 a and the drain pan maintenance panel 10 c. Whether a plurality of sub panels 10 b, one sub panel 10 b, or no sub panel 10 b is used can be selected according to the shapes of the first heat exchanger 3 a and the second heat exchanger 3 b. Thus, the design panel 10 can be formed by combining a plurality of identical panels according to the shapes of the first heat exchanger 3 a and the second heat exchanger 3 b. Accordingly, in Embodiment 1, manufacture of the main panel 10 a, the drain pan maintenance panel 10 c, and a plurality of sub panels 10 b enables the first heat exchanger 3 a and the second heat exchanger 3 b to be flexibly replaced and thus enables provision of the outdoor unit 100 having a high degree of freedom in design.
  • FIG. 20 is a perspective view illustrating the structure of the drain pan maintenance panel 10 c. FIG. 21 is a perspective view illustrating an example of the attachment mode of the drain pan maintenance panel 10 c when viewed from the inside of the outdoor unit 100. FIG. 22 is a sectional view taken along line A-A in FIG. 19 . The drain pan maintenance panel 10 c is continuous with a guide component 12, which is configured to guide, to the drain pan 7, water droplets flowing from the main panel 10 a and the sub panel 10 b to the drain pan maintenance panel 10 c. The guide component 12 is a plate-like component inclined from a joint portion 12 b, where the guide component 12 and the drain pan maintenance panel 10 c are joined to each other, toward an end portion 12 a. The guide component 12 is attached to the body surface 11 a of the base 11 such that water droplets flow in the space between the guide component 12 and the body surface 11 a of the base 11. For example, the space between the guide component 12 and the body surface 11 a of the base 11 in which water droplets flow is adjusted by changing the joint strength produced by screwing or other methods. The guide component 12 is inclined from the joint portion 12 b, where the guide component 12 and the drain pan maintenance panel 10 c are joined to each other, toward the end portion 12 a.
  • When the drain pan maintenance panel 10 c is provided with the guide component 12, as represented by solid arrows in FIGS. 21 and 22 , paths along which water droplets adhered to an inner surface of the design panel 10 are guided to the drain pan 7 are formed between the guide component 12 and the body surface 11 a of the base 11. Water droplets that have dripped from the guide component 12 pass through the space between the two attachment plates 11 b, which are illustrated in FIG. 11 and which are disposed to be apart from each other, and flow out to the drain pan 7. Thus, it is possible to inhibit the drain pan 7 and the design panel 10 from being soiled due to water dripping from the design panel 10 or splashes of dripped water. In addition, when the drain pan maintenance panel 10 c is attached, it is possible to inhibit so-called short cycling that airflow blown out from the vent holes of the fan guards 6 b is directly taken into the air passage chamber of the outdoor unit 100. Furthermore, when the drain pan maintenance panel 10 c is detached, an opening is formed close to the drain pan 7. Thus, it is possible to facilitate maintenance such as cleaning of the drain pan 7.

Claims (9)

1. An outdoor unit for a refrigeration cycle apparatus, the outdoor unit comprising:
a heat exchanger having an outer surface inclined downward;
a drain pan on which the heat exchanger is set;
a top frame on which a fan is set, the top frame being disposed at a top of the heat exchanger; and
a support attached to the drain pan and the top frame, the support extending, along the outer surface of the heat exchanger, between the drain pan and the top frame.
2. The outdoor unit for a refrigeration cycle apparatus of claim 1, the outdoor unit further comprising a plurality of supports.
3. The outdoor unit for a refrigeration cycle apparatus of claim 1, wherein the support has an L shape.
4. The outdoor unit for a refrigeration cycle apparatus of claim 1, wherein the support is detachably attached to the drain pan and the top frame.
5. The outdoor unit for a refrigeration cycle apparatus of claim 4, wherein when a dimension of a long side of the support is a length L, a dimension of a short side of the support is a length d, an inclination of the long side of the support relative to a vertical direction is an angle θ, and an inclination of the short side of the support relative to a horizontal direction is an angle α, the drain pan is formed such that a depth hd of the drain pan satisfies an expression of hd>L×(1−cos θ)+d×sin α.
6. The outdoor unit for a refrigeration cycle apparatus of claim 1, wherein the heat exchanger has a flat shape, an L shape, or a U shape.
7. The outdoor unit for a refrigeration cycle apparatus of claim 1, the outdoor unit further comprising a design panel attached between the drain pan and the top frame.
8. The outdoor unit for a refrigeration cycle apparatus of claim 7, wherein the design panel is formed of a combination of a plurality of panels.
9. The outdoor unit for a refrigeration cycle apparatus of claim 8, wherein
one of the plurality of panels is a drain pan maintenance panel, and
the drain pan maintenance panel is provided with a guide component configured to guide, to the drain pan, water droplets adhered to an inner surface of the drain pan maintenance panel.
US17/786,202 2020-02-21 2020-02-21 Outdoor unit for refrigeration cycle apparatus Abandoned US20230010232A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/006953 WO2021166202A1 (en) 2020-02-21 2020-02-21 Outdoor unit for refrigeration cycle device

Publications (1)

Publication Number Publication Date
US20230010232A1 true US20230010232A1 (en) 2023-01-12

Family

ID=77390526

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/786,202 Abandoned US20230010232A1 (en) 2020-02-21 2020-02-21 Outdoor unit for refrigeration cycle apparatus

Country Status (4)

Country Link
US (1) US20230010232A1 (en)
EP (1) EP4109000A4 (en)
JP (1) JPWO2021166202A1 (en)
WO (1) WO2021166202A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD998769S1 (en) * 2019-08-06 2023-09-12 Mitsubishi Electric Corporation Chiller unit
USD1017649S1 (en) 2021-08-30 2024-03-12 Mitsubishi Electric Corporation Chiller unit
USD1077160S1 (en) * 2022-01-26 2025-05-27 Mitsubishi Electric Corporation Outdoor unit for water heater

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7185513B2 (en) * 2005-02-25 2007-03-06 Advanced Distributor Products Llc Low profile evaporator coil
WO2011099629A1 (en) * 2010-02-15 2011-08-18 東芝キヤリア株式会社 Chilling unit

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6083866U (en) * 1983-11-14 1985-06-10 三菱電機株式会社 air conditioner
JP2745987B2 (en) * 1992-08-21 1998-04-28 ダイキン工業株式会社 Outdoor unit structure of air conditioner
KR101397217B1 (en) 2009-07-28 2014-05-20 도시바 캐리어 가부시키가이샤 Heat source unit
JP2012117720A (en) * 2010-11-30 2012-06-21 Sanyo Electric Co Ltd Outdoor unit for refrigerating system
JP6873988B2 (en) * 2016-06-16 2021-05-19 東芝キヤリア株式会社 Refrigeration cycle equipment
JP6369518B2 (en) * 2016-09-30 2018-08-08 ダイキン工業株式会社 Refrigeration equipment
JP6525021B2 (en) * 2017-03-30 2019-06-05 ダイキン工業株式会社 Heat source unit of refrigeration system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7185513B2 (en) * 2005-02-25 2007-03-06 Advanced Distributor Products Llc Low profile evaporator coil
WO2011099629A1 (en) * 2010-02-15 2011-08-18 東芝キヤリア株式会社 Chilling unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD998769S1 (en) * 2019-08-06 2023-09-12 Mitsubishi Electric Corporation Chiller unit
USD1017649S1 (en) 2021-08-30 2024-03-12 Mitsubishi Electric Corporation Chiller unit
USD1077160S1 (en) * 2022-01-26 2025-05-27 Mitsubishi Electric Corporation Outdoor unit for water heater

Also Published As

Publication number Publication date
JPWO2021166202A1 (en) 2021-08-26
WO2021166202A1 (en) 2021-08-26
EP4109000A1 (en) 2022-12-28
EP4109000A4 (en) 2023-03-29

Similar Documents

Publication Publication Date Title
US20230010232A1 (en) Outdoor unit for refrigeration cycle apparatus
JP5310887B2 (en) Outdoor unit and refrigeration equipment
JP4859777B2 (en) Outdoor unit
WO2021024409A1 (en) Chilling unit
CN203550069U (en) Outdoor unit for air conditioning device
US11116111B2 (en) Method and arrangement for air-conditioning a cold aisle
WO2018070143A1 (en) Air-cooled chiller
US12228346B2 (en) Chilling unit
WO2021024406A1 (en) Chilling unit and chilling unit system
JP4859776B2 (en) Outdoor unit
JP7209845B2 (en) Chilling unit and chilling unit system
JP4083175B2 (en) Air conditioner
JP7603836B2 (en) Chilling unit and chilling unit system
JP7086292B2 (en) Manufacturing method of air conditioner and air conditioner
JP6525021B2 (en) Heat source unit of refrigeration system
JP4535062B2 (en) Cooling system
JP6974754B2 (en) Outdoor unit of refrigeration equipment
KR20060127550A (en) Portable water-cooled air conditioners
JP2005106394A (en) Air conditioning indoor unit
JP6429991B2 (en) Air conditioner
JP2010129779A (en) Air conditioning device
JP7355492B2 (en) Electrical box and refrigeration cycle equipment
JP6742721B2 (en) Cooler unit
KR20230158961A (en) Air conditioner
JP2000199654A (en) Air-cooled absorption refrigeration system

Legal Events

Date Code Title Description
AS Assignment

Owner name: MITSUBISHI ELECTRIC CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MATSUGAMI, TSUKINE;KURACHI, AKINORI;TARUMI, YUJI;AND OTHERS;SIGNING DATES FROM 20220510 TO 20220523;REEL/FRAME:060227/0551

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION