US20230010232A1 - Outdoor unit for refrigeration cycle apparatus - Google Patents
Outdoor unit for refrigeration cycle apparatus Download PDFInfo
- Publication number
- US20230010232A1 US20230010232A1 US17/786,202 US202017786202A US2023010232A1 US 20230010232 A1 US20230010232 A1 US 20230010232A1 US 202017786202 A US202017786202 A US 202017786202A US 2023010232 A1 US2023010232 A1 US 2023010232A1
- Authority
- US
- United States
- Prior art keywords
- heat exchanger
- outdoor unit
- drain pan
- support
- top frame
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000005057 refrigeration Methods 0.000 title claims abstract description 25
- 238000012423 maintenance Methods 0.000 claims description 26
- 238000013461 design Methods 0.000 claims description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 13
- 238000000034 method Methods 0.000 description 18
- 238000012986 modification Methods 0.000 description 8
- 230000004048 modification Effects 0.000 description 8
- 239000003507 refrigerant Substances 0.000 description 8
- 230000001351 cycling effect Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 239000012267 brine Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/06—Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
- F24F1/14—Heat exchangers specially adapted for separate outdoor units
- F24F1/16—Arrangement or mounting thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/06—Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
- F24F1/36—Drip trays for outdoor units
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/06—Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
- F24F1/56—Casing or covers of separate outdoor units, e.g. fan guards
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F13/00—Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
- F24F13/20—Casings or covers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F13/00—Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
- F24F13/32—Supports for air-conditioning, air-humidification or ventilation units
Definitions
- the present disclosure relates to an outdoor unit for a refrigeration cycle apparatus.
- the outdoor unit is usable as, for example, a heat source unit for a heat pump apparatus.
- Patent Literature 1 discloses an outdoor unit for a refrigeration cycle apparatus.
- the outdoor unit includes an oblong box forming a machine chamber, a plurality of heat exchangers set in the long-side direction of the box, and fan guards that are set at the plurality of heat exchangers and that accommodate respective fans.
- the plurality of heat exchangers are each disposed to face each other.
- the plurality of heat exchangers are set on the box such that each outer surface thereof faces obliquely downward.
- Patent Literature 1 When the outdoor unit for a refrigeration cycle apparatus in Patent Literature 1 is used for, for example, a large building, a plurality of the outdoor units are disposed side by side in the short-side direction of the box, and spaces are formed between the boxes of the outdoor units adjacent to each other and between the heat exchangers of the outdoor units adjacent to each other.
- the spaces formed between the boxes of the outdoor units adjacent to each other and between the heat exchangers of the outdoor units adjacent to each other are usable as workspaces for maintenance checks of the outdoor units.
- a top frame is set on each pair of the plurality of heat exchangers of the outdoor unit for a refrigeration cycle apparatus in Patent Literature 1.
- the fan is set on the top frame.
- the fan has to be detached before the top frame is detached.
- the fan has to be detached in a space above the top frame.
- not all the steps of the heat exchanger replacement can be performed in the workspace formed between the outdoor units adjacent to each other.
- the present disclosure has been made to solve the above problem, and an object of the present disclosure is to provide an outdoor unit for a refrigeration cycle apparatus, all the steps of heat exchanger replacement being able to be performed in the workspace formed between the outdoor units adjacent to each other.
- An outdoor unit for a refrigeration cycle apparatus includes: a heat exchanger having an outer surface inclined downward; a drain pan on which the heat exchanger is set; a top frame on which a fan is set, the top frame being disposed at a top of the heat exchanger; and a support attached to the drain pan and the top frame, the support extending between the drain pan and the top frame.
- the outdoor unit for a refrigeration cycle apparatus includes the support joined to the drain pan and the top frame to be located therebetween.
- the support joined to the drain pan and the top frame to be located therebetween.
- FIG. 1 is a perspective view illustrating an example of the external structure of an outdoor unit for a refrigeration cycle apparatus according to Embodiment 1.
- FIG. 2 is an exploded perspective view of a fan in FIG. 1 .
- FIG. 3 is an enlarged perspective view illustrating part of the structure of a top frame from which a fan has been detached.
- FIG. 4 is a side view of a modification example of the outdoor unit in FIG. 1 when viewed in the long-side direction from a side thereof.
- FIG. 5 is a schematic top view illustrating an example of the disposition pattern of a first heat exchanger and a second heat exchanger of the outdoor unit according to Embodiment 1.
- FIG. 6 illustrates a first modification example of the disposition pattern of the first heat exchanger and the second heat exchanger in FIG. 5 .
- FIG. 7 illustrates a second modification example of the disposition pattern of the first heat exchanger and the second heat exchanger in FIG. 5 .
- FIG. 8 is an exploded view illustrating the positional relationship between the second heat exchanger and a support of the outdoor unit in Embodiment 1.
- FIG. 9 is a perspective view illustrating an example of the structure of the support in Embodiment 1.
- FIG. 10 is a perspective view illustrating the positional relationship between a drain pan and the supports when viewed from the inside of the outdoor unit.
- FIG. 11 is a perspective view illustrating the structure of a base to be attached to the drain pan.
- FIG. 12 is a perspective view illustrating the positional relationship between the top frame and the support when viewed from the outside of the outdoor unit.
- FIG. 13 illustrates another modification example of the outdoor unit in FIG. 1 .
- FIG. 14 is a schematic view illustrating the positional relationship between the drain pan and the supports when the outdoor unit is viewed in the long-side direction from a side of the outdoor unit.
- FIG. 15 is a perspective view illustrating the outdoor unit in FIG. 1 from which the supports have been detached.
- FIG. 16 is a perspective view illustrating the outdoor unit in FIG. 15 from which one first heat exchanger has been detached.
- FIG. 17 is a perspective view illustrating an example of the attachment mode of a design panel different from that in the outdoor unit in FIG. 1 .
- FIG. 18 is a perspective view illustrating an example of the positional relationship between the design panel and the base when viewed from the inside of the outdoor unit.
- FIG. 19 is an enlarged front view of the part in FIG. 18 where a drain pan maintenance panel is attached.
- FIG. 20 is a perspective view illustrating the structure of the drain pan maintenance panel.
- FIG. 21 is a perspective view illustrating an example of the attachment mode of the drain pan maintenance panel when viewed from the inside of the outdoor unit.
- FIG. 22 is a sectional view taken along line A-A in FIG. 19 .
- FIG. 1 is a perspective view illustrating an example of the external structure of the outdoor unit 100 for a refrigeration cycle apparatus according to Embodiment 1.
- the size relationships or the shapes of the components may differ from those of actual ones.
- the same components or parts or components or parts having the same functions have the same reference signs or have no reference signs.
- the positional relationships between the components of the outdoor unit 100 in, for example, an up-down direction, a left-right direction, or a front-rear direction are directions when the outdoor unit 100 is set in a usable state.
- the outdoor unit 100 for a refrigeration cycle apparatus is connected to an indoor unit by heat medium pipes.
- a heat medium such as water or brine is circulated, by, for example, operation of a pump apparatus, between the outdoor unit 100 and the indoor unit.
- high-temperature or low-temperature heat is discharged from a high-temperature or low-temperature heat medium passing through the inside thereof.
- the outdoor unit 100 has an oblong shape in top view.
- a refrigeration cycle apparatus is used for, for example, a large building, a plurality of the outdoor units 100 are disposed side by side in the short-side direction.
- Such an outdoor unit 100 for a refrigeration cycle apparatus is also referred to as a chilling unit and is usable as, for example, a heat source unit for a heat pump apparatus.
- the outdoor unit 100 includes a box 1 , which is set on a floor, heat exchangers 3 , which are disposed at the top of the box 1 , and top frames 5 , which are disposed at the top of heat exchanger 3 .
- a drain pan 7 on which the heat exchangers 3 are set, is disposed at the top of the box 1 .
- Fans 6 are set on the top frames 5 .
- the box 1 has an oblong rectangular shape.
- the box 1 is formed of frames 1 a and side walls 1 b , which close the spaces between the frames 1 a adjacent to each other.
- a machine chamber of the outdoor unit 100 is formed in the internal space of the box 1 .
- a compressor, a pressure reducing device, and a water-cooled heat exchanger are accommodated in the machine chamber.
- the compressor, the heat exchangers 3 , the pressure reducing device, and the water-cooled heat exchanger are connected by refrigerant pipes to circulate refrigerant. Most of the refrigerant pipes are accommodated in the machine chamber.
- the compressor sucks low-pressure refrigerant and discharges high-pressure refrigerant.
- a scroll compressor is used as the compressor.
- the pressure reducing device decompresses and expands high-pressure liquid refrigerant.
- an expansion valve is used as the pressure reducing device.
- the water-cooled heat exchanger causes heat exchange to be performed between a heat medium and refrigerant flowing in an internal passage thereof.
- a plate heat exchanger is used as the water-cooled heat exchanger.
- the width of the box 1 in the short-side direction is set to be smaller than the width of the top frame 5 in the short-side direction.
- an electrical component box in which, for example, a controller configured to control operation of the compressor and an expansion device is accommodated is accommodated in the machine chamber.
- a controller configured to control operation of the compressor and an expansion device is accommodated
- a microcomputer is used as the controller.
- the drain pan 7 is a water container for discharging drain water produced in the heat exchangers 3 to the outside of the outdoor unit 100 .
- the drain pan 7 is disposed at the top of the box 1 and is provided below the heat exchangers 3 .
- the drain pan 7 functions as a top plate of the box 1 and partitions off the machine chamber from the space in which the heat exchangers 3 are disposed.
- the drain pan 7 is attached to the frames 1 a of the box 1 by screwing or other methods.
- a drain pipe that is connected to the drain pan 7 and through which drain water received by the drain pan 7 is discharged to the outside can be provided in a space below the drain pan 7 , that is, closer to the machine chamber.
- the heat exchangers 3 cause heat exchange to be performed between air passing through the heat exchangers 3 and refrigerant flowing in the heat exchangers 3 .
- the heat exchangers 3 are set on a heat exchanger setting plate 7 a , which will be described later in FIG. 10 , of the drain pan 7 .
- the heat exchangers 3 are detachably attached to supports 9 and design panels 10 via attachments attached to the supports 9 and the design panels 10 by screwing or other methods.
- First heat exchangers 3 a and second heat exchangers 3 b are used as the heat exchangers 3 .
- the first heat exchangers 3 a and the second heat exchangers 3 b are disposed along a pair of edges extending in the long-side direction of the drain pan 7 to face each other with spaces therebetween.
- Two first heat exchangers 3 a and two second heat exchangers 3 b are disposed in the outdoor unit 100 in FIG. 1 , but each of the numbers of the first heat exchangers 3 a and the second heat exchangers 3 b provided therein may be one or three or more.
- an air-cooled finned tube heat exchanger is used as each of the first heat exchanger 3 a and the second heat exchanger 3 b . Details of the heat exchangers 3 will be described later.
- the first heat exchanger 3 a and the second heat exchanger 3 b are referred to as the heat exchangers 3 when it is unnecessary to particularly distinguish the first heat exchanger 3 a and the second heat exchanger 3 b.
- the top frames 5 and the fans 6 form the top of the outdoor unit 100 .
- the top frames 5 are each made of a rectangular metal plate and cover the tops of the heat exchangers 3 .
- the top frame 5 includes a setting surface 5 a , on which the fans 6 are set, and edge surfaces 5 b , which extend downward from respective edges of the setting surface 5 a .
- the edge surfaces 5 b of the top frame 5 extend downward to cover the tops of the heat exchangers 3 .
- FIG. 2 is an exploded perspective view of the fan 6 in FIG. 1 .
- FIG. 3 is an enlarged perspective view illustrating part of the structure of the top frame 5 from which the fan 6 has been detached.
- the fan 6 includes a bell mouth 6 a , which defines an air passage of the outdoor unit 100 , a fan guard 6 b , which is disposed at the top of the bell mouth 6 a and which has vent holes, and a fan body 6 c , which is accommodated in the bell mouth 6 a .
- four fans 6 are set on the top frames 5 , but the number of the fans 6 is not limited to four as long as the number thereof is one or more.
- an axial fan such as a propeller fan is used as the fan body 6 c.
- the setting surface 5 a of the top frame 5 has an opening 5 a 1 , which is in communication with the inside of the bell mouth 6 a .
- the top frame 5 includes fan setting racks 5 c , which cross the opening 5 a 1 and are attached to the setting surface 5 a .
- the fan body 6 c is attached to the fan setting rack 5 c by screwing or other methods.
- the bell mouth 6 a is attached to the setting surface 5 a , which is around the opening 5 a 1 , by screwing or other methods.
- two top frames 5 are provided, and two fans 6 are set on each of the top frames 5 .
- the configuration is not limited thereto.
- top frames 5 may be provided, and one fan 6 may be set on each of the top frames 5 .
- one top frame 5 may be provided, and four fans 6 may be set on the top frame 5 .
- the top frames 5 can be joined to each other by welding, screwing, or other methods.
- the first heat exchangers 3 a and the second heat exchangers 3 b are disposed such that each outer surface of the first heat exchangers 3 a and the second heat exchangers 3 b , that is, each surface thereof into which air flows, is inclined downward.
- each outer surface of the first heat exchangers 3 a and the second heat exchangers 3 b that is, each surface thereof into which air flows.
- both the outer surfaces of the first heat exchanger 3 a and the second heat exchanger 3 b are inclined downward, but the configuration is not limited thereto. It is sufficient that at least one of the outer surfaces of the first heat exchanger 3 a and the second heat exchanger 3 b be inclined downward.
- FIG. 4 is a side view of a modification example of the outdoor unit 100 in FIG. 1 when viewed in the long-side direction from a side thereof.
- the outdoor unit 100 in FIG. 4 only the outer surface of the second heat exchanger 3 b is inclined downward.
- the first heat exchanger 3 a is attached in the direction perpendicular to a floor.
- the outdoor unit 100 disposed as the rightmost row can have a configuration in which only the outer surface of the first heat exchanger 3 a is inclined downward and in which the second heat exchanger 3 b is attached in the direction perpendicular to a floor.
- FIG. 5 is a schematic top view illustrating an example of the disposition pattern of the first heat exchanger 3 a and the second heat exchanger 3 b of the outdoor unit 100 according to Embodiment 1.
- FIG. 6 illustrates a first modification example of the disposition pattern of the first heat exchanger 3 a and the second heat exchanger 3 b in FIG. 5 .
- FIG. 7 illustrates a second modification example of the disposition pattern of the first heat exchanger 3 a and the second heat exchanger 3 b in FIG. 5 .
- FIGS. 5 to 7 are schematic views for illustrating the disposition pattern of the first heat exchanger 3 a and the second heat exchanger 3 b .
- the actual shapes of the first heat exchanger 3 a and the second heat exchanger 3 b in top view differ from the shapes in FIGS. 5 to 7 because at least surfaces thereof into which air flows are inclined downward.
- the first heat exchanger 3 a and the second heat exchanger 3 b each having a flat shape are disposed so as to face each other.
- two or more first heat exchangers 3 a and two or more second heat exchangers 3 b have been arranged as rows.
- air that has passed through the first heat exchanger 3 a and the second heat exchanger 3 b as outer rows passes through the first heat exchanger 3 a and the second heat exchanger 3 b as inner rows.
- the outdoor unit 100 is increased in size to secure the space in which the first heat exchangers 3 a and the second heat exchangers 3 b are accommodated.
- Examples of a method for achieving sufficient heat exchange performance without increasing the numbers of the first heat exchangers 3 a and the second heat exchangers 3 b as rows include a method using the first heat exchanger 3 a and the second heat exchanger 3 b each having an L shape in FIG. 6 instead of the first heat exchanger 3 a and the second heat exchanger 3 b each having a flat shape in FIG. 5 .
- the use of the first heat exchanger 3 a and the second heat exchanger 3 b each having an L shape in FIG. 6 instead of the first heat exchanger 3 a and the second heat exchanger 3 b each having a flat shape in FIG. 5 enables an increase in the heat exchange region without impairing heat exchange performance.
- FIGS. 1 and 4 illustrate examples using the second heat exchanger 3 b having an L shape in FIG. 6 .
- first heat exchanger 3 a and the second heat exchanger 3 b each having a U shape in FIG. 7 instead of the first heat exchangers 3 a and the second heat exchangers 3 b in FIGS. 5 and 6 enables a further increase in the heat exchange region without impairing heat exchange performance.
- Each lower right bent region of the second heat exchangers 3 b in FIGS. 6 and 7 corresponds to a bent portion 3 b 1 illustrated in FIGS. 8 , 15 , and 16 described later.
- each lower end flat heat exchange region of the second heat exchangers 3 b in FIGS. 6 and 7 corresponds to a short-side heat exchange region 3 b 2 illustrated in FIGS. 8 , 15 , and 16 described later and in FIGS. 1 and 4 .
- the bent portion 3 b 1 and the short-side heat exchange region 3 b 2 will be described later.
- the supports 9 which are attached to the drain pan 7 and the top frames 5 and which extend from the drain pan 7 to the top frames 5 , are provided in the outdoor unit 100 in Embodiment 1.
- the structure and the disposition of the supports 9 will be described with reference to FIGS. 1 and 8 to 12 .
- FIG. 8 is an exploded perspective view illustrating the positional relationship between the second heat exchanger 3 b and the support 9 of the outdoor unit 100 in Embodiment 1 when viewed from above the drain pan 7 .
- FIG. 9 is a perspective view illustrating an example of the structure of the support 9 in Embodiment 1.
- FIG. 10 is a perspective view illustrating the positional relationship between the drain pan 7 and the supports 9 when viewed from the inside of the outdoor unit 100 .
- FIG. 11 is a perspective view illustrating the structure of a base 11 to be attached to the drain pan 7 .
- FIG. 12 is a perspective view illustrating the positional relationship between the top frame 5 and the support 9 when viewed from the outside of the outdoor unit 100 .
- the supports 9 are capable of supporting the top frame 5 when the heat exchangers 3 are detached.
- the supports 9 are disposed not to interfere with the heat exchangers 3 .
- the supports 9 are disposed to support four corners of the setting surface 5 a of the top frame 5 .
- the support 9 includes a beam 9 a , which has an L shape, a first attachment component 9 b , and a second attachment component 9 c , the first attachment component 9 b and the second attachment component 9 c being disposed at respective ends of the beam 9 a .
- the beam 9 a having an L shape enables an increase in the strength of the support 9 , whereby the top frame 5 is stably supported.
- the shape of the beam 9 a is not limited to an L shape and may be a flat shape as long as the support 9 is capable of stably supporting the top frame 5 .
- the drain pan 7 includes the heat exchanger setting plate 7 a , on which the heat exchangers 3 are set.
- the heat exchanger setting plate 7 a is a metal plate made of stainless steel or other materials and is integrally formed with the drain pan 7 .
- the heat exchanger setting plate 7 a has a plurality of holes 7 b , which guide water droplets produced in the heat exchangers 3 to the drain pan 7 .
- the base 11 which includes a body surface 11 a having a triangular shape, is attached to the drain pan 7 .
- the base 11 includes two attachment plates 11 b , which are continuous with the body surface 11 a and which are disposed to be apart from each other.
- the base 11 is attached to the drain pan 7 via the attachment plates 11 b by screwing, welding, or other methods.
- the base 11 includes support surfaces 11 c , which are disposed along oblique sides of the body surface 11 a having a triangular shape. As illustrated in FIG. 10 , when the heat exchanger setting plate 7 a is set on the support surfaces 11 c , upper surfaces of the heat exchanger setting plate 7 a are surfaces inclined downward from the center of the outdoor unit 100 toward the outside.
- the second attachment component 9 c of the support 9 is attached to the support surface 11 c of the base 11 via the heat exchanger setting plate 7 a by screwing or other methods.
- the base 11 is also referred to as a pillar and can be integrally formed with the drain pan 7 to serve as part of the drain pan 7 .
- the above configuration enables the drain pan 7 to support the heat exchanger 3 such that the outer surface of the heat exchanger 3 is inclined downward.
- the support 9 is supported to extend, along the outer surface of the heat exchanger 3 , from the drain pan 7 to the top frame 5 .
- the above configuration enables the drain pan 7 to stably support both the heat exchanger 3 and the support 9 .
- the first attachment component 9 b includes a top frame setting surface 9 b 1 , which is disposed at an end of the beam 9 a to form an L shape, and a top frame attachment surface 9 b 2 , which is joined to the top frame setting surface 9 b 1 .
- the top frame setting surface 9 b 1 supports a lower edge corner 5 b 1 of the edge surface 5 b of the top frame 5 .
- the top frame attachment surface 9 b 2 is attached to the outer side of the edge surface 5 b of the top frame 5 by screwing or other methods.
- the support 9 is disposed, along the outer surface of the second heat exchanger 3 b , outside the bent portion 3 b 1 of the second heat exchanger 3 b .
- the bent portion 3 b 1 of the second heat exchanger 3 b denotes the boundary region in top view between a heat exchange region of the second heat exchanger 3 b extending in the long-side direction of the drain pan 7 and the short-side heat exchange region 3 b 2 of the second heat exchanger 3 b extending in the short-side direction of the drain pan 7 .
- the space between fins adjacent to each other of the bent portion 3 b 1 of the second heat exchanger 3 b is larger than that of any other heat exchange region of the second heat exchanger 3 b .
- the number of fins of the bent portion 3 b 1 is smaller than that of any other heat exchange region of the second heat exchanger 3 b.
- the support 9 when viewed in the short-side direction of the box 1 , the support 9 is inclined from the top frame 5 toward the drain pan 7 , is disposed along the outer surface of the second heat exchanger 3 b , and is provided at a position that does not interfere with the second heat exchanger 3 b.
- the support 9 does not interfere with the second heat exchanger 3 b .
- the support 9 does not have to be replaced. Accordingly, the outdoor unit 100 can be formed by using the same support 9 . As a result, with the above configuration, it is possible to improve the serviceability of the outdoor unit 100 , to reduce the number of man-hours for designing the support 9 , and to reduce costs due to the use of the common support 9 .
- the support 9 when the support 9 is disposed outside the bent portion 3 b 1 of the second heat exchanger 3 b , it is possible to minimize the amount of airflow that passes through the second heat exchanger 3 b and that is blocked by the support 9 .
- the space between fins adjacent to each other of the bent portion 3 b 1 is larger than that of any other heat exchange region of the second heat exchanger 3 b , and the number of fins of the bent portion 3 b 1 is smaller than that of any other heat exchange region of the second heat exchanger 3 b . Accordingly, the effect of the bent portion 3 b 1 on the heat exchange performance of the second heat exchanger 3 b is small.
- the support 9 when the support 9 is disposed outside the bent portion 3 b 1 of the second heat exchanger 3 b , it is possible to minimize impairment of the heat exchange performance of the second heat exchanger 3 b.
- FIG. 13 illustrates another modification example of the outdoor unit 100 in FIG. 1 .
- the example in which the supports 9 are disposed to support four corners of the setting surface 5 a of the top frame 5 has been described above.
- the supports 9 may be disposed to support two corners on a diagonal line of the setting surface 5 a of the top frame 5 .
- the supports 9 are disposed to support two corners on a diagonal line of the setting surface 5 a of the top frame 5 .
- the heat exchanger 3 having an L shape in FIG. 6 or the heat exchanger 3 having a U shape in FIG. 7 is used, for example, it is possible to inhibit ventilation in a part such as the bent portion 3 b 1 of the second heat exchanger 3 b from being prevented by the support 9 .
- FIG. 14 is a schematic view illustrating the positional relationship between the drain pan 7 and the supports 9 when the outdoor unit 100 is viewed in the long-side direction from a side of the outdoor unit 100 .
- FIG. 15 is a perspective view illustrating the outdoor unit 100 in FIG. 1 from which the supports 9 have been detached.
- FIG. 16 is a perspective view illustrating the outdoor unit 100 in FIG. 15 from which one first heat exchanger 3 a has been detached.
- the support 9 is attached to the inside of each of the drain pan 7 and the top frame 5 .
- a depth hd of the drain pan 7 has to be adjusted to detach the support 9 from the drain pan 7 .
- the dimension from an upper end of the drain pan 7 to a lower end of the top frame 5 is an opening dimension he
- the dimension of a long side of the support 9 is a length L
- the dimension of a short side of the bottom of the support 9 is a length d.
- the inclination of a long side of the support 9 relative to the vertical direction is an angle ⁇
- the inclination of the short side of the support 9 relative to the horizontal direction is an angle ⁇ .
- a distance H from the lower end of the top frame 5 to the bottom of the drain pan 7 is expressed by the sum of the depth hd of the drain pan 7 and the opening dimension he from the upper end of the drain pan 7 to the lower end of the top frame 5 .
- a lower part of the outdoor unit 100 has to be detached from the support 9 .
- the distance H from the lower end of the top frame 5 to the bottom of the drain pan 7 has to be larger than the length L of the long side of the support 9 . Accordingly, the relationship between the distance H from the lower end of the top frame 5 to the bottom of the drain pan 7 and the length L of the long side of the support 9 is expressed by an expression (1):
- the opening dimension he from the upper end of the drain pan 7 to the lower end of the top frame 5 is expressed by the following expression.
- the drain pan 7 is formed such that the depth hd of the drain pan 7 satisfies the expression (3), it is possible to easily detach the support 9 in the workspace between the outdoor units 100 adjacent to each other.
- the variable d of the expression (3) can be small. This further facilitates detachment of the support 9 and enables a size reduction of the drain pan 7 . Furthermore, the supports 9 other than the detached support 9 are attached to the top frame 5 , and the top frame 5 is thus kept supported by the supports 9 .
- the width of the drain pan 7 in the short-side direction is set such that a lower end of the support 9 does not interfere with the upper end of the drain pan 7 during detachment of the support 9 .
- the relational expression (3) holds for the case of detachment of the first heat exchanger 3 a or the second heat exchanger 3 b .
- the depth hd of the drain pan 7 can be calculated by using the expression (3) in which the dimension of a long side of the first heat exchanger 3 a is a length L, the dimension of a short side of the bottom of the first heat exchanger 3 a is a length d, the inclination of a long side of the first heat exchanger 3 a relative to the vertical direction is an angle ⁇ , and the inclination of the short side of the first heat exchanger 3 a relative to the horizontal direction is an angle ⁇ .
- the drain pan 7 when the drain pan 7 is formed such that the depth hd of the drain pan 7 satisfies the expression (3), it is possible to easily detach the first heat exchanger 3 a in the workspace between the outdoor units 100 adjacent to each other.
- the drain pan 7 when the drain pan 7 is formed such that the depth hd of the drain pan 7 satisfies the expression (3), it is possible to easily detach the second heat exchanger 3 b in the workspace between the outdoor units 100 adjacent to each other.
- the top frame 5 is kept supported by the supports 9 .
- the design panel 10 which is attached between the first heat exchanger 3 a and the second heat exchanger 3 b and which forms some of the contours of the outdoor unit 100 , will be described with reference to FIGS. 1 , 17 , and 18 .
- FIG. 17 is a perspective view illustrating an example of the attachment mode of the design panel 10 different from that in the outdoor unit 100 in FIG. 1 .
- FIG. 18 is a perspective view illustrating an example of the positional relationship between the design panel 10 and the base 11 when viewed from the inside of the outdoor unit 100 .
- the design panel 10 is formed by a main panel 10 a , a sub panel 10 b , which is attached to a side of the main panel 10 a , and a drain pan maintenance panel 10 c , which is disposed below the main panel 10 a .
- the main panel 10 a is formed as a plate-like component having a trapezoidal shape whose upper end is longer than a lower end thereof.
- an upper end of the main panel 10 a is attached to the edge surface 5 b of the top frame 5 by screwing or other methods.
- a left end of the main panel 10 a is joined to the sub panel 10 b by screwing or other methods, and a right end of the main panel 10 a is joined to the short-side heat exchange region 3 b 2 of the second heat exchanger 3 b .
- the right end of the main panel 10 a is joined to the sub panel 10 b by screwing or other methods.
- the sub panel 10 b is formed as a plate-like component having a quadrilateral shape.
- an upper end of the sub panel 10 b is attached to the edge surface 5 b of the top frame 5 by screwing or other methods.
- a lower end of the sub panel 10 b is set on the base 11 .
- a left end of the sub panel 10 b is joined to the support 9 by screwing or other methods.
- a right end of the sub panel 10 b is joined to the support 9 by screwing or other methods.
- FIG. 19 is an enlarged front view of the part in FIG. 18 where the drain pan maintenance panel 10 c is attached.
- the drain pan maintenance panel 10 c is disposed to close the opening formed between the main panel 10 a , the sub panel 10 b , the base 11 , and the short-side heat exchange region 3 b 2 of the second heat exchanger 3 b .
- the drain pan maintenance panel 10 c is detachably attached to the main panel 10 a by screwing or other methods.
- Provision of the design panel 10 in the outdoor unit 100 enables inhibition of so-called short cycling that airflow blown out from the vent holes of the fan guards 6 b is directly taken into the air passage of the outdoor unit 100 without passing through the heat exchangers 3 .
- the first heat exchanger 3 a and the second heat exchanger 3 b each having an L shape in FIG. 6 are used in FIG. 1 .
- the design panel 10 is formed by three panels of the main panel 10 a , the sub panel 10 b , and the drain pan maintenance panel 10 c .
- the short-side heat exchange region 3 b 2 of the second heat exchanger 3 b having an L shape is located between the main panel 10 a and the support 9 .
- a heat exchange region of the first heat exchanger 3 a is formed at the position of the sub panel 10 b in FIG. 1 .
- the design panel 10 is formed by the main panel 10 a and the drain pan maintenance panel 10 c and does not include the sub panel 10 b.
- the design panel 10 includes the main panel 10 a and the drain pan maintenance panel 10 c . Whether a plurality of sub panels 10 b , one sub panel 10 b , or no sub panel 10 b is used can be selected according to the shapes of the first heat exchanger 3 a and the second heat exchanger 3 b . Thus, the design panel 10 can be formed by combining a plurality of identical panels according to the shapes of the first heat exchanger 3 a and the second heat exchanger 3 b .
- manufacture of the main panel 10 a , the drain pan maintenance panel 10 c , and a plurality of sub panels 10 b enables the first heat exchanger 3 a and the second heat exchanger 3 b to be flexibly replaced and thus enables provision of the outdoor unit 100 having a high degree of freedom in design.
- FIG. 20 is a perspective view illustrating the structure of the drain pan maintenance panel 10 c .
- FIG. 21 is a perspective view illustrating an example of the attachment mode of the drain pan maintenance panel 10 c when viewed from the inside of the outdoor unit 100 .
- FIG. 22 is a sectional view taken along line A-A in FIG. 19 .
- the drain pan maintenance panel 10 c is continuous with a guide component 12 , which is configured to guide, to the drain pan 7 , water droplets flowing from the main panel 10 a and the sub panel 10 b to the drain pan maintenance panel 10 c .
- the guide component 12 is a plate-like component inclined from a joint portion 12 b , where the guide component 12 and the drain pan maintenance panel 10 c are joined to each other, toward an end portion 12 a .
- the guide component 12 is attached to the body surface 11 a of the base 11 such that water droplets flow in the space between the guide component 12 and the body surface 11 a of the base 11 .
- the space between the guide component 12 and the body surface 11 a of the base 11 in which water droplets flow is adjusted by changing the joint strength produced by screwing or other methods.
- the guide component 12 is inclined from the joint portion 12 b , where the guide component 12 and the drain pan maintenance panel 10 c are joined to each other, toward the end portion 12 a.
- drain pan maintenance panel 10 c When the drain pan maintenance panel 10 c is provided with the guide component 12 , as represented by solid arrows in FIGS. 21 and 22 , paths along which water droplets adhered to an inner surface of the design panel 10 are guided to the drain pan 7 are formed between the guide component 12 and the body surface 11 a of the base 11 . Water droplets that have dripped from the guide component 12 pass through the space between the two attachment plates 11 b , which are illustrated in FIG. 11 and which are disposed to be apart from each other, and flow out to the drain pan 7 . Thus, it is possible to inhibit the drain pan 7 and the design panel 10 from being soiled due to water dripping from the design panel 10 or splashes of dripped water.
- drain pan maintenance panel 10 c when the drain pan maintenance panel 10 c is attached, it is possible to inhibit so-called short cycling that airflow blown out from the vent holes of the fan guards 6 b is directly taken into the air passage chamber of the outdoor unit 100 . Furthermore, when the drain pan maintenance panel 10 c is detached, an opening is formed close to the drain pan 7 . Thus, it is possible to facilitate maintenance such as cleaning of the drain pan 7 .
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Other Air-Conditioning Systems (AREA)
Abstract
An outdoor unit for a refrigeration cycle apparatus includes: a heat exchanger having an outer surface inclined downward; a drain pan on which the heat exchanger is set; a top frame on which a fan is set, the top frame being disposed at a top of the heat exchanger; and a support attached to the drain pan and the top frame, the support extending between the drain pan and the top frame.
Description
- This application is a U.S. National Stage Application of International Application No. PCT/JP2020/006953 filed on Feb. 21, 2020 the contents of which are incorporated herein by reference.
- The present disclosure relates to an outdoor unit for a refrigeration cycle apparatus. The outdoor unit is usable as, for example, a heat source unit for a heat pump apparatus.
-
Patent Literature 1 discloses an outdoor unit for a refrigeration cycle apparatus. The outdoor unit includes an oblong box forming a machine chamber, a plurality of heat exchangers set in the long-side direction of the box, and fan guards that are set at the plurality of heat exchangers and that accommodate respective fans. The plurality of heat exchangers are each disposed to face each other. The plurality of heat exchangers are set on the box such that each outer surface thereof faces obliquely downward. - When the outdoor unit for a refrigeration cycle apparatus in
Patent Literature 1 is used for, for example, a large building, a plurality of the outdoor units are disposed side by side in the short-side direction of the box, and spaces are formed between the boxes of the outdoor units adjacent to each other and between the heat exchangers of the outdoor units adjacent to each other. The spaces formed between the boxes of the outdoor units adjacent to each other and between the heat exchangers of the outdoor units adjacent to each other are usable as workspaces for maintenance checks of the outdoor units. -
- Patent Literature 1: International Publication No. 2011/013672
- A top frame is set on each pair of the plurality of heat exchangers of the outdoor unit for a refrigeration cycle apparatus in
Patent Literature 1. The fan is set on the top frame. Thus, for heat exchanger replacement, the fan has to be detached before the top frame is detached. However, the fan has to be detached in a space above the top frame. Thus, not all the steps of the heat exchanger replacement can be performed in the workspace formed between the outdoor units adjacent to each other. - The present disclosure has been made to solve the above problem, and an object of the present disclosure is to provide an outdoor unit for a refrigeration cycle apparatus, all the steps of heat exchanger replacement being able to be performed in the workspace formed between the outdoor units adjacent to each other.
- An outdoor unit for a refrigeration cycle apparatus according to an embodiment of the present disclosure includes: a heat exchanger having an outer surface inclined downward; a drain pan on which the heat exchanger is set; a top frame on which a fan is set, the top frame being disposed at a top of the heat exchanger; and a support attached to the drain pan and the top frame, the support extending between the drain pan and the top frame.
- The outdoor unit for a refrigeration cycle apparatus according to the embodiment of the present disclosure includes the support joined to the drain pan and the top frame to be located therebetween. Thus, it is possible to attach and detach the heat exchanger in the space between the outdoor units adjacent to each other with the top frame supported by the support. Accordingly, the fan does not have to be detached from the outdoor unit for a refrigeration cycle apparatus according to the embodiment of the present disclosure. As a result, all the steps of heat exchange unit replacement can be performed in the space formed between the outdoor units adjacent to each other.
-
FIG. 1 is a perspective view illustrating an example of the external structure of an outdoor unit for a refrigeration cycle apparatus according toEmbodiment 1. -
FIG. 2 is an exploded perspective view of a fan inFIG. 1 . -
FIG. 3 is an enlarged perspective view illustrating part of the structure of a top frame from which a fan has been detached. -
FIG. 4 is a side view of a modification example of the outdoor unit inFIG. 1 when viewed in the long-side direction from a side thereof. -
FIG. 5 is a schematic top view illustrating an example of the disposition pattern of a first heat exchanger and a second heat exchanger of the outdoor unit according to Embodiment 1. -
FIG. 6 illustrates a first modification example of the disposition pattern of the first heat exchanger and the second heat exchanger inFIG. 5 . -
FIG. 7 illustrates a second modification example of the disposition pattern of the first heat exchanger and the second heat exchanger inFIG. 5 . -
FIG. 8 is an exploded view illustrating the positional relationship between the second heat exchanger and a support of the outdoor unit inEmbodiment 1. -
FIG. 9 is a perspective view illustrating an example of the structure of the support inEmbodiment 1. -
FIG. 10 is a perspective view illustrating the positional relationship between a drain pan and the supports when viewed from the inside of the outdoor unit. -
FIG. 11 is a perspective view illustrating the structure of a base to be attached to the drain pan. -
FIG. 12 is a perspective view illustrating the positional relationship between the top frame and the support when viewed from the outside of the outdoor unit. -
FIG. 13 illustrates another modification example of the outdoor unit inFIG. 1 . -
FIG. 14 is a schematic view illustrating the positional relationship between the drain pan and the supports when the outdoor unit is viewed in the long-side direction from a side of the outdoor unit. -
FIG. 15 is a perspective view illustrating the outdoor unit inFIG. 1 from which the supports have been detached. -
FIG. 16 is a perspective view illustrating the outdoor unit inFIG. 15 from which one first heat exchanger has been detached. -
FIG. 17 is a perspective view illustrating an example of the attachment mode of a design panel different from that in the outdoor unit inFIG. 1 . -
FIG. 18 is a perspective view illustrating an example of the positional relationship between the design panel and the base when viewed from the inside of the outdoor unit. -
FIG. 19 is an enlarged front view of the part inFIG. 18 where a drain pan maintenance panel is attached. -
FIG. 20 is a perspective view illustrating the structure of the drain pan maintenance panel. -
FIG. 21 is a perspective view illustrating an example of the attachment mode of the drain pan maintenance panel when viewed from the inside of the outdoor unit. -
FIG. 22 is a sectional view taken along line A-A inFIG. 19 . - An
outdoor unit 100 for a refrigeration cycle apparatus according to Embodiment 1 will be described.FIG. 1 is a perspective view illustrating an example of the external structure of theoutdoor unit 100 for a refrigeration cycle apparatus according toEmbodiment 1. In the following drawings includingFIG. 1 , the size relationships or the shapes of the components may differ from those of actual ones. In addition, in the following drawings, the same components or parts or components or parts having the same functions have the same reference signs or have no reference signs. Basically, the positional relationships between the components of theoutdoor unit 100 in, for example, an up-down direction, a left-right direction, or a front-rear direction are directions when theoutdoor unit 100 is set in a usable state. - Although not illustrated, the
outdoor unit 100 for a refrigeration cycle apparatus is connected to an indoor unit by heat medium pipes. A heat medium such as water or brine is circulated, by, for example, operation of a pump apparatus, between theoutdoor unit 100 and the indoor unit. In theoutdoor unit 100, high-temperature or low-temperature heat is discharged from a high-temperature or low-temperature heat medium passing through the inside thereof. Theoutdoor unit 100 has an oblong shape in top view. When a refrigeration cycle apparatus is used for, for example, a large building, a plurality of theoutdoor units 100 are disposed side by side in the short-side direction. Such anoutdoor unit 100 for a refrigeration cycle apparatus is also referred to as a chilling unit and is usable as, for example, a heat source unit for a heat pump apparatus. - The
outdoor unit 100 includes abox 1, which is set on a floor,heat exchangers 3, which are disposed at the top of thebox 1, andtop frames 5, which are disposed at the top ofheat exchanger 3. Adrain pan 7, on which theheat exchangers 3 are set, is disposed at the top of thebox 1.Fans 6 are set on thetop frames 5. - The
box 1 has an oblong rectangular shape. Thebox 1 is formed offrames 1 a andside walls 1 b, which close the spaces between theframes 1 a adjacent to each other. A machine chamber of theoutdoor unit 100 is formed in the internal space of thebox 1. Although not illustrated, for example, a compressor, a pressure reducing device, and a water-cooled heat exchanger are accommodated in the machine chamber. The compressor, theheat exchangers 3, the pressure reducing device, and the water-cooled heat exchanger are connected by refrigerant pipes to circulate refrigerant. Most of the refrigerant pipes are accommodated in the machine chamber. The compressor sucks low-pressure refrigerant and discharges high-pressure refrigerant. For example, a scroll compressor is used as the compressor. The pressure reducing device decompresses and expands high-pressure liquid refrigerant. For example, an expansion valve is used as the pressure reducing device. The water-cooled heat exchanger causes heat exchange to be performed between a heat medium and refrigerant flowing in an internal passage thereof. For example, a plate heat exchanger is used as the water-cooled heat exchanger. The width of thebox 1 in the short-side direction is set to be smaller than the width of thetop frame 5 in the short-side direction. - In addition, although not illustrated, an electrical component box in which, for example, a controller configured to control operation of the compressor and an expansion device is accommodated is accommodated in the machine chamber. For example, a microcomputer is used as the controller.
- The
drain pan 7 is a water container for discharging drain water produced in theheat exchangers 3 to the outside of theoutdoor unit 100. Thedrain pan 7 is disposed at the top of thebox 1 and is provided below theheat exchangers 3. In addition, thedrain pan 7 functions as a top plate of thebox 1 and partitions off the machine chamber from the space in which theheat exchangers 3 are disposed. For example, thedrain pan 7 is attached to theframes 1 a of thebox 1 by screwing or other methods. Although not illustrated, a drain pipe that is connected to thedrain pan 7 and through which drain water received by thedrain pan 7 is discharged to the outside can be provided in a space below thedrain pan 7, that is, closer to the machine chamber. - The
heat exchangers 3 cause heat exchange to be performed between air passing through theheat exchangers 3 and refrigerant flowing in theheat exchangers 3. Theheat exchangers 3 are set on a heat exchanger setting plate 7 a, which will be described later inFIG. 10 , of thedrain pan 7. Although not illustrated, for example, theheat exchangers 3 are detachably attached tosupports 9 anddesign panels 10 via attachments attached to thesupports 9 and thedesign panels 10 by screwing or other methods.First heat exchangers 3 a andsecond heat exchangers 3 b are used as theheat exchangers 3. Thefirst heat exchangers 3 a and thesecond heat exchangers 3 b are disposed along a pair of edges extending in the long-side direction of thedrain pan 7 to face each other with spaces therebetween. Twofirst heat exchangers 3 a and twosecond heat exchangers 3 b are disposed in theoutdoor unit 100 inFIG. 1 , but each of the numbers of thefirst heat exchangers 3 a and thesecond heat exchangers 3 b provided therein may be one or three or more. For example, an air-cooled finned tube heat exchanger is used as each of thefirst heat exchanger 3 a and thesecond heat exchanger 3 b. Details of theheat exchangers 3 will be described later. In the following description, thefirst heat exchanger 3 a and thesecond heat exchanger 3 b are referred to as theheat exchangers 3 when it is unnecessary to particularly distinguish thefirst heat exchanger 3 a and thesecond heat exchanger 3 b. - The top frames 5 and the
fans 6 form the top of theoutdoor unit 100. The top frames 5 are each made of a rectangular metal plate and cover the tops of theheat exchangers 3. Thetop frame 5 includes asetting surface 5 a, on which thefans 6 are set, andedge surfaces 5 b, which extend downward from respective edges of the settingsurface 5 a. The edge surfaces 5 b of thetop frame 5 extend downward to cover the tops of theheat exchangers 3. -
FIG. 2 is an exploded perspective view of thefan 6 inFIG. 1 .FIG. 3 is an enlarged perspective view illustrating part of the structure of thetop frame 5 from which thefan 6 has been detached. Thefan 6 includes abell mouth 6 a, which defines an air passage of theoutdoor unit 100, afan guard 6 b, which is disposed at the top of thebell mouth 6 a and which has vent holes, and afan body 6 c, which is accommodated in thebell mouth 6 a. InFIG. 1 , fourfans 6 are set on the top frames 5, but the number of thefans 6 is not limited to four as long as the number thereof is one or more. For example, an axial fan such as a propeller fan is used as thefan body 6 c. - The setting
surface 5 a of thetop frame 5 has anopening 5 a 1, which is in communication with the inside of thebell mouth 6 a. Thetop frame 5 includesfan setting racks 5 c, which cross theopening 5 a 1 and are attached to thesetting surface 5 a. Thefan body 6 c is attached to thefan setting rack 5 c by screwing or other methods. Thebell mouth 6 a is attached to thesetting surface 5 a, which is around theopening 5 a 1, by screwing or other methods. InFIG. 1 , twotop frames 5 are provided, and twofans 6 are set on each of the top frames 5. However, the configuration is not limited thereto. For example, fourtop frames 5 may be provided, and onefan 6 may be set on each of the top frames 5. Alternatively, onetop frame 5 may be provided, and fourfans 6 may be set on thetop frame 5. When a plurality oftop frames 5 are provided, thetop frames 5 can be joined to each other by welding, screwing, or other methods. - By rotation of the
fan bodies 6 c, air outside theoutdoor unit 100 is guided, from the outside of theoutdoor unit 100, into the internal space surrounded by thefirst heat exchangers 3 a, thesecond heat exchangers 3 b, and thedrain pan 7 and is subjected to heat exchange in thefirst heat exchangers 3 a and thesecond heat exchangers 3 b. The air that has been subjected to heat exchange in thefirst heat exchangers 3 a and thesecond heat exchangers 3 b is blown out from the vent holes of thefan guards 6 b via theopenings 5 a 1, which are provided in the respectivetop frames 5, and thebell mouths 6 a. That is, an air passage is formed in the space surrounded by thefirst heat exchangers 3 a, thesecond heat exchangers 3 b, and thedrain pan 7 of theoutdoor unit 100. - Next, the disposition and the configuration of the
heat exchangers 3 will be described with reference toFIG. 1 . - In
FIG. 1 , thefirst heat exchangers 3 a and thesecond heat exchangers 3 b are disposed such that each outer surface of thefirst heat exchangers 3 a and thesecond heat exchangers 3 b, that is, each surface thereof into which air flows, is inclined downward. Thus, when a plurality of theoutdoor units 100 are disposed side by side in the short-side direction, an inverted V-shaped space is formed between theheat exchangers 3 of theoutdoor units 100 adjacent to each other, and airflow can be guided, from the inverted V-shaped space, into thefirst heat exchangers 3 a and thesecond heat exchangers 3 b. Accordingly, even when a plurality of theoutdoor units 100 are disposed side by side in the short-side direction of thebox 1, a space does not have to be provided between thetop frames 5 adjacent to each other. As a result, it is possible to effectively use the space in which theoutdoor units 100 are disposed. In addition, as described above, since the width of thebox 1 in the short-side direction is set to be smaller than the width of thetop frame 5 in the short-side direction, a space is formed between theboxes 1 of theoutdoor units 100 adjacent to each other. As a result, it is possible to secure a workspace for, for example, maintenance checks of the machine chambers. - In the
outdoor unit 100 inFIG. 1 , both the outer surfaces of thefirst heat exchanger 3 a and thesecond heat exchanger 3 b are inclined downward, but the configuration is not limited thereto. It is sufficient that at least one of the outer surfaces of thefirst heat exchanger 3 a and thesecond heat exchanger 3 b be inclined downward. -
FIG. 4 is a side view of a modification example of theoutdoor unit 100 inFIG. 1 when viewed in the long-side direction from a side thereof. In theoutdoor unit 100 inFIG. 4 , only the outer surface of thesecond heat exchanger 3 b is inclined downward. Thefirst heat exchanger 3 a is attached in the direction perpendicular to a floor. When a plurality of theoutdoor units 100 are disposed side by side in the short-side direction, and theoutdoor unit 100 inFIG. 4 is disposed as the leftmost row, it is possible to inhibit a space that cannot be effectively used from being formed at the left of theoutdoor unit 100 inFIG. 4 . In addition, when a plurality of theoutdoor units 100 are disposed side by side in the short-side direction, theoutdoor unit 100 disposed as the rightmost row can have a configuration in which only the outer surface of thefirst heat exchanger 3 a is inclined downward and in which thesecond heat exchanger 3 b is attached in the direction perpendicular to a floor. -
FIG. 5 is a schematic top view illustrating an example of the disposition pattern of thefirst heat exchanger 3 a and thesecond heat exchanger 3 b of theoutdoor unit 100 according toEmbodiment 1.FIG. 6 illustrates a first modification example of the disposition pattern of thefirst heat exchanger 3 a and thesecond heat exchanger 3 b inFIG. 5 .FIG. 7 illustrates a second modification example of the disposition pattern of thefirst heat exchanger 3 a and thesecond heat exchanger 3 b inFIG. 5 .FIGS. 5 to 7 are schematic views for illustrating the disposition pattern of thefirst heat exchanger 3 a and thesecond heat exchanger 3 b. The actual shapes of thefirst heat exchanger 3 a and thesecond heat exchanger 3 b in top view differ from the shapes inFIGS. 5 to 7 because at least surfaces thereof into which air flows are inclined downward. - In
FIG. 5 , thefirst heat exchanger 3 a and thesecond heat exchanger 3 b each having a flat shape are disposed so as to face each other. To improve the heat exchange performance of thefirst heat exchanger 3 a and thesecond heat exchanger 3 b, two or morefirst heat exchangers 3 a and two or moresecond heat exchangers 3 b have been arranged as rows. However, air that has passed through thefirst heat exchanger 3 a and thesecond heat exchanger 3 b as outer rows passes through thefirst heat exchanger 3 a and thesecond heat exchanger 3 b as inner rows. Thus, there has been a case in which sufficient heat exchange performance cannot be achieved. In addition, there has been a case in which theoutdoor unit 100 is increased in size to secure the space in which thefirst heat exchangers 3 a and thesecond heat exchangers 3 b are accommodated. - Examples of a method for achieving sufficient heat exchange performance without increasing the numbers of the
first heat exchangers 3 a and thesecond heat exchangers 3 b as rows include a method using thefirst heat exchanger 3 a and thesecond heat exchanger 3 b each having an L shape inFIG. 6 instead of thefirst heat exchanger 3 a and thesecond heat exchanger 3 b each having a flat shape inFIG. 5 . The use of thefirst heat exchanger 3 a and thesecond heat exchanger 3 b each having an L shape inFIG. 6 instead of thefirst heat exchanger 3 a and thesecond heat exchanger 3 b each having a flat shape inFIG. 5 enables an increase in the heat exchange region without impairing heat exchange performance.FIGS. 1 and 4 illustrate examples using thesecond heat exchanger 3 b having an L shape inFIG. 6 . - In addition, the use of the
first heat exchanger 3 a and thesecond heat exchanger 3 b each having a U shape inFIG. 7 instead of thefirst heat exchangers 3 a and thesecond heat exchangers 3 b inFIGS. 5 and 6 enables a further increase in the heat exchange region without impairing heat exchange performance. - Each lower right bent region of the
second heat exchangers 3 b inFIGS. 6 and 7 corresponds to abent portion 3b 1 illustrated inFIGS. 8, 15, and 16 described later. In addition, each lower end flat heat exchange region of thesecond heat exchangers 3 b inFIGS. 6 and 7 corresponds to a short-sideheat exchange region 3 b 2 illustrated inFIGS. 8, 15, and 16 described later and inFIGS. 1 and 4 . Thebent portion 3 b 1 and the short-sideheat exchange region 3 b 2 will be described later. - To facilitate replacement of the
first heat exchangers 3 a and thesecond heat exchangers 3 b, thesupports 9, which are attached to thedrain pan 7 and thetop frames 5 and which extend from thedrain pan 7 to the top frames 5, are provided in theoutdoor unit 100 inEmbodiment 1. The structure and the disposition of thesupports 9 will be described with reference toFIGS. 1 and 8 to 12 . -
FIG. 8 is an exploded perspective view illustrating the positional relationship between thesecond heat exchanger 3 b and thesupport 9 of theoutdoor unit 100 inEmbodiment 1 when viewed from above thedrain pan 7.FIG. 9 is a perspective view illustrating an example of the structure of thesupport 9 inEmbodiment 1.FIG. 10 is a perspective view illustrating the positional relationship between thedrain pan 7 and thesupports 9 when viewed from the inside of theoutdoor unit 100.FIG. 11 is a perspective view illustrating the structure of a base 11 to be attached to thedrain pan 7.FIG. 12 is a perspective view illustrating the positional relationship between thetop frame 5 and thesupport 9 when viewed from the outside of theoutdoor unit 100. - The
supports 9 are capable of supporting thetop frame 5 when theheat exchangers 3 are detached. Thesupports 9 are disposed not to interfere with theheat exchangers 3. For example, thesupports 9 are disposed to support four corners of the settingsurface 5 a of thetop frame 5. - As illustrated in
FIG. 9 , for example, thesupport 9 includes abeam 9 a, which has an L shape, afirst attachment component 9 b, and asecond attachment component 9 c, thefirst attachment component 9 b and thesecond attachment component 9 c being disposed at respective ends of thebeam 9 a. Thebeam 9 a having an L shape enables an increase in the strength of thesupport 9, whereby thetop frame 5 is stably supported. The shape of thebeam 9 a is not limited to an L shape and may be a flat shape as long as thesupport 9 is capable of stably supporting thetop frame 5. - As illustrated in
FIG. 10 , thedrain pan 7 includes the heat exchanger setting plate 7 a, on which theheat exchangers 3 are set. For example, the heat exchanger setting plate 7 a is a metal plate made of stainless steel or other materials and is integrally formed with thedrain pan 7. The heat exchanger setting plate 7 a has a plurality ofholes 7 b, which guide water droplets produced in theheat exchangers 3 to thedrain pan 7. - In addition, the
base 11, which includes abody surface 11 a having a triangular shape, is attached to thedrain pan 7. As illustrated inFIG. 11 , thebase 11 includes twoattachment plates 11 b, which are continuous with thebody surface 11 a and which are disposed to be apart from each other. Thebase 11 is attached to thedrain pan 7 via theattachment plates 11 b by screwing, welding, or other methods. - In addition, as illustrated in
FIGS. 10 and 11 , thebase 11 includes support surfaces 11 c, which are disposed along oblique sides of thebody surface 11 a having a triangular shape. As illustrated inFIG. 10 , when the heat exchanger setting plate 7 a is set on the support surfaces 11 c, upper surfaces of the heat exchanger setting plate 7 a are surfaces inclined downward from the center of theoutdoor unit 100 toward the outside. Thesecond attachment component 9 c of thesupport 9 is attached to thesupport surface 11 c of thebase 11 via the heat exchanger setting plate 7 a by screwing or other methods. Thebase 11 is also referred to as a pillar and can be integrally formed with thedrain pan 7 to serve as part of thedrain pan 7. - The above configuration enables the
drain pan 7 to support theheat exchanger 3 such that the outer surface of theheat exchanger 3 is inclined downward. In addition, with the above configuration, thesupport 9 is supported to extend, along the outer surface of theheat exchanger 3, from thedrain pan 7 to thetop frame 5. Thus, the above configuration enables thedrain pan 7 to stably support both theheat exchanger 3 and thesupport 9. - As illustrated in
FIGS. 9 and 12 , thefirst attachment component 9 b includes a topframe setting surface 9b 1, which is disposed at an end of thebeam 9 a to form an L shape, and a topframe attachment surface 9 b 2, which is joined to the topframe setting surface 9b 1. The topframe setting surface 9b 1 supports alower edge corner 5b 1 of theedge surface 5 b of thetop frame 5. The topframe attachment surface 9 b 2 is attached to the outer side of theedge surface 5 b of thetop frame 5 by screwing or other methods. - As illustrated in
FIG. 8 , thesupport 9 is disposed, along the outer surface of thesecond heat exchanger 3 b, outside thebent portion 3b 1 of thesecond heat exchanger 3 b. Here, thebent portion 3b 1 of thesecond heat exchanger 3 b denotes the boundary region in top view between a heat exchange region of thesecond heat exchanger 3 b extending in the long-side direction of thedrain pan 7 and the short-sideheat exchange region 3 b 2 of thesecond heat exchanger 3 b extending in the short-side direction of thedrain pan 7. The space between fins adjacent to each other of thebent portion 3b 1 of thesecond heat exchanger 3 b is larger than that of any other heat exchange region of thesecond heat exchanger 3 b. The number of fins of thebent portion 3b 1 is smaller than that of any other heat exchange region of thesecond heat exchanger 3 b. - As illustrated in
FIG. 1 , when viewed in the short-side direction of thebox 1, thesupport 9 is inclined from thetop frame 5 toward thedrain pan 7, is disposed along the outer surface of thesecond heat exchanger 3 b, and is provided at a position that does not interfere with thesecond heat exchanger 3 b. - With the above configuration, even when the
second heat exchanger 3 b inFIG. 8 , that is, thesecond heat exchanger 3 b having an L shape inFIG. 6 , is replaced with thesecond heat exchanger 3 b having a flat shape inFIG. 5 or thesecond heat exchanger 3 b having a U shape inFIG. 7 , thesupport 9 does not interfere with thesecond heat exchanger 3 b. Thus, even when thesecond heat exchanger 3 b is changed, thesupport 9 does not have to be replaced. Accordingly, theoutdoor unit 100 can be formed by using thesame support 9. As a result, with the above configuration, it is possible to improve the serviceability of theoutdoor unit 100, to reduce the number of man-hours for designing thesupport 9, and to reduce costs due to the use of thecommon support 9. - In addition, when the
support 9 is disposed outside thebent portion 3b 1 of thesecond heat exchanger 3 b, it is possible to minimize the amount of airflow that passes through thesecond heat exchanger 3 b and that is blocked by thesupport 9. The space between fins adjacent to each other of thebent portion 3b 1 is larger than that of any other heat exchange region of thesecond heat exchanger 3 b, and the number of fins of thebent portion 3b 1 is smaller than that of any other heat exchange region of thesecond heat exchanger 3 b. Accordingly, the effect of thebent portion 3b 1 on the heat exchange performance of thesecond heat exchanger 3 b is small. Thus, when thesupport 9 is disposed outside thebent portion 3b 1 of thesecond heat exchanger 3 b, it is possible to minimize impairment of the heat exchange performance of thesecond heat exchanger 3 b. -
FIG. 13 illustrates another modification example of theoutdoor unit 100 inFIG. 1 . The example in which thesupports 9 are disposed to support four corners of the settingsurface 5 a of thetop frame 5 has been described above. For example, as illustrated inFIG. 13 , thesupports 9 may be disposed to support two corners on a diagonal line of the settingsurface 5 a of thetop frame 5. When thesupports 9 are disposed to support two corners on a diagonal line of the settingsurface 5 a of thetop frame 5, it is possible to reduce the number of components of theoutdoor unit 100 and to thus reduce the manufacturing cost of theoutdoor unit 100. In addition, when theheat exchanger 3 having an L shape inFIG. 6 or theheat exchanger 3 having a U shape inFIG. 7 is used, for example, it is possible to inhibit ventilation in a part such as thebent portion 3b 1 of thesecond heat exchanger 3 b from being prevented by thesupport 9. -
FIG. 14 is a schematic view illustrating the positional relationship between thedrain pan 7 and thesupports 9 when theoutdoor unit 100 is viewed in the long-side direction from a side of theoutdoor unit 100.FIG. 15 is a perspective view illustrating theoutdoor unit 100 inFIG. 1 from which thesupports 9 have been detached.FIG. 16 is a perspective view illustrating theoutdoor unit 100 inFIG. 15 from which onefirst heat exchanger 3 a has been detached. - As described above, the
support 9 is attached to the inside of each of thedrain pan 7 and thetop frame 5. Thus, a depth hd of thedrain pan 7 has to be adjusted to detach thesupport 9 from thedrain pan 7. - In the following description, the dimension from an upper end of the
drain pan 7 to a lower end of thetop frame 5 is an opening dimension he, the dimension of a long side of thesupport 9 is a length L, and the dimension of a short side of the bottom of thesupport 9 is a length d. In addition, the inclination of a long side of thesupport 9 relative to the vertical direction is an angle θ, and the inclination of the short side of thesupport 9 relative to the horizontal direction is an angle α. - A distance H from the lower end of the
top frame 5 to the bottom of thedrain pan 7 is expressed by the sum of the depth hd of thedrain pan 7 and the opening dimension he from the upper end of thedrain pan 7 to the lower end of thetop frame 5. To detach thesupport 9 in the workspace between theoutdoor units 100 adjacent to each other, first, a lower part of theoutdoor unit 100 has to be detached from thesupport 9. Thus, the distance H from the lower end of thetop frame 5 to the bottom of thedrain pan 7 has to be larger than the length L of the long side of thesupport 9. Accordingly, the relationship between the distance H from the lower end of thetop frame 5 to the bottom of thedrain pan 7 and the length L of the long side of thesupport 9 is expressed by an expression (1): -
H=he+hd>L (1) - On the other hand, in view of the relationship illustrated in
FIG. 14 , the opening dimension he from the upper end of thedrain pan 7 to the lower end of thetop frame 5 is expressed by the following expression. -
he=L×cos θ−d×sin α (2) - Thus, the following relational expression (3) holds when the expression (2) is substituted into the expression (1):
-
hd>L×(1−cos θ)+d×sin α (3) - Accordingly, when the
drain pan 7 is formed such that the depth hd of thedrain pan 7 satisfies the expression (3), it is possible to easily detach thesupport 9 in the workspace between theoutdoor units 100 adjacent to each other. - In addition, when the length of the short side of the bottom of the
support 9 is smaller than the length of a short side of the top of thesupport 9, the variable d of the expression (3) can be small. This further facilitates detachment of thesupport 9 and enables a size reduction of thedrain pan 7. Furthermore, thesupports 9 other than thedetached support 9 are attached to thetop frame 5, and thetop frame 5 is thus kept supported by thesupports 9. The width of thedrain pan 7 in the short-side direction is set such that a lower end of thesupport 9 does not interfere with the upper end of thedrain pan 7 during detachment of thesupport 9. - Similarly, the relational expression (3) holds for the case of detachment of the
first heat exchanger 3 a or thesecond heat exchanger 3 b. For example, the depth hd of thedrain pan 7 can be calculated by using the expression (3) in which the dimension of a long side of thefirst heat exchanger 3 a is a length L, the dimension of a short side of the bottom of thefirst heat exchanger 3 a is a length d, the inclination of a long side of thefirst heat exchanger 3 a relative to the vertical direction is an angle θ, and the inclination of the short side of thefirst heat exchanger 3 a relative to the horizontal direction is an angle α. Then, when thedrain pan 7 is formed such that the depth hd of thedrain pan 7 satisfies the expression (3), it is possible to easily detach thefirst heat exchanger 3 a in the workspace between theoutdoor units 100 adjacent to each other. In addition, when thedrain pan 7 is formed such that the depth hd of thedrain pan 7 satisfies the expression (3), it is possible to easily detach thesecond heat exchanger 3 b in the workspace between theoutdoor units 100 adjacent to each other. In this case, thetop frame 5 is kept supported by thesupports 9. Thus, it is possible to replace thefirst heat exchanger 3 a and thesecond heat exchanger 3 b with thetop frame 5 attached. - Next, the
design panel 10, which is attached between thefirst heat exchanger 3 a and thesecond heat exchanger 3 b and which forms some of the contours of theoutdoor unit 100, will be described with reference toFIGS. 1, 17, and 18 . -
FIG. 17 is a perspective view illustrating an example of the attachment mode of thedesign panel 10 different from that in theoutdoor unit 100 inFIG. 1 .FIG. 18 is a perspective view illustrating an example of the positional relationship between thedesign panel 10 and the base 11 when viewed from the inside of theoutdoor unit 100. - The
design panel 10 is formed by amain panel 10 a, asub panel 10 b, which is attached to a side of themain panel 10 a, and a drainpan maintenance panel 10 c, which is disposed below themain panel 10 a. For example, themain panel 10 a is formed as a plate-like component having a trapezoidal shape whose upper end is longer than a lower end thereof. For example, an upper end of themain panel 10 a is attached to theedge surface 5 b of thetop frame 5 by screwing or other methods. In the example of theoutdoor unit 100 inFIG. 1 , a left end of themain panel 10 a is joined to thesub panel 10 b by screwing or other methods, and a right end of themain panel 10 a is joined to the short-sideheat exchange region 3 b 2 of thesecond heat exchanger 3 b. In the example inFIG. 17 , the right end of themain panel 10 a is joined to thesub panel 10 b by screwing or other methods. - For example, the
sub panel 10 b is formed as a plate-like component having a quadrilateral shape. For example, an upper end of thesub panel 10 b is attached to theedge surface 5 b of thetop frame 5 by screwing or other methods. As illustrated inFIG. 18 , a lower end of thesub panel 10 b is set on thebase 11. In the example of theoutdoor unit 100 inFIG. 1 , a left end of thesub panel 10 b is joined to thesupport 9 by screwing or other methods. In the example inFIG. 17 , a right end of thesub panel 10 b is joined to thesupport 9 by screwing or other methods. -
FIG. 19 is an enlarged front view of the part inFIG. 18 where the drainpan maintenance panel 10 c is attached. The drainpan maintenance panel 10 c is disposed to close the opening formed between themain panel 10 a, thesub panel 10 b, thebase 11, and the short-sideheat exchange region 3 b 2 of thesecond heat exchanger 3 b. As illustrated inFIG. 19 , for example, the drainpan maintenance panel 10 c is detachably attached to themain panel 10 a by screwing or other methods. - Provision of the
design panel 10 in theoutdoor unit 100 enables inhibition of so-called short cycling that airflow blown out from the vent holes of thefan guards 6 b is directly taken into the air passage of theoutdoor unit 100 without passing through theheat exchangers 3. - The
first heat exchanger 3 a and thesecond heat exchanger 3 b each having an L shape inFIG. 6 are used inFIG. 1 . Thus, thedesign panel 10 is formed by three panels of themain panel 10 a, thesub panel 10 b, and the drainpan maintenance panel 10 c. In the case inFIG. 1 , the short-sideheat exchange region 3 b 2 of thesecond heat exchanger 3 b having an L shape is located between themain panel 10 a and thesupport 9. - On the other hand, when the
second heat exchanger 3 b having a flat shape inFIG. 5 is used inFIG. 1 , there is no region corresponding to the short-sideheat exchange region 3 b 2 of thesecond heat exchanger 3 b having an L shape inFIGS. 1 and 6 . Thus, the space between themain panel 10 a and thesupport 9 has to be closed to prevent short cycling of airflow. However, the space between the left end of themain panel 10 a and thesupport 9 can be closed with a panel shaped to form a pair with thesub panel 10 b. - In addition, when the
first heat exchanger 3 a having a U shape inFIG. 7 is used inFIG. 1 , a heat exchange region of thefirst heat exchanger 3 a, the heat exchange region being not illustrated and being shaped to form a pair with the short-sideheat exchange region 3 b 2, is formed at the position of thesub panel 10 b inFIG. 1 . Thus, thedesign panel 10 is formed by themain panel 10 a and the drainpan maintenance panel 10 c and does not include thesub panel 10 b. - As described above, the
design panel 10 includes themain panel 10 a and the drainpan maintenance panel 10 c. Whether a plurality ofsub panels 10 b, onesub panel 10 b, or nosub panel 10 b is used can be selected according to the shapes of thefirst heat exchanger 3 a and thesecond heat exchanger 3 b. Thus, thedesign panel 10 can be formed by combining a plurality of identical panels according to the shapes of thefirst heat exchanger 3 a and thesecond heat exchanger 3 b. Accordingly, inEmbodiment 1, manufacture of themain panel 10 a, the drainpan maintenance panel 10 c, and a plurality ofsub panels 10 b enables thefirst heat exchanger 3 a and thesecond heat exchanger 3 b to be flexibly replaced and thus enables provision of theoutdoor unit 100 having a high degree of freedom in design. -
FIG. 20 is a perspective view illustrating the structure of the drainpan maintenance panel 10 c.FIG. 21 is a perspective view illustrating an example of the attachment mode of the drainpan maintenance panel 10 c when viewed from the inside of theoutdoor unit 100.FIG. 22 is a sectional view taken along line A-A inFIG. 19 . The drainpan maintenance panel 10 c is continuous with aguide component 12, which is configured to guide, to thedrain pan 7, water droplets flowing from themain panel 10 a and thesub panel 10 b to the drainpan maintenance panel 10 c. Theguide component 12 is a plate-like component inclined from ajoint portion 12 b, where theguide component 12 and the drainpan maintenance panel 10 c are joined to each other, toward anend portion 12 a. Theguide component 12 is attached to thebody surface 11 a of the base 11 such that water droplets flow in the space between theguide component 12 and thebody surface 11 a of thebase 11. For example, the space between theguide component 12 and thebody surface 11 a of the base 11 in which water droplets flow is adjusted by changing the joint strength produced by screwing or other methods. Theguide component 12 is inclined from thejoint portion 12 b, where theguide component 12 and the drainpan maintenance panel 10 c are joined to each other, toward theend portion 12 a. - When the drain
pan maintenance panel 10 c is provided with theguide component 12, as represented by solid arrows inFIGS. 21 and 22 , paths along which water droplets adhered to an inner surface of thedesign panel 10 are guided to thedrain pan 7 are formed between theguide component 12 and thebody surface 11 a of thebase 11. Water droplets that have dripped from theguide component 12 pass through the space between the twoattachment plates 11 b, which are illustrated inFIG. 11 and which are disposed to be apart from each other, and flow out to thedrain pan 7. Thus, it is possible to inhibit thedrain pan 7 and thedesign panel 10 from being soiled due to water dripping from thedesign panel 10 or splashes of dripped water. In addition, when the drainpan maintenance panel 10 c is attached, it is possible to inhibit so-called short cycling that airflow blown out from the vent holes of thefan guards 6 b is directly taken into the air passage chamber of theoutdoor unit 100. Furthermore, when the drainpan maintenance panel 10 c is detached, an opening is formed close to thedrain pan 7. Thus, it is possible to facilitate maintenance such as cleaning of thedrain pan 7.
Claims (9)
1. An outdoor unit for a refrigeration cycle apparatus, the outdoor unit comprising:
a heat exchanger having an outer surface inclined downward;
a drain pan on which the heat exchanger is set;
a top frame on which a fan is set, the top frame being disposed at a top of the heat exchanger; and
a support attached to the drain pan and the top frame, the support extending, along the outer surface of the heat exchanger, between the drain pan and the top frame.
2. The outdoor unit for a refrigeration cycle apparatus of claim 1 , the outdoor unit further comprising a plurality of supports.
3. The outdoor unit for a refrigeration cycle apparatus of claim 1 , wherein the support has an L shape.
4. The outdoor unit for a refrigeration cycle apparatus of claim 1 , wherein the support is detachably attached to the drain pan and the top frame.
5. The outdoor unit for a refrigeration cycle apparatus of claim 4 , wherein when a dimension of a long side of the support is a length L, a dimension of a short side of the support is a length d, an inclination of the long side of the support relative to a vertical direction is an angle θ, and an inclination of the short side of the support relative to a horizontal direction is an angle α, the drain pan is formed such that a depth hd of the drain pan satisfies an expression of hd>L×(1−cos θ)+d×sin α.
6. The outdoor unit for a refrigeration cycle apparatus of claim 1 , wherein the heat exchanger has a flat shape, an L shape, or a U shape.
7. The outdoor unit for a refrigeration cycle apparatus of claim 1 , the outdoor unit further comprising a design panel attached between the drain pan and the top frame.
8. The outdoor unit for a refrigeration cycle apparatus of claim 7 , wherein the design panel is formed of a combination of a plurality of panels.
9. The outdoor unit for a refrigeration cycle apparatus of claim 8 , wherein
one of the plurality of panels is a drain pan maintenance panel, and
the drain pan maintenance panel is provided with a guide component configured to guide, to the drain pan, water droplets adhered to an inner surface of the drain pan maintenance panel.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/006953 WO2021166202A1 (en) | 2020-02-21 | 2020-02-21 | Outdoor unit for refrigeration cycle device |
Publications (1)
Publication Number | Publication Date |
---|---|
US20230010232A1 true US20230010232A1 (en) | 2023-01-12 |
Family
ID=77390526
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/786,202 Abandoned US20230010232A1 (en) | 2020-02-21 | 2020-02-21 | Outdoor unit for refrigeration cycle apparatus |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230010232A1 (en) |
EP (1) | EP4109000A4 (en) |
JP (1) | JPWO2021166202A1 (en) |
WO (1) | WO2021166202A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USD998769S1 (en) * | 2019-08-06 | 2023-09-12 | Mitsubishi Electric Corporation | Chiller unit |
USD1017649S1 (en) | 2021-08-30 | 2024-03-12 | Mitsubishi Electric Corporation | Chiller unit |
USD1077160S1 (en) * | 2022-01-26 | 2025-05-27 | Mitsubishi Electric Corporation | Outdoor unit for water heater |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7185513B2 (en) * | 2005-02-25 | 2007-03-06 | Advanced Distributor Products Llc | Low profile evaporator coil |
WO2011099629A1 (en) * | 2010-02-15 | 2011-08-18 | 東芝キヤリア株式会社 | Chilling unit |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6083866U (en) * | 1983-11-14 | 1985-06-10 | 三菱電機株式会社 | air conditioner |
JP2745987B2 (en) * | 1992-08-21 | 1998-04-28 | ダイキン工業株式会社 | Outdoor unit structure of air conditioner |
KR101397217B1 (en) | 2009-07-28 | 2014-05-20 | 도시바 캐리어 가부시키가이샤 | Heat source unit |
JP2012117720A (en) * | 2010-11-30 | 2012-06-21 | Sanyo Electric Co Ltd | Outdoor unit for refrigerating system |
JP6873988B2 (en) * | 2016-06-16 | 2021-05-19 | 東芝キヤリア株式会社 | Refrigeration cycle equipment |
JP6369518B2 (en) * | 2016-09-30 | 2018-08-08 | ダイキン工業株式会社 | Refrigeration equipment |
JP6525021B2 (en) * | 2017-03-30 | 2019-06-05 | ダイキン工業株式会社 | Heat source unit of refrigeration system |
-
2020
- 2020-02-21 EP EP20919741.7A patent/EP4109000A4/en not_active Withdrawn
- 2020-02-21 JP JP2022501541A patent/JPWO2021166202A1/ja active Pending
- 2020-02-21 US US17/786,202 patent/US20230010232A1/en not_active Abandoned
- 2020-02-21 WO PCT/JP2020/006953 patent/WO2021166202A1/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7185513B2 (en) * | 2005-02-25 | 2007-03-06 | Advanced Distributor Products Llc | Low profile evaporator coil |
WO2011099629A1 (en) * | 2010-02-15 | 2011-08-18 | 東芝キヤリア株式会社 | Chilling unit |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USD998769S1 (en) * | 2019-08-06 | 2023-09-12 | Mitsubishi Electric Corporation | Chiller unit |
USD1017649S1 (en) | 2021-08-30 | 2024-03-12 | Mitsubishi Electric Corporation | Chiller unit |
USD1077160S1 (en) * | 2022-01-26 | 2025-05-27 | Mitsubishi Electric Corporation | Outdoor unit for water heater |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021166202A1 (en) | 2021-08-26 |
WO2021166202A1 (en) | 2021-08-26 |
EP4109000A1 (en) | 2022-12-28 |
EP4109000A4 (en) | 2023-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230010232A1 (en) | Outdoor unit for refrigeration cycle apparatus | |
JP5310887B2 (en) | Outdoor unit and refrigeration equipment | |
JP4859777B2 (en) | Outdoor unit | |
WO2021024409A1 (en) | Chilling unit | |
CN203550069U (en) | Outdoor unit for air conditioning device | |
US11116111B2 (en) | Method and arrangement for air-conditioning a cold aisle | |
WO2018070143A1 (en) | Air-cooled chiller | |
US12228346B2 (en) | Chilling unit | |
WO2021024406A1 (en) | Chilling unit and chilling unit system | |
JP4859776B2 (en) | Outdoor unit | |
JP7209845B2 (en) | Chilling unit and chilling unit system | |
JP4083175B2 (en) | Air conditioner | |
JP7603836B2 (en) | Chilling unit and chilling unit system | |
JP7086292B2 (en) | Manufacturing method of air conditioner and air conditioner | |
JP6525021B2 (en) | Heat source unit of refrigeration system | |
JP4535062B2 (en) | Cooling system | |
JP6974754B2 (en) | Outdoor unit of refrigeration equipment | |
KR20060127550A (en) | Portable water-cooled air conditioners | |
JP2005106394A (en) | Air conditioning indoor unit | |
JP6429991B2 (en) | Air conditioner | |
JP2010129779A (en) | Air conditioning device | |
JP7355492B2 (en) | Electrical box and refrigeration cycle equipment | |
JP6742721B2 (en) | Cooler unit | |
KR20230158961A (en) | Air conditioner | |
JP2000199654A (en) | Air-cooled absorption refrigeration system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MITSUBISHI ELECTRIC CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MATSUGAMI, TSUKINE;KURACHI, AKINORI;TARUMI, YUJI;AND OTHERS;SIGNING DATES FROM 20220510 TO 20220523;REEL/FRAME:060227/0551 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |