WO2021024406A1 - Chilling unit and chilling unit system - Google Patents

Chilling unit and chilling unit system Download PDF

Info

Publication number
WO2021024406A1
WO2021024406A1 PCT/JP2019/031083 JP2019031083W WO2021024406A1 WO 2021024406 A1 WO2021024406 A1 WO 2021024406A1 JP 2019031083 W JP2019031083 W JP 2019031083W WO 2021024406 A1 WO2021024406 A1 WO 2021024406A1
Authority
WO
WIPO (PCT)
Prior art keywords
chilling unit
heating element
chilling
air heat
unit
Prior art date
Application number
PCT/JP2019/031083
Other languages
French (fr)
Japanese (ja)
Inventor
翔平 竹中
拓也 伊藤
善生 山野
仁隆 門脇
昂仁 彦根
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021538610A priority Critical patent/JP7204928B2/en
Priority to PCT/JP2019/031083 priority patent/WO2021024406A1/en
Publication of WO2021024406A1 publication Critical patent/WO2021024406A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/20Electric components for separate outdoor units
    • F24F1/22Arrangement or mounting thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/20Electric components for separate outdoor units
    • F24F1/24Cooling of electric components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/46Component arrangements in separate outdoor units
    • F24F1/48Component arrangements in separate outdoor units characterised by air airflow, e.g. inlet or outlet airflow
    • F24F1/50Component arrangements in separate outdoor units characterised by air airflow, e.g. inlet or outlet airflow with outlet air in upward direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present invention relates to a chilling unit constituting an air conditioner, a heat pump hot water supply device, a refrigerating device, or the like, and a chilling unit system having a plurality of the chilling units.
  • the chilling unit of Patent Document 1 includes a housing including an upper housing and a lower housing, an air heat exchanger and a blower are housed in the upper housing, and a compressor and a control box are contained in the upper housing. It is housed in the lower housing.
  • the chilling unit of Patent Document 1 has an electric device such as a compressor and an expansion valve inside the lower housing, and in order to prevent water such as rain from entering the lower housing installed outdoors. , It is necessary to increase the airtightness of the lower housing. Since the temperature inside the lower housing rises because the lower housing having high airtightness has a heating element such as a control box, it is necessary to exhaust the heat inside the lower housing by using a cooling fan.
  • the control box has a device such as an inverter that generates heat and is equipped with a heat radiating plate.
  • the present invention is for solving the above-mentioned problems, and is a chilling unit and a chilling unit system that do not require a space for installing a cooling fan inside in the machine room unit corresponding to the lower housing.
  • the purpose is to provide.
  • the chilling unit according to the present invention is formed in a long box shape with a plurality of air heat exchangers that exchange heat between a refrigerant and air, a fan arranged above the plurality of air heat exchangers, and a long box.
  • a chilling unit including a machine room unit on which a plurality of air heat exchangers are mounted, which is formed in a box shape and is chilled by electric circuit parts necessary for operating the chilling unit housed inside.
  • a heating element that generates heat during operation of the unit is provided, and the heating element is arranged on a flow of air sucked into a plurality of air heat exchangers by driving a fan, and is arranged on the end face side in the longitudinal direction of the chilling unit. Is what it is.
  • the chilling unit system according to the present invention is configured by installing a plurality of the above-mentioned chilling units.
  • the heating element of the chilling unit is arranged on the flow of air sucked into the air heat exchanger by driving the fan, and is arranged on the end face side in the longitudinal direction (X-axis direction) of the chilling unit. ing. Therefore, the chilling unit can allow the fan used to form a flow for passing air through the outdoor heat exchanger to also serve as a cooling fan for cooling the heating element. As a result, the chilling unit does not need to provide a space for installing the cooling fan inside the machine room unit.
  • FIG. 6 is a schematic view of an end portion of a chilling unit at a cross-sectional position taken along the line AA shown in FIG.
  • FIG. 6 is a schematic view of an end portion of a chilling unit of a modified example at the AA line cross-sectional position shown in FIG. It is a conceptual diagram which showed the exhaust heat path of the heating element in the chilling unit shown in FIG. It is a front view of the end face side in the longitudinal direction of the chilling unit which concerns on Embodiment 2.
  • FIG. It is the schematic of the end part of the chilling unit at the cross-sectional position of line BB shown in FIG. It is a conceptual diagram which showed the exhaust heat path of the heating element in the chilling unit which concerns on Embodiment 2.
  • FIG. 6 is a schematic view of an end portion of a chilling unit at a cross-sectional position taken along the line CC shown in FIG. It is a conceptual diagram which showed the exhaust heat path of the heating element in the chilling unit which concerns on Embodiment 3.
  • FIG. FIG. 6 is a schematic view of an end portion of a chilling unit of a modified example at the CC line cross-sectional position shown in FIG.
  • FIG. 5 is a schematic view of an end portion of the chilling unit at a cross-sectional position taken along the DD line in FIG. It is a conceptual diagram which showed the exhaust heat path of the heating element in the chilling unit which concerns on Embodiment 4.
  • FIG. It is the schematic of the end part of the chilling unit of the modification in the cross-sectional position of the DD line shown in FIG. It is a conceptual diagram which showed the exhaust heat path of the heating element in the chilling unit shown in FIG.
  • FIG. 1 is a perspective view of the chilling unit 100 according to the first embodiment.
  • FIG. 2 is a side view of the chilling unit 100 according to the first embodiment.
  • FIG. 3 is a front view of the chilling unit 100 according to the first embodiment. Note that FIG. 3 is a front view of the chilling unit 100 as viewed in the direction of the white arrow in FIG.
  • the white arrow AR shown in FIG. 3 shows an example of the direction in which air flows.
  • the overall image of the chilling unit 100 will be described with reference to FIGS. 1 to 3.
  • the Y-axis indicates the width direction or the left-right direction of the chilling unit 100
  • the Z-axis indicates the vertical direction of the chilling unit 100. It is a thing.
  • the positional relationship between the constituent members (for example, the vertical relationship, etc.) in the specification is, in principle, when the chilling unit 100 is installed in a usable state.
  • the chilling unit 100 is used as a heat source device for the chiller device.
  • a heat transfer fluid such as water or antifreeze is supplied to the chilling unit 100 from a load side unit (not shown), and the heat transfer fluid is cooled or heated in the chilling unit 100 and supplied to the load side unit.
  • the chilling unit 100 supplies cold heat or hot heat to the load side unit by circulating the heat transfer fluid in this way.
  • the chilling unit 100 is formed in a long shape, and includes an air heat exchanger 1 constituting a refrigeration cycle on the heat source side, a support column 70, a fan 5, a machine room unit 4, and a heating element 80. doing.
  • the chilling unit 100 is formed in a Y shape by the air heat exchanger 1 and the machine room unit 4 when viewed in the longitudinal direction (X-axis direction).
  • Air heat exchanger 1 The air heat exchanger 1 exchanges heat between the refrigerant flowing inside and air, and functions as an evaporator or a condenser.
  • the air heat exchanger 1 has a plurality of heat transfer tubes 7 and a plurality of fins 8.
  • the air heat exchanger 1 is, for example, a parallel flow type heat exchanger, and has a pair of headers (not shown), a plurality of heat transfer tubes 7, and a plurality of fins 8.
  • the heat transfer tube 7 is, for example, an aluminum flat tube, and the fin 8 is, for example, a corrugated fin.
  • the air heat exchanger 1 is not limited to the parallel flow type heat exchanger.
  • the air heat exchanger 1 may be, for example, a fin-and-tube type heat exchanger in which a plurality of plate-shaped fins 8 are arranged in parallel and a heat transfer tube 7 penetrates the plurality of fins 8.
  • the air heat exchanger 1 has four air heat exchangers 1 of an air heat exchanger 1A, an air heat exchanger 1B, an air heat exchanger 1C, and an air heat exchanger 1D.
  • the air heat exchanger 1A is the first heat exchanger of the present invention
  • the air heat exchanger 1B is the second heat exchanger of the present invention
  • the air heat exchanger 1C is the third heat exchange of the present invention.
  • the air heat exchanger 1D is the fourth heat exchanger of the present invention.
  • the air heat exchanger 1A and the air heat exchanger 1B are arranged so as to face each other.
  • the upper end distance SP1 between the upper end portions 11a on the side far from the machine room unit 4 is the lower end portion on the side closer to the machine room unit 4. It is tilted so as to be larger than the lower spacing SP2 between 11b. That is, as shown in FIG. 3, the air heat exchanger 1A and the air heat exchanger 1B are arranged so as to form a V shape when viewed from the front of the chilling unit 100.
  • both the air heat exchanger 1C and the air heat exchanger 1D facing each other are similarly inclined and arranged in a V shape.
  • the inclination angle ⁇ of the air heat exchanger 1A is, for example, 65 degrees to 80 degrees.
  • the air heat exchanger 1B, the air heat exchanger 1C, and the air heat exchanger 1D are arranged so that the inclination angle is 65 to 80 degrees, similarly to the air heat exchanger 1A.
  • a top frame 60 is provided above the air heat exchanger 1A, the air heat exchanger 1B, the air heat exchanger 1C, and the air heat exchanger 1D.
  • the top frame 60 constitutes the upper wall of the chilling unit 100.
  • a side panel 50 is arranged on one side surface of the chilling unit 100 so as to cover the space between the air heat exchanger 1A and the air heat exchanger 1C. ing.
  • the side panel 50 is a metal panel.
  • the side panel 50 is not limited to a metal panel, and may be a panel made of another material.
  • the side panel 50 is a plate-shaped panel formed in a substantially rectangular shape.
  • the side panel 50 is provided so as to extend in the vertical direction (Z-axis direction) and the longitudinal direction (X-axis direction).
  • the side panel 50 is arranged along the inclination of the air heat exchanger 1 described above.
  • a side panel 50 is also provided on the other side surface of the chilling unit 100 so as to cover the space between the air heat exchanger 1B and the air heat exchanger 1D. Have been placed.
  • a side panel 51 is arranged on one side surface of the chilling unit 100 so as to cover the space between the air heat exchanger 1A and the air heat exchanger 1B.
  • the pair of air heat exchangers 1 have side panels 51 arranged at the end portions of the chilling unit 100 in the longitudinal direction (X-axis direction) so as to close the space between the pair of air heat exchangers 1.
  • the side panel 51 is a metal panel.
  • the side panel 51 is not limited to a metal panel, and may be a panel made of another material.
  • the side panel 51 is a plate-shaped panel formed in a substantially trapezoidal shape.
  • the side panel 51 has an upper edge portion 51a formed longer than the lower edge portion 51b.
  • the side panel 51 is provided so as to extend in the vertical direction (Z-axis direction) and the lateral direction (Y-axis direction).
  • the side panel 51 is arranged so as to cover a part of the end portions of the air heat exchanger 1A and the air heat exchanger 1B in the longitudinal direction (X-axis direction) of the chilling unit 100.
  • a side panel 51 is also arranged on the other side surface of the chilling unit 100 so as to cover the space between the air heat exchanger 1C and the air heat exchanger 1D.
  • the side panel 51 is arranged so as to cover a part of the end portions of the air heat exchanger 1C and the air heat exchanger 1D in the longitudinal direction (X-axis direction) of the chilling unit 100.
  • the top frame 60 is fixed to the machine room unit 4 by the support pillar 70.
  • the support pillar 70 is a metal pillar.
  • the support pillar 70 is not limited to a metal pillar, and may be a pillar formed of another material as long as the strength can be ensured. Further, the support pillar 70 is formed, for example, in a prismatic shape, a columnar shape, or a plate shape, and the shape is not limited as long as the support pillar 70 is formed in a columnar shape.
  • Support columns 70 are provided at both ends of the chilling unit 100 in the longitudinal direction (X-axis direction). Two support columns 70 are arranged at each end of the chilling unit 100 in the longitudinal direction (X-axis direction).
  • the two support columns 70 are formed so as to extend in the vertical direction of the chilling unit 100, and are arranged so as to be spaced apart from each other in the lateral direction (Y-axis direction) of the chilling unit 100.
  • the upper end of the support pillar 70 is fixed to the top frame 60, and the lower end is fixed to the machine room unit 4. At least a part of the support column 70 comes into contact with the side panel 51.
  • the top frame 60 is provided with the above-mentioned fan 5.
  • the fan 5 passes through the air heat exchanger 1 and forms a flow of air discharged from an air outlet 14 such as a bell mouth 6A described later. As shown in FIG. 3, when the fan 5 is driven, air is sucked into the space formed by the air heat exchanger 1, and the sucked air is discharged to the outside from the air outlet 14.
  • the fan 5 is a blower means including an axial fan, and generates an air flow for efficiently performing heat exchange in the air heat exchanger 1. Further, the fan 5 forms a flow of air flowing along the heating element 80, which will be described later, and a flow of air passing through the heating element 80.
  • the fan 5 generates an air flow for efficiently discharging the heat generated by the heating element 80.
  • air is sucked into the space formed by the air heat exchanger 1, and the sucked air is discharged to the outside from the air outlet 14.
  • the heat generated in the heating element 80 is also discharged to the outside of the chilling unit 100 together with the air by the flow of air driven by the fan 5.
  • the fan 5 has four fans 5 of a fan 5A, a fan 5B, a fan 5C, and a fan 5D.
  • the top frame 60 is provided with a bell mouth 6A, a bell mouth 6B, a bell mouth 6C, and a bell mouth 6D.
  • a fan 5A, a fan 5B, a fan 5C, and a fan 5D are arranged inside the bell mouth 6A, the bell mouth 6B, the bell mouth 6C, and the bell mouth 6D, respectively.
  • An air outlet 14 is formed at the upper ends of the bell mouth 6A, the bell mouth 6B, the bell mouth 6C, and the bell mouth 6D.
  • the chilling unit 100 is in a "top flow form" in which the blowout side of the fan 5 faces upward.
  • a fan guard 17 is provided at each of the air outlets 14 of the bell mouth 6A, the bell mouth 6B, the bell mouth 6C, and the bell mouth 6D, and the fan 5A, the fan 5B, the fan 5C, and the fan 5D are fans, respectively. It is covered with a guard 17.
  • FIG. 4 is a conceptual diagram schematically showing the structure of the machine room unit 4 shown in FIG.
  • the space occupied by the machine room unit 4 in FIGS. 1 and 4 is shown by a dotted line.
  • the structure of the machine room unit 4 will be described with reference to FIGS. 1 and 4.
  • the machine room unit 4 is formed in a long box shape and is formed in a rectangular parallelepiped shape.
  • the machine room unit 4 has a frame 40 formed in a rectangular parallelepiped shape and a side wall 45 that covers a space between the frames 40.
  • the frame 40 has an underframe 41, a gate pillar 42, an intermediate pillar 43, and an upper beam 44.
  • the gate pillar 42 has four gate pillars 42, which are a gate pillar 42A, a gate pillar 42B, a gate pillar 42C, and a gate pillar 42D.
  • the intermediate pillar 43 has four intermediate pillars 43 of the intermediate pillar 43A, the intermediate pillar 43B, the intermediate pillar 43C, and the intermediate pillar 43D.
  • the underframe 41 is formed in a rectangular shape in a plan view, and constitutes the bottom portion of the frame 40.
  • the gate pillar 42A, the gate pillar 42B, the gate pillar 42C, and the gate pillar 42D are provided so as to extend in a direction orthogonal to the underframe 41 at the four corners of the underframe 41.
  • the intermediate pillars 43A and 43B are provided at intervals between the gate pillars 42A and the gate pillars 42C in the longitudinal direction (X-axis direction) of the underframe 41.
  • the intermediate pillars 43C and 43D are provided at intervals between the gate pillars 42B and the gate pillars 42D in the longitudinal direction (X-axis direction) of the underframe 41.
  • the intermediate pillar 43A, the intermediate pillar 43B, the intermediate pillar 43C, and the intermediate pillar 43D are provided so as to extend in a direction orthogonal to the underframe 41.
  • the upper beam 44 is provided on the gate pillar 42A, the gate pillar 42B, the gate pillar 42C, and the gate pillar 42D, and the intermediate pillar 43A, the intermediate pillar 43B, the intermediate pillar 43C, and the intermediate pillar 43D.
  • the structure of the frame 40 described above is an example, and is not limited to the above structure.
  • a base 10 is provided on the upper beam 44 of the machine room unit 4.
  • the base 10 is supported by a gate pillar 42 and an intermediate pillar 43.
  • the above-mentioned air heat exchanger 1A, air heat exchanger 1B, air heat exchanger 1C, and air heat exchanger 1D are arranged on the base 10. That is, the plurality of air heat exchangers 1 are mounted on the upper part of the machine room unit 4.
  • a drain pan 55 is provided on the upper part of the machine room unit 4.
  • the drain pan 55 receives water droplets drained from the air heat exchanger 1.
  • the drain pan 55 is arranged below the air heat exchanger 1 in order to receive water droplets falling from the air heat exchanger 1.
  • the drain pan 55 is provided so as to extend in the longitudinal direction (X-axis direction) of the machine room unit 4.
  • the drain pan 55 collects water droplets naturally flowing down from the air heat exchanger 1 as drain water and guides the water droplets to a discharge port (not shown).
  • the side walls 45 are arranged at both ends of the machine room unit 4 in the longitudinal direction (X-axis direction) and at both ends of the machine room unit 4 in the lateral direction (Y-axis direction). It has two side walls 45b.
  • the first side wall 45a is a plate-shaped side wall provided so as to extend in the vertical direction (Z-axis direction) and the lateral direction (Y-axis direction).
  • the first side wall 45a is arranged so as to cover the space formed between the gate pillar 42A and the gate pillar 42B. Further, the first side wall 45a is arranged so as to cover the space formed between the gate pillar 42C and the gate pillar 42D.
  • the second side wall 45b is a plate-shaped side wall provided so as to extend in the vertical direction (Z-axis direction) and the longitudinal direction (X-axis direction).
  • the second side wall 45b is formed between a space formed between the gate pillar 42A and the intermediate pillar 43A, a space formed between the intermediate pillar 43A and the intermediate pillar 43B, and between the intermediate pillar 43B and the gate pillar 42C. They are arranged so as to cover each space.
  • the second side wall 45b is formed between a space formed between the gate pillar 42B and the intermediate pillar 43C, a space formed between the intermediate pillar 43C and the intermediate pillar 43D, and between the intermediate pillar 43D and the gate pillar 42D. It is arranged so as to cover each of the created spaces.
  • FIG. 5 is a plan view schematically showing the internal structure of the machine room unit 4 shown in FIG.
  • a compressor 31, a flow path switching device 33, a heat exchanger 3, and a decompression device (not shown) are housed inside the machine room unit 4.
  • the compressor 31, the flow path switching device 33, the heat exchanger 3, the depressurizing device, and the air heat exchanger 1 are connected in series by the refrigerant pipe to form a refrigerant circuit.
  • the heat exchangers 3 of the plurality of chilling units 100 are connected in parallel by water pipes, and the heat transfer fluid in the water pipes passes through the heat exchangers 3 by the pump unit (not shown). It is configured to circulate to the load side unit (not shown).
  • the compressor 31 sucks in the refrigerant in the low temperature and low pressure state, compresses the sucked refrigerant into the refrigerant in the high temperature and high pressure state, and discharges it.
  • the flow path switching device 33 is, for example, a four-way valve, and switches the flow path of the refrigerant by controlling the control device (not shown).
  • the heat exchanger 3 exchanges heat between the refrigerant and a heat transfer fluid such as water or antifreeze.
  • the pressure reducing device is, for example, an expansion valve, which reduces the pressure of the refrigerant.
  • FIG. 6 is a front view of the chilling unit 100 according to the first embodiment on the end face 20A side in the longitudinal direction.
  • FIG. 7 is a schematic view of the end portion of the chilling unit 100 at the cross-sectional position taken along the line AA shown in FIG.
  • the heating element 80 will be described with reference to FIGS. 1, 6 and 7.
  • the heating element 80 generates heat during operation of the chilling unit 100, and is, for example, a control box or an active filter.
  • the heating element 80 is formed in a box shape, and heat is generated during the operation of the chilling unit 100 by the electric circuit components housed therein and necessary for the operation of the chilling unit 100.
  • the heating element 80 is a control box, inside the heating element 80, as electric circuit components, for example, a control board for controlling the flow path switching device 33, a control board for controlling the opening degree of the decompression device, and the like.
  • an inverter 81 or the like that controls the rotation speed of the compressor 31 or the like is housed.
  • the heating element 80 may be provided with a heat sink 82 according to the installation position of a device that generates heat such as an inverter 81.
  • the heating element 80 is formed in a box shape to prevent rainwater and the like from entering.
  • the shape of the heating element 80 may be formed in a box shape, and the shape is not limited unless otherwise specified.
  • the heating element 80 may be formed in various shapes such as a rectangular parallelepiped shape, a columnar shape, a spherical shape, a hemispherical shape, or a combination thereof.
  • the heating element 80 is arranged on the flow of air sucked into the air heat exchanger 1 by driving the fan 5. Further, the heating element 80 is arranged on the end surface 20A side in the longitudinal direction (X-axis direction) of the chilling unit 100.
  • the heating element 80 is located at the end of the chilling unit 100 in the longitudinal direction (X-axis direction) in the longitudinal direction (X-axis direction), the lateral direction (Y-axis direction), and the vertical direction (Z-axis direction) of the chilling unit 100. It is formed in an extending box shape.
  • the heating element 80 is arranged not on the lower machine room unit 4 side but on the upper air heat exchanger 1 side in the vertical direction of the chilling unit 100.
  • the heating element 80 is arranged on the shorter side surface side of the air heat exchanger 1 arranged in a long shape.
  • the heating element 80 is arranged at the end of the chilling unit 100 in the longitudinal direction (X-axis direction) so as to face the side panel 51.
  • the heating element 80 is attached to each of the support columns 70 across the two support columns 70. As shown in FIG. 7, the width WA1 in the left-right direction (Y-axis direction) of the heating element 80 is between the outer walls 71 of the two support columns 70 in the lateral direction (Y-axis direction) of the chilling unit 100. It is formed so as to be equal to the distance LA1.
  • the heating element 80 is arranged so as to face the air heat exchanger 1 via the two support columns 70. That is, the heating element 80 is arranged adjacent to the air heat exchanger 1 at the end of the chilling unit 100 in the longitudinal direction (X-axis direction). Therefore, the chilling unit 100 can cool the heating element 80 by utilizing the flow of air generated by the heat exchange fan 5 in the air heat exchanger 1.
  • the heating element 80 is not limited to the structure of being mounted on each support column 70 straddling the two support columns 70.
  • the heating element 80 may be arranged on the end surface 20A side in the longitudinal direction (X-axis direction) of the chilling unit 100.
  • the heating element 80 may be the side panel 51. It may be attached to.
  • the heating element 80 may be arranged on the end surface 20A side in the longitudinal direction (X-axis direction) of the chilling unit 100.
  • the heating element 80 is suspended. It may be fixed and supported on the top frame 60 by lowering or the like.
  • the heating element 80 at least one or more through holes may be formed in the side wall forming the side surface through the heat generation path.
  • the heating element 80 may have an inner side wall through hole 84a formed in the inner side wall 83a on the side facing the air heat exchanger 1.
  • the side panel 51 may have a panel through hole 51h formed at a position facing the inner side wall through hole 84a in the longitudinal direction (X-axis direction) of the chilling unit 100.
  • the heating element 80 may have an outer wall through hole 84b formed in the outer wall 83b facing the inner side wall 83a.
  • the outer side wall 83b is a side wall facing the outside of the chilling unit 100 in the longitudinal direction (X-axis direction) of the chilling unit 100.
  • the heating element 80 may have a short side wall through hole 84c formed in the short side wall 83c located between the inner side wall 83a and the outer wall 83b.
  • the inner side wall through hole 84a, the outer wall through hole 84b, the short side wall through hole 84c, and the panel through hole 51h may be formed in a rugged shape (armor window shape) so that water such as rain does not enter from the outside to the inside. ..
  • Air sucked into the chilling unit 100 by the fan 5 passes through the inner side wall through hole 84a, the outer wall through hole 84b, the short side wall through hole 84c, and the panel through hole 51h.
  • the inner side wall 83a, the outer wall 83b, and the short side wall 83c are the side walls of the heating element 80, and the inner side wall through hole 84a, the outer wall through hole 84b, and the short side wall through hole 84c are through holes of the heating element 80. ..
  • the heating element 80 may be formed with a cable intake port 85 for inserting a cable (not shown) into the heating element 80.
  • the cable intake port 85 is formed on the lower surface wall 83d located on the lower surface side of the heating element 80.
  • the cable is laid under the heating element 80. Since the cable intake port 85 is formed on the lower side of the heating element 80, it is difficult for water such as rain to enter. Further, even if dew condensation occurs inside the heating element 80, the dew condensation water falls below the heating element 80 via the cable intake port 85.
  • FIG. 8 is a conceptual diagram showing a heat exhaust path of the heating element 80 in the chilling unit 100 according to the first embodiment.
  • the exhaust heat path P1 will be described.
  • heat is transferred from the heating element 80 to the support column 70, and heat is transferred from the support column 70 to the side panel 51.
  • the side panel 51 comes into contact with the air flowing inside the air heat exchanger 1, so that heat is transferred to the air, and along with the air flow, the outside of the chilling unit 100 is transmitted from the air outlet 14. Heat is discharged to.
  • the heat exhaust path P2 is used when an air passage hole such as a short side wall through hole 84c is formed in the heating element 80.
  • the air inside the heating element 80 having heat is discharged to the outside of the heating element 80 through the short side wall through hole 84c of the heating element 80 or the like.
  • the air discharged to the outside of the heating element 80 is sucked into the air heat exchanger 1 by the drive of the fan 5, and is discharged to the outside of the chilling unit 100 from the air outlet 14.
  • the heat exhaust path P3 is used when an air passage hole such as an inner side wall through hole 84a or an outer wall through hole 84b is formed in the heating element 80, and further, a panel through hole 51h is formed.
  • the air inside the heating element 80 having heat is discharged to the outside of the heating element 80 through the inner side wall through hole 84a and the outer wall through hole 84b of the heating element 80.
  • the discharged air is driven by the fan 5, passes through the panel through hole 51h formed in the side panel 51, and is discharged to the outside of the chilling unit 100 from the air outlet 14.
  • FIG. 9 is a schematic view of the end portion of the chilling unit 100A of the modified example at the AA line cross-sectional position shown in FIG.
  • the chilling unit 100A has a modified heating element 80.
  • the heating element 80A of the modified example is different from the heating element 80 in that it has a convex portion 86.
  • the convex portion 86 is a portion of the heating element 80 that protrudes in the longitudinal direction (X-axis direction) of the chilling unit 100A.
  • the wall surface of the convex portion 86 facing the side surface panel 51 projects toward the side surface panel 51.
  • the chilling unit 100A has a modified side panel 151.
  • the side panel 151 differs from the side panel 51 in that it has a recess 51d.
  • the recess 51d is a portion of the side panel 151 that is recessed in the longitudinal direction (X-axis direction) of the chilling unit 100A. That is, the recess 51d of the side panel 151 is a portion recessed on the internal space side of the chilling unit 100A.
  • the concave portion 51d of the side panel 151 is a portion facing the convex portion 86 in the longitudinal direction (X-axis direction) of the chilling unit 100A. When the heating element 80A is attached to the support column 70, the convex portion 86 is housed inside the concave portion 51d and comes into contact with the concave portion 51d.
  • FIG. 10 is a conceptual diagram showing a heat exhaust path of the heating element 80A in the chilling unit 100A shown in FIG.
  • the chilling unit 100A has a heat exhaust path P1, a heat exhaust path P2, a heat exhaust path P3, or a heat generation path P4.
  • the heat of the heating element 80A is discharged through the above-mentioned path.
  • the heating element 80A and the side panel 151 exchange heat via the convex portion 86 and the concave portion 51d. After that, when the side panel 151 comes into contact with the air flowing inside the air heat exchanger 1, heat is transferred to the air, and the heat is discharged from the air outlet 14 to the outside of the chilling unit 100 along with the air flow. ..
  • the chilling unit 100 exchanges heat between the air and the refrigerant in the air heat exchanger 1 by passing external air through the air heat exchanger 1 by the fan 5, and discharges the air after the heat exchange from above.
  • the air heat exchanger 1 functions as a condenser and the heat exchanger 3 functions as an evaporator by switching the flow path switching device 33, and the air heat exchanger 1 is an evaporator and a heat exchanger 3 Can be switched to heating operation, which functions as a condenser.
  • the heat transfer fluid cooled by the heat exchanger 3 is generated, and for example, this cooled heat transfer fluid is supplied to the load side unit (not shown) to cool the air on the load side (indoor side). Then, cool the room. Further, in the heating operation, the heat transfer fluid warmed by the heat exchanger 3 is generated, and for example, the warmed heat transfer fluid is supplied to the load side unit (not shown) to supply the load side (indoor side) air. Heat and heat the room.
  • the heating element 80 of the chilling unit 100 is arranged on the flow of air sucked into the air heat exchanger 1 by driving the fan 5, and is arranged on the end surface 20A side of the chilling unit 100 in the longitudinal direction (X-axis direction). ing. Therefore, in the chilling unit 100, the fan 5 used for forming a flow for passing air through the air heat exchanger 1 can also serve as a cooling fan for cooling the heating element 80. As a result, the chilling unit 100 does not need to provide a space for installing the cooling fan inside the machine room unit 4.
  • the chilling unit 100 does not require a space for installing a cooling fan inside the machine room unit 4, the machine room unit 4 is downsized in order to secure a working space for workers outside the chilling unit 100. can do.
  • the chilling unit 100 does not require a space for installing the cooling fan inside the machine room unit 4, the internal space of the machine room unit 4 can be provided with a margin. Therefore, the chilling unit 100 can improve the degree of freedom in arranging each device constituting the refrigerant circuit and the degree of freedom in arranging the piping.
  • the heating element 80 is arranged on the air heat exchanger 1 side with respect to the machine room unit 4. Since the strength of the suction air of the fan 5 on the air heat exchanger 1 side with respect to the machine room unit 4 is stronger than that on the machine room unit 4 side, the heating element 80 generates more heat than the machine room unit 4 side. The cooling effect of the body 80 is improved. Further, the heating element 80 is a control box or an active filter as described above, and an operator may perform work on the control box or the active filter. Since the heating element 80 is arranged on the air heat exchanger 1 side located above the chilling unit 100 with respect to the machine room unit 4 located below the chilling unit 100, the operator needs to squat down during work. There is no. In this way, the chilling unit 100 makes it easier for the operator to work on the heating element 80. Therefore, the chilling unit 100 is easier to maintain by the operator than the case where the heating element 80 is arranged in the machine room unit 4.
  • the heating element 80 is arranged so as to face the side panel 51. Since the strength of the suction air of the fan 5 is stronger than the position facing the machine room unit 4 at the position facing the side panel 51, the heating element 80 is moved to the machine room. The cooling effect of the heating element 80 is improved as compared with the arrangement on the unit 4 side. Since the heating element 80 is arranged at a position facing the side panel 51 rather than at a position facing the machine room unit 4, it is not necessary to squat down, so that the operator can easily work on the heating element 80. Therefore, the chilling unit 100 is easier to maintain by the operator than the case where the heating element 80 is arranged in the machine room unit 4.
  • the heating element 80 has a side wall formed with at least one through hole for exhaust heat. Therefore, the chilling unit 100 sucks the heat of the heating element 80 into the chilling unit 100 through the through holes of the inner side wall through hole 84a, the outer wall through hole 84b, or the short side wall through hole 84c by driving the fan 5. It can be discharged to the outside from the air outlet 14.
  • the side panel 51 forms a panel through hole 51h formed so as to face the inner side wall through hole 84a formed in the inner side wall 83a of the heating element 80. Therefore, the chilling unit 100 can pass the panel through hole 51h formed in the side panel 51 by driving the fan 5, and discharge the heat of the heating element 80 from the air outlet 14 to the outside of the chilling unit 100. it can.
  • the heating element 80 is fixed to the support column 70. Therefore, the chilling unit 100 can secure the strength to support the heating element 80.
  • the heating element 80 is attached so as to straddle the two support columns 70. Therefore, the chilling unit 100 can further secure the strength to support the heating element 80.
  • a heating element 80 such as a control box becomes large and heavy when it includes a pump or the like. Therefore, it is desirable that the heating element 80 is fixed to the two support columns 70.
  • the width WA1 in the left-right direction of the heating element 80 becomes equal to the distance LA1 between the outer walls 71 of the two support columns 70 in the lateral direction (Y-axis direction) of the chilling unit 100. It is formed like this. Since the width WA1 in the left-right direction of the heating element 80 is formed so as to be equal to the distance LA1 between the walls 71, the heating element 80 can be fixed to the support column 70. Further, since the width WA1 of the heating element 80 is formed so as to be equal to the distance LA1 between the walls 71, the chilling unit 100 is formed between the pair of air heat exchangers 1 arranged in a V shape. The space where heat exchange is not performed can be effectively used for cooling the heating element 80.
  • the width WA1 in the left-right direction of the heating element 80 is formed to be equal to the distance LA1 between the walls 71, the end face side in the longitudinal direction of the air heat exchanger 1 is not covered more than necessary. , The heat exchange efficiency of the air heat exchanger 1 is not significantly reduced.
  • the heating element 80A has a convex portion 86 projecting toward the side panel 151, the side panel 151 has a concave portion 51d in which the convex portion 86 is housed, and the convex portion 86 and the concave portion 51d in the chilling unit 100A. And abut.
  • the chilling unit 100A discharges the heat generated by the heating element 80A to the outside together with the air discharged from the chilling unit 100A by the fan 5 via the side panel 151 when the convex portion 86 and the concave portion 51d come into contact with each other. Can be done. Further, in the chilling unit 100A, the flow of air flowing through the heating element 80A is rectified because the heating element 80A has the convex portion 86. Therefore, in the chilling unit 100A, the heating element 80A is appropriately exposed to the wind, so that the need for providing the heat sink 82 on the heating element 80A is reduced.
  • the chilling unit 100 is formed in a Y shape by the air heat exchanger 1 and the machine room unit 4 when viewed in the longitudinal direction (X-axis direction). Therefore, when a plurality of chilling units 100 are arranged in parallel, an area at the feet of the operator can be secured, and maintainability by the operator can be improved. For example, since the chilling unit 100 can secure an area under the feet of the operator, the operator removes the screws attached to the panel in order to remove the panel, and installs a screw box for storing the removed screws. You can put it at your feet.
  • the heating element 80 is a control box having an inverter 81 for controlling the compressor 31 and the like.
  • the heating element 80 which is a control box, is arranged outside the machine room unit 4, and the suction air of the fan 5 is used for exhausting heat of the heating element 80, which is a control box, so that the cooling fan is inside the machine room unit 4. It is not necessary to provide the control box, and the maintainability of the control box by the operator is improved.
  • the heating element 80 is an active filter.
  • the heating element 80 which is an active filter, is arranged outside the machine room unit 4, and the suction air of the fan 5 is used for exhausting heat, so that it is not necessary to provide a cooling fan inside the machine room unit 4. In addition, the maintainability of the active filter of the operator is improved.
  • FIG. 11 is a front view of the chilling unit 100B according to the second embodiment on the end face 20A side in the longitudinal direction.
  • FIG. 12 is a schematic view of the end portion of the chilling unit 100B at the BB line cross-sectional position shown in FIG.
  • FIG. 13 is a conceptual diagram showing a heat exhaust path of the heating element 80B in the chilling unit 100B according to the second embodiment.
  • the chilling unit 100B according to the second embodiment will be described with reference to FIGS. 11 to 13.
  • the parts having the same configuration as the chilling unit 100 of FIGS. 1 to 10 are designated by the same reference numerals, and the description thereof will be omitted.
  • the chilling unit 100B according to the second embodiment is different from the chilling unit 100 according to the first embodiment in that the structure of the heating element 80B is different from the structure of the heating element 80.
  • the differences between the heating element 80B and the heating element 80 will be mainly described, and the illustration and description of the configurations other than the differences will be omitted.
  • the heating element 80B is formed so that the length of the chilling unit 100B in the lateral direction (Y-axis direction) is larger than that of the heating element 80.
  • the width WB1 of the heating element 80 in the left-right direction (Y-axis direction) is the two support columns 70 in the lateral direction (Y-axis direction) of the chilling unit 100B. It is formed so as to be larger than the distance LB1 between the outer walls 71 of the.
  • FIG. 14 is a schematic view of the end portion of the chilling unit 100C of the modified example at the BB line cross-sectional position shown in FIG.
  • FIG. 15 is a conceptual diagram showing a heat exhaust path of the heating element 80C in the chilling unit 100C shown in FIG.
  • the chilling unit 100C of the modified example according to the second embodiment will be described with reference to FIGS. 14 and 15.
  • the parts having the same configuration as the chilling unit 100 and the like shown in FIGS. 1 to 13 are designated by the same reference numerals, and the description thereof will be omitted.
  • the modified example chilling unit 100C according to the second embodiment is different from the modified example chilling unit 100A according to the first embodiment in that the structure of the heating element 80C is different from the structure of the heating element 80A.
  • the differences between the heating element 80C and the heating element 80A will be mainly described, and the illustration and description of the configurations other than the differences will be omitted.
  • the heating element 80C is formed so that the length of the chilling unit 100C in the lateral direction (Y-axis direction) is larger than that of the heating element 80A.
  • the width WB1 of the heating element 80C in the left-right direction (Y-axis direction) is the two support columns 70 in the lateral direction (Y-axis direction) of the chilling unit 100C. It is formed so as to be larger than the distance LB1 between the outer walls 71 of the.
  • the heating element 80B has a width WB1 in the left-right direction of the heating element 80B larger than the distance LB1 between the outer walls 71 of the two support columns 70 in the lateral direction (Y-axis direction) of the chilling unit 100B. Is formed in.
  • the width WB1 in the left-right direction of the heating element 80C is larger than the distance LB1 between the outer walls 71 of the two support columns 70 in the lateral direction (Y-axis direction) of the chilling unit 100C. It is formed to be large.
  • the heating element 80B or the heating element 80C in the left-right direction is formed larger than the distance LB1 between the walls 71, the heating element 80B or the heating element 80C can be fixed to the support column 70. Further, the width WB1 of the heating element 80B or the heating element 80C is formed to be larger than the distance LB1 between the walls 71, so that the internal volume of the width WB1 of the heating element 80B or the heating element 80C is larger than that of the heating element 80. can do.
  • the heating element 80B and the heating element 80C are control boxes, for example, a pump or the like can be included inside, and the functions inside the control box can be enhanced.
  • FIG. 16 is a front view of the chilling unit 100D according to the third embodiment on the end face 20A side in the longitudinal direction.
  • FIG. 17 is a schematic view of the end portion of the chilling unit 100D at the CC line cross-sectional position shown in FIG.
  • FIG. 18 is a conceptual diagram showing a heat exhaust path of the heating element 80 in the chilling unit 100D according to the third embodiment.
  • the chilling unit 100D according to the third embodiment will be described with reference to FIGS. 16 to 18.
  • the parts having the same configuration as the chilling unit 100 and the like shown in FIGS. 1 to 15 are designated by the same reference numerals, and the description thereof will be omitted.
  • the chilling unit 100D according to the third embodiment is different from the chilling unit 100 according to the first embodiment in that an auxiliary material 90 is provided between the support column 70 and the heating element 80.
  • an auxiliary material 90 is provided between the support column 70 and the heating element 80.
  • the chilling unit 100D has an auxiliary material 90.
  • the auxiliary material 90 is used to increase the strength of supporting the heating element 80 attached to the support column 70.
  • the auxiliary material 90 is arranged between the support column 70 and the heating element 80.
  • the auxiliary material 90 is a straight pillar.
  • the auxiliary material 90 is not limited to a straight pillar.
  • the auxiliary material 90 may be formed in a curved shape or may be formed in a plate shape.
  • the main material of the auxiliary material 90 is metal.
  • the auxiliary material 90 is used to increase the strength of supporting the heating element 80 attached to the support column 70, and has the strength to support the heating element 80.
  • the auxiliary material 90 is attached across the two support columns 70 and is fixed to the support columns 70. As shown in FIG. 16, the auxiliary member 90 is attached perpendicular to the extending direction (Z-axis direction) of the support column 70. Further, two auxiliary members 90 are attached side by side with respect to the extending direction (Z-axis direction) of the support pillar 70.
  • the number of auxiliary materials 90 attached is not limited to two. For example, if the auxiliary member 90 is a plate-shaped member, one auxiliary member 90 may be attached to the support column 70. Alternatively, when the weight of the heating element 80 is heavy, three or more auxiliary materials 90 may be used in order to strengthen the supporting strength of the heating element 80.
  • the heating element 80 is attached to the auxiliary material 90 attached to the support column 70. That is, the heating element 80 is attached to the support column 70 via the auxiliary member 90.
  • FIG. 18 is a conceptual diagram showing a heat exhaust path of the heating element 80 in the chilling unit 100D according to the third embodiment.
  • the exhaust heat path P11 will be described.
  • heat is transferred from the heating element 80 to the auxiliary material 90, then heat is transferred from the auxiliary material 90 to the support column 70, and then heat is transferred from the support column 70 to the side panel 51. introduce.
  • the side panel 51 comes into contact with the air flowing inside the air heat exchanger 1, so that heat is transferred to the air, and along with the air flow, the outside of the chilling unit 100D is transmitted from the air outlet 14. Heat is discharged to.
  • the heat exhaust path P12 is used when an air passage hole such as a short side wall through hole 84c is formed in the heating element 80.
  • the air inside the heating element 80 having heat is discharged to the outside of the heating element 80 through the short side wall through hole 84c of the heating element 80 or the like.
  • the air discharged to the outside of the heating element 80 is sucked into the air heat exchanger 1 by the drive of the fan 5, and is discharged to the outside of the chilling unit 100D from the air outlet 14.
  • the heat exhaust path P13 is used when an air passage hole such as an inner side wall through hole 84a or an outer wall through hole 84b is formed in the heating element 80, and further, a panel through hole 51h is formed.
  • the air inside the heating element 80 having heat is discharged to the outside of the heating element 80 through the inner side wall through hole 84a and the outer wall through hole 84b of the heating element 80.
  • the discharged air is driven by the fan 5, passes through the panel through hole 51h formed in the side panel 51, and is discharged to the outside of the chilling unit 100D from the air outlet 14.
  • FIG. 19 is a schematic view of the end portion of the chilling unit 100E of the modified example at the CC line cross-sectional position shown in FIG.
  • FIG. 20 is a conceptual diagram showing a heat exhaust path of the heating element 80A in the chilling unit 100E shown in FIG.
  • a modified example of the chilling unit 100E according to the third embodiment will be described with reference to FIGS. 19 and 20.
  • the parts having the same configuration as the chilling unit 100 and the like shown in FIGS. 1 to 18 are designated by the same reference numerals, and the description thereof will be omitted.
  • the chilling unit 100E of the modified example according to the third embodiment is different from the chilling unit 100D according to the third embodiment in that the shape of the auxiliary material 90E is different from the shape of the auxiliary material 90 of the chilling unit 100D according to the third embodiment. ..
  • the differences between the auxiliary material 90E and the auxiliary material 90 will be mainly described, and the illustration and description of the configurations other than the differences will be omitted.
  • the auxiliary material 90E has a straight portion 90b and a bent portion 90c.
  • the straight portion 90b is provided at both ends of the bent portion 90c.
  • the straight portion 90b is provided so as to extend in the lateral direction (Y-axis direction) of the chilling unit 100E.
  • the bent portion 90c is bent so as to project in a direction perpendicular to the extending direction of the straight portion 90b. That is, the bent portion 90c is bent in a convex shape with respect to the straight portion 90b.
  • the bent shape of the bent portion 90c is formed so as to follow the convex shape of the convex portion 86 of the heating element 80A.
  • the straight portion 90b of the auxiliary material 90E is a portion attached to the support pillar 70.
  • the bent portion 90c of the auxiliary material 90E is inserted into the recess 51d and comes into contact with the recess 51d. Therefore, as shown in FIG. 19, when the heating element 80A is attached to the chilling unit 100E, the convex portion 86 of the heating element 80A comes into contact with the bent portion 90c of the auxiliary member 90E and passes through the bent portion 90c of the auxiliary member 90E.
  • the side panel 151 To connect to the side panel 151.
  • FIG. 20 is a conceptual diagram showing a heat exhaust path of the heating element 80A in the chilling unit 100E shown in FIG.
  • the chilling unit 100E has an exhaust heat path P11, an exhaust heat path P12, an exhaust heat path P13, or a heat exhaust path P14.
  • the heat of the heating element 80A is discharged through the above-mentioned path.
  • heat generation path P14 heat is first transferred from the convex portion 86 to the auxiliary material 90E, and then heat is transferred from the auxiliary material 90E to the side panel 151.
  • the convex portion 86 and the concave portion 51d exchange heat with each other via the auxiliary material 90E, so that the heating element 80A and the side panel 151 exchange heat.
  • the side panel 151 comes into contact with the air flowing inside the air heat exchanger 1, heat is transferred to the air, and the heat is discharged from the air outlet 14 to the outside of the chilling unit 100E along with the air flow. ..
  • the chilling unit 100D is fixed across two support columns 70 and further has an auxiliary member 90 that increases the supporting strength of the heating element 80, and the heating element 80 is fixed to the auxiliary member 90. Therefore, since the chilling unit 100D has the auxiliary material 90 fixed across the two support columns 70, the strength of the support column 70 can be secured as compared with the case where the auxiliary material 90 is not used, and heat is generated. The strength to support the body 80 can be increased.
  • the chilling unit 100E is fixed across the two support columns 70 and further has an auxiliary member 90E that increases the supporting strength of the heating element 80A, and the heating element 80A is fixed to the auxiliary member 90E. ..
  • the chilling unit 100E can secure the strength of the support column 70 as compared with the case where the auxiliary material 90E is not used, and the heating element 80A.
  • the strength to support the can be increased.
  • FIG. 21 is a front view of the chilling unit 100F according to the fourth embodiment on the end face 20A side in the longitudinal direction.
  • FIG. 22 is a schematic view of the end portion of the chilling unit 100F at the DD line cross-sectional position of FIG.
  • FIG. 23 is a conceptual diagram showing a heat exhaust path of the heating element 80B in the chilling unit 100F according to the fourth embodiment.
  • the chilling unit 100F according to the fourth embodiment will be described with reference to FIGS. 21 to 23.
  • the parts having the same configuration as the chilling unit 100 and the like shown in FIGS. 1 to 20 are designated by the same reference numerals, and the description thereof will be omitted.
  • the chilling unit 100F according to the fourth embodiment is different from the chilling unit 100B according to the second embodiment in that it has an auxiliary material 90. Further, the structure of the heating element 80B is different from that of the heating element 80, which is different from the chilling unit 100D according to the third embodiment. As shown in FIGS. 22 and 23, the heating element 80B is formed so that the length of the chilling unit 100F in the lateral direction (Y-axis direction) is larger than that of the heating element 80. Specifically, as shown in FIGS. 19 and 22, the width WB1 of the heating element 80 in the left-right direction (Y-axis direction) is the two support columns 70 in the lateral direction (Y-axis direction) of the chilling unit 100F. It is formed so as to be larger than the distance LB1 between the outer walls 71 of the.
  • FIG. 24 is a schematic view of the end portion of the chilling unit 100G of the modified example at the DD line cross-sectional position shown in FIG. 21.
  • FIG. 25 is a conceptual diagram showing a heat exhaust path of the heating element 80C in the chilling unit 100G shown in FIG. 24.
  • a modified example of the chilling unit 100G according to the fourth embodiment will be described with reference to FIGS. 24 and 25.
  • the parts having the same configuration as the chilling unit 100 and the like shown in FIGS. 1 to 23 are designated by the same reference numerals, and the description thereof will be omitted.
  • the modified example chilling unit 100G according to the fourth embodiment is different from the modified example chilling unit 100C according to the second embodiment in that it has an auxiliary material 90E.
  • the modified example chilling unit 100G according to the fourth embodiment is different from the modified example chilling unit 100E according to the third embodiment in that the structure of the heating element 80C is different from the structure of the heating element 80A.
  • the heating element 80C is formed so that the length of the chilling unit 100G in the lateral direction (Y-axis direction) is larger than that of the heating element 80A.
  • the width WB1 of the heating element 80C in the left-right direction (Y-axis direction) is the two support columns 70 in the lateral direction (Y-axis direction) of the chilling unit 100G. It is formed so as to be larger than the distance LB1 between the outer walls 71 of the.
  • the heating element 80B has a width WB1 in the left-right direction of the heating element 80B larger than the distance LB1 between the outer walls 71 of the two support columns 70 in the lateral direction (Y-axis direction) of the chilling unit 100F. Is formed in.
  • the width WB1 in the left-right direction of the heating element 80C is larger than the distance LB1 between the outer walls 71 of the two support columns 70 in the lateral direction (Y-axis direction) of the chilling unit 100G. It is formed to be large.
  • the heating element 80B or the heating element 80C in the left-right direction is formed larger than the distance LB1 between the walls 71, the heating element 80B or the heating element 80C can be fixed to the support column 70. Further, the width WB1 of the heating element 80B or the heating element 80C is formed to be larger than the distance LB1 between the walls 71, so that the internal volume of the width WB1 of the heating element 80B or the heating element 80C is larger than that of the heating element 80. can do.
  • the heating element 80B and the heating element 80C are control boxes, for example, a pump or the like can be included inside, and the functions inside the control box can be enhanced.
  • the chilling unit 100F is fixed across two support columns 70, and further has an auxiliary material 90 that increases the support strength of the heating element 80, and the heating element 80 is fixed to the auxiliary material 90. Therefore, since the chilling unit 100F has the auxiliary member 90 fixed across the two support columns 70, the strength of the support column 70 can be secured as compared with the case where the auxiliary member 90 is not used, and heat is generated. The strength to support the body 80 can be increased.
  • the chilling unit 100G is fixed across the two support columns 70 and further has an auxiliary member 90E that increases the supporting strength of the heating element 80A, and the heating element 80A is fixed to the auxiliary member 90E. ..
  • the chilling unit 100G can secure the strength of the support column 70 as compared with the case where the auxiliary material 90E is not used, and the heating element 80A.
  • the strength to support the can be increased.
  • FIG. 26 is a front view of the chilling unit 100H according to the fifth embodiment on the end face 20A side in the longitudinal direction.
  • FIG. 27 is a front view of the other chilling unit 100I according to the fifth embodiment on the end face 20A side in the longitudinal direction.
  • the chilling unit 100 is formed in a Y shape by the air heat exchanger 1 and the machine room unit 4 when viewed in the longitudinal direction (X-axis direction).
  • the configuration of the chilling unit 100 is not limited to the Y-shaped configuration when viewed in the longitudinal direction (X-axis direction), and may be configured in other shapes.
  • the chilling unit 100 is formed in an X shape by the air heat exchanger 1 and the machine room unit 4 when viewed in the longitudinal direction (X-axis direction) like the chilling unit 100H shown in FIG. 26. You may. Further, the chilling unit 100 is formed in a V shape by the air heat exchanger 1 and the machine room unit 4 when viewed in the longitudinal direction (X-axis direction) like the chilling unit 100I shown in FIG. 27. You may.
  • FIG. 28 is a perspective view showing the chilling unit system 110 according to the sixth embodiment.
  • the parts having the same configuration as the chilling unit 100 and the like shown in FIGS. 1 to 27 are designated by the same reference numerals, and the description thereof will be omitted.
  • the chilling unit system 110 has a plurality of chilling units 100.
  • the chilling unit system 110 is configured by installing a plurality of chilling units 100 in parallel in the lateral direction (Y-axis direction) of the chilling unit 100.
  • the chilling unit system 110 is installed so that the longitudinal directions (directions of X items) of the plurality of chilling units 100 are parallel to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

This chilling unit comprises: a plurality of air heat exchangers that exchange heat between a refrigerant and air; a fan that is located above the plurality of air heat exchangers; and a mechanical compartment unit formed in the shape of a long box in which the plurality of air heat exchangers are installed. This chilling unit is provided with a heat generating part that is formed in a box shape and that generates heat during operation of the chilling unit by electric circuit components housed inside, which are necessary for the operation of the chilling unit. The heat generating part is disposed on a longitudinal end side of the chilling unit so as to be on an air flow drawn into the plurality of air heat exchangers by driving of the fan.

Description

チリングユニット及びチリングユニットシステムChilling unit and chilling unit system
 本発明は、空気調和装置、ヒートポンプ給湯装置、あるいは、冷凍装置等を構成するチリングユニット及び当該チリングユニットを複数有するチリングユニットシステムに関するものである。 The present invention relates to a chilling unit constituting an air conditioner, a heat pump hot water supply device, a refrigerating device, or the like, and a chilling unit system having a plurality of the chilling units.
 従来、筺体内に、空気用熱交換器、送風機、圧縮機及び熱交換器等のヒートポンプ構成機器が収容された、ヒートポンプ式の熱源機であるチリングユニットが提案されている(例えば、特許文献1参照)。特許文献1のチリングユニットは、上部筐体と下部筐体とからなる筐体を備えており、空気用熱交換器及び送風機は、上部筐体内に収容されており、圧縮機及び制御箱は、下部筐体内に収容されている。 Conventionally, a chilling unit, which is a heat pump type heat source machine, in which heat pump components such as an air heat exchanger, a blower, a compressor, and a heat exchanger are housed in a housing has been proposed (for example, Patent Document 1). reference). The chilling unit of Patent Document 1 includes a housing including an upper housing and a lower housing, an air heat exchanger and a blower are housed in the upper housing, and a compressor and a control box are contained in the upper housing. It is housed in the lower housing.
特許第5500725号公報Japanese Patent No. 5500725
 しかしながら、特許文献1のチリングユニットは、下部筐体の内部に圧縮機及び膨張弁等の電気機器を有しており、室外に設置される下部筐体内への雨等の水の侵入を防ぐために、下部筐体の気密性を高くする必要がある。気密性の高い下部筐体は、制御箱等の発熱体を有することで下部筐体内の温度が上がるため、冷却ファンを用いて下部筐体内の熱を排出させる必要がある。また、制御箱は、発熱するインバータ等の装置を有しており、放熱板を備えているが、気密性の高い下部筐体内では放熱板だけでは熱の放散に対応できないため、下部筐体は、冷却ファンを備えて制御箱等の発熱体の熱の放散に対応する必要がある。そのため、特許文献1のチリングユニットは、下部筐体の内部に冷却ファンを設置させるための空間が必要となる。 However, the chilling unit of Patent Document 1 has an electric device such as a compressor and an expansion valve inside the lower housing, and in order to prevent water such as rain from entering the lower housing installed outdoors. , It is necessary to increase the airtightness of the lower housing. Since the temperature inside the lower housing rises because the lower housing having high airtightness has a heating element such as a control box, it is necessary to exhaust the heat inside the lower housing by using a cooling fan. In addition, the control box has a device such as an inverter that generates heat and is equipped with a heat radiating plate. However, since the heat radiating plate alone cannot cope with heat dissipation in the highly airtight lower housing, the lower housing is , It is necessary to equip a cooling fan to cope with heat dissipation of a heating element such as a control box. Therefore, the chilling unit of Patent Document 1 requires a space for installing a cooling fan inside the lower housing.
 本発明は、上述のような課題を解決するためのものであり、上記下部筐体に相当する機械室ユニットにおいて、内部に冷却ファンを設置するための空間を必要としないチリングユニット及びチリングユニットシステムを提供することを目的とする。 The present invention is for solving the above-mentioned problems, and is a chilling unit and a chilling unit system that do not require a space for installing a cooling fan inside in the machine room unit corresponding to the lower housing. The purpose is to provide.
 本発明に係るチリングユニットは、冷媒と空気との間で熱交換を行う複数の空気熱交換器と、複数の空気熱交換器の上方に配置されるファンと、長尺の箱形に形成され、複数の空気熱交換器が載置される機械室ユニットとを備えるチリングユニットであって、箱状に形成されており、内部に収容されたチリングユニットの運転に必要な電気回路部品によって、チリングユニットの運転時に発熱する発熱体を備え、発熱体は、ファンの駆動により複数の空気熱交換器に吸い込まれる空気の流れ上に配置され、かつ、チリングユニットの長手方向の端面側に配置されているものである。 The chilling unit according to the present invention is formed in a long box shape with a plurality of air heat exchangers that exchange heat between a refrigerant and air, a fan arranged above the plurality of air heat exchangers, and a long box. , A chilling unit including a machine room unit on which a plurality of air heat exchangers are mounted, which is formed in a box shape and is chilled by electric circuit parts necessary for operating the chilling unit housed inside. A heating element that generates heat during operation of the unit is provided, and the heating element is arranged on a flow of air sucked into a plurality of air heat exchangers by driving a fan, and is arranged on the end face side in the longitudinal direction of the chilling unit. Is what it is.
 本発明に係るチリングユニットシステムは、上述のチリングユニットを複数台設置して構成されているものである。 The chilling unit system according to the present invention is configured by installing a plurality of the above-mentioned chilling units.
 本発明によれば、チリングユニットの発熱体は、ファンの駆動により空気熱交換器に吸い込まれる空気の流れ上に配置され、かつ、チリングユニットの長手方向(X軸方向)の端面側に配置されている。そのため、チリングユニットは、室外熱交換器に空気を通過させる流れを形成するために使用されるファンに、発熱体を冷却するための冷却ファンの役割を兼用させることができる。その結果、チリングユニットは、機械室ユニットにおいて、内部に冷却ファンを設置するための空間を設ける必要がない。 According to the present invention, the heating element of the chilling unit is arranged on the flow of air sucked into the air heat exchanger by driving the fan, and is arranged on the end face side in the longitudinal direction (X-axis direction) of the chilling unit. ing. Therefore, the chilling unit can allow the fan used to form a flow for passing air through the outdoor heat exchanger to also serve as a cooling fan for cooling the heating element. As a result, the chilling unit does not need to provide a space for installing the cooling fan inside the machine room unit.
実施の形態1に係るチリングユニットの斜視図である。It is a perspective view of the chilling unit which concerns on Embodiment 1. FIG. 実施の形態1に係るチリングユニットの側面図である。It is a side view of the chilling unit which concerns on Embodiment 1. FIG. 実施の形態1に係るチリングユニットの正面図である。It is a front view of the chilling unit which concerns on Embodiment 1. FIG. 図1に示す機械室ユニットの構造を概略的に示す概念図である。It is a conceptual diagram which shows schematic structure of the machine room unit shown in FIG. 図1に示す機械室ユニットの内部構造を概略的に示す平面図である。It is a top view which shows schematic the internal structure of the machine room unit shown in FIG. 実施の形態1に係るチリングユニットの長手方向の端面側の正面図である。It is a front view of the end face side in the longitudinal direction of the chilling unit which concerns on Embodiment 1. FIG. 図6に示すA-A線断面位置におけるチリングユニットの端部の概略図である。FIG. 6 is a schematic view of an end portion of a chilling unit at a cross-sectional position taken along the line AA shown in FIG. 実施の形態1に係るチリングユニットにおける発熱体の排熱経路を示した概念図である。It is a conceptual diagram which showed the exhaust heat path of the heating element in the chilling unit which concerns on Embodiment 1. FIG. 図6に示すA-A線断面位置における変形例のチリングユニットの端部の概略図である。FIG. 6 is a schematic view of an end portion of a chilling unit of a modified example at the AA line cross-sectional position shown in FIG. 図9に示すチリングユニットにおける発熱体の排熱経路を示した概念図である。It is a conceptual diagram which showed the exhaust heat path of the heating element in the chilling unit shown in FIG. 実施の形態2に係るチリングユニットの長手方向の端面側の正面図である。It is a front view of the end face side in the longitudinal direction of the chilling unit which concerns on Embodiment 2. FIG. 図11に示すB-B線断面位置におけるチリングユニットの端部の概略図である。It is the schematic of the end part of the chilling unit at the cross-sectional position of line BB shown in FIG. 実施の形態2に係るチリングユニットにおける発熱体の排熱経路を示した概念図である。It is a conceptual diagram which showed the exhaust heat path of the heating element in the chilling unit which concerns on Embodiment 2. 図11に示すB-B線断面位置における変形例のチリングユニットの端部の概略図である。It is the schematic of the end part of the chilling unit of the modification in the cross-sectional position of line BB shown in FIG. 図14に示すチリングユニットにおける発熱体の排熱経路を示した概念図である。It is a conceptual diagram which showed the exhaust heat path of the heating element in the chilling unit shown in FIG. 実施の形態3に係るチリングユニットの長手方向の端面側の正面図である。It is a front view of the end face side in the longitudinal direction of the chilling unit which concerns on Embodiment 3. FIG. 図16に示すC-C線断面位置におけるチリングユニットの端部の概略図である。FIG. 6 is a schematic view of an end portion of a chilling unit at a cross-sectional position taken along the line CC shown in FIG. 実施の形態3に係るチリングユニットにおける発熱体の排熱経路を示した概念図である。It is a conceptual diagram which showed the exhaust heat path of the heating element in the chilling unit which concerns on Embodiment 3. FIG. 図16に示すC-C線断面位置における変形例のチリングユニットの端部の概略図である。FIG. 6 is a schematic view of an end portion of a chilling unit of a modified example at the CC line cross-sectional position shown in FIG. 図19に示すチリングユニットにおける発熱体の排熱経路を示した概念図である。It is a conceptual diagram which showed the exhaust heat path of the heating element in the chilling unit shown in FIG. 実施の形態4に係るチリングユニットの長手方向の端面側の正面図である。It is a front view of the end face side in the longitudinal direction of the chilling unit which concerns on Embodiment 4. FIG. 図21のD-D線断面位置におけるチリングユニットの端部の概略図である。FIG. 5 is a schematic view of an end portion of the chilling unit at a cross-sectional position taken along the DD line in FIG. 実施の形態4に係るチリングユニットにおける発熱体の排熱経路を示した概念図である。It is a conceptual diagram which showed the exhaust heat path of the heating element in the chilling unit which concerns on Embodiment 4. FIG. 図21に示すD-D線断面位置における変形例のチリングユニットの端部の概略図である。It is the schematic of the end part of the chilling unit of the modification in the cross-sectional position of the DD line shown in FIG. 図24に示すチリングユニットにおける発熱体の排熱経路を示した概念図である。It is a conceptual diagram which showed the exhaust heat path of the heating element in the chilling unit shown in FIG. 実施の形態5に係るチリングユニットの長手方向の端面側の正面図である。It is a front view of the end face side in the longitudinal direction of the chilling unit which concerns on embodiment 5. 実施の形態5に係る他のチリングユニットの長手方向の端面側の正面図である。It is a front view of the end face side in the longitudinal direction of another chilling unit which concerns on Embodiment 5. 実施の形態6に係るチリングユニットシステムを示した斜視図である。It is a perspective view which showed the chilling unit system which concerns on Embodiment 6.
 以下、実施の形態に係るチリングユニット100及びチリングユニットシステム110について図面等を参照しながら説明する。なお、図1を含む以下の図面では、各構成部材の相対的な寸法の関係及び形状等が実際のものとは異なる場合がある。また、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、このことは明細書の全文において共通することとする。また、理解を容易にするために方向を表す用語(例えば「上」、「下」、「右」、「左」、「前」又は「後」等)を適宜用いるが、それらの表記は、説明の便宜上、そのように記載しているだけであって、装置あるいは部品の配置及び向きを限定するものではない。 Hereinafter, the chilling unit 100 and the chilling unit system 110 according to the embodiment will be described with reference to drawings and the like. In the following drawings including FIG. 1, the relative dimensional relationships and shapes of the constituent members may differ from the actual ones. Further, in the following drawings, those having the same reference numerals are the same or equivalent thereof, and this shall be common to the entire text of the specification. In addition, terms indicating directions (for example, "top", "bottom", "right", "left", "front", "rear", etc.) are used as appropriate for ease of understanding. For convenience of explanation, it is described as such, and does not limit the arrangement and orientation of the device or component.
実施の形態1.
[チリングユニット100]
 図1は、実施の形態1に係るチリングユニット100の斜視図である。図2は、実施の形態1に係るチリングユニット100の側面図である。図3は、実施の形態1に係るチリングユニット100の正面図である。なお、図3は、図1の白抜き矢印の方向にみたチリングユニット100の正面図である。また、図3に示す白抜き矢印ARは、空気の流れる方向の一例を示すものである。図1~図3を用いてチリングユニット100の全体像について説明する。なお、図1を含む以下の図面に示すX軸は、チリングユニット100の長手方向を示し、Y軸はチリングユニット100の幅方向あるいは左右方向を示し、Z軸はチリングユニット100の上下方向を示すものである。また、明細書中における各構成部材同士の位置関係(例えば、上下関係等)は、原則として、チリングユニット100を使用可能な状態に設置したときのものである。
Embodiment 1.
[Chilling unit 100]
FIG. 1 is a perspective view of the chilling unit 100 according to the first embodiment. FIG. 2 is a side view of the chilling unit 100 according to the first embodiment. FIG. 3 is a front view of the chilling unit 100 according to the first embodiment. Note that FIG. 3 is a front view of the chilling unit 100 as viewed in the direction of the white arrow in FIG. The white arrow AR shown in FIG. 3 shows an example of the direction in which air flows. The overall image of the chilling unit 100 will be described with reference to FIGS. 1 to 3. The X-axis shown in the following drawings including FIG. 1 indicates the longitudinal direction of the chilling unit 100, the Y-axis indicates the width direction or the left-right direction of the chilling unit 100, and the Z-axis indicates the vertical direction of the chilling unit 100. It is a thing. In addition, the positional relationship between the constituent members (for example, the vertical relationship, etc.) in the specification is, in principle, when the chilling unit 100 is installed in a usable state.
 チリングユニット100は、チラー装置の熱源装置として利用されるものである。チリングユニット100は、負荷側ユニット(図示は省略)から水若しくは不凍液等の伝熱流体が供給され、その伝熱流体は、チリングユニット100において冷却又は加熱され、負荷側ユニットに送給される。チリングユニット100は、このように伝熱流体を循環させることにより、負荷側ユニットに冷熱又は温熱を供給する。 The chilling unit 100 is used as a heat source device for the chiller device. A heat transfer fluid such as water or antifreeze is supplied to the chilling unit 100 from a load side unit (not shown), and the heat transfer fluid is cooled or heated in the chilling unit 100 and supplied to the load side unit. The chilling unit 100 supplies cold heat or hot heat to the load side unit by circulating the heat transfer fluid in this way.
 チリングユニット100は、長尺状に形成されており、熱源側の冷凍サイクルを構成する空気熱交換器1と、支持柱70と、ファン5と、機械室ユニット4と、発熱体80とを有している。チリングユニット100は、長手方向(X軸方向)に見た場合に、空気熱交換器1と機械室ユニット4とによって、Y字状に構成されている。 The chilling unit 100 is formed in a long shape, and includes an air heat exchanger 1 constituting a refrigeration cycle on the heat source side, a support column 70, a fan 5, a machine room unit 4, and a heating element 80. doing. The chilling unit 100 is formed in a Y shape by the air heat exchanger 1 and the machine room unit 4 when viewed in the longitudinal direction (X-axis direction).
(空気熱交換器1)
 空気熱交換器1は、内部を流れる冷媒と空気との間で熱交換を行うものであって、蒸発器又は凝縮器として機能する。空気熱交換器1は、複数の伝熱管7と、複数のフィン8とを有している。空気熱交換器1は、例えば、パラレルフロー型の熱交換器であり、一対のヘッダ(図示は省略)と、複数の伝熱管7と、複数のフィン8とを有している。伝熱管7は、例えばアルミ扁平管であり、フィン8は、例えばコルゲートフィンである。なお、空気熱交換器1はパラレルフロー型の熱交換器に限るものではない。空気熱交換器1は、例えば、複数の板状のフィン8が並列して配置され、伝熱管7が複数のフィン8を貫通しているフィンアンドチューブ型の熱交換器であってもよい。空気熱交換器1は、空気熱交換器1A、空気熱交換器1B、空気熱交換器1C、及び空気熱交換器1Dの4つの空気熱交換器1を有している。空気熱交換器1Aは本発明の第1の熱交換器であり、空気熱交換器1Bは本発明の第2の熱交換器であり、空気熱交換器1Cは本発明の第3の熱交換器であり、空気熱交換器1Dは本発明の第4の熱交換器である。
(Air heat exchanger 1)
The air heat exchanger 1 exchanges heat between the refrigerant flowing inside and air, and functions as an evaporator or a condenser. The air heat exchanger 1 has a plurality of heat transfer tubes 7 and a plurality of fins 8. The air heat exchanger 1 is, for example, a parallel flow type heat exchanger, and has a pair of headers (not shown), a plurality of heat transfer tubes 7, and a plurality of fins 8. The heat transfer tube 7 is, for example, an aluminum flat tube, and the fin 8 is, for example, a corrugated fin. The air heat exchanger 1 is not limited to the parallel flow type heat exchanger. The air heat exchanger 1 may be, for example, a fin-and-tube type heat exchanger in which a plurality of plate-shaped fins 8 are arranged in parallel and a heat transfer tube 7 penetrates the plurality of fins 8. The air heat exchanger 1 has four air heat exchangers 1 of an air heat exchanger 1A, an air heat exchanger 1B, an air heat exchanger 1C, and an air heat exchanger 1D. The air heat exchanger 1A is the first heat exchanger of the present invention, the air heat exchanger 1B is the second heat exchanger of the present invention, and the air heat exchanger 1C is the third heat exchange of the present invention. The air heat exchanger 1D is the fourth heat exchanger of the present invention.
 機械室ユニット4の短手方向(Y軸方向)において、空気熱交換器1Aと空気熱交換器1Bとは、互いに対向して配置されている。空気熱交換器1Aと空気熱交換器1Bとからなる一対の空気熱交換器1は、機械室ユニット4から遠い側の上端部11a同士の上部間隔SP1が機械室ユニット4に近い側の下端部11b同士の下部間隔SP2よりも大きくなるよう傾けられて配置されている。すなわち、空気熱交換器1Aと空気熱交換器1Bとは、図3に示すように、チリングユニット100の正面からみたときV字を形成するよう傾けられて配置されている。機械室ユニット4の短手方向(Y軸方向)において、互いに対向する空気熱交換器1Cと空気熱交換器1Dとも、同様にV字状となるよう傾けられて配置されている。実施の形態1では、空気熱交換器1Aの傾斜角度αは、例えば、65度~80度である。空気熱交換器1B、空気熱交換器1C、及び空気熱交換器1Dは、空気熱交換器1Aと同様に傾斜角度が65度~80度となるように配置されている。 In the lateral direction (Y-axis direction) of the machine room unit 4, the air heat exchanger 1A and the air heat exchanger 1B are arranged so as to face each other. In the pair of air heat exchangers 1 composed of the air heat exchanger 1A and the air heat exchanger 1B, the upper end distance SP1 between the upper end portions 11a on the side far from the machine room unit 4 is the lower end portion on the side closer to the machine room unit 4. It is tilted so as to be larger than the lower spacing SP2 between 11b. That is, as shown in FIG. 3, the air heat exchanger 1A and the air heat exchanger 1B are arranged so as to form a V shape when viewed from the front of the chilling unit 100. In the lateral direction (Y-axis direction) of the machine room unit 4, both the air heat exchanger 1C and the air heat exchanger 1D facing each other are similarly inclined and arranged in a V shape. In the first embodiment, the inclination angle α of the air heat exchanger 1A is, for example, 65 degrees to 80 degrees. The air heat exchanger 1B, the air heat exchanger 1C, and the air heat exchanger 1D are arranged so that the inclination angle is 65 to 80 degrees, similarly to the air heat exchanger 1A.
 空気熱交換器1A、空気熱交換器1B、空気熱交換器1C、及び空気熱交換器1Dの上方には天枠60が設けられている。天枠60は、チリングユニット100の上壁を構成する。 A top frame 60 is provided above the air heat exchanger 1A, the air heat exchanger 1B, the air heat exchanger 1C, and the air heat exchanger 1D. The top frame 60 constitutes the upper wall of the chilling unit 100.
 チリングユニット100の短手方向(Y軸方向)において、チリングユニット100の一方の側面には、空気熱交換器1Aと空気熱交換器1Cとの間の空間を覆うように側面パネル50が配置されている。側面パネル50は、金属製のパネルである。なお、側面パネル50は、金属製のパネルに限定されるものではなく、他の素材によって形成されるパネルでもよい。側面パネル50は、略長方形に形成されている板状のパネルである。側面パネル50は、上下方向(Z軸方向)かつ長手方向(X軸方向)に延びるように設けられている。側面パネル50は、上述した空気熱交換器1の傾斜に沿って配置されている。なお、チリングユニット100の短手方向(Y軸方向)において、チリングユニット100の他方の側面にも、空気熱交換器1Bと空気熱交換器1Dとの間の空間を覆うように側面パネル50が配置されている。 In the lateral direction (Y-axis direction) of the chilling unit 100, a side panel 50 is arranged on one side surface of the chilling unit 100 so as to cover the space between the air heat exchanger 1A and the air heat exchanger 1C. ing. The side panel 50 is a metal panel. The side panel 50 is not limited to a metal panel, and may be a panel made of another material. The side panel 50 is a plate-shaped panel formed in a substantially rectangular shape. The side panel 50 is provided so as to extend in the vertical direction (Z-axis direction) and the longitudinal direction (X-axis direction). The side panel 50 is arranged along the inclination of the air heat exchanger 1 described above. In the lateral direction (Y-axis direction) of the chilling unit 100, a side panel 50 is also provided on the other side surface of the chilling unit 100 so as to cover the space between the air heat exchanger 1B and the air heat exchanger 1D. Have been placed.
 チリングユニット100の長手方向(X軸方向)において、チリングユニット100の一方の側面には、空気熱交換器1Aと空気熱交換器1Bとの間の空間を覆うように側面パネル51が配置されている。すなわち、一対の空気熱交換器1は、一対の空気熱交換器1の間の空間を塞ぐように、チリングユニット100の長手方向(X軸方向)の端部に配置された側面パネル51を有している。側面パネル51は、金属製のパネルである。なお、側面パネル51は、金属製のパネルに限定されるものではなく、他の素材によって形成されるパネルでもよい。側面パネル51は、略台形状に形成されている板状のパネルである。側面パネル51は、上縁部51aが下縁部51bよりも長く形成されている。側面パネル51は、上下方向(Z軸方向)かつ短手方向(Y軸方向)に延びるように設けられている。側面パネル51は、チリングユニット100の長手方向(X軸方向)において、空気熱交換器1A及び空気熱交換器1Bの端部の一部を覆うように配置される。なお、チリングユニット100の長手方向(X軸方向)において、チリングユニット100の他方の側面にも、空気熱交換器1Cと空気熱交換器1Dとの間の空間を覆うように側面パネル51が配置されている。側面パネル51は、チリングユニット100の長手方向(X軸方向)において、空気熱交換器1C及び空気熱交換器1Dの端部の一部を覆うように配置される。 In the longitudinal direction (X-axis direction) of the chilling unit 100, a side panel 51 is arranged on one side surface of the chilling unit 100 so as to cover the space between the air heat exchanger 1A and the air heat exchanger 1B. There is. That is, the pair of air heat exchangers 1 have side panels 51 arranged at the end portions of the chilling unit 100 in the longitudinal direction (X-axis direction) so as to close the space between the pair of air heat exchangers 1. doing. The side panel 51 is a metal panel. The side panel 51 is not limited to a metal panel, and may be a panel made of another material. The side panel 51 is a plate-shaped panel formed in a substantially trapezoidal shape. The side panel 51 has an upper edge portion 51a formed longer than the lower edge portion 51b. The side panel 51 is provided so as to extend in the vertical direction (Z-axis direction) and the lateral direction (Y-axis direction). The side panel 51 is arranged so as to cover a part of the end portions of the air heat exchanger 1A and the air heat exchanger 1B in the longitudinal direction (X-axis direction) of the chilling unit 100. In the longitudinal direction (X-axis direction) of the chilling unit 100, a side panel 51 is also arranged on the other side surface of the chilling unit 100 so as to cover the space between the air heat exchanger 1C and the air heat exchanger 1D. Has been done. The side panel 51 is arranged so as to cover a part of the end portions of the air heat exchanger 1C and the air heat exchanger 1D in the longitudinal direction (X-axis direction) of the chilling unit 100.
(支持柱70)
 天枠60は、支持柱70によって、機械室ユニット4と固定されている。支持柱70は、金属製の柱である。なお、支持柱70は、金属製の柱に限定されるものではなく、強度を確保できるものであれば、他の素材により形成された柱でもよい。また、支持柱70は、例えば、角柱状、円柱状、あるいは、板状に形成されており、柱状に形成されていればその形状は限定されるものではない。支持柱70は、チリングユニット100の長手方向(X軸方向)の両端部に設けられている。支持柱70は、チリングユニット100の長手方向(X軸方向)のそれぞれの端部において、2本ずつ配置されている。2本の支持柱70は、チリングユニット100の上下方向に延びるように形成されており、チリングユニット100の短手方向(Y軸方向)において、互いに間隔を開けて配置されている。支持柱70は、上端部が天枠60と固定され、下端部が機械室ユニット4と固定されている。支持柱70は、少なくとも一部が側面パネル51と当接する。
(Support pillar 70)
The top frame 60 is fixed to the machine room unit 4 by the support pillar 70. The support pillar 70 is a metal pillar. The support pillar 70 is not limited to a metal pillar, and may be a pillar formed of another material as long as the strength can be ensured. Further, the support pillar 70 is formed, for example, in a prismatic shape, a columnar shape, or a plate shape, and the shape is not limited as long as the support pillar 70 is formed in a columnar shape. Support columns 70 are provided at both ends of the chilling unit 100 in the longitudinal direction (X-axis direction). Two support columns 70 are arranged at each end of the chilling unit 100 in the longitudinal direction (X-axis direction). The two support columns 70 are formed so as to extend in the vertical direction of the chilling unit 100, and are arranged so as to be spaced apart from each other in the lateral direction (Y-axis direction) of the chilling unit 100. The upper end of the support pillar 70 is fixed to the top frame 60, and the lower end is fixed to the machine room unit 4. At least a part of the support column 70 comes into contact with the side panel 51.
(ファン5)
 天枠60には、上述のファン5が設けられている。ファン5は、空気熱交換器1を通過し、後述するベルマウス6A等の空気吹出口14から排出される空気の流れを形成する。図3に示すように、ファン5が駆動すると、空気熱交換器1によって形成される空間内に空気が吸い込まれ、吸い込まれた空気は、空気吹出口14から外部に排出される。ファン5は、軸流ファンを備えた送風手段であり、空気熱交換器1における熱交換を効率的に行うための空気の流れを生成する。また、ファン5は、後述する発熱体80に沿って流れる空気の流れ、及び、発熱体80を通過する空気の流れを形成する。そして、ファン5は、発熱体80が発する熱を効率的に排出するための空気の流れを生成する。上述したように、ファン5が駆動すると、空気熱交換器1によって形成される空間内に空気が吸い込まれ、吸い込まれた空気は、空気吹出口14から外部に排出される。この際、発熱体80において発生している熱も、ファン5の駆動による空気の流れによって空気と共にチリングユニット100の外部に排出される。ファン5は、ファン5A、ファン5B、ファン5C、及びファン5Dの4つのファン5を有している。
(Fan 5)
The top frame 60 is provided with the above-mentioned fan 5. The fan 5 passes through the air heat exchanger 1 and forms a flow of air discharged from an air outlet 14 such as a bell mouth 6A described later. As shown in FIG. 3, when the fan 5 is driven, air is sucked into the space formed by the air heat exchanger 1, and the sucked air is discharged to the outside from the air outlet 14. The fan 5 is a blower means including an axial fan, and generates an air flow for efficiently performing heat exchange in the air heat exchanger 1. Further, the fan 5 forms a flow of air flowing along the heating element 80, which will be described later, and a flow of air passing through the heating element 80. Then, the fan 5 generates an air flow for efficiently discharging the heat generated by the heating element 80. As described above, when the fan 5 is driven, air is sucked into the space formed by the air heat exchanger 1, and the sucked air is discharged to the outside from the air outlet 14. At this time, the heat generated in the heating element 80 is also discharged to the outside of the chilling unit 100 together with the air by the flow of air driven by the fan 5. The fan 5 has four fans 5 of a fan 5A, a fan 5B, a fan 5C, and a fan 5D.
 また、天枠60には、ベルマウス6A、ベルマウス6B、ベルマウス6C、及びベルマウス6Dが設けられている。ベルマウス6A、ベルマウス6B、ベルマウス6C、及びベルマウス6Dの内部には、それぞれファン5A、ファン5B、ファン5C、及びファン5Dが配置されている。 Further, the top frame 60 is provided with a bell mouth 6A, a bell mouth 6B, a bell mouth 6C, and a bell mouth 6D. A fan 5A, a fan 5B, a fan 5C, and a fan 5D are arranged inside the bell mouth 6A, the bell mouth 6B, the bell mouth 6C, and the bell mouth 6D, respectively.
 ベルマウス6A、ベルマウス6B、ベルマウス6C、及びベルマウス6Dの上端部には空気吹出口14が形成されている。チリングユニット100は、ファン5の吹き出し側が上方を向いている「トップフロー形態」である。ベルマウス6A、ベルマウス6B、ベルマウス6C、及びベルマウス6Dの空気吹出口14には、それぞれファンガード17が設けられており、ファン5A、ファン5B、ファン5C、及びファン5Dは、それぞれファンガード17で覆われている。 An air outlet 14 is formed at the upper ends of the bell mouth 6A, the bell mouth 6B, the bell mouth 6C, and the bell mouth 6D. The chilling unit 100 is in a "top flow form" in which the blowout side of the fan 5 faces upward. A fan guard 17 is provided at each of the air outlets 14 of the bell mouth 6A, the bell mouth 6B, the bell mouth 6C, and the bell mouth 6D, and the fan 5A, the fan 5B, the fan 5C, and the fan 5D are fans, respectively. It is covered with a guard 17.
 図4は、図1に示す機械室ユニット4の構造を概略的に示す概念図である。図1及び図4において機械室ユニット4が占める空間は点線で示されている。図1及び図4を用いて機械室ユニット4の構造について説明する。機械室ユニット4は、長尺の箱形に形成されており、直方体状に形成されている。機械室ユニット4は、直方体状に形成されたフレーム40と、フレーム40同士の間の空間を覆う側壁45とを有する。 FIG. 4 is a conceptual diagram schematically showing the structure of the machine room unit 4 shown in FIG. The space occupied by the machine room unit 4 in FIGS. 1 and 4 is shown by a dotted line. The structure of the machine room unit 4 will be described with reference to FIGS. 1 and 4. The machine room unit 4 is formed in a long box shape and is formed in a rectangular parallelepiped shape. The machine room unit 4 has a frame 40 formed in a rectangular parallelepiped shape and a side wall 45 that covers a space between the frames 40.
 フレーム40は、台枠41と、門柱42と、中間柱43と、上部梁44とを有している。門柱42は、門柱42A、門柱42B、門柱42C、及び門柱42Dの4本の門柱42を有する。中間柱43は、中間柱43A、中間柱43B、中間柱43C、及び中間柱43Dの4本の中間柱43を有する。台枠41は、平面視で長方形状に形成され、フレーム40の底部を構成する。 The frame 40 has an underframe 41, a gate pillar 42, an intermediate pillar 43, and an upper beam 44. The gate pillar 42 has four gate pillars 42, which are a gate pillar 42A, a gate pillar 42B, a gate pillar 42C, and a gate pillar 42D. The intermediate pillar 43 has four intermediate pillars 43 of the intermediate pillar 43A, the intermediate pillar 43B, the intermediate pillar 43C, and the intermediate pillar 43D. The underframe 41 is formed in a rectangular shape in a plan view, and constitutes the bottom portion of the frame 40.
 門柱42A、門柱42B、門柱42C、及び門柱42Dは、台枠41の4つの角部において、台枠41と直交する方向に延びるよう設けられている。中間柱43A及び中間柱43Bは、台枠41の長手方向(X軸方向)において、門柱42Aと門柱42Cとの間に、間隔をあけて設けられている。中間柱43C及び中間柱43Dは、台枠41の長手方向(X軸方向)において、門柱42Bと門柱42Dとの間に、間隔をあけて設けられている。中間柱43A、中間柱43B、中間柱43C、及び中間柱43Dは、台枠41と直交する方向に延びるよう設けられている。上部梁44は、門柱42A、門柱42B、門柱42C、及び門柱42D、並びに中間柱43A、中間柱43B、中間柱43C、及び中間柱43Dの上に設けられている。なお、上述したフレーム40の構造は、一例であり、上記構造に限定されるものではない。 The gate pillar 42A, the gate pillar 42B, the gate pillar 42C, and the gate pillar 42D are provided so as to extend in a direction orthogonal to the underframe 41 at the four corners of the underframe 41. The intermediate pillars 43A and 43B are provided at intervals between the gate pillars 42A and the gate pillars 42C in the longitudinal direction (X-axis direction) of the underframe 41. The intermediate pillars 43C and 43D are provided at intervals between the gate pillars 42B and the gate pillars 42D in the longitudinal direction (X-axis direction) of the underframe 41. The intermediate pillar 43A, the intermediate pillar 43B, the intermediate pillar 43C, and the intermediate pillar 43D are provided so as to extend in a direction orthogonal to the underframe 41. The upper beam 44 is provided on the gate pillar 42A, the gate pillar 42B, the gate pillar 42C, and the gate pillar 42D, and the intermediate pillar 43A, the intermediate pillar 43B, the intermediate pillar 43C, and the intermediate pillar 43D. The structure of the frame 40 described above is an example, and is not limited to the above structure.
 機械室ユニット4の上部梁44にはベース10が設けられている。ベース10は、門柱42及び中間柱43により支持されている。上述した空気熱交換器1A、空気熱交換器1B、空気熱交換器1C、及び空気熱交換器1Dは、ベース10上に配置されている。すなわち、複数の空気熱交換器1は、機械室ユニット4の上部に載置されている。また、機械室ユニット4の上部には、ドレンパン55が設けられている。ドレンパン55は、空気熱交換器1から排水された水滴を受ける。ドレンパン55は、空気熱交換器1から落下する水滴を受けるために、空気熱交換器1の下方に配置されている。ドレンパン55は、機械室ユニット4の長手方向(X軸方向)に延びるように設けられている。ドレンパン55は、空気熱交換器1から重力により自然流下した水滴をドレン水として溜めて排出口(図示は省略)へ導く。 A base 10 is provided on the upper beam 44 of the machine room unit 4. The base 10 is supported by a gate pillar 42 and an intermediate pillar 43. The above-mentioned air heat exchanger 1A, air heat exchanger 1B, air heat exchanger 1C, and air heat exchanger 1D are arranged on the base 10. That is, the plurality of air heat exchangers 1 are mounted on the upper part of the machine room unit 4. A drain pan 55 is provided on the upper part of the machine room unit 4. The drain pan 55 receives water droplets drained from the air heat exchanger 1. The drain pan 55 is arranged below the air heat exchanger 1 in order to receive water droplets falling from the air heat exchanger 1. The drain pan 55 is provided so as to extend in the longitudinal direction (X-axis direction) of the machine room unit 4. The drain pan 55 collects water droplets naturally flowing down from the air heat exchanger 1 as drain water and guides the water droplets to a discharge port (not shown).
 側壁45は、機械室ユニット4の長手方向(X軸方向)の両端部に配置される第1側壁45aと、機械室ユニット4の短手方向(Y軸方向)の両端部に配置される第2側壁45bとを有する。第1側壁45aは、上下方向(Z軸方向)かつ短手方向(Y軸方向)に延びるように設けられた板状の側壁である。第1側壁45aは、門柱42Aと門柱42Bとの間に形成された空間を覆うように配置されている。また、第1側壁45aは、門柱42Cと門柱42Dとの間に形成された空間を覆うように配置されている。第2側壁45bは、上下方向(Z軸方向)かつ長手方向(X軸方向)に延びるように設けられた板状の側壁である。第2側壁45bは、門柱42Aと中間柱43Aとの間に形成された空間、中間柱43Aと中間柱43Bとの間に形成された空間、中間柱43Bと門柱42Cとの間に形成された空間をそれぞれ覆うように配置されている。また、第2側壁45bは、門柱42Bと中間柱43Cとの間に形成された空間、中間柱43Cと中間柱43Dとの間に形成された空間、中間柱43Dと門柱42Dとの間に形成された空間をそれぞれ覆うように配置されている。 The side walls 45 are arranged at both ends of the machine room unit 4 in the longitudinal direction (X-axis direction) and at both ends of the machine room unit 4 in the lateral direction (Y-axis direction). It has two side walls 45b. The first side wall 45a is a plate-shaped side wall provided so as to extend in the vertical direction (Z-axis direction) and the lateral direction (Y-axis direction). The first side wall 45a is arranged so as to cover the space formed between the gate pillar 42A and the gate pillar 42B. Further, the first side wall 45a is arranged so as to cover the space formed between the gate pillar 42C and the gate pillar 42D. The second side wall 45b is a plate-shaped side wall provided so as to extend in the vertical direction (Z-axis direction) and the longitudinal direction (X-axis direction). The second side wall 45b is formed between a space formed between the gate pillar 42A and the intermediate pillar 43A, a space formed between the intermediate pillar 43A and the intermediate pillar 43B, and between the intermediate pillar 43B and the gate pillar 42C. They are arranged so as to cover each space. Further, the second side wall 45b is formed between a space formed between the gate pillar 42B and the intermediate pillar 43C, a space formed between the intermediate pillar 43C and the intermediate pillar 43D, and between the intermediate pillar 43D and the gate pillar 42D. It is arranged so as to cover each of the created spaces.
 図5は、図1に示す機械室ユニット4の内部構造を概略的に示す平面図である。機械室ユニット4の内部には圧縮機31、流路切替装置33、熱交換器3及び減圧装置(図示は省略)が収容されている。そして、圧縮機31、流路切替装置33、熱交換器3、減圧装置及び空気熱交換器1が冷媒配管にて直列に接続されて冷媒回路が構成されている。また、複数のチリングユニット100のそれぞれの熱交換器3は、水配管にて並列に接続されており、水配管内の伝熱流体がポンプユニット(図示は省略)によって、熱交換器3を通過して負荷側ユニット(図示せず)に循環するように構成される。 FIG. 5 is a plan view schematically showing the internal structure of the machine room unit 4 shown in FIG. A compressor 31, a flow path switching device 33, a heat exchanger 3, and a decompression device (not shown) are housed inside the machine room unit 4. Then, the compressor 31, the flow path switching device 33, the heat exchanger 3, the depressurizing device, and the air heat exchanger 1 are connected in series by the refrigerant pipe to form a refrigerant circuit. Further, the heat exchangers 3 of the plurality of chilling units 100 are connected in parallel by water pipes, and the heat transfer fluid in the water pipes passes through the heat exchangers 3 by the pump unit (not shown). It is configured to circulate to the load side unit (not shown).
 圧縮機31は、低温低圧の状態の冷媒を吸入し、吸入した冷媒を圧縮して高温高圧の状態の冷媒にして吐出させる。流路切替装置33は、例えば四方弁であり、制御装置(図示は省略)の制御により、冷媒の流路を切り替える。熱交換器3は、冷媒と、水若しくは不凍液等の伝熱流体とを熱交換させる。減圧装置は、例えば膨張弁であり、冷媒を減圧させる。 The compressor 31 sucks in the refrigerant in the low temperature and low pressure state, compresses the sucked refrigerant into the refrigerant in the high temperature and high pressure state, and discharges it. The flow path switching device 33 is, for example, a four-way valve, and switches the flow path of the refrigerant by controlling the control device (not shown). The heat exchanger 3 exchanges heat between the refrigerant and a heat transfer fluid such as water or antifreeze. The pressure reducing device is, for example, an expansion valve, which reduces the pressure of the refrigerant.
(発熱体80)
 図6は、実施の形態1に係るチリングユニット100の長手方向の端面20A側の正面図である。図7は、図6に示すA-A線断面位置におけるチリングユニット100の端部の概略図である。図1、図6及び図7を用いて発熱体80について説明する。発熱体80は、チリングユニット100の運転時に発熱するものであり、例えば、制御箱、あるいは、アクティブフィルタである。発熱体80は、箱状に形成されており、内部に収容されたチリングユニット100の運転に必要な電気回路部品によって、チリングユニット100の運転時に発熱する。発熱体80が制御箱である場合には、発熱体80の内部には、電気回路部品として、例えば、流路切替装置33を制御する制御基板、減圧装置の開度等を制御する制御基板、あるいは、圧縮機31の回転数等を制御するインバータ81等が収容されている。また、発熱体80が制御箱である場合には、インバータ81等の発熱する装置の設置位置に合わせて、発熱体80にヒートシンク82を設けてもよい。
(Heating element 80)
FIG. 6 is a front view of the chilling unit 100 according to the first embodiment on the end face 20A side in the longitudinal direction. FIG. 7 is a schematic view of the end portion of the chilling unit 100 at the cross-sectional position taken along the line AA shown in FIG. The heating element 80 will be described with reference to FIGS. 1, 6 and 7. The heating element 80 generates heat during operation of the chilling unit 100, and is, for example, a control box or an active filter. The heating element 80 is formed in a box shape, and heat is generated during the operation of the chilling unit 100 by the electric circuit components housed therein and necessary for the operation of the chilling unit 100. When the heating element 80 is a control box, inside the heating element 80, as electric circuit components, for example, a control board for controlling the flow path switching device 33, a control board for controlling the opening degree of the decompression device, and the like. Alternatively, an inverter 81 or the like that controls the rotation speed of the compressor 31 or the like is housed. When the heating element 80 is a control box, the heating element 80 may be provided with a heat sink 82 according to the installation position of a device that generates heat such as an inverter 81.
 発熱体80は、雨水等の侵入防止のため、箱状に形成されている。発熱体80の形状は、箱状に形成されていればよく、特に説明しない限り、形状が限定されるものではない。例えば、発熱体80は、直方体状、円柱状、球状、半球状、あるいは、これらの組み合わせ等、種々の形状に形成されてもよい。 The heating element 80 is formed in a box shape to prevent rainwater and the like from entering. The shape of the heating element 80 may be formed in a box shape, and the shape is not limited unless otherwise specified. For example, the heating element 80 may be formed in various shapes such as a rectangular parallelepiped shape, a columnar shape, a spherical shape, a hemispherical shape, or a combination thereof.
 発熱体80は、ファン5の駆動により空気熱交換器1に吸い込まれる空気の流れ上に配置されている。また、発熱体80は、チリングユニット100の長手方向(X軸方向)の端面20A側に配置される。発熱体80は、チリングユニット100の長手方向(X軸方向)の端部において、チリングユニット100の長手方向(X軸方向)、短手方向(Y軸方向)及び上下方向(Z軸方向)に延びる箱状に形成されている。発熱体80は、チリングユニット100の上下方向において、下側となる機械室ユニット4側ではなく、上側となる空気熱交換器1側に配置されている。すなわち、発熱体80は、長尺状に配置される空気熱交換器1の短い方の側面側に配置されている。発熱体80は、チリングユニット100の長手方向(X軸方向)の端部において、側面パネル51と対向するように配置される。 The heating element 80 is arranged on the flow of air sucked into the air heat exchanger 1 by driving the fan 5. Further, the heating element 80 is arranged on the end surface 20A side in the longitudinal direction (X-axis direction) of the chilling unit 100. The heating element 80 is located at the end of the chilling unit 100 in the longitudinal direction (X-axis direction) in the longitudinal direction (X-axis direction), the lateral direction (Y-axis direction), and the vertical direction (Z-axis direction) of the chilling unit 100. It is formed in an extending box shape. The heating element 80 is arranged not on the lower machine room unit 4 side but on the upper air heat exchanger 1 side in the vertical direction of the chilling unit 100. That is, the heating element 80 is arranged on the shorter side surface side of the air heat exchanger 1 arranged in a long shape. The heating element 80 is arranged at the end of the chilling unit 100 in the longitudinal direction (X-axis direction) so as to face the side panel 51.
 発熱体80は、2本の支持柱70に跨ってそれぞれの支持柱70に取り付けられている。図7に示すように、発熱体80の左右方向(Y軸方向)の幅WA1が、チリングユニット100の短手方向(Y軸方向)における2本の支持柱70の外側の壁71の間の距離LA1と等しくなるように形成されている。発熱体80は、2本の支持柱70を介して、空気熱交換器1と対向するように配置されている。すなわち、発熱体80は、チリングユニット100の長手方向(X軸方向)の端部において、空気熱交換器1に隣接して配置されている。そのため、チリングユニット100は、空気熱交換器1における熱交換用のファン5により生成される空気の流れを利用して、発熱体80の冷却を行うことができる。 The heating element 80 is attached to each of the support columns 70 across the two support columns 70. As shown in FIG. 7, the width WA1 in the left-right direction (Y-axis direction) of the heating element 80 is between the outer walls 71 of the two support columns 70 in the lateral direction (Y-axis direction) of the chilling unit 100. It is formed so as to be equal to the distance LA1. The heating element 80 is arranged so as to face the air heat exchanger 1 via the two support columns 70. That is, the heating element 80 is arranged adjacent to the air heat exchanger 1 at the end of the chilling unit 100 in the longitudinal direction (X-axis direction). Therefore, the chilling unit 100 can cool the heating element 80 by utilizing the flow of air generated by the heat exchange fan 5 in the air heat exchanger 1.
 発熱体80の取付け構造に関して、発熱体80は、2本の支持柱70に跨って各支持柱70に取り付けられている構造に限定されるものではない。発熱体80は、チリングユニット100の長手方向(X軸方向)の端面20A側に配置されていればよく、例えば、側面パネル51の強度が確保できるのであれば、発熱体80は、側面パネル51に取り付けられてもよい。また、発熱体80は、チリングユニット100の長手方向(X軸方向)の端面20A側に配置されていればよく、例えば、天枠60の強度が確保できるのであれば、発熱体80は、吊り下げ等によって天枠60に固定されて支持されてもよい。 Regarding the mounting structure of the heating element 80, the heating element 80 is not limited to the structure of being mounted on each support column 70 straddling the two support columns 70. The heating element 80 may be arranged on the end surface 20A side in the longitudinal direction (X-axis direction) of the chilling unit 100. For example, if the strength of the side panel 51 can be secured, the heating element 80 may be the side panel 51. It may be attached to. Further, the heating element 80 may be arranged on the end surface 20A side in the longitudinal direction (X-axis direction) of the chilling unit 100. For example, if the strength of the top frame 60 can be secured, the heating element 80 is suspended. It may be fixed and supported on the top frame 60 by lowering or the like.
 発熱体80には、発熱経路をして側面を構成する側壁に少なくとも1つ以上の貫通孔が形成されてもよい。例えば、発熱体80は、図7に示すように、空気熱交換器1と対向する側の内側壁83aに、内側壁貫通孔84aが形成されてもよい。この場合、側面パネル51は、チリングユニット100の長手方向(X軸方向)において、内側壁貫通孔84aと対向する位置にパネル貫通孔51hが形成されてもよい。また、発熱体80は、図7に示すように、内側壁83aと対向する外側壁83bに、外側壁貫通孔84bが形成されてもよい。外側壁83bは、チリングユニット100の長手方向(X軸方向)において、チリングユニット100の外側に面した側壁である。また、発熱体80は、図7に示すように、内側壁83aと外側壁83bとの間に位置する短側壁83cに短側壁貫通孔84cが形成されてもよい。内側壁貫通孔84a、外側壁貫通孔84b、短側壁貫通孔84c及びパネル貫通孔51hは、外部から内部に雨等の水が浸入しないようにガラリ状(鎧窓状)に形成されてもよい。内側壁貫通孔84a、外側壁貫通孔84b、短側壁貫通孔84c及びパネル貫通孔51hには、ファン5によってチリングユニット100内に吸い込まれる空気が通過する。なお、内側壁83a、外側壁83b及び短側壁83cは、発熱体80の側壁であり、内側壁貫通孔84a、外側壁貫通孔84b及び短側壁貫通孔84cは、発熱体80の貫通孔である。 In the heating element 80, at least one or more through holes may be formed in the side wall forming the side surface through the heat generation path. For example, as shown in FIG. 7, the heating element 80 may have an inner side wall through hole 84a formed in the inner side wall 83a on the side facing the air heat exchanger 1. In this case, the side panel 51 may have a panel through hole 51h formed at a position facing the inner side wall through hole 84a in the longitudinal direction (X-axis direction) of the chilling unit 100. Further, as shown in FIG. 7, the heating element 80 may have an outer wall through hole 84b formed in the outer wall 83b facing the inner side wall 83a. The outer side wall 83b is a side wall facing the outside of the chilling unit 100 in the longitudinal direction (X-axis direction) of the chilling unit 100. Further, as shown in FIG. 7, the heating element 80 may have a short side wall through hole 84c formed in the short side wall 83c located between the inner side wall 83a and the outer wall 83b. The inner side wall through hole 84a, the outer wall through hole 84b, the short side wall through hole 84c, and the panel through hole 51h may be formed in a rugged shape (armor window shape) so that water such as rain does not enter from the outside to the inside. .. Air sucked into the chilling unit 100 by the fan 5 passes through the inner side wall through hole 84a, the outer wall through hole 84b, the short side wall through hole 84c, and the panel through hole 51h. The inner side wall 83a, the outer wall 83b, and the short side wall 83c are the side walls of the heating element 80, and the inner side wall through hole 84a, the outer wall through hole 84b, and the short side wall through hole 84c are through holes of the heating element 80. ..
 また、発熱体80には、発熱体80内にケーブル(図示は省略)を挿通するためのケーブル取り入れ口85が形成されてもよい。ケーブル取り入れ口85は、発熱体80の下面側に位置する下面壁83dに形成されている。ケーブルは、発熱体80の下から這わせて入れられている。ケーブル取り入れ口85は、発熱体80の下側に形成されているため、雨等の水が浸入しにくい。また、発熱体80内が結露しても、結露水はケーブル取り入れ口85を介して発熱体80の下方に落下する。 Further, the heating element 80 may be formed with a cable intake port 85 for inserting a cable (not shown) into the heating element 80. The cable intake port 85 is formed on the lower surface wall 83d located on the lower surface side of the heating element 80. The cable is laid under the heating element 80. Since the cable intake port 85 is formed on the lower side of the heating element 80, it is difficult for water such as rain to enter. Further, even if dew condensation occurs inside the heating element 80, the dew condensation water falls below the heating element 80 via the cable intake port 85.
 図8は、実施の形態1に係るチリングユニット100における発熱体80の排熱経路を示した概念図である。まず、排熱経路P1について説明する。排熱経路P1では、発熱体80から支持柱70に熱が伝達し、支持柱70から側面パネル51に熱が伝達する。その後、排熱経路P1では、側面パネル51が、空気熱交換器1の内部を流れる空気と接することによって、空気に熱が伝わり、空気の流れに伴い、空気吹出口14からチリングユニット100の外部に熱が排出される。 FIG. 8 is a conceptual diagram showing a heat exhaust path of the heating element 80 in the chilling unit 100 according to the first embodiment. First, the exhaust heat path P1 will be described. In the heat exhaust path P1, heat is transferred from the heating element 80 to the support column 70, and heat is transferred from the support column 70 to the side panel 51. After that, in the exhaust heat path P1, the side panel 51 comes into contact with the air flowing inside the air heat exchanger 1, so that heat is transferred to the air, and along with the air flow, the outside of the chilling unit 100 is transmitted from the air outlet 14. Heat is discharged to.
 次に、排熱経路P2について説明する。排熱経路P2は、発熱体80に短側壁貫通孔84c等の空気の通り孔が形成されている場合に利用される。排熱経路P2では、発熱体80の短側壁貫通孔84c等を介して、熱を持った発熱体80の内部の空気が発熱体80の外部に排出される。その後、発熱体80の外部に排出された空気は、ファン5の駆動により、空気熱交換器1に吸い込まれ、空気吹出口14からチリングユニット100の外部に排出される。 Next, the exhaust heat path P2 will be described. The heat exhaust path P2 is used when an air passage hole such as a short side wall through hole 84c is formed in the heating element 80. In the heat exhaust path P2, the air inside the heating element 80 having heat is discharged to the outside of the heating element 80 through the short side wall through hole 84c of the heating element 80 or the like. After that, the air discharged to the outside of the heating element 80 is sucked into the air heat exchanger 1 by the drive of the fan 5, and is discharged to the outside of the chilling unit 100 from the air outlet 14.
 最後に、排熱経路P3について説明する。排熱経路P3は、発熱体80に内側壁貫通孔84a又は外側壁貫通孔84b等の空気の通り孔が形成されており、更に、パネル貫通孔51hが形成されている場合に利用される。排熱経路P3では、発熱体80の内側壁貫通孔84a及び外側壁貫通孔84b等を介して、熱を持った発熱体80の内部の空気が発熱体80の外部に排出される。その後、その排出された空気は、ファン5の駆動により、側面パネル51に形成されたパネル貫通孔51hを通過して、空気吹出口14からチリングユニット100の外部に排出される。 Finally, the exhaust heat path P3 will be described. The heat exhaust path P3 is used when an air passage hole such as an inner side wall through hole 84a or an outer wall through hole 84b is formed in the heating element 80, and further, a panel through hole 51h is formed. In the heat exhaust path P3, the air inside the heating element 80 having heat is discharged to the outside of the heating element 80 through the inner side wall through hole 84a and the outer wall through hole 84b of the heating element 80. After that, the discharged air is driven by the fan 5, passes through the panel through hole 51h formed in the side panel 51, and is discharged to the outside of the chilling unit 100 from the air outlet 14.
 図9は、図6に示すA-A線断面位置における変形例のチリングユニット100Aの端部の概略図である。チリングユニット100Aは、変形例の発熱体80を有する。変形例の発熱体80Aは、凸部86を有する点で発熱体80と異なる。凸部86は、発熱体80においてチリングユニット100Aの長手方向(X軸方向)に突出する部分である。凸部86は、側面パネル51と対向する壁面が側面パネル51側に突出している。 FIG. 9 is a schematic view of the end portion of the chilling unit 100A of the modified example at the AA line cross-sectional position shown in FIG. The chilling unit 100A has a modified heating element 80. The heating element 80A of the modified example is different from the heating element 80 in that it has a convex portion 86. The convex portion 86 is a portion of the heating element 80 that protrudes in the longitudinal direction (X-axis direction) of the chilling unit 100A. The wall surface of the convex portion 86 facing the side surface panel 51 projects toward the side surface panel 51.
 また、チリングユニット100Aは、変形例の側面パネル151を有する。側面パネル151は、凹部51dを有する点で側面パネル51と異なる。凹部51dは、側面パネル151において、チリングユニット100Aの長手方向(X軸方向)に凹んでいる部分である。すなわち、側面パネル151の凹部51dは、チリングユニット100Aの内部空間側に凹んでいる部分である。側面パネル151の凹部51dは、チリングユニット100Aの長手方向(X軸方向)において、凸部86と対向する部分である。発熱体80Aが、支持柱70に取り付けられると、凸部86は、凹部51dの内部に収容され、凹部51dと当接する。 Further, the chilling unit 100A has a modified side panel 151. The side panel 151 differs from the side panel 51 in that it has a recess 51d. The recess 51d is a portion of the side panel 151 that is recessed in the longitudinal direction (X-axis direction) of the chilling unit 100A. That is, the recess 51d of the side panel 151 is a portion recessed on the internal space side of the chilling unit 100A. The concave portion 51d of the side panel 151 is a portion facing the convex portion 86 in the longitudinal direction (X-axis direction) of the chilling unit 100A. When the heating element 80A is attached to the support column 70, the convex portion 86 is housed inside the concave portion 51d and comes into contact with the concave portion 51d.
 図10は、図9に示すチリングユニット100Aにおける発熱体80Aの排熱経路を示した概念図である。チリングユニット100Aは、排熱経路P1、排熱経路P2、排熱経路P3又は発熱経路P4を有する。排熱経路P1、排熱経路P2及び排熱経路P3については、上述した経路で発熱体80Aの熱が排出される。発熱経路P4は、凸部86及び凹部51dを介して、発熱体80Aと側面パネル151とが熱交換を行う。その後、側面パネル151が、空気熱交換器1の内部を流れる空気と接することによって、空気に熱が伝わり、空気の流れに伴い、空気吹出口14からチリングユニット100の外部に熱が排出される。 FIG. 10 is a conceptual diagram showing a heat exhaust path of the heating element 80A in the chilling unit 100A shown in FIG. The chilling unit 100A has a heat exhaust path P1, a heat exhaust path P2, a heat exhaust path P3, or a heat generation path P4. Regarding the exhaust heat path P1, the exhaust heat path P2, and the exhaust heat path P3, the heat of the heating element 80A is discharged through the above-mentioned path. In the heat generation path P4, the heating element 80A and the side panel 151 exchange heat via the convex portion 86 and the concave portion 51d. After that, when the side panel 151 comes into contact with the air flowing inside the air heat exchanger 1, heat is transferred to the air, and the heat is discharged from the air outlet 14 to the outside of the chilling unit 100 along with the air flow. ..
[チリングユニット100の動作]
 チリングユニット100は、ファン5により外部の空気を空気熱交換器1に通過させることで、空気と空気熱交換器1内の冷媒とを熱交換させ、熱交換後の空気を上方から排出する。チリングユニット100は、流路切替装置33の切り替えにより、空気熱交換器1が凝縮器、熱交換器3が蒸発器として機能する冷房運転と、空気熱交換器1が蒸発器、熱交換器3が凝縮器として機能する暖房運転との切り替えが可能である。冷房運転では、熱交換器3で冷やされた伝熱流体を生成し、例えばこの冷やされた伝熱流体を負荷側ユニット(図示せず)に供給して負荷側(室内側)の空気を冷却し、室内の冷房を行う。また、暖房運転では、熱交換器3で温められた伝熱流体を生成し、例えばこの温められた伝熱流体を負荷側ユニット(図示せず)に供給して負荷側(室内側)空気を加熱し、室内の暖房を行う。
[Operation of chilling unit 100]
The chilling unit 100 exchanges heat between the air and the refrigerant in the air heat exchanger 1 by passing external air through the air heat exchanger 1 by the fan 5, and discharges the air after the heat exchange from above. In the chilling unit 100, the air heat exchanger 1 functions as a condenser and the heat exchanger 3 functions as an evaporator by switching the flow path switching device 33, and the air heat exchanger 1 is an evaporator and a heat exchanger 3 Can be switched to heating operation, which functions as a condenser. In the cooling operation, the heat transfer fluid cooled by the heat exchanger 3 is generated, and for example, this cooled heat transfer fluid is supplied to the load side unit (not shown) to cool the air on the load side (indoor side). Then, cool the room. Further, in the heating operation, the heat transfer fluid warmed by the heat exchanger 3 is generated, and for example, the warmed heat transfer fluid is supplied to the load side unit (not shown) to supply the load side (indoor side) air. Heat and heat the room.
[チリングユニット100の作用効果]
 チリングユニット100の発熱体80は、ファン5の駆動により空気熱交換器1に吸い込まれる空気の流れ上に配置され、かつ、チリングユニット100の長手方向(X軸方向)の端面20A側に配置されている。そのため、チリングユニット100は、空気熱交換器1に空気を通過させる流れを形成するために使用されるファン5に、発熱体80を冷却するための冷却ファンの役割を兼用させることができる。その結果、チリングユニット100は、機械室ユニット4において、内部に冷却ファンを設置するための空間を設ける必要がない。また、チリングユニット100は、機械室ユニット4の内部に冷却ファンを設置させるための空間が必要ないので、チリングユニット100の外部における作業者の作業空間を確保するために機械室ユニット4を小型化することができる。あるいは、チリングユニット100は、機械室ユニット4の内部に冷却ファンを設置させるための空間が必要でないため、機械室ユニット4の内部空間に余裕を持たせることができる。そのため、チリングユニット100は、冷媒回路を構成する各装置の配置の自由度、及び、配管の取り回し等の自由度を向上させることができる。
[Action and effect of chilling unit 100]
The heating element 80 of the chilling unit 100 is arranged on the flow of air sucked into the air heat exchanger 1 by driving the fan 5, and is arranged on the end surface 20A side of the chilling unit 100 in the longitudinal direction (X-axis direction). ing. Therefore, in the chilling unit 100, the fan 5 used for forming a flow for passing air through the air heat exchanger 1 can also serve as a cooling fan for cooling the heating element 80. As a result, the chilling unit 100 does not need to provide a space for installing the cooling fan inside the machine room unit 4. Further, since the chilling unit 100 does not require a space for installing a cooling fan inside the machine room unit 4, the machine room unit 4 is downsized in order to secure a working space for workers outside the chilling unit 100. can do. Alternatively, since the chilling unit 100 does not require a space for installing the cooling fan inside the machine room unit 4, the internal space of the machine room unit 4 can be provided with a margin. Therefore, the chilling unit 100 can improve the degree of freedom in arranging each device constituting the refrigerant circuit and the degree of freedom in arranging the piping.
 また、発熱体80は、機械室ユニット4に対して空気熱交換器1側に配置されている。機械室ユニット4に対して空気熱交換器1側は、ファン5の吸込み空気の強さが、機械室ユニット4側よりも強いため、発熱体80を機械室ユニット4側に配置するよりも発熱体80の冷却効果が向上する。また、発熱体80は、上述したように制御箱あるいはアクティブフィルタであり、作業者は、制御箱あるいはアクティブフィルタに対して作業を行う場合がある。発熱体80が、チリングユニット100の下側に位置する機械室ユニット4よりも、チリングユニット100の上側に位置する空気熱交換器1側に配置されていることで、作業者が作業時にしゃがむ必要がない。このようにチリングユニット100は、作業者の発熱体80に対する作業が行いやすくなる。そのため、チリングユニット100は、機械室ユニット4内に発熱体80が配置される場合と比較して作業者によるメンテナンス性が向上する。 Further, the heating element 80 is arranged on the air heat exchanger 1 side with respect to the machine room unit 4. Since the strength of the suction air of the fan 5 on the air heat exchanger 1 side with respect to the machine room unit 4 is stronger than that on the machine room unit 4 side, the heating element 80 generates more heat than the machine room unit 4 side. The cooling effect of the body 80 is improved. Further, the heating element 80 is a control box or an active filter as described above, and an operator may perform work on the control box or the active filter. Since the heating element 80 is arranged on the air heat exchanger 1 side located above the chilling unit 100 with respect to the machine room unit 4 located below the chilling unit 100, the operator needs to squat down during work. There is no. In this way, the chilling unit 100 makes it easier for the operator to work on the heating element 80. Therefore, the chilling unit 100 is easier to maintain by the operator than the case where the heating element 80 is arranged in the machine room unit 4.
 また、発熱体80は、側面パネル51と対向するように配置されている。側面パネル51と対向する位置は、機械室ユニット4と対向する位置と比較して、ファン5の吸込み空気の強さが機械室ユニット4と対向する位置よりも強いため、発熱体80を機械室ユニット4側に配置するよりも発熱体80の冷却効果が向上する。発熱体80が、機械室ユニット4と対向する位置よりも、側面パネル51と対向する位置に配置されていることで、しゃがむ必要がない為、作業者の発熱体80に対する作業が行いやすくなる。そのため、チリングユニット100は、機械室ユニット4内に発熱体80が配置される場合と比較して作業者によるメンテナンス性が向上する。 Further, the heating element 80 is arranged so as to face the side panel 51. Since the strength of the suction air of the fan 5 is stronger than the position facing the machine room unit 4 at the position facing the side panel 51, the heating element 80 is moved to the machine room. The cooling effect of the heating element 80 is improved as compared with the arrangement on the unit 4 side. Since the heating element 80 is arranged at a position facing the side panel 51 rather than at a position facing the machine room unit 4, it is not necessary to squat down, so that the operator can easily work on the heating element 80. Therefore, the chilling unit 100 is easier to maintain by the operator than the case where the heating element 80 is arranged in the machine room unit 4.
 また、発熱体80は、少なくとも1つ以上の排熱用の貫通孔が形成された側壁を有する。そのため、チリングユニット100は、ファン5の駆動によって、内側壁貫通孔84a、外側壁貫通孔84b又は短側壁貫通孔84cの貫通孔を介して、チリングユニット100内に発熱体80の熱を吸い込み、空気吹出口14から外部に排出させることができる。 Further, the heating element 80 has a side wall formed with at least one through hole for exhaust heat. Therefore, the chilling unit 100 sucks the heat of the heating element 80 into the chilling unit 100 through the through holes of the inner side wall through hole 84a, the outer wall through hole 84b, or the short side wall through hole 84c by driving the fan 5. It can be discharged to the outside from the air outlet 14.
 また、側面パネル51は、発熱体80の内側壁83aに形成された内側壁貫通孔84aと対向するように形成されたパネル貫通孔51hを形成している。そのため、チリングユニット100は、ファン5の駆動によって、側面パネル51に形成されたパネル貫通孔51hを通過させて、空気吹出口14からチリングユニット100の外部に発熱体80の熱を排出させることができる。 Further, the side panel 51 forms a panel through hole 51h formed so as to face the inner side wall through hole 84a formed in the inner side wall 83a of the heating element 80. Therefore, the chilling unit 100 can pass the panel through hole 51h formed in the side panel 51 by driving the fan 5, and discharge the heat of the heating element 80 from the air outlet 14 to the outside of the chilling unit 100. it can.
 また、発熱体80は、支持柱70に固定されている。そのため、チリングユニット100は、発熱体80を支持する強度を確保することができる。 Further, the heating element 80 is fixed to the support column 70. Therefore, the chilling unit 100 can secure the strength to support the heating element 80.
 また、発熱体80は、2本の支持柱70に跨るように取り付けられている。そのため、チリングユニット100は、更に発熱体80を支持する強度を確保することができる。例えば、制御箱等の発熱体80は、ポンプ等を含む場合には大型化して重くなる。そのため、発熱体80は、2本の支持柱70に固定されるのが望ましい。 Further, the heating element 80 is attached so as to straddle the two support columns 70. Therefore, the chilling unit 100 can further secure the strength to support the heating element 80. For example, a heating element 80 such as a control box becomes large and heavy when it includes a pump or the like. Therefore, it is desirable that the heating element 80 is fixed to the two support columns 70.
 また、発熱体80は、発熱体80の左右方向の幅WA1が、チリングユニット100の短手方向(Y軸方向)における2本の支持柱70の外側の壁71の間の距離LA1と等しくなるように形成されている。発熱体80の左右方向の幅WA1が、壁71の間の距離LA1と等しくなるように形成されていることで、発熱体80を支持柱70に固定することができる。更に、発熱体80の幅WA1が、壁71間の距離LA1と等しくなるように形成されていることで、チリングユニット100は、V字状に配置された一対の空気熱交換器1の間の熱交換が行われないスペースを発熱体80の冷却のために有効活用することができる。さらに、発熱体80の左右方向の幅WA1が、壁71の間の距離LA1と等しくなるように形成されていることで、空気熱交換器1の長手方向の端面側を必要以上に覆わないため、空気熱交換器1の熱交換効率を大きく低下させることがない。 Further, in the heating element 80, the width WA1 in the left-right direction of the heating element 80 becomes equal to the distance LA1 between the outer walls 71 of the two support columns 70 in the lateral direction (Y-axis direction) of the chilling unit 100. It is formed like this. Since the width WA1 in the left-right direction of the heating element 80 is formed so as to be equal to the distance LA1 between the walls 71, the heating element 80 can be fixed to the support column 70. Further, since the width WA1 of the heating element 80 is formed so as to be equal to the distance LA1 between the walls 71, the chilling unit 100 is formed between the pair of air heat exchangers 1 arranged in a V shape. The space where heat exchange is not performed can be effectively used for cooling the heating element 80. Further, since the width WA1 in the left-right direction of the heating element 80 is formed to be equal to the distance LA1 between the walls 71, the end face side in the longitudinal direction of the air heat exchanger 1 is not covered more than necessary. , The heat exchange efficiency of the air heat exchanger 1 is not significantly reduced.
 また、発熱体80Aは、側面パネル151に向かって突出した凸部86を有し、側面パネル151は凸部86が収容される凹部51dを有し、チリングユニット100Aにおいて、凸部86と凹部51dとが当接する。チリングユニット100Aは、凸部86と凹部51dとが当接することにより、発熱体80Aが発生させる熱を側面パネル151を介してファン5によってチリングユニット100Aから排出される空気と共に、外部に排出することができる。また、チリングユニット100Aは、発熱体80Aが凸部86を有することで発熱体80Aを流れる空気の流れが整流される。そのため、チリングユニット100Aは、発熱体80Aに適切に風があたるので、発熱体80Aにヒートシンク82を設ける必要性が低下する。 Further, the heating element 80A has a convex portion 86 projecting toward the side panel 151, the side panel 151 has a concave portion 51d in which the convex portion 86 is housed, and the convex portion 86 and the concave portion 51d in the chilling unit 100A. And abut. The chilling unit 100A discharges the heat generated by the heating element 80A to the outside together with the air discharged from the chilling unit 100A by the fan 5 via the side panel 151 when the convex portion 86 and the concave portion 51d come into contact with each other. Can be done. Further, in the chilling unit 100A, the flow of air flowing through the heating element 80A is rectified because the heating element 80A has the convex portion 86. Therefore, in the chilling unit 100A, the heating element 80A is appropriately exposed to the wind, so that the need for providing the heat sink 82 on the heating element 80A is reduced.
 また、チリングユニット100は、長手方向(X軸方向)に見た場合に、空気熱交換器1と機械室ユニット4とによって、Y字状に構成されている。そのため、チリングユニット100は、複数並列して配置された場合に、作業者の足元の領域を確保することができ、作業者によるメンテナンス性を向上させることができる。例えば、チリングユニット100は、作業者の足元の領域を確保することができるため、作業者は、パネルを外すためにパネルに取り付けられたネジを外し、外したネジを収納するためのネジ箱を足元に置くことができる。 Further, the chilling unit 100 is formed in a Y shape by the air heat exchanger 1 and the machine room unit 4 when viewed in the longitudinal direction (X-axis direction). Therefore, when a plurality of chilling units 100 are arranged in parallel, an area at the feet of the operator can be secured, and maintainability by the operator can be improved. For example, since the chilling unit 100 can secure an area under the feet of the operator, the operator removes the screws attached to the panel in order to remove the panel, and installs a screw box for storing the removed screws. You can put it at your feet.
 また、発熱体80は、圧縮機31等を制御するインバータ81を有する制御箱である。制御箱である発熱体80が機械室ユニット4の外部に配置され、制御箱である発熱体80の排熱のためにファン5の吸込み空気を利用することで、機械室ユニット4内に冷却ファンを設ける必要がなく、また、作業者による制御箱のメンテナンス性が向上する。また、発熱体80は、アクティブフィルタである。同様に、アクティブフィルタである発熱体80が機械室ユニット4の外部に配置され、排熱のためにファン5の吸込み空気を利用することで、機械室ユニット4内に冷却ファンを設ける必要がなく、また、作業者のアクティブフィルタのメンテナンス性が向上する。 Further, the heating element 80 is a control box having an inverter 81 for controlling the compressor 31 and the like. The heating element 80, which is a control box, is arranged outside the machine room unit 4, and the suction air of the fan 5 is used for exhausting heat of the heating element 80, which is a control box, so that the cooling fan is inside the machine room unit 4. It is not necessary to provide the control box, and the maintainability of the control box by the operator is improved. The heating element 80 is an active filter. Similarly, the heating element 80, which is an active filter, is arranged outside the machine room unit 4, and the suction air of the fan 5 is used for exhausting heat, so that it is not necessary to provide a cooling fan inside the machine room unit 4. In addition, the maintainability of the active filter of the operator is improved.
実施の形態2.
[チリングユニット100Bの構成]
 図11は、実施の形態2に係るチリングユニット100Bの長手方向の端面20A側の正面図である。図12は、図11に示すB-B線断面位置におけるチリングユニット100Bの端部の概略図である。図13は、実施の形態2に係るチリングユニット100Bにおける発熱体80Bの排熱経路を示した概念図である。図11~図13を用いて実施の形態2に係るチリングユニット100Bについて説明する。なお、図1~図10のチリングユニット100と同一の構成を有する部位には同一の符号を付してその説明を省略する。実施の形態2に係るチリングユニット100Bは、発熱体80Bの構造が発熱体80の構造と異なる点で実施の形態1に係るチリングユニット100と異なる。以下のチリングユニット100Bの説明では、発熱体80Bと発熱体80との相違点を中心に説明し、相違点以外の構成については、図示及び説明を省略する。
Embodiment 2.
[Structure of chilling unit 100B]
FIG. 11 is a front view of the chilling unit 100B according to the second embodiment on the end face 20A side in the longitudinal direction. FIG. 12 is a schematic view of the end portion of the chilling unit 100B at the BB line cross-sectional position shown in FIG. FIG. 13 is a conceptual diagram showing a heat exhaust path of the heating element 80B in the chilling unit 100B according to the second embodiment. The chilling unit 100B according to the second embodiment will be described with reference to FIGS. 11 to 13. The parts having the same configuration as the chilling unit 100 of FIGS. 1 to 10 are designated by the same reference numerals, and the description thereof will be omitted. The chilling unit 100B according to the second embodiment is different from the chilling unit 100 according to the first embodiment in that the structure of the heating element 80B is different from the structure of the heating element 80. In the following description of the chilling unit 100B, the differences between the heating element 80B and the heating element 80 will be mainly described, and the illustration and description of the configurations other than the differences will be omitted.
 発熱体80Bは、図7及び図12に示すように、チリングユニット100Bの短手方向(Y軸方向)の長さの寸法が、発熱体80よりも大きく形成されている。具体的には、図12及び図13に示すように、発熱体80の左右方向(Y軸方向)の幅WB1が、チリングユニット100Bの短手方向(Y軸方向)における2本の支持柱70の外側の壁71の間の距離LB1よりも大きくなるように形成されている。 As shown in FIGS. 7 and 12, the heating element 80B is formed so that the length of the chilling unit 100B in the lateral direction (Y-axis direction) is larger than that of the heating element 80. Specifically, as shown in FIGS. 12 and 13, the width WB1 of the heating element 80 in the left-right direction (Y-axis direction) is the two support columns 70 in the lateral direction (Y-axis direction) of the chilling unit 100B. It is formed so as to be larger than the distance LB1 between the outer walls 71 of the.
 図14は、図11に示すB-B線断面位置における変形例のチリングユニット100Cの端部の概略図である。図15は、図14に示すチリングユニット100Cにおける発熱体80Cの排熱経路を示した概念図である。図14及び図15を用いて実施の形態2に係る変形例のチリングユニット100Cについて説明する。なお、図1~図13のチリングユニット100等と同一の構成を有する部位には同一の符号を付してその説明を省略する。実施の形態2に係る変形例のチリングユニット100Cは、発熱体80Cの構造が発熱体80Aの構造と異なる点で実施の形態1に係る変形例のチリングユニット100Aと異なる。以下のチリングユニット100Cの説明では、発熱体80Cと発熱体80Aとの相違点を中心に説明し、相違点以外の構成については、図示及び説明を省略する。 FIG. 14 is a schematic view of the end portion of the chilling unit 100C of the modified example at the BB line cross-sectional position shown in FIG. FIG. 15 is a conceptual diagram showing a heat exhaust path of the heating element 80C in the chilling unit 100C shown in FIG. The chilling unit 100C of the modified example according to the second embodiment will be described with reference to FIGS. 14 and 15. The parts having the same configuration as the chilling unit 100 and the like shown in FIGS. 1 to 13 are designated by the same reference numerals, and the description thereof will be omitted. The modified example chilling unit 100C according to the second embodiment is different from the modified example chilling unit 100A according to the first embodiment in that the structure of the heating element 80C is different from the structure of the heating element 80A. In the following description of the chilling unit 100C, the differences between the heating element 80C and the heating element 80A will be mainly described, and the illustration and description of the configurations other than the differences will be omitted.
 発熱体80Cは、図9及び図14に示すように、チリングユニット100Cの短手方向(Y軸方向)の長さの寸法が、発熱体80Aよりも大きく形成されている。具体的には、図14及び図15に示すように、発熱体80Cの左右方向(Y軸方向)の幅WB1が、チリングユニット100Cの短手方向(Y軸方向)における2本の支持柱70の外側の壁71の間の距離LB1よりも大きくなるように形成されている。 As shown in FIGS. 9 and 14, the heating element 80C is formed so that the length of the chilling unit 100C in the lateral direction (Y-axis direction) is larger than that of the heating element 80A. Specifically, as shown in FIGS. 14 and 15, the width WB1 of the heating element 80C in the left-right direction (Y-axis direction) is the two support columns 70 in the lateral direction (Y-axis direction) of the chilling unit 100C. It is formed so as to be larger than the distance LB1 between the outer walls 71 of the.
[チリングユニット100B及びチリングユニット100Cの作用効果]
 発熱体80Bは、発熱体80Bの左右方向の幅WB1が、チリングユニット100Bの短手方向(Y軸方向)における2本の支持柱70の外側の壁71の間の距離LB1よりも大きくなるように形成されている。同様に、発熱体80Cは、発熱体80Cの左右方向の幅WB1が、チリングユニット100Cの短手方向(Y軸方向)における2本の支持柱70の外側の壁71の間の距離LB1よりも大きくなるように形成されている。発熱体80B又は発熱体80Cの左右方向の幅WB1が、壁71の間の距離LB1よりも大きく形成されていることで、発熱体80B又は発熱体80Cを支持柱70に固定することができる。更に、発熱体80B又は発熱体80Cの幅WB1が、壁71間の距離LB1よりも大きく形成されていることで発熱体80B又は発熱体80Cの幅WB1の内部の容積を発熱体80よりも大きくすることができる。その結果、発熱体80B及び発熱体80Cが制御箱である場合、例えば、内部にポンプ等を含むことができ、制御箱の内部の機能を充実化させることができる。
[Action and effect of chilling unit 100B and chilling unit 100C]
The heating element 80B has a width WB1 in the left-right direction of the heating element 80B larger than the distance LB1 between the outer walls 71 of the two support columns 70 in the lateral direction (Y-axis direction) of the chilling unit 100B. Is formed in. Similarly, in the heating element 80C, the width WB1 in the left-right direction of the heating element 80C is larger than the distance LB1 between the outer walls 71 of the two support columns 70 in the lateral direction (Y-axis direction) of the chilling unit 100C. It is formed to be large. Since the width WB1 of the heating element 80B or the heating element 80C in the left-right direction is formed larger than the distance LB1 between the walls 71, the heating element 80B or the heating element 80C can be fixed to the support column 70. Further, the width WB1 of the heating element 80B or the heating element 80C is formed to be larger than the distance LB1 between the walls 71, so that the internal volume of the width WB1 of the heating element 80B or the heating element 80C is larger than that of the heating element 80. can do. As a result, when the heating element 80B and the heating element 80C are control boxes, for example, a pump or the like can be included inside, and the functions inside the control box can be enhanced.
実施の形態3.
[チリングユニット100Dの構成]
 図16は、実施の形態3に係るチリングユニット100Dの長手方向の端面20A側の正面図である。図17は、図16に示すC-C線断面位置におけるチリングユニット100Dの端部の概略図である。図18は、実施の形態3に係るチリングユニット100Dにおける発熱体80の排熱経路を示した概念図である。図16~図18を用いて実施の形態3に係るチリングユニット100Dについて説明する。なお、図1~図15のチリングユニット100等と同一の構成を有する部位には同一の符号を付してその説明を省略する。実施の形態3に係るチリングユニット100Dは、支持柱70と発熱体80との間に補助材90を有する点で実施の形態1に係るチリングユニット100と異なる。以下のチリングユニット100Dの説明では、補助材90の構成を中心に説明し、相違点以外の構成については、図示及び説明を省略する。
Embodiment 3.
[Configuration of chilling unit 100D]
FIG. 16 is a front view of the chilling unit 100D according to the third embodiment on the end face 20A side in the longitudinal direction. FIG. 17 is a schematic view of the end portion of the chilling unit 100D at the CC line cross-sectional position shown in FIG. FIG. 18 is a conceptual diagram showing a heat exhaust path of the heating element 80 in the chilling unit 100D according to the third embodiment. The chilling unit 100D according to the third embodiment will be described with reference to FIGS. 16 to 18. The parts having the same configuration as the chilling unit 100 and the like shown in FIGS. 1 to 15 are designated by the same reference numerals, and the description thereof will be omitted. The chilling unit 100D according to the third embodiment is different from the chilling unit 100 according to the first embodiment in that an auxiliary material 90 is provided between the support column 70 and the heating element 80. In the following description of the chilling unit 100D, the configuration of the auxiliary material 90 will be mainly described, and illustration and description of configurations other than the differences will be omitted.
 図16~図18に示すように、チリングユニット100Dは、補助材90を有する。補助材90は、支持柱70に取り付けられた発熱体80を支持する強度を増加させるために用いられる。補助材90は、支持柱70と発熱体80との間に配置される。補助材90は、直線状の柱である。ただし、補助材90は、直線状の柱に限定されるものではない。補助材90は、曲線状に形成されてもよく、あるいは、板状に形成されてもよい。補助材90の主たる材料は、金属である。補助材90は、支持柱70に取り付けられた発熱体80を支持する強度を増加させるために用いられるものであり、発熱体80を支持するための強度を有している。 As shown in FIGS. 16 to 18, the chilling unit 100D has an auxiliary material 90. The auxiliary material 90 is used to increase the strength of supporting the heating element 80 attached to the support column 70. The auxiliary material 90 is arranged between the support column 70 and the heating element 80. The auxiliary material 90 is a straight pillar. However, the auxiliary material 90 is not limited to a straight pillar. The auxiliary material 90 may be formed in a curved shape or may be formed in a plate shape. The main material of the auxiliary material 90 is metal. The auxiliary material 90 is used to increase the strength of supporting the heating element 80 attached to the support column 70, and has the strength to support the heating element 80.
 補助材90は、2本の支持柱70に跨って取り付けられており、支持柱70に固定されている。補助材90は、図16に示すように、支持柱70の延びる方向(Z軸方向)に対して垂直に取り付けられている。また、補助材90は、支持柱70の延びる方向(Z軸方向)に対して、2本並んで取り付けられている。なお、補助材90の取付け本数は2本に限定されるものではない。例えば、補助材90が板状の部材であれば、1枚の補助材90が支持柱70に取り付けられてもよい。あるいは、発熱体80の重さが重い場合には、発熱体80の支持強度を強化するために、補助材90を3本以上使用してもよい。 The auxiliary material 90 is attached across the two support columns 70 and is fixed to the support columns 70. As shown in FIG. 16, the auxiliary member 90 is attached perpendicular to the extending direction (Z-axis direction) of the support column 70. Further, two auxiliary members 90 are attached side by side with respect to the extending direction (Z-axis direction) of the support pillar 70. The number of auxiliary materials 90 attached is not limited to two. For example, if the auxiliary member 90 is a plate-shaped member, one auxiliary member 90 may be attached to the support column 70. Alternatively, when the weight of the heating element 80 is heavy, three or more auxiliary materials 90 may be used in order to strengthen the supporting strength of the heating element 80.
 発熱体80は、支持柱70に取り付けられた補助材90に取り付けられる。すなわち、発熱体80は、補助材90を介して支持柱70に取り付けられている。 The heating element 80 is attached to the auxiliary material 90 attached to the support column 70. That is, the heating element 80 is attached to the support column 70 via the auxiliary member 90.
 図18は、実施の形態3に係るチリングユニット100Dにおける発熱体80の排熱経路を示した概念図である。まず、排熱経路P11について説明する。排熱経路P11では、まず、発熱体80から補助材90に熱が伝達し、次に、補助材90から支持柱70に熱が伝達し、次に、支持柱70から側面パネル51に熱が伝達する。その後、排熱経路P11では、側面パネル51が、空気熱交換器1の内部を流れる空気と接することによって、空気に熱が伝わり、空気の流れに伴い、空気吹出口14からチリングユニット100Dの外部に熱が排出される。 FIG. 18 is a conceptual diagram showing a heat exhaust path of the heating element 80 in the chilling unit 100D according to the third embodiment. First, the exhaust heat path P11 will be described. In the heat exhaust path P11, first, heat is transferred from the heating element 80 to the auxiliary material 90, then heat is transferred from the auxiliary material 90 to the support column 70, and then heat is transferred from the support column 70 to the side panel 51. introduce. After that, in the exhaust heat path P11, the side panel 51 comes into contact with the air flowing inside the air heat exchanger 1, so that heat is transferred to the air, and along with the air flow, the outside of the chilling unit 100D is transmitted from the air outlet 14. Heat is discharged to.
 次に、排熱経路P12について説明する。排熱経路P12は、発熱体80に短側壁貫通孔84c等の空気の通り孔が形成されている場合に利用される。排熱経路P12では、発熱体80の短側壁貫通孔84c等を介して、熱を持った発熱体80の内部の空気が発熱体80の外部に排出される。その後、発熱体80の外部に排出された空気は、ファン5の駆動により、空気熱交換器1に吸い込まれ、空気吹出口14からチリングユニット100Dの外部に排出される。 Next, the exhaust heat path P12 will be described. The heat exhaust path P12 is used when an air passage hole such as a short side wall through hole 84c is formed in the heating element 80. In the heat exhaust path P12, the air inside the heating element 80 having heat is discharged to the outside of the heating element 80 through the short side wall through hole 84c of the heating element 80 or the like. After that, the air discharged to the outside of the heating element 80 is sucked into the air heat exchanger 1 by the drive of the fan 5, and is discharged to the outside of the chilling unit 100D from the air outlet 14.
 最後に、排熱経路P13について説明する。排熱経路P13は、発熱体80に内側壁貫通孔84a又は外側壁貫通孔84b等の空気の通り孔が形成されており、更に、パネル貫通孔51hが形成されている場合に利用される。排熱経路P13では、発熱体80の内側壁貫通孔84a及び外側壁貫通孔84b等を介して、熱を持った発熱体80の内部の空気が発熱体80の外部に排出される。その後、その排出された空気は、ファン5の駆動により、側面パネル51に形成されたパネル貫通孔51hを通過して、空気吹出口14からチリングユニット100Dの外部に排出される。 Finally, the exhaust heat path P13 will be described. The heat exhaust path P13 is used when an air passage hole such as an inner side wall through hole 84a or an outer wall through hole 84b is formed in the heating element 80, and further, a panel through hole 51h is formed. In the heat exhaust path P13, the air inside the heating element 80 having heat is discharged to the outside of the heating element 80 through the inner side wall through hole 84a and the outer wall through hole 84b of the heating element 80. After that, the discharged air is driven by the fan 5, passes through the panel through hole 51h formed in the side panel 51, and is discharged to the outside of the chilling unit 100D from the air outlet 14.
 図19は、図16に示すC-C線断面位置における変形例のチリングユニット100Eの端部の概略図である。図20は、図19に示すチリングユニット100Eにおける発熱体80Aの排熱経路を示した概念図である。図19及び図20を用いて実施の形態3に係る変形例のチリングユニット100Eについて説明する。なお、図1~図18のチリングユニット100等と同一の構成を有する部位には同一の符号を付してその説明を省略する。実施の形態3に係る変形例のチリングユニット100Eは、補助材90Eの形状が実施の形態3に係るチリングユニット100Dの補助材90の形状と異なる点で実施の形態3に係るチリングユニット100Dと異なる。以下のチリングユニット100Eの説明では、補助材90Eと補助材90との相違点を中心に説明し、相違点以外の構成については、図示及び説明を省略する。 FIG. 19 is a schematic view of the end portion of the chilling unit 100E of the modified example at the CC line cross-sectional position shown in FIG. FIG. 20 is a conceptual diagram showing a heat exhaust path of the heating element 80A in the chilling unit 100E shown in FIG. A modified example of the chilling unit 100E according to the third embodiment will be described with reference to FIGS. 19 and 20. The parts having the same configuration as the chilling unit 100 and the like shown in FIGS. 1 to 18 are designated by the same reference numerals, and the description thereof will be omitted. The chilling unit 100E of the modified example according to the third embodiment is different from the chilling unit 100D according to the third embodiment in that the shape of the auxiliary material 90E is different from the shape of the auxiliary material 90 of the chilling unit 100D according to the third embodiment. .. In the following description of the chilling unit 100E, the differences between the auxiliary material 90E and the auxiliary material 90 will be mainly described, and the illustration and description of the configurations other than the differences will be omitted.
 補助材90Eは、直線部90bと屈曲部90cとを有する。直線部90bは、屈曲部90cの両端部に設けられている。直線部90bは、チリングユニット100Eの短手方向(Y軸方向)に延びるように設けられている。屈曲部90cは、直線部90bの延びる方向に対して垂直方向に突出するように屈曲している。すなわち、屈曲部90cは、直線部90bに対して凸状に屈曲している。屈曲部90cの屈曲形状は、発熱体80Aの凸部86の凸形状に沿うように形成されている。 The auxiliary material 90E has a straight portion 90b and a bent portion 90c. The straight portion 90b is provided at both ends of the bent portion 90c. The straight portion 90b is provided so as to extend in the lateral direction (Y-axis direction) of the chilling unit 100E. The bent portion 90c is bent so as to project in a direction perpendicular to the extending direction of the straight portion 90b. That is, the bent portion 90c is bent in a convex shape with respect to the straight portion 90b. The bent shape of the bent portion 90c is formed so as to follow the convex shape of the convex portion 86 of the heating element 80A.
 補助材90Eの直線部90bは、支持柱70に取り付けられる部分である。補助材90Eの屈曲部90cは、補助材90Eが支持柱70に取り付けられると、凹部51dの内部に挿入され、凹部51dと当接する。したがって、図19に示すように、発熱体80Aがチリングユニット100Eに取り付けられると、発熱体80Aの凸部86は、補助材90Eの屈曲部90cと当接し、補助材90Eの屈曲部90cを介して側面パネル151と接続する。 The straight portion 90b of the auxiliary material 90E is a portion attached to the support pillar 70. When the auxiliary material 90E is attached to the support column 70, the bent portion 90c of the auxiliary material 90E is inserted into the recess 51d and comes into contact with the recess 51d. Therefore, as shown in FIG. 19, when the heating element 80A is attached to the chilling unit 100E, the convex portion 86 of the heating element 80A comes into contact with the bent portion 90c of the auxiliary member 90E and passes through the bent portion 90c of the auxiliary member 90E. To connect to the side panel 151.
 図20は、図19に示すチリングユニット100Eにおける発熱体80Aの排熱経路を示した概念図である。チリングユニット100Eは、排熱経路P11、排熱経路P12、排熱経路P13又は発熱経路P14を有する。排熱経路P11、排熱経路P12及び排熱経路P13については、上述した経路で発熱体80Aの熱が排出される。発熱経路P14は、まず、凸部86から補助材90Eに熱が伝達し、次に、補助材90Eから側面パネル151に熱が伝達する。すなわち、チリングユニット100Eは、補助材90Eを介して、凸部86と凹部51dとが熱交換を行うことで、発熱体80Aと側面パネル151とが熱交換を行う。その後、側面パネル151が、空気熱交換器1の内部を流れる空気と接することによって、空気に熱が伝わり、空気の流れに伴い、空気吹出口14からチリングユニット100Eの外部に熱が排出される。 FIG. 20 is a conceptual diagram showing a heat exhaust path of the heating element 80A in the chilling unit 100E shown in FIG. The chilling unit 100E has an exhaust heat path P11, an exhaust heat path P12, an exhaust heat path P13, or a heat exhaust path P14. With respect to the exhaust heat path P11, the exhaust heat path P12, and the exhaust heat path P13, the heat of the heating element 80A is discharged through the above-mentioned path. In the heat generation path P14, heat is first transferred from the convex portion 86 to the auxiliary material 90E, and then heat is transferred from the auxiliary material 90E to the side panel 151. That is, in the chilling unit 100E, the convex portion 86 and the concave portion 51d exchange heat with each other via the auxiliary material 90E, so that the heating element 80A and the side panel 151 exchange heat. After that, when the side panel 151 comes into contact with the air flowing inside the air heat exchanger 1, heat is transferred to the air, and the heat is discharged from the air outlet 14 to the outside of the chilling unit 100E along with the air flow. ..
[チリングユニット100D及びチリングユニット100Eの作用効果]
 チリングユニット100Dは、2本の支持柱70に跨って固定され、発熱体80の支持強度を増加させる補助材90を更に有し、発熱体80は、補助材90に固定されている。そのため、チリングユニット100Dは、2本の支持柱70に跨って固定される補助材90を有することで、補助材90を用いない場合よりも、支持柱70の強度を確保することができ、発熱体80を支持する強度を増加させることができる。同様に、チリングユニット100Eは、2本の支持柱70に跨って固定され、発熱体80Aの支持強度を増加させる補助材90Eを更に有し、発熱体80Aは、補助材90Eに固定されている。チリングユニット100Eは、2本の支持柱70に跨って固定される補助材90Eを有することで、補助材90Eを用いない場合よりも、支持柱70の強度を確保することができ、発熱体80Aを支持する強度を増加させることができる。
[Action and effect of chilling unit 100D and chilling unit 100E]
The chilling unit 100D is fixed across two support columns 70 and further has an auxiliary member 90 that increases the supporting strength of the heating element 80, and the heating element 80 is fixed to the auxiliary member 90. Therefore, since the chilling unit 100D has the auxiliary material 90 fixed across the two support columns 70, the strength of the support column 70 can be secured as compared with the case where the auxiliary material 90 is not used, and heat is generated. The strength to support the body 80 can be increased. Similarly, the chilling unit 100E is fixed across the two support columns 70 and further has an auxiliary member 90E that increases the supporting strength of the heating element 80A, and the heating element 80A is fixed to the auxiliary member 90E. .. By having the auxiliary material 90E fixed across the two support columns 70, the chilling unit 100E can secure the strength of the support column 70 as compared with the case where the auxiliary material 90E is not used, and the heating element 80A. The strength to support the can be increased.
実施の形態4.
[チリングユニット100Fの構成]
 図21は、実施の形態4に係るチリングユニット100Fの長手方向の端面20A側の正面図である。図22は、図21のD-D線断面位置におけるチリングユニット100Fの端部の概略図である。図23は、実施の形態4に係るチリングユニット100Fにおける発熱体80Bの排熱経路を示した概念図である。図21~図23を用いて実施の形態4に係るチリングユニット100Fについて説明する。なお、図1~図20のチリングユニット100等と同一の構成を有する部位には同一の符号を付してその説明を省略する。
Embodiment 4.
[Structure of chilling unit 100F]
FIG. 21 is a front view of the chilling unit 100F according to the fourth embodiment on the end face 20A side in the longitudinal direction. FIG. 22 is a schematic view of the end portion of the chilling unit 100F at the DD line cross-sectional position of FIG. FIG. 23 is a conceptual diagram showing a heat exhaust path of the heating element 80B in the chilling unit 100F according to the fourth embodiment. The chilling unit 100F according to the fourth embodiment will be described with reference to FIGS. 21 to 23. The parts having the same configuration as the chilling unit 100 and the like shown in FIGS. 1 to 20 are designated by the same reference numerals, and the description thereof will be omitted.
 実施の形態4に係るチリングユニット100Fは、補助材90を有する点で実施の形態2に係るチリングユニット100Bと異なる。また、発熱体80Bの構造が発熱体80の構造と異なる点で実施の形態3に係るチリングユニット100Dと異なる。発熱体80Bは、図22及び図23に示すように、チリングユニット100Fの短手方向(Y軸方向)の長さの寸法が、発熱体80よりも大きく形成されている。具体的には、図19及び図22に示すように、発熱体80の左右方向(Y軸方向)の幅WB1が、チリングユニット100Fの短手方向(Y軸方向)における2本の支持柱70の外側の壁71の間の距離LB1よりも大きくなるように形成されている。 The chilling unit 100F according to the fourth embodiment is different from the chilling unit 100B according to the second embodiment in that it has an auxiliary material 90. Further, the structure of the heating element 80B is different from that of the heating element 80, which is different from the chilling unit 100D according to the third embodiment. As shown in FIGS. 22 and 23, the heating element 80B is formed so that the length of the chilling unit 100F in the lateral direction (Y-axis direction) is larger than that of the heating element 80. Specifically, as shown in FIGS. 19 and 22, the width WB1 of the heating element 80 in the left-right direction (Y-axis direction) is the two support columns 70 in the lateral direction (Y-axis direction) of the chilling unit 100F. It is formed so as to be larger than the distance LB1 between the outer walls 71 of the.
 図24は、図21に示すD-D線断面位置における変形例のチリングユニット100Gの端部の概略図である。図25は、図24に示すチリングユニット100Gにおける発熱体80Cの排熱経路を示した概念図である。図24及び図25を用いて実施の形態4に係る変形例のチリングユニット100Gについて説明する。なお、図1~図23のチリングユニット100等と同一の構成を有する部位には同一の符号を付してその説明を省略する。実施の形態4に係る変形例のチリングユニット100Gは、補助材90Eを有する点で実施の形態2に係る変形例のチリングユニット100Cと異なる。また、実施の形態4に係る変形例のチリングユニット100Gは、発熱体80Cの構造が発熱体80Aの構造と異なる点で実施の形態3に係る変形例のチリングユニット100Eと異なる。 FIG. 24 is a schematic view of the end portion of the chilling unit 100G of the modified example at the DD line cross-sectional position shown in FIG. 21. FIG. 25 is a conceptual diagram showing a heat exhaust path of the heating element 80C in the chilling unit 100G shown in FIG. 24. A modified example of the chilling unit 100G according to the fourth embodiment will be described with reference to FIGS. 24 and 25. The parts having the same configuration as the chilling unit 100 and the like shown in FIGS. 1 to 23 are designated by the same reference numerals, and the description thereof will be omitted. The modified example chilling unit 100G according to the fourth embodiment is different from the modified example chilling unit 100C according to the second embodiment in that it has an auxiliary material 90E. Further, the modified example chilling unit 100G according to the fourth embodiment is different from the modified example chilling unit 100E according to the third embodiment in that the structure of the heating element 80C is different from the structure of the heating element 80A.
 発熱体80Cは、図19及び図24に示すように、チリングユニット100Gの短手方向(Y軸方向)の長さの寸法が、発熱体80Aよりも大きく形成されている。具体的には、図24及び図25に示すように、発熱体80Cの左右方向(Y軸方向)の幅WB1が、チリングユニット100Gの短手方向(Y軸方向)における2本の支持柱70の外側の壁71の間の距離LB1よりも大きくなるように形成されている。 As shown in FIGS. 19 and 24, the heating element 80C is formed so that the length of the chilling unit 100G in the lateral direction (Y-axis direction) is larger than that of the heating element 80A. Specifically, as shown in FIGS. 24 and 25, the width WB1 of the heating element 80C in the left-right direction (Y-axis direction) is the two support columns 70 in the lateral direction (Y-axis direction) of the chilling unit 100G. It is formed so as to be larger than the distance LB1 between the outer walls 71 of the.
[チリングユニット100F及びチリングユニット100Gの作用効果]
 発熱体80Bは、発熱体80Bの左右方向の幅WB1が、チリングユニット100Fの短手方向(Y軸方向)における2本の支持柱70の外側の壁71の間の距離LB1よりも大きくなるように形成されている。同様に、発熱体80Cは、発熱体80Cの左右方向の幅WB1が、チリングユニット100Gの短手方向(Y軸方向)における2本の支持柱70の外側の壁71の間の距離LB1よりも大きくなるように形成されている。発熱体80B又は発熱体80Cの左右方向の幅WB1が、壁71の間の距離LB1よりも大きく形成されていることで、発熱体80B又は発熱体80Cを支持柱70に固定することができる。更に、発熱体80B又は発熱体80Cの幅WB1が、壁71間の距離LB1よりも大きく形成されていることで発熱体80B又は発熱体80Cの幅WB1の内部の容積を発熱体80よりも大きくすることができる。その結果、発熱体80B及び発熱体80Cが制御箱である場合、例えば、内部にポンプ等を含むことができ、制御箱の内部の機能を充実化させることができる。
[Action and effect of chilling unit 100F and chilling unit 100G]
The heating element 80B has a width WB1 in the left-right direction of the heating element 80B larger than the distance LB1 between the outer walls 71 of the two support columns 70 in the lateral direction (Y-axis direction) of the chilling unit 100F. Is formed in. Similarly, in the heating element 80C, the width WB1 in the left-right direction of the heating element 80C is larger than the distance LB1 between the outer walls 71 of the two support columns 70 in the lateral direction (Y-axis direction) of the chilling unit 100G. It is formed to be large. Since the width WB1 of the heating element 80B or the heating element 80C in the left-right direction is formed larger than the distance LB1 between the walls 71, the heating element 80B or the heating element 80C can be fixed to the support column 70. Further, the width WB1 of the heating element 80B or the heating element 80C is formed to be larger than the distance LB1 between the walls 71, so that the internal volume of the width WB1 of the heating element 80B or the heating element 80C is larger than that of the heating element 80. can do. As a result, when the heating element 80B and the heating element 80C are control boxes, for example, a pump or the like can be included inside, and the functions inside the control box can be enhanced.
 また、チリングユニット100Fは、2本の支持柱70に跨って固定され、発熱体80の支持強度を増加させる補助材90を更に有し、発熱体80は、補助材90に固定されている。そのため、チリングユニット100Fは、2本の支持柱70に跨って固定される補助材90を有することで、補助材90を用いない場合よりも、支持柱70の強度を確保することができ、発熱体80を支持する強度を増加させることができる。同様に、チリングユニット100Gは、2本の支持柱70に跨って固定され、発熱体80Aの支持強度を増加させる補助材90Eを更に有し、発熱体80Aは、補助材90Eに固定されている。チリングユニット100Gは、2本の支持柱70に跨って固定される補助材90Eを有することで、補助材90Eを用いない場合よりも、支持柱70の強度を確保することができ、発熱体80Aを支持する強度を増加させることができる。 Further, the chilling unit 100F is fixed across two support columns 70, and further has an auxiliary material 90 that increases the support strength of the heating element 80, and the heating element 80 is fixed to the auxiliary material 90. Therefore, since the chilling unit 100F has the auxiliary member 90 fixed across the two support columns 70, the strength of the support column 70 can be secured as compared with the case where the auxiliary member 90 is not used, and heat is generated. The strength to support the body 80 can be increased. Similarly, the chilling unit 100G is fixed across the two support columns 70 and further has an auxiliary member 90E that increases the supporting strength of the heating element 80A, and the heating element 80A is fixed to the auxiliary member 90E. .. By having the auxiliary material 90E fixed across the two support columns 70, the chilling unit 100G can secure the strength of the support column 70 as compared with the case where the auxiliary material 90E is not used, and the heating element 80A. The strength to support the can be increased.
実施の形態5.
 図26は、実施の形態5に係るチリングユニット100Hの長手方向の端面20A側の正面図である。図27は、実施の形態5に係る他のチリングユニット100Iの長手方向の端面20A側の正面図である。チリングユニット100は、上述したように、長手方向(X軸方向)に見た場合に、空気熱交換器1と機械室ユニット4とによって、Y字状に構成されている。しかし、チリングユニット100の構成は、長手方向(X軸方向)に見た場合に、Y字状に構成された態様に限定されるものではなく、他の形状に構成されてもよい。例えば、チリングユニット100は、図26に示すチリングユニット100Hのように、長手方向(X軸方向)に見た場合に、空気熱交換器1と機械室ユニット4とによって、X字状に構成されてもよい。また、チリングユニット100は、図27に示すチリングユニット100Iのように、長手方向(X軸方向)に見た場合に、空気熱交換器1と機械室ユニット4とによって、V字状に構成されてもよい。
Embodiment 5.
FIG. 26 is a front view of the chilling unit 100H according to the fifth embodiment on the end face 20A side in the longitudinal direction. FIG. 27 is a front view of the other chilling unit 100I according to the fifth embodiment on the end face 20A side in the longitudinal direction. As described above, the chilling unit 100 is formed in a Y shape by the air heat exchanger 1 and the machine room unit 4 when viewed in the longitudinal direction (X-axis direction). However, the configuration of the chilling unit 100 is not limited to the Y-shaped configuration when viewed in the longitudinal direction (X-axis direction), and may be configured in other shapes. For example, the chilling unit 100 is formed in an X shape by the air heat exchanger 1 and the machine room unit 4 when viewed in the longitudinal direction (X-axis direction) like the chilling unit 100H shown in FIG. 26. You may. Further, the chilling unit 100 is formed in a V shape by the air heat exchanger 1 and the machine room unit 4 when viewed in the longitudinal direction (X-axis direction) like the chilling unit 100I shown in FIG. 27. You may.
[チリングユニット100H及びチリングユニット100Iの作用効果]
 チリングユニット100H及びチリングユニット100Iは、チリングユニット100と同様に発熱体80を有しているので、上述したチリングユニット100~チリングユニット100Gと同様の効果を発揮させることができる。
[Action and effect of chilling unit 100H and chilling unit 100I]
Since the chilling unit 100H and the chilling unit 100I have a heating element 80 like the chilling unit 100, the same effects as those of the chilling unit 100 to the chilling unit 100G described above can be exhibited.
実施の形態6.
[チリングユニットシステム110]
 図28は、実施の形態6に係るチリングユニットシステム110を示した斜視図である。なお、図1~図27のチリングユニット100等と同一の構成を有する部位には同一の符号を付してその説明を省略する。
Embodiment 6.
[Chilling unit system 110]
FIG. 28 is a perspective view showing the chilling unit system 110 according to the sixth embodiment. The parts having the same configuration as the chilling unit 100 and the like shown in FIGS. 1 to 27 are designated by the same reference numerals, and the description thereof will be omitted.
 図28に示すように、チリングユニットシステム110は、複数のチリングユニット100を有している。チリングユニットシステム110は、チリングユニット100をチリングユニット100の短手方向(Y軸方向)に並列させて複数台設置して構成される。チリングユニットシステム110は、複数台のチリングユニット100の長手方向(X事項方向)が平行となるように設置される。 As shown in FIG. 28, the chilling unit system 110 has a plurality of chilling units 100. The chilling unit system 110 is configured by installing a plurality of chilling units 100 in parallel in the lateral direction (Y-axis direction) of the chilling unit 100. The chilling unit system 110 is installed so that the longitudinal directions (directions of X items) of the plurality of chilling units 100 are parallel to each other.
[チリングユニットシステム110の作用効果]
 チリングユニットシステム110は、複数のチリングユニット100を有しているので、上述したチリングユニット100~チリングユニット100Iと同様の効果を発揮させることができる。
[Action and effect of chilling unit system 110]
Since the chilling unit system 110 has a plurality of chilling units 100, the same effects as those of the chilling unit 100 to the chilling unit 100I described above can be exhibited.
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above embodiments is an example, and can be combined with another known technique, and a part of the configuration is omitted or modified without departing from the gist of the present invention. It is also possible to do.
 1 空気熱交換器、1A 空気熱交換器、1B 空気熱交換器、1C 空気熱交換器、1D 空気熱交換器、3 熱交換器、4 機械室ユニット、5 ファン、5A ファン、5B ファン、5C ファン、5D ファン、6A ベルマウス、6B ベルマウス、6C ベルマウス、6D ベルマウス、7 伝熱管、8 フィン、10 ベース、11a 上端部、11b 下端部、14 空気吹出口、17 ファンガード、20A 端面、31 圧縮機、33 流路切替装置、40 フレーム、41 台枠、42 門柱、42A 門柱、42B 門柱、42C 門柱、42D 門柱、43 中間柱、43A 中間柱、43B 中間柱、43C 中間柱、43D 中間柱、44 上部梁、45 側壁、45a 第1側壁、45b 第2側壁、50 側面パネル、51 側面パネル、51a 上縁部、51b 下縁部、51d 凹部、51h パネル貫通孔、55 ドレンパン、60 天枠、70 支持柱、71 壁、80 発熱体、80A 発熱体、80B 発熱体、80C 発熱体、81 インバータ、82 ヒートシンク、83a 内側壁、83b 外側壁、83c 短側壁、83d 下面壁、84a 内側壁貫通孔、84b 外側壁貫通孔、84c 短側壁貫通孔、85 ケーブル取り入れ口、86 凸部、90 補助材、90E 補助材、90b 直線部、90c 屈曲部、100 チリングユニット、100A チリングユニット、100B チリングユニット、100C チリングユニット、100D チリングユニット、100E チリングユニット、100F チリングユニット、100G チリングユニット、100H チリングユニット、100I チリングユニット、110 チリングユニットシステム、151 側面パネル。 1 air heat exchanger, 1A air heat exchanger, 1B air heat exchanger, 1C air heat exchanger, 1D air heat exchanger, 3 heat exchanger, 4 machine room unit, 5 fan, 5A fan, 5B fan, 5C Fan, 5D fan, 6A bell mouse, 6B bell mouse, 6C bell mouse, 6D bell mouse, 7 heat transfer tube, 8 fins, 10 base, 11a upper end, 11b lower end, 14 air outlet, 17 fan guard, 20A end face , 31 compressor, 33 flow path switching device, 40 frame, 41 underframe, 42 gate pillar, 42A gate pillar, 42B gate pillar, 42C gate pillar, 42D gate pillar, 43 intermediate pillar, 43A intermediate pillar, 43B intermediate pillar, 43C intermediate pillar, 43D Intermediate pillar, 44 upper beam, 45 side wall, 45a first side wall, 45b second side wall, 50 side panel, 51 side panel, 51a upper edge, 51b lower edge, 51d recess, 51h panel through hole, 55 drain pan, 60 Top frame, 70 support pillar, 71 wall, 80 heat exchanger, 80A heat exchanger, 80B heat exchanger, 80C heat exchanger, 81 inverter, 82 heat exchanger, 83a inner side wall, 83b outer wall, 83c short side wall, 83d lower wall, 84a inside Wall through hole, 84b outer wall through hole, 84c short side wall through hole, 85 cable intake, 86 convex part, 90 auxiliary material, 90E auxiliary material, 90b straight part, 90c bent part, 100 chilling unit, 100A chilling unit, 100B Chilling unit, 100C chilling unit, 100D chilling unit, 100E chilling unit, 100F chilling unit, 100G chilling unit, 100H chilling unit, 100I chilling unit, 110 chilling unit system, 151 side panel.

Claims (15)

  1.  冷媒と空気との間で熱交換を行う複数の空気熱交換器と、前記複数の空気熱交換器の上方に配置されるファンと、長尺の箱形に形成され、前記複数の空気熱交換器が載置される機械室ユニットとを備えるチリングユニットであって、
     箱状に形成されており、内部に収容された前記チリングユニットの運転に必要な電気回路部品によって、前記チリングユニットの運転時に発熱する発熱体を備え、
     前記発熱体は、
     前記ファンの駆動により前記複数の空気熱交換器に吸い込まれる空気の流れ上に配置され、かつ、前記チリングユニットの長手方向の端面側に配置されているチリングユニット。
    A plurality of air heat exchangers that exchange heat between the refrigerant and air, a fan arranged above the plurality of air heat exchangers, and the plurality of air heat exchanges formed in a long box shape. A chilling unit that includes a machine room unit on which the vessel is placed.
    It is formed in a box shape, and is provided with a heating element that generates heat when the chilling unit is operated by the electric circuit components housed therein and necessary for the operation of the chilling unit.
    The heating element is
    A chilling unit arranged on a flow of air sucked into the plurality of air heat exchangers by driving the fan, and arranged on the end face side in the longitudinal direction of the chilling unit.
  2.  前記発熱体は、
     前記機械室ユニットに対して前記複数の空気熱交換器側に配置されている請求項1に記載のチリングユニット。
    The heating element is
    The chilling unit according to claim 1, which is arranged on the side of the plurality of air heat exchangers with respect to the machine room unit.
  3.  前記発熱体は、
     少なくとも1つ以上の排熱用の貫通孔が形成された側壁を有する請求項1又は2に記載のチリングユニット。
    The heating element is
    The chilling unit according to claim 1 or 2, which has a side wall formed with at least one through hole for exhaust heat.
  4.  前記複数の空気熱交換器は、
     前記機械室ユニットの短手方向に沿って対向して配置されている一対の空気熱交換器を有し、
     前記一対の空気熱交換器は、
     前記機械室ユニットから遠い側の上端部同士の間隔が、前記機械室ユニットに近い側の下端部同士の間隔よりも大きくなるよう傾斜して配置されていると共に、前記一対の空気熱交換器の間の空間を塞ぐように、前記チリングユニットの長手方向の端部に配置された側面パネルを有し、
     前記発熱体は、
     前記側面パネルと対向するように配置されている請求項1~3のいずれか1項に記載のチリングユニット。
    The plurality of air heat exchangers
    It has a pair of air heat exchangers arranged opposite each other along the lateral direction of the machine room unit.
    The pair of air heat exchangers
    The distance between the upper ends on the side far from the machine room unit is inclined so as to be larger than the distance between the lower ends on the side closer to the machine room unit, and the pair of air heat exchangers are arranged. It has side panels arranged at the longitudinal ends of the chilling unit so as to close the space between them.
    The heating element is
    The chilling unit according to any one of claims 1 to 3, which is arranged so as to face the side panel.
  5.  前記複数の空気熱交換器は、
     前記機械室ユニットの短手方向に沿って対向して配置されている一対の空気熱交換器を有し、
     前記一対の空気熱交換器は、
     前記機械室ユニットから遠い側の上端部同士の間隔が、前記機械室ユニットに近い側の下端部同士の間隔よりも大きくなるよう傾斜して配置されていると共に、前記一対の空気熱交換器の間の空間を塞ぐように、前記チリングユニットの長手方向の端部に配置された側面パネルを有し、
     前記側面パネルは、
     前記側壁の前記貫通孔と対向するように形成されたパネル貫通孔を形成している請求項3に記載のチリングユニット。
    The plurality of air heat exchangers
    It has a pair of air heat exchangers arranged opposite each other along the lateral direction of the machine room unit.
    The pair of air heat exchangers
    The distance between the upper ends on the side far from the machine room unit is inclined so as to be larger than the distance between the lower ends on the side closer to the machine room unit, and the pair of air heat exchangers are arranged. It has side panels arranged at the longitudinal ends of the chilling unit so as to close the space between them.
    The side panel
    The chilling unit according to claim 3, wherein a panel through hole formed so as to face the through hole on the side wall is formed.
  6.  前記発熱体は、
     前記側面パネルに向かって突出した凸部を有し、
     前記側面パネルは、前記凸部が収容される凹部を有し、
     前記凸部と前記凹部が当接する請求項4又は5に記載のチリングユニット。
    The heating element is
    It has a convex portion protruding toward the side panel and has a convex portion.
    The side panel has a recess in which the protrusion is housed.
    The chilling unit according to claim 4 or 5, wherein the convex portion and the concave portion come into contact with each other.
  7.  前記複数の空気熱交換器の上方に配置され、前記ファンが取り付けられる天枠と、
     前記機械室ユニットと、前記天枠とを固定する支持柱と、
    を有し、
     前記発熱体は、
     前記支持柱に固定されている請求項1~6のいずれか1項に記載のチリングユニット。
    A top frame arranged above the plurality of air heat exchangers and to which the fan is mounted,
    A support pillar for fixing the machine room unit and the top frame,
    Have,
    The heating element is
    The chilling unit according to any one of claims 1 to 6, which is fixed to the support pillar.
  8.  前記支持柱は、
     前記チリングユニットの長手方向の両端部にそれぞれ2本ずつ設けられており、
     前記発熱体は、
     2本の前記支持柱に跨るように取り付けられている請求項7に記載のチリングユニット。
    The support pillar
    Two of each of the chilling units are provided at both ends in the longitudinal direction.
    The heating element is
    The chilling unit according to claim 7, which is attached so as to straddle the two support columns.
  9.  前記発熱体は、
     前記発熱体の左右方向の幅が、前記チリングユニットの短手方向における2本の前記支持柱の外側の壁の間の距離と等しくなるように形成されている請求項7又は8に記載のチリングユニット。
    The heating element is
    The chilling according to claim 7 or 8, wherein the width in the left-right direction of the heating element is formed to be equal to the distance between the outer walls of the two support columns in the lateral direction of the chilling unit. unit.
  10.  前記発熱体は、
     前記発熱体の左右方向の幅が、前記チリングユニットの短手方向における2本の前記支持柱の外側の壁の間の距離よりも大きくなるように形成されている請求項7又は8に記載のチリングユニット。
    The heating element is
    The seventh or eighth aspect of the present invention, wherein the width of the heating element in the left-right direction is formed so as to be larger than the distance between the outer walls of the two support columns in the lateral direction of the chilling unit. Chilling unit.
  11.  2本の前記支持柱に跨って固定され、前記発熱体の支持強度を増加させる補助材を更に有し、
     前記発熱体は、
     前記補助材に固定されている請求項7~10のいずれか1項に記載のチリングユニット。
    It further has an auxiliary material that is fixed across the two support columns and increases the support strength of the heating element.
    The heating element is
    The chilling unit according to any one of claims 7 to 10, which is fixed to the auxiliary material.
  12.  前記長手方向に見た場合に、前記複数の空気熱交換器と前記機械室ユニットとによって、Y字状に構成されている請求項1~11のいずれか1項に記載のチリングユニット。 The chilling unit according to any one of claims 1 to 11, which is formed in a Y shape by the plurality of air heat exchangers and the machine room unit when viewed in the longitudinal direction.
  13.  前記発熱体は、
     前記機械室ユニット内に収容された圧縮機を制御するインバータを備えた制御箱である請求項1~12のいずれか1項に記載のチリングユニット。
    The heating element is
    The chilling unit according to any one of claims 1 to 12, which is a control box including an inverter for controlling a compressor housed in the machine room unit.
  14.  前記発熱体は、
     アクティブフィルタである請求項1~12のいずれか1項に記載のチリングユニット。
    The heating element is
    The chilling unit according to any one of claims 1 to 12, which is an active filter.
  15.  請求項1~14のいずれか1項に記載のチリングユニットを複数台設置して構成されるチリングユニットシステム。 A chilling unit system configured by installing a plurality of chilling units according to any one of claims 1 to 14.
PCT/JP2019/031083 2019-08-07 2019-08-07 Chilling unit and chilling unit system WO2021024406A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021538610A JP7204928B2 (en) 2019-08-07 2019-08-07 Chilling unit and chilling unit system
PCT/JP2019/031083 WO2021024406A1 (en) 2019-08-07 2019-08-07 Chilling unit and chilling unit system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/031083 WO2021024406A1 (en) 2019-08-07 2019-08-07 Chilling unit and chilling unit system

Publications (1)

Publication Number Publication Date
WO2021024406A1 true WO2021024406A1 (en) 2021-02-11

Family

ID=74503994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031083 WO2021024406A1 (en) 2019-08-07 2019-08-07 Chilling unit and chilling unit system

Country Status (2)

Country Link
JP (1) JP7204928B2 (en)
WO (1) WO2021024406A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7132651B1 (en) 2021-05-31 2022-09-07 オリオン機械株式会社 temperature controller
JP7188721B1 (en) 2021-05-31 2022-12-13 オリオン機械株式会社 temperature controller

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52150059U (en) * 1976-05-10 1977-11-14
JPS6166756U (en) * 1984-10-02 1986-05-08
JPH11311427A (en) * 1999-03-18 1999-11-09 Sanyo Electric Co Ltd Heat exchanger
JP2000111100A (en) * 1998-09-30 2000-04-18 Fujitsu General Ltd Outdoor unit
JP2002071166A (en) * 2000-08-30 2002-03-08 Nakano Refrigerators Co Ltd Air-cooled condenser
JP2004156814A (en) * 2002-11-05 2004-06-03 Daikin Ind Ltd Electrical equipment box for outdoor unit
JP2012013302A (en) * 2010-06-30 2012-01-19 Nippon Itomic Co Ltd Heat pump type heat source machine
JP2013234802A (en) * 2012-05-09 2013-11-21 Mitsubishi Heavy Ind Ltd Heat exchanging unit
JP2018169129A (en) * 2017-03-30 2018-11-01 ダイキン工業株式会社 Heat source unit of freezer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58480U (en) * 1981-06-25 1983-01-05 松下精工株式会社 Electrical box mounting device
JP2714213B2 (en) * 1990-03-14 1998-02-16 三洋電機株式会社 Heat exchange unit

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52150059U (en) * 1976-05-10 1977-11-14
JPS6166756U (en) * 1984-10-02 1986-05-08
JP2000111100A (en) * 1998-09-30 2000-04-18 Fujitsu General Ltd Outdoor unit
JPH11311427A (en) * 1999-03-18 1999-11-09 Sanyo Electric Co Ltd Heat exchanger
JP2002071166A (en) * 2000-08-30 2002-03-08 Nakano Refrigerators Co Ltd Air-cooled condenser
JP2004156814A (en) * 2002-11-05 2004-06-03 Daikin Ind Ltd Electrical equipment box for outdoor unit
JP2012013302A (en) * 2010-06-30 2012-01-19 Nippon Itomic Co Ltd Heat pump type heat source machine
JP2013234802A (en) * 2012-05-09 2013-11-21 Mitsubishi Heavy Ind Ltd Heat exchanging unit
JP2018169129A (en) * 2017-03-30 2018-11-01 ダイキン工業株式会社 Heat source unit of freezer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7132651B1 (en) 2021-05-31 2022-09-07 オリオン機械株式会社 temperature controller
JP7188721B1 (en) 2021-05-31 2022-12-13 オリオン機械株式会社 temperature controller
JP2022183431A (en) * 2021-05-31 2022-12-13 オリオン機械株式会社 Temperature control device
JP2022188771A (en) * 2021-05-31 2022-12-21 オリオン機械株式会社 Temperature control device

Also Published As

Publication number Publication date
JP7204928B2 (en) 2023-01-16
JPWO2021024406A1 (en) 2021-12-23

Similar Documents

Publication Publication Date Title
KR101419204B1 (en) Outdoor unit for air conditioning device
JP5310887B2 (en) Outdoor unit and refrigeration equipment
US10274246B2 (en) Outdoor unit of air conditioning device
JP5500725B2 (en) Heat pump type heat source machine
WO2010095470A1 (en) Heat exchanger, outdoor unit, and freezer device
EP2787291A1 (en) Outdoor machine for an air-conditioning device
CN110785613B (en) Outdoor unit of refrigerator
WO2021024406A1 (en) Chilling unit and chilling unit system
JP5812365B2 (en) Heat pump type heat source machine
WO2021024403A1 (en) Chilling unit
CN110770507A (en) Outdoor unit of refrigerator
JP7209845B2 (en) Chilling unit and chilling unit system
US20230010232A1 (en) Outdoor unit for refrigeration cycle apparatus
JP6107057B2 (en) Air conditioner outdoor unit
WO2018061071A1 (en) Outdoor unit of air conditioner
WO2023053280A1 (en) Chilling unit and chilling unit system
JP2013076521A (en) Outdoor unit of air conditioner
JP6974754B2 (en) Outdoor unit of refrigeration equipment
JP7258053B2 (en) Bottom panel and outdoor unit of air conditioner
WO2021234960A1 (en) Outdoor unit for air conditioner
EP3492833A1 (en) Refrigerating cycle device
JP6742721B2 (en) Cooler unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19940670

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021538610

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19940670

Country of ref document: EP

Kind code of ref document: A1