WO2017221382A1 - Binary refrigeration device - Google Patents

Binary refrigeration device Download PDF

Info

Publication number
WO2017221382A1
WO2017221382A1 PCT/JP2016/068697 JP2016068697W WO2017221382A1 WO 2017221382 A1 WO2017221382 A1 WO 2017221382A1 JP 2016068697 W JP2016068697 W JP 2016068697W WO 2017221382 A1 WO2017221382 A1 WO 2017221382A1
Authority
WO
WIPO (PCT)
Prior art keywords
low
refrigerant
side refrigerant
expansion valve
condenser
Prior art date
Application number
PCT/JP2016/068697
Other languages
French (fr)
Japanese (ja)
Inventor
智也 藤本
智隆 石川
悠介 有井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018523237A priority Critical patent/JP6664478B2/en
Priority to GB1818273.3A priority patent/GB2565472B/en
Priority to PCT/JP2016/068697 priority patent/WO2017221382A1/en
Publication of WO2017221382A1 publication Critical patent/WO2017221382A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/06Superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0417Refrigeration circuit bypassing means for the subcooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0419Refrigeration circuit bypassing means for the superheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • F25B2400/121Inflammable refrigerants using R1234
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/22Refrigeration systems for supermarkets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Definitions

  • the present invention relates to a binary refrigeration apparatus, and more particularly to a binary refrigeration apparatus having an auxiliary radiator on the low-source refrigeration cycle side.
  • a high-source refrigeration cycle that is a refrigeration cycle device for circulating a high-temperature side refrigerant
  • a low-source that is a refrigeration cycle device for circulating a cold-temperature side refrigerant
  • a binary refrigeration apparatus having a refrigeration cycle is used.
  • a binary refrigeration system for example, a cascade condenser configured so that heat exchange can be performed between a low-source side condenser in a low-source refrigeration cycle and a high-side evaporator in a high-source refrigeration cycle, The original refrigeration cycle and the high refrigeration cycle are connected.
  • an auxiliary radiator is installed in front of the cascade condenser, and the refrigerant discharged from the low-temperature side compressor is radiated by the auxiliary radiator to be cooled, thereby improving the operation efficiency.
  • the present invention has been made in view of the above-described problems in the prior art, and provides a binary refrigeration apparatus capable of improving the heat exchange amount in an auxiliary radiator while improving the refrigeration capacity in a high-source refrigeration cycle.
  • the purpose is to provide.
  • the binary refrigeration apparatus of the present invention is a high-side refrigerant that connects a high-side compressor, a high-side condenser, a high-side expansion valve, and a high-side evaporator through piping and circulates the high-side refrigerant.
  • a high-source refrigeration cycle that forms a circuit, and a low-side compressor, auxiliary radiator, low-side condenser, low-side expansion valve, and low-side evaporator are connected by piping to circulate the low-side refrigerant.
  • a low original refrigeration cycle that forms a low original refrigerant circuit, the high original evaporator and the low original condenser, the high original refrigerant flowing through the high original refrigerant circuit, and the low original
  • a two-stage refrigeration apparatus comprising a first cascade condenser that exchanges heat with the low-side refrigerant flowing in the side-side refrigerant circuit, from the downstream of the high-side condenser in the high-source refrigeration cycle
  • a branch circuit that branches and returns to the upstream side of the high-side expansion valve; and the branch circuit provided in the branch circuit. Operation of each device provided in the second cascade condenser that exchanges heat between the flowing high-side refrigerant and the low-side refrigerant flowing out of the low-side evaporator, and the binary refrigeration apparatus And a control device for controlling.
  • the low-source side refrigerant discharged from the low-side compressor is provided with superheat to the low-side refrigerant using the second cascade condenser.
  • the discharge temperature By increasing the discharge temperature, the amount of heat exchange in the auxiliary radiator can be improved, and the high-side enthalpy can be increased to improve the high-side refrigeration capacity.
  • FIG. 3 is a block diagram illustrating an example of a configuration of a binary refrigeration apparatus according to Embodiment 1.
  • FIG. It is a block diagram which shows an example of a structure of the binary refrigeration apparatus which concerns on Embodiment 2.
  • FIG. 6 is a block diagram illustrating an example of a configuration of a binary refrigeration apparatus according to Embodiment 3.
  • FIG. It is a block diagram which shows an example of a structure of the binary refrigeration apparatus which concerns on Embodiment 4.
  • Embodiment 1 FIG.
  • the binary refrigeration apparatus according to Embodiment 1 of the present invention will be described.
  • FIG. 1 is a block diagram illustrating an example of the configuration of the binary refrigeration apparatus 1 according to the first embodiment.
  • the binary refrigeration apparatus 1 includes a low original refrigeration cycle 10, a high original refrigeration cycle 20, and a control device 40.
  • the low-source refrigeration cycle 10 and the high-source refrigeration cycle 20 constitute a refrigerant circuit that circulates the refrigerant independently of each other.
  • a low-source side condenser 13 in a low-source refrigeration cycle 10 to be described later, and a high-side evaporator 24 in a high-source refrigeration cycle 20 are coupled so as to exchange heat between the refrigerants passing through the first cascade capacitor 30.
  • FIG. 1 shows the direction through which a refrigerant
  • the expression of elevation including temperature, pressure, etc. is not particularly defined in relation to absolute values, but is relatively determined by the state, operation, etc. of the system, device, etc.
  • the low-side compressor 11 sucks low-temperature and low-pressure low-side refrigerant, compresses the refrigerant, and discharges it in a high-temperature and high-pressure state.
  • the low-source side compressor 11 for example, an inverter compressor that can control the rotation speed by an inverter circuit or the like and can control the capacity can be used.
  • the auxiliary radiator 12 performs heat exchange between the low-side refrigerant discharged from the low-side compressor 11 and the outside air such as outdoor air.
  • the auxiliary radiator 12 is a heat exchanger that heats the outside air by releasing heat from the low-side refrigerant to the outside air.
  • the auxiliary radiator 12 functions as a gas cooler, for example, and exchanges heat with outside air, water, brine, and the like.
  • the low-side condenser 13 condenses and liquefies the low-side refrigerant that has passed through the auxiliary radiator 12 to form a liquid refrigerant.
  • the low-side condenser 13 is configured by a heat transfer tube or the like through which the low-side refrigerant flowing through the low-source refrigeration cycle 10 passes, and the low-side refrigerant is high It is assumed that heat exchange is performed with the refrigerant flowing through the refrigeration cycle 20.
  • the low-side expansion valve 14 expands by reducing the pressure by adjusting the flow rate of the low-side refrigerant that has passed through the low-side condenser 13.
  • a flow rate control means such as an electronic expansion valve, a capillary such as a capillary, a refrigerant flow rate adjustment means such as a temperature-sensitive expansion valve, or the like can be used.
  • the low-side evaporator 15 performs heat exchange between the low-side refrigerant decompressed by the low-side expansion valve 14 and room air such as air in a freezing room that is a cooling target. It is evaporated into a gaseous refrigerant.
  • the object to be cooled is cooled directly or indirectly by heat exchange with the low-source refrigerant.
  • the high-source refrigeration cycle 20 includes a high-side compressor 21, a high-side condenser 22, a high-side expansion valve 23, and a high-side evaporator 24.
  • the high-source refrigeration cycle 20 forms a high-side refrigerant circuit in which the high-side refrigerant circulates by sequentially connecting these devices in a ring shape through refrigerant piping.
  • a branch circuit 20a in which refrigerant piping branches is formed between the high-source side condenser 22 and the high-source side expansion valve 23.
  • the branch circuit 20 a is formed so as to branch from the downstream side of the high-side condenser 22 and return to the upstream side of the high-side expansion valve 23.
  • the branch circuit 20 a is provided with a second cascade capacitor 26.
  • the high-end compressor 21 sucks low-temperature and low-pressure high-end refrigerant, compresses the refrigerant, and discharges it in a high-temperature and high-pressure state.
  • the high-end compressor 21 for example, an inverter compressor or the like whose capacity can be controlled by controlling the rotation speed by an inverter circuit or the like can be used.
  • the high-side expansion valve 23 is a decompression device, a throttling device, or the like, and expands by reducing the pressure by adjusting the flow rate of the high-side refrigerant that has passed through the high-side condenser 22.
  • a flow rate control unit such as an electronic expansion valve, a capillary tube such as a capillary, a refrigerant flow rate adjustment unit such as a temperature-sensitive expansion valve, or the like can be used.
  • the high original side evaporator 24 performs heat exchange between the high original side refrigerant decompressed by the high original side expansion valve 23 and the low original side refrigerant that has passed through the auxiliary radiator 12 of the low original refrigeration cycle 10.
  • the high-side refrigerant is evaporated to form a low-temperature gaseous refrigerant.
  • the high-side evaporator 24 is configured by a heat transfer tube or the like through which the high-side refrigerant flowing through the high-source refrigeration cycle 20 passes in the first cascade condenser 30, and the high-side refrigerant is low It is assumed that heat exchange is performed with the low-source refrigerant flowing through the refrigeration cycle 10.
  • the second cascade condenser 26 is a medium-high-pressure liquid high-side refrigerant condensed and liquefied by the high-side condenser 22 and a low-temperature low-pressure gaseous low-side refrigerant that is sucked into the low-side compressor 11.
  • Exchange heat it is assumed that the temperature of the high-side refrigerant condensed and liquefied by the high-side condenser 22 is higher than the temperature of the low-side refrigerant sucked into the low-side compressor 11.
  • the high-side refrigerant becomes a liquid refrigerant to which a degree of supercooling is given, and flows into the high-side expansion valve 23 via the branch circuit 20a.
  • the low-source side refrigerant becomes a gas refrigerant to which the degree of superheat is imparted, and is sucked into the low-source side compressor 11.
  • the first cascade condenser 30 is an inter-refrigerant heat exchanger that exchanges heat between the low-source side refrigerant flowing through the low-end side condenser 13 and the high-end side refrigerant flowing through the high-end side evaporator 24.
  • the first cascade capacitor 30 functions as the low-side condenser 13 and also functions as the high-side evaporator 24.
  • the control device 40 includes, for example, software executed on an arithmetic device such as a microcomputer or a CPU (Central Processing Unit), hardware such as a circuit device that realizes various functions, and the like. Control driving.
  • the control apparatus 40 is based on the operation information of the binary refrigeration apparatus 1 based on the information received from various detection means, and the operation content instruct
  • the outside temperature sensor 41 is connected to the control device 40.
  • the outside air temperature sensor 41 is provided for detecting the temperature of outside air such as outdoor air.
  • the outside air temperature sensor 41 supplies the detected outside air temperature to the control device 40.
  • the refrigerant circuit will be opened locally.
  • the refrigerant pipes are brazed at a plurality of locations on site by a contractor. Therefore, refrigerant leakage may occur from the brazed part.
  • the length of the refrigerant piping connected to the low-source side refrigeration equipment assumed to be placed outdoors is For example, it may reach about 100 m.
  • the number of places where pipes are connected on site increases further, so that the possibility of refrigerant leakage from the pipe connection part is further increased.
  • the length of the refrigerant pipe may be 100 m or more. Therefore, the possibility of refrigerant leakage is further increased.
  • the refrigerant pipes constructed locally will be placed in various environmental locations.
  • a refrigerated warehouse it may be placed in a corrosive environment due to corrosive gas generated from stored items.
  • Corrosion of copper in a corrosive atmosphere is generally considered to be ant colony corrosion by carboxylic acid such as acetic acid, stress corrosion cracking by ammonia or the like, corrosion by acid such as sulfurous acid gas, and the like.
  • sulfur-based gases such as hydrogen sulfide are used outdoors such as near hot springs and around food factories that produce processed products such as eggs. It is conceivable that corrosion of copper pipes due to sulfur-based substances occurs even in places where such a phenomenon occurs.
  • carbon dioxide (CO 2 ) having a small global warming potential (GWP) indicating an influence on global warming is used as the low-source refrigerant circulating in the low-source refrigeration cycle 10.
  • GWP global warming potential
  • a mixed refrigerant containing CO 2 is used.
  • HFC hydrofluorocarbon
  • R32, R404A, R407C, R410A, and HFC134a propane, isobutane, and the like
  • a refrigerant having a high global warming potential or a mixed refrigerant containing any of these may be used.
  • the low-source side refrigerant circulating in the low-source refrigeration cycle 10 and the high-source side refrigerant circulating in the high-source refrigeration cycle 20 it is more preferable to use a refrigerant that has higher efficiency than the low-source-side refrigerant circulating in the low-source refrigeration cycle 10.
  • the high-side compressor 21 sucks and compresses the high-side refrigerant and discharges it in a high-temperature and high-pressure state.
  • the discharged high-side refrigerant flows into the high-side condenser 22.
  • the high-side condenser 22 performs heat exchange between the outside air supplied by driving the fan 25 and the high-side refrigerant, and condenses and liquefies the high-side refrigerant.
  • the high-side refrigerant that has been condensed and liquefied passes through the high-side expansion valve 23.
  • the high-side expansion valve 23 depressurizes the high-side refrigerant that has been condensed and liquefied.
  • the reduced high-side refrigerant flows into the high-side evaporator 24.
  • the high-side evaporator 24 performs heat exchange between the high-side refrigerant depressurized by the first cascade condenser 30 and the low-side refrigerant passing through the low-side condenser 13, so that the high-side refrigerant is Is evaporated and gasified.
  • the high-side refrigerant that has been vaporized and gasified is sucked into the high-side compressor 21.
  • the high-side refrigerant condensed and liquefied by the high-side condenser 22 flows through the branch circuit 20a and also flows into the second cascade capacitor 26.
  • the second cascade capacitor 26 exchanges heat between the high-side refrigerant condensed and liquefied and the low-side refrigerant evaporated by the low-side evaporator 15 to increase the degree of supercooling in the high-side refrigerant.
  • the supercooling degree is given to the high-source-side refrigerant, the enthalpy in the high-source-side refrigerant circuit becomes larger than when the supercooling degree is not given.
  • the high-side refrigerant provided with the degree of supercooling flows through the branch circuit 20 a and passes through the high-side expansion valve 23.
  • the low-side compressor 11 sucks and compresses the low-side refrigerant and discharges it in a high-temperature and high-pressure state.
  • the discharged low-source-side refrigerant flows into the auxiliary radiator 12.
  • the auxiliary radiator 12 performs heat exchange between the outside air and the low-source side refrigerant.
  • the low-side refrigerant that has passed through the auxiliary radiator 12 flows into the low-side condenser 13.
  • the low-side condenser 13 performs heat exchange between the low-side refrigerant that has flowed in and the high-side refrigerant that passes through the high-side evaporator 24 by the first cascade condenser 30. To condense. The low-side refrigerant that has been condensed and liquefied passes through the low-side expansion valve 14. The low-side expansion valve 14 depressurizes the condensed low-side refrigerant. The reduced low-side refrigerant flows into the low-side evaporator 15.
  • the low-side evaporator 15 performs heat exchange between the reduced-low side refrigerant and the object to be cooled, and evaporates and gasifies the low-side refrigerant.
  • the low-source-side refrigerant that has been vaporized gas passes through the second cascade condenser 26.
  • the second cascade condenser 26 performs heat exchange between the low-source refrigerant that has been vaporized and the high-generator refrigerant that has been condensed and liquefied, and imparts superheat to the low-source refrigerant.
  • the low-source-side refrigerant to which the degree of superheat is imparted is sucked into the low-source-side compressor 11.
  • the low-side refrigerant indicating the discharge temperature of the low-side refrigerant discharged from the low-side compressor 11 is shown.
  • the discharge temperature is higher than when the superheat degree is not given.
  • the temperature difference between the temperature of the outside air and the low-side refrigerant discharge temperature becomes high.
  • the high-side compressor 21, the high-side condenser 22, the high-side expansion valve 23, and the high-side evaporator 24 are connected by piping.
  • a low-side refrigeration cycle 10 forming a low-side refrigerant circuit that circulates the low-side refrigerant and a high-side evaporator 24 and a low-side condenser 13.
  • a first cascade condenser 30 that exchanges heat between the high-end refrigerant flowing through the high-end refrigerant circuit and the low-end refrigerant flowing through the low-end refrigerant circuit.
  • the binary refrigeration apparatus 1 is provided in the branch circuit 20a that branches from the downstream of the high-side condenser 22 in the high-source refrigeration cycle 20 and returns to the upstream of the high-side expansion valve 23, and the branch circuit 20a.
  • a second cascade condenser 26 that exchanges heat between the high-end refrigerant flowing through the circuit 20a and the low-end refrigerant flowing out of the low-end evaporator 15, and each device provided in the binary refrigeration apparatus 1 And a control device 40 for controlling the operation.
  • the high original refrigerant flowing through the branch circuit 20a and the low original refrigerant flowing out of the low original evaporator 15 perform heat exchange, whereby the high original refrigerant Since the temperature is higher than the temperature of the low-source side refrigerant, the degree of supercooling is given to the high-source side refrigerant. At the same time, the degree of superheat is imparted to the low-source refrigerant.
  • the refrigeration capacity of the high-side refrigerant circuit that is, the high-source refrigeration cycle 20 is improved. Can do. Further, the capacity of the high-end compressor 21 can be reduced.
  • the degree of superheat of the low-side refrigerant sucked into the low-side compressor 11 is increased by giving the superheat degree to the low-side refrigerant, the low-side side in the low-side compressor 11
  • the refrigerant discharge temperature can be increased.
  • the temperature of the low-source side refrigerant flowing into the auxiliary radiator 12 can be made higher than before. Therefore, the temperature difference with the outside air which performs heat exchange in the auxiliary radiator 12 can be increased, the amount of heat exchange in the auxiliary radiator 12 can be improved, and the auxiliary radiator 12 can be effectively used.
  • Embodiment 2 the binary refrigeration apparatus 1 according to Embodiment 2 will be described.
  • the second embodiment is different from the first embodiment described above in that a flow rate adjusting valve is provided in the branch circuit 20a of the high-side refrigerant circuit.
  • FIG. 2 is a block diagram illustrating an example of the configuration of the binary refrigeration apparatus 1 according to the second embodiment.
  • the binary refrigeration apparatus 1 includes a low-source refrigeration cycle 10, a high-source refrigeration cycle 20, a first cascade capacitor 30, and a control device 40, as in the first embodiment.
  • a branch circuit 20 a is provided in the high-side refrigerant circuit of the refrigeration cycle 20.
  • the branch circuit 20a is provided with a flow rate adjusting valve 42.
  • a discharge temperature sensor 43 is provided on the discharge side of the low-source compressor 11.
  • the flow rate adjustment valve 42 is provided to adjust the flow rate of the high-side refrigerant flowing into the branch circuit 20a, and the opening degree is controlled by the control device 40.
  • a flow rate controlling means such as an electronic expansion valve, a capillary such as a capillary, a refrigerant flow rate adjusting means such as a temperature sensitive expansion valve, or the like can be used.
  • the discharge temperature sensor 43 is provided to detect the low-side refrigerant discharge temperature in the low-side compressor 11.
  • the discharge temperature sensor 43 supplies information indicating the detected low-source-side refrigerant discharge temperature to the control device 40.
  • control device 40 further controls the flow rate based on the outside air temperature supplied from the outside air temperature sensor 41 and the low-source refrigerant discharge temperature supplied from the discharge temperature sensor 43.
  • the opening degree of the regulating valve 42 is controlled.
  • the flow rate adjustment valve 42 When the temperature of the low-side refrigerant discharged from the low-side compressor 11 is low, the flow rate adjustment valve 42 is set to the “open” state. In this case, the high-side condensed and liquefied by the high-side condenser 22 The side refrigerant passes through the high-side expansion valve 23 and also flows into the branch circuit 20a. The high-side refrigerant that has flowed into the branch circuit 20a flows into the second cascade condenser 26 and exchanges heat with the low-side refrigerant that has been vaporized and gasified by the low-side evaporator 15. Thereby, a supercooling degree is provided to the high-source side refrigerant. The high-side refrigerant provided with the degree of supercooling flows through the branch circuit 20 a and passes through the high-side expansion valve 23.
  • the flow rate adjustment valve 42 is in a “closed” state, and in this case, the low-side side refrigerant 22 is condensed and liquefied by the high-side condenser 22.
  • the high-side refrigerant does not flow into the branch circuit 20a and passes through the high-side expansion valve 23.
  • the high-side refrigerant that has passed through the high-side expansion valve 23 is decompressed and flows into the high-side evaporator 24.
  • the high-side refrigerant flowing into the high-side evaporator 24 is heat-exchanged with the low-side refrigerant passing through the low-side condenser 13 by the first cascade condenser 30, and is evaporated and gasified. Is done. Then, the high-side refrigerant that has been vaporized is sucked into the high-side compressor 21.
  • the heat exchange amount Q [W] indicating the capability of the heat exchanger can be generally expressed by the formula (1).
  • K indicates the heat passage rate [W / m 2 ⁇ K] of the heat exchanger, and is determined by the specifications of the heat exchanger and the air volume combined in the case of the air heat exchanger. Is done.
  • A indicates the heat transfer area [m 2 ] of the heat exchanger, and is determined by the area of the heat exchanger.
  • ⁇ T m indicates an average temperature difference [K] between the two media that perform heat exchange.
  • heat transfer coefficient K and the heat transfer area A is always assumed to take the same value, by increasing the average temperature difference [Delta] T m, it is possible to increase the heat exchange amount Q. That is, by increasing the temperature of the refrigerant flowing into the heat exchanger, it is possible to increase the average temperature difference [Delta] T m, it is possible to increase the heat exchange amount Q.
  • the low-end side refrigerant discharge temperature in the low-end side compressor 11 can be increased by controlling the opening degree of the flow rate adjusting valve 42, and thereby the auxiliary radiator 12.
  • the temperature of the low-side refrigerant flowing into the refrigerant increases, and the amount of heat exchange in the auxiliary radiator 12 can be increased.
  • control for improving the refrigeration capacity in the low-source refrigeration cycle 10 and the high-source refrigeration cycle 20 will be described.
  • a case is considered in which, based on control by the control device 40, the opening degree of the low-side expansion valve 14 is increased so that the low-side refrigerant flowing out of the low-side evaporator 15 enters a gas-liquid two-phase state.
  • the low-side refrigerant in the gas-liquid two-phase state and the cooling target such as air in the refrigerator Will exchange heat.
  • the amount of heat exchange in the second cascade condenser 26 that performs heat exchange between the low-side refrigerant flowing out of the low-side evaporator 15 and the high-side refrigerant flowing through the branch circuit 20a also increases. Therefore, the degree of supercooling imparted to the high-source-side refrigerant can be increased, and the enthalpy in the high-source-side refrigerant circuit is increased, so that the refrigeration capacity of the high-source refrigeration cycle 20 can be improved.
  • the binary refrigeration apparatus 1 detects the outside air temperature sensor 41 that detects the temperature of the outside air and the discharge temperature of the low-side refrigerant discharged from the low-side compressor 11. And a flow rate adjusting valve 42 for adjusting the flow rate of the high-side refrigerant flowing into the branch circuit 20a.
  • the control device 40 detects the detection result by the outside air temperature sensor 41 and the discharge temperature sensor 43. Based on the detection result, the opening degree of the flow rate adjustment valve 42 is controlled.
  • the opening degree of the flow rate adjustment valve 42 is controlled based on the low-source refrigerant discharge temperature detected by the discharge temperature sensor 43 and the outside air temperature detected by the outside air temperature sensor 41. To do. Therefore, the temperature difference between the low-side refrigerant discharge temperature flowing into the auxiliary radiator 12 and the outside air temperature can be increased, and the auxiliary radiator 12 can be effectively used as in the first embodiment. As a result, even when the low-side refrigerant discharge temperature in the low-side compressor 11 is difficult to rise and the evaporation temperature of the low-side evaporator 15 is high, the cooling capacity of the low-side refrigerant circuit is ensured. be able to.
  • an upper limit is set for the discharge temperature of the compressor in order to prevent problems such as failure of the compressor.
  • the temperature of the low-side refrigerant sucked into the low-side compressor 11 is adjusted by controlling the opening degree of the flow rate adjustment valve 42, and the low-side side in the low-side compressor 11 is adjusted.
  • the refrigerant discharge temperature can be adjusted. For this reason, it is possible to prevent a malfunction of the low-side compressor 11 due to an increase in the low-side refrigerant discharge temperature, and to extend the life of the low-side compressor 11.
  • Embodiment 3 the binary refrigeration apparatus 1 according to the third embodiment will be described.
  • the third embodiment is that a low-side injection circuit that connects between the low-side condenser and the low-side expansion valve and between the low-side evaporator and the low-side compressor is provided. This is different from the second embodiment described above.
  • FIG. 3 is a block diagram illustrating an example of the configuration of the binary refrigeration apparatus 1 according to the third embodiment.
  • the binary refrigeration apparatus 1 includes a low-source refrigeration cycle 10, a high-source refrigeration cycle 20 provided with a branch circuit 20a, a first cascade capacitor 30, and a control device, as in the second embodiment. 40.
  • the low-source side refrigerant circuit of the low-source refrigeration cycle 10 is formed with a low-source-side injection circuit 10a.
  • the low-side injection circuit 10 a is a branch circuit that connects between the low-side condenser 13 and the low-side expansion valve 14 and between the low-side evaporator 15 and the low-side compressor 11.
  • the low expansion side injection circuit 10a is provided with an injection expansion valve 51.
  • the injection expansion valve 51 is provided to adjust the flow rate of the low-side refrigerant flowing into the low-side injection circuit 10a, and the opening degree is controlled by the control device 40.
  • a flow rate control means such as an electronic expansion valve, a capillary such as a capillary, a refrigerant flow rate adjustment means such as a temperature-sensitive expansion valve, or the like can be used.
  • an electronic expansion valve capable of adjusting the low-side refrigerant discharge temperature in the low-side compressor 11 can be used as the injection expansion valve 51.
  • the control device 40 controls the opening degree of the injection expansion valve 51 based on the low-side refrigerant discharge temperature in the low-side compressor 11 supplied from the discharge temperature sensor 43.
  • the second cascade capacitor 26 provided in the low-source side injection circuit 10a flows through the high-side refrigerant flowing through the high-side branch circuit 20a and the low-side injection circuit 10a and is throttled by the injection expansion valve 51. Heat exchange is performed with the low-side refrigerant in the low-temperature low-pressure gas-liquid two-phase state.
  • the low-side refrigerant condensed and liquefied by the low-side condenser 13 passes through the low-side expansion valve 14 and also flows into the low-side injection circuit 10a.
  • the low-side refrigerant flowing into the low-side injection circuit 10 a passes through the injection expansion valve 51.
  • the injection expansion valve 51 squeezes the condensed low liquefied refrigerant to form a low-temperature low-pressure gas-liquid two-phase low-source refrigerant.
  • the low-side refrigerant that has passed through the injection expansion valve 51 and has entered a low-temperature low-pressure gas-liquid two-phase state passes through the low-side evaporator 15 and is sucked into the low-side compressor 11.
  • the pressure is the same as that of the side refrigerant. This is because the downstream side of the injection expansion valve 51 is connected to the suction side of the low-side compressor 11.
  • the low-side refrigerant that has become a low-temperature low-pressure gas-liquid two-phase refrigerant passes through the second cascade capacitor 26.
  • the second cascade capacitor 26 performs heat exchange between the low-side refrigerant in a gas-liquid two-phase state at low temperature and low pressure and the high-side refrigerant condensed and liquefied.
  • the low-side refrigerant passing through the second cascade condenser 26 is applied by the low-side evaporator 15 as compared with the low-temperature and low-pressure gasified low-side refrigerant passing through the low-side evaporator 15.
  • the temperature is lowered by the degree of superheat. This is obtained by adding the degree of superheat given by the low-side evaporator 15 to the saturation temperature in which the temperature of the low-side refrigerant that has passed through the low-side evaporator 15 is converted from the low pressure on the low side. This is because the temperature of the low-side refrigerant that has passed through the injection expansion valve 51 is a saturation temperature converted from the low-pressure on the low-side side.
  • the temperature difference between the low-side refrigerant and the high-side refrigerant that is heat-exchanged in the second cascade condenser 26 is lower than the temperature difference in the second embodiment when it passes through the low-side evaporator 15. It increases by the degree of superheat imparted to the former refrigerant.
  • the high-side refrigerant that is a high-temperature and high-pressure liquid refrigerant that performs heat exchange with the second cascade condenser 26.
  • the enthalpy of the high yuan side can be enlarged and the refrigerating capacity of the high refrigeration cycle 20 can be improved.
  • a compressor with a small capacity can be used as the high-end compressor 21.
  • the binary refrigeration apparatus 1 includes the low-side evaporator 13 and the low-side compressor 11 between the low-side condenser 13 and the low-side expansion valve 14. And a low expansion side injection circuit 10a connected to the low expansion side injection circuit 10a.
  • the control device 40 is based on the detection result by the discharge temperature sensor 43, and the injection expansion valve The opening of 51 is controlled.
  • the temperature difference between the low-side refrigerant and the high-side refrigerant that performs heat exchange with the second cascade capacitor 26 can be made larger than those in the first and second embodiments, so that the high-side enthalpy is reduced.
  • the refrigeration capacity of the high-source refrigeration cycle 20 can be further improved.
  • Embodiment 4 FIG. Next, the binary refrigeration apparatus 1 according to the fourth embodiment will be described.
  • the fourth embodiment is different from the third embodiment described above in that an intake temperature sensor for detecting the temperature of the low-side refrigerant sucked on the suction side of the low-side compressor 11 is provided.
  • FIG. 4 is a block diagram illustrating an example of the configuration of the binary refrigeration apparatus 1 according to the fourth embodiment.
  • the binary refrigeration apparatus 1 includes a low-source refrigeration cycle 10 provided with a low-source injection circuit 10a and a high-source refrigeration cycle 20 provided with a branch circuit 20a, as in the third embodiment.
  • the first cascade capacitor 30 and the control device 40 are included.
  • a suction temperature sensor 44 is provided on the suction side of the low-source compressor 11.
  • the suction temperature sensor 44 is provided to detect a low-source-side refrigerant suction temperature indicating the suction temperature of the low-source-side refrigerant sucked into the low-source side compressor 11.
  • the suction temperature sensor 44 supplies information indicating the detected low-source side refrigerant suction temperature to the control device 40.
  • control device 40 further includes the outside air temperature supplied from the outside air temperature sensor 41, the low-side refrigerant discharge temperature supplied from the discharge temperature sensor 43, and the suction Based on the low-source side refrigerant suction temperature supplied from the temperature sensor 44, the opening degree of the injection expansion valve 51 is controlled.
  • the binary refrigeration apparatus 1 further includes the suction temperature sensor 44 that detects the suction temperature of the low-side refrigerant sucked into the low-side compressor 11, and includes the control device 40. Controls the opening degree of the injection expansion valve 51 based on the detection result by the outside air temperature sensor 41, the detection result by the discharge temperature sensor 43, and the detection result by the suction temperature sensor 44. Thereby, the operation range of the low-side compressor 11 can be secured, and problems such as a failure of the low-side compressor 11 can be prevented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

A binary refrigeration device comprising: a high-order refrigeration cycle in which a high-order side compressor, a high-order side condenser, a high-order side expansion valve, and a high-order side evaporator are connected by piping and that forms a high-order side refrigerant circuit in which a high-order side refrigerant circulates; a low-order refrigeration cycle in which a low-order side compressor, an auxiliary radiator, a low-order side condenser, a low-order side expansion valve, and a low-order side evaporator are connected by piping and that forms a low-order side refrigerant circuit in which a low-order side refrigerant circulates; and a first cascade condenser that has the high-order side evaporator and the low-order side condenser and that performs heat exchange between the high-order side refrigerant that flows in the high-order side refrigerant circuit and the low-order side refrigerant that flows in the low-order side refrigerant circuit. The binary refrigeration device comprises: a branch circuit that branches from the downstream side of the high-order side condenser in the high-order refrigeration cycle and that returns to the upstream side of the high-order side expansion valve; a second cascade condenser that is provided in the branch circuit and that performs heat exchange between the high-order side refrigerant that flows in the branch circuit and the low-order side refrigerant flowing from the low-order side evaporator; and a control device that controls the operation of each apparatus provided in the binary refrigeration device.

Description

二元冷凍装置Dual refrigeration equipment
 本発明は、二元冷凍装置に関し、特に、低元冷凍サイクル側に補助放熱器を備えた二元冷凍装置に関するものである。 The present invention relates to a binary refrigeration apparatus, and more particularly to a binary refrigeration apparatus having an auxiliary radiator on the low-source refrigeration cycle side.
 従来、マイナス数十度の低温度の冷却を行う装置として、高温側冷媒を循環するための冷凍サイクル装置である高元冷凍サイクルと、冷温側冷媒を循環するための冷凍サイクル装置である低元冷凍サイクルとを有する二元冷凍装置が使用されている。二元冷凍装置では、例えば、低元冷凍サイクルにおける低元側凝縮器と、高元冷凍サイクルにおける高元側蒸発器との間で熱交換を行うことができるように構成したカスケードコンデンサにより、低元冷凍サイクルおよび高元冷凍サイクルを連結している。 Conventionally, as a device for cooling at a low temperature of minus several tens of degrees, a high-source refrigeration cycle that is a refrigeration cycle device for circulating a high-temperature side refrigerant, and a low-source that is a refrigeration cycle device for circulating a cold-temperature side refrigerant A binary refrigeration apparatus having a refrigeration cycle is used. In a binary refrigeration system, for example, a cascade condenser configured so that heat exchange can be performed between a low-source side condenser in a low-source refrigeration cycle and a high-side evaporator in a high-source refrigeration cycle, The original refrigeration cycle and the high refrigeration cycle are connected.
 このような二元冷凍装置において、カスケードコンデンサの前段に補助放熱器を設置し、低温側圧縮機から吐出された冷媒を補助放熱器で放熱させて冷却することにより、運転効率の向上を図ったものがある(例えば、特許文献1参照)。 In such a binary refrigeration system, an auxiliary radiator is installed in front of the cascade condenser, and the refrigerant discharged from the low-temperature side compressor is radiated by the auxiliary radiator to be cooled, thereby improving the operation efficiency. There are some (see, for example, Patent Document 1).
特許第3604973号公報Japanese Patent No. 3606043
 しかしながら、特許文献1に記載の二元冷凍装置では、補助放熱器によって運転効率を向上させることができるが、低元側の圧縮機から吐出される冷媒の吐出温度が低い場合には、補助放熱器に流れる冷媒温度と外気温度との差が小さくなる。そのため、このような二元冷凍装置では、補助放熱器を有効活用することができない。 However, in the binary refrigeration apparatus described in Patent Document 1, the operation efficiency can be improved by the auxiliary radiator, but if the discharge temperature of the refrigerant discharged from the low-side compressor is low, the auxiliary heat dissipation The difference between the temperature of the refrigerant flowing in the vessel and the outside air temperature is reduced. Therefore, such a binary refrigeration apparatus cannot effectively utilize the auxiliary radiator.
 本発明は、上記従来の技術における課題に鑑みてなされたものであって、高元冷凍サイクルにおける冷凍能力を向上させつつ、補助放熱器における熱交換量を向上させることができる二元冷凍装置を提供することを目的とする。 The present invention has been made in view of the above-described problems in the prior art, and provides a binary refrigeration apparatus capable of improving the heat exchange amount in an auxiliary radiator while improving the refrigeration capacity in a high-source refrigeration cycle. The purpose is to provide.
 本発明の二元冷凍装置は、高元側圧縮機、高元側凝縮器、高元側膨張弁、および高元側蒸発器を配管で接続し、高元側冷媒を循環させる高元側冷媒回路を形成する高元冷凍サイクルと、低元側圧縮機、補助放熱器、低元側凝縮器、低元側膨張弁、および低元側蒸発器を配管で接続し、低元側冷媒を循環させる低元側冷媒回路を形成する低元冷凍サイクルと、前記高元側蒸発器および前記低元側凝縮器を有し、前記高元側冷媒回路を流れる前記高元側冷媒と、前記低元側冷媒回路を流れる前記低元側冷媒との間で熱交換を行う第1のカスケードコンデンサとを備えた二元冷凍装置であって、前記高元冷凍サイクルにおける前記高元側凝縮器の下流から分岐し、前記高元側膨張弁の上流に戻る分岐回路と、前記分岐回路に設けられ、該分岐回路を流れる前記高元側冷媒と、前記低元側蒸発器から流出する前記低元側冷媒との間で熱交換を行う第2のカスケードコンデンサと、前記二元冷凍装置に設けられた各機器の動作を制御する制御装置とを備えるものである。 The binary refrigeration apparatus of the present invention is a high-side refrigerant that connects a high-side compressor, a high-side condenser, a high-side expansion valve, and a high-side evaporator through piping and circulates the high-side refrigerant. A high-source refrigeration cycle that forms a circuit, and a low-side compressor, auxiliary radiator, low-side condenser, low-side expansion valve, and low-side evaporator are connected by piping to circulate the low-side refrigerant. A low original refrigeration cycle that forms a low original refrigerant circuit, the high original evaporator and the low original condenser, the high original refrigerant flowing through the high original refrigerant circuit, and the low original A two-stage refrigeration apparatus comprising a first cascade condenser that exchanges heat with the low-side refrigerant flowing in the side-side refrigerant circuit, from the downstream of the high-side condenser in the high-source refrigeration cycle A branch circuit that branches and returns to the upstream side of the high-side expansion valve; and the branch circuit provided in the branch circuit. Operation of each device provided in the second cascade condenser that exchanges heat between the flowing high-side refrigerant and the low-side refrigerant flowing out of the low-side evaporator, and the binary refrigeration apparatus And a control device for controlling.
 以上のように、本発明の二元冷凍装置によれば、第2のカスケードコンデンサを用いて低元側冷媒に対して過熱度を付与し、低元側圧縮機から吐出される低元側冷媒の吐出温度を高くすることにより、補助放熱器における熱交換量を向上させるとともに、高元側のエンタルピを増大させて高元側の冷凍能力を向上させることができる。 As described above, according to the binary refrigeration apparatus of the present invention, the low-source side refrigerant discharged from the low-side compressor is provided with superheat to the low-side refrigerant using the second cascade condenser. By increasing the discharge temperature, the amount of heat exchange in the auxiliary radiator can be improved, and the high-side enthalpy can be increased to improve the high-side refrigeration capacity.
実施の形態1に係る二元冷凍装置の構成の一例を示すブロック図である。3 is a block diagram illustrating an example of a configuration of a binary refrigeration apparatus according to Embodiment 1. FIG. 実施の形態2に係る二元冷凍装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the binary refrigeration apparatus which concerns on Embodiment 2. FIG. 実施の形態3に係る二元冷凍装置の構成の一例を示すブロック図である。6 is a block diagram illustrating an example of a configuration of a binary refrigeration apparatus according to Embodiment 3. FIG. 実施の形態4に係る二元冷凍装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the binary refrigeration apparatus which concerns on Embodiment 4. FIG.
実施の形態1.
 以下、本発明の実施の形態1に係る二元冷凍装置について説明する。
Embodiment 1 FIG.
Hereinafter, the binary refrigeration apparatus according to Embodiment 1 of the present invention will be described.
[二元冷凍装置の構成]
 図1は、本実施の形態1に係る二元冷凍装置1の構成の一例を示すブロック図である。図1に示すように、二元冷凍装置1は、低元冷凍サイクル10、高元冷凍サイクル20および制御装置40で構成されている。低元冷凍サイクル10および高元冷凍サイクル20は、それぞれ独立して冷媒を循環させる冷媒回路を構成する。また、二元冷凍装置1には、2つの冷媒回路を多段構成するために、後述する低元冷凍サイクル10における低元側凝縮器13と、高元冷凍サイクル20における高元側蒸発器24とを、それぞれを通過する冷媒間で熱交換するように結合させて構成した第1のカスケードコンデンサ30が設けられている。
[Configuration of dual refrigeration system]
FIG. 1 is a block diagram illustrating an example of the configuration of the binary refrigeration apparatus 1 according to the first embodiment. As shown in FIG. 1, the binary refrigeration apparatus 1 includes a low original refrigeration cycle 10, a high original refrigeration cycle 20, and a control device 40. The low-source refrigeration cycle 10 and the high-source refrigeration cycle 20 constitute a refrigerant circuit that circulates the refrigerant independently of each other. Further, in the two-stage refrigeration apparatus 1, in order to configure two refrigerant circuits in multiple stages, a low-source side condenser 13 in a low-source refrigeration cycle 10 to be described later, and a high-side evaporator 24 in a high-source refrigeration cycle 20 Are coupled so as to exchange heat between the refrigerants passing through the first cascade capacitor 30.
 なお、図1における矢印は、冷媒の流れる方向を示す。このことは、後述する図2~図4においても同様とする。また、以下の説明において、温度、圧力等を含む高低の表現等については、特に絶対的な値との関係で定められるものではなく、システム、装置等における状態、動作等によって相対的に定まるものとする。 In addition, the arrow in FIG. 1 shows the direction through which a refrigerant | coolant flows. The same applies to FIGS. 2 to 4 described later. Also, in the following description, the expression of elevation including temperature, pressure, etc. is not particularly defined in relation to absolute values, but is relatively determined by the state, operation, etc. of the system, device, etc. And
(低元冷凍サイクル)
 低元冷凍サイクル10は、低元側圧縮機11、補助放熱器12、低元側凝縮器13、低元側膨張弁14、および低元側蒸発器15で構成されている。そして、低元冷凍サイクル10は、これらの各機器が順に冷媒配管を介して環状に接続されることにより、低元側冷媒が循環する低元側冷媒回路を形成している。
(Low refrigeration cycle)
The low-source refrigeration cycle 10 includes a low-source side compressor 11, an auxiliary radiator 12, a low-source side condenser 13, a low-source side expansion valve 14, and a low-source side evaporator 15. The low-source refrigeration cycle 10 forms a low-source-side refrigerant circuit in which the low-source-side refrigerant circulates by sequentially connecting these devices in an annular manner via the refrigerant pipe.
 低元側圧縮機11は、低温低圧の低元側冷媒を吸入し、その冷媒を圧縮して高温高圧の状態にして吐出する。低元側圧縮機11としては、例えば、インバータ回路等によって回転数を制御し、容量制御可能なインバータ圧縮機等を用いることができる。 The low-side compressor 11 sucks low-temperature and low-pressure low-side refrigerant, compresses the refrigerant, and discharges it in a high-temperature and high-pressure state. As the low-source side compressor 11, for example, an inverter compressor that can control the rotation speed by an inverter circuit or the like and can control the capacity can be used.
 補助放熱器12は、低元側圧縮機11から吐出された低元側冷媒と、例えば室外空気等の外気との間で熱交換を行う。すなわち、補助放熱器12は、低元側冷媒から外気に対して熱を放出させて外気を加熱する熱交換器である。補助放熱器12は、例えばガスクーラ等として機能し、外気、水、ブライン等との熱交換するものである。 The auxiliary radiator 12 performs heat exchange between the low-side refrigerant discharged from the low-side compressor 11 and the outside air such as outdoor air. In other words, the auxiliary radiator 12 is a heat exchanger that heats the outside air by releasing heat from the low-side refrigerant to the outside air. The auxiliary radiator 12 functions as a gas cooler, for example, and exchanges heat with outside air, water, brine, and the like.
 低元側凝縮器13は、補助放熱器12を通過した低元側冷媒を凝縮液化させ、液状の冷媒にするものである。本実施の形態1では、例えば第1のカスケードコンデンサ30において低元冷凍サイクル10を流れる低元側冷媒が通過する伝熱管等により低元側凝縮器13を構成し、低元側冷媒が高元冷凍サイクル20を流れる冷媒との間で熱交換が行われるものとする。 The low-side condenser 13 condenses and liquefies the low-side refrigerant that has passed through the auxiliary radiator 12 to form a liquid refrigerant. In the first embodiment, for example, in the first cascade condenser 30, the low-side condenser 13 is configured by a heat transfer tube or the like through which the low-side refrigerant flowing through the low-source refrigeration cycle 10 passes, and the low-side refrigerant is high It is assumed that heat exchange is performed with the refrigerant flowing through the refrigeration cycle 20.
 低元側膨張弁14は、低元側凝縮器13を通過した低元側冷媒の流量を調整することによって減圧して膨張させるものである。低元側膨張弁14としては、例えば電子式膨張弁等の流量制御手段、キャピラリ等の毛細管、感温式膨張弁等の冷媒流量調節手段等を用いることができる。 The low-side expansion valve 14 expands by reducing the pressure by adjusting the flow rate of the low-side refrigerant that has passed through the low-side condenser 13. As the low-source side expansion valve 14, for example, a flow rate control means such as an electronic expansion valve, a capillary such as a capillary, a refrigerant flow rate adjustment means such as a temperature-sensitive expansion valve, or the like can be used.
 低元側蒸発器15は、低元側膨張弁14によって減圧された低元側冷媒と、冷却対象である冷凍室内の空気等の室内空気との間で熱交換を行い、低元側冷媒を蒸発させて気体状の冷媒にするものである。低元側冷媒との熱交換により、冷却対象は、直接的または間接的に冷却されることになる。 The low-side evaporator 15 performs heat exchange between the low-side refrigerant decompressed by the low-side expansion valve 14 and room air such as air in a freezing room that is a cooling target. It is evaporated into a gaseous refrigerant. The object to be cooled is cooled directly or indirectly by heat exchange with the low-source refrigerant.
(高元冷凍サイクル)
 高元冷凍サイクル20は、高元側圧縮機21、高元側凝縮器22、高元側膨張弁23、高元側蒸発器24で構成されている。そして、高元冷凍サイクル20は、これらの各機器が順に冷媒配管を介して環状に接続されることにより、高元側冷媒が循環する高元側冷媒回路を形成している。
(High original refrigeration cycle)
The high-source refrigeration cycle 20 includes a high-side compressor 21, a high-side condenser 22, a high-side expansion valve 23, and a high-side evaporator 24. The high-source refrigeration cycle 20 forms a high-side refrigerant circuit in which the high-side refrigerant circulates by sequentially connecting these devices in a ring shape through refrigerant piping.
 また、高元冷凍サイクル20において、高元側凝縮器22と高元側膨張弁23との間には、冷媒配管が分岐した分岐回路20aが形成されている。分岐回路20aは、高元側凝縮器22の下流側から分岐し、高元側膨張弁23の上流側に戻るように形成されている。分岐回路20aには、第2のカスケードコンデンサ26が設けられている。 Further, in the high-source refrigeration cycle 20, a branch circuit 20a in which refrigerant piping branches is formed between the high-source side condenser 22 and the high-source side expansion valve 23. The branch circuit 20 a is formed so as to branch from the downstream side of the high-side condenser 22 and return to the upstream side of the high-side expansion valve 23. The branch circuit 20 a is provided with a second cascade capacitor 26.
 高元側圧縮機21は、低温低圧の高元側冷媒を吸入し、その冷媒を圧縮して高温高圧の状態にして吐出する。高元側圧縮機21としては、例えば、インバータ回路等によって回転数を制御し、容量制御可能なインバータ圧縮機等を用いることができる。 The high-end compressor 21 sucks low-temperature and low-pressure high-end refrigerant, compresses the refrigerant, and discharges it in a high-temperature and high-pressure state. As the high-end compressor 21, for example, an inverter compressor or the like whose capacity can be controlled by controlling the rotation speed by an inverter circuit or the like can be used.
 高元側凝縮器22は、高元側圧縮機21から吐出された高元側冷媒と、例えば室外空気等の外気との間で熱交換を行い、冷媒を凝縮液化させ、液状の冷媒にするものである。すなわち、高元側凝縮器22は、高元側冷媒から外気に対して熱を放出させて外気を加熱する熱交換器である。高元側凝縮器22は、例えばガスクーラ等として機能し、外気、水、ブライン等との熱交換するものである。高元側凝縮器22には、熱交換を促すためのファン25が設けられている。このようなファン25としては、例えば、風量を調整することが可能なものを用いることができる。 The high-side condenser 22 exchanges heat between the high-side refrigerant discharged from the high-side compressor 21 and outside air such as outdoor air, and condenses and liquefies the refrigerant into a liquid refrigerant. Is. That is, the high-side condenser 22 is a heat exchanger that heats the outside air by releasing heat from the high-side refrigerant to the outside air. The high-side condenser 22 functions as, for example, a gas cooler and exchanges heat with outside air, water, brine, and the like. The high-end condenser 22 is provided with a fan 25 for promoting heat exchange. As such a fan 25, for example, a fan capable of adjusting the air volume can be used.
 高元側膨張弁23は、減圧装置、絞り装置等であり、高元側凝縮器22を通過した高元側冷媒の流量を調整することによって減圧して膨張させるものである。高元側膨張弁23としては、例えば電子式膨張弁等の流量制御手段、キャピラリ等の毛細管、感温式膨張弁等の冷媒流量調節手段等を用いることができる。 The high-side expansion valve 23 is a decompression device, a throttling device, or the like, and expands by reducing the pressure by adjusting the flow rate of the high-side refrigerant that has passed through the high-side condenser 22. As the high-end side expansion valve 23, for example, a flow rate control unit such as an electronic expansion valve, a capillary tube such as a capillary, a refrigerant flow rate adjustment unit such as a temperature-sensitive expansion valve, or the like can be used.
 高元側蒸発器24は、高元側膨張弁23によって減圧された高元側冷媒と、低元冷凍サイクル10の補助放熱器12を通過した低元側冷媒との間で熱交換を行い、高元側冷媒を蒸発させて低温の気体状の冷媒にするものである。本実施の形態1では、例えば第1のカスケードコンデンサ30において高元冷凍サイクル20を流れる高元側冷媒が通過する伝熱管等により高元側蒸発器24を構成し、高元側冷媒が低元冷凍サイクル10を流れる低元側冷媒との間で熱交換が行われるものとする。 The high original side evaporator 24 performs heat exchange between the high original side refrigerant decompressed by the high original side expansion valve 23 and the low original side refrigerant that has passed through the auxiliary radiator 12 of the low original refrigeration cycle 10. The high-side refrigerant is evaporated to form a low-temperature gaseous refrigerant. In the first embodiment, for example, the high-side evaporator 24 is configured by a heat transfer tube or the like through which the high-side refrigerant flowing through the high-source refrigeration cycle 20 passes in the first cascade condenser 30, and the high-side refrigerant is low It is assumed that heat exchange is performed with the low-source refrigerant flowing through the refrigeration cycle 10.
 第2のカスケードコンデンサ26は、高元側凝縮器22で凝縮液化された中温高圧の液状の高元側冷媒と、低元側圧縮機11に吸入される低温低圧の気体状の低元側冷媒との間で熱交換を行う。ここで、高元側凝縮器22で凝縮液化された高元側冷媒の温度は、低元側圧縮機11に吸入される低元側冷媒の温度よりも高いものとする。 The second cascade condenser 26 is a medium-high-pressure liquid high-side refrigerant condensed and liquefied by the high-side condenser 22 and a low-temperature low-pressure gaseous low-side refrigerant that is sucked into the low-side compressor 11. Exchange heat with Here, it is assumed that the temperature of the high-side refrigerant condensed and liquefied by the high-side condenser 22 is higher than the temperature of the low-side refrigerant sucked into the low-side compressor 11.
 第2のカスケードコンデンサ26によって熱交換を行うことにより、高元側冷媒は、過冷却度を付与された液冷媒となり、分岐回路20aを介して高元側膨張弁23に流入する。低元側冷媒は、過熱度を付与されたガス冷媒となり、低元側圧縮機11に吸入される。 By performing heat exchange with the second cascade condenser 26, the high-side refrigerant becomes a liquid refrigerant to which a degree of supercooling is given, and flows into the high-side expansion valve 23 via the branch circuit 20a. The low-source side refrigerant becomes a gas refrigerant to which the degree of superheat is imparted, and is sucked into the low-source side compressor 11.
(カスケードコンデンサ)
 第1のカスケードコンデンサ30は、低元側凝縮器13を流れる低元側冷媒と高元側蒸発器24を流れる高元側冷媒との間で熱交換する冷媒間熱交換器である。このとき、第1のカスケードコンデンサ30は、低元側凝縮器13として機能するとともに、高元側蒸発器24として機能する。第1のカスケードコンデンサ30を介して低元冷凍サイクル10における低元側冷媒回路と、高元冷凍サイクル20における高元側冷媒回路とを多段構成にし、冷媒間での熱交換を行うことにより、独立した冷媒回路を連携させることができる。
(Cascade capacitor)
The first cascade condenser 30 is an inter-refrigerant heat exchanger that exchanges heat between the low-source side refrigerant flowing through the low-end side condenser 13 and the high-end side refrigerant flowing through the high-end side evaporator 24. At this time, the first cascade capacitor 30 functions as the low-side condenser 13 and also functions as the high-side evaporator 24. By performing a low-stage refrigerant circuit in the low-source refrigeration cycle 10 and a high-source-side refrigerant circuit in the high-source refrigeration cycle 20 through the first cascade capacitor 30 in a multistage configuration, heat exchange between the refrigerants is performed. Independent refrigerant circuits can be linked.
(制御装置)
 制御装置40は、例えばマイクロコンピュータ、CPU(Central Processing Unit)などの演算装置上で実行されるソフトウェア、各種機能を実現する回路デバイスなどのハードウェア等で構成され、この二元冷凍装置1全体の運転を制御する。例えば、制御装置40は、各種検出手段から受け取った情報に基づく二元冷凍装置1の運転情報、並びに利用者から指示される運転内容に基づき、低元側圧縮機11および高元側圧縮機21の駆動周波数、ファン25のON/OFFを含む回転数、低元側膨張弁14および高元側膨張弁23の開度等を制御する。
(Control device)
The control device 40 includes, for example, software executed on an arithmetic device such as a microcomputer or a CPU (Central Processing Unit), hardware such as a circuit device that realizes various functions, and the like. Control driving. For example, the control apparatus 40 is based on the operation information of the binary refrigeration apparatus 1 based on the information received from various detection means, and the operation content instruct | indicated from a user, and the low-side compressor 11 and the high-side compressor 21 , The rotational speed including ON / OFF of the fan 25, the opening degrees of the low-side expansion valve 14 and the high-side expansion valve 23, and the like are controlled.
 制御装置40には、外気温度センサ41が接続されている。外気温度センサ41は、室外空気等の外気の温度を検出するために設けられている。外気温度センサ41は、検出した外気温度を制御装置40に供給する。 The outside temperature sensor 41 is connected to the control device 40. The outside air temperature sensor 41 is provided for detecting the temperature of outside air such as outdoor air. The outside air temperature sensor 41 supplies the detected outside air temperature to the control device 40.
[各冷凍サイクルを循環する冷媒について]
 このように構成された二元冷凍装置1において、低元側蒸発器15等の低元冷凍サイクル10の一部の機器は、例えばスーパーマーケットのショーケースなどの室内の負荷装置に設けられている。
[Refrigerant circulating through each refrigeration cycle]
In the binary refrigeration apparatus 1 configured as described above, some devices of the low-source refrigeration cycle 10 such as the low-side evaporator 15 are provided in an indoor load device such as a supermarket showcase.
 例えば、ショーケースの配置換えまたは入れ替えにより、配管の接続位置を変更する際には、現地で冷媒回路が開放されることになる。このような場合には、現地で施工業者によって冷媒配管のろう付けが複数箇所で行われることになる。そのため、ろう付け部分から冷媒漏れが発生する場合がある。 For example, when the pipe connection position is changed by rearranging or replacing the showcase, the refrigerant circuit will be opened locally. In such a case, the refrigerant pipes are brazed at a plurality of locations on site by a contractor. Therefore, refrigerant leakage may occur from the brazed part.
 また、配管接続が現地で行われることに加えて、通常規模のスーパー、冷凍倉庫では、室外に配置されることが想定される低元側の冷凍装置に接続される冷媒配管の長さは、例えば100m程度に達することがある。これにより、現地で配管接続される箇所がさらに増加するため、配管接続部から冷媒漏れが発生する可能性がより高くなる。一方、大規模のスーパー、冷凍倉庫では、冷媒配管の長さが100m以上となることもある。そのため、冷媒漏れが発生する可能性がさらに高くなる。 In addition, in addition to piping connections being made locally, in a normal scale supermarket, refrigeration warehouse, the length of the refrigerant piping connected to the low-source side refrigeration equipment assumed to be placed outdoors is For example, it may reach about 100 m. As a result, the number of places where pipes are connected on site increases further, so that the possibility of refrigerant leakage from the pipe connection part is further increased. On the other hand, in large supermarkets and refrigerated warehouses, the length of the refrigerant pipe may be 100 m or more. Therefore, the possibility of refrigerant leakage is further increased.
 さらに、現地で施工される冷媒配管は、様々な環境の場所に置かれることが考えられる。例えば、冷蔵倉庫内では、保管物から発生する腐食性ガスにより、腐食環境下に置かれることが考えられる。腐食雰囲気による銅の腐食では、酢酸などのカルボン酸による蟻の巣状腐食、アンモニアなどによる応力腐食割れ、亜硫酸ガスなどの酸による腐食、等が一般的に考えられる。 Furthermore, it is conceivable that the refrigerant pipes constructed locally will be placed in various environmental locations. For example, in a refrigerated warehouse, it may be placed in a corrosive environment due to corrosive gas generated from stored items. Corrosion of copper in a corrosive atmosphere is generally considered to be ant colony corrosion by carboxylic acid such as acetic acid, stress corrosion cracking by ammonia or the like, corrosion by acid such as sulfurous acid gas, and the like.
 また、低元側の冷凍装置と接続される冷媒配管が室外に置かれる場合でも、例えば温泉の近く、卵などの加工品を製造する食品工場の周辺など、室外に硫化水素などの硫黄系ガスが発生するような場所でも、硫黄系物質による銅管の腐食が発生することが考えられる。 In addition, even when the refrigerant piping connected to the refrigeration system on the lower side is placed outdoors, sulfur-based gases such as hydrogen sulfide are used outdoors such as near hot springs and around food factories that produce processed products such as eggs. It is conceivable that corrosion of copper pipes due to sulfur-based substances occurs even in places where such a phenomenon occurs.
 通常、このような冷凍装置においては、熱交換器および熱交換器周辺の配管に防食塗装を施した仕様が設定されており、上述したような腐食環境下に置かれる場合には、その仕様を予め選択することもできる。しかしながら、現地で配管を施工する場合には、防食仕様が存在しないため、腐食環境への対応が困難であることも考えられる。 Normally, in such a refrigeration system, specifications are given that have anti-corrosion coating applied to the heat exchanger and the piping around the heat exchanger. It can also be selected in advance. However, when piping is constructed locally, there is no anti-corrosion specification, so it may be difficult to cope with a corrosive environment.
 そこで、本実施の形態1では、低元冷凍サイクル10内を循環する低元側冷媒として、地球温暖化に対する影響を示す地球温暖化係数(GWP;Global Warming Potential)が小さい二酸化炭素(CO)、またはCOを含む混合冷媒を用いる。 Therefore, in the first embodiment, carbon dioxide (CO 2 ) having a small global warming potential (GWP) indicating an influence on global warming is used as the low-source refrigerant circulating in the low-source refrigeration cycle 10. Or a mixed refrigerant containing CO 2 is used.
 また、高元冷凍サイクル20内を循環する高元側冷媒としては、例えば、HFO1234yf、HFO1234ze等のHFO(ハイドロフルオロオレフィン)冷媒、CO、アンモニア、水などの地球温暖化に対する影響の小さい冷媒、またはこれらのいずれかを含む混合冷媒を用いると好ましい。ただし、高元冷凍サイクル20は、高元側冷媒回路が現地で開放されることがないため、例えばR32、R404A、R407C、R410A、HFC134aなどのHFC(ハイドロフルオロカーボン)冷媒、プロパン、イソブタン等の地球温暖化係数の高い冷媒、またはこれらのいずれかを含む混合冷媒を用いてもよい。 Moreover, as the high-side refrigerant circulating in the high-source refrigeration cycle 20, for example, HFO (hydrofluoroolefin) refrigerants such as HFO1234yf and HFO1234ze, refrigerants having a small influence on global warming such as CO 2 , ammonia, and water, Alternatively, it is preferable to use a mixed refrigerant containing any of these. However, in the high-source refrigeration cycle 20, since the high-source side refrigerant circuit is not opened locally, for example, HFC (hydrofluorocarbon) refrigerants such as R32, R404A, R407C, R410A, and HFC134a, propane, isobutane, and the like A refrigerant having a high global warming potential or a mixed refrigerant containing any of these may be used.
 このように、低元冷凍サイクル10内を循環する低元側冷媒と、高元冷凍サイクル20内を循環する高元側冷媒とでは、互いに異なる冷媒を用いると好ましい。また、高元冷凍サイクル20内を循環する高元側冷媒としては、低元冷凍サイクル10内を循環する低元側冷媒よりも高効率となる冷媒を用いるとより好ましい。 Thus, it is preferable to use different refrigerants for the low-source side refrigerant circulating in the low-source refrigeration cycle 10 and the high-source side refrigerant circulating in the high-source refrigeration cycle 20. Further, as the high-source side refrigerant circulating in the high-source refrigeration cycle 20, it is more preferable to use a refrigerant that has higher efficiency than the low-source-side refrigerant circulating in the low-source refrigeration cycle 10.
[二元冷凍装置の動作]
 次に、本実施の形態1に係る二元冷凍装置1の動作について説明する。ここでは、高元側冷媒回路および低元側冷媒回路における各構成機器の動作等を、各冷媒回路を流れる冷媒の流れに基づいて説明する。
[Operation of dual refrigeration system]
Next, the operation of the binary refrigeration apparatus 1 according to Embodiment 1 will be described. Here, operation | movement of each component apparatus in a high original side refrigerant circuit and a low original side refrigerant circuit is demonstrated based on the flow of the refrigerant | coolant which flows through each refrigerant circuit.
(高元冷凍サイクルの動作)
 まず、高元冷凍サイクル20の動作について説明する。高元側圧縮機21は、高元側冷媒を吸入し、圧縮することにより高温高圧の状態にして吐出する。吐出された高元側冷媒は、高元側凝縮器22に流入する。高元側凝縮器22は、ファン25の駆動によって供給される外気と高元側冷媒との間で熱交換を行い、高元側冷媒を凝縮液化する。
(High refrigeration cycle operation)
First, the operation of the high-source refrigeration cycle 20 will be described. The high-side compressor 21 sucks and compresses the high-side refrigerant and discharges it in a high-temperature and high-pressure state. The discharged high-side refrigerant flows into the high-side condenser 22. The high-side condenser 22 performs heat exchange between the outside air supplied by driving the fan 25 and the high-side refrigerant, and condenses and liquefies the high-side refrigerant.
 凝縮液化された高元側冷媒は、高元側膨張弁23を通過する。高元側膨張弁23は、凝縮液化した高元側冷媒を減圧する。減圧された高元側冷媒は、高元側蒸発器24に流入する。高元側蒸発器24は、第1のカスケードコンデンサ30により、減圧した高元側冷媒と、低元側凝縮器13を通過する低元側冷媒との間で熱交換を行い、高元側冷媒を蒸発させガス化する。蒸発ガス化した高元側冷媒は、高元側圧縮機21に吸入される。 The high-side refrigerant that has been condensed and liquefied passes through the high-side expansion valve 23. The high-side expansion valve 23 depressurizes the high-side refrigerant that has been condensed and liquefied. The reduced high-side refrigerant flows into the high-side evaporator 24. The high-side evaporator 24 performs heat exchange between the high-side refrigerant depressurized by the first cascade condenser 30 and the low-side refrigerant passing through the low-side condenser 13, so that the high-side refrigerant is Is evaporated and gasified. The high-side refrigerant that has been vaporized and gasified is sucked into the high-side compressor 21.
 また、高元側凝縮器22で凝縮液化された高元側冷媒は、分岐回路20aを流れて第2のカスケードコンデンサ26にも流入する。第2のカスケードコンデンサ26は、凝縮液化した高元側冷媒と、低元側蒸発器15で蒸発ガス化した低元側冷媒との間で熱交換を行い、高元側冷媒に過冷却度を付与する。高元側冷媒に過冷却度が付与されると、高元側冷媒回路におけるエンタルピは、過冷却度が付与されない場合と比較して大きくなる。過冷却度が付与された高元側冷媒は、分岐回路20aを流れて高元側膨張弁23を通過する。 The high-side refrigerant condensed and liquefied by the high-side condenser 22 flows through the branch circuit 20a and also flows into the second cascade capacitor 26. The second cascade capacitor 26 exchanges heat between the high-side refrigerant condensed and liquefied and the low-side refrigerant evaporated by the low-side evaporator 15 to increase the degree of supercooling in the high-side refrigerant. Give. When the supercooling degree is given to the high-source-side refrigerant, the enthalpy in the high-source-side refrigerant circuit becomes larger than when the supercooling degree is not given. The high-side refrigerant provided with the degree of supercooling flows through the branch circuit 20 a and passes through the high-side expansion valve 23.
(低元冷凍サイクルの動作)
 次に、低元冷凍サイクル10の動作について説明する。低元側圧縮機11は、低元側冷媒を吸入し、圧縮することにより高温高圧の状態にして吐出する。吐出された低元側冷媒は、補助放熱器12に流入する。補助放熱器12は、外気と低元側冷媒との間で熱交換を行う。補助放熱器12を通過した低元側冷媒は、低元側凝縮器13に流入する。
(Low refrigeration cycle operation)
Next, the operation of the low-source refrigeration cycle 10 will be described. The low-side compressor 11 sucks and compresses the low-side refrigerant and discharges it in a high-temperature and high-pressure state. The discharged low-source-side refrigerant flows into the auxiliary radiator 12. The auxiliary radiator 12 performs heat exchange between the outside air and the low-source side refrigerant. The low-side refrigerant that has passed through the auxiliary radiator 12 flows into the low-side condenser 13.
 低元側凝縮器13は、第1のカスケードコンデンサ30により、流入した低元側冷媒と、高元側蒸発器24を通過する高元側冷媒との間で熱交換を行い、低元側冷媒を凝縮液化する。凝縮液化された低元側冷媒は、低元側膨張弁14を通過する。低元側膨張弁14は、凝縮液化した低元側冷媒を減圧する。減圧された低元側冷媒は、低元側蒸発器15に流入する。 The low-side condenser 13 performs heat exchange between the low-side refrigerant that has flowed in and the high-side refrigerant that passes through the high-side evaporator 24 by the first cascade condenser 30. To condense. The low-side refrigerant that has been condensed and liquefied passes through the low-side expansion valve 14. The low-side expansion valve 14 depressurizes the condensed low-side refrigerant. The reduced low-side refrigerant flows into the low-side evaporator 15.
 低元側蒸発器15は、減圧した低元側冷媒と冷却対象との間で熱交換を行い、低元側冷媒を蒸発させガス化する。蒸発ガス化した低元側冷媒は、第2のカスケードコンデンサ26を通過する。第2のカスケードコンデンサ26は、蒸発ガス化した低元側冷媒と、凝縮液化した高元側冷媒との間で熱交換を行い、低元側冷媒に過熱度を付与する。過熱度が付与された低元側冷媒は、低元側圧縮機11に吸入される。 The low-side evaporator 15 performs heat exchange between the reduced-low side refrigerant and the object to be cooled, and evaporates and gasifies the low-side refrigerant. The low-source-side refrigerant that has been vaporized gas passes through the second cascade condenser 26. The second cascade condenser 26 performs heat exchange between the low-source refrigerant that has been vaporized and the high-generator refrigerant that has been condensed and liquefied, and imparts superheat to the low-source refrigerant. The low-source-side refrigerant to which the degree of superheat is imparted is sucked into the low-source-side compressor 11.
 このように、低元側圧縮機11に吸入される低元側冷媒に過熱度が付与されると、低元側圧縮機11から吐出される低元側冷媒の吐出温度を示す低元側冷媒吐出温度は、過熱度が付与されない場合と比較して高くなる。そして、補助放熱器12においては、外気の温度と低元側冷媒吐出温度との温度差が高くなる。 In this way, when the degree of superheat is applied to the low-side refrigerant sucked into the low-side compressor 11, the low-side refrigerant indicating the discharge temperature of the low-side refrigerant discharged from the low-side compressor 11 is shown. The discharge temperature is higher than when the superheat degree is not given. In the auxiliary radiator 12, the temperature difference between the temperature of the outside air and the low-side refrigerant discharge temperature becomes high.
 以上のように、本実施の形態1に係る二元冷凍装置1は、高元側圧縮機21、高元側凝縮器22、高元側膨張弁23、および高元側蒸発器24を配管で接続し、高元側冷媒を循環させる高元側冷媒回路を形成する高元冷凍サイクル20と、低元側圧縮機11、補助放熱器12、低元側凝縮器13、低元側膨張弁14、および低元側蒸発器15を配管で接続し、低元側冷媒を循環させる低元側冷媒回路を形成する低元冷凍サイクル10と、高元側蒸発器24および低元側凝縮器13を有し、高元側冷媒回路を流れる高元側冷媒と、低元側冷媒回路を流れる低元側冷媒との間で熱交換を行う第1のカスケードコンデンサ30とを備えている。また、二元冷凍装置1は、高元冷凍サイクル20における高元側凝縮器22の下流から分岐し、高元側膨張弁23の上流に戻る分岐回路20aと、分岐回路20aに設けられ、分岐回路20aを流れる高元側冷媒と、低元側蒸発器15から流出する低元側冷媒との間で熱交換を行う第2のカスケードコンデンサ26と、二元冷凍装置1に設けられた各機器の動作を制御する制御装置40とを備えている。 As described above, in the binary refrigeration apparatus 1 according to Embodiment 1, the high-side compressor 21, the high-side condenser 22, the high-side expansion valve 23, and the high-side evaporator 24 are connected by piping. A high-source refrigeration cycle 20 that forms a high-side refrigerant circuit that connects and circulates the high-side refrigerant, a low-side compressor 11, an auxiliary radiator 12, a low-side condenser 13, and a low-side expansion valve 14 , And a low-side refrigeration cycle 10 forming a low-side refrigerant circuit that circulates the low-side refrigerant and a high-side evaporator 24 and a low-side condenser 13. And a first cascade condenser 30 that exchanges heat between the high-end refrigerant flowing through the high-end refrigerant circuit and the low-end refrigerant flowing through the low-end refrigerant circuit. In addition, the binary refrigeration apparatus 1 is provided in the branch circuit 20a that branches from the downstream of the high-side condenser 22 in the high-source refrigeration cycle 20 and returns to the upstream of the high-side expansion valve 23, and the branch circuit 20a. A second cascade condenser 26 that exchanges heat between the high-end refrigerant flowing through the circuit 20a and the low-end refrigerant flowing out of the low-end evaporator 15, and each device provided in the binary refrigeration apparatus 1 And a control device 40 for controlling the operation.
 このように、第2のカスケードコンデンサ26において、分岐回路20aを流れる高元側冷媒と、低元側蒸発器15から流出した低元側冷媒とが熱交換を行うことにより、高元側冷媒の温度が低元側冷媒の温度よりも高いため、高元側冷媒に対して過冷却度が付与される。同時に、低元側冷媒に対しては、過熱度が付与される。 In this way, in the second cascade capacitor 26, the high original refrigerant flowing through the branch circuit 20a and the low original refrigerant flowing out of the low original evaporator 15 perform heat exchange, whereby the high original refrigerant Since the temperature is higher than the temperature of the low-source side refrigerant, the degree of supercooling is given to the high-source side refrigerant. At the same time, the degree of superheat is imparted to the low-source refrigerant.
 そして、高元側冷媒に対して過冷却度が付与されることにより、高元側冷媒回路におけるエンタルピが大きくなるため、高元側冷媒回路、すなわち高元冷凍サイクル20の冷凍能力を向上させることができる。また、高元側圧縮機21の容量を小さくすることができる。 And, since the enthalpy in the high-side refrigerant circuit is increased by giving the degree of supercooling to the high-side refrigerant, the refrigeration capacity of the high-side refrigerant circuit, that is, the high-source refrigeration cycle 20 is improved. Can do. Further, the capacity of the high-end compressor 21 can be reduced.
 さらに、低元側冷媒に対して過熱度が付与されることにより、低元側圧縮機11に吸入される低元側冷媒の過熱度が大きくなるため、低元側圧縮機11における低元側冷媒吐出温度を高くすることができる。このように、補助放熱器12に流入する低元側冷媒の温度を従来よりも高温にすることができる。したがって、補助放熱器12において熱交換を行う外気との温度差を大きくすることができ、補助放熱器12における熱交換量を向上させ、補助放熱器12を有効活用することができる。 Furthermore, since the degree of superheat of the low-side refrigerant sucked into the low-side compressor 11 is increased by giving the superheat degree to the low-side refrigerant, the low-side side in the low-side compressor 11 The refrigerant discharge temperature can be increased. In this way, the temperature of the low-source side refrigerant flowing into the auxiliary radiator 12 can be made higher than before. Therefore, the temperature difference with the outside air which performs heat exchange in the auxiliary radiator 12 can be increased, the amount of heat exchange in the auxiliary radiator 12 can be improved, and the auxiliary radiator 12 can be effectively used.
実施の形態2.
 次に、本実施の形態2に係る二元冷凍装置1について説明する。本実施の形態2は、高元側冷媒回路の分岐回路20aに流量調整弁を設ける点で、上述した実施の形態1と相違する。
Embodiment 2. FIG.
Next, the binary refrigeration apparatus 1 according to Embodiment 2 will be described. The second embodiment is different from the first embodiment described above in that a flow rate adjusting valve is provided in the branch circuit 20a of the high-side refrigerant circuit.
[二元冷凍装置の構成]
 図2は、本実施の形態2に係る二元冷凍装置1の構成の一例を示すブロック図である。なお、以下の説明において、上述した実施の形態1と共通する部分には、同一の符号を付し、詳細な説明を省略する。図2に示すように、二元冷凍装置1は、実施の形態1と同様に、低元冷凍サイクル10、高元冷凍サイクル20、第1のカスケードコンデンサ30および制御装置40で構成され、高元冷凍サイクル20の高元側冷媒回路には、分岐回路20aが設けられている。
[Configuration of dual refrigeration system]
FIG. 2 is a block diagram illustrating an example of the configuration of the binary refrigeration apparatus 1 according to the second embodiment. In the following description, the same reference numerals are given to the portions common to the above-described first embodiment, and the detailed description is omitted. As shown in FIG. 2, the binary refrigeration apparatus 1 includes a low-source refrigeration cycle 10, a high-source refrigeration cycle 20, a first cascade capacitor 30, and a control device 40, as in the first embodiment. A branch circuit 20 a is provided in the high-side refrigerant circuit of the refrigeration cycle 20.
 本実施の形態2において、分岐回路20aには、流量調整弁42が設けられている。また、低元側圧縮機11の吐出側には、吐出温度センサ43が設けられている。 In the second embodiment, the branch circuit 20a is provided with a flow rate adjusting valve 42. A discharge temperature sensor 43 is provided on the discharge side of the low-source compressor 11.
 流量調整弁42は、分岐回路20aに流入する高元側冷媒の流量を調整するために設けられ、制御装置40によって開度が制御される。流量調整弁42としては、例えば電子式膨張弁等の流量制御手段、キャピラリ等の毛細管、感温式膨張弁等の冷媒流量調節手段等を用いることができる。 The flow rate adjustment valve 42 is provided to adjust the flow rate of the high-side refrigerant flowing into the branch circuit 20a, and the opening degree is controlled by the control device 40. As the flow rate adjusting valve 42, for example, a flow rate controlling means such as an electronic expansion valve, a capillary such as a capillary, a refrigerant flow rate adjusting means such as a temperature sensitive expansion valve, or the like can be used.
 流量調整弁42が開くと、第2のカスケードコンデンサ26によって熱交換される高元側冷媒の流量が増え、低元側圧縮機11に吸入される低元側冷媒の過熱度が大きくなる。そのため、低元側圧縮機11から吐出される低元側冷媒の温度が高くなる。 When the flow rate adjustment valve 42 is opened, the flow rate of the high-side refrigerant that is heat-exchanged by the second cascade condenser 26 increases, and the degree of superheat of the low-side refrigerant that is sucked into the low-side compressor 11 increases. For this reason, the temperature of the low-side refrigerant discharged from the low-side compressor 11 becomes high.
 一方、流量調整弁42が閉じると、第2のカスケードコンデンサ26によって熱交換される高元側冷媒の流量が減り、低元側圧縮機11に吸入される低元側冷媒の過熱度が小さくなる。そのため、低元側圧縮機11から吐出される低元側冷媒の温度が低くなる。 On the other hand, when the flow rate adjustment valve 42 is closed, the flow rate of the high-side refrigerant that is heat-exchanged by the second cascade condenser 26 decreases, and the degree of superheat of the low-side refrigerant that is sucked into the low-side compressor 11 decreases. . Therefore, the temperature of the low-side refrigerant discharged from the low-side compressor 11 becomes low.
 吐出温度センサ43は、低元側圧縮機11における低元側冷媒吐出温度を検出するために設けられている。吐出温度センサ43は、検出した低元側冷媒吐出温度を示す情報を、制御装置40に供給する。 The discharge temperature sensor 43 is provided to detect the low-side refrigerant discharge temperature in the low-side compressor 11. The discharge temperature sensor 43 supplies information indicating the detected low-source-side refrigerant discharge temperature to the control device 40.
 制御装置40は、実施の形態1で説明した動作に加えて、さらに、外気温度センサ41から供給された外気温度と、吐出温度センサ43から供給された低元側冷媒吐出温度とに基づき、流量調整弁42の開度を制御する。 In addition to the operation described in the first embodiment, the control device 40 further controls the flow rate based on the outside air temperature supplied from the outside air temperature sensor 41 and the low-source refrigerant discharge temperature supplied from the discharge temperature sensor 43. The opening degree of the regulating valve 42 is controlled.
[二元冷凍装置の動作]
 次に、本実施の形態2に係る二元冷凍装置1の動作について説明する。なお、以下の説明において、上述した実施の形態1と同様の動作については、詳細な説明を省略する。また、低元冷凍サイクル10については、実施の形態1と同様であるため、説明を省略する。
[Operation of dual refrigeration system]
Next, the operation of the binary refrigeration apparatus 1 according to the second embodiment will be described. In the following description, detailed description of operations similar to those of the first embodiment described above is omitted. Further, the low-source refrigeration cycle 10 is the same as that in the first embodiment, and thus the description thereof is omitted.
(高元冷凍サイクルの動作)
 本実施の形態2において、高元側冷媒が高元側圧縮機21に吸入されてから高元側凝縮器22で凝縮液化されるまでの動作については、上述した実施の形態1と同様であるため、説明を省略する。
(High refrigeration cycle operation)
In the second embodiment, the operation from when the high-side refrigerant is sucked into the high-side compressor 21 until it is condensed and liquefied by the high-side condenser 22 is the same as that of the above-described first embodiment. Therefore, the description is omitted.
 低元側圧縮機11から吐出される低元側冷媒の温度が低い場合には、流量調整弁42が「開」状態とされ、この場合、高元側凝縮器22で凝縮液化された高元側冷媒は、高元側膨張弁23を通過するとともに、分岐回路20aにも流入する。分岐回路20aに流入した高元側冷媒は、第2のカスケードコンデンサ26に流入し、低元側蒸発器15で蒸発ガス化した低元側冷媒との間で熱交換を行う。これにより、高元側冷媒には、過冷却度が付与される。過冷却度が付与された高元側冷媒は、分岐回路20aを流れて高元側膨張弁23を通過する。 When the temperature of the low-side refrigerant discharged from the low-side compressor 11 is low, the flow rate adjustment valve 42 is set to the “open” state. In this case, the high-side condensed and liquefied by the high-side condenser 22 The side refrigerant passes through the high-side expansion valve 23 and also flows into the branch circuit 20a. The high-side refrigerant that has flowed into the branch circuit 20a flows into the second cascade condenser 26 and exchanges heat with the low-side refrigerant that has been vaporized and gasified by the low-side evaporator 15. Thereby, a supercooling degree is provided to the high-source side refrigerant. The high-side refrigerant provided with the degree of supercooling flows through the branch circuit 20 a and passes through the high-side expansion valve 23.
 一方、低元側圧縮機11から吐出される低元側冷媒の温度が高い場合には、流量調整弁42が「閉」状態とされ、この場合、高元側凝縮器22で凝縮液化された高元側冷媒は、分岐回路20aに流入せず、高元側膨張弁23を通過する。高元側膨張弁23を通過した高元側冷媒は、減圧され、高元側蒸発器24に流入する。高元側蒸発器24に流入した高元側冷媒は、第1のカスケードコンデンサ30により、低元側凝縮器13を通過する低元側冷媒との間で熱交換を行い、蒸発してガス化される。そして、蒸発ガス化した高元側冷媒は、高元側圧縮機21に吸入される。 On the other hand, when the temperature of the low-side refrigerant discharged from the low-side compressor 11 is high, the flow rate adjustment valve 42 is in a “closed” state, and in this case, the low-side side refrigerant 22 is condensed and liquefied by the high-side condenser 22. The high-side refrigerant does not flow into the branch circuit 20a and passes through the high-side expansion valve 23. The high-side refrigerant that has passed through the high-side expansion valve 23 is decompressed and flows into the high-side evaporator 24. The high-side refrigerant flowing into the high-side evaporator 24 is heat-exchanged with the low-side refrigerant passing through the low-side condenser 13 by the first cascade condenser 30, and is evaporated and gasified. Is done. Then, the high-side refrigerant that has been vaporized is sucked into the high-side compressor 21.
 ここで、熱交換器における熱交換量について説明する。熱交換器の能力を示す熱交換量Q[W]は、一般に、式(1)で表すことができる。なお、式(1)において、「K」は、熱交換器の熱通過率[W/m・K]を示し、熱交換器の仕様、空気熱交換器の場合には組み合わせられる風量によって決定される。「A」は、熱交換器の伝熱面積[m]を示し、熱交換器の面積によって決定される。また、「ΔT」は、熱交換を行う2つの媒体の平均温度差[K]を示す。 Here, the heat exchange amount in the heat exchanger will be described. The heat exchange amount Q [W] indicating the capability of the heat exchanger can be generally expressed by the formula (1). In Equation (1), “K” indicates the heat passage rate [W / m 2 · K] of the heat exchanger, and is determined by the specifications of the heat exchanger and the air volume combined in the case of the air heat exchanger. Is done. “A” indicates the heat transfer area [m 2 ] of the heat exchanger, and is determined by the area of the heat exchanger. “ΔT m ” indicates an average temperature difference [K] between the two media that perform heat exchange.
 [数1]
    Q=K×A×ΔT   ・・・(1)
[Equation 1]
Q = K × A × ΔT m (1)
 この場合、例えば熱通過率Kおよび伝熱面積Aが常に同じ値をとるものとすると、平均温度差ΔTを大きくすることにより、熱交換量Qを大きくすることができる。すなわち、熱交換器に流入する冷媒の温度を高くすることにより、平均温度差ΔTを大きくすることができるため、熱交換量Qを大きくすることができる。 In this case, for example, heat transfer coefficient K and the heat transfer area A is always assumed to take the same value, by increasing the average temperature difference [Delta] T m, it is possible to increase the heat exchange amount Q. That is, by increasing the temperature of the refrigerant flowing into the heat exchanger, it is possible to increase the average temperature difference [Delta] T m, it is possible to increase the heat exchange amount Q.
 したがって、本実施の形態2においては、流量調整弁42の開度を制御することにより、低元側圧縮機11における低元側冷媒吐出温度を高くすることができ、これにより、補助放熱器12に流入する低元側冷媒の温度が高くなり、補助放熱器12における熱交換量を大きくすることができる。 Therefore, in the second embodiment, the low-end side refrigerant discharge temperature in the low-end side compressor 11 can be increased by controlling the opening degree of the flow rate adjusting valve 42, and thereby the auxiliary radiator 12. As a result, the temperature of the low-side refrigerant flowing into the refrigerant increases, and the amount of heat exchange in the auxiliary radiator 12 can be increased.
 ここで、低元冷凍サイクル10および高元冷凍サイクル20における冷凍能力を向上させる制御について説明する。例えば、制御装置40による制御に基づき、低元側膨張弁14の開度が大きくなり、低元側蒸発器15から流出する低元側冷媒が気液二相状態となるようにした場合を考える。この場合には、低元側蒸発器15内のすべての低元側冷媒が気液二相状態となるため、気液二相状態の低元側冷媒と、冷蔵庫内の空気等の冷却対象とが熱交換を行うことになる。これにより、上述した式(1)に示す低元側冷媒と冷却対象との平均温度差ΔTを、通常状態よりも大きくすることができる。そのため、低元側蒸発器15における熱交換量Qを増大させることができるので、低元冷凍サイクル10の冷却能力を向上させることができる。 Here, control for improving the refrigeration capacity in the low-source refrigeration cycle 10 and the high-source refrigeration cycle 20 will be described. For example, a case is considered in which, based on control by the control device 40, the opening degree of the low-side expansion valve 14 is increased so that the low-side refrigerant flowing out of the low-side evaporator 15 enters a gas-liquid two-phase state. . In this case, since all the low-side refrigerants in the low-side evaporator 15 are in the gas-liquid two-phase state, the low-side refrigerant in the gas-liquid two-phase state and the cooling target such as air in the refrigerator Will exchange heat. Thereby, average temperature difference (DELTA) Tm of the low original side refrigerant | coolant shown to Formula (1) mentioned above and cooling object can be made larger than a normal state. Therefore, since the heat exchange amount Q in the low element side evaporator 15 can be increased, the cooling capacity of the low element refrigeration cycle 10 can be improved.
 また、低元側蒸発器15から流出した低元側冷媒と、分岐回路20aを流れる高元側冷媒との間で熱交換を行う第2のカスケードコンデンサ26における熱交換量も増大する。そのため、高元側冷媒に付与する過冷却度を大きくすることができ、高元側冷媒回路におけるエンタルピが大きくなるので、高元冷凍サイクル20の冷凍能力を向上させることができる。 Also, the amount of heat exchange in the second cascade condenser 26 that performs heat exchange between the low-side refrigerant flowing out of the low-side evaporator 15 and the high-side refrigerant flowing through the branch circuit 20a also increases. Therefore, the degree of supercooling imparted to the high-source-side refrigerant can be increased, and the enthalpy in the high-source-side refrigerant circuit is increased, so that the refrigeration capacity of the high-source refrigeration cycle 20 can be improved.
 以上のように、本実施の形態2に係る二元冷凍装置1は、外気の温度を検出する外気温度センサ41と、低元側圧縮機11から吐出される低元側冷媒の吐出温度を検出する吐出温度センサ43と、分岐回路20aに流入する高元側冷媒の流量を調整する流量調整弁42とをさらに備え、制御装置40は、外気温度センサ41による検出結果と、吐出温度センサ43による検出結果とに基づき、流量調整弁42の開度を制御する。 As described above, the binary refrigeration apparatus 1 according to Embodiment 2 detects the outside air temperature sensor 41 that detects the temperature of the outside air and the discharge temperature of the low-side refrigerant discharged from the low-side compressor 11. And a flow rate adjusting valve 42 for adjusting the flow rate of the high-side refrigerant flowing into the branch circuit 20a. The control device 40 detects the detection result by the outside air temperature sensor 41 and the discharge temperature sensor 43. Based on the detection result, the opening degree of the flow rate adjustment valve 42 is controlled.
 このように、本実施の形態2では、吐出温度センサ43によって検出された低元側冷媒吐出温度と、外気温度センサ41によって検出された外気温度とに基づき、流量調整弁42の開度を制御する。そのため、補助放熱器12に流入する低元側冷媒吐出温度と外気温度との温度差を大きくすることができ、実施の形態1と同様に、補助放熱器12を有効活用することができる。そして、これにより、低元側圧縮機11における低元側冷媒吐出温度が上がりづらい、低元側蒸発器15の蒸発温度が高い場合であっても、低元側冷媒回路の冷却能力を確保することができる。 As described above, in the second embodiment, the opening degree of the flow rate adjustment valve 42 is controlled based on the low-source refrigerant discharge temperature detected by the discharge temperature sensor 43 and the outside air temperature detected by the outside air temperature sensor 41. To do. Therefore, the temperature difference between the low-side refrigerant discharge temperature flowing into the auxiliary radiator 12 and the outside air temperature can be increased, and the auxiliary radiator 12 can be effectively used as in the first embodiment. As a result, even when the low-side refrigerant discharge temperature in the low-side compressor 11 is difficult to rise and the evaporation temperature of the low-side evaporator 15 is high, the cooling capacity of the low-side refrigerant circuit is ensured. be able to.
 また、一般に、圧縮機の吐出温度には、圧縮機の故障等の不具合を防止するため、上限が設定されている。本実施の形態2では、流量調整弁42の開度を制御することにより、低元側圧縮機11に吸入される低元側冷媒の温度を調整し、低元側圧縮機11における低元側冷媒吐出温度を調整することができる。そのため、低元側冷媒吐出温度の上昇による低元側圧縮機11の不具合を防止することができ、低元側圧縮機11の寿命を延ばすことができる。 In general, an upper limit is set for the discharge temperature of the compressor in order to prevent problems such as failure of the compressor. In the second embodiment, the temperature of the low-side refrigerant sucked into the low-side compressor 11 is adjusted by controlling the opening degree of the flow rate adjustment valve 42, and the low-side side in the low-side compressor 11 is adjusted. The refrigerant discharge temperature can be adjusted. For this reason, it is possible to prevent a malfunction of the low-side compressor 11 due to an increase in the low-side refrigerant discharge temperature, and to extend the life of the low-side compressor 11.
実施の形態3.
 次に、本実施の形態3に係る二元冷凍装置1について説明する。本実施の形態3は、低元側凝縮器および低元側膨張弁の間と、低元側蒸発器および低元側圧縮機の間とを接続する低元側インジェクション回路を設けた点で、上述した実施の形態2と相違する。
Embodiment 3 FIG.
Next, the binary refrigeration apparatus 1 according to the third embodiment will be described. The third embodiment is that a low-side injection circuit that connects between the low-side condenser and the low-side expansion valve and between the low-side evaporator and the low-side compressor is provided. This is different from the second embodiment described above.
[二元冷凍装置の構成]
 図3は、本実施の形態3に係る二元冷凍装置1の構成の一例を示すブロック図である。なお、以下の説明において、上述した実施の形態1および実施の形態2と共通する部分には、同一の符号を付し、詳細な説明を省略する。図3に示すように、二元冷凍装置1は、実施の形態2と同様に、低元冷凍サイクル10、分岐回路20aが設けられた高元冷凍サイクル20、第1のカスケードコンデンサ30および制御装置40で構成されている。
[Configuration of dual refrigeration system]
FIG. 3 is a block diagram illustrating an example of the configuration of the binary refrigeration apparatus 1 according to the third embodiment. In the following description, the same reference numerals are given to portions common to the above-described first and second embodiments, and detailed description thereof is omitted. As shown in FIG. 3, the binary refrigeration apparatus 1 includes a low-source refrigeration cycle 10, a high-source refrigeration cycle 20 provided with a branch circuit 20a, a first cascade capacitor 30, and a control device, as in the second embodiment. 40.
 本実施の形態3において、低元冷凍サイクル10の低元側冷媒回路には、低元側インジェクション回路10aが形成されている。低元側インジェクション回路10aは、低元側凝縮器13および低元側膨張弁14の間と、低元側蒸発器15および低元側圧縮機11の間とを接続する分岐回路である。低元側インジェクション回路10aには、インジェクション膨張弁51が設けられている。 In the third embodiment, the low-source side refrigerant circuit of the low-source refrigeration cycle 10 is formed with a low-source-side injection circuit 10a. The low-side injection circuit 10 a is a branch circuit that connects between the low-side condenser 13 and the low-side expansion valve 14 and between the low-side evaporator 15 and the low-side compressor 11. The low expansion side injection circuit 10a is provided with an injection expansion valve 51.
 インジェクション膨張弁51は、低元側インジェクション回路10aに流入する低元側冷媒の流量を調整するために設けられ、制御装置40によって開度が制御される。インジェクション膨張弁51としては、例えば電子式膨張弁等の流量制御手段、キャピラリ等の毛細管、感温式膨張弁等の冷媒流量調節手段等を用いることができる。本実施の形態3では、インジェクション膨張弁51として、例えば低元側圧縮機11における低元側冷媒吐出温度を調整することが可能な電子式膨張弁を用いることができる。 The injection expansion valve 51 is provided to adjust the flow rate of the low-side refrigerant flowing into the low-side injection circuit 10a, and the opening degree is controlled by the control device 40. As the injection expansion valve 51, for example, a flow rate control means such as an electronic expansion valve, a capillary such as a capillary, a refrigerant flow rate adjustment means such as a temperature-sensitive expansion valve, or the like can be used. In the third embodiment, for example, an electronic expansion valve capable of adjusting the low-side refrigerant discharge temperature in the low-side compressor 11 can be used as the injection expansion valve 51.
 制御装置40は、吐出温度センサ43から供給された低元側圧縮機11における低元側冷媒吐出温度に基づき、インジェクション膨張弁51の開度を制御する。 The control device 40 controls the opening degree of the injection expansion valve 51 based on the low-side refrigerant discharge temperature in the low-side compressor 11 supplied from the discharge temperature sensor 43.
 低元側インジェクション回路10aに設けられた第2のカスケードコンデンサ26は、高元側の分岐回路20aを流れる高元側冷媒と、低元側インジェクション回路10aを流れ、インジェクション膨張弁51で絞られて低温低圧の気液二相状態とされた低元側冷媒との間で熱交換を行う。 The second cascade capacitor 26 provided in the low-source side injection circuit 10a flows through the high-side refrigerant flowing through the high-side branch circuit 20a and the low-side injection circuit 10a and is throttled by the injection expansion valve 51. Heat exchange is performed with the low-side refrigerant in the low-temperature low-pressure gas-liquid two-phase state.
[二元冷凍装置の動作]
 次に、本実施の形態3に係る二元冷凍装置1の動作について説明する。なお、以下の説明において、上述した実施の形態1および実施の形態2と同様の動作については、詳細な説明を省略する。また、高元冷凍サイクル20については、実施の形態2と同様であるため、説明を省略する。
[Operation of dual refrigeration system]
Next, the operation of the binary refrigeration apparatus 1 according to the third embodiment will be described. In the following description, detailed description of the same operations as those in the first embodiment and the second embodiment described above will be omitted. Further, the high-source refrigeration cycle 20 is the same as that of the second embodiment, and thus the description thereof is omitted.
(低元冷凍サイクルの動作)
 本実施の形態3において、低元側冷媒が低元側圧縮機11に吸入されてから低元側凝縮器13で凝縮液化されるまでの動作については、上述した実施の形態1および実施の形態2と同様であるため、説明を省略する。
(Low refrigeration cycle operation)
In the third embodiment, the operation from when the low-side refrigerant is sucked into the low-side compressor 11 until it is condensed and liquefied by the low-side condenser 13 is described in the first embodiment and the above-described embodiment. Since it is the same as 2, the description is omitted.
 低元側凝縮器13で凝縮液化された低元側冷媒は、低元側膨張弁14を通過するとともに、低元側インジェクション回路10aにも流入する。低元側インジェクション回路10aに流入した低元側冷媒は、インジェクション膨張弁51を通過する。インジェクション膨張弁51は、凝縮液化した低元側冷媒を絞り、低温低圧の気液二相状態の低元側冷媒にする。 The low-side refrigerant condensed and liquefied by the low-side condenser 13 passes through the low-side expansion valve 14 and also flows into the low-side injection circuit 10a. The low-side refrigerant flowing into the low-side injection circuit 10 a passes through the injection expansion valve 51. The injection expansion valve 51 squeezes the condensed low liquefied refrigerant to form a low-temperature low-pressure gas-liquid two-phase low-source refrigerant.
 このとき、インジェクション膨張弁51を通過して低温低圧の気液二相状態となった低元側冷媒は、低元側蒸発器15を通過して低元側圧縮機11に吸入される低元側冷媒の圧力と同一の圧力となる。これは、インジェクション膨張弁51の下流側が低元側圧縮機11の吸入側に接続されているためである。 At this time, the low-side refrigerant that has passed through the injection expansion valve 51 and has entered a low-temperature low-pressure gas-liquid two-phase state passes through the low-side evaporator 15 and is sucked into the low-side compressor 11. The pressure is the same as that of the side refrigerant. This is because the downstream side of the injection expansion valve 51 is connected to the suction side of the low-side compressor 11.
 低温低圧の気液二相冷媒となった低元側冷媒は、第2のカスケードコンデンサ26を通過する。第2のカスケードコンデンサ26は、低温低圧で気液二相状態の低元側冷媒と、凝縮液化した高元側冷媒との間で熱交換を行う。 The low-side refrigerant that has become a low-temperature low-pressure gas-liquid two-phase refrigerant passes through the second cascade capacitor 26. The second cascade capacitor 26 performs heat exchange between the low-side refrigerant in a gas-liquid two-phase state at low temperature and low pressure and the high-side refrigerant condensed and liquefied.
 ここで、第2のカスケードコンデンサ26を通過する低元側冷媒は、低元側蒸発器15を通過した低温低圧のガス化した低元側冷媒と比較して、低元側蒸発器15で付与された過熱度分だけ温度が低くなる。これは、低元側蒸発器15を通過した低元側冷媒の温度が低元側の低圧圧力から換算される飽和温度に低元側蒸発器15で付与された過熱度を加算したものであるのに対して、インジェクション膨張弁51を通過した低元側冷媒の温度が低元側の低圧圧力から換算される飽和温度であるからである。そのため、第2のカスケードコンデンサ26において熱交換される低元側冷媒と高元側冷媒との温度差は、実施の形態2における温度差と比較して、低元側蒸発器15を通過した低元側冷媒に付与された過熱度分だけ大きくなる。 Here, the low-side refrigerant passing through the second cascade condenser 26 is applied by the low-side evaporator 15 as compared with the low-temperature and low-pressure gasified low-side refrigerant passing through the low-side evaporator 15. The temperature is lowered by the degree of superheat. This is obtained by adding the degree of superheat given by the low-side evaporator 15 to the saturation temperature in which the temperature of the low-side refrigerant that has passed through the low-side evaporator 15 is converted from the low pressure on the low side. This is because the temperature of the low-side refrigerant that has passed through the injection expansion valve 51 is a saturation temperature converted from the low-pressure on the low-side side. Therefore, the temperature difference between the low-side refrigerant and the high-side refrigerant that is heat-exchanged in the second cascade condenser 26 is lower than the temperature difference in the second embodiment when it passes through the low-side evaporator 15. It increases by the degree of superheat imparted to the former refrigerant.
 したがって、第2のカスケードコンデンサ26で熱交換を行う高温高圧の液冷媒である高元側冷媒には、実施の形態2と比較して大きい過冷却度が付与される。これにより、本実施の形態3では、高元側のエンタルピを大きくすることができ、高元冷凍サイクル20の冷凍能力を向上させることができる。また、これにより、高元側圧縮機21には、容量が小さい圧縮機を用いることができる。 Therefore, a higher supercooling degree than that of the second embodiment is given to the high-side refrigerant that is a high-temperature and high-pressure liquid refrigerant that performs heat exchange with the second cascade condenser 26. Thereby, in this Embodiment 3, the enthalpy of the high yuan side can be enlarged and the refrigerating capacity of the high refrigeration cycle 20 can be improved. Thereby, a compressor with a small capacity can be used as the high-end compressor 21.
 以上のように、本実施の形態3に係る二元冷凍装置1は、低元側凝縮器13および低元側膨張弁14の間と、低元側蒸発器15および低元側圧縮機11の間とを接続する低元側インジェクション回路10aと、低元側インジェクション回路10aに設けられたインジェクション膨張弁51とをさらに備え、制御装置40は、吐出温度センサ43による検出結果に基づき、インジェクション膨張弁51の開度を制御する。 As described above, the binary refrigeration apparatus 1 according to Embodiment 3 includes the low-side evaporator 13 and the low-side compressor 11 between the low-side condenser 13 and the low-side expansion valve 14. And a low expansion side injection circuit 10a connected to the low expansion side injection circuit 10a. The control device 40 is based on the detection result by the discharge temperature sensor 43, and the injection expansion valve The opening of 51 is controlled.
 これにより、第2のカスケードコンデンサ26で熱交換を行う低元側冷媒と高元側冷媒との温度差を、実施の形態1および2よりも大きくすることができるため、高元側のエンタルピをより大きくすることができ、高元冷凍サイクル20の冷凍能力をより向上させることができる。 As a result, the temperature difference between the low-side refrigerant and the high-side refrigerant that performs heat exchange with the second cascade capacitor 26 can be made larger than those in the first and second embodiments, so that the high-side enthalpy is reduced. The refrigeration capacity of the high-source refrigeration cycle 20 can be further improved.
実施の形態4.
 次に、本実施の形態4に係る二元冷凍装置1について説明する。本実施の形態4は、低元側圧縮機11の吸入側に吸入される低元側冷媒の温度を検出するための吸入温度センサを設けた点で、上述した実施の形態3と相違する。
Embodiment 4 FIG.
Next, the binary refrigeration apparatus 1 according to the fourth embodiment will be described. The fourth embodiment is different from the third embodiment described above in that an intake temperature sensor for detecting the temperature of the low-side refrigerant sucked on the suction side of the low-side compressor 11 is provided.
[二元冷凍装置の構成]
 図4は、本実施の形態4に係る二元冷凍装置1の構成の一例を示すブロック図である。なお、以下の説明において、上述した実施の形態1~3と共通する部分には、同一の符号を付し、詳細な説明を省略する。図4に示すように、二元冷凍装置1は、実施の形態3と同様に、低元側インジェクション回路10aが設けられた低元冷凍サイクル10、分岐回路20aが設けられた高元冷凍サイクル20、第1のカスケードコンデンサ30および制御装置40で構成されている。
[Configuration of dual refrigeration system]
FIG. 4 is a block diagram illustrating an example of the configuration of the binary refrigeration apparatus 1 according to the fourth embodiment. In the following description, the same reference numerals are given to portions common to the above-described first to third embodiments, and detailed description thereof is omitted. As shown in FIG. 4, the binary refrigeration apparatus 1 includes a low-source refrigeration cycle 10 provided with a low-source injection circuit 10a and a high-source refrigeration cycle 20 provided with a branch circuit 20a, as in the third embodiment. The first cascade capacitor 30 and the control device 40 are included.
 本実施の形態4において、低元側圧縮機11の吸入側には、吸入温度センサ44が設けられている。吸入温度センサ44は、低元側圧縮機11に吸入される低元側冷媒の吸入温度を示す低元側冷媒吸入温度を検出するために設けられている。吸入温度センサ44は、検出した低元側冷媒吸入温度を示す情報を、制御装置40に供給する。 In the fourth embodiment, a suction temperature sensor 44 is provided on the suction side of the low-source compressor 11. The suction temperature sensor 44 is provided to detect a low-source-side refrigerant suction temperature indicating the suction temperature of the low-source-side refrigerant sucked into the low-source side compressor 11. The suction temperature sensor 44 supplies information indicating the detected low-source side refrigerant suction temperature to the control device 40.
 制御装置40は、実施の形態1~3で説明した動作に加えて、さらに、外気温度センサ41から供給された外気温度と、吐出温度センサ43から供給された低元側冷媒吐出温度と、吸入温度センサ44から供給された低元側冷媒吸入温度とに基づき、インジェクション膨張弁51の開度を制御する。 In addition to the operations described in the first to third embodiments, the control device 40 further includes the outside air temperature supplied from the outside air temperature sensor 41, the low-side refrigerant discharge temperature supplied from the discharge temperature sensor 43, and the suction Based on the low-source side refrigerant suction temperature supplied from the temperature sensor 44, the opening degree of the injection expansion valve 51 is controlled.
 例えば、制御装置40は、検出された低元側冷媒吐出温度と低元側冷媒吸入温度とに基づき、両方の温度のバランスを取るように、インジェクション膨張弁51の開度を制御する。また、制御装置40は、検出された外気温度を考慮して、補助放熱器12における、低元側圧縮機11から吐出された高温高圧のガス化された低元側冷媒と、外気との温度差を確保するように、インジェクション膨張弁51の開度を制御する。 For example, the control device 40 controls the opening degree of the injection expansion valve 51 so as to balance both temperatures based on the detected low-source-side refrigerant discharge temperature and low-source-side refrigerant suction temperature. Further, the control device 40 considers the detected outside air temperature, and the temperature of the high-temperature and high-pressure gasified low-side refrigerant discharged from the low-side compressor 11 in the auxiliary radiator 12 and the outside air. The opening degree of the injection expansion valve 51 is controlled so as to ensure the difference.
 以上のように、本実施の形態4に係る二元冷凍装置1は、低元側圧縮機11に吸入される低元側冷媒の吸入温度を検出する吸入温度センサ44をさらに備え、制御装置40は、外気温度センサ41による検出結果と、吐出温度センサ43による検出結果と、吸入温度センサ44による検出結果とに基づき、インジェクション膨張弁51の開度を制御する。これにより、低元側圧縮機11の運転範囲を確保し、低元側圧縮機11の故障等の不具合を防ぐことができる。 As described above, the binary refrigeration apparatus 1 according to the fourth embodiment further includes the suction temperature sensor 44 that detects the suction temperature of the low-side refrigerant sucked into the low-side compressor 11, and includes the control device 40. Controls the opening degree of the injection expansion valve 51 based on the detection result by the outside air temperature sensor 41, the detection result by the discharge temperature sensor 43, and the detection result by the suction temperature sensor 44. Thereby, the operation range of the low-side compressor 11 can be secured, and problems such as a failure of the low-side compressor 11 can be prevented.
 以上、本発明の実施の形態1~実施の形態4について説明したが、本発明は、上述した本発明の実施の形態1~実施の形態4に限定されるものではなく、本発明の要旨を逸脱しない範囲内で様々な変形や応用が可能である。 The first to fourth embodiments of the present invention have been described above. However, the present invention is not limited to the above-described first to fourth embodiments of the present invention, and the gist of the present invention is described. Various modifications and applications are possible without departing from the scope.
 1 二元冷凍装置、10 低元冷凍サイクル、10a 低元側インジェクション回路、11 低元側圧縮機、12 補助放熱器、13 低元側凝縮器、14 低元側膨張弁、15 低元側蒸発器、20 高元冷凍サイクル、20a 分岐回路、21 高元側圧縮機、22 高元側凝縮器、23 高元側膨張弁、24 高元側蒸発器、25 ファン、26 第2のカスケードコンデンサ、30 第1のカスケードコンデンサ、40 制御装置、41 外気温度センサ、42 流量調整弁、43 吐出温度センサ、44 吸入温度センサ、51 インジェクション膨張弁。 1 Low refrigeration cycle, 10 Low refrigeration cycle, 10a Low low side injection circuit, 11 Low low side compressor, 12 Auxiliary radiator, 13 Low low side condenser, 14 Low low side expansion valve, 15 Low low side evaporation , 20 high refrigeration cycle, 20a branch circuit, 21 high high side compressor, 22 high high side condenser, 23 high high side expansion valve, 24 high high side evaporator, 25 fan, 26 second cascade condenser, 30 1st cascade capacitor, 40 control device, 41 outside air temperature sensor, 42 flow rate adjustment valve, 43 discharge temperature sensor, 44 suction temperature sensor, 51 injection expansion valve.

Claims (9)

  1.  高元側圧縮機、高元側凝縮器、高元側膨張弁、および高元側蒸発器を配管で接続し、高元側冷媒を循環させる高元側冷媒回路を形成する高元冷凍サイクルと、
     低元側圧縮機、補助放熱器、低元側凝縮器、低元側膨張弁、および低元側蒸発器を配管で接続し、低元側冷媒を循環させる低元側冷媒回路を形成する低元冷凍サイクルと、
     前記高元側蒸発器および前記低元側凝縮器を有し、前記高元側冷媒回路を流れる前記高元側冷媒と、前記低元側冷媒回路を流れる前記低元側冷媒との間で熱交換を行う第1のカスケードコンデンサと
    を備えた二元冷凍装置であって、
     前記高元冷凍サイクルにおける前記高元側凝縮器の下流から分岐し、前記高元側膨張弁の上流に戻る分岐回路と、
     前記分岐回路に設けられ、該分岐回路を流れる前記高元側冷媒と、前記低元側蒸発器から流出する前記低元側冷媒との間で熱交換を行う第2のカスケードコンデンサと、
     前記二元冷凍装置に設けられた各機器の動作を制御する制御装置と
    を備える
    二元冷凍装置。
    A high-source refrigeration cycle that forms a high-side refrigerant circuit that connects the high-side compressor, the high-side condenser, the high-side expansion valve, and the high-side evaporator through piping and circulates the high-side refrigerant. ,
    A low-side compressor, auxiliary radiator, low-side condenser, low-side expansion valve, and low-side evaporator are connected by piping to form a low-side refrigerant circuit that circulates the low-side refrigerant. The original refrigeration cycle,
    Heat is generated between the high-side refrigerant flowing through the high-side refrigerant circuit and the low-side refrigerant flowing through the low-side refrigerant circuit, having the high-side evaporator and the low-side condenser. A two-stage refrigeration apparatus comprising a first cascade condenser for exchange,
    A branch circuit that branches from the downstream of the high-side condenser in the high-source refrigeration cycle and returns to the upstream of the high-side expansion valve;
    A second cascade capacitor provided in the branch circuit for exchanging heat between the high-side refrigerant flowing through the branch circuit and the low-side refrigerant flowing out of the low-side evaporator;
    A binary refrigeration apparatus comprising: a control device that controls operation of each device provided in the binary refrigeration apparatus.
  2.  外気の温度を検出する外気温度センサと、
     前記低元側圧縮機から吐出される前記低元側冷媒の吐出温度を検出する吐出温度センサと、
     前記分岐回路に流入する前記高元側冷媒の流量を調整する流量調整弁と
    をさらに備え、
     前記制御装置は、
     前記外気温度センサによる検出結果と、前記吐出温度センサによる検出結果とに基づき、前記流量調整弁の開度を制御する
    請求項1に記載の二元冷凍装置。
    An outside air temperature sensor for detecting the outside air temperature;
    A discharge temperature sensor for detecting a discharge temperature of the low-side refrigerant discharged from the low-side compressor;
    A flow rate adjustment valve that adjusts the flow rate of the high-source side refrigerant flowing into the branch circuit;
    The controller is
    2. The dual refrigeration apparatus according to claim 1, wherein the opening degree of the flow rate adjustment valve is controlled based on a detection result by the outside air temperature sensor and a detection result by the discharge temperature sensor.
  3.  前記制御装置は、
     前記低元側蒸発器から流出する前記低元側冷媒が気液二相状態となるように、前記低元側膨張弁の開度を制御する
    請求項1または2に記載の二元冷凍装置。
    The controller is
    The binary refrigeration apparatus according to claim 1 or 2, wherein an opening degree of the low-side expansion valve is controlled so that the low-side refrigerant flowing out of the low-side evaporator is in a gas-liquid two-phase state.
  4.  前記低元側凝縮器と前記低元側膨張弁との間と、前記低元側蒸発器と前記低元側圧縮機との間とを接続するインジェクション回路と、
     前記インジェクション回路に設けられたインジェクション膨張弁と
    をさらに備え、
     前記制御装置は、
     前記吐出温度センサによる検出結果に基づき、前記インジェクション膨張弁の開度を制御する
    請求項2または請求項2を引用する請求項3に記載の二元冷凍装置。
    An injection circuit that connects between the low-side condenser and the low-side expansion valve; and between the low-side evaporator and the low-side compressor;
    An injection expansion valve provided in the injection circuit,
    The controller is
    The binary refrigeration apparatus according to claim 2, wherein the opening degree of the injection expansion valve is controlled based on a detection result by the discharge temperature sensor.
  5.  前記低元側圧縮機に吸入される前記低元側冷媒の吸入温度を検出する吸入温度センサ
    をさらに備え、
     前記制御装置は、
     前記外気温度センサによる検出結果と、前記吐出温度センサによる検出結果と、前記吸入温度センサによる検出結果とに基づき、前記インジェクション膨張弁の開度を制御する
    請求項4に記載の二元冷凍装置。
    A suction temperature sensor for detecting a suction temperature of the low-side refrigerant sucked into the low-side compressor;
    The controller is
    The binary refrigeration apparatus according to claim 4, wherein the opening degree of the injection expansion valve is controlled based on a detection result by the outside air temperature sensor, a detection result by the discharge temperature sensor, and a detection result by the suction temperature sensor.
  6.  前記高元側冷媒および前記低元側冷媒には、
     互いに異なる冷媒が用いられる
    請求項1~5のいずれか一項に記載の二元冷凍装置。
    In the high original side refrigerant and the low original side refrigerant,
    The binary refrigeration apparatus according to any one of claims 1 to 5, wherein different refrigerants are used.
  7.  前記低元側冷媒には、
     前記高元側冷媒よりも高効率となる冷媒が用いられる
    請求項1~6のいずれか一項に記載の二元冷凍装置。
    In the low original side refrigerant,
    The binary refrigeration apparatus according to any one of claims 1 to 6, wherein a refrigerant having higher efficiency than the high-source side refrigerant is used.
  8.  前記高元側冷媒および前記低元側冷媒の少なくとも一方は、
     二酸化炭素冷媒または二酸化炭素を含む混合冷媒が用いられる
    請求項1~7のいずれか一項に記載の二元冷凍装置。
    At least one of the high-side refrigerant and the low-side refrigerant is
    The binary refrigeration apparatus according to any one of claims 1 to 7, wherein a carbon dioxide refrigerant or a mixed refrigerant containing carbon dioxide is used.
  9.  前記高元側冷媒および前記低元側冷媒の少なくとも一方は、
     R32、R410A、R134a、R404A、R407C、HFC1234yf、HFO1234ze、アンモニア、プロパン、およびイソブタンのいずれかの冷媒またはこれらのいずれかを含む混合冷媒が用いられる
    請求項1~8のいずれか一項に記載の二元冷凍装置。
    At least one of the high-side refrigerant and the low-side refrigerant is
    The refrigerant according to any one of claims 1 to 8, wherein a refrigerant of any one of R32, R410A, R134a, R404A, R407C, HFC1234yf, HFO1234ze, ammonia, propane, and isobutane, or a mixed refrigerant containing any of these is used. Dual refrigeration equipment.
PCT/JP2016/068697 2016-06-23 2016-06-23 Binary refrigeration device WO2017221382A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018523237A JP6664478B2 (en) 2016-06-23 2016-06-23 Binary refrigeration equipment
GB1818273.3A GB2565472B (en) 2016-06-23 2016-06-23 Cascade refrigeration system
PCT/JP2016/068697 WO2017221382A1 (en) 2016-06-23 2016-06-23 Binary refrigeration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/068697 WO2017221382A1 (en) 2016-06-23 2016-06-23 Binary refrigeration device

Publications (1)

Publication Number Publication Date
WO2017221382A1 true WO2017221382A1 (en) 2017-12-28

Family

ID=60784662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068697 WO2017221382A1 (en) 2016-06-23 2016-06-23 Binary refrigeration device

Country Status (3)

Country Link
JP (1) JP6664478B2 (en)
GB (1) GB2565472B (en)
WO (1) WO2017221382A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108692475A (en) * 2018-06-08 2018-10-23 贺吉军 A kind of air injection enthalpy-increasing refrigeration machine
JP2021011985A (en) * 2019-07-08 2021-02-04 富士電機株式会社 Two-stage refrigerator
KR102319331B1 (en) * 2021-05-17 2021-10-29 주식회사 우진이앤지 Cryogenic rapid refrigeration system
WO2022070828A1 (en) * 2020-09-29 2022-04-07 三菱重工サーマルシステムズ株式会社 Refrigeration machine
WO2022211078A1 (en) * 2021-03-31 2022-10-06 ダイキン工業株式会社 Refrigeration cycle device
WO2022211076A1 (en) * 2021-03-31 2022-10-06 ダイキン工業株式会社 Refrigeration cycle device
WO2022211077A1 (en) * 2021-03-31 2022-10-06 ダイキン工業株式会社 Refrigeration cycle device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021065944A1 (en) * 2019-09-30 2021-04-08
IT202100006896A1 (en) * 2021-03-23 2022-09-23 Aircodue S R L AIR CONDITIONING AND HEATING SYSTEM

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300000A (en) * 2008-06-13 2009-12-24 Sharp Corp Refrigerator-freezer and cooling storage
JP2013083407A (en) * 2011-10-12 2013-05-09 Mitsubishi Electric Corp Cooling device
WO2016009516A1 (en) * 2014-07-16 2016-01-21 三菱電機株式会社 Refrigerating and air conditioning device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300000A (en) * 2008-06-13 2009-12-24 Sharp Corp Refrigerator-freezer and cooling storage
JP2013083407A (en) * 2011-10-12 2013-05-09 Mitsubishi Electric Corp Cooling device
WO2016009516A1 (en) * 2014-07-16 2016-01-21 三菱電機株式会社 Refrigerating and air conditioning device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108692475A (en) * 2018-06-08 2018-10-23 贺吉军 A kind of air injection enthalpy-increasing refrigeration machine
JP2021011985A (en) * 2019-07-08 2021-02-04 富士電機株式会社 Two-stage refrigerator
EP4198416A4 (en) * 2020-09-29 2024-01-10 Mitsubishi Heavy Ind Thermal Systems Ltd Refrigeration machine
WO2022070828A1 (en) * 2020-09-29 2022-04-07 三菱重工サーマルシステムズ株式会社 Refrigeration machine
JP7391811B2 (en) 2020-09-29 2023-12-05 三菱重工サーマルシステムズ株式会社 refrigeration machine
WO2022211077A1 (en) * 2021-03-31 2022-10-06 ダイキン工業株式会社 Refrigeration cycle device
WO2022211076A1 (en) * 2021-03-31 2022-10-06 ダイキン工業株式会社 Refrigeration cycle device
JP2022159195A (en) * 2021-03-31 2022-10-17 ダイキン工業株式会社 Refrigeration cycle device
JP2022159196A (en) * 2021-03-31 2022-10-17 ダイキン工業株式会社 Refrigeration cycle device
JP2022159197A (en) * 2021-03-31 2022-10-17 ダイキン工業株式会社 Refrigeration cycle device
JP7208576B2 (en) 2021-03-31 2023-01-19 ダイキン工業株式会社 refrigeration cycle equipment
JP7208577B2 (en) 2021-03-31 2023-01-19 ダイキン工業株式会社 refrigeration cycle equipment
JP7356057B2 (en) 2021-03-31 2023-10-04 ダイキン工業株式会社 Refrigeration cycle equipment
WO2022211078A1 (en) * 2021-03-31 2022-10-06 ダイキン工業株式会社 Refrigeration cycle device
KR102319331B1 (en) * 2021-05-17 2021-10-29 주식회사 우진이앤지 Cryogenic rapid refrigeration system

Also Published As

Publication number Publication date
JPWO2017221382A1 (en) 2019-01-24
GB2565472A (en) 2019-02-13
GB2565472B (en) 2020-11-18
GB201818273D0 (en) 2018-12-26
JP6664478B2 (en) 2020-03-13

Similar Documents

Publication Publication Date Title
WO2017221382A1 (en) Binary refrigeration device
JP6125000B2 (en) Dual refrigeration equipment
JP5318099B2 (en) Refrigeration cycle apparatus and control method thereof
JP4613916B2 (en) Heat pump water heater
WO2012066763A1 (en) Freezer
JP2011512509A (en) Refrigerant vapor compression system
JP2010525294A (en) Refrigerant vapor compression system with two-line economizer circuit
JP2011521194A (en) Filling management in refrigerant vapor compression systems.
JP2011052884A (en) Refrigerating air conditioner
US10907866B2 (en) Refrigerant cycle apparatus and air conditioning apparatus including the same
KR101901540B1 (en) Air conditioning device
JP6727422B2 (en) Dual freezer
CN109790995B (en) Air conditioner
US20210356177A1 (en) Refrigeration cycle device
JPWO2020095381A1 (en) Fluid temperature control system and refrigeration system
JPWO2016203624A1 (en) Refrigeration cycle equipment
JP2010101552A (en) Gas injection refrigeration system
JP6161787B2 (en) Refrigeration cycle equipment
JP4999531B2 (en) Air conditioner
JP2012141070A (en) Refrigerating device
JP6972369B2 (en) Outdoor unit of refrigeration cycle equipment, refrigeration cycle equipment, and air conditioner
JP5506638B2 (en) Refrigeration equipment
WO2018008129A1 (en) Refrigeration cycle device
JPWO2015063837A1 (en) Refrigeration cycle equipment
JP5409747B2 (en) Dual refrigeration equipment

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018523237

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 201818273

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20160623

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16906299

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16906299

Country of ref document: EP

Kind code of ref document: A1