JP2013083407A - Cooling device - Google Patents

Cooling device Download PDF

Info

Publication number
JP2013083407A
JP2013083407A JP2011224629A JP2011224629A JP2013083407A JP 2013083407 A JP2013083407 A JP 2013083407A JP 2011224629 A JP2011224629 A JP 2011224629A JP 2011224629 A JP2011224629 A JP 2011224629A JP 2013083407 A JP2013083407 A JP 2013083407A
Authority
JP
Japan
Prior art keywords
temperature side
low
refrigerant
opening
heat storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011224629A
Other languages
Japanese (ja)
Other versions
JP5854751B2 (en
Inventor
Takeshi Sugimoto
猛 杉本
Tetsuya Yamashita
哲也 山下
Takashi Ikeda
隆 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011224629A priority Critical patent/JP5854751B2/en
Publication of JP2013083407A publication Critical patent/JP2013083407A/en
Application granted granted Critical
Publication of JP5854751B2 publication Critical patent/JP5854751B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a cooling device that can effectively utilize electric power during cooling operation or defrosting by arranging a heat storage circuit in a low temperature side circulation circuit.SOLUTION: The cooling device 100 includes: a high temperature side device 10; a low temperature side device 20; a refrigerant-to-refrigerant heat exchanger 30 for performing heat exchange between a high temperature side refrigerant and a low temperature side refrigerant; a means 28 for detecting the suction side pressure of a low temperature side compressor 21; the heat storage circuit 56 arranged on the low temperature side device which performs heat storage; a connection pipe 58 for utilizing stored cold heat for supercooling; and a controller 40 for controlling each equipment of the cooling device.

Description

この発明は、家庭用・業務用冷凍冷蔵庫、超低温冷蔵庫、冷凍冷蔵ショーケース冷却システム等に利用できる冷却装置に関するものであって、特に、複数の冷媒循環回路を多段構成した多元冷却装置に関するものである。   TECHNICAL FIELD The present invention relates to a cooling device that can be used for a domestic / commercial refrigerator-freezer, an ultra-low temperature refrigerator, a refrigerator-freezer showcase cooling system, and the like, and more particularly, to a multi-source cooling device having a plurality of refrigerant circulation circuits. is there.

従来より、例えば高温側として冷媒循環回路を形成する高温側装置と、低温側として冷媒循環回路を形成する低温側装置とをそれぞれ形成して多段で構成した冷却装置がある(ここでは二段構成の二元冷却装置として記述する)。このような二元冷却装置では、高温側装置の蒸発器での冷媒の蒸発熱と低温側装置の凝縮器での冷媒の凝縮熱とを熱交換しながら、最終段となる低温側装置の蒸発器において冷却対象との熱交換を行うことにより冷却運転を行っている。これにより、低温側装置の蒸発器において、マイナス数十度の低温度の蒸発熱を効率良く得ることができる。   Conventionally, for example, there is a cooling device configured in multiple stages by forming a high temperature side device that forms a refrigerant circulation circuit on the high temperature side and a low temperature side device that forms a refrigerant circulation circuit on the low temperature side (here, a two-stage configuration) Described as a dual cooling system). In such a binary cooling device, the heat of the refrigerant evaporating in the evaporator of the high temperature side device and the heat of condensation of the refrigerant in the condenser of the low temperature side device are exchanged, and the evaporation of the low temperature side device as the final stage is performed. The cooling operation is performed by exchanging heat with the object to be cooled. Thereby, in the evaporator of the low temperature side apparatus, low temperature evaporation heat of minus several tens of degrees can be efficiently obtained.

特開2004−190917号公報(第1図)JP 2004-190917 A (FIG. 1)

従来の二元冷却装置においては、夜間等の冷却負荷の軽い時に、通常の冷却運転を行う場合、冷却負荷に合わせた低い出力で低温側装置の圧縮機を駆動させると、圧縮機として効率の悪い運転となってしまう。また、圧縮機を効率が良いとされる出力で駆動させた場合、冷却負荷に対して不必要に大きな出力となってしまう。また、必要な時だけ圧縮機を駆動させるようにした場合においては、起動と停止を繰り返すこととなってしまう。いずれの場合においても、二元冷却装置においては、無駄に電力を消費することとなっていた。   In the conventional dual cooling system, when normal cooling operation is performed when the cooling load is light, such as at night, driving the compressor of the low-temperature side device with a low output that matches the cooling load is efficient as a compressor. It becomes bad driving. Further, when the compressor is driven with an output that is considered to be efficient, the output becomes unnecessarily large with respect to the cooling load. In addition, when the compressor is driven only when necessary, start and stop are repeated. In either case, the dual cooling device consumes power wastefully.

また、低温側装置の蒸発器において霜取を行う場合、例えば所定時間毎に冷却運転を停止し、低温側装置の蒸発器を霜取ヒータ等により加熱して、霜を溶かしている。このとき、霜取時にヒータを作動させることによって周囲温度が上昇して冷媒の温度が上昇し、冷媒の圧力が上昇してしまう。特に、特許文献1のように低温側装置の冷媒として二酸化炭素(以下、CO)を用いている場合、霜取時に高温側の循環回路を停止させることでCO冷媒の圧力が上昇して臨界圧力を超えてしまう可能性がある。そのため、霜取時に高温側の冷媒循環回路の圧縮機を動作させて、低温側装置の凝縮器を冷却することで、低温側冷媒の圧力上昇を防いでいる。 When defrosting is performed in the evaporator of the low temperature side device, for example, the cooling operation is stopped every predetermined time, and the evaporator of the low temperature side device is heated by a defrost heater or the like to melt the frost. At this time, by operating the heater during defrosting, the ambient temperature rises, the refrigerant temperature rises, and the refrigerant pressure rises. In particular, when carbon dioxide (hereinafter referred to as CO 2 ) is used as the refrigerant of the low temperature side device as in Patent Document 1, the pressure of the CO 2 refrigerant increases by stopping the high temperature side circulation circuit during defrosting. The critical pressure may be exceeded. Therefore, the compressor of the high-temperature side refrigerant circulation circuit is operated at the time of defrosting to cool the condenser of the low-temperature side device, thereby preventing an increase in the pressure of the low-temperature side refrigerant.

また、一般的な冷却装置では、霜取時間は、例えば1回あたり30〜40分程度必要とし、定期的に1日あたり4〜5回程度の霜取を行う。したがって、高温側装置の圧縮機は1日あたり2〜3時間程度、余分に駆動することになり、無駄に電力を消費することとなっていた。   Moreover, in a general cooling device, the defrosting time needs about 30-40 minutes per time, for example, and defrosting is performed about 4-5 times per day regularly. Therefore, the compressor of the high temperature side device is driven extra for about 2 to 3 hours per day, and power is consumed wastefully.

この発明は、上記のような課題を解決するためになされたもので、冷却運転時や霜取時において、電力を有効に利用することができる冷却装置を得るものである。   The present invention has been made to solve the above-described problems, and provides a cooling device that can effectively use electric power during cooling operation and defrosting.

この発明に係る冷却装置は、
高温側圧縮機、高温側凝縮器、高温側絞り装置および高温側蒸発器を配管接続して、高温側冷媒を循環させる高温側循環回路を形成する高温側装置と、
低温側圧縮機、低温側凝縮器、受液器、第1開閉手段、低温側絞り装置および低温側蒸発器を配管接続して、低温側冷媒を循環させる低温側循環回路を形成する低温側装置と、
高温側蒸発器および低温側凝縮器により構成し、高温側冷媒と低温側冷媒との間の熱交換を行う冷媒間熱交換器と、
受液器と第一開閉手段とを接続する配管から分岐され、第2開閉手段、蓄熱用絞り装置、蓄熱タンク内に封入された蓄熱媒体と熱交換を行う蓄熱用蒸発器、および第3開閉手段を順次配管接続して、低温側蒸発器と低温側圧縮機とを接続する配管に接続する蓄熱回路と、
蓄熱用蒸発器と第3開閉手段とを接続する配管から分岐され、逆止弁を介して第1開閉手段と低温側絞り装置とを接続する配管に接続する連結管と、
少なくとも、高温側圧縮機、高温側絞り装置、低温側圧縮機、第1開閉手段、低温側絞り装置、第2開閉手段、蓄熱用絞り装置、蓄熱用蒸発器、および第3開閉手段を制御する制御装置と
を備えたものである。
The cooling device according to the present invention includes:
A high temperature side apparatus that pipes a high temperature side compressor, a high temperature side condenser, a high temperature side expansion device, and a high temperature side evaporator to form a high temperature side circulation circuit that circulates the high temperature side refrigerant; and
Low-temperature side apparatus for connecting a low-temperature side compressor, a low-temperature side condenser, a receiver, a first opening / closing means, a low-temperature side throttle device, and a low-temperature side evaporator to form a low-temperature side circulation circuit for circulating a low-temperature side refrigerant When,
A refrigerant heat exchanger configured by a high temperature side evaporator and a low temperature side condenser, and performing heat exchange between the high temperature side refrigerant and the low temperature side refrigerant;
The second opening / closing means, the heat storage expansion device, the heat storage evaporator for exchanging heat with the heat storage medium enclosed in the heat storage tank, and the third opening / closing, branched from the pipe connecting the liquid receiver and the first opening / closing means A heat storage circuit that connects the pipes to the pipe that connects the low-temperature side evaporator and the low-temperature side compressor in a sequential pipe connection;
A connecting pipe branched from a pipe connecting the heat storage evaporator and the third opening / closing means and connected to a pipe connecting the first opening / closing means and the low temperature side throttling device via a check valve;
Control at least the high temperature side compressor, the high temperature side expansion device, the low temperature side compressor, the first opening / closing means, the low temperature side expansion device, the second opening / closing means, the heat storage expansion device, the heat storage evaporator, and the third opening / closing means. And a control device.

この発明の冷却装置によれば、低温側循環回路に蓄熱回路を設けたので、冷却負荷の軽い時の冷却運転では、余剰冷媒を利用して冷却運転を行いながら蓄熱を行い、また、霜取時には低温側蒸発器の加熱を行いつつ蓄熱を行うことができ、蓄熱された熱量を冷却運転時に過冷却に利用できる。従って、冷却装置の電力を有効に利用することができて、冷却装置の電力の平準化を行うことができる。   According to the cooling device of the present invention, since the heat storage circuit is provided in the low-temperature side circulation circuit, in the cooling operation when the cooling load is light, heat storage is performed while performing the cooling operation using surplus refrigerant, and defrosting is performed. Sometimes heat can be stored while heating the low-temperature side evaporator, and the stored heat can be used for supercooling during the cooling operation. Therefore, the power of the cooling device can be used effectively, and the power of the cooling device can be leveled.

この発明の実施の形態1における二元冷却装置の、通常冷却運転時の冷媒回路を表す図である。It is a figure showing the refrigerant circuit at the time of normal cooling driving | operation of the two-way cooling device in Embodiment 1 of this invention. この発明の実施の形態1における二元冷却装置の、蓄熱冷却運転時の動作を説明するフローチャートである。It is a flowchart explaining the operation | movement at the time of the heat storage cooling driving | operation of the two-way cooling device in Embodiment 1 of this invention. この発明の実施の形態1における二元冷却装置の、蓄熱冷却運転時の冷媒回路を表す図である。It is a figure showing the refrigerant circuit at the time of the heat storage cooling driving | operation of the two-way cooling device in Embodiment 1 of this invention. この発明の実施の形態1における二元冷却装置の、過冷却運転時の動作を説明するフローチャートである。It is a flowchart explaining the operation | movement at the time of a supercooling driving | operation of the two-way cooling device in Embodiment 1 of this invention. この発明の実施の形態1における二元冷却装置の、過冷却運転時の冷媒回路を表す図である。It is a figure showing the refrigerant circuit at the time of a supercooling driving | operation of the two-way cooling device in Embodiment 1 of this invention. この発明の実施の形態1における二元冷却装置の、運転状態による各機器の作動を示す表である。It is a table | surface which shows the action | operation of each apparatus by the driving | running state of the two-way cooling device in Embodiment 1 of this invention. この発明の実施の形態1における二元冷却装置の、通常冷却運転時と過冷却運転時の冷媒状態の推移を説明するp−h線図である。It is a ph diagram explaining the transition of the refrigerant state during the normal cooling operation and the supercooling operation of the dual cooling device in Embodiment 1 of the present invention. この発明の実施の形態1における二元冷却装置の、冷却運転停止時の冷媒回路を表す図である。It is a figure showing the refrigerant circuit at the time of cooling operation stop of the two-way cooling device in Embodiment 1 of this invention. この発明の実施の形態2における二元冷却装置の、霜取時の一連の動作を説明するフローチャートである。It is a flowchart explaining a series of operation | movement at the time of defrosting of the two-way cooling device in Embodiment 2 of this invention. この発明の実施の形態2における二元冷却装置の、ポンプダウン運転を行う時の冷媒回路を表す図である。It is a figure showing the refrigerant circuit at the time of performing pump down driving | operation of the two-way cooling device in Embodiment 2 of this invention. この発明の実施の形態2における二元冷却装置の、第1の蓄熱霜取運転時の冷媒回路を表す図である。It is a figure showing the refrigerant circuit at the time of the 1st thermal storage defrost operation of the two-way cooling device in Embodiment 2 of this invention. この発明の実施の形態2における二元冷却装置の、第2の蓄熱霜取運転時の冷媒回路を表す図である。It is a figure showing the refrigerant circuit at the time of the 2nd thermal storage defrost operation of the two-way cooling device in Embodiment 2 of this invention. この発明の実施の形態2における二元冷却装置の、運転状態による各機器の作動を示す表である。It is a table | surface which shows the action | operation of each apparatus by the driving | running state of the dual cooling device in Embodiment 2 of this invention. この発明の実施の形態3における二元冷却装置の冷媒回路構成を表す図である。It is a figure showing the refrigerant circuit structure of the two-way cooling device in Embodiment 3 of this invention.

実施の形態1.
図1は、この発明の本実施の形態における二元冷却装置の冷媒回路を表す図である。図1に示すように、本実施の形態における二元冷却装置100は、高温側装置10と低温側装置20とを有し、それぞれ独立して冷媒を循環させる冷媒循環回路を構成する。高温側装置10は、高温側圧縮機11と、高温側凝縮器12と、高温側絞り装置13と、高温側蒸発器14とを直列に配管で接続し、冷媒を循環させる高温側循環回路1aを構成している。一方、低温側装置20は、低温側圧縮機21と、低温側凝縮器22と、受液器23と、第1開閉手段24と、低温側絞り装置25と、低温側蒸発器26とを直列に配管で接続し、冷媒を循環させる低温側循環回路2aを構成している。そして、高温側循環回路1aおよび低温側循環回路2aを二段構成とするために、高温側蒸発器14と低温側凝縮器22とを、それぞれ通過する冷媒間での熱交換を可能にするよう構成した冷媒間熱交換器としてのカスケードコンデンサ30を設けている。また、二元冷却装置100全体の運転制御を行う制御装置40を有している。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a refrigerant circuit of a dual cooling device in the present embodiment of the present invention. As shown in FIG. 1, the binary cooling device 100 in the present embodiment includes a high temperature side device 10 and a low temperature side device 20, and constitutes a refrigerant circulation circuit that circulates the refrigerant independently of each other. The high temperature side device 10 includes a high temperature side compressor 11, a high temperature side condenser 12, a high temperature side expansion device 13, and a high temperature side evaporator 14 connected in series by a pipe to circulate a refrigerant. Is configured. On the other hand, the low temperature side device 20 includes a low temperature side compressor 21, a low temperature side condenser 22, a receiver 23, a first opening / closing means 24, a low temperature side expansion device 25, and a low temperature side evaporator 26 in series. And a low-temperature circuit 2a that circulates the refrigerant. And in order to make the high temperature side circulation circuit 1a and the low temperature side circulation circuit 2a into a two-stage configuration, heat exchange between the refrigerant passing through the high temperature side evaporator 14 and the low temperature side condenser 22 is made possible. A cascade capacitor 30 is provided as a configured inter-refrigerant heat exchanger. Moreover, it has the control apparatus 40 which performs operation control of the two-way cooling device 100 whole.

更に、受液器23と第1開閉手段24とを接続する配管から分岐されて、第2開閉手段51と、蓄熱用絞り装置52と、冷熱が蓄熱される蓄熱媒体55が封入された蓄熱タンク50内に配置された蓄熱用蒸発器53と、第3開閉手段54とを直列に配管で接続し、低温側圧縮機21の吸入側配管に接続される蓄熱回路56が形成されている。さらに、蓄熱タンク50と第3開閉手段54とを接続する配管から分岐され、冷媒の流れを一方向にのみ許容する逆止弁57を介し、逆止弁57の冷媒流れ方向下流側で、第1開閉手段24と低温側絞り装置25とを接続する配管に接続される連結管58が形成される。   Further, a heat storage tank that is branched from a pipe connecting the liquid receiver 23 and the first opening / closing means 24 and encloses a second opening / closing means 51, a heat storage expansion device 52, and a heat storage medium 55 that stores cold heat. A heat storage circuit 56 is formed in which the heat storage evaporator 53 and the third opening / closing means 54 arranged in the line 50 are connected in series by a pipe and connected to the suction side pipe of the low-temperature compressor 21. Further, a branch is made from a pipe connecting the heat storage tank 50 and the third opening / closing means 54, and a check valve 57 allowing the refrigerant flow only in one direction is passed downstream of the check valve 57 in the refrigerant flow direction. A connecting pipe 58 connected to a pipe connecting the first opening / closing means 24 and the low temperature side expansion device 25 is formed.

このような構成の二元冷却装置100において、高温側循環回路1aを循環する冷媒(以下、高温側冷媒という)として、例えばR410A、R32、R404A、HFO−1234yf、プロパン、イソブタン、二酸化炭素、アンモニア等が用いられる。地球温暖化に対する影響が小さい他の自然冷媒や、冷媒量を極力抑えた、効率のよい他のHFC冷媒等を用いてもよい。また、低温側循環回路2aを循環する冷媒(以下、低温側冷媒という)として上記冷媒を用いてもよいが、本実施の形態では、地球温暖化に対する影響が小さい二酸化炭素(CO)を用いる。一般的に、COは、飽和圧が高く、臨界点が低い(31℃)ため、二元冷却装置での低温側冷媒に適しており、冷却温度として極低温が得られやすい。 In the dual cooling device 100 having such a configuration, for example, R410A, R32, R404A, HFO-1234yf, propane, isobutane, carbon dioxide, ammonia are used as the refrigerant circulating in the high temperature side circulation circuit 1a (hereinafter referred to as high temperature side refrigerant). Etc. are used. Other natural refrigerants that have little influence on global warming, other efficient HFC refrigerants that minimize the amount of refrigerant, and the like may be used. The refrigerant (hereinafter, referred to as the low temperature-side refrigerant) circulating in the low-temperature side circulation circuit 2a may be using the refrigerant as in the present embodiment, carbon dioxide is used influence on global warming is small (CO 2) . In general, CO 2 has a high saturation pressure and a low critical point (31 ° C.), so it is suitable for a low-temperature side refrigerant in a two-way cooling device, and an extremely low cooling temperature is easily obtained.

二元冷却装置100の各構成機器についてさらに詳しく説明する。高温側圧縮機11は、高温側冷媒を吸入して圧縮し、高温・高圧の状態にして吐出するものであって、例えばインバータ等により回転数を制御し、高温側冷媒の吐出量を調整可能な圧縮機で構成するとよい。高温側凝縮器12は、送風機(図示せず)により供給される空気と高温側冷媒との間で熱交換を行い、高温側冷媒を凝縮させて液化させるものである。   Each component apparatus of the dual cooling device 100 will be described in more detail. The high temperature side compressor 11 sucks and compresses the high temperature side refrigerant and discharges it in a high temperature / high pressure state. For example, the rotation speed is controlled by an inverter or the like, and the discharge amount of the high temperature side refrigerant can be adjusted. It may be configured with a simple compressor. The high temperature side condenser 12 exchanges heat between air supplied from a blower (not shown) and the high temperature side refrigerant, and condenses and liquefies the high temperature side refrigerant.

高温側絞り装置13は、制御装置40からの指示に基づいて開度調整される流量制御装置で構成され、高温側冷媒を膨張させて減圧させるものである。例えば、電子式膨張弁等で構成することが最適であるが、毛細管(キャピラリチューブ)、感温式膨張弁等で構成してもよい。高温側蒸発器14は、カスケードコンデンサ30において高温側冷媒が通過する伝熱管等であって、低温側冷媒との熱交換により高温側冷媒を蒸発させてガス化するものである。   The high temperature side expansion device 13 is composed of a flow rate control device whose opening degree is adjusted based on an instruction from the control device 40, and expands and depressurizes the high temperature side refrigerant. For example, an electronic expansion valve or the like is optimal, but a capillary tube (capillary tube), a temperature-sensitive expansion valve, or the like may be used. The high temperature side evaporator 14 is a heat transfer tube or the like through which the high temperature side refrigerant passes in the cascade capacitor 30, and evaporates the high temperature side refrigerant by heat exchange with the low temperature side refrigerant and gasifies it.

一方、低温側装置20において、低温側圧縮機21は、低温側冷媒を吸入して圧縮し、高温・高圧の状態にして吐出するものであって、例えばインバータ等により回転数を制御し、低温側冷媒の吐出量を調整可能な圧縮機で構成するとよい。低温側圧縮機21の吸入側配管には、低温側冷媒の圧力を検知する圧力検知手段としての吸入側圧力センサー28が設けられている。   On the other hand, in the low temperature side device 20, the low temperature side compressor 21 sucks and compresses the low temperature side refrigerant and discharges it in a high temperature / high pressure state. It is good to comprise with the compressor which can adjust the discharge amount of a side refrigerant | coolant. The suction side pipe of the low temperature side compressor 21 is provided with a suction side pressure sensor 28 as pressure detection means for detecting the pressure of the low temperature side refrigerant.

低温側凝縮器22は、カスケードコンデンサ30において低温側冷媒が通過する伝熱管等であって、高温側冷媒との熱交換により低温側冷媒を凝縮させて液化するものである。   The low temperature side condenser 22 is a heat transfer tube or the like through which the low temperature side refrigerant passes in the cascade capacitor 30, and condenses and liquefies the low temperature side refrigerant by heat exchange with the high temperature side refrigerant.

受液器23は、余剰冷媒を溜めておくためのものであり、低温側循環回路2a内の全冷媒を回収可能な容量を有している。また、第1開閉手段24は、開閉によって低温側循環回路2aにおける低温側冷媒の流れを制御するものであって、電磁弁等が用いられる。   The liquid receiver 23 is for storing surplus refrigerant and has a capacity capable of recovering all the refrigerant in the low-temperature side circulation circuit 2a. The first opening / closing means 24 controls the flow of the low-temperature side refrigerant in the low-temperature side circulation circuit 2a by opening and closing, and an electromagnetic valve or the like is used.

低温側絞り装置25は、制御装置40からの指示に基づいて開度調整される流量制御装置で構成され、低温側冷媒を膨張させて減圧させるものである。例えば、電子式膨張弁等で構成することが最適であるが、毛細管(キャピラリチューブ)、感温式膨張弁等で構成してもよい。   The low temperature side expansion device 25 is configured by a flow rate control device whose opening degree is adjusted based on an instruction from the control device 40, and expands and depressurizes the low temperature side refrigerant. For example, an electronic expansion valve or the like is optimal, but a capillary tube (capillary tube), a temperature-sensitive expansion valve, or the like may be used.

低温側蒸発器26は、送風機(図示せず)から供給される負荷側の空気と低温側冷媒との間で熱交換を行い、低温側冷媒を蒸発してガス化するものであり、それによりショーケースの庫内等、冷却対象(負荷)を冷却する。また、加熱手段としての霜取ヒータ27は、低温側蒸発器26に直接、またはドレンパン等の周辺部分に取り付けられ、霜取時に通電されることで発熱して、低温側蒸発器26およびその周辺部分に付いた霜を溶かす。   The low temperature side evaporator 26 performs heat exchange between the load side air supplied from a blower (not shown) and the low temperature side refrigerant, and evaporates and gasifies the low temperature side refrigerant. Cool the object (load) to be cooled, such as inside the showcase. Further, the defrosting heater 27 as a heating means is attached directly to the low temperature side evaporator 26 or in a peripheral part such as a drain pan, and generates heat by being energized at the time of defrosting, and the low temperature side evaporator 26 and its surroundings. Melt the frost on the parts.

カスケードコンデンサ30は、高温側蒸発器14と低温側凝縮器22とを有して、高温側冷媒と低温側冷媒とを熱交換可能にするものであり、例えばプレート熱交換器や二重管熱交換器等で構成される。   The cascade condenser 30 has a high temperature side evaporator 14 and a low temperature side condenser 22, and enables heat exchange between the high temperature side refrigerant and the low temperature side refrigerant. For example, a plate heat exchanger or a double tube heat Consists of exchangers and the like.

第2開閉手段51、第3開閉手段54は、開閉によって蓄熱回路56における低温側冷媒の流れを制御するものであって、電磁弁等が用いられる。蓄熱用絞り装置52は、制御装置40からの指示に基づいて開度調整を行う流量制御装置で構成され、低温側冷媒を膨張させて減圧させるものである。例えば、電子式膨張弁等で構成することが最適であるが、毛細管(キャピラリチューブ)、感温式膨張弁等で構成してもよい。   The second opening / closing means 51 and the third opening / closing means 54 control the flow of the low-temperature side refrigerant in the heat storage circuit 56 by opening and closing, and an electromagnetic valve or the like is used. The heat storage expansion device 52 is composed of a flow rate control device that adjusts the opening degree based on an instruction from the control device 40, and expands and decompresses the low-temperature side refrigerant. For example, an electronic expansion valve or the like is optimal, but a capillary tube (capillary tube), a temperature-sensitive expansion valve, or the like may be used.

蓄熱用蒸発器53は、蓄熱タンク50内に配置され、蓄熱タンク50内に封入された蓄熱媒体55と熱交換して、低温側冷媒を蒸発ガス化するものである。一方の蓄熱媒体55は、低温側冷媒と熱交換して冷熱を蓄熱する。なお、本実施の形態では、蓄熱タンク50内の蓄熱媒体55として水を使用するが、ブライン等を用いても良い。   The heat storage evaporator 53 is disposed in the heat storage tank 50 and exchanges heat with the heat storage medium 55 enclosed in the heat storage tank 50 to evaporate the low-temperature refrigerant. One heat storage medium 55 stores cold by exchanging heat with the low-temperature side refrigerant. In this embodiment, water is used as the heat storage medium 55 in the heat storage tank 50, but brine or the like may be used.

なお、蓄熱用蒸発器53として、圧力損失の大きい分配器や分流管等を使用しないことが望ましい。これは、蓄熱媒体55として水を使用した時、熱伝導率が低い氷が伝熱面に生成して着氷量が増加して氷自体が熱抵抗体として作用し、運転の経過とともに伝熱特性が悪化して、装置の運転効率が低下するという問題があるからである。   As the heat storage evaporator 53, it is desirable not to use a distributor having a large pressure loss, a shunt pipe, or the like. This is because when water is used as the heat storage medium 55, ice with low thermal conductivity is generated on the heat transfer surface, the amount of ice accretion increases, and the ice itself acts as a heat resistor. This is because the characteristics deteriorate and the operation efficiency of the apparatus decreases.

制御装置40は、二元冷却装置100における各機器の動作を制御する。ここで、各機器とは、高温側圧縮機11、高温側絞り装置13、低温側圧縮機21、第1開閉手段24、低温側絞り装置25、霜取ヒータ27、吸入側圧力センサー28、第2開閉手段51、蓄熱用絞り装置52、蓄熱用蒸発器53、第3開閉手段54などである。なお、制御装置40は、高温側装置10、低温側装置20をそれぞれ制御する2台の制御装置で構成するようにしてもよいし、二元冷却装置100の外部から通信などで制御を行うようにしても良い。   The control device 40 controls the operation of each device in the binary cooling device 100. Here, each device includes the high temperature side compressor 11, the high temperature side expansion device 13, the low temperature side compressor 21, the first opening / closing means 24, the low temperature side expansion device 25, the defrosting heater 27, the suction side pressure sensor 28, the first. A second opening / closing means 51, a heat storage expansion device 52, a heat storage evaporator 53, a third opening / closing means 54, and the like. The control device 40 may be configured by two control devices that respectively control the high temperature side device 10 and the low temperature side device 20, or may be controlled by communication from the outside of the dual cooling device 100. Anyway.

次に、二元冷却装置100の通常冷却運転時の動作について説明する。通常冷却運転は、高温側循環回路1aおよび低温側循環回路2aにおいて、図1で矢印で示すように冷媒が流れ、低温側蒸発器26の蒸発熱によって負荷を冷却する運転を行う。高温側循環回路1aでは高温側冷媒は、高温側圧縮機11から高温高圧の状態で吐出され、高温側凝縮器12で凝縮液化される。更に、高温側絞り装置13で膨張減圧されて、高温側蒸発器14で、低温側凝縮器22に流れる低温側冷媒と熱交換して蒸発ガス化されて、高温側圧縮機11に戻り吸入される。   Next, the operation | movement at the time of the normal cooling operation of the two-way cooling device 100 is demonstrated. In the normal cooling operation, in the high temperature side circulation circuit 1a and the low temperature side circulation circuit 2a, the refrigerant flows as shown by arrows in FIG. 1 and the load is cooled by the evaporation heat of the low temperature side evaporator 26. In the high temperature side circulation circuit 1 a, the high temperature side refrigerant is discharged from the high temperature side compressor 11 in a high temperature and high pressure state, and is condensed and liquefied by the high temperature side condenser 12. Furthermore, the refrigerant is expanded and depressurized by the high-temperature side expansion device 13, and is evaporated and gasified by exchanging heat with the low-temperature side refrigerant flowing in the low-temperature side condenser 22 by the high-temperature side evaporator 14, and is sucked back to the high-temperature side compressor 11. The

一方、低温側循環回路2aでは低温側冷媒は、低温側圧縮機21から高温高圧の状態で吐出され、低温側凝縮器22に流入し、高温側蒸発器14に流れる高温側冷媒と熱交換して凝縮液化され、受液器23に蓄えられる。受液器23を出た液冷媒は、開放された第1開閉手段24を通り、低温側絞り装置25で減圧された後、低温側蒸発器26で蒸発ガス化されて、低温側圧縮機21に戻り吸入される。通常冷却運転時は、第2開閉手段51は閉止されており、蓄熱回路56および連結管58に低温側冷媒は流れない。このとき、第3開閉手段54は閉止しても良いが、開放したままとしておくことで、不必要に開閉動作をさせずに済むため、本実施の形態では、第3開閉手段54は開放しておく。   On the other hand, in the low temperature side circulation circuit 2a, the low temperature side refrigerant is discharged from the low temperature side compressor 21 in a high temperature and high pressure state, flows into the low temperature side condenser 22, and exchanges heat with the high temperature side refrigerant flowing in the high temperature side evaporator 14. The liquid is condensed and stored in the liquid receiver 23. The liquid refrigerant that has exited the liquid receiver 23 passes through the opened first opening / closing means 24, is decompressed by the low-temperature side expansion device 25, is then evaporated and gasified by the low-temperature side evaporator 26, and then the low-temperature side compressor 21. Returned to and inhaled. During the normal cooling operation, the second opening / closing means 51 is closed, and the low temperature side refrigerant does not flow through the heat storage circuit 56 and the connecting pipe 58. At this time, the third opening / closing means 54 may be closed. However, if the third opening / closing means 54 is left open, the third opening / closing means 54 is opened in the present embodiment because unnecessary opening / closing operations can be avoided. Keep it.

次に、冷却負荷が軽い時や、各電力会社が割安に設定している夜間(夜10時から朝8時まで)に、発生している余剰冷媒を利用して冷熱を蓄熱しつつ負荷の冷却を行う蓄熱冷却運転を行う時の動作について説明する。一般的に、夜間は昼間と比較して冷却負荷が軽いため、二元冷却装置100の冷凍能力を100%利用する必要が無く、余剰冷媒が発生していることが多い。   Next, when the cooling load is light or at night (from 10:00 am to 8:00 am) that each electric power company is set to be cheap, the remaining refrigerant is used to store the cold energy while storing the cold energy. Operation | movement at the time of performing the thermal storage cooling operation which performs cooling is demonstrated. Generally, since the cooling load is lighter at night than in the daytime, it is not necessary to use 100% of the refrigeration capacity of the dual cooling device 100, and surplus refrigerant is often generated.

本実施の形態の蓄熱冷却運転時の動作を表す図2のフローチャートを用いて、二元冷却装置100の動作について説明する。また、このときの高温側循環回路1aおよび低温側循環回路2aにおける冷媒の流れを、図3において矢印で示す。図6は、二元冷却装置100における各機器の、運転状態毎の作動を表に示したものである。   The operation of the two-way cooling device 100 will be described using the flowchart of FIG. 2 representing the operation during the heat storage and cooling operation of the present embodiment. Further, the flow of the refrigerant in the high temperature side circulation circuit 1a and the low temperature side circulation circuit 2a at this time is indicated by arrows in FIG. FIG. 6 is a table showing the operation of each device in the binary cooling device 100 for each operating state.

高温側循環回路1aにおいては、通常冷却運転時と同様、高温側圧縮機11から吐出された高温側冷媒は、高温側凝縮器12で凝縮液化され、高温側絞り装置13で減圧された後、高温側蒸発器14で蒸発ガス化されて、高温側圧縮機11に戻る。   In the high temperature side circulation circuit 1a, the high temperature side refrigerant discharged from the high temperature side compressor 11 is condensed and liquefied by the high temperature side condenser 12 and decompressed by the high temperature side expansion device 13, as in the normal cooling operation. The gas is evaporated by the high temperature side evaporator 14 and returns to the high temperature side compressor 11.

まず、吸入側圧力センサー28により、低温側圧縮機21の吸入側圧力(低圧圧力)Psを検知する(S1)。そして、制御装置40は、予め算出され、負荷側温度(低温側蒸発器26の表面温度)の維持のために必要な基準圧力Pnと、検知した吸入側圧力Psを比較し、吸入側圧力Psが基準圧力Pn未満のときは、余剰冷媒があると判断する(S2)。吸入側圧力Psが基準圧力Pn以上のときは、通常冷却運転を継続する。   First, the suction side pressure sensor 28 detects the suction side pressure (low pressure) Ps of the low temperature side compressor 21 (S1). Then, the control device 40 compares the reference pressure Pn calculated in advance and necessary for maintaining the load side temperature (surface temperature of the low temperature side evaporator 26) with the detected suction side pressure Ps, and the suction side pressure Ps. Is less than the reference pressure Pn, it is determined that there is excess refrigerant (S2). When the suction side pressure Ps is equal to or higher than the reference pressure Pn, the normal cooling operation is continued.

このとき、第2開閉手段51を開放し、蓄熱用絞り装置52の開度を調整して、蓄熱冷却運転を実施する(S3)。このとき、低温側循環回路2aにおいては、低温側圧縮機21から吐出された低温側冷媒が、低温側凝縮器22で凝縮液化され、受液器23を通過した後に分流される。分流された低温側冷媒の一方は、第1開閉手段24を通過して、低温側絞り装置25で減圧され、低温側蒸発器26で蒸発ガス化された後、低温側圧縮機21に戻る。また、分流された低温側冷媒の他方は、蓄熱回路56に流入し、第2開閉手段51を通過して、蓄熱用絞り装置52で減圧され、蓄熱用蒸発器53で蒸発ガス化される。そして、第3開閉手段54を通過した後、低温側蒸発器26で蒸発ガス化された低温側冷媒と合流して、低温側圧縮機21に戻る。尚、連結管58には逆止弁57があるため、圧力差により低温側冷媒は流れることはない。   At this time, the second opening / closing means 51 is opened, the opening degree of the heat storage expansion device 52 is adjusted, and the heat storage cooling operation is performed (S3). At this time, in the low temperature side circulation circuit 2 a, the low temperature side refrigerant discharged from the low temperature side compressor 21 is condensed and liquefied by the low temperature side condenser 22 and is divided after passing through the liquid receiver 23. One of the divided low-temperature side refrigerants passes through the first opening / closing means 24, is decompressed by the low-temperature side expansion device 25, is evaporated and gasified by the low-temperature side evaporator 26, and then returns to the low-temperature side compressor 21. The other of the divided low-temperature side refrigerant flows into the heat storage circuit 56, passes through the second opening / closing means 51, is depressurized by the heat storage expansion device 52, and is evaporated and gasified by the heat storage evaporator 53. Then, after passing through the third opening / closing means 54, it joins with the low-temperature side refrigerant evaporated by the low-temperature side evaporator 26 and returns to the low-temperature side compressor 21. Since the connection pipe 58 includes the check valve 57, the low temperature side refrigerant does not flow due to the pressure difference.

また、蓄熱用絞り装置52の開度は、余剰冷媒量に応じて調整すればよい。そして、蓄熱タンク50内に設置され、蓄熱媒体の蓄熱量を検知する蓄熱量検知センサー(図示せず)によって検知された蓄熱量Tsが、予め設定された限界蓄熱量Tnに達したら(S4)、制御装置40は蓄熱タンク50には十分に冷熱が蓄熱されたと判断して、蓄熱冷却運転を終了し、通常冷却運転に戻る。蓄熱量検知センサーは、蓄熱媒体55に水を使用していれば、例えば、水位を検知する水位センサーなどを利用すると良い。   Further, the opening degree of the heat storage expansion device 52 may be adjusted according to the surplus refrigerant amount. And if the heat storage amount Ts detected in the heat storage amount sensor (not shown) which is installed in the heat storage tank 50 and detects the heat storage amount of the heat storage medium reaches a preset limit heat storage amount Tn (S4). The control device 40 determines that the cold energy is sufficiently stored in the heat storage tank 50, ends the heat storage cooling operation, and returns to the normal cooling operation. If the heat storage amount detection sensor uses water for the heat storage medium 55, for example, a water level sensor that detects the water level may be used.

次に、蓄熱された冷熱を利用して、昼間や冷却負荷が高い時に、過冷却運転を行う動作について、図4のフローチャートを用いて説明する。また、このときの高温側循環回路1aおよび低温側循環回路2aにおける冷媒の流れを、図5において矢印で示す。このとき、高温側循環回路1aにおいては、通常冷却運転時と同様、高温側圧縮機11から吐出された高温側冷媒は、高温側凝縮器12で凝縮液化され、高温側絞り装置13で減圧された後、高温側蒸発器14で蒸発ガス化されて、高温側圧縮機11に戻る。   Next, the operation of performing the supercooling operation using the stored cold energy during the daytime or when the cooling load is high will be described with reference to the flowchart of FIG. Moreover, the flow of the refrigerant in the high temperature side circulation circuit 1a and the low temperature side circulation circuit 2a at this time is indicated by arrows in FIG. At this time, in the high temperature side circulation circuit 1a, the high temperature side refrigerant discharged from the high temperature side compressor 11 is condensed and liquefied by the high temperature side condenser 12 and depressurized by the high temperature side expansion device 13 as in the normal cooling operation. After that, the gas is evaporated by the high temperature side evaporator 14 and returns to the high temperature side compressor 11.

低温側循環回路2aにおいては、まず、吸入側圧力センサー28により、低温側圧縮機21の吸入側圧力Psを検知する(S11)。そして、制御装置40は、基準圧力Pnよりも大きい所定圧力Pmと、検知した吸入側圧力Psを比較し、吸入側圧力Psが所定圧力Pm以上のときは、冷却負荷が高くなっていると判断する(S12)。   In the low temperature side circulation circuit 2a, first, the suction side pressure Ps of the low temperature side compressor 21 is detected by the suction side pressure sensor 28 (S11). Then, the control device 40 compares the predetermined pressure Pm larger than the reference pressure Pn with the detected suction side pressure Ps, and determines that the cooling load is high when the suction side pressure Ps is equal to or higher than the predetermined pressure Pm. (S12).

次に、制御装置40は、蓄熱タンク50内に設置された蓄熱量検知センサー(図示せず)によって検知された蓄熱量Tsが、予め設定された基準蓄熱量Th以上のとき、過冷却運転を行うのに充分な冷熱が蓄熱タンク50に蓄熱されていると判断し(S13)、第1開閉手段24および第3開閉手段54を閉止し、第2開閉手段51を開放して蓄熱用絞り装置52を開放し、過冷却運転を実施する(S14)。このとき、蓄熱用蒸発器53は、蒸発器ではなく、熱交換器として作用する。   Next, the control device 40 performs the supercooling operation when the heat storage amount Ts detected by a heat storage amount detection sensor (not shown) installed in the heat storage tank 50 is equal to or greater than a preset reference heat storage amount Th. It is determined that sufficient cold energy is stored in the heat storage tank 50 (S13), the first opening / closing means 24 and the third opening / closing means 54 are closed, the second opening / closing means 51 is opened, and the heat storage throttle device is opened. 52 is opened and a supercooling operation is performed (S14). At this time, the heat storage evaporator 53 functions not as an evaporator but as a heat exchanger.

このとき、低温側循環回路2aにおいては、低温側圧縮機21から吐出された低温側冷媒は、低温側凝縮器22で凝縮液化され、受液器23を通過する。そして、低温側冷媒は、開放された第2開閉手段51および蓄熱用絞り装置52を通過して、蓄熱タンク50に流入し、蓄熱された冷熱によって過冷却される。そして、連結管58に設けられた逆支弁57を通過した後、低温側絞り装置25で減圧膨張され、低温側蒸発器26で蒸発ガス化されて、低温側圧縮機21に戻る。   At this time, in the low temperature side circulation circuit 2 a, the low temperature side refrigerant discharged from the low temperature side compressor 21 is condensed and liquefied by the low temperature side condenser 22 and passes through the liquid receiver 23. Then, the low-temperature side refrigerant passes through the opened second opening / closing means 51 and the heat storage expansion device 52, flows into the heat storage tank 50, and is supercooled by the stored cold heat. Then, after passing through the reverse support valve 57 provided in the connecting pipe 58, the low-temperature side expansion device 25 decompresses and expands, evaporates and gasifies in the low-temperature side evaporator 26, and returns to the low-temperature side compressor 21.

そして、制御装置40は、蓄熱タンク50内に設置された蓄熱量検知センサー(図示せず)によって検知された蓄熱量Tsが、予め設定された基準蓄熱量Th未満となったら、蓄熱タンク50の冷熱が全て消費されたと判断し(S15)、第1開閉手段24および第3開閉手段54を開放し、第2開閉手段51を閉止して、通常冷却運転に戻る(S16)。なお、過冷却運転を行わない通常冷却運転時に吸入側圧力Psが上昇して、予め設定され、所定圧力Pmよりも大きい限界圧力Pmaxを超えると、二元冷却装置100は異常停止するようにされている。Pmaxは、低温側循環回路2aにおいて、内圧上昇によって配管が破壊されない程度に予め設定された値(例えば、4MPa)である。   When the heat storage amount Ts detected by a heat storage amount detection sensor (not shown) installed in the heat storage tank 50 becomes less than a preset reference heat storage amount Th, the control device 40 It is determined that all the cooling heat has been consumed (S15), the first opening / closing means 24 and the third opening / closing means 54 are opened, the second opening / closing means 51 is closed, and the normal cooling operation is resumed (S16). It should be noted that when the suction side pressure Ps rises during the normal cooling operation without performing the supercooling operation and exceeds a limit pressure Pmax that is set in advance and larger than the predetermined pressure Pm, the two-way cooling device 100 is caused to stop abnormally. ing. Pmax is a value (for example, 4 MPa) set in advance to such an extent that the piping is not destroyed by the increase in internal pressure in the low temperature side circulation circuit 2a.

本実施の形態によれば、夜間や冷却負荷の軽い時の余剰冷媒を利用して蓄熱冷却運転を実施し、昼間などの冷却負荷の高い時に過冷却として利用できるので、電力を有効に消費することができるうえ、電力の負荷を平準化できる冷却システムを得ることができる。   According to the present embodiment, the heat storage cooling operation is performed by using surplus refrigerant at night or when the cooling load is light, and can be used as supercooling when the cooling load is high such as in the daytime. In addition, a cooling system capable of leveling the load of electric power can be obtained.

なお、低温側循環回路2a内に蓄熱用蒸発器53を備えているので、負荷としての冷却対象が日配や生鮮等の冷蔵用途である場合、低温側蒸発器26の蒸発温度がマイナス10℃程度であるため、氷が生成しやすく、氷蓄熱を行うには効果的である。このとき、高温側蒸発器14の蒸発温度は5〜15℃程度であるため、氷の生成には適切な温度でなく、高温側循環回路1aに蓄熱用蒸発器を配置しても効果はあまりない。また、マイナス40℃以下の温度帯で使用する冷凍用途であっても、蓄熱用蒸発器53の出口側に蒸発圧力を調整する調整弁等を備えることで、氷蓄熱を効果的に行うことができる。   Since the low temperature side circulation circuit 2a includes the heat storage evaporator 53, when the object to be cooled is a refrigeration application such as daily delivery or fresh food, the evaporation temperature of the low temperature side evaporator 26 is minus 10 ° C. Therefore, it is easy to produce ice and is effective for storing ice. At this time, since the evaporation temperature of the high-temperature side evaporator 14 is about 5 to 15 ° C., it is not an appropriate temperature for generating ice, and even if the heat storage evaporator is arranged in the high-temperature side circulation circuit 1a, the effect is not much Absent. Further, even in a refrigeration application used in a temperature range of minus 40 ° C. or lower, ice storage can be effectively performed by providing an adjustment valve or the like for adjusting the evaporation pressure on the outlet side of the heat storage evaporator 53. it can.

冷媒の相変化と圧力の関係を示す図7のp−h線図にしたがって、通常冷却運転時と過冷却運転時の冷媒状態の推移を説明する。通常冷却運転時、低温側冷媒は、低温側圧縮機21に吸入されるA1の状態から、低温側圧縮機21により圧縮されてA2の状態となり、低温側凝縮器22で凝縮液化されてA3の状態となる。さらに、受液器23を通り、低温側絞り装置25で減圧膨張されてA4の状態となり、低温側蒸発器26で蒸発ガス化されてA1の状態に戻る。このとき、二元冷却装置100としての冷凍効果は、A1とA4(A3)とのエンタルピ(熱含量)の差q1となる。   The transition of the refrigerant state during the normal cooling operation and the supercooling operation will be described with reference to the ph diagram of FIG. 7 showing the relationship between the phase change of the refrigerant and the pressure. During the normal cooling operation, the low temperature side refrigerant is compressed by the low temperature side compressor 21 from the state of A1 sucked into the low temperature side compressor 21 to be in the state of A2, and is condensed and liquefied by the low temperature side condenser 22. It becomes a state. Furthermore, it passes through the liquid receiver 23 and is decompressed and expanded by the low temperature side expansion device 25 to be in the A4 state, and is evaporated and gasified by the low temperature side evaporator 26 to return to the A1 state. At this time, the freezing effect as the two-way cooling device 100 is the difference q1 in the enthalpy (heat content) between A1 and A4 (A3).

一方、過冷却運転時、低温側冷媒は、低温側圧縮機21に吸入されるA1の状態から、低温側圧縮機21により圧縮されてA2の状態となり、低温側凝縮器22で凝縮液化されてA3の状態となる。そして、受液器23を通った後、第2開閉手段51および蓄熱用絞り装置52を介して、蓄熱用蒸発器53を通過する。このとき、蓄熱タンク50内の蓄熱媒体55に蓄熱された冷熱によって冷却され、B3の状態となる。つまり、過冷却されるのである。過冷却された低温側冷媒は、低温側絞り装置25で減圧膨張されてB4の状態となり、低温側蒸発器26で蒸発ガス化されてA1の状態に戻る。このとき、二元冷却装置100としての冷凍効果は、A1とB4(B3)とのエンタルピの差q2となる。   On the other hand, at the time of supercooling operation, the low temperature side refrigerant is compressed by the low temperature side compressor 21 from the state of A1 sucked into the low temperature side compressor 21 to become the state of A2, and is condensed and liquefied by the low temperature side condenser 22. It will be in the state of A3. Then, after passing through the liquid receiver 23, it passes through the heat storage evaporator 53 via the second opening / closing means 51 and the heat storage expansion device 52. At this time, the heat storage medium 55 in the heat storage tank 50 is cooled by the cold energy stored in the heat storage medium 55 to be in the state of B3. That is, it is supercooled. The supercooled low-temperature side refrigerant is decompressed and expanded by the low-temperature side expansion device 25 to be in the state of B4, is evaporated and gasified by the low-temperature side evaporator 26, and returns to the state of A1. At this time, the refrigeration effect as the two-way cooling device 100 is the difference q2 in enthalpy between A1 and B4 (B3).

このように、低温側循環回路2aに蓄熱回路56を設けることで、霜取時の低温側冷媒の圧力上昇を抑えながら蓄熱し、蓄熱された冷熱を過冷却運転に利用することができる。通常冷却運転時と比較して本発明の過冷却運転では、冷凍効果はq1とq2の差(q2−q1)分だけ向上させることができ、その結果、二元冷却装置100における冷却能力(一般的に、約20%)も向上させることができるのである。   Thus, by providing the heat storage circuit 56 in the low temperature side circulation circuit 2a, heat can be stored while suppressing an increase in the pressure of the low temperature side refrigerant during defrosting, and the stored cold can be used for the supercooling operation. Compared with the normal cooling operation, in the supercooling operation of the present invention, the refrigeration effect can be improved by the difference between q1 and q2 (q2-q1). As a result, the cooling capacity (general About 20%).

ここで、本実施の形態における蓄熱タンク50について説明する。ここでは、蓄熱媒体55として、水を使用することとする。また、二元冷却装置100の容量が、一般的によく使われる冷却機容量の15kW(20馬力)程度とする。この二元冷却装置100を、冷却対象の負荷が生鮮や日配等冷蔵用途で使用する場合、低温側蒸発器26の蒸発温度の平均は約マイナス10度のため、二元冷却装置100の冷凍能力は約40kWである。夜間の負荷は、一般的に約60%程度であって、このとき二元冷却装置100は約24kWの冷凍能力が必要であるので、残り約16kW分の冷凍能力を蓄熱冷却運転に利用することができる。   Here, the heat storage tank 50 in the present embodiment will be described. Here, water is used as the heat storage medium 55. Moreover, the capacity | capacitance of the two-way cooling device 100 shall be about 15 kW (20 horsepower) of the cooling machine capacity generally used well. In the case where the load to be cooled is used for refrigeration applications such as fresh or daily distribution, the average temperature of the low-temperature evaporator 26 is about minus 10 degrees, so that the cooling of the binary cooling device 100 is frozen. The capacity is about 40 kW. The night load is generally about 60%. At this time, the two-stage cooling device 100 needs about 24 kW of refrigerating capacity. Therefore, the remaining refrigerating capacity of about 16 kW should be used for the regenerative cooling operation. Can do.

仮に、冷凍能力16kWで、夜間10時間、蓄熱冷却運転を継続したとすると、16(kW)×10(時間)×3600(秒)=576MJの熱量が得られることとなる。したがって、氷の融解の潜熱が333.55(kJ/kg)であるので、576(MJ)/333.55(MJ/kg)=1727(kg)の氷を生成することができる。つまり、蓄熱タンク50内に1727kgの水を封入しておけば、蓄熱冷却運転を夜間中継続することができる。   If the refrigerating capacity is 16 kW and the heat storage and cooling operation is continued for 10 hours at night, a heat quantity of 16 (kW) × 10 (hours) × 3600 (seconds) = 576 MJ is obtained. Accordingly, since the latent heat of melting of ice is 333.55 (kJ / kg), ice of 576 (MJ) /333.55 (MJ / kg) = 1727 (kg) can be generated. That is, if 1727 kg of water is sealed in the heat storage tank 50, the heat storage cooling operation can be continued throughout the night.

したがって、蓄熱タンク50に1727kgの水を封入したとすると、蓄熱タンク50の筐体は、仮に横幅、奥行きがそれぞれ1mとすると高さが1.727mとなる。一般的な二元冷却装置の大きさが横幅1〜2m、高さが1.5m程度であるので、蓄熱タンク50は、二元冷却装置100と近接させて並べて設置したり、蓄熱タンク50を設置した上に二元冷却装置100を載置する等するのがよく、これにより設置スペースを有効に利用することができる。もちろん、蓄熱タンク50の容量は、必要な蓄熱量に応じて変えればよいことは言うまでもなく、後述する実施の形態2、3でも同様である。   Therefore, if 1727 kg of water is sealed in the heat storage tank 50, the housing of the heat storage tank 50 has a height of 1.727 m if the width and depth are 1 m. Since the size of a general two-way cooling device is about 1 to 2 m in width and about 1.5 m in height, the heat storage tank 50 is installed side by side close to the two-way cooling device 100, or the heat storage tank 50 is installed. It is preferable to place the two-way cooling device 100 on the installation, and the installation space can be used effectively. Of course, it goes without saying that the capacity of the heat storage tank 50 may be changed according to the required amount of heat storage, and the same applies to Embodiments 2 and 3 described later.

なお、二元冷却装置100を運転する必要が無い場合、第1開閉手段24および第2開閉手段51を閉止し、第3開閉手段54を開放としておくのがよい。冷却運転停止時の、二元冷却装置100の冷媒回路を図8に示す。これは、二元冷却装置100が停止中も、蓄熱用蒸発器53の低温側冷媒の温度または圧力を検知しておけば、蓄熱された冷熱により低温側冷媒が冷却されるため、低温側循環回路2a内の圧力上昇を防ぐことができるからである。また、二元冷却装置100を停止させる前に、後述するポンプダウン運転を行うようにすれば、低温側冷媒を回収してから停止するので、低温側冷媒の圧力上昇を抑制することができ、長期間停止させることができる。   When there is no need to operate the dual cooling device 100, it is preferable to close the first opening / closing means 24 and the second opening / closing means 51 and leave the third opening / closing means 54 open. FIG. 8 shows a refrigerant circuit of the dual cooling device 100 when the cooling operation is stopped. This is because the low-temperature side refrigerant is cooled by the stored cold heat if the temperature or pressure of the low-temperature side refrigerant of the heat storage evaporator 53 is detected even when the two-way cooling device 100 is stopped. This is because an increase in pressure in the circuit 2a can be prevented. Also, if the pump-down operation described later is performed before stopping the two-way cooling device 100, the low-temperature side refrigerant is recovered and then stopped, so that an increase in the pressure of the low-temperature side refrigerant can be suppressed, Can be stopped for a long time.

実施の形態2.
以上の実施の形態1では、冷却負荷が軽い時や、各電力会社が割安に設定している夜間に、蓄熱回路56を用いて蓄熱冷却運転を行い、冷却負荷が高い時や昼間に、蓄熱冷却運転で蓄熱された冷熱を過冷却として活用する場合について記述した。本実施の形態では、低温側蒸発器26の霜取を行いながら冷熱を蓄熱する蓄熱霜取運転について説明する。なお、実施の形態1と同じものについては、同じ符号を付している。
Embodiment 2. FIG.
In the first embodiment described above, when the cooling load is light or at night when each electric power company is set to be cheap, the heat storage cooling operation is performed using the heat storage circuit 56, and the heat storage is performed when the cooling load is high or in the daytime. The case where the cold energy stored in the cooling operation is used as supercooling is described. In the present embodiment, a heat storage defrosting operation for storing cold energy while defrosting the low temperature side evaporator 26 will be described. In addition, the same code | symbol is attached | subjected about the same thing as Embodiment 1. FIG.

霜取運転の一連の運転動作を表す図9のフローチャートを用いて、本実施の形態における二元冷却装置100の動作について説明する。また、このときの高温側循環回路1aおよび低温側循環回路2aにおける冷媒の流れを、図10、図11、および図12において矢印で示す。図13は、二元冷却装置100における各機器の、運転状態毎の作動を表に示したものである。   The operation of the dual cooling device 100 in the present embodiment will be described using the flowchart of FIG. 9 representing a series of operation operations of the defrosting operation. Moreover, the flow of the refrigerant in the high temperature side circulation circuit 1a and the low temperature side circulation circuit 2a at this time is indicated by arrows in FIGS. 10, 11, and 12. FIG. FIG. 13 is a table showing the operation of each device in the binary cooling device 100 for each operating state.

まず、霜取運転の開始が制御装置40から指示されると、低温側蒸発器26および配管内に残った液冷媒を受液器23に回収する、いわゆるポンプダウン運転を行う。制御装置40が、例えば低温側圧縮機21において冷却運転開始からの運転積算時間が所定時間(例えば、4時間)を経過したものと判断すると(S21)、高温側圧縮機11を停止し、第1開閉手段24を閉止して、受液器23からの低温側冷媒を低温側蒸発器26に流入させないようにする(S22)。   First, when the start of the defrosting operation is instructed from the control device 40, a so-called pump-down operation is performed in which the liquid refrigerant remaining in the low-temperature evaporator 26 and the piping is collected in the liquid receiver 23. When the control device 40 determines that, for example, the operation integration time from the start of the cooling operation in the low temperature side compressor 21 has passed a predetermined time (for example, 4 hours) (S21), the high temperature side compressor 11 is stopped, The first opening / closing means 24 is closed so that the low-temperature side refrigerant from the liquid receiver 23 does not flow into the low-temperature side evaporator 26 (S22).

そして、吸入側圧力センサー28により検知した吸入側圧力Psが予め設定された規定圧力Pe(例えば、1〜2MPa)以下になると判断するまで、低温側圧縮機21を駆動させる(S23)。これにより、低温側蒸発器26において低温側冷媒を蒸発させ、できる限り低温側冷媒を流出させるようにする。流出した低温側冷媒は、低温側圧縮機21から吐出されて、低温側凝縮器22に流入し凝縮液化して、受液器23で回収される。   Then, the low temperature side compressor 21 is driven until it is determined that the suction side pressure Ps detected by the suction side pressure sensor 28 is equal to or lower than a preset specified pressure Pe (for example, 1 to 2 MPa) (S23). Thereby, the low temperature side refrigerant is evaporated in the low temperature side evaporator 26, and the low temperature side refrigerant is caused to flow out as much as possible. The low-temperature side refrigerant that has flowed out is discharged from the low-temperature side compressor 21, flows into the low-temperature side condenser 22, is condensed, and is collected by the liquid receiver 23.

霜取前にポンプダウン運転を行うことで、低温側蒸発器26内の低温側冷媒が低減された状態で低温側蒸発器26を加熱するため、低温側冷媒の圧力上昇を最小限に抑えることができる。また、霜取時の低温側蒸発器26内の低温側冷媒の量を減らすことができるので、低温側冷媒に奪われる霜取ヒータ27の熱量が少なく、霜取ヒータ27を少ない熱量で作動させることができて、電力消費を抑えることができる。   By performing the pump-down operation before defrosting, the low-temperature side evaporator 26 is heated in a state in which the low-temperature side refrigerant in the low-temperature side evaporator 26 is reduced. Can do. Further, since the amount of the low temperature side refrigerant in the low temperature side evaporator 26 at the time of defrosting can be reduced, the amount of heat of the defrost heater 27 taken away by the low temperature side refrigerant is small, and the defrost heater 27 is operated with a small amount of heat. Power consumption can be reduced.

吸入側圧力Psが規定圧力Pe以下になると、制御装置40は、受液器23に低温側冷媒が適切に回収されたと判断して、低温側圧縮機21を停止して、低温側絞り装置25を閉止し、霜取ヒータ27に通電して低温側蒸発器26を加熱し、霜取を行う(S24)。このとき、低温側蒸発器26および周辺の配管に残った低温側冷媒は、霜取ヒータ27の加熱により温度が上昇するが、第3開閉手段54を介して蓄熱タンク50内に流入し、蓄熱媒体55と熱交換して冷熱を蓄熱する。これにより、高温側圧縮機11および低温側圧縮機21を停止していても、霜取時の低温側冷媒の圧力上昇を防ぎつつ、霜取ヒータ27による電力を有効に利用して冷熱を蓄熱することができる。   When the suction side pressure Ps becomes equal to or lower than the specified pressure Pe, the control device 40 determines that the low temperature side refrigerant has been properly recovered in the receiver 23, stops the low temperature side compressor 21, and the low temperature side expansion device 25. Is closed, the defrosting heater 27 is energized to heat the low temperature side evaporator 26, and defrosting is performed (S24). At this time, although the temperature of the low-temperature side refrigerant remaining in the low-temperature side evaporator 26 and the surrounding piping rises due to the heating of the defrost heater 27, it flows into the heat storage tank 50 via the third opening / closing means 54 and stores the heat. Heat exchange with the medium 55 is performed to store cold energy. Thereby, even if the high temperature side compressor 11 and the low temperature side compressor 21 are stopped, the electric power generated by the defrost heater 27 is effectively used to store the cold while preventing the pressure increase of the low temperature side refrigerant during defrosting. can do.

次に、制御装置40は、予め設定された所定圧力Pmと、吸入側圧力Psを比較し、圧力Psが所定圧力Pm以上になったと判断したら(S25)、第2開閉手段51を開放して蓄熱用絞り装置52の開度を調整し、低温側圧縮機21を駆動させ、第1の蓄熱霜取運転を行う(S26)。所定圧力Pmは、例えば、蓄熱タンク50に蓄熱された冷熱が全て消費され、低温側圧縮機21の吸入側圧力が上昇し始めるときの値であるとする。   Next, the control device 40 compares the predetermined pressure Pm set in advance with the suction side pressure Ps, and determines that the pressure Ps is equal to or higher than the predetermined pressure Pm (S25), opens the second opening / closing means 51. The opening degree of the thermal storage expansion device 52 is adjusted, the low temperature side compressor 21 is driven, and the first thermal storage defrosting operation is performed (S26). The predetermined pressure Pm is assumed to be a value when, for example, all the cold energy stored in the heat storage tank 50 is consumed and the suction side pressure of the low temperature side compressor 21 starts to rise.

このとき、低温側冷媒は、受液器23の液冷媒が第2開閉手段51を介して蓄熱用絞り装置52に流れて減圧膨張され、蓄熱タンク50内に配置された蓄熱用蒸発器53に流入する。蓄熱用蒸発器53に流入した低温側冷媒は、蓄熱タンク50内に封入された蓄熱媒体55と熱交換されて蒸発ガス化され、第3開閉手段54を介して低温側圧縮機21に戻る。このとき、高温側圧縮機11は停止させているため、低温側圧縮機21は凝縮温度が急激に上昇してしまわない程度の周波数で駆動する。これにより、高温側圧縮機11を駆動させずに、蓄熱を行いながら霜取を行うことができ、不要な電力を消費させずに済む。   At this time, the low-temperature-side refrigerant flows into the heat storage evaporator 53 disposed in the heat storage tank 50 by the liquid refrigerant in the liquid receiver 23 flowing into the heat storage expansion device 52 via the second opening / closing means 51 and being decompressed and expanded. Inflow. The low-temperature side refrigerant that has flowed into the heat storage evaporator 53 is heat-exchanged with the heat storage medium 55 sealed in the heat storage tank 50 to be evaporated and gasified, and returns to the low-temperature side compressor 21 via the third opening / closing means 54. At this time, since the high temperature side compressor 11 is stopped, the low temperature side compressor 21 is driven at a frequency at which the condensation temperature does not increase rapidly. Thereby, it is possible to perform defrosting while performing heat storage without driving the high temperature side compressor 11, and it is not necessary to consume unnecessary power.

さらに、制御装置40は、予め設定された限界圧力Pmaxと、吸入側圧力Psを比較し、吸入側圧力Psが限界圧力Pmax以上になったと判断したら(S27)、高温側圧縮機11を駆動させ、第2の蓄熱霜取運転を行う(S28)。これにより、高温側蒸発器14で低温側冷媒を冷却して圧力上昇を抑えながら、霜取をしつつ、最大の出力で蓄熱を行うことができる。   Further, the control device 40 compares the preset limit pressure Pmax with the suction side pressure Ps, and if it is determined that the suction side pressure Ps is equal to or higher than the limit pressure Pmax (S27), the high temperature side compressor 11 is driven. Then, the second heat storage defrosting operation is performed (S28). Thereby, heat storage can be performed with the maximum output while defrosting while cooling the low-temperature side refrigerant by the high-temperature side evaporator 14 and suppressing the pressure rise.

このように、ポンプダウン運転後の霜取時に、吸入側圧力センサー28の検知圧力に応じて高温側圧縮機11および低温側圧縮機21を適宜駆動させるので、低温側冷媒の圧力上昇を防ぎつつ、圧縮機の駆動による無駄な電力消費を防ぎ、有効に電力を利用することができる。   As described above, the high temperature side compressor 11 and the low temperature side compressor 21 are appropriately driven according to the detected pressure of the suction side pressure sensor 28 at the time of defrosting after the pump down operation, so that an increase in the pressure of the low temperature side refrigerant is prevented. Thus, wasteful power consumption due to driving of the compressor can be prevented, and power can be used effectively.

なお、本実施の形態では、吸入側圧力センサー28の検知圧力に基づいて段階的に高温側圧縮機11および低温側圧縮機21の駆動を制御したが、唯一の所定圧力値に基づいて制御してももちろん構わない。なお、蓄熱タンク50内に十分に冷熱が蓄熱されている時は、それ以上の蓄熱を行う必要が無いため、高温側圧縮機11と低温側圧縮機21の運転を停止してもよく、このようにしても、蓄熱媒体55に蓄熱された冷熱によって、低温側冷媒の圧力上昇を抑制することができる。   In the present embodiment, the drive of the high temperature side compressor 11 and the low temperature side compressor 21 is controlled stepwise based on the detected pressure of the suction side pressure sensor 28, but is controlled based on a single predetermined pressure value. Of course. When the cold energy is sufficiently stored in the heat storage tank 50, it is not necessary to store more heat, so the operation of the high temperature side compressor 11 and the low temperature side compressor 21 may be stopped. Even if it does, it can suppress the pressure rise of a low temperature side refrigerant | coolant with the cold energy stored in the thermal storage medium 55. FIG.

そして、例えば、低温側蒸発器26の表面温度を検知する温度センサー(図示せず)が所定温度以上を検知したら(S29)、制御装置40は霜取が終了したと判断し、霜取ヒータ27の通電を停止する(S30)。そして、通常冷却運転に戻る。なお、霜取が終了したと判断する低温側蒸発器26表面の所定温度は、例えば、10℃以上としている。これは、低温側蒸発器26の表面が0℃以上となって霜が溶けても、例えばドレンパン(図示せず)等の周辺に霜が残っていたり、残った水が再び凍ってしまわないように、しばらく霜取ヒータ27を加熱して、確実に霜を溶かすためである。   For example, when a temperature sensor (not shown) for detecting the surface temperature of the low-temperature side evaporator 26 detects a predetermined temperature or higher (S29), the control device 40 determines that the defrosting is completed, and the defrost heater 27 Is stopped (S30). And it returns to normal cooling driving | operation. In addition, the predetermined temperature of the surface of the low temperature side evaporator 26 which judges that defrosting was complete | finished is 10 degreeC or more, for example. This is because even if the surface of the low temperature side evaporator 26 becomes 0 ° C. or more and frost is melted, for example, frost remains around the drain pan (not shown) or the remaining water does not freeze again. In addition, the defrosting heater 27 is heated for a while to surely melt the frost.

なお、S24およびS26の後において、低温側蒸発器26の霜取が完了すれば、通常冷却運転に戻るのは言うまでもなく、低温側蒸発器26の表面温度を検知する温度センサー(図示せず)による検知温度で判断する。霜取が終了したら、通常冷却運転に戻る。または、冷却負荷が高いと判断した場合は、霜取後すぐに過冷却運転を行うようにしてもよい。過冷却運転については、実施の形態1と同様である。   Note that after S24 and S26, if the defrosting of the low-temperature side evaporator 26 is completed, it goes without saying that the normal cooling operation is resumed, and a temperature sensor (not shown) for detecting the surface temperature of the low-temperature side evaporator 26. Judged by the detected temperature. When defrosting is completed, the normal cooling operation is resumed. Alternatively, when it is determined that the cooling load is high, the supercooling operation may be performed immediately after defrosting. The supercooling operation is the same as in the first embodiment.

以上のように、本実施の形態に係る二元冷却装置100においては、低温側蒸発器26を加熱して霜取しつつ、低温側循環回路2a内に蓄熱回路を備えて蓄熱霜取運転を行うことで、冷却運転時には蓄熱タンク50に蓄熱された冷熱を低温側循環回路2aの過冷却運転に利用できるので、二元冷却装置100として有効に電力を利用することができるのである。   As described above, in the dual cooling device 100 according to the present embodiment, the low-temperature side evaporator 26 is heated and defrosted while the low-temperature side circulation circuit 2a is provided with the heat storage circuit to perform the heat storage defrosting operation. By performing the cooling operation, the cold energy stored in the heat storage tank 50 can be used for the supercooling operation of the low-temperature side circulation circuit 2a, so that the power can be effectively used as the two-way cooling device 100.

また、低温側蒸発器26の霜取時の圧力上昇を監視しながら冷熱を蓄熱するので、CO冷媒の臨界圧力を超えてしまうようなことがない。つまり、霜取時であっても、低温側循環回路2a内の冷媒圧力を、例えば従来から使用しているHFC冷媒程度の圧力(例えば、4MPa)以下に抑えることができる。したがって、設計においては、低温側蒸発器26の低温側冷媒の耐圧を低く見積もることができ、低温側蒸発器26の伝熱管として使用する銅配管の肉厚を例えば約半分にすることができて、安価で、現地冷媒工事も容易な二元冷却装置を提供することができる。 Further, since the cold energy is stored while monitoring the pressure increase during defrosting of the low temperature side evaporator 26, the critical pressure of the CO 2 refrigerant is not exceeded. That is, even at the time of defrosting, the refrigerant pressure in the low temperature side circulation circuit 2a can be suppressed to, for example, a pressure (for example, 4 MPa) or less that is about the same as that of the HFC refrigerant that has been conventionally used. Therefore, in the design, the pressure resistance of the low-temperature side refrigerant of the low-temperature side evaporator 26 can be estimated to be low, and the thickness of the copper pipe used as the heat transfer pipe of the low-temperature side evaporator 26 can be halved, for example. It is possible to provide a dual cooling device that is inexpensive and easy to construct on-site refrigerant.

また、従来は、霜取時に低温側装置の冷媒圧力を上昇させない他の方法として、低温側装置に安全弁を設けて圧力上昇時に大気放出を行ったり、冷却装置の近傍に膨張タンクを設置したり、低温側装置に温度を保持する用途としての冷却機を別に設置する等の対策が考えられていたが、本実施の形態では簡易な構成で、霜取時の冷媒圧力の上昇を抑えることができる。   In addition, conventionally, as another method for preventing the refrigerant pressure of the low temperature side device from increasing during defrosting, a safety valve is provided in the low temperature side device to release the air when the pressure increases, or an expansion tank is installed in the vicinity of the cooling device. Measures such as installing a separate cooler as an application to maintain temperature in the low-temperature side device have been considered, but in this embodiment, it is possible to suppress an increase in refrigerant pressure during defrosting with a simple configuration. it can.

また、本実施の形態では、低温側蒸発器26の霜取時、霜取ヒータ27に通電させることで加熱して、霜を溶かすようにしたが、例えば、低温側圧縮機21から吐出される高温高圧の低温側冷媒を低温側蒸発器26に流すことで、低温側蒸発器26を凝縮器として作用させ、凝縮熱により霜を溶かすようにしてもよい(ホットガスデフロスト)。   In the present embodiment, when the low temperature side evaporator 26 is defrosted, the defrost heater 27 is heated by being energized to melt the frost. For example, it is discharged from the low temperature side compressor 21. The low temperature side evaporator 26 may act as a condenser by flowing a high temperature and high pressure low temperature side refrigerant to the low temperature side evaporator 26, and the frost may be melted by the heat of condensation (hot gas defrost).

実施の形態3.
図14は、本実施の形態に係る二元冷却装置200を示すものであって、蓄熱タンク50内に過冷却コイル60を設け、過冷却コイル60の一端を高温側凝縮器12の冷媒流出側配管に接続し、他端を高温側絞り装置13の冷媒流入側配管に接続するよう構成したものである。なお、実施の形態1、2と同じものについては、同じ符号を付している。
Embodiment 3 FIG.
FIG. 14 shows the dual cooling device 200 according to the present embodiment, in which a supercooling coil 60 is provided in the heat storage tank 50, and one end of the supercooling coil 60 is connected to the refrigerant outflow side of the high-temperature side condenser 12. The other end is connected to the refrigerant inflow side piping of the high temperature side expansion device 13. In addition, the same code | symbol is attached | subjected about the same thing as Embodiment 1,2.

このように構成することで、低温側循環回路2aにおいて霜取時や夜間等の冷却負荷の軽い時に蓄熱された冷熱を、高温側循環回路1bの過冷却にも利用することができるので、高温側圧縮機11を容量が小さいもので賄うことができ、電力を有効に活用できる。また、高温側循環回路1bに循環させる冷媒充填量を少なくすることができるため、COやアンモニア等の自然冷媒に比べて、効率は良いが比較的地球温暖化係数(GWP)の高いHFC系冷媒を利用しても、環境負荷を低減することができる。 By comprising in this way, since the cold stored in the low temperature side circulation circuit 2a at the time of defrosting or when the cooling load is light such as at night can be used for the supercooling of the high temperature side circulation circuit 1b, The side compressor 11 can be covered with a small capacity, and electric power can be used effectively. Moreover, since the refrigerant filling amount circulated to the high-temperature side circulation circuit 1b can be reduced, the HFC system is efficient but has a relatively high global warming potential (GWP) compared to natural refrigerants such as CO 2 and ammonia. Even if a refrigerant is used, the environmental load can be reduced.

なお、過冷却コイル60は、蓄熱タンク50に蓄熱された冷熱と熱交換するよう構成していればよく、蓄熱タンク50内に設置しなくてもよい。また、高温側循環回路1bから過冷却コイル60と接続される配管の長さは、極力短くするのが良く、高温側凝縮器12と蓄熱タンク50を近接して配置する方がよい。つまり、蓄熱タンク50を二元冷却装置200に併設する等、近接して配置するのが良い。   The supercooling coil 60 only needs to be configured to exchange heat with the cold stored in the heat storage tank 50, and may not be installed in the heat storage tank 50. The length of the pipe connected from the high temperature side circulation circuit 1b to the supercooling coil 60 should be as short as possible, and it is better to arrange the high temperature side condenser 12 and the heat storage tank 50 close to each other. That is, it is preferable to arrange the heat storage tank 50 close to the two-way cooling device 200, for example.

上述の実施の形態は、霜取時と、夜間等の冷却負荷の軽い時に蓄熱を行う形態を個別に説明したが、必要に応じて各動作(通常冷却運転、蓄熱冷却運転、霜取蓄熱運転、運転停止、および過冷却運転)を組合せて冷却装置を動作させても良く、これにより、より無駄な電力消費を防ぎ、電力を有効に利用できる。また、上述の実施の形態は、二元冷却装置で説明したが多段構成の多元冷却装置にも適用することができる。   Although the above-mentioned embodiment explained individually the form which performs heat storage at the time of defrosting and when the cooling load is light at night, etc., each operation (normal cooling operation, heat storage cooling operation, defrosting heat storage operation) , Operation stop, and supercooling operation) may be combined to operate the cooling device, thereby preventing more wasteful power consumption and effectively using power. Moreover, although the above-mentioned embodiment was demonstrated with the two-way cooling device, it is applicable also to the multi-way cooling device of a multistage structure.

10 高温側装置、11 高温側圧縮機、12 高温側凝縮器、13 高温側絞り装置、14 高温側蒸発器、20 低温側装置、21 低温側圧縮機、22 低温側凝縮器、23 受液器、24 第1開閉手段、25 低温側絞り装置、26 低温側蒸発器、27 霜取ヒータ、28 吸入側圧力センサー、30 カスケードコンデンサ、50 蓄熱タンク、51 第2開閉手段、52 蓄熱用絞り装置、53 蓄熱用蒸発器、54 第3開閉手段、55 蓄熱媒体、56 蓄熱回路、57 逆止弁、58 連結管、60 過冷却コイル。   DESCRIPTION OF SYMBOLS 10 High temperature side apparatus, 11 High temperature side compressor, 12 High temperature side condenser, 13 High temperature side expansion apparatus, 14 High temperature side evaporator, 20 Low temperature side apparatus, 21 Low temperature side compressor, 22 Low temperature side condenser, 23 Receiver 24 first opening / closing means, 25 low temperature side expansion device, 26 low temperature side evaporator, 27 defrost heater, 28 suction side pressure sensor, 30 cascade condenser, 50 heat storage tank, 51 second opening / closing means, 52 heat storage expansion device, 53 heat storage evaporator, 54 third opening / closing means, 55 heat storage medium, 56 heat storage circuit, 57 check valve, 58 connecting pipe, 60 supercooling coil.

Claims (9)

高温側圧縮機、高温側凝縮器、高温側絞り装置および高温側蒸発器を配管接続して、高温側冷媒を循環させる高温側循環回路を形成する高温側装置と、
低温側圧縮機、低温側凝縮器、受液器、第1開閉手段、低温側絞り装置および低温側蒸発器を配管接続して、低温側冷媒を循環させる低温側循環回路を形成する低温側装置と、
前記高温側蒸発器および前記低温側凝縮器により構成し、前記高温側冷媒と前記低温側冷媒との間の熱交換を行う冷媒間熱交換器と、
前記受液器と前記第一開閉手段とを接続する配管から分岐され、第2開閉手段、蓄熱用絞り装置、蓄熱タンク内に封入された蓄熱媒体と熱交換を行う蓄熱用蒸発器、および第3開閉手段を順次配管接続して、前記低温側蒸発器と前記低温側圧縮機とを接続する配管に接続する蓄熱回路と、
前記蓄熱用蒸発器と前記第3開閉手段とを接続する配管から分岐され、逆止弁を介して前記第1開閉手段と前記低温側絞り装置とを接続する配管に接続する連結管と、
少なくとも、前記高温側圧縮機、前記高温側絞り装置、前記低温側圧縮機、前記第1開閉手段、前記低温側絞り装置、前記第2開閉手段、前記蓄熱用絞り装置、前記蓄熱用蒸発器、および前記第3開閉手段を制御する制御装置と
を備えた冷却装置。
A high temperature side apparatus that pipes a high temperature side compressor, a high temperature side condenser, a high temperature side expansion device, and a high temperature side evaporator to form a high temperature side circulation circuit that circulates the high temperature side refrigerant; and
Low-temperature side apparatus for connecting a low-temperature side compressor, a low-temperature side condenser, a receiver, a first opening / closing means, a low-temperature side throttle device, and a low-temperature side evaporator to form a low-temperature side circulation circuit for circulating a low-temperature side refrigerant When,
An inter-refrigerant heat exchanger configured by the high-temperature side evaporator and the low-temperature side condenser, and performing heat exchange between the high-temperature side refrigerant and the low-temperature side refrigerant,
A heat storage evaporator that branches off from a pipe connecting the liquid receiver and the first opening / closing means and that exchanges heat with a second storage means, a heat storage expansion device, a heat storage medium enclosed in a heat storage tank; A heat storage circuit connected to a pipe connecting the low-temperature side evaporator and the low-temperature side compressor by sequentially connecting three open / close means to the pipe;
A connection pipe branched from a pipe connecting the heat storage evaporator and the third opening / closing means, and connected to a pipe connecting the first opening / closing means and the low temperature side throttle device via a check valve;
At least the high temperature side compressor, the high temperature side expansion device, the low temperature side compressor, the first opening / closing means, the low temperature side expansion device, the second opening / closing means, the heat storage expansion device, the heat storage evaporator, And a control device for controlling the third opening / closing means.
前記低温側蒸発器の加熱を行う加熱手段を備え、
前記制御装置は、前記第1開閉手段を閉止し、前記第2開閉手段および前記第3開閉手段を開放して、前記加熱手段により前記低温側蒸発器を加熱するとともに、前記低温側圧縮機を駆動させる請求項1に記載の冷却装置。
Heating means for heating the low-temperature side evaporator,
The control device closes the first opening / closing means, opens the second opening / closing means and the third opening / closing means, heats the low-temperature side evaporator by the heating means, and controls the low-temperature side compressor. The cooling device according to claim 1 to be driven.
前記低温側圧縮機吸入側の前記低温側冷媒の圧力を検知する圧力検知手段を備え、
前記制御装置は、前記圧力検知手段により検知された圧力に応じて、前記低温側圧縮機および前記高温側圧縮機の駆動を制御する請求項2に記載の冷却装置。
Pressure detecting means for detecting the pressure of the low-temperature side refrigerant on the low-temperature side compressor suction side,
The cooling device according to claim 2, wherein the control device controls driving of the low temperature side compressor and the high temperature side compressor according to the pressure detected by the pressure detection means.
前記冷却装置が運転を停止している時、前記制御装置は、前記第1開閉手段および前記第2開閉手段を閉止し、前記第3開閉手段を開放する請求項1に記載の冷却装置。 2. The cooling device according to claim 1, wherein when the cooling device is stopped, the control device closes the first opening and closing means and the second opening and closing means and opens the third opening and closing means. 前記低温側蒸発器の加熱を行う加熱手段と、
前記低温側圧縮機吸入側の前記低温側冷媒の圧力を検知する圧力検知手段とを備え、
前記制御装置は、前記圧力検知手段により検知された圧力が、予め設定された規定圧力未満の時、前記加熱手段により前記低温側蒸発器を加熱する請求項4に記載の冷却装置。
Heating means for heating the low-temperature evaporator;
Pressure detecting means for detecting the pressure of the low-temperature side refrigerant on the low-temperature side compressor suction side,
The cooling device according to claim 4, wherein the control device heats the low-temperature side evaporator by the heating means when the pressure detected by the pressure detection means is less than a preset specified pressure.
前記低温側圧縮機吸入側の前記低温側冷媒の圧力を検知する圧力検知手段を備え、
前記冷却装置が、負荷を冷却する運転を行っている時、
前記制御装置は、前記圧力検知手段で検知された圧力が、前記低温側蒸発器の蒸発温度の維持に必要な圧力未満の場合は、前記第1開閉手段、前記第2開閉手段、および前記第3開閉手段を開放する請求項1に記載の冷却装置。
Pressure detecting means for detecting the pressure of the low-temperature side refrigerant on the low-temperature side compressor suction side,
When the cooling device is operating to cool the load,
When the pressure detected by the pressure detection means is less than the pressure necessary for maintaining the evaporation temperature of the low temperature side evaporator, the control device is configured to provide the first opening / closing means, the second opening / closing means, and the first 3. The cooling device according to claim 1, wherein the opening / closing means is opened.
前記蓄熱媒体に蓄熱された冷熱と熱交換を行う過冷却コイルを備え、
前記過冷却コイルの一端を前記高温側凝縮器の冷媒流出側配管に接続し、他端を前記高温側絞り装置の冷媒流入側配管に接続する請求項1に記載の冷却装置。
A supercooling coil that performs heat exchange with the cold energy stored in the heat storage medium,
The cooling device according to claim 1, wherein one end of the supercooling coil is connected to a refrigerant outflow side pipe of the high temperature side condenser, and the other end is connected to a refrigerant inflow side pipe of the high temperature side expansion device.
前記蓄熱媒体に冷熱が蓄熱された状態で、前記冷却装置が、負荷を冷却する運転を行う時、
前記制御装置は、前記第1開閉手段および前記第3開閉手段を閉止し、前記第2開閉手段を開放する請求項1ないし3、6、7のいずれかに記載の冷却装置。
When the cooling device performs an operation of cooling the load in a state where cold heat is stored in the heat storage medium,
The cooling device according to claim 1, wherein the control device closes the first opening / closing means and the third opening / closing means and opens the second opening / closing means.
前記低温側冷媒が、二酸化炭素である請求項1ないし7のいずれかに記載の冷却装置。 The cooling device according to any one of claims 1 to 7, wherein the low-temperature side refrigerant is carbon dioxide.
JP2011224629A 2011-10-12 2011-10-12 Cooling system Active JP5854751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011224629A JP5854751B2 (en) 2011-10-12 2011-10-12 Cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011224629A JP5854751B2 (en) 2011-10-12 2011-10-12 Cooling system

Publications (2)

Publication Number Publication Date
JP2013083407A true JP2013083407A (en) 2013-05-09
JP5854751B2 JP5854751B2 (en) 2016-02-09

Family

ID=48528777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011224629A Active JP5854751B2 (en) 2011-10-12 2011-10-12 Cooling system

Country Status (1)

Country Link
JP (1) JP5854751B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192053A1 (en) * 2013-05-27 2014-12-04 三菱電機株式会社 Refrigerating device
WO2015140873A1 (en) * 2014-03-17 2015-09-24 三菱電機株式会社 Refrigerating device and refrigerating device control method
CN105042926A (en) * 2015-08-28 2015-11-11 南京谷德埃涤环境科技有限公司 Dual-intake dual-exhaust compressor energy-saving refrigeration system and method
WO2017221382A1 (en) * 2016-06-23 2017-12-28 三菱電機株式会社 Binary refrigeration device
WO2023012961A1 (en) * 2021-08-05 2023-02-09 三菱電機株式会社 Refrigeration circuit device and control method for refrigeration circuit device
WO2023223559A1 (en) * 2022-05-20 2023-11-23 三菱電機株式会社 Outdoor unit of dual refrigeration device and dual refrigeration device
WO2024058136A1 (en) * 2022-09-13 2024-03-21 株式会社富士通ゼネラル Two-stage cascade refrigeration cycle device, and two-stage cascade refrigeration cycle device control method
WO2024081532A1 (en) * 2022-10-12 2024-04-18 Daikin Comfort Technologies Manufacturing, L.P. Cascade cold climate heat pump system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102002016B1 (en) * 2018-09-28 2019-10-21 한영테크노켐(주) Safety operation method and apparatus for refrigerating system using flammable refrigerants

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58110956A (en) * 1981-12-25 1983-07-01 株式会社岩谷冷凍機製作所 Cold storage type refrigerator
JPH0861797A (en) * 1994-08-22 1996-03-08 Chubu Electric Power Co Inc Cascade refrigerator and cascade refrigerating method
JP2004190917A (en) * 2002-12-10 2004-07-08 Sanyo Electric Co Ltd Refrigeration device
JP2004263977A (en) * 2003-03-04 2004-09-24 Mitsubishi Electric Corp Heat accumulating air conditioner and refrigerating unit
JP2008292122A (en) * 2007-05-28 2008-12-04 Kansai Electric Power Co Inc:The Heat storage system and heat storage type air conditioner using same
JP2011058650A (en) * 2009-09-07 2011-03-24 Hitachi Appliances Inc Ice heat storage type refrigerating device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58110956A (en) * 1981-12-25 1983-07-01 株式会社岩谷冷凍機製作所 Cold storage type refrigerator
JPH0861797A (en) * 1994-08-22 1996-03-08 Chubu Electric Power Co Inc Cascade refrigerator and cascade refrigerating method
JP2004190917A (en) * 2002-12-10 2004-07-08 Sanyo Electric Co Ltd Refrigeration device
JP2004263977A (en) * 2003-03-04 2004-09-24 Mitsubishi Electric Corp Heat accumulating air conditioner and refrigerating unit
JP2008292122A (en) * 2007-05-28 2008-12-04 Kansai Electric Power Co Inc:The Heat storage system and heat storage type air conditioner using same
JP2011058650A (en) * 2009-09-07 2011-03-24 Hitachi Appliances Inc Ice heat storage type refrigerating device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192053A1 (en) * 2013-05-27 2014-12-04 三菱電機株式会社 Refrigerating device
JPWO2014192053A1 (en) * 2013-05-27 2017-02-23 三菱電機株式会社 Refrigeration equipment
WO2015140873A1 (en) * 2014-03-17 2015-09-24 三菱電機株式会社 Refrigerating device and refrigerating device control method
CN105980794A (en) * 2014-03-17 2016-09-28 三菱电机株式会社 Refrigerating device and refrigerating device control method
EP3121541A4 (en) * 2014-03-17 2017-11-15 Mitsubishi Electric Corporation Refrigerating device and refrigerating device control method
US10254016B2 (en) 2014-03-17 2019-04-09 Mitsubishi Electric Corporation Refrigeration cycle apparatus and method for controlling refrigeration cycle apparatus
CN105042926A (en) * 2015-08-28 2015-11-11 南京谷德埃涤环境科技有限公司 Dual-intake dual-exhaust compressor energy-saving refrigeration system and method
GB2565472A (en) * 2016-06-23 2019-02-13 Mitsubishi Electric Corp Binary refrigeration device
JPWO2017221382A1 (en) * 2016-06-23 2019-01-24 三菱電機株式会社 Dual refrigeration equipment
WO2017221382A1 (en) * 2016-06-23 2017-12-28 三菱電機株式会社 Binary refrigeration device
GB2565472B (en) * 2016-06-23 2020-11-18 Mitsubishi Electric Corp Cascade refrigeration system
WO2023012961A1 (en) * 2021-08-05 2023-02-09 三菱電機株式会社 Refrigeration circuit device and control method for refrigeration circuit device
WO2023223559A1 (en) * 2022-05-20 2023-11-23 三菱電機株式会社 Outdoor unit of dual refrigeration device and dual refrigeration device
WO2024058136A1 (en) * 2022-09-13 2024-03-21 株式会社富士通ゼネラル Two-stage cascade refrigeration cycle device, and two-stage cascade refrigeration cycle device control method
JP7459907B2 (en) 2022-09-13 2024-04-02 株式会社富士通ゼネラル Dual refrigeration cycle device and control method for dual refrigeration cycle device
WO2024081532A1 (en) * 2022-10-12 2024-04-18 Daikin Comfort Technologies Manufacturing, L.P. Cascade cold climate heat pump system

Also Published As

Publication number Publication date
JP5854751B2 (en) 2016-02-09

Similar Documents

Publication Publication Date Title
JP5854751B2 (en) Cooling system
US9217574B2 (en) Hot water supply apparatus associated with heat pump
JP5595245B2 (en) Refrigeration equipment
EP2420767B1 (en) Heat-pump hot water supply and air conditioning apparatus
JP2004190917A (en) Refrigeration device
KR101155497B1 (en) Heat pump type speed heating apparatus
JP5098472B2 (en) Chiller using refrigerator
KR20120125857A (en) Heat storaging apparatus having cascade cycle and Control process of the same
JP5842310B2 (en) Refrigeration apparatus and defrost method for load cooler
JP2012093054A (en) Refrigerating apparatus
JP5367100B2 (en) Dual refrigeration equipment
JP5367059B2 (en) Dual refrigeration equipment
KR101619016B1 (en) Refrigeration apparatus having defrosting cycle by hot gas
KR20100027353A (en) Refrigerating and freezing apparatus
KR100990073B1 (en) Refrigerating apparatus
JP5901775B2 (en) Refrigeration equipment
WO2021014644A1 (en) Air conditioning apparatus
KR20100114296A (en) Apparatus for refrigeration cycle using ice thermal storage and showcase including the apparatus and control method for the same
JP5517333B2 (en) Refrigeration apparatus and operation method thereof
KR20030082822A (en) The Combined Cooling and Heating Ice Regenerative System
JP6455752B2 (en) Refrigeration system
JP2013152045A (en) Cooling device and cooling system
JPWO2018198220A1 (en) Refrigeration system
JP2009192187A (en) Ice storage type refrigeration system
JP2010071599A (en) Ice thermal storage system

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140326

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150507

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20150525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151208

R150 Certificate of patent or registration of utility model

Ref document number: 5854751

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250