JP2013152045A - Cooling device and cooling system - Google Patents

Cooling device and cooling system Download PDF

Info

Publication number
JP2013152045A
JP2013152045A JP2012012942A JP2012012942A JP2013152045A JP 2013152045 A JP2013152045 A JP 2013152045A JP 2012012942 A JP2012012942 A JP 2012012942A JP 2012012942 A JP2012012942 A JP 2012012942A JP 2013152045 A JP2013152045 A JP 2013152045A
Authority
JP
Japan
Prior art keywords
water
refrigerant
radiator
cooling
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012012942A
Other languages
Japanese (ja)
Other versions
JP5843630B2 (en
Inventor
Tetsuya Yamashita
哲也 山下
Takashi Ikeda
隆 池田
Takeshi Sugimoto
猛 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012012942A priority Critical patent/JP5843630B2/en
Publication of JP2013152045A publication Critical patent/JP2013152045A/en
Application granted granted Critical
Publication of JP5843630B2 publication Critical patent/JP5843630B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a cooling device and the like by which energy conservation can be further achieved.SOLUTION: A cooling device includes: a refrigeration circuit 6 configured to connect a compressor 1 compressing a refrigerant and whose capacity is variable, a water-cooling condenser 2 for heat-exchanging between the refrigerant and water, a throttle device 3 for adjusting the pressure of the refrigerant, and an evaporator 4 for cooling an object to be cooled by heat exchange of the refrigerant through piping; a water circulating pump 8 for supplying the water to the water-cooling condenser 2 and whose flow rate is variable; and a control device 17 for controlling a flow rate of the water supplied to the water-cooling condenser 2 by the water circulating pump 8 based on an operation load of the refrigerant circuit 6.

Description

この発明は、冷凍・冷蔵ショーケース等へ利用できる冷却装置等に関するものである。特に水等を利用して排熱を行う冷却装置等に関するものである。   The present invention relates to a cooling device and the like that can be used for a freezer / refrigerated showcase or the like. In particular, the present invention relates to a cooling device that performs exhaust heat using water or the like.

従来より、冷却装置が発生する熱を室外に排熱する場合、直接室外の空気に排熱する空冷式の冷却システムと、一度間接的に水などの媒体に排熱してから室外の空気に排熱する水冷式の冷却システムが知られている。   Conventionally, when the heat generated by a cooling device is exhausted to the outside of the room, an air-cooling type cooling system that exhausts heat directly to the outdoor air, and once indirectly indirectly to a medium such as water and then exhausted to the outdoor air. Heated water-cooled cooling systems are known.

ここで、冷却装置においても、地球温暖化防止の観点から、冷媒量の最小化と装置の高効率運転化への取り組みが進められている。例えば、冷凍機の凝縮器を水冷凝縮器にして室内に設置し、冷媒量を最小化するとともに、室外に設置した放熱器と水冷凝縮器とを冷却水配管で連結して水回路を構成し、水循環ポンプにより水を循環させて冷凍機による排熱を室外に排出させる装置がある(例えば、特許文献1参照)。   Here, in the cooling device, from the viewpoint of preventing global warming, efforts are being made to minimize the amount of refrigerant and to increase the efficiency of operation of the device. For example, the condenser of a refrigerator is installed in a room as a water-cooled condenser to minimize the amount of refrigerant, and a water circuit is configured by connecting a radiator and a water-cooled condenser installed outside in a cooling water pipe. There is a device that circulates water with a water circulation pump and discharges exhaust heat from the refrigerator to the outside (see, for example, Patent Document 1).

特開平11−108529号公報(図1)JP-A-11-108529 (FIG. 1)

上記のような水回路を利用する冷却装置における構成では、水循環ポンプは、圧縮機の起動(駆動開始)/停止と同時に、起動/停止する。このため、例えば圧縮機がインバータ制御機能などの容量制御機能を有している場合でも、圧縮機の駆動中においては、水循環ポンプは常に全速で駆動するようにしているため、無駄な運転動力を消費していた。   In the configuration of the cooling device using the water circuit as described above, the water circulation pump starts / stops simultaneously with the start (start of driving) / stop of the compressor. For this reason, for example, even when the compressor has a capacity control function such as an inverter control function, the water circulation pump is always driven at full speed while the compressor is being driven. I was consuming.

この発明は、上記のような課題を解決するためになされたもので、より省エネルギーをはかることができる冷却装置等を得ることを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a cooling device or the like that can further save energy.

この発明に係る冷却装置は、冷媒を圧縮する容量可変の圧縮機、冷媒と水とを熱交換させる水冷凝縮器、冷媒を圧力調整する絞り装置および冷媒の熱交換により冷却対象を冷却する蒸発器を配管接続して構成する冷媒回路と、水冷凝縮器に水を供給する流量可変の水循環ポンプと、冷媒回路の運転負荷に基づいて、水循環ポンプが水冷凝縮器に供給する水の流量を制御する制御装置とを備えるものである。   A cooling device according to the present invention includes a variable capacity compressor that compresses a refrigerant, a water-cooled condenser that exchanges heat between the refrigerant and water, a throttling device that adjusts the pressure of the refrigerant, and an evaporator that cools an object to be cooled by heat exchange of the refrigerant. The flow rate of water supplied to the water-cooled condenser by the water circulation pump is controlled based on the refrigerant circuit configured by connecting the pipes, the variable-flow water circulation pump for supplying water to the water-cooled condenser, and the operation load of the refrigerant circuit. And a control device.

この発明の冷却装置は、以上のように構成して冷却運転を行うので、水循環ポンプは、インバータ制御機能などの容量制御機能を有している圧縮機を搭載している冷却装置の運転負荷に合わせて容量制御し、流量を可変することができるので、省エネルギーをはかることができる。また、地球温暖化防止への貢献を同時に達成することができるという効果が得られる。   Since the cooling device of the present invention is configured as described above and performs the cooling operation, the water circulation pump is loaded on the operating load of the cooling device equipped with a compressor having a capacity control function such as an inverter control function. In addition, the capacity can be controlled and the flow rate can be varied, so that energy can be saved. Moreover, the effect that the contribution to global warming prevention can be achieved simultaneously is acquired.

この発明の実施の形態1における冷却システムの構成を示す図である。It is a figure which shows the structure of the cooling system in Embodiment 1 of this invention. この発明の実施の形態1に係る制御器17の処理の流れを示す図である。It is a figure which shows the flow of a process of the controller 17 which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る冷却装置11の制御による消費電力を示す図である。It is a figure which shows the power consumption by control of the cooling device 11 which concerns on Embodiment 1 of this invention. この発明の実施の形態2における冷却システムの構成を示す図である。It is a figure which shows the structure of the cooling system in Embodiment 2 of this invention. この発明の実施の形態2における冷却装置11の具体的な構造例を示す図である。It is a figure which shows the specific structural example of the cooling device 11 in Embodiment 2 of this invention.

発明の実施の形態を図面に基づいて説明する。   Embodiments of the present invention will be described with reference to the drawings.

実施の形態1.
図1は、この発明の実施の形態1における冷却システムの構成を示す図である。本実施の形態の冷却システムは、冷却装置11、放熱器14等で構成する。例えば、図1に示す冷却用ショーケース、冷却貯蔵庫などの冷却装置11は、店舗の店内、工場の低温作業室等に設置されている。一方、放熱器14等は、例えば室外に設けられている。ここで、本実施の形態では2台の冷却装置11(冷媒回路6)を有している。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a configuration of a cooling system according to Embodiment 1 of the present invention. The cooling system according to the present embodiment includes a cooling device 11, a radiator 14 and the like. For example, a cooling device 11 such as a cooling showcase or a cooling storage shown in FIG. 1 is installed in a store, a low-temperature working room of a factory, or the like. On the other hand, the radiator 14 and the like are provided, for example, outdoors. Here, in this Embodiment, it has the two cooling devices 11 (refrigerant circuit 6).

図1において、本実施の形態の冷却装置11は、容量制御機能を有する圧縮機1、四方弁5、水冷凝縮器2、絞り装置3および蒸発器4を冷媒配管で環状に接続し、冷媒回路6を構成している。ここでは、1台の冷却装置11で1つの冷媒回路6を構成しているが、例えば、1台の冷却装置11で複数の冷媒回路6を構成するようにしてもよい。   In FIG. 1, a cooling device 11 according to the present embodiment includes a compressor 1 having a capacity control function, a four-way valve 5, a water-cooled condenser 2, a throttling device 3, and an evaporator 4 connected in a ring shape with a refrigerant pipe, and a refrigerant circuit. 6 is constituted. Here, one refrigerant circuit 6 is configured by one cooling device 11, but a plurality of refrigerant circuits 6 may be configured by one cooling device 11, for example.

圧縮機1は、冷媒回路6の冷媒を吸入し、冷媒を圧縮して高温、高圧の状態にして吐出する。本実施の形態は、例えば、インバータ回路を有しており、回転数を変化させて容量制御を行うことができるタイプの圧縮機1で構成している。水冷凝縮器2は、水回路10を循環する水と圧縮機1から流入する冷媒とを熱交換させ、高温、高圧の冷媒を凝縮液化するとともに、冷媒から水に熱を移動し、水を加温させる熱交換器である。水冷凝縮器2は、例えば二重管式熱交換器、プレート式熱交換器などで構成する。ここで、冷媒回路6内の冷媒量を少なくするためには、冷媒が通過する側の内容積が小さいプレート式熱交換器で構成することが望ましい。   The compressor 1 sucks the refrigerant in the refrigerant circuit 6, compresses the refrigerant, and discharges it in a high temperature and high pressure state. The present embodiment includes, for example, a compressor 1 of a type that has an inverter circuit and can perform capacity control by changing the rotation speed. The water-cooled condenser 2 exchanges heat between the water circulating in the water circuit 10 and the refrigerant flowing in from the compressor 1 to condense and liquefy the high-temperature and high-pressure refrigerant, transfer heat from the refrigerant to water, and add water. Heat exchanger to be heated. The water-cooled condenser 2 is composed of, for example, a double tube heat exchanger, a plate heat exchanger, or the like. Here, in order to reduce the amount of the refrigerant in the refrigerant circuit 6, it is desirable to configure the plate type heat exchanger with a small internal volume on the side through which the refrigerant passes.

絞り装置3は冷媒を減圧等させる。ここで、絞り装置3としては、例えば電子式膨張弁等のように、開度を可変に制御でき、通過する冷媒の流量を制御できる流量制御手段が最適であるが、例えば毛細管、膨張弁などの冷媒流量調節手段で構成してもよい。ここで、冷媒回路6内の冷媒量を少なくするためには、一定量の冷媒でも制御性がよい電子式膨張弁で構成することが望ましい。蒸発器4は、冷媒回路6の冷媒と蒸発器用送風機7から送られる空気との間で熱交換を行い、熱を空気から冷媒に移動させ、冷却対象空間の空気を冷却する。また、蒸発器用送風機7は、蒸発器4に熱交換対象となる冷却対象空間の空気を送るための送風機である。四方弁5は、例えば、圧縮機1が吐出する高温の冷媒により蒸発器4に付いた霜を除く除霜運転を行う場合に、冷媒の流れを通常運転とは逆方向に流す場合に設けられる。このため、例えばヒータ等により蒸発器4の除霜を行う場合には、四方弁5を構成する必要はない。   The expansion device 3 decompresses the refrigerant. Here, as the expansion device 3, for example, a flow rate control means capable of variably controlling the opening degree and controlling the flow rate of the refrigerant passing therethrough, such as an electronic expansion valve, is optimal. For example, a capillary tube, an expansion valve, etc. The refrigerant flow rate adjusting means may be used. Here, in order to reduce the amount of refrigerant in the refrigerant circuit 6, it is desirable to configure the electronic expansion valve with good controllability even with a certain amount of refrigerant. The evaporator 4 performs heat exchange between the refrigerant in the refrigerant circuit 6 and the air sent from the evaporator blower 7, moves the heat from the air to the refrigerant, and cools the air in the space to be cooled. The evaporator blower 7 is a blower for sending the air in the space to be cooled to be the heat exchange target to the evaporator 4. The four-way valve 5 is provided, for example, when the refrigerant flow is made to flow in the opposite direction to the normal operation when performing a defrosting operation for removing frost attached to the evaporator 4 with a high-temperature refrigerant discharged from the compressor 1. . For this reason, when performing defrosting of the evaporator 4 with a heater etc., for example, it is not necessary to comprise the four-way valve 5.

冷媒回路6においては、冷却運転(通常運転)時は、図1の実線方向に冷媒を循環させる。また、除霜運転時は、四方弁5を切り替えて、図1の破線方向に逆サイクルに冷媒を循環させる。ここで、冷媒回路6を循環する冷媒として、例えばR410A、R32、R404A、2,3,3,3−テトラフルオロプロペン(HFO1234yf)等のテトラフルオロプロペンまたはこのテトラフルオロプロペンを含む混合冷媒、プロパン、イソブタン、二酸化炭素、アンモニア、空気などを用いる。   In the refrigerant circuit 6, during the cooling operation (normal operation), the refrigerant is circulated in the direction of the solid line in FIG. Further, during the defrosting operation, the four-way valve 5 is switched to circulate the refrigerant in the reverse cycle in the direction of the broken line in FIG. Here, as the refrigerant circulating in the refrigerant circuit 6, for example, tetrafluoropropene such as R410A, R32, R404A, 2,3,3,3-tetrafluoropropene (HFO1234yf) or a mixed refrigerant containing this tetrafluoropropene, propane, Isobutane, carbon dioxide, ammonia, air or the like is used.

また、水回路10は、冷却装置11内にある流量可変の水循環ポンプ8、凝縮器用電動弁9および水冷凝縮器2、放熱器用電動弁16並びに放熱器14を水配管で接続して構成し、水を循環させる回路である。ここで、本実施の形態等における水とは、不凍液等、冷媒と熱交換しても態変化しない流体であるものとする。また、本実施の形態では、水回路10を構成する機器のうち、水循環ポンプ8、凝縮器用電動弁9および水冷凝縮器2を各冷却装置11が有している。このため、本実施の形態では、各冷媒回路6に対応して、水循環ポンプ8および凝縮器用電動弁9が設けられ、水回路10の水の流れに対して並列に回路接続されていることになる。そして、冷却装置11における、装置外の水配管との接続は、入口水配管接続口12および出口水配管接続口13を介して行う。ここで、本実施の形態における水回路10においては、放熱器14、放熱器用送風機15および放熱器用電動弁16の組み合わせを複数組(本実施の形態では2組)、水回路10に対して並列に接続している。   Further, the water circuit 10 is configured by connecting a water circulation pump 8 having a variable flow rate in the cooling device 11, a motor-operated valve 9 for condenser and a water-cooled condenser 2, a motor-operated valve 16 for radiator and a radiator 14 by water pipes, This circuit circulates water. Here, the water in the present embodiment and the like is a fluid that does not change its state even when heat is exchanged with a refrigerant, such as an antifreeze liquid. In the present embodiment, among the devices constituting the water circuit 10, each cooling device 11 includes the water circulation pump 8, the condenser motor-operated valve 9, and the water-cooled condenser 2. For this reason, in this Embodiment, the water circulation pump 8 and the electric motor 9 for condensers are provided corresponding to each refrigerant circuit 6, and it is connected in parallel with the flow of the water of the water circuit 10. Become. Then, the cooling device 11 is connected to the water pipe outside the device through the inlet water pipe connection port 12 and the outlet water pipe connection port 13. Here, in the water circuit 10 in the present embodiment, a plurality of combinations (two sets in the present embodiment) of the radiator 14, the radiator fan 15, and the radiator motor-operated valve 16 are parallel to the water circuit 10. Connected to.

流量可変の水循環ポンプ8は、水回路10の水を加圧して水回路10内を移送するものである。本実施の形態は、例えば、インバータ回路を有しており、回転数を変化させて流量を可変できるタイプの水循環ポンプ8で構成している。凝縮器用電動弁9は、開度を可変に制御でき、水冷凝縮器2を通過する水の流量を制御できる開閉装置である。また、放熱器用流量調整装置となる放熱器用電動弁16は、開度を可変に制御でき、放熱器14を通過する水の流量を制御できる流量制御手段である。そして、放熱器14は、水回路10を流れる水と放熱器用送風機15から送られる空気との間で熱交換を行い、熱を水から放熱器周囲の空気に移動させて水を冷却する。流体供給手段となる放熱器用送風機15は、放熱器14に室外(冷却対象空間外)の空気を送る送風機である。本実施の形態では、放熱器用送風機15により、室外の空気を流体として放熱する例を示しているが、例えば、ポンプ(図示せず)などを用いて、水回路10外の水を流体として放熱するようにしてもよい。   The water circulation pump 8 with a variable flow rate pressurizes the water in the water circuit 10 and transfers it in the water circuit 10. The present embodiment includes, for example, an inverter circuit, and includes a water circulation pump 8 of a type that can change the flow rate by changing the rotation speed. The condenser motor operated valve 9 is an open / close device that can variably control the opening degree and can control the flow rate of water passing through the water-cooled condenser 2. The radiator motor-operated valve 16 serving as a radiator flow rate adjusting device is a flow rate control unit that can control the opening degree variably and control the flow rate of water passing through the radiator 14. The radiator 14 performs heat exchange between the water flowing through the water circuit 10 and the air sent from the radiator blower 15 to move the heat from the water to the air around the radiator to cool the water. The radiator blower 15 serving as a fluid supply unit is a blower that sends outdoor (outside the space to be cooled) air to the radiator 14. In the present embodiment, an example is shown in which heat is dissipated from the outdoor air as a fluid by the blower 15 for heat radiator, but heat is dissipated from the water outside the water circuit 10 as a fluid using, for example, a pump (not shown). You may make it do.

また、制御器17は、冷却装置11内の圧縮機1、凝縮器用電動弁9、水循環ポンプ8等の機器を制御する制御装置である。本実施の形態では、冷却装置11(冷媒回路6)毎に制御器17を有している。各冷媒回路6(制御器17)を連携して制御するため、それぞれを通信線等により接続し、通信(信号の送受信)可能としている。また、本実施の形態では、一方の制御器17を親側の制御器17とする。そして、親側の制御器17は、各放熱器用電動弁16の開度を調整する制御を行う。制御器17における制御の詳細については後述する。   The controller 17 is a controller that controls devices such as the compressor 1, the condenser electric valve 9, and the water circulation pump 8 in the cooling device 11. In the present embodiment, a controller 17 is provided for each cooling device 11 (refrigerant circuit 6). In order to control each refrigerant circuit 6 (controller 17) in cooperation, each is connected by a communication line etc., and communication (signal transmission / reception) is enabled. In the present embodiment, one controller 17 is a parent controller 17. The parent-side controller 17 performs control to adjust the opening degree of each radiator motor-operated valve 16. Details of the control in the controller 17 will be described later.

次に、冷媒回路6における冷却運転(通常運転)時の動作について説明する。まず、圧縮機1は、冷媒を吸入し、その冷媒を圧縮して高温・高圧の状態にして吐出し、四方弁5を介して水冷凝縮器2へ流入させる。水冷凝縮器2は、水循環ポンプ8から供給される水と冷媒との間で熱交換を行い、冷媒回路6の冷媒を凝縮液化させる。水冷凝縮器2から流出した冷媒は絞り装置3に流入する。絞り装置3は凝縮液化した冷媒を減圧する。絞り装置3を通過した冷媒は蒸発器4に流入する。蒸発器4は、冷媒回路6の冷媒と蒸発器用送風機7から送られる冷却対象空間の空気との間で熱交換を行い、冷媒を蒸発ガス化するとともに冷却対象となる空間の空気を冷却する。蒸発器4から流出した冷媒は、四方弁5を介して圧縮機1に吸入される。   Next, the operation during the cooling operation (normal operation) in the refrigerant circuit 6 will be described. First, the compressor 1 sucks the refrigerant, compresses the refrigerant, discharges the refrigerant in a high temperature / high pressure state, and causes the refrigerant to flow into the water-cooled condenser 2 through the four-way valve 5. The water-cooled condenser 2 performs heat exchange between the water supplied from the water circulation pump 8 and the refrigerant, and condenses and liquefies the refrigerant in the refrigerant circuit 6. The refrigerant that has flowed out of the water-cooled condenser 2 flows into the expansion device 3. The expansion device 3 depressurizes the condensed and liquefied refrigerant. The refrigerant that has passed through the expansion device 3 flows into the evaporator 4. The evaporator 4 exchanges heat between the refrigerant in the refrigerant circuit 6 and the air in the cooling target space sent from the evaporator blower 7 to evaporate the refrigerant and cool the air in the space to be cooled. The refrigerant flowing out of the evaporator 4 is sucked into the compressor 1 through the four-way valve 5.

さらに、水回路10の冷却運転時の動作について水回路10の水の流れに基づいて説明する。対応する冷媒回路6が運転を行っている場合、水循環ポンプ8は、水を吸入、加圧して移送させる。水は凝縮器用電動弁9を通って水冷凝縮器2へ流入する。水冷凝縮器2において冷媒と水とが熱交換する。これにより、熱が冷媒から水に移動し水が加温(加熱)する。水冷凝縮器2において加温された水は、放熱器用電動弁16を通って放熱器14へ流入する。放熱器14において、放熱器用送風機15から送られる室外側の空気と水とが熱交換する。これにより、熱が水から放熱器周囲の空気に移動して、水が冷却する。ここで、本実施の形態では、放熱器用電動弁16、放熱器14、放熱器用送風機15を複数台有しており、それぞれ個別に運転/停止することができる。また、各放熱器14における放熱容量を可変できる。   Furthermore, the operation | movement at the time of the cooling operation of the water circuit 10 is demonstrated based on the flow of the water of the water circuit 10. FIG. When the corresponding refrigerant circuit 6 is operating, the water circulation pump 8 sucks and pressurizes water to transfer it. Water flows into the water-cooled condenser 2 through the condenser motor-operated valve 9. In the water-cooled condenser 2, the refrigerant and water exchange heat. Thereby, heat moves from the refrigerant to the water, and the water is heated (heated). The water heated in the water-cooled condenser 2 flows into the radiator 14 through the radiator motor-operated valve 16. In the radiator 14, the outdoor air and water sent from the radiator fan 15 exchange heat. Thereby, heat moves from water to the air around the radiator, thereby cooling the water. Here, in the present embodiment, a plurality of radiator motor-operated valves 16, radiators 14, and radiator fans 15 are provided and can be operated / stopped individually. Moreover, the heat dissipation capacity in each radiator 14 can be varied.

図2は本発明の実施の形態1に係る制御器17の制御に係る処理の流れを示す図である。次に制御器17の制御を図2にしたがって説明する。各制御器17は、インバータ制御機能を有する圧縮機1を起動させるか起動させない(停止させる)かを判断する(S1)。そして、起動させるものと判断すると、制御対象の凝縮器用電動弁9を開放させ、水循環ポンプ8を駆動させる(S2)。ここで、すでに凝縮器用電動弁9が開放し、水循環ポンプ8が駆動している場合には、そのまま継続する。   FIG. 2 is a diagram showing a flow of processing relating to control by the controller 17 according to Embodiment 1 of the present invention. Next, the control of the controller 17 will be described with reference to FIG. Each controller 17 determines whether the compressor 1 having an inverter control function is started or not started (stopped) (S1). And if it judges that it will start, the motor valve 9 for condensers to be controlled will be opened, and the water circulation pump 8 will be driven (S2). Here, when the condenser motor-operated valve 9 has already been opened and the water circulation pump 8 has been driven, the operation continues.

一方、起動させないものと判断すると、凝縮器用電動弁9を閉止させ、水循環ポンプ8を停止させる(S3)。例えば、圧縮機1が停止中にもかかわらず、対応する凝縮器用電動弁9が開いていると、他の水循環ポンプ8の駆動により、水が逆流するため、不必要なポンプ動力が生じ、省エネルギーを阻害することになるからである。冷媒回路6毎に水循環ポンプ8を対応して設け、停止中の冷媒回路6に対応する水循環ポンプ8を停止させるようにすることで、必要以上に水の循環動力を多くせずにすみ、さらに省エネルギーをはかることができる。   On the other hand, if it is determined not to be activated, the condenser motor-operated valve 9 is closed and the water circulation pump 8 is stopped (S3). For example, if the corresponding condenser motor operated valve 9 is open even though the compressor 1 is stopped, the water flows backward due to the driving of the other water circulation pump 8, thereby generating unnecessary pump power and saving energy. It is because it will inhibit. By providing a water circulation pump 8 corresponding to each refrigerant circuit 6 and stopping the water circulation pump 8 corresponding to the refrigerant circuit 6 being stopped, it is possible to avoid increasing the circulation power of water more than necessary. It can save energy.

そして、圧縮機1を駆動して冷媒回路6による冷却運転中、冷媒回路6における冷却負荷が冷却装置11の冷却能力より大きいかどうかを判断する(S4)。冷却装置11の冷却能力より冷却負荷が大きいと判断すると、圧縮機1の回転数を増加させて冷却能力を増大させる。また、水循環ポンプ8の回転数を増加させて流量を増大させる(S5)。   Then, during the cooling operation by the refrigerant circuit 6 by driving the compressor 1, it is determined whether or not the cooling load in the refrigerant circuit 6 is larger than the cooling capacity of the cooling device 11 (S4). If it is determined that the cooling load is larger than the cooling capacity of the cooling device 11, the rotation speed of the compressor 1 is increased to increase the cooling capacity. Further, the number of rotations of the water circulation pump 8 is increased to increase the flow rate (S5).

冷媒回路6における冷却負荷が冷却装置11の冷却能力より大きくないと判断すると、さらに、冷媒回路6における冷却負荷が冷却装置11の冷却能力より小さいかどうかを判断する(S6)。冷却負荷が冷却装置11の冷却能力より小さいと判断すると、圧縮機1の回転数を減少させ冷却能力を減少させる。また、水循環ポンプ8の回転数を減少させて流量を減少させる(S7)。ここで、水循環ポンプ8の回転数の変化に合わせて、凝縮器用電動弁9の開度を調整するようにしてもよい。   If it is determined that the cooling load in the refrigerant circuit 6 is not larger than the cooling capacity of the cooling device 11, it is further determined whether or not the cooling load in the refrigerant circuit 6 is smaller than the cooling capacity of the cooling device 11 (S6). If it is determined that the cooling load is smaller than the cooling capacity of the cooling device 11, the number of rotations of the compressor 1 is decreased and the cooling capacity is decreased. Further, the rotational speed of the water circulation pump 8 is decreased to decrease the flow rate (S7). Here, the opening of the condenser motor operated valve 9 may be adjusted in accordance with the change in the rotational speed of the water circulation pump 8.

さらに、本実施の形態では、複数の冷媒回路6に対応する水循環ポンプ8の流量合計に応じて、各放熱器用電動弁16の開度を調整する(S8)。この処理は、親側の制御器17が処理を行う。例えば本実施の形態のような2台の冷却装置11(冷媒回路6)を有している場合に、一方が停止して、冷却負荷合計が50%となり、水循環ポンプ8の流量合計も総流量の50%となっているようなときには、2つの放熱器用電動弁16のうち一方を閉じ、放熱器用送風機15を停止させる。放熱器用電動弁16を閉じることで、水循環ポンプ8が移送する水量が減るため、消費電力の削減をはかることができる。   Furthermore, in this Embodiment, according to the sum total flow volume of the water circulation pump 8 corresponding to the some refrigerant circuit 6, the opening degree of each radiator motor operated valve 16 is adjusted (S8). This process is performed by the parent controller 17. For example, when there are two cooling devices 11 (refrigerant circuit 6) as in the present embodiment, one of them stops, the total cooling load is 50%, and the total flow rate of the water circulation pump 8 is also the total flow rate. When one of the two radiator motor-operated valves 16 is closed, the radiator fan 15 is stopped. By closing the radiator motor-operated valve 16, the amount of water transferred by the water circulation pump 8 is reduced, so that the power consumption can be reduced.

また、例えば2台の放熱器14の設置場所が異なり、周囲温度条件が異なる場合は、より周囲温度の低い放熱器14側の放熱器用電動弁16の開度を100%とし、他方の放熱器14側の放熱器用電動弁16の開度を0%とするようにしてもよい。このようにすれば、効率よく放熱を行うことができ、より省エネルギーを達成できる。また2つの放熱器用電動弁16の開度の割合をそれぞれ50%としてもよい。そして、一方の開度を25%とし、他方を75%とすることができる。例えば、2台の放熱器14の設置場所が異なり、一方の放熱器14の放熱比率を上げて、暖房用途、加熱用途、給湯用途等に利用する場合に効果的である。この場合、例えば利用用途において、本来必要とする加熱源を省略等することができ、この分、省エネルギーをはかることができる。また、放熱器用電動弁16の開度に合わせて放熱器用送風機15の回転数を低減させるようにしてもよい。放熱器用送風機15の回転数を削減することで、さらに省エネルギーをはかることができる。   For example, when the installation locations of the two radiators 14 are different and the ambient temperature conditions are different, the opening degree of the radiator motor-operated valve 16 on the radiator 14 side having a lower ambient temperature is set to 100%, and the other radiator is used. The opening degree of the radiator-side motor operated valve 16 on the 14th side may be set to 0%. If it does in this way, it can thermally radiate efficiently and can achieve more energy saving. Moreover, it is good also considering the ratio of the opening degree of the two motor-operated valves 16 for radiators as 50%, respectively. And one opening can be 25% and the other can be 75%. For example, it is effective when the installation locations of the two radiators 14 are different and the heat dissipation ratio of one of the radiators 14 is increased and used for heating applications, heating applications, hot water supply applications, and the like. In this case, for example, it is possible to omit a heat source that is originally required for use, and energy can be saved accordingly. Moreover, you may make it reduce the rotation speed of the air blower 15 for radiators according to the opening degree of the electric valve 16 for radiators. By reducing the number of rotations of the radiator blower 15, further energy saving can be achieved.

図3は実施の形態1に係る冷却装置11の制御による消費電力を示す図である。図3では比較のために、従来の制御による消費電力と共に示している。図3では、冷却装置11における冷却負荷が変動した場合の、2つの冷媒回路6における消費電力と冷却装置11の消費電力(=2つの冷媒回路6における消費電力+水循環ポンプ8の消費電力)とを表している。例えば冷却負荷100%では、本実施の形態における消費電力は従来の消費電力とほぼ変わらない。   FIG. 3 is a diagram showing power consumption by the control of the cooling device 11 according to the first embodiment. For comparison, FIG. 3 shows power consumption by conventional control. In FIG. 3, when the cooling load in the cooling device 11 fluctuates, the power consumption in the two refrigerant circuits 6 and the power consumption in the cooling device 11 (= power consumption in the two refrigerant circuits 6 + power consumption in the water circulation pump 8) and Represents. For example, when the cooling load is 100%, the power consumption in the present embodiment is almost the same as the conventional power consumption.

冷却負荷50%の部分負荷の場合に、容量制御機能を有する圧縮機1と流量可変の水循環ポンプ8とにおける省エネルギー効果が現れることがわかる。また、本実施の形態では、複数の冷却装置11毎に水循環ポンプ8を設けており、停止中の冷媒回路6に対応する水循環ポンプ8は停止させるようにしていることで、水の循環動力を不要にできるので、さらに省エネルギーをはかることができる。さらに、2つの放熱器用電動弁16のうち、一方を閉じて(より周囲温度の低い放熱器14の放熱器用電動弁16を開く)、不要な水循環動力を削減し、水循環ポンプ8の消費電力の削減を図れ、より省エネルギーを達成することができる。   It can be seen that, in the case of a partial load with a cooling load of 50%, an energy saving effect appears in the compressor 1 having a capacity control function and the water circulation pump 8 having a variable flow rate. In the present embodiment, the water circulation pump 8 is provided for each of the plurality of cooling devices 11, and the water circulation pump 8 corresponding to the stopped refrigerant circuit 6 is stopped so that the circulation power of the water is increased. Since it can be made unnecessary, further energy saving can be achieved. Further, by closing one of the two radiator motor valves 16 (opening the radiator motor valve 16 of the radiator 14 having a lower ambient temperature), unnecessary water circulation power is reduced, and the power consumption of the water circulation pump 8 is reduced. Reduction can be achieved and energy saving can be achieved.

ここで、さらに本実施の形態における冷却装置11の除霜運転時の動作について説明する。除霜運転を行う際は、四方弁5は、冷媒回路6の冷媒が通常運転とは逆方向に流れるように流路を切り替える。圧縮機1は、冷媒を吸入し、その冷媒を圧縮して高温・高圧の状態にして吐出し、四方弁5を介して蒸発器4へ流入させる。蒸発器4は、付着した霜や氷と冷媒との間で熱交換を行い、冷媒を凝縮液化させると共に霜や氷を解かす。蒸発器4から流出した冷媒は絞り装置3に流入する。絞り装置3は凝縮液化した冷媒を減圧する。絞り装置3を通過した冷媒は水冷凝縮器2に流入する。水冷凝縮器2は、水循環ポンプ8から供給される水と冷媒との間で熱交換を行い、冷媒を蒸発ガス化するとともに水を冷却する。水冷凝縮器2から流出した冷媒は、四方弁5を介して圧縮機1に吸入される。   Here, the operation | movement at the time of the defrost driving | operation of the cooling device 11 in this Embodiment is demonstrated further. When performing the defrosting operation, the four-way valve 5 switches the flow path so that the refrigerant in the refrigerant circuit 6 flows in the opposite direction to the normal operation. The compressor 1 sucks the refrigerant, compresses the refrigerant, discharges the refrigerant in a high temperature / high pressure state, and causes the refrigerant to flow into the evaporator 4 through the four-way valve 5. The evaporator 4 performs heat exchange between the adhering frost or ice and the refrigerant to condense and liquefy the refrigerant and to dissolve the frost and ice. The refrigerant that has flowed out of the evaporator 4 flows into the expansion device 3. The expansion device 3 depressurizes the condensed and liquefied refrigerant. The refrigerant that has passed through the expansion device 3 flows into the water-cooled condenser 2. The water-cooled condenser 2 exchanges heat between the water supplied from the water circulation pump 8 and the refrigerant, evaporates the refrigerant, and cools the water. The refrigerant that has flowed out of the water-cooled condenser 2 is sucked into the compressor 1 through the four-way valve 5.

さらに、水回路10の除霜運転時の動作について水回路10の水の流れに基づいて説明する。水循環ポンプ8は、水回路10の水を吸入して加圧して移送させる。水は凝縮器用電動弁9を通って水冷凝縮器2へ流入する。水冷凝縮器2において冷媒と水とが熱交換する。これにより、熱が冷媒から水に移動し、水が冷却する。水循環ポンプ8の移送によって水は放熱器14を流れるが、ここでは、特に積極的に水に吸熱させないものとする。   Furthermore, the operation | movement at the time of the defrost operation of the water circuit 10 is demonstrated based on the flow of the water of the water circuit 10. FIG. The water circulation pump 8 sucks and pressurizes the water in the water circuit 10 and transfers it. Water flows into the water-cooled condenser 2 through the condenser motor-operated valve 9. In the water-cooled condenser 2, the refrigerant and water exchange heat. As a result, heat is transferred from the refrigerant to the water, and the water is cooled. Although water flows through the radiator 14 by the transfer of the water circulation pump 8, it is assumed here that the water does not actively absorb heat particularly.

ここで、複数の冷媒回路6を同時には除霜運転せず、順番に行う方が望ましい。例えば、除霜運転中は水回路10の水が冷却されるため、同時に除霜運転すると、水温が露点温度以下に下がり、水配管に露つき問題が生じる可能性があるからである。また、さらに温度が下がると水が凍結して水配管等が破損してしまうなど、不具合が生じるおそれがある。このため、水が凍結するおそれがある場合には、凍結パンクを防止するため、除霜運転中は、水循環ポンプ8の回転数を最大にして駆動させる方がよい。   Here, it is desirable to perform the plurality of refrigerant circuits 6 in order without simultaneously performing the defrosting operation. For example, since the water in the water circuit 10 is cooled during the defrosting operation, if the defrosting operation is performed at the same time, the water temperature falls below the dew point temperature, which may cause a dew problem in the water pipe. Further, when the temperature is further lowered, there is a risk that the water freezes and the water pipes and the like are damaged. For this reason, when water may freeze, in order to prevent freezing puncture, it is better to drive the water circulation pump 8 at the maximum speed during the defrosting operation.

以上のように、この発明の冷却装置11においては、制御器17が、冷却運転を行う際、各冷媒回路6の運転負荷に合わせて水循環ポンプ8の流量を増減させ、各水循環ポンプ8の合計流量に基づいて放熱器用電動弁16の開度を調整するようにしたので、省エネルギーをはかることができる。また、制御器17は、凝縮器用電動弁9を、インバータ制御機能を有する圧縮機1の運転/停止に応じて開/閉させるので、他の運転中の水循環ポンプ8の運転により、水が逆流してくることがないため、不必要なポンプ動力が生じず、省エネルギーとなる。   As described above, in the cooling device 11 of the present invention, when the controller 17 performs the cooling operation, the flow rate of the water circulation pump 8 is increased or decreased in accordance with the operation load of each refrigerant circuit 6, and the total of the water circulation pumps 8 is increased. Since the opening of the radiator motor-operated valve 16 is adjusted based on the flow rate, energy saving can be achieved. Further, since the controller 17 opens / closes the condenser motor operated valve 9 in accordance with the operation / stop of the compressor 1 having the inverter control function, the water flows backward due to the operation of the water circulation pump 8 during other operations. Since this does not occur, unnecessary pump power is not generated and energy is saved.

また、複数の冷媒回路6に対応する水循環ポンプ8を設け、たとえば停止中の冷却装置11の水循環ポンプ8は停止させることで、不必要な水の循環動力を不要にできるので、さらに省エネルギーが図れる。   Further, by providing the water circulation pumps 8 corresponding to the plurality of refrigerant circuits 6 and stopping the water circulation pump 8 of the cooling device 11 that is stopped, for example, unnecessary water circulation power can be made unnecessary, thereby further saving energy. .

また、制御器17は、冷却運転負荷に応じて容量制御機能を有する圧縮機1の回転数を可変させ、冷却装置11の冷却負荷に応じて、流量可変の水循環ポンプ8の流量を可変させ、合わせて、凝縮器用電動弁9の開度を調整する。さらに、制御器17は、複数の制御器17と制御情報を通信し、複数の冷却装置11の水循環ポンプ8の流量合計に応じて、放熱器用電動弁16の開度を調整するので、水循環ポンプ8の消費電力の削減、省エネルギーをはかることができる。   Further, the controller 17 varies the rotational speed of the compressor 1 having a capacity control function according to the cooling operation load, varies the flow rate of the water circulation pump 8 with variable flow rate according to the cooling load of the cooling device 11, In addition, the opening degree of the condenser motor operated valve 9 is adjusted. Furthermore, since the controller 17 communicates control information with the plurality of controllers 17 and adjusts the opening degree of the radiator motor-operated valve 16 according to the total flow rate of the water circulation pumps 8 of the plurality of cooling devices 11, the water circulation pump 8 can reduce power consumption and save energy.

また、2台の放熱器14が設置される場所が異なり、周囲温度条件が異なる場合は、より周囲温度の低い放熱器14の放熱器用電動弁16の開度を大きくすることで、より省エネルギーをはかることができる。   Further, when the places where the two radiators 14 are installed are different and the ambient temperature conditions are different, it is possible to save more energy by increasing the opening of the radiator motor-operated valve 16 of the radiator 14 having a lower ambient temperature. Can measure.

また、放熱器14の熱交換量を分散化し、最適容量運転をして、水循環ポンプ8の消費電力を削減し、冷却装置の効率を改善することができる。その結果、省エネルギー化が図れる。そして、地球温暖化防止への貢献を同時に達成することができるという効果が得られる。   In addition, the heat exchange amount of the radiator 14 can be dispersed, the optimum capacity operation can be performed, the power consumption of the water circulation pump 8 can be reduced, and the efficiency of the cooling device can be improved. As a result, energy saving can be achieved. And the effect that the contribution to global warming prevention can be achieved simultaneously is acquired.

実施の形態2.
図4は、この発明の実施の形態2における冷却システムの構成を示す図である。本実施の形態においては、放熱器14、放熱器用送風機15および放熱器用電動弁16の組み合わせを複数組(本実施の形態では3組)有している。そして、そのうち、2台をショーケース内に配置する。冷媒回路6および水回路10における動作については、上述した実施の形態1の冷却装置11と同様の動作を行う。
Embodiment 2. FIG.
FIG. 4 is a diagram showing the configuration of the cooling system according to Embodiment 2 of the present invention. In the present embodiment, the radiator 14, the radiator fan 15, and the radiator motor-operated valve 16 have a plurality of combinations (three in this embodiment). And two of them are arranged in the showcase. About the operation | movement in the refrigerant circuit 6 and the water circuit 10, the operation | movement similar to the cooling device 11 of Embodiment 1 mentioned above is performed.

図5は実施の形態2における冷却装置11の具体的な構成例を示す図である。例えば、図5(a)においては、冷却装置11における放熱器14をショーケースの前面足元の部分に設けるようにしたものである。図5(a)のような配置をすることで、放熱器14をコールドアイル対策の暖房加熱源として利用することができる。   FIG. 5 is a diagram illustrating a specific configuration example of the cooling device 11 according to the second embodiment. For example, in Fig.5 (a), the heat radiator 14 in the cooling device 11 is provided in the front foot part of a showcase. With the arrangement as shown in FIG. 5A, the radiator 14 can be used as a heating source for cold aisle countermeasures.

また、例えば、図5(b)においては、冷却装置11における放熱器14をショーケースの前面下部の外枠内面の部分に設けるようにしたものである。図5(b)のような配置をすることで、放熱器14を結露対策の加熱源として利用することができる。   For example, in FIG.5 (b), the heat radiator 14 in the cooling device 11 is provided in the part of the inner surface of the outer frame of the front lower part of a showcase. By arranging as shown in FIG. 5B, the radiator 14 can be used as a heat source for preventing condensation.

例えば、冷媒回路6を停止していても、放熱器用電動弁16を開き、水循環ポンプ8を駆動してショーケース内の放熱器14に水を通過させ、放熱器用送風機15を駆動させて空気と熱交換させることで、暖房、加熱することも可能である。このとき、他の加熱源を必要としないので、省エネルギーをはかることができる。   For example, even if the refrigerant circuit 6 is stopped, the radiator motor-operated valve 16 is opened, the water circulation pump 8 is driven to pass water through the radiator 14 in the showcase, and the radiator fan 15 is driven to Heat exchange and heating are also possible by heat exchange. At this time, since no other heating source is required, energy saving can be achieved.

以上のように、実施の形態2によれば、放熱器14の一部を室内(冷却装置11内)に配置し、水による排熱を店舗内の暖房、ショーケースの足元通路のコールドアイル対策等に有効利用することができる。また、ショーケースの外枠の結露防止加熱源としてヒータ代替に利用できる。このため、これらの加熱に必要な負荷を軽減でき(他の機器による運転動力、加熱ヒータの熱量等を減らすことができ)、さらに省エネルギーをはかることができる。そして、地球温暖化防止への貢献を同時に達成することができるという効果が得られる。   As described above, according to the second embodiment, a part of the radiator 14 is disposed indoors (in the cooling device 11), and the heat exhausted by water is used to heat the store and to prevent cold aisle in the footpath of the showcase. It can be used effectively. It can also be used as a heater replacement as a dew condensation prevention heat source for the outer frame of the showcase. For this reason, the load required for heating can be reduced (operating power by other devices, the amount of heat of the heater, etc. can be reduced), and further energy saving can be achieved. And the effect that the contribution to global warming prevention can be achieved simultaneously is acquired.

実施の形態3.
ここで、実施の形態1および2における冷却装置11では、2つの冷媒回路6を有する例を示したが、3つ以上有する場合も同様の効果を奏する。
Embodiment 3 FIG.
Here, although the example which has the two refrigerant circuits 6 was shown in the cooling device 11 in Embodiment 1 and 2, there exists the same effect also when it has three or more.

また、各冷却装置11(冷媒回路6)に対して制御器17を有するようにしたが、制御装置を1台として集中して処理を行い、複数の冷媒回路6、水回路10等の制御を行うようにしてもよい。   Further, the controller 17 is provided for each cooling device 11 (refrigerant circuit 6). However, the control device is centralized to perform processing, and control of the plurality of refrigerant circuits 6, the water circuit 10 and the like is performed. You may make it perform.

1 圧縮機、2 水冷凝縮器、3 絞り装置、4 蒸発器、5 四方弁、6 冷媒回路、7 蒸発器用送風機、8 水循環ポンプ、9 凝縮器用電動弁、10 水回路、11 冷却装置、12 入口水配管接続口、13 出口水配管接続口、14 放熱器、15 放熱器用送風機、16 放熱器用電動弁、17 制御器。   DESCRIPTION OF SYMBOLS 1 Compressor, 2 Water-cooled condenser, 3 Throttling device, 4 Evaporator, 5 Four-way valve, 6 Refrigerant circuit, 7 Blower for evaporator, 8 Water circulation pump, 9 Motor valve for condenser, 10 Water circuit, 11 Cooling device, 12 Inlet Water piping connection port, 13 outlet water piping connection port, 14 radiator, 15 radiator fan, 16 radiator motor operated valve, 17 controller.

Claims (5)

冷媒を圧縮する容量可変の圧縮機、前記冷媒と水とを熱交換させる水冷凝縮器、前記冷媒を圧力調整する絞り装置および前記冷媒の熱交換により冷却対象を冷却する蒸発器を配管接続して構成する冷媒回路と、
前記水冷凝縮器に前記水を供給する流量可変の水循環ポンプと、
前記冷媒回路の運転負荷に基づいて、前記水循環ポンプが前記水冷凝縮器に供給する水の流量を制御する制御装置と
を備えることを特徴とする冷却装置。
A variable capacity compressor for compressing the refrigerant, a water-cooled condenser for exchanging heat between the refrigerant and water, a throttling device for adjusting the pressure of the refrigerant, and an evaporator for cooling the object to be cooled by heat exchange of the refrigerant A refrigerant circuit comprising;
A flow rate variable water circulation pump for supplying the water to the water-cooled condenser;
A cooling device comprising: a control device that controls a flow rate of water supplied to the water-cooled condenser by the water circulation pump based on an operation load of the refrigerant circuit.
請求項1に記載の冷却装置を複数有し、
各冷却装置の水冷凝縮器を通過する水の流れを制御する開閉装置と、
通過する水に放熱させる放熱器とを備え、
前記各冷却装置の前記水冷凝縮器を、前記放熱器に対して並列に配管接続して水回路を構成し、
前記冷媒回路を停止させると、停止に係る冷媒回路に対応する水循環ポンプを停止させ、対応する前記開閉装置を閉止させる制御を行う制御装置と
を備えることを特徴とする冷却システム。
A plurality of the cooling devices according to claim 1,
A switching device for controlling the flow of water passing through the water-cooled condenser of each cooling device;
With a radiator that radiates heat to the passing water,
The water-cooled condenser of each cooling device is connected in parallel to the radiator to form a water circuit,
A cooling system comprising: a control device that performs control to stop the water circulation pump corresponding to the refrigerant circuit related to the stop and close the corresponding opening / closing device when the refrigerant circuit is stopped.
請求項1または2に記載の冷却装置と、
通過する水に放熱させる複数の放熱器および各放熱器を流れる前記水の流量を調整する複数の放熱器用流量調整装置を有し、
請求項1または2に記載の冷却装置が有する水循環ポンプと、前記複数の放熱器とを並列に配管接続して水回路を構成し、
請求項1または2に記載の冷媒回路における運転負荷に基づいて、各放熱器用流量調整装置が調整する水の流量を制御する制御装置と
を備えることを特徴とする冷却システム。
The cooling device according to claim 1 or 2,
A plurality of radiators that radiate heat to the passing water and a plurality of radiator flow rate adjustment devices that adjust the flow rate of the water flowing through each radiator;
The water circulation pump of the cooling device according to claim 1 or 2 and the plurality of radiators are connected in parallel to form a water circuit,
A cooling system comprising: a control device that controls a flow rate of water adjusted by each radiator flow rate adjusting device based on an operation load in the refrigerant circuit according to claim 1.
前記放熱器と熱交換させる流体を供給する流体供給手段をさらに備え、
前記制御装置は、前記放熱器用流量調整装置における水の流量に基づいて、前記流体供給手段が前記放熱器に供給する流体の流量を制御することを特徴とする請求項3に記載の冷却システム。
Fluid supply means for supplying a fluid for heat exchange with the radiator;
4. The cooling system according to claim 3, wherein the control device controls a flow rate of a fluid supplied to the radiator by the fluid supply unit based on a flow rate of water in the flow rate adjusting device for the radiator.
少なくとも1台の前記放熱器を室内に設けることを特徴とする請求項3または4に記載の冷却システム。   The cooling system according to claim 3 or 4, wherein at least one heat radiator is provided in a room.
JP2012012942A 2012-01-25 2012-01-25 Cooling system Expired - Fee Related JP5843630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012012942A JP5843630B2 (en) 2012-01-25 2012-01-25 Cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012012942A JP5843630B2 (en) 2012-01-25 2012-01-25 Cooling system

Publications (2)

Publication Number Publication Date
JP2013152045A true JP2013152045A (en) 2013-08-08
JP5843630B2 JP5843630B2 (en) 2016-01-13

Family

ID=49048526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012012942A Expired - Fee Related JP5843630B2 (en) 2012-01-25 2012-01-25 Cooling system

Country Status (1)

Country Link
JP (1) JP5843630B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016163014A1 (en) * 2015-04-09 2017-10-26 三菱電機株式会社 Twisted tube heat exchanger
JP2019168213A (en) * 2018-08-08 2019-10-03 株式会社ヤマト Brine chiller and cooling system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760156A (en) * 1980-09-30 1982-04-10 Sankyo Denki Co Ltd Refrigerated/cold storage showcase with water-cooled condenser
JPS6229905Y2 (en) * 1980-09-16 1987-07-31
JPS6245466B2 (en) * 1982-07-15 1987-09-26 Sanden Corp
JPH02259367A (en) * 1988-12-28 1990-10-22 Hitachi Metals Ltd Air cooling apparatus
JP2680572B2 (en) * 1987-01-16 1997-11-19 株式会社日立製作所 Method for controlling cooling water temperature of semiconductor integrated circuit
JPH11108529A (en) * 1997-09-30 1999-04-23 Sanyo Electric Co Ltd Cooler
US20060010893A1 (en) * 2004-07-13 2006-01-19 Daniel Dominguez Chiller system with low capacity controller and method of operating same
JP2007187383A (en) * 2006-01-12 2007-07-26 Hitachi Plant Technologies Ltd Cold heat source system
JP2008261536A (en) * 2007-04-11 2008-10-30 Takasago Thermal Eng Co Ltd Air conditioning system and control method of air conditioning system
JP2010236728A (en) * 2009-03-30 2010-10-21 Mitsubishi Heavy Ind Ltd Heat source system and control method of the same
JP2010286126A (en) * 2009-06-09 2010-12-24 Hitachi Plant Technologies Ltd Cooling system and cooling method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6229905Y2 (en) * 1980-09-16 1987-07-31
JPS5760156A (en) * 1980-09-30 1982-04-10 Sankyo Denki Co Ltd Refrigerated/cold storage showcase with water-cooled condenser
JPS6245466B2 (en) * 1982-07-15 1987-09-26 Sanden Corp
JP2680572B2 (en) * 1987-01-16 1997-11-19 株式会社日立製作所 Method for controlling cooling water temperature of semiconductor integrated circuit
JPH02259367A (en) * 1988-12-28 1990-10-22 Hitachi Metals Ltd Air cooling apparatus
JPH11108529A (en) * 1997-09-30 1999-04-23 Sanyo Electric Co Ltd Cooler
US20060010893A1 (en) * 2004-07-13 2006-01-19 Daniel Dominguez Chiller system with low capacity controller and method of operating same
JP2007187383A (en) * 2006-01-12 2007-07-26 Hitachi Plant Technologies Ltd Cold heat source system
JP2008261536A (en) * 2007-04-11 2008-10-30 Takasago Thermal Eng Co Ltd Air conditioning system and control method of air conditioning system
JP2010236728A (en) * 2009-03-30 2010-10-21 Mitsubishi Heavy Ind Ltd Heat source system and control method of the same
JP2010286126A (en) * 2009-06-09 2010-12-24 Hitachi Plant Technologies Ltd Cooling system and cooling method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016163014A1 (en) * 2015-04-09 2017-10-26 三菱電機株式会社 Twisted tube heat exchanger
JP2019168213A (en) * 2018-08-08 2019-10-03 株式会社ヤマト Brine chiller and cooling system

Also Published As

Publication number Publication date
JP5843630B2 (en) 2016-01-13

Similar Documents

Publication Publication Date Title
US11761686B2 (en) Methods and systems for controlling integrated air conditioning systems
JP5784117B2 (en) Air conditioner
JP5121747B2 (en) Geothermal heat pump device
JP2018124046A (en) Air conditioner
WO2013088484A1 (en) Air conditioning device
JP4298990B2 (en) Refrigeration equipment using carbon dioxide as refrigerant
JP6231395B2 (en) Combined heat source heat pump device
KR20120125857A (en) Heat storaging apparatus having cascade cycle and Control process of the same
KR20110118417A (en) Heat pump type speed heating apparatus
JP2007198730A (en) Air conditioning refrigeration device
JP7034251B2 (en) Heat source equipment and refrigeration cycle equipment
JP5404471B2 (en) HEAT PUMP DEVICE AND HEAT PUMP DEVICE OPERATION CONTROL METHOD
JP6537990B2 (en) Heat pump type cold and hot water supply system
JP5843630B2 (en) Cooling system
EP3290827A1 (en) Defrosting without reversing refrigerant cycle
JP2013155949A (en) Refrigeration device
KR101708933B1 (en) Refrigerant circulation system for Refrigerating apparatus
KR101173736B1 (en) Refrigerating and freezing combine air conditioning system
JP6238935B2 (en) Refrigeration cycle equipment
KR101649447B1 (en) Geothermal heat pump system using gas
JP2006017440A (en) Heat pump air conditioner
JP7221541B2 (en) outside air conditioner
JP6071540B2 (en) Heat pump cold / hot water system
KR101641245B1 (en) Chiller
JP2002286309A (en) Refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151117

R150 Certificate of patent or registration of utility model

Ref document number: 5843630

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees