JPWO2014192053A1 - Refrigeration equipment - Google Patents

Refrigeration equipment Download PDF

Info

Publication number
JPWO2014192053A1
JPWO2014192053A1 JP2015519508A JP2015519508A JPWO2014192053A1 JP WO2014192053 A1 JPWO2014192053 A1 JP WO2014192053A1 JP 2015519508 A JP2015519508 A JP 2015519508A JP 2015519508 A JP2015519508 A JP 2015519508A JP WO2014192053 A1 JPWO2014192053 A1 JP WO2014192053A1
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
defrosting
compressor
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015519508A
Other languages
Japanese (ja)
Other versions
JP6207602B2 (en
Inventor
杉本 猛
猛 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2014192053A1 publication Critical patent/JPWO2014192053A1/en
Application granted granted Critical
Publication of JP6207602B2 publication Critical patent/JP6207602B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/08Removing frost by electric heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/19Pumping down refrigerant from one part of the cycle to another part of the cycle, e.g. when the cycle is changed from cooling to heating, or before a defrost cycle is started
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Defrosting Systems (AREA)

Abstract

圧縮機1と、凝縮器2と、受液器3と、電磁弁4と、絞り装置5と、蒸発器6とを接続して形成され、可燃性冷媒が循環する冷媒回路と、圧縮機2の吸入側の吸入圧力値を検知する圧力センサ9と、蒸発器6の霜取を行う霜取ヒータ7、12と、蒸発器6の霜取開始時、電磁弁4を閉じ、圧力センサ9で検知された吸入圧力値が、可燃性冷媒を用いた場合の霜取時の安全確保に必要な所定値以下になるまで圧縮機1の運転を継続し、所定値以下になると圧縮機1の運転を停止し、霜取ヒータ7、12を通電する。A compressor circuit formed by connecting the compressor 1, the condenser 2, the liquid receiver 3, the electromagnetic valve 4, the expansion device 5, and the evaporator 6, and through which the combustible refrigerant circulates, and the compressor 2 The pressure sensor 9 for detecting the suction pressure value on the suction side, the defrosting heaters 7 and 12 for defrosting the evaporator 6, and at the start of defrosting of the evaporator 6, the solenoid valve 4 is closed and the pressure sensor 9 The operation of the compressor 1 is continued until the detected suction pressure value becomes equal to or less than a predetermined value necessary for ensuring safety at the time of defrosting when the flammable refrigerant is used. And deenergizing heaters 7 and 12 are energized.

Description

この発明は、冷凍装置に関するものである。   The present invention relates to a refrigeration apparatus.

従来の冷凍装置は、蒸発器の下部に霜取ヒータを配置し、霜取ヒータに通電することで蒸発器に付着した霜の霜取を実施していた(例えば、特許文献1参照)。   In the conventional refrigeration apparatus, a defrosting heater is disposed in the lower part of the evaporator, and defrosting of the frost attached to the evaporator is performed by energizing the defrosting heater (see, for example, Patent Document 1).

特許第3861240号公報(第7頁、第6図)Japanese Patent No. 3861240 (page 7, FIG. 6)

近年、R410A,R404Aに代わる代替冷媒として、温暖化係数(GWP)の値が小さいR32などの冷媒を用いた空気調和装置や冷凍装置が提案されている。R32は僅かながら燃性を有しており、この種の可燃性冷媒を用いた空気調和装置や冷凍装置では、室内機(冷凍装置ではユニットクーラ)内部や室内機(冷凍装置ではユニットクーラ)につながる冷媒配管(連絡配管)から外部へ可燃性冷媒が漏洩して、火災を起こしたり、酸欠や熱分解による有毒ガスが発生したりするような事故(以下「火災事故」という。)が懸念される。特に可燃性冷媒は、裸火や300〜400℃以上の高温に加熱された金属等に接触すると、熱分解し、有毒ガスを発生することがある。ここで言う有毒ガスとはフッ化水素を主に指している。   In recent years, as an alternative refrigerant to replace R410A and R404A, an air conditioner or a refrigeration apparatus using a refrigerant such as R32 having a low global warming potential (GWP) value has been proposed. R32 is slightly flammable. In an air conditioner or refrigeration system using this type of flammable refrigerant, R32 is used inside an indoor unit (unit cooler in a refrigeration system) or indoor unit (unit cooler in a refrigeration system). There is concern about accidents (hereinafter referred to as “fire accidents”) in which flammable refrigerant leaks from the connected refrigerant piping (communication piping) to the outside, causing a fire, or generating toxic gas due to lack of oxygen or thermal decomposition. Is done. In particular, when a flammable refrigerant comes into contact with an open flame or a metal heated to a high temperature of 300 to 400 ° C. or higher, it may be thermally decomposed to generate a toxic gas. The toxic gas mentioned here mainly refers to hydrogen fluoride.

R32などの可燃性冷媒は、空気より重いという性質を有している。このため、特許文献1のように霜取ヒータを蒸発器の下部に配置している場合、霜取ヒータ通電中に万一、蒸発器の冷媒配管(ヘアピン)や蒸発器につながる冷媒配管から冷媒が漏れると、冷媒が霜取ヒータに触れて熱分解による有毒ガスが発生するおそれがある。   A combustible refrigerant such as R32 has a property of being heavier than air. For this reason, when the defrost heater is arrange | positioned at the lower part of an evaporator like patent document 1, a refrigerant | coolant should be carried out from refrigerant piping (hairpin) of an evaporator and refrigerant piping connected to an evaporator by any chance during energization of a defrost heater. If leaks, the refrigerant may come into contact with the defrosting heater and generate toxic gas due to thermal decomposition.

この発明は、上記のような課題を解決するためになされたもので、万一蒸発器の冷媒配管に損傷があり、可燃性冷媒が漏れた場合でも、安全に霜取が実施でき、火災や有毒ガスの発生を防止できる冷凍装置を得ることを目的とする。   The present invention has been made to solve the above-described problems, and even if the refrigerant piping of the evaporator is damaged and flammable refrigerant leaks, it can be safely defrosted, It aims at obtaining the freezing apparatus which can prevent generation | occurrence | production of toxic gas.

この発明に係る冷凍装置は、圧縮機と、凝縮器と、受液器と、電磁弁と、絞り装置と、蒸発器とを接続して形成され、可燃性冷媒が循環する冷媒回路と、圧縮機の吸入側の冷媒状態を検知する冷媒状態検知センサと、蒸発器の霜取を行う霜取ヒータと、蒸発器の霜取開始時、電磁弁を閉じ、冷媒状態検知センサで検知された冷媒状態量が、可燃性冷媒を用いた場合の霜取時の安全確保に必要な所定値以下になるまで圧縮機の運転を継続し、所定値以下になると圧縮機の運転を停止し、霜取ヒータを通電するものである。   A refrigeration apparatus according to the present invention is formed by connecting a compressor, a condenser, a receiver, a solenoid valve, a throttling device, and an evaporator, a refrigerant circuit in which a flammable refrigerant circulates, and a compression Refrigerant state detection sensor that detects the refrigerant state on the suction side of the machine, a defrost heater that defrosts the evaporator, and a refrigerant that is detected by the refrigerant state detection sensor when the defrosting of the evaporator is started and the electromagnetic valve is closed The compressor operation is continued until the state quantity falls below a predetermined value required for ensuring safety during defrosting when a flammable refrigerant is used. The heater is energized.

この発明によれば、万一蒸発器の冷媒配管に損傷があり、可燃性冷媒が漏れた場合でも、安全に霜取が実施でき、火災や有毒ガスの発生を防止できる冷凍装置を得ることができる。   According to the present invention, it is possible to obtain a refrigeration apparatus that can safely perform defrosting and prevent the generation of fire and toxic gas even if the refrigerant piping of the evaporator is damaged and the flammable refrigerant leaks. it can.

この発明の実施の形態1における冷凍装置の冷媒回路図である。It is a refrigerant circuit figure of the freezing apparatus in Embodiment 1 of this invention. この発明の実施の形態1における冷凍装置の霜取ヒータ制御回路図である。It is a defrost heater control circuit diagram of the freezing apparatus in Embodiment 1 of this invention. この発明の実施の形態1における冷凍装置の霜取制御のフローチャートである。It is a flowchart of the defrost control of the freezing apparatus in Embodiment 1 of this invention. 図1の蒸発器の概略斜視図である。It is a schematic perspective view of the evaporator of FIG. 図1の蒸発器と霜取りヒータとの配置説明図である。It is arrangement | positioning explanatory drawing of the evaporator and defrost heater of FIG. 図1の蒸発器とドレンパンとの配置説明図である。It is arrangement | positioning explanatory drawing of the evaporator and drain pan of FIG.

以下、この発明の実施の形態を図を参照しながら説明する。なお、各図中、同一部分には同一符号を付すものとする。   Embodiments of the present invention will be described below with reference to the drawings. In addition, in each figure, the same code | symbol shall be attached | subjected to the same part.

実施の形態1.
図1は、この発明の実施の形態1における冷凍装置の冷媒回路図である。
図1において、冷凍装置100は、圧縮機1と、凝縮器2と、受液器3と、電磁弁4と、絞り装置5と、蒸発器6とを直列に接続して形成され、冷媒が循環する冷媒回路を備えている。また蒸発器6には、蒸発器6に通風する送風機10を設けている。なお、冷媒には、温暖化係数(GWP)の値が小さい可燃性冷媒を使用する。具体的には例えば、微燃性冷媒である、R32もしくはR32を65重量%以上含む混合冷媒、HFO冷媒、プロパンもしくはプロパンを混合した冷媒等が使用される。
Embodiment 1 FIG.
FIG. 1 is a refrigerant circuit diagram of a refrigeration apparatus in Embodiment 1 of the present invention.
In FIG. 1, a refrigeration apparatus 100 is formed by connecting a compressor 1, a condenser 2, a liquid receiver 3, a solenoid valve 4, a throttling device 5, and an evaporator 6 in series. A circulating refrigerant circuit is provided. The evaporator 6 is provided with a blower 10 that ventilates the evaporator 6. Note that a flammable refrigerant having a small global warming potential (GWP) value is used as the refrigerant. Specifically, for example, a slightly flammable refrigerant, a mixed refrigerant containing 65 wt% or more of R32 or R32, an HFO refrigerant, a propane or a refrigerant mixed with propane, or the like is used.

蒸発器6には霜取用の霜取ヒータ7,12と、温度センサ8とが配置されている。温度センサ8は、例えば蒸発器6の例えば銅配管であるベント部(Uベンド部、ヘアピン)6c(後述の図4参照)に配置されている。また、圧縮機1の吸入部には、吸入圧力を検出する圧力センサ(冷媒状態検知センサ)9が設置されている。   In the evaporator 6, defrosting heaters 7 and 12 for defrosting and a temperature sensor 8 are arranged. The temperature sensor 8 is arrange | positioned at the vent part (U bend part, hairpin) 6c (refer FIG. 4 mentioned later) which is the copper piping of the evaporator 6, for example. Further, a pressure sensor (refrigerant state detection sensor) 9 for detecting the suction pressure is installed in the suction portion of the compressor 1.

図2は、この発明の実施の形態1における冷凍装置の霜取制御回路図である。
図2において、霜取制御コントローラ11は、冷凍装置全体の制御を行うと共に、霜取ヒータ7,12を、温度センサ8、圧力センサ9の情報に基づき制御する。
FIG. 2 is a defrost control circuit diagram of the refrigeration apparatus in Embodiment 1 of the present invention.
In FIG. 2, the defrost control controller 11 controls the entire refrigeration apparatus and controls the defrost heaters 7 and 12 based on information from the temperature sensor 8 and the pressure sensor 9.

図3は、この発明の実施の形態1における冷凍装置の霜取制御のフローチャートである。以下、図3を参照して冷凍装置100における霜取時の動作について説明する。図3のフローチャートの制御は、制御間隔毎に実施される。
冷凍装置100の運転中、蒸発器6の表面温度が0度を下回ると、蒸発器6の表面に空気中の水分が霜となって付着する。そして、霜が蒸発器6の風路を妨げるまで成長すると、空気と冷媒との熱交換を十分に行えず、能力が低下することから、霜取制御コントローラ11は、冷媒回路の運転中、蒸発器6の霜取を開始するかの判断を行っている(S1)。霜取開始の判断は任意の方法を採用でき、例えば、圧縮機1の運転積算時間(霜取制御コントローラ11に内蔵のタイマ、図示せず)に基づき判断する。すなわち、圧縮機1の運転積算時間が所定時間を超えた場合、霜取を開始すると判断する。霜取開始の判断はこの方法に限定されるものではなく、任意の方法を採用できる。
FIG. 3 is a flowchart of defrosting control of the refrigeration apparatus in Embodiment 1 of the present invention. Hereinafter, the operation at the time of defrosting in the refrigeration apparatus 100 will be described with reference to FIG. The control of the flowchart in FIG. 3 is performed at each control interval.
When the surface temperature of the evaporator 6 falls below 0 degrees during the operation of the refrigeration apparatus 100, moisture in the air adheres to the surface of the evaporator 6 as frost. When the frost grows until it obstructs the air path of the evaporator 6, the heat exchange between the air and the refrigerant cannot be sufficiently performed, and the capacity is reduced. Therefore, the defrosting controller 11 can evaporate during the operation of the refrigerant circuit. It is determined whether to start defrosting of the vessel 6 (S1). An arbitrary method can be adopted to determine the start of defrosting. For example, the determination is made based on the accumulated operation time of the compressor 1 (a timer built in the defrosting controller 11, not shown). That is, when the accumulated operation time of the compressor 1 exceeds a predetermined time, it is determined that defrosting is started. The determination of defrosting start is not limited to this method, and any method can be adopted.

霜取制御コントローラ11は、霜取を開始すると判断すると、まず電磁弁4を閉じ(S2)、圧力センサ9で検出された検出値(吸入圧力値)が所定値P以下になるまで(S3)、圧縮機1の運転を継続する。これにより、蒸発器6内の可燃性冷媒を受液器3に回収する。この所定値Pは、可燃性冷媒を用いた場合の霜取時の安全確保に必要な値であり、具体的には蒸発器6に可燃性冷媒がほとんど残らない状態を示す値に設定する。このようにすれば、S3を満たした状態では蒸発器6の冷媒配管内には可燃性冷媒がほとんど存在しないことになる。   When the defrost control controller 11 determines to start defrosting, the solenoid valve 4 is first closed (S2), and the detected value (suction pressure value) detected by the pressure sensor 9 becomes equal to or less than the predetermined value P (S3). The operation of the compressor 1 is continued. Thereby, the flammable refrigerant in the evaporator 6 is collected in the liquid receiver 3. This predetermined value P is a value necessary for ensuring safety at the time of defrosting when a flammable refrigerant is used, and is specifically set to a value indicating a state in which almost no flammable refrigerant remains in the evaporator 6. If it does in this way, in the state where S3 was satisfied, there will be almost no flammable refrigerant in the refrigerant piping of evaporator 6.

このように蒸発器6の冷媒配管内に可燃性冷媒がほとんど存在しない状態となると、霜取制御コントローラ11は圧縮機1及び送風機10を停止し、霜取ヒータ7,12を通電する(S4)。このように蒸発器6の冷媒配管内に可燃性冷媒がほとんど存在しない状態とした上で霜取ヒータ7,12を通電することで、蒸発器6の霜取中に蒸発器6の冷媒配管から万一損傷があった場合でも、可燃性冷媒が霜取ヒータ7,12の熱で加熱されることを回避できる。よって、安全に霜取が実施でき、火災や有毒ガスの発生を防止できる。   When the combustible refrigerant hardly exists in the refrigerant pipe of the evaporator 6 as described above, the defrost control controller 11 stops the compressor 1 and the blower 10 and energizes the defrost heaters 7 and 12 (S4). . In this way, the defrosting heaters 7 and 12 are energized after the refrigerant pipe of the evaporator 6 is almost free of flammable refrigerant, so that the refrigerant pipe of the evaporator 6 is defrosted during the defrosting of the evaporator 6. Even in the event of damage, the combustible refrigerant can be prevented from being heated by the heat of the defrost heaters 7 and 12. Therefore, defrosting can be carried out safely, and fire and toxic gas generation can be prevented.

そして、霜取制御コントローラ11は、霜取を終了するかを判断し(S5)、霜取を終了すると判断すると、霜取ヒータ7,12の通電を停止する(S6)。霜取を終了するかの判断についても任意の方法を採用でき、例えば、温度センサ8の検知結果に基づき判断する。すなわち、温度センサ8の検知結果が所定値T以上の場合、霜取を終了すると判断する。   And the defrost control controller 11 judges whether defrosting is complete | finished (S5), and if it judges that defrosting is complete | finished, electricity supply of the defrost heaters 7 and 12 will be stopped (S6). An arbitrary method can be adopted for determining whether to end the defrosting, for example, based on the detection result of the temperature sensor 8. That is, when the detection result of the temperature sensor 8 is equal to or greater than the predetermined value T, it is determined that the defrosting is finished.

図4は、図1の蒸発器の概略斜視図である。図4において矢印方向は空気の通気方向を示している。また、図5は、図1の蒸発器と霜取りヒータとの配置説明図である。
蒸発器6は、互いに間隔をあけて積層された複数のフィン6aと、フィン6aを積層方向に貫通する複数の冷媒配管6bと、複数の冷媒配管6bの端部を接続するベント部6cとを有している。霜取ヒータ7,12は蒸発器6の冷媒配管6bが損傷して冷媒漏れが発生したときにも、直接冷媒が霜取ヒータ7,12に接触しないように配置されている。すなわち、蒸発器6の空気吸込面6Aに霜取ヒータ7が配置され、蒸発器6の空気吹出面6Bに霜取ヒータ12が配置されている。なお、場合によっては霜取ヒータを蒸発器6の空気吸込面6Aのみ(霜取ヒータ7のみ)又は、蒸発器6の空気吹出面6Bのみ(霜取ヒータ12のみ)の配置としてもよい。
FIG. 4 is a schematic perspective view of the evaporator of FIG. In FIG. 4, the arrow direction indicates the direction of air flow. FIG. 5 is an explanatory view of the arrangement of the evaporator and the defrost heater in FIG.
The evaporator 6 includes a plurality of fins 6a stacked at intervals, a plurality of refrigerant pipes 6b penetrating the fins 6a in the stacking direction, and a vent part 6c connecting ends of the plurality of refrigerant pipes 6b. Have. The defroster heaters 7 and 12 are arranged so that the refrigerant does not directly contact the defroster heaters 7 and 12 even when the refrigerant pipe 6b of the evaporator 6 is damaged and the refrigerant leaks. That is, the defrost heater 7 is disposed on the air suction surface 6 </ b> A of the evaporator 6, and the defrost heater 12 is disposed on the air blowing surface 6 </ b> B of the evaporator 6. In some cases, the defrosting heater may be arranged only on the air suction surface 6A of the evaporator 6 (only the defrosting heater 7) or only on the air blowing surface 6B of the evaporator 6 (only the defrosting heater 12).

図6は、図1の蒸発器とドレンパンとの配置説明図である。
図6に示すように、蒸発器6の下方に、霜取時に蒸発器6から落ちたドレンを受けるドレンパン13が配置されている。そして、ドレンパン13には、ドレンパン13を暖めるドレンパンヒータ14が固定金具15により固定されている。ドレンパンヒータ14は、万一蒸発器6の冷媒配管6bから冷媒漏れが生じた場合にも直接可燃性冷媒がドレンパンヒータ14に接触しないように、ドレンパン13の蒸発器6と反対側の外表面13a側に配置されている。このようにすることで、霜取中のドレンパン13の内表面13b側の表面温度を、100℃以下に抑えることができる。
FIG. 6 is an explanatory view of the arrangement of the evaporator and the drain pan of FIG.
As shown in FIG. 6, a drain pan 13 that receives drain that has fallen from the evaporator 6 during defrosting is disposed below the evaporator 6. A drain pan heater 14 that warms the drain pan 13 is fixed to the drain pan 13 by a fixing bracket 15. The drain pan heater 14 has an outer surface 13a opposite to the evaporator 6 of the drain pan 13 so that the flammable refrigerant does not directly contact the drain pan heater 14 even if a refrigerant leaks from the refrigerant pipe 6b of the evaporator 6. Arranged on the side. By doing in this way, the surface temperature by the side of the inner surface 13b of the drain pan 13 during defrosting can be suppressed to 100 degrees C or less.

なお、ドレンパンヒータ14はドレンパン13の外表面13a側に配置することに限定されず、内表面13b側に配置してもよい。この場合は、蒸発器6の冷媒配管6bから冷媒漏れが生じたとしても、可燃性冷媒が直接ドレンパンヒータ14に接触しないように、ドレンパンヒータ14の発熱部をすべて覆うような固定金具等を利用して、ドレンパンヒータ14をドレンパン13に固定すればよい。なお、ドレンパンヒータ14の制御は図3のフローチャートにおける霜取ヒータ7,12の制御と同じである。   The drain pan heater 14 is not limited to being disposed on the outer surface 13a side of the drain pan 13, and may be disposed on the inner surface 13b side. In this case, even if a refrigerant leak occurs from the refrigerant pipe 6b of the evaporator 6, a fixing bracket or the like that covers all the heat generating part of the drain pan heater 14 is used so that the combustible refrigerant does not directly contact the drain pan heater 14. Then, the drain pan heater 14 may be fixed to the drain pan 13. The control of the drain pan heater 14 is the same as the control of the defrost heaters 7 and 12 in the flowchart of FIG.

以上説明したように、霜取開始時、蒸発器6の冷媒配管6b内に可燃性冷媒がほとんど存在しない状態とした上で、霜取ヒータ7,12を通電するようにした。このため、蒸発器6の霜取中に蒸発器6の冷媒配管から万一損傷があった場合でも、可燃性冷媒が霜取ヒータ7,12の熱で加熱されることを回避できる。よって、安全に霜取が実施でき、火災や有毒ガスの発生を防止できる。   As described above, at the start of defrosting, the defrosting heaters 7 and 12 are energized after the combustible refrigerant is hardly present in the refrigerant pipe 6b of the evaporator 6. For this reason, even if there is any damage from the refrigerant piping of the evaporator 6 during the defrosting of the evaporator 6, it is possible to avoid that the combustible refrigerant is heated by the heat of the defrosting heaters 7 and 12. Therefore, defrosting can be carried out safely, and fire and toxic gas generation can be prevented.

なお、上記では、可燃性冷媒を用いた場合の霜取時の安全確保に必要な所定値を吸入圧力値としたが、これに限られたものではなく、蒸発器6の蒸発温度としてもよい。   In the above description, the predetermined value necessary for ensuring safety at the time of defrosting when the flammable refrigerant is used is the suction pressure value, but is not limited to this, and may be the evaporation temperature of the evaporator 6. .

また、万一、可燃性冷媒が霜取ヒータ7,12に接触しても、熱分解することが無いように、霜取制御コントローラ11にて霜取ヒータ7,12の表面温度を300℃未満に抑えるように霜取ヒータ7,12の加熱量を制御するようにしてもよい。   In addition, even if a flammable refrigerant contacts the defrosting heaters 7 and 12, the surface temperature of the defrosting heaters 7 and 12 is less than 300 ° C. in the defrosting controller 11 so that the defrosting controller 11 does not thermally decompose. You may make it control the heating amount of the defrost heaters 7 and 12 so that it may suppress to.

1 圧縮機、2 凝縮器、3 受液器、4 電磁弁、5 絞り装置、6 蒸発器、6A 空気吸込面、6B 空気吹出面、6a フィン、6b 冷媒配管、6c ベント部、7 霜取ヒータ、8 温度センサ、9 圧力センサ、10 送風機、11 霜取制御コントローラ、12 霜取ヒータ、13 ドレンパン、13a ドレンパンの外表面、13b ドレンパンの内表面、14 ドレンパンヒータ、15 固定金具、100 冷凍装置。   DESCRIPTION OF SYMBOLS 1 Compressor, 2 Condenser, 3 Liquid receiver, 4 Solenoid valve, 5 Throttling device, 6 Evaporator, 6A Air suction surface, 6B Air blowing surface, 6a Fin, 6b Refrigerant piping, 6c Vent part, 7 Defrost heater , 8 Temperature sensor, 9 Pressure sensor, 10 Blower, 11 Defrost controller, 12 Defrost heater, 13 Drain pan, 13a Drain pan outer surface, 13b Drain pan inner surface, 14 Drain pan heater, 15 Fixing bracket, 100 Refrigeration equipment.

この発明に係る冷凍装置は、圧縮機と、凝縮器と、受液器と、電磁弁と、絞り装置と、蒸発器とを直列に接続して形成され、R32もしくはR32を65重量%以上含む混合冷媒が循環する冷媒回路と、圧縮機の吸入側の冷媒状態を検知する冷媒状態検知センサと、蒸発器の霜取を行う霜取ヒータと、蒸発器の霜取開始時、電磁弁を閉じ、冷媒状態検知センサで検知された冷媒状態量が、可燃性冷媒を用いた場合の霜取時の安全を確保するための所定値以下になるまで圧縮機の運転を継続し、所定値以下になると圧縮機の運転を停止し、霜取ヒータを通電する制御装置とを備え、霜取ヒータはユニットクーラ内に設けられた蒸発器の空気吸込面及び空気吹出面の一方又は両方に設けられ、制御装置は、霜取ヒータの表面温度が300℃未満となるように霜取ヒータの通電量を制御するものである。 The refrigeration apparatus according to the present invention is formed by connecting a compressor, a condenser, a receiver, a solenoid valve, a throttling device, and an evaporator in series, and includes R32 or R32 in an amount of 65% by weight or more. A refrigerant circuit in which the mixed refrigerant circulates, a refrigerant state detection sensor that detects the refrigerant state on the suction side of the compressor, a defrost heater that defrosts the evaporator, and closes the solenoid valve at the start of defrosting of the evaporator The compressor operation is continued until the refrigerant state quantity detected by the refrigerant state detection sensor becomes equal to or less than a predetermined value for ensuring safety during defrosting when a flammable refrigerant is used. Then, the operation of the compressor is stopped, and a controller for energizing the defrost heater is provided, and the defrost heater is provided on one or both of the air suction surface and the air discharge surface of the evaporator provided in the unit cooler, The control device has a surface temperature of the defrost heater of less than 300 ° C. Thus, the energization amount of the defrost heater is controlled .

この発明に係る冷凍装置は、圧縮機と、凝縮器と、受液器と、電磁弁と、絞り装置と、蒸発器とを直列に接続して形成され、R32もしくはR32を65重量%以上含む混合冷媒が循環する冷媒回路と、圧縮機の吸入側の冷媒状態を検知する冷媒状態検知センサと、蒸発器の霜取を行う霜取ヒータと、蒸発器の霜取開始時、電磁弁を閉じ、冷媒状態検知センサで検知された冷媒状態量が、可燃性冷媒を用いた場合の霜取時の安全を確保するための所定値以下になるまで圧縮機の運転を継続し、所定値以下になると圧縮機の運転を停止し、霜取ヒータを通電する制御装置とを備え、霜取ヒータはユニットクーラ内に設けられた蒸発器の空気吸込面及び空気吹出面の一方又は両方のみに設けられ、制御装置は、霜取ヒータの表面温度が300℃未満となるように霜取ヒータの通電量を制御するものである。 The refrigeration apparatus according to the present invention is formed by connecting a compressor, a condenser, a receiver, a solenoid valve, a throttling device, and an evaporator in series, and includes R32 or R32 in an amount of 65% by weight or more. A refrigerant circuit in which the mixed refrigerant circulates, a refrigerant state detection sensor that detects the refrigerant state on the suction side of the compressor, a defrost heater that defrosts the evaporator, and closes the solenoid valve at the start of defrosting of the evaporator The compressor operation is continued until the refrigerant state quantity detected by the refrigerant state detection sensor becomes equal to or less than a predetermined value for ensuring safety during defrosting when a flammable refrigerant is used. Then, the operation of the compressor is stopped and the controller for energizing the defrost heater is provided, and the defrost heater is provided only on one or both of the air suction surface and the air discharge surface of the evaporator provided in the unit cooler. The control device is designed so that the surface temperature of the defroster heater is not 300 ° C. And it controls the amount of current defrost heater so that.

Claims (6)

圧縮機と、凝縮器と、受液器と、電磁弁と、絞り装置と、蒸発器とを直列に接続して形成され、可燃性冷媒が循環する冷媒回路と、
前記圧縮機の吸入側の冷媒状態を検知する冷媒状態検知センサと、
前記蒸発器の霜取を行う霜取ヒータと、
前記蒸発器の霜取開始時、前記電磁弁を閉じ、前記冷媒状態検知センサで検知された冷媒状態量が、可燃性冷媒を用いた場合の霜取時の安全を確保するための所定値以下になるまで前記圧縮機の運転を継続し、前記所定値以下になると前記圧縮機の運転を停止し、前記霜取ヒータを通電する制御装置とを備えた
ことを特徴とする冷凍装置。
A refrigerant circuit that is formed by connecting a compressor, a condenser, a liquid receiver, a solenoid valve, a throttling device, and an evaporator in series, and in which a combustible refrigerant circulates;
A refrigerant state detection sensor for detecting a refrigerant state on the suction side of the compressor;
A defrost heater for defrosting the evaporator;
At the start of defrosting of the evaporator, the solenoid valve is closed, and the refrigerant state quantity detected by the refrigerant state detection sensor is equal to or less than a predetermined value for ensuring safety at the time of defrosting when a combustible refrigerant is used. A refrigeration apparatus comprising: a control device that continues the operation of the compressor until reaching a predetermined value, stops the operation of the compressor when the value is equal to or less than the predetermined value, and energizes the defrost heater.
前記冷媒状態検知センサは、前記圧縮機の吸入圧力を検知する圧力センサであり、前記所定値は、前記蒸発器内に可燃性冷媒がほとんど無い状態を示す吸入圧力値である
ことを特徴とする請求項1記載の冷凍装置。
The refrigerant state detection sensor is a pressure sensor that detects an intake pressure of the compressor, and the predetermined value is an intake pressure value indicating a state in which there is almost no flammable refrigerant in the evaporator. The refrigeration apparatus according to claim 1.
前記霜取ヒータを前記蒸発器の空気吸込面及び空気吹出面の一方又は両方に設けた
ことを特徴とする請求項1又は請求項2記載の冷凍装置。
The refrigeration apparatus according to claim 1 or 2, wherein the defrosting heater is provided on one or both of an air suction surface and an air blowing surface of the evaporator.
前記制御装置は、前記霜取ヒータの表面温度が300℃未満となるように前記霜取ヒータの通電量を制御する
ことを特徴とする請求項1〜請求項3の何れか一項に記載の冷凍装置。
The said control apparatus controls the energization amount of the said defrost heater so that the surface temperature of the said defrost heater may be less than 300 degreeC, The Claim 1 characterized by the above-mentioned. Refrigeration equipment.
前記蒸発器下部に設けたドレンパンの外表面側にドレンパンヒータを設けたことを特徴とする請求項1〜請求項4の何れか一項に記載の冷凍装置。   The refrigeration apparatus according to any one of claims 1 to 4, wherein a drain pan heater is provided on an outer surface side of the drain pan provided in the lower part of the evaporator. 前記可燃性冷媒は、R32もしくはR32を65重量%以上含む混合冷媒である
ことを特徴とする請求項1〜請求項5の何れか一項に記載の冷凍装置。
The refrigerating apparatus according to any one of claims 1 to 5, wherein the combustible refrigerant is R32 or a mixed refrigerant containing 65 wt% or more of R32.
JP2015519508A 2013-05-27 2013-05-27 Refrigeration equipment Active JP6207602B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/064596 WO2014192053A1 (en) 2013-05-27 2013-05-27 Refrigerating device

Publications (2)

Publication Number Publication Date
JPWO2014192053A1 true JPWO2014192053A1 (en) 2017-02-23
JP6207602B2 JP6207602B2 (en) 2017-10-04

Family

ID=51988135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015519508A Active JP6207602B2 (en) 2013-05-27 2013-05-27 Refrigeration equipment

Country Status (2)

Country Link
JP (1) JP6207602B2 (en)
WO (1) WO2014192053A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113405284A (en) * 2021-06-30 2021-09-17 青岛海尔电冰箱有限公司 Refrigerating system and refrigerator

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4152900A (en) * 1978-04-04 1979-05-08 Kramer Trenton Co. Refrigeration cooling unit with non-uniform heat input for defrost
JPS59155482U (en) * 1983-04-01 1984-10-18 成島 政治 Defrosting device for unit cooler
JPS63165481U (en) * 1987-04-17 1988-10-27
JP3048270U (en) * 1997-10-21 1998-05-06 板倉冷機工業株式会社 Cooling unit with electric shutter
JP2000121233A (en) * 1998-10-20 2000-04-28 Toshiba Corp Freezer/refrigerator
JP2000121235A (en) * 1998-10-20 2000-04-28 Matsushita Refrig Co Ltd Refrigerator
JP2002267332A (en) * 2001-03-12 2002-09-18 Matsushita Refrig Co Ltd Refrigerator
JP2007040666A (en) * 2005-08-05 2007-02-15 Matsushita Electric Ind Co Ltd Control device of refrigerator
JP2013083407A (en) * 2011-10-12 2013-05-09 Mitsubishi Electric Corp Cooling device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4152900A (en) * 1978-04-04 1979-05-08 Kramer Trenton Co. Refrigeration cooling unit with non-uniform heat input for defrost
JPS59155482U (en) * 1983-04-01 1984-10-18 成島 政治 Defrosting device for unit cooler
JPS63165481U (en) * 1987-04-17 1988-10-27
JP3048270U (en) * 1997-10-21 1998-05-06 板倉冷機工業株式会社 Cooling unit with electric shutter
JP2000121233A (en) * 1998-10-20 2000-04-28 Toshiba Corp Freezer/refrigerator
JP2000121235A (en) * 1998-10-20 2000-04-28 Matsushita Refrig Co Ltd Refrigerator
JP2002267332A (en) * 2001-03-12 2002-09-18 Matsushita Refrig Co Ltd Refrigerator
JP2007040666A (en) * 2005-08-05 2007-02-15 Matsushita Electric Ind Co Ltd Control device of refrigerator
JP2013083407A (en) * 2011-10-12 2013-05-09 Mitsubishi Electric Corp Cooling device

Also Published As

Publication number Publication date
JP6207602B2 (en) 2017-10-04
WO2014192053A1 (en) 2014-12-04

Similar Documents

Publication Publication Date Title
US9816712B2 (en) Outdoor unit and air-conditioning apparatus
JP7014855B2 (en) Laboratory
CN104728999B (en) The antifreeze control method and device of heat exchanger of air conditioner
CN110793159A (en) Air conditioner refrigeration anti-freezing protection control method and device and air conditioner
JP5780977B2 (en) Heat pump cycle equipment
JP2013096670A (en) Refrigeration cycle device and hot water generator
JP2013185803A (en) Heat pump hydronic heater
JP6123650B2 (en) Heat pump cycle equipment
JP6207602B2 (en) Refrigeration equipment
US20220333806A1 (en) Dual temperature sensor arrangement to detect refrigerant leak
JP6576566B2 (en) Air conditioner
JP2018009768A (en) Refrigeration system
JP4292525B2 (en) Refrigerant amount detection method for vapor compression refrigeration cycle
US10557655B2 (en) System for deicing the external evaporator in a heat pump system
JP2011021851A (en) Refrigerating cycle
JP2020085280A (en) Refrigerant cycle device, refrigerant amount determination system and refrigerant amount determination method
CN110940058B (en) Air conditioner condensation prevention control method and device, storage medium and air conditioner
JP2005226865A (en) Refrigerator
JP2010181036A (en) Air conditioner
JPWO2018198220A1 (en) Refrigeration system
JP2016114319A (en) Heating system
JP2011117643A (en) Storage type water heater
JP5070773B2 (en) Cooling system
CN109595856B (en) Heat recovery system and defrosting control method
JP2008215647A (en) Operation method for air conditioner and air conditioner

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170905

R150 Certificate of patent or registration of utility model

Ref document number: 6207602

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250