JP6576566B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP6576566B2
JP6576566B2 JP2018534219A JP2018534219A JP6576566B2 JP 6576566 B2 JP6576566 B2 JP 6576566B2 JP 2018534219 A JP2018534219 A JP 2018534219A JP 2018534219 A JP2018534219 A JP 2018534219A JP 6576566 B2 JP6576566 B2 JP 6576566B2
Authority
JP
Japan
Prior art keywords
outside air
air temperature
unit
outdoor
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018534219A
Other languages
Japanese (ja)
Other versions
JPWO2018033955A1 (en
Inventor
真乃介 木幡
真乃介 木幡
雅史 冨田
雅史 冨田
孝史 福井
孝史 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2018033955A1 publication Critical patent/JPWO2018033955A1/en
Application granted granted Critical
Publication of JP6576566B2 publication Critical patent/JP6576566B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/01Heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/14Problems to be solved the presence of moisture in a refrigeration component or cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/28Means for preventing liquid refrigerant entering into the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2103Temperatures near a heat exchanger

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、圧縮機の運転停止時の消費電力を低減することができる空気調和装置に関するものである。   The present invention relates to an air conditioner that can reduce power consumption when a compressor is stopped.

従来、空気調和装置の室外機に備えられた圧縮機は、外気温度が氷点下など低温時には、圧縮機内部に滞留する冷媒が凝縮して液化し、圧縮機の潤滑油中に液化した冷媒が多量に溶け込む、いわゆる冷媒寝込みが発生するという問題がある。   Conventionally, a compressor provided in an outdoor unit of an air conditioner has a large amount of refrigerant liquefied in the compressor lubricating oil when the outside air temperature is low, such as below freezing, and the refrigerant staying inside the compressor condenses and liquefies. There is a problem that so-called refrigerant stagnation occurs.

また、空気調和装置で暖房運転を開始すると、圧縮機は直ちに起動して冷媒の圧縮を開始するが、起動時点では圧縮機の温度が外気温度に近い温度となっており、圧縮機の温度が十分に上昇するまでは圧縮機から吐出される冷媒の温度が上昇しない。冷媒の温度上昇に時間がかかると、室内熱交換器の温度上昇も時間がかかるため、室内温度が所定の温度まで上昇するのに時間がかかり、急速暖房が行えないという問題がある。   When the heating operation is started with the air conditioner, the compressor starts immediately and starts to compress the refrigerant. At the time of starting, the compressor temperature is close to the outside air temperature, and the compressor temperature is Until the temperature rises sufficiently, the temperature of the refrigerant discharged from the compressor does not rise. When it takes time to increase the temperature of the refrigerant, it takes time to increase the temperature of the indoor heat exchanger, so that it takes time for the indoor temperature to rise to a predetermined temperature, and there is a problem that rapid heating cannot be performed.

上記の問題を解決する方法、つまり、急速暖房を実現し、また、低外気温時の圧縮機内部での冷媒寝込みを抑制する方法として、圧縮機にヒータを設け、圧縮機の運転停止中は常にヒータに通電を行なって圧縮機を加熱することが考えられる。しかし、この方法のように、圧縮機の運転停止中は常にヒータに通電を行なって圧縮機を加熱すると、ヒータでの消費電力が増大し、圧縮機の運転停止時の消費電力、いわゆる待機電力が増大するという問題がある。   As a method of solving the above problem, that is, as a method of realizing rapid heating and suppressing refrigerant stagnation inside the compressor at a low outside air temperature, a heater is provided in the compressor, and the compressor is stopped. It is conceivable to always energize the heater to heat the compressor. However, when the compressor is heated by always energizing the heater during the operation stop of the compressor as in this method, the power consumption of the heater increases, and the power consumption at the time of operation stop of the compressor, so-called standby power. There is a problem that increases.

そこで、圧縮機内部での冷媒寝込みを防止しつつ、制御装置での消費電力を低減することで、待機電力を低減することができる空気調和装置が提案されている(例えば、特許文献1参照)。   Then, the air conditioning apparatus which can reduce standby | standby electric power by reducing the power consumption in a control apparatus, preventing the refrigerant stagnation inside a compressor is proposed (for example, refer patent document 1). .

特許文献1では、検出モード時に、圧縮機の温度を取り込み、取り込んだ圧縮機の温度を用いて圧縮機が停止している時の圧縮機の温度の変化率を算出し、その算出結果に応じて検出モードより消費電力の少ないスリープモードで動作させる期間を異ならせる。そして、検出モード時に取り込んだ圧縮機の温度に応じて、加熱手段への通電を行う。したがって、加熱手段による圧縮機の加熱を適切に行うことで圧縮機内部での冷媒寝込みを抑制しつつ、制御装置における消費電力を低減することができる。   In Patent Document 1, the temperature of the compressor is taken in the detection mode, and the change rate of the temperature of the compressor when the compressor is stopped is calculated using the taken-in temperature of the compressor, and according to the calculation result. Thus, the period for operating in the sleep mode, which consumes less power than the detection mode, is varied. And it supplies with electricity to a heating means according to the temperature of the compressor taken in at the time of detection mode. Therefore, by appropriately heating the compressor by the heating means, it is possible to reduce power consumption in the control device while suppressing refrigerant stagnation inside the compressor.

特開2013−204979号公報JP 2013-204979 A

特許文献1では、圧縮機が停止している時の圧縮機の温度の変化率に応じて、検出モードより消費電力の少ないスリープモードの時間を長くし、消費電力を低減している。しかし、スリープモードでも室外機には給電しており、その分電力を消費してしまっているという課題があった。   In Patent Document 1, the sleep mode time in which the power consumption is lower than that in the detection mode is lengthened in accordance with the rate of change in the temperature of the compressor when the compressor is stopped, thereby reducing the power consumption. However, there is a problem that power is supplied to the outdoor unit even in the sleep mode and power is consumed accordingly.

本発明は、以上のような課題を解決するためになされたもので、省エネ性能を向上させた空気調和装置を提供することを目的としている。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an air conditioner with improved energy saving performance.

本発明に係る空気調和装置は、圧縮機と、外気温度を検知する外気温度検知器とを有する室外機と、外気温度に応じて拘束通電する室外制御装置と、前記室外制御装置に給電ON信号を送信する室内制御装置と、を備え、前記圧縮機の運転停止時において、前記室外制御装置は、一定時間毎に前記外気温度検知器が検知した外気温度を記憶する記憶部を有し、前記室内制御装置から給電ON信号を受信したら、前記室外機への給電をONし、現在の外気温度と記憶部に記憶された外気温度とに応じて前記圧縮機の加熱が必要か否かを判定する加熱要否判定を行い、前記圧縮機の加熱が必要であると判定した場合、拘束通電を行い、前記圧縮機の加熱が必要でないと判定した場合、前記室外機への給電を停止するものである。   An air conditioner according to the present invention includes an outdoor unit having a compressor and an outdoor temperature detector that detects an outdoor temperature, an outdoor control device that performs restraint energization according to the outdoor temperature, and a power ON signal to the outdoor control device An indoor control device for transmitting the compressor, and when the compressor is stopped, the outdoor control device has a storage unit for storing the outdoor air temperature detected by the outdoor air temperature detector at regular intervals, and When the power supply ON signal is received from the indoor control device, the power supply to the outdoor unit is turned on, and it is determined whether or not the compressor needs to be heated according to the current outside air temperature and the outside air temperature stored in the storage unit. When it is determined that heating of the compressor is necessary, and when it is determined that heating of the compressor is necessary, restraint energization is performed, and when it is determined that heating of the compressor is not necessary, power supply to the outdoor unit is stopped It is.

本発明に係る空気調和装置によれば、室外制御装置は、室外機が給電OFF時に、室内制御装置から給電ON信号を受信した場合、室外機への給電をONし、圧縮機の加熱の要否を判断し、圧縮機の加熱が必要でないと判定した場合、室外機への給電をOFFする。そのため、室内制御装置から給電ON信号を受信するまで室外機への給電をOFFにすることができ、省エネ性能を向上させることができる。   According to the air conditioner of the present invention, when the outdoor unit receives the power supply ON signal from the indoor control device when the outdoor unit is turned off, the outdoor unit turns on the power supply to the outdoor unit and needs to heat the compressor. If NO is determined and it is determined that heating of the compressor is not necessary, power supply to the outdoor unit is turned off. Therefore, the power supply to the outdoor unit can be turned off until the power supply ON signal is received from the indoor control device, and the energy saving performance can be improved.

本発明の実施の形態に係る空気調和装置の冷媒回路図である。It is a refrigerant circuit figure of the air harmony device concerning an embodiment of the invention. 本発明の実施の形態に係る空気調和装置の機能ブロック図である。It is a functional block diagram of the air conditioning apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和装置の圧縮機の運転停止時の拘束通電および室外機給電のタイミングを示す第一の図である。It is a 1st figure which shows the timing of the restraint electricity supply at the time of the operation stop of the compressor of the air conditioning apparatus which concerns on embodiment of this invention, and outdoor unit electric power feeding. 本発明の実施の形態に係る空気調和装置の圧縮機の運転停止時の拘束通電および室外機給電のタイミングを示す第二の図である。It is a 2nd figure which shows the timing of restraint electricity supply at the time of the operation stop of the compressor of the air conditioning apparatus which concerns on embodiment of this invention, and outdoor unit electric power feeding. 本発明の実施の形態に係る空気調和装置の圧縮機の運転停止時の室外制御装置側の圧縮機加熱制御の処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the process of the compressor heating control by the side of the outdoor control apparatus at the time of the driving | operation stop of the compressor of the air conditioning apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和装置の圧縮機の運転停止時の室内制御装置側の圧縮機加熱制御の処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the compressor heating control by the side of the indoor control apparatus at the time of the operation stop of the compressor of the air conditioning apparatus which concerns on embodiment of this invention.

以下、本発明の実施の形態を図面に基づいて説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。また、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments described below. Moreover, in the following drawings, the relationship of the size of each component may be different from the actual one.

実施の形態.
図1は、本発明の実施の形態に係る空気調和装置100の冷媒回路図である。
図1に示すように、本実施の形態に係る空気調和装置100は、室内機1と室外機2とを備えている。
室内機1は、室内熱交換器5を備えており、室外機2から供給される温熱または冷熱によって、室内などの空調対象空間を冷房または暖房する機能を有している。
室内熱交換器5は、冷房運転時には蒸発器、暖房運転時には凝縮器または放熱器として機能し、冷媒と空気との間で熱交換を行なうものである。
Embodiment.
FIG. 1 is a refrigerant circuit diagram of an air-conditioning apparatus 100 according to an embodiment of the present invention.
As shown in FIG. 1, the air conditioning apparatus 100 according to the present embodiment includes an indoor unit 1 and an outdoor unit 2.
The indoor unit 1 includes an indoor heat exchanger 5, and has a function of cooling or heating an air-conditioning target space such as a room by using heat or cold supplied from the outdoor unit 2.
The indoor heat exchanger 5 functions as an evaporator during the cooling operation, and functions as a condenser or a radiator during the heating operation, and performs heat exchange between the refrigerant and the air.

室外機2は、圧縮機3と、流路切替弁4と、絞り装置6と、室外熱交換器7と、外気温度検知器8とを備えており、室内機1に温熱または冷熱を供給する機能を有している。
圧縮機3は、吸入した冷媒を圧縮して高温・高圧の状態にするものである。流路切替弁4は、冷房運転時と暖房運転時とで冷媒の流れを切り替えるものである。なお、流路切替弁4は、四方弁である場合について例示しているが、二方弁または三方弁などを組み合わせることによって構成されてもよい。
The outdoor unit 2 includes a compressor 3, a flow path switching valve 4, a throttle device 6, an outdoor heat exchanger 7, and an outside air temperature detector 8, and supplies hot or cold heat to the indoor unit 1. It has a function.
The compressor 3 compresses the sucked refrigerant into a high temperature / high pressure state. The flow path switching valve 4 switches the refrigerant flow between the cooling operation and the heating operation. Although the flow path switching valve 4 is illustrated as a four-way valve, it may be configured by combining a two-way valve or a three-way valve.

絞り装置6は、減圧弁または膨張弁として機能し、冷媒を減圧して膨張させるものである。室外熱交換器7は、冷房運転時には凝縮器または放熱器として機能し、暖房運転時には蒸発器として機能し、送風機(図示せず)から供給される空気と冷媒との間で熱交換を行なうものである。外気温度検知器8は、例えばサーミスタ、赤外線温度センサなどであり、外気温度を検知するものである。   The expansion device 6 functions as a pressure reducing valve or an expansion valve, and decompresses the refrigerant to expand it. The outdoor heat exchanger 7 functions as a condenser or a radiator during cooling operation, functions as an evaporator during heating operation, and performs heat exchange between air supplied from a blower (not shown) and refrigerant. It is. The outside air temperature detector 8 is, for example, a thermistor or an infrared temperature sensor, and detects the outside air temperature.

また、本実施の形態に係る空気調和装置100は、圧縮機3、流路切替弁4、室内熱交換器5、絞り装置6、および、室外熱交換器7、が順次配管で接続されて、冷媒が循環する冷媒回路を有している。空気調和装置100は、この冷媒回路に冷媒を循環させることによって、冷房運転または暖房運転することができるようになっている。   The air conditioner 100 according to the present embodiment includes a compressor 3, a flow path switching valve 4, an indoor heat exchanger 5, an expansion device 6, and an outdoor heat exchanger 7, which are sequentially connected by piping. It has a refrigerant circuit through which the refrigerant circulates. The air conditioner 100 can perform a cooling operation or a heating operation by circulating the refrigerant in the refrigerant circuit.

また、室内機1は、室内制御装置10を備えており、室外機2は、室外制御装置20を備えている。
室内制御装置10および室外制御装置20は、例えば、専用のハードウェア、またはメモリに格納されるプログラムを実行するCPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサともいう)で構成される。
The indoor unit 1 includes an indoor control device 10, and the outdoor unit 2 includes an outdoor control device 20.
The indoor control device 10 and the outdoor control device 20 are, for example, a CPU (Central Processing Unit, a central processing device, a processing device, an arithmetic device, a microprocessor, a microcomputer, (Also called a processor).

図2は、本発明の実施の形態に係る空気調和装置100の機能ブロック図である。
図2に示すように、室内制御装置10は、室外制御装置20と通信を行う室内通信部11と、時間を計測する室内計測部12とを備えている。
FIG. 2 is a functional block diagram of the air-conditioning apparatus 100 according to the embodiment of the present invention.
As shown in FIG. 2, the indoor control device 10 includes an indoor communication unit 11 that communicates with the outdoor control device 20 and an indoor measurement unit 12 that measures time.

室外制御装置20は、室内制御装置10と通信を行う室外通信部21と、室外機2への給電をONまたはOFFする電源管理部22と、外気温度検知器8が検知した外気温度の信号を取得する測定部23と、を備えている。また、測定部23が取得した外気温度を記憶する記憶部24と、測定部23が取得した現在の外気温度と、記憶部24に記憶されている過去の外気温度とから、予測される一定時間経過後の外気温度(以下、予測外気温度と称する)を演算する演算部25と、を備えている。さらに、演算部25が演算した予測外気温度が、測定部23が取得した現在の外気温度よりも大きいか否かを判定する判定部26と、判定部26が、予測外気温度が現在の外気温度よりも大きいと判定した場合、拘束通電を行う駆動部27と、時間を計測する室外計測部28と、を備えている。なお、拘束通電とは、圧縮機3に通電して電気的に圧縮機3を加熱することである。   The outdoor control device 20 includes an outdoor communication unit 21 that communicates with the indoor control device 10, a power management unit 22 that turns on or off the power supply to the outdoor unit 2, and an outdoor temperature signal detected by the outdoor temperature detector 8. And a measuring unit 23 to be acquired. Further, the storage unit 24 that stores the outside air temperature acquired by the measuring unit 23, the current outside air temperature acquired by the measuring unit 23, and the past outside air temperature stored in the storage unit 24 are predicted for a certain period of time. And a calculation unit 25 that calculates an outside temperature after the lapse (hereinafter referred to as a predicted outside temperature). Further, the determination unit 26 determines whether the predicted outside air temperature calculated by the calculation unit 25 is larger than the current outside air temperature acquired by the measurement unit 23, and the determination unit 26 determines that the predicted outside air temperature is the current outside air temperature. When it determines with it being larger than this, the drive part 27 which performs restraint electricity supply, and the outdoor measurement part 28 which measures time are provided. In addition, restraint energization is to energize the compressor 3 to electrically heat the compressor 3.

室外制御装置20は、室外機2の他の構成とは別電源系統を有しており、室外機2の給電をOFFしても室内制御装置10と通信を行うことができるようになっている。
なお、本実施の形態では、室外制御装置20を室外機2が備えている構成としたが、それに限定されず、室外制御装置20を室外機2と別体の構成としてもよい。
The outdoor control device 20 has a power supply system different from the other configurations of the outdoor unit 2, and can communicate with the indoor control device 10 even when the power supply to the outdoor unit 2 is turned off. .
In the present embodiment, the outdoor control device 20 is provided in the outdoor unit 2. However, the configuration is not limited thereto, and the outdoor control device 20 may be configured separately from the outdoor unit 2.

次に、本実施の形態に係る空気調和装置100の動作について、図1を用いて説明する。
冷房運転時は、流路切替弁4が冷房運転側に、つまり図1の実線のように圧縮機3の吐出側と室外熱交換器7とが接続されるように切り替えられる。
圧縮機3から吐出された高温高圧のガス冷媒は、流路切替弁4を通り、室外熱交換器7において送風機(図示せず)によって送風される室外空気と熱交換されて凝縮液化する。凝縮液化した冷媒は、絞り装置6によって低圧まで減圧された後、室内熱交換器5において室内空気と熱交換されて蒸発ガス化する。そして、ガス状態となった冷媒は、流路切替弁4を通って圧縮機3に吸入される。
Next, operation | movement of the air conditioning apparatus 100 which concerns on this Embodiment is demonstrated using FIG.
During the cooling operation, the flow path switching valve 4 is switched to the cooling operation side, that is, the discharge side of the compressor 3 and the outdoor heat exchanger 7 are connected as shown by the solid line in FIG.
The high-temperature and high-pressure gas refrigerant discharged from the compressor 3 passes through the flow path switching valve 4 and is heat-exchanged with the outdoor air blown by a blower (not shown) in the outdoor heat exchanger 7 to be condensed and liquefied. The condensed and liquefied refrigerant is decompressed to a low pressure by the expansion device 6, and then is heat-exchanged with indoor air in the indoor heat exchanger 5 to be evaporated and gasified. Then, the refrigerant in a gas state is sucked into the compressor 3 through the flow path switching valve 4.

暖房運転時は、流路切替弁4が暖房運転側に、つまり図1の破線のように圧縮機3の吸入側と室外熱交換器7とが接続されるように切り替えられる。
圧縮機3から吐出された高温高圧のガス冷媒は、流路切替弁4を通り、室内熱交換器5において室内空気と熱交換されて凝縮液化する。凝縮液化した冷媒は、絞り装置6によって低圧まで減圧される。減圧された冷媒は、室外熱交換器7において送風機(図示せず)によって送風される室外空気と熱交換されて蒸発ガス化する。そして、ガス状態となった冷媒は、流路切替弁4を通って圧縮機3に吸入される。
During the heating operation, the flow path switching valve 4 is switched to the heating operation side, that is, the suction side of the compressor 3 and the outdoor heat exchanger 7 are connected as indicated by the broken line in FIG.
The high-temperature and high-pressure gas refrigerant discharged from the compressor 3 passes through the flow path switching valve 4 and is heat-exchanged with indoor air in the indoor heat exchanger 5 to be condensed and liquefied. The condensed and liquefied refrigerant is decompressed to a low pressure by the expansion device 6. The decompressed refrigerant is heat-exchanged with outdoor air blown by a blower (not shown) in the outdoor heat exchanger 7 to be evaporated and gasified. Then, the refrigerant in a gas state is sucked into the compressor 3 through the flow path switching valve 4.

図3は、本発明の実施の形態に係る空気調和装置100の圧縮機3の運転停止時の拘束通電および室外機給電のタイミングを示す第一の図であり、図4は、本発明の実施の形態に係る空気調和装置100の圧縮機3の運転停止時の拘束通電および室外機給電のタイミングを示す第二の図である。   FIG. 3 is a first diagram illustrating the timing of restraint energization and outdoor unit power supply when the compressor 3 of the air-conditioning apparatus 100 according to the embodiment of the present invention is stopped, and FIG. 4 is a diagram illustrating the implementation of the present invention. It is a 2nd figure which shows the timing of the restraint electricity supply at the time of the operation stop of the compressor 3 of the air conditioning apparatus 100 which concerns on the form of, and outdoor unit electric power feeding.

本実施の形態に係る空気調和装置100は、圧縮機3の運転停止時において圧縮機3内部での冷媒寝込みを抑制するため、外気温度に応じて拘束通電を行う。具体的には、外気温度が上昇傾向にあり、外気温度の上昇が予測される場合は拘束通電を行い、それ以外の場合は拘束通電を行わない。   The air conditioner 100 according to the present embodiment performs energization restraint in accordance with the outside air temperature in order to suppress the refrigerant stagnation inside the compressor 3 when the operation of the compressor 3 is stopped. Specifically, when the outside air temperature tends to rise and a rise in the outside air temperature is predicted, restraint energization is performed, otherwise restraint energization is not performed.

本実施の形態に係る空気調和装置100は、以下に説明する加熱要否判定により拘束通電を行うか否かを判定する。
図3に示すように、空気調和装置100は、一定時間(本実施の形態ではN分とする)毎に外気温度を取得し、その都度記憶部24に記憶する。そして、現在の外気温度と過去の外気温度、例えばN分前および2N分前の外気温度とから、近似式によりN分後の外気温度を予測外気温度として算出する。そして、その算出した予測外気温度が現在の外気温度よりも大きければ外気温度が上昇傾向にあると予測し、拘束通電をONする。一方、算出した予測外気温度が現在の外気温度よりも大きくなければ外気温度が上昇傾向にないと予測し、拘束通電を行わない。
The air-conditioning apparatus 100 according to the present embodiment determines whether or not to perform restraint energization based on the heating necessity determination described below.
As shown in FIG. 3, the air conditioner 100 acquires the outside air temperature every predetermined time (N minutes in the present embodiment) and stores it in the storage unit 24 each time. Then, from the current outside air temperature and the past outside air temperature, for example, the outside air temperature before N minutes and before 2N minutes, the outside air temperature after N minutes is calculated as the predicted outside air temperature by an approximate expression. Then, if the calculated predicted outside air temperature is larger than the current outside air temperature, it is predicted that the outside air temperature tends to rise, and the energization is turned on. On the other hand, if the calculated predicted outside air temperature is not higher than the current outside air temperature, it is predicted that the outside air temperature does not tend to increase, and no energization is performed.

また、図4に示すように、空気調和装置100は、拘束通電を行わないとした場合、室外機2の給電をOFFする。その後、室内機1は、室外機2が給電をOFFしてからの時間を計測し、加熱要否判定を行うタイミング毎、つまりN分毎に室外機2へ給電ON信号を送信し、室外機2の給電をONする。そして、室外機2の給電がONされる毎に、室外機2は、加熱要否判定を行う。つまり、室外機2は、N分毎に加熱要否判定を繰り返し行う。   Further, as shown in FIG. 4, the air conditioner 100 turns off the power supply to the outdoor unit 2 when no restraint energization is performed. Thereafter, the indoor unit 1 measures the time after the outdoor unit 2 turns off the power supply, and transmits a power supply ON signal to the outdoor unit 2 at every timing for determining whether heating is necessary, that is, every N minutes. Turn on the power supply of 2. And whenever power supply of the outdoor unit 2 is turned ON, the outdoor unit 2 determines whether heating is necessary. That is, the outdoor unit 2 repeatedly performs heating necessity determination every N minutes.

このように、本実施の形態に係る空気調和装置100は、拘束通電を行わない期間は室外機2の給電をOFFすることができるため、省エネ性能を向上させることができる。   As described above, the air-conditioning apparatus 100 according to the present embodiment can turn off the power supply to the outdoor unit 2 during a period in which no restraint energization is performed, and thus can improve energy saving performance.

図5は、本発明の実施の形態に係る空気調和装置100の圧縮機3の運転停止時の室外制御装置20側の圧縮機加熱制御の処理の流れを示すフローチャートであり、図6は、本発明の実施の形態に係る空気調和装置100の圧縮機3の運転停止時の室内制御装置10側の圧縮機加熱制御の処理の流れを示すフローチャートである。   FIG. 5 is a flowchart showing a flow of processing of compressor heating control on the outdoor control device 20 side when the operation of the compressor 3 of the air-conditioning apparatus 100 according to the embodiment of the present invention is stopped. FIG. It is a flowchart which shows the flow of a process of the compressor heating control by the side of the indoor control apparatus 10 at the time of the driving | operation stop of the compressor 3 of the air conditioning apparatus 100 which concerns on embodiment of invention.

次に、本実施の形態に係る空気調和装置100の圧縮機3の運転停止時の圧縮機加熱制御の処理について、図5および図6を用いて説明する。
図5に示すように、室外制御装置20の測定部23は、外気温度検知器8が検知した外気温度の信号を取得する(ステップS101)。なお、測定部23が取得した外気温度は、記憶部24に記憶される。また、測定部23が外気温度の信号を取得する処理は一定時間毎に行われ、取得した外気温度は、その都度記憶部24に記憶される。
Next, compressor heating control processing when the operation of the compressor 3 of the air-conditioning apparatus 100 according to the present embodiment is stopped will be described with reference to FIGS. 5 and 6.
As illustrated in FIG. 5, the measurement unit 23 of the outdoor control device 20 acquires a signal of the outside temperature detected by the outside temperature detector 8 (Step S <b> 101). Note that the outside air temperature acquired by the measurement unit 23 is stored in the storage unit 24. Moreover, the process in which the measurement part 23 acquires the signal of outside temperature is performed for every fixed time, and the acquired outside temperature is memorize | stored in the memory | storage part 24 each time.

ステップS101の後、演算部25は、測定部23が取得した現在の外気温度と、記憶部24に記憶されている過去の外気温度とから、近似式により一定時間後の外気温度を予測外気温度として算出する(ステップS102)。
ステップS102の後、判定部26は、演算部25が算出した予測外気温度が現在の外気温度よりも大きいか否かを判定する加熱要否判定を行う(ステップS103)。
After step S <b> 101, the calculating unit 25 predicts the outside air temperature after a predetermined time from the current outside temperature acquired by the measuring unit 23 and the past outside temperature stored in the storage unit 24 by an approximate expression. (Step S102).
After step S102, the determination unit 26 performs heating necessity determination to determine whether the predicted outside air temperature calculated by the calculation unit 25 is higher than the current outside air temperature (step S103).

判定部26が、予測外気温度が現在の外気温度よりも大きいと判定した場合、つまり外気温度が上昇傾向にあると予測した場合(ステップS103のYes)、室外計測部28は、時間の計測を開始し(ステップS108)、駆動部27は、拘束通電をONする(ステップS109)。   When the determination unit 26 determines that the predicted outside air temperature is higher than the current outside air temperature, that is, when it is predicted that the outside air temperature tends to increase (Yes in step S103), the outdoor measurement unit 28 measures time. Starting (step S108), the drive unit 27 turns on the restraint energization (step S109).

ステップS109の後、室外計測部28の計測時間が一定時間経過した場合、つまり拘束通電ON時間が一定時間経過した場合(ステップS110のYes)、ステップS101へ戻り、測定部23は、再び外気温度検知器8が検知した外気温度の信号を取得する(ステップS101)。   After step S109, when the measurement time of the outdoor measurement unit 28 has elapsed for a certain period of time, that is, when the constraint energization ON time has elapsed for a certain period of time (Yes in step S110), the process returns to step S101. A signal of the outside air temperature detected by the detector 8 is acquired (step S101).

一方、判定部26が、予測外気温度が現在の外気温度よりも大きくないと判定した場合、つまり、外気温度が上昇傾向にないと予測した場合(ステップS103のNo)、室外通信部21は、室内制御装置10の室内通信部11に給電OFF信号を送信し(ステップS104)、電源管理部22は、室外機2への給電をOFFする(ステップS105)。このとき、駆動部27は、拘束通電をONしていたらOFFする。   On the other hand, when the determination unit 26 determines that the predicted outside air temperature is not higher than the current outside air temperature, that is, when the outside air temperature is predicted not to increase (No in step S103), the outdoor communication unit 21 A power supply OFF signal is transmitted to the indoor communication unit 11 of the indoor control device 10 (step S104), and the power management unit 22 turns off the power supply to the outdoor unit 2 (step S105). At this time, the drive unit 27 is turned off if the restraint energization is turned on.

図6に示すように、室内通信部11は、室外通信部21から給電OFF信号を受信した場合(ステップS201のYes)、室内計測部12は、時間の計測を開始する(ステップS202)。
ステップS202の後、室内計測部12の計測時間が一定時間経過した場合、つまり室外機2への給電がOFFされてから一定時間経過した場合(ステップS203のYes)、室内通信部11は、室外制御装置20の室外通信部21に給電ON信号を送信し(ステップS204)、ステップS201へ戻る。
As illustrated in FIG. 6, when the indoor communication unit 11 receives a power supply OFF signal from the outdoor communication unit 21 (Yes in step S201), the indoor measurement unit 12 starts measuring time (step S202).
After step S202, if the measurement time of the indoor measurement unit 12 has elapsed for a certain period of time, that is, if a certain period of time has elapsed since the power supply to the outdoor unit 2 was turned off (Yes in step S203), the indoor communication unit 11 A power ON signal is transmitted to the outdoor communication unit 21 of the control device 20 (step S204), and the process returns to step S201.

図5に示すように、ステップS105の後、室外通信部21は、室内通信部11から給電ON信号を受信した場合(ステップS106のYes)、電源管理部22は、室外機2への給電をONし(ステップS107)、ステップS101へ戻り、測定部23は、再び外気温度検知器8が検知した外気温度の信号を取得する(ステップS101)。   As shown in FIG. 5, after step S105, when the outdoor communication unit 21 receives a power supply ON signal from the indoor communication unit 11 (Yes in step S106), the power management unit 22 supplies power to the outdoor unit 2. It turns ON (step S107), it returns to step S101, and the measurement part 23 acquires the signal of the outside temperature which the outside temperature detector 8 detected again (step S101).

以上、本実施の形態に係る空気調和装置100によれば、圧縮機3の運転停止時において、室外制御装置20は、現在の外気温度を取得し、現在の外気温度と記憶部24に記憶されている過去の外気温度とから、未来の外気温度である予測外気温度を算出する。そして、予測外気温度が現在の外気温度よりも大きい、つまり外気温度が上昇傾向にあると予測した場合、室外制御装置20は、時間の計測を開始し、拘束通電をONする。一方、予測外気温度が現在の外気温度よりも大きくない、つまり外気温度が上昇傾向にないと予測した場合、室外制御装置20は、室内制御装置10へ給電OFF信号を送信して、室外機2への給電をOFFする。室内制御装置10は、室外制御装置20から給電OFF信号を受信した場合は時間の計測を開始し、計測時間が一定時間経過した場合は室外制御装置20へ給電ON信号を送信する。室外制御装置20は、室外制御装置20から給電ON信号を受信した場合は室外機2への給電をONして、再び現在の外気温度を取得する。   As described above, according to the air conditioner 100 according to the present embodiment, when the compressor 3 is stopped, the outdoor control device 20 acquires the current outside air temperature and stores the current outside air temperature and the storage unit 24. The predicted outside air temperature which is the future outside air temperature is calculated from the past outside air temperature. When the predicted outside air temperature is larger than the current outside air temperature, that is, when it is predicted that the outside air temperature tends to increase, the outdoor control device 20 starts measuring time and turns on the energization. On the other hand, when it is predicted that the predicted outside air temperature is not higher than the current outside air temperature, that is, the outside air temperature does not tend to increase, the outdoor control device 20 transmits a power supply OFF signal to the indoor control device 10 and the outdoor unit 2 Turn off the power supply. The indoor control device 10 starts measuring time when a power supply OFF signal is received from the outdoor control device 20, and transmits a power supply ON signal to the outdoor control device 20 when the measurement time has passed for a certain time. When the outdoor control device 20 receives a power supply ON signal from the outdoor control device 20, the outdoor control device 20 turns on the power supply to the outdoor unit 2 and acquires the current outdoor temperature again.

このように、室外制御装置20は、圧縮機3の加熱を行わない期間は、室外機2への給電をOFFし、室外機2が給電OFF時に、室内制御装置10から給電ON信号を受信した場合は室外機2への給電をONし、圧縮機3の加熱の要否を判断し、圧縮機3の加熱が必要でないと判定した場合、室外機2への給電をOFFする。そのため、室内制御装置10から給電ON信号を受信するまで室外機への給電をOFFにすることができ、省エネ性能を向上させることができる。   As described above, the outdoor control device 20 turns off the power supply to the outdoor unit 2 during a period when the compressor 3 is not heated, and receives the power supply ON signal from the indoor control device 10 when the outdoor unit 2 is turned off. In this case, the power supply to the outdoor unit 2 is turned on, the necessity of heating of the compressor 3 is determined, and when it is determined that the compressor 3 is not required to be heated, the power supply to the outdoor unit 2 is turned off. Therefore, the power supply to the outdoor unit can be turned off until the power supply ON signal is received from the indoor control device 10, and the energy saving performance can be improved.

1 室内機、2 室外機、3 圧縮機、4 流路切替弁、5 室内熱交換器、6 絞り装置、7 室外熱交換器、8 外気温度検知器、10 室内制御装置、11 室内通信部、12 室内計測部、20 室外制御装置、21 室外通信部、22 電源管理部、23 測定部、24 記憶部、25 演算部、26 判定部、27 駆動部、28 室外計測部、100 空気調和装置。   1 indoor unit, 2 outdoor unit, 3 compressor, 4 flow path switching valve, 5 indoor heat exchanger, 6 expansion device, 7 outdoor heat exchanger, 8 outdoor temperature detector, 10 indoor control device, 11 indoor communication unit, DESCRIPTION OF SYMBOLS 12 Indoor measurement part, 20 Outdoor control apparatus, 21 Outdoor communication part, 22 Power supply management part, 23 Measurement part, 24 Storage part, 25 Calculation part, 26 Determination part, 27 Drive part, 28 Outdoor measurement part, 100 Air conditioning apparatus.

Claims (4)

圧縮機と、外気温度を検知する外気温度検知器とを有する室外機と、
外気温度に応じて拘束通電する室外制御装置と、
前記室外制御装置に給電ON信号を送信する室内制御装置と、を備え、
前記圧縮機の運転停止時において、
前記室外制御装置は、
一定時間毎に前記外気温度検知器が検知した外気温度を記憶する記憶部を有し、
前記室内制御装置から給電ON信号を受信したら、前記室外機への給電をONし、現在の外気温度と記憶部に記憶された外気温度とに応じて前記圧縮機の加熱が必要か否かを判定する加熱要否判定を行い、
前記圧縮機の加熱が必要であると判定した場合、拘束通電を行い、前記圧縮機の加熱が必要でないと判定した場合、前記室外機への給電を停止するものである
空気調和装置。
An outdoor unit having a compressor and an outside air temperature detector for detecting outside air temperature;
An outdoor control device that performs energization restraint according to the outside air temperature;
An indoor control device that transmits a power ON signal to the outdoor control device,
When the compressor is shut down,
The outdoor control device includes:
A storage unit for storing the outside air temperature detected by the outside air temperature detector at regular intervals;
When the power supply ON signal is received from the indoor control device, the power supply to the outdoor unit is turned on, and whether or not the compressor needs to be heated according to the current outside air temperature and the outside air temperature stored in the storage unit. To determine whether heating is necessary,
An air conditioner that performs restraint energization when it is determined that heating of the compressor is necessary, and stops power supply to the outdoor unit when it is determined that heating of the compressor is not necessary.
前記室内制御装置は、
前記室外制御装置が前記室外機への給電をOFF時に送信する給電OFF信号を受信したら時間の計測を開始し、計測時間が一定時間経過した後に前記室外制御装置に給電ON信号を送信するものである
請求項1に記載の空気調和装置。
The indoor control device
When the outdoor control device receives a power supply OFF signal that is transmitted when power supply to the outdoor unit is OFF, time measurement is started, and a power supply ON signal is transmitted to the outdoor control device after a predetermined time has elapsed. The air conditioning apparatus according to claim 1.
前記室外制御装置は、
前記室内制御装置から給電ON信号を受信する通信部と、
前記通信部が給電ON信号を受信したら前記室外機への給電をONする電源管理部と、
前記外気温度検知器が検知した外気温度の信号を取得する測定部と、
前記測定部が取得した外気温度を記憶する前記記憶部と、
前記測定部が取得した外気温度と前記記憶部に記憶されている過去の外気温度とから一定時間経過後の予測外気温度を演算する演算部と、
前記予測外気温度が、前記測定部が取得した外気温度よりも大きいか否かを判定する前記加熱要否判定を行う判定部と、
前記判定部が、前記予測外気温度が前記測定部が取得した外気温度よりも大きいと判定した場合、拘束通電をONする駆動部と、を備え、
前記電源管理部は、前記判定部が、前記予測外気温度が前記測定部が取得した外気温度以下であると判定した場合、前記室外機への給電をOFFするものである
請求項1または2に記載の空気調和装置。
The outdoor control device includes:
A communication unit that receives a power ON signal from the indoor control device;
A power management unit that turns on power feeding to the outdoor unit when the communication unit receives a power feeding ON signal;
A measurement unit for acquiring a signal of the outside air temperature detected by the outside air temperature detector;
The storage unit for storing the outside air temperature acquired by the measurement unit;
A calculation unit that calculates a predicted outside air temperature after a predetermined time has elapsed from the outside air temperature acquired by the measurement unit and the past outside air temperature stored in the storage unit;
A determination unit that performs the heating necessity determination to determine whether the predicted outside air temperature is greater than the outside air temperature acquired by the measurement unit;
A drive unit that turns on restraint energization when the determination unit determines that the predicted outside air temperature is greater than the outside air temperature acquired by the measurement unit;
The power supply management unit is configured to turn off the power supply to the outdoor unit when the determination unit determines that the predicted outside air temperature is equal to or lower than the outside air temperature acquired by the measurement unit. The air conditioning apparatus described.
前記室外制御装置は、
拘束通電をON時に時間の計測を開始し、計測時間が一定時間経過した後に前記加熱要否判定を行うものである
請求項1〜3のいずれか一項に記載の空気調和装置。
The outdoor control device includes:
The air conditioning apparatus according to any one of claims 1 to 3, wherein time measurement is started when restraint energization is ON, and the necessity of heating is determined after a predetermined time has elapsed.
JP2018534219A 2016-08-16 2016-08-16 Air conditioner Active JP6576566B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/073870 WO2018033955A1 (en) 2016-08-16 2016-08-16 Air conditioning device

Publications (2)

Publication Number Publication Date
JPWO2018033955A1 JPWO2018033955A1 (en) 2018-11-22
JP6576566B2 true JP6576566B2 (en) 2019-09-18

Family

ID=61196491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018534219A Active JP6576566B2 (en) 2016-08-16 2016-08-16 Air conditioner

Country Status (6)

Country Link
EP (1) EP3321603B1 (en)
JP (1) JP6576566B2 (en)
CN (1) CN109564044B (en)
AU (1) AU2016420272B2 (en)
SG (1) SG11201810217QA (en)
WO (1) WO2018033955A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108548281B (en) * 2018-06-12 2020-06-26 海信(山东)空调有限公司 Control method of air conditioner
JP7112037B2 (en) * 2019-06-24 2022-08-03 三菱電機株式会社 Air conditioners and air conditioning systems
CN112984881B (en) * 2021-03-05 2023-03-24 四川长虹空调有限公司 Liquid return judgment method and system for compressor of refrigeration system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000193325A (en) * 1998-12-25 2000-07-14 Matsushita Electric Ind Co Ltd Air conditioner equipment
JP2007163106A (en) * 2005-12-16 2007-06-28 Daikin Ind Ltd Air conditioner
CN101501413B (en) * 2006-08-11 2010-07-28 大金工业株式会社 Refrigeration device
JP4111246B2 (en) * 2006-08-11 2008-07-02 ダイキン工業株式会社 Refrigeration equipment
JP2008286419A (en) * 2007-05-15 2008-11-27 Panasonic Corp Air conditioning device
JP2012241916A (en) * 2011-05-16 2012-12-10 Fujitsu General Ltd Air conditioner
JP2013204979A (en) 2012-03-29 2013-10-07 Fujitsu General Ltd Air conditioner
JP5774210B2 (en) * 2012-04-27 2015-09-09 三菱電機株式会社 Air conditioner
JP6091226B2 (en) * 2013-01-29 2017-03-08 三菱電機株式会社 Refrigeration cycle equipment
JP6177161B2 (en) * 2014-02-26 2017-08-09 三菱電機株式会社 Outdoor unit and air conditioner using the same
CN105466095B (en) * 2016-01-25 2018-04-20 珠海格力电器股份有限公司 Electric heating control method, device and system for low-temperature refrigeration air conditioning unit

Also Published As

Publication number Publication date
CN109564044B (en) 2020-08-21
WO2018033955A1 (en) 2018-02-22
JPWO2018033955A1 (en) 2018-11-22
SG11201810217QA (en) 2019-03-28
EP3321603A1 (en) 2018-05-16
EP3321603A4 (en) 2018-05-30
AU2016420272B2 (en) 2019-07-04
CN109564044A (en) 2019-04-02
EP3321603B1 (en) 2019-05-22
AU2016420272A1 (en) 2018-12-13

Similar Documents

Publication Publication Date Title
CN108731224B (en) Control method, device and equipment of fixed-frequency air conditioning system and fixed-frequency air conditioning system
JP5471873B2 (en) Air conditioner
US8720212B2 (en) Air-conditioning apparatus
EP2960598A1 (en) Air conditioner and method for controlling air conditioner
CN104482633B (en) Multi-online air-conditioning system and its control method
JP6576566B2 (en) Air conditioner
KR102085832B1 (en) Air Conditioner And Control Method For The Same
CN110446894B (en) Outdoor unit of air conditioner
JP4606394B2 (en) Refrigerant leak detection method, refrigerant leak detection device, and air conditioner
WO2018179137A1 (en) Air conditioning device
US20120117995A1 (en) Energy Saving Device And Method For Cooling And Heating Apparatus
JP2014126309A (en) Air conditioner
WO2015075882A1 (en) Heat pump cycle device
JP2011117683A (en) Air conditioner and control method thereof
JP2017180911A (en) Heat pump type heat source device
US9664426B2 (en) System and method for improving efficiency of a refrigerant based system
JP6615371B2 (en) Refrigeration cycle equipment
JP2013108672A (en) Air conditioner with crankcase heater
CN109790984B (en) System for air conditioning and hot water supply
JP5012102B2 (en) Vending machine control equipment
JP6394813B2 (en) Refrigeration cycle system
JP2008249240A (en) Condensing unit and refrigerating device comprising the same
JPH10170052A (en) Air conditioner
WO2021205576A1 (en) Air conditioning apparatus
JPH07120080A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190820

R150 Certificate of patent or registration of utility model

Ref document number: 6576566

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250