JP4606394B2 - Refrigerant leak detection method, refrigerant leak detection device, and air conditioner - Google Patents

Refrigerant leak detection method, refrigerant leak detection device, and air conditioner Download PDF

Info

Publication number
JP4606394B2
JP4606394B2 JP2006234301A JP2006234301A JP4606394B2 JP 4606394 B2 JP4606394 B2 JP 4606394B2 JP 2006234301 A JP2006234301 A JP 2006234301A JP 2006234301 A JP2006234301 A JP 2006234301A JP 4606394 B2 JP4606394 B2 JP 4606394B2
Authority
JP
Japan
Prior art keywords
temperature
refrigerant
heat exchanger
refrigerant circuit
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006234301A
Other languages
Japanese (ja)
Other versions
JP2008057837A (en
Inventor
元士 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2006234301A priority Critical patent/JP4606394B2/en
Publication of JP2008057837A publication Critical patent/JP2008057837A/en
Application granted granted Critical
Publication of JP4606394B2 publication Critical patent/JP4606394B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、長期間に亘って正確に安定して冷媒の漏れを検出することができる冷媒漏洩検出方法、当該方法を実行する冷媒漏洩検出装置及び当該装置を備える空気調和機に関する。   The present invention relates to a refrigerant leakage detection method capable of detecting refrigerant leakage accurately and stably over a long period of time, a refrigerant leakage detection device that executes the method, and an air conditioner including the device.

従来、室内機及び室外機が分離されている室内外分離型の空気調和機は、冷媒としてハイドロフルオロカーボン(以下、「HFC」という。)物質が用いられており、HFC物質には、R32又はR152aなどの燃焼性を有するものがある。   Conventionally, in an indoor / outdoor separation type air conditioner in which an indoor unit and an outdoor unit are separated, a hydrofluorocarbon (hereinafter referred to as “HFC”) material is used as a refrigerant, and R32 or R152a is used as the HFC material. Some have flammability.

従って、例えば、空気調和機内のパイプが破損して当該冷媒が漏洩した場合、漏れた冷媒が発火する危険性があるため、空気調和機は、冷媒漏洩の検出方法又は冷媒漏洩の検出装置を用いることが要望されていた。   Therefore, for example, when the pipe in the air conditioner breaks and the refrigerant leaks, the leaked refrigerant may ignite, so the air conditioner uses the refrigerant leak detection method or the refrigerant leak detection device. It was requested.

そこで、従来、冷媒センサを取付け、該冷媒センサが冷媒回路から漏れた冷媒を検出するようにしてある空気調和機が提案された(例えば、特許文献1)。   Therefore, conventionally, an air conditioner has been proposed in which a refrigerant sensor is attached and the refrigerant sensor detects refrigerant leaking from the refrigerant circuit (for example, Patent Document 1).

しかしながら、特許文献1に記載された発明で用いる冷媒センサは、経年変化し易いため、長時間の使用により冷媒の漏洩を誤検出してしまうという問題があった。また、冷媒センサは高価であるため、冷媒センサを取付けた空気調和機は、製造コストが高騰して市場での受け入れが困難になるという問題がある。   However, since the refrigerant sensor used in the invention described in Patent Document 1 is likely to change over time, there is a problem in that refrigerant leakage is erroneously detected due to long-time use. In addition, since the refrigerant sensor is expensive, an air conditioner equipped with the refrigerant sensor has a problem that the manufacturing cost increases and it is difficult to accept it in the market.

そこで、冷媒センサの代わりに温度センサを取付け、熱交換器の温度の上昇又は降下を温度センサが検出することにより、冷媒回路からの冷媒の漏洩を検出する空気調和機が提案された(例えば、特許文献2)。即ち、特許文献2に記載された発明は、熱交換器の温度の上昇又は降下の要因となる冷媒が冷媒回路内に充足している場合は冷媒により熱交換器の温度が上昇又は降下していく一方、冷媒が冷媒回路内で不足している場合は熱交換器の温度が上昇又は降下しにくくなることから、熱交換器の温度の上昇又は降下に基づき、冷媒回路からの冷媒の漏洩を判定しようとするものである。また、特許文献2に記載された発明は、高価な冷媒センサではなく安価な温度センサを用いて空気調和機の製造コストの高騰を抑制でき、また温度センサは冷媒センサに比し経年変化しにくく、長時間の使用でも冷媒回路からの冷媒の漏洩を検出することができる点で市場の要望に応じたものである。
特開平8−327195号公報 特開2000−81258号公報
Then, the air conditioner which detects the leakage of the refrigerant | coolant from a refrigerant circuit was proposed by attaching a temperature sensor instead of a refrigerant | coolant sensor, and a temperature sensor detecting the rise or fall of the temperature of a heat exchanger (for example, Patent Document 2). That is, in the invention described in Patent Document 2, when the refrigerant that causes an increase or decrease in the temperature of the heat exchanger is filled in the refrigerant circuit, the temperature of the heat exchanger is increased or decreased by the refrigerant. On the other hand, if there is a shortage of refrigerant in the refrigerant circuit, the temperature of the heat exchanger will not rise or fall, so the refrigerant leaks from the refrigerant circuit based on the rise or fall of the heat exchanger temperature. It is something to be judged. The invention described in Patent Document 2 can suppress an increase in the manufacturing cost of the air conditioner by using an inexpensive temperature sensor instead of an expensive refrigerant sensor, and the temperature sensor is less likely to change over time than the refrigerant sensor. This is in response to market demands in that leakage of refrigerant from the refrigerant circuit can be detected even after long-term use.
JP-A-8-327195 JP 2000-81258 A

しかしながら、熱交換器の温度は、該熱交換器を含む冷媒回路周辺の温度に影響を受けて変化する場合もあるから、例えば、冷媒が冷媒回路内で充足しているにもかかわらず、冷媒回路周辺の熱が熱交換器に伝わり熱交換器の温度の上昇又は降下を妨げた場合、特許文献2に記載された発明にあっては、実際には冷媒漏れが生じていないのに、冷媒の漏れが生じていると誤検出してしまう問題がある。   However, since the temperature of the heat exchanger may change depending on the temperature around the refrigerant circuit including the heat exchanger, for example, the refrigerant is satisfied even though the refrigerant is satisfied in the refrigerant circuit. When the heat around the circuit is transferred to the heat exchanger and prevents the temperature of the heat exchanger from rising or falling, in the invention described in Patent Document 2, there is actually no refrigerant leakage, but the refrigerant There is a problem in that it is erroneously detected that the leakage is occurring.

本発明はこのような事情に鑑みてなされたものであって、その目的とするところは、所定時間内での熱交換器の温度範囲、並びに、所定時間到達時の熱交換器の温度及び冷媒回路周辺の温度の温度差に基づいて冷媒回路からの冷媒の漏れを検出することにより、製造コストを抑制しつつ、長時間に亘って正確に安定して冷媒の漏れを検出することができる冷媒漏洩検出方法、当該方法を実行する冷媒漏洩検出装置及び当該装置を備える空気調和機を提供することにある。   The present invention has been made in view of such circumstances. The object of the present invention is to set the temperature range of the heat exchanger within a predetermined time, the temperature of the heat exchanger when the predetermined time is reached, and the refrigerant. Refrigerant capable of accurately and stably detecting refrigerant leakage over a long period of time while suppressing manufacturing cost by detecting refrigerant leakage from the refrigerant circuit based on the temperature difference between the temperatures around the circuit It is providing the leak detection method, the refrigerant | coolant leak detection apparatus which performs the said method, and an air conditioner provided with the said apparatus.

上記課題を解決するために本発明に係る冷媒漏洩検出方法は、熱交換器を含む冷媒回路からの冷媒の漏洩を検出する方法において、起動時からの所定時間内で前記熱交換器の温度を繰り返し検出し、繰り返し検出した前記熱交換器の温度の最高温度と最低温度とから温度範囲を算出し、算出した前記温度範囲が所定範囲内と判定した場合、前記冷媒回路から冷媒が漏洩していると判断することを特徴とする。
また、本発明に係る冷媒漏洩検出方法は、熱交換器を含む冷媒回路からの冷媒の漏洩を検出する方法において、起動時からの所定時間内で前記熱交換器の温度を繰り返し検出し、繰り返し検出した前記熱交換器の温度の最高温度と最低温度とから温度範囲を算出し、所定時間到達時に、前記冷媒回路周辺の温度を検出して、前記熱交換器及び冷媒回路周辺の温度差を算出し、算出した前記温度範囲が所定範囲内であって、かつ、算出した前記温度差が所定値を超えていないと判定した場合、前記冷媒回路から冷媒が漏洩していると判断することを特徴とする。
Refrigerant leakage detection method according to the present invention in order to solve the above described problems is the method for detecting refrigerant leakage from a refrigerant circuit including a heat exchanger, the heat exchanger in the time or these predetermined time starting temperature When the temperature range is calculated from the maximum temperature and the minimum temperature of the heat exchanger that are repeatedly detected, and the calculated temperature range is determined to be within the predetermined range, the refrigerant leaks from the refrigerant circuit. It is judged that it is.
Furthermore, refrigerant leakage detection method according to the present invention is a method for detecting refrigerant leakage from a refrigerant circuit including a heat exchanger, repeatedly detects the temperature of the heat exchanger within a predetermined time when starting or al, A temperature range is calculated from the highest temperature and the lowest temperature of the heat exchanger repeatedly detected, and when the temperature reaches a predetermined time, the temperature around the refrigerant circuit is detected, and the temperature difference between the heat exchanger and the refrigerant circuit is detected. And when it is determined that the calculated temperature range is within a predetermined range and the calculated temperature difference does not exceed a predetermined value, it is determined that the refrigerant is leaking from the refrigerant circuit. It is characterized by.

また、本発明に係る冷媒漏洩検出装置は、熱交換器を含む冷媒回路と、該冷媒回路からの冷媒の漏洩を検出する漏洩検出手段とを備える冷媒漏洩検出装置において、前記熱交換器の温度を検出する温度検出手段と、計時手段と、起動時からの所定時間内に前記温度検出手段で繰り返し検出した温度の最高温度と最低温度とから温度範囲を算出する算出手段とを備え、前記漏洩検出手段は、前記算出手段で算出した前記温度範囲が所定範囲内と判定した場合、前記冷媒回路から冷媒が漏洩している旨を示す信号を出力するように構成してあることを特徴とする。
また、本発明に係る冷媒漏洩検出装置は、熱交換器を含む冷媒回路と、該冷媒回路からの冷媒の漏洩を検出する漏洩検出手段とを備える冷媒漏洩検出装置において、前記熱交換器の温度を検出する第1温度検出手段と、前記冷媒回路周辺の温度を検出する第2温度検出手段と、計時手段と、起動時からの所定時間内に前記第1温度検出手段で繰り返し検出した温度の最高温度と最低温度とから前記熱交換器の温度範囲を算出する算出手段と、起動時からの所定時間到達時に前記第1温度検出手段で検出した前記熱交換器の温度及び前記第2温度検出手段で検出した前記冷媒回路周辺の温度の温度差が所定値を超えたか否かを判定する判定手段とを備え、前記漏洩検出手段は、前記算出手段で算出した温度範囲が所定範囲内であって、前記温度差が所定値を超えていないと判定した場合、前記冷媒回路から冷媒が漏洩している旨を示す信号を出力するようにしてあることを特徴とする。
The refrigerant leakage detection device according to the present invention is a refrigerant leakage detection device comprising a refrigerant circuit including a heat exchanger and leakage detection means for detecting leakage of the refrigerant from the refrigerant circuit, the temperature of the heat exchanger. comprising a temperature detection means for detecting, timing means, and calculating means for calculating the temperature range of the maximum and minimum temperatures of the repeated detected temperature by said temperature detecting means to start or these within a predetermined time, the The leakage detection unit is configured to output a signal indicating that the refrigerant is leaking from the refrigerant circuit when the temperature range calculated by the calculation unit is determined to be within a predetermined range. To do.
The refrigerant leakage detection device according to the present invention is a refrigerant leakage detection device comprising a refrigerant circuit including a heat exchanger and leakage detection means for detecting leakage of the refrigerant from the refrigerant circuit, the temperature of the heat exchanger. a first temperature detecting means for detecting a second temperature detecting means for detecting the temperature around the refrigerant circuit, timer means and repeatedly detected temperature by said first temperature detecting means when starting or these within a predetermined time maximum temperature and a calculation means for calculating the temperature range of the heat exchanger and a minimum temperature, the temperature of the heat exchanger detected by the first temperature detecting means upon reaching a predetermined time at or we start and the second Determining means for determining whether or not a temperature difference between the temperatures around the refrigerant circuit detected by the temperature detecting means exceeds a predetermined value, and the leakage detecting means has a temperature range calculated by the calculating means within a predetermined range. Where the temperature If a is determined not to exceed a predetermined value, characterized in that the refrigerant from the refrigerant circuit are to output a signal indicating that is leaking.

更にまた、本発明に係る空気調和機は、前述の冷媒漏洩検出装置と、該冷媒漏洩検出装置から出力された冷媒が漏洩している旨を示す信号に応じて、運転を停止する手段とを備えることを特徴とする。 Furthermore, the air conditioner according to the present invention includes the refrigerant leakage detection device described above and means for stopping operation in response to a signal indicating that the refrigerant output from the refrigerant leakage detection device is leaking. It is characterized by providing.

本発明にあっては、熱交換器の温度範囲が所定範囲内であって、所定時間到達時に熱交換器と冷媒回路周辺の温度との温度差が所定値を超えていない場合、いずれも冷媒が冷媒回路内で不足して熱交換器の温度の上昇又は降下が生じにくくなっている場合に発生する現象に基づくものであるから、冷媒が漏洩していると判定する。一方、熱交換器の温度範囲が所定範囲より大きいか、又は、所定時間到達時に熱交換器と冷媒回路周辺の温度との温度差が所定値を超えているかの何れかに該当する場合、少なくとも一方は冷媒が冷媒回路内で不足している場合に発生する現象ではないから、冷媒が漏洩しているとは判定しないようにして、冷媒の漏洩の誤検出を回避する。また、冷媒の漏洩の判定に温度センサを用いるので、冷媒センサに比し長時間の使用でも冷媒回路からの冷媒の漏洩を安定して検出する。また、冷媒の漏洩の判定に安価な温度センサを用いるので、高価な冷媒センサを用いる場合に比し空気調和機の製造コストの高騰を抑制する。   In the present invention, if the temperature range of the heat exchanger is within the predetermined range and the temperature difference between the heat exchanger and the temperature around the refrigerant circuit does not exceed the predetermined value when the predetermined time is reached, both refrigerants Is based on a phenomenon that occurs when the temperature of the heat exchanger is less likely to increase or decrease due to shortage in the refrigerant circuit, it is determined that the refrigerant is leaking. On the other hand, if the temperature range of the heat exchanger is larger than the predetermined range, or if the temperature difference between the heat exchanger and the temperature around the refrigerant circuit exceeds a predetermined value when the predetermined time is reached, at least One is not a phenomenon that occurs when there is a shortage of refrigerant in the refrigerant circuit, so that it is not determined that the refrigerant is leaking to avoid erroneous detection of refrigerant leakage. Further, since the temperature sensor is used for determining the leakage of the refrigerant, the leakage of the refrigerant from the refrigerant circuit is stably detected even when used for a long time as compared with the refrigerant sensor. In addition, since an inexpensive temperature sensor is used to determine the leakage of the refrigerant, an increase in the manufacturing cost of the air conditioner is suppressed as compared with the case where an expensive refrigerant sensor is used.

本発明にあっては、冷媒回路周辺の温度の影響による誤検出をすることなく、冷媒の漏れを正確に検出することができる。また、本発明にあっては、経年変化の少ない温度センサを用いて空気調和機を長時間使用した場合でも、冷媒回路からの冷媒の漏洩を安定して検出することができる。更にまた、本発明にあっては、安価な温度センサを用いて空気調和機の製造コストを抑制して市場での受け入れを円滑にできる。   In the present invention, the leakage of the refrigerant can be accurately detected without erroneous detection due to the influence of the temperature around the refrigerant circuit. Moreover, in this invention, even when an air conditioner is used for a long time using a temperature sensor with little secular change, the leakage of the refrigerant from the refrigerant circuit can be detected stably. Furthermore, in the present invention, an inexpensive temperature sensor can be used to suppress the manufacturing cost of the air conditioner and smoothly accept it in the market.

以下、本発明に係る冷媒漏洩検出方法、冷媒漏洩検出装置及び空気調和機について、実施の形態を示す図面に基づいて説明する。図1は本発明に係る空気調和機の構成を示す模式図、図2は制御部の構成を示す模式図である。   Hereinafter, a refrigerant leakage detection method, a refrigerant leakage detection device, and an air conditioner according to the present invention will be described based on the drawings showing embodiments. FIG. 1 is a schematic diagram showing a configuration of an air conditioner according to the present invention, and FIG. 2 is a schematic diagram showing a configuration of a control unit.

図1中、空気調和機は冷媒回路1及び制御部2からなる冷媒漏洩検出装置を備えている。冷媒回路1は、室内側熱交換器11、膨張弁12、室外側熱交換器13、4路切換弁14及び圧縮機15から構成され、これらが順次環状にパイプ16で配管接続されている。制御部2は、前記冷媒回路1を制御するとともに、室内側熱交換器11及び/又は室外側熱交換器13に取り付けられた温度センサ21並びに冷媒回路1周辺に配置された温度センサ22に接続し、接続した温度センサ21等が検出した温度の信号を受け付ける。   In FIG. 1, the air conditioner includes a refrigerant leakage detection device including a refrigerant circuit 1 and a control unit 2. The refrigerant circuit 1 is composed of an indoor heat exchanger 11, an expansion valve 12, an outdoor heat exchanger 13, a four-way switching valve 14, and a compressor 15, which are sequentially piped by a pipe 16. The control unit 2 controls the refrigerant circuit 1 and is connected to a temperature sensor 21 attached to the indoor heat exchanger 11 and / or the outdoor heat exchanger 13 and a temperature sensor 22 arranged around the refrigerant circuit 1. Then, a temperature signal detected by the connected temperature sensor 21 or the like is received.

ここで、冷媒回路1の動作について説明する。空気調和機で冷房運転をする場合、矢印Aに示すように、パイプ16内の冷媒は、圧縮機15により高圧に圧縮(気化)され、4路切換弁14を介して室外側熱交換器13へ搬送され、室外側熱交換器13で室外空気へ放熱しながら圧縮(液化)し、膨張弁12へ搬送され、膨張弁12で膨張された後、パイプ16を介して室内側熱交換器11へ搬送され、更に室内側熱交換器11で室内空気を吸熱しながら蒸発(気化)し、4路切換弁14を介して圧縮機15へ搬送され、圧縮機15で再び圧縮(気化)される。そして、このような冷媒の循環によって生成された冷気は、室内側熱交換器11近傍に配置された送風ファン(図示せず、以下同じ)により室内へ送られ、室内空気を冷やす。   Here, the operation of the refrigerant circuit 1 will be described. When the cooling operation is performed by the air conditioner, as indicated by an arrow A, the refrigerant in the pipe 16 is compressed (vaporized) to a high pressure by the compressor 15, and the outdoor heat exchanger 13 is passed through the four-way switching valve 14. The air is compressed (liquefied) while dissipating heat to the outdoor air in the outdoor heat exchanger 13, is transferred to the expansion valve 12, is expanded by the expansion valve 12, and is then expanded through the pipe 16 to the indoor heat exchanger 11. Further, the room-side heat exchanger 11 evaporates (vaporizes) the room air while absorbing heat, is conveyed to the compressor 15 via the four-way switching valve 14, and is compressed (vaporized) again by the compressor 15. . And the cold air produced | generated by the circulation of such a refrigerant | coolant is sent indoors by the ventilation fan (not shown, and it is the same below) arrange | positioned in the indoor side heat exchanger 11 vicinity, and cools indoor air.

空気調和機で暖房運転をする場合、矢印Bに示すように、パイプ16内の冷媒は、圧縮機15により高圧に圧縮(気化)され、4路切換弁を介して室内側熱交換器11へ搬送され、室内側熱交換器11で室内空気へ放熱しながら圧縮(液化)し、膨張弁12へ搬送され、膨張弁12で膨張された後、パイプ16を介して室外側熱交換器13へ搬送され、更に室外側熱交換器13で室外空気を吸熱しながら蒸発(気化)し、4路切換弁14を介して圧縮機15へ搬送され、圧縮機15で再び圧縮(気化)される。そして、このような冷媒の循環によって生成された暖気は、室内側熱交換器11近傍に配置された送風ファンにより室内へ送られ、室内空気を暖める。   When heating operation is performed with an air conditioner, as indicated by an arrow B, the refrigerant in the pipe 16 is compressed (vaporized) to a high pressure by the compressor 15 and is transferred to the indoor heat exchanger 11 via the four-way switching valve. It is conveyed, compressed (liquefied) while radiating heat to indoor air in the indoor heat exchanger 11, conveyed to the expansion valve 12, expanded by the expansion valve 12, and then to the outdoor heat exchanger 13 through the pipe 16. Then, the outdoor air heat exchanger 13 evaporates (vaporizes) the outdoor air while absorbing heat, transports it to the compressor 15 via the four-way switching valve 14, and compresses (vaporizes) again with the compressor 15. And the warm air produced | generated by the circulation of such a refrigerant | coolant is sent indoors with the ventilation fan arrange | positioned in the indoor side heat exchanger 11 vicinity, and warms indoor air.

次に、制御部2の構成について説明する。制御部2は、温度センサ21,21,…及び温度センサ22に接続された温度センサインタフェース20と、ROM23と、RAM24と、タイマ25と、操作部26と、表示部27と、CPU28と、これらを接続するバス29とから構成されている。   Next, the configuration of the control unit 2 will be described. The control unit 2 includes a temperature sensor interface 20, a ROM 23, a RAM 24, a timer 25, an operation unit 26, a display unit 27, a CPU 28, and the like connected to the temperature sensors 21, 21,. And a bus 29 for connecting the two.

温度センサインタフェース20は、温度センサ21,21,…及び温度センサ22と接続され、温度センサ21等が検出した温度の信号を受け付け、CPU28へ送る。   The temperature sensor interface 20 is connected to the temperature sensors 21, 21,... And the temperature sensor 22, receives a temperature signal detected by the temperature sensor 21, and sends it to the CPU 28.

温度センサ21,21,…は、例えば、サーミスタであり、室内側熱交換器11及び/又は室外側熱交換器13に取り付けられ、冷媒の蒸発又は圧縮により上昇又は降下する室内側温度交換器11等内部の温度Xを検出し、検出した温度Xを信号に生成して温度センサインタフェース20を介してCPU28へ送る。   The temperature sensors 21, 21,... Are, for example, thermistors, which are attached to the indoor side heat exchanger 11 and / or the outdoor side heat exchanger 13, and rise or fall due to evaporation or compression of the refrigerant. The internal temperature X is detected, and the detected temperature X is generated as a signal and sent to the CPU 28 via the temperature sensor interface 20.

温度センサ22は、例えば、サーミスタであり、冷媒の蒸発又は圧縮に関係なく、上昇又は降下する冷媒回路1周辺の温度Y(空気調和機周辺の温度、室内温度、又は室外温度を含む)を検出し、検出した温度Yを信号に生成して温度センサインタフェース20を介してCPU28へ送る。   The temperature sensor 22 is, for example, a thermistor, and detects the temperature Y around the refrigerant circuit 1 that rises or falls regardless of the evaporation or compression of the refrigerant (including the temperature around the air conditioner, the room temperature, or the outdoor temperature). Then, the detected temperature Y is generated as a signal and sent to the CPU 28 via the temperature sensor interface 20.

ROM23は、例えば、温度インタフェース20を介して受け付けた信号を温度情報に変換する変換プログラム、変換した温度情報から温度範囲を算出する算出プログラム、複数の温度情報から求まる温度差が所定値を超えるか否かを判定する判定プログラムと、温度情報に基づき冷媒回路1から冷媒が漏洩しているか否かを検出する検出プログラムと、空気調和機が備えるハードウェア各部を制御する制御プログラムと、その他各種プログラムとが記憶され、CPU28の読出要求に応じて適宜読み出される。   The ROM 23 is, for example, a conversion program that converts a signal received via the temperature interface 20 into temperature information, a calculation program that calculates a temperature range from the converted temperature information, and whether a temperature difference obtained from a plurality of temperature information exceeds a predetermined value. A determination program for determining whether or not, a detection program for detecting whether or not refrigerant is leaking from the refrigerant circuit 1 based on temperature information, a control program for controlling each part of hardware included in the air conditioner, and other various programs Are stored and read as appropriate in response to a read request from the CPU.

RAM24は、SRAM又はフラッシュメモリ等で構成されており、CPU28によるプログラムの実行時に発生するデータ、例えば、受け付けた時間又は温度の信号、算出された温度範囲、操作部26を介して利用者が入力した所定時間、所定範囲及び所定値等を記憶する。   The RAM 24 is configured by SRAM, flash memory, or the like. Data generated when the CPU 28 executes the program, for example, a received time or temperature signal, a calculated temperature range, and a user input via the operation unit 26. The predetermined time, the predetermined range, the predetermined value, etc. are stored.

タイマ25は、温度範囲を算出し、所定値の判定をするタイミングである所定時間を計時するものであり、CPU28から計時開始指示を受け、受けた指示により計時開始から時間を計時し、計時した時間の信号をCPU28へ順次送る。   The timer 25 calculates a temperature range and measures a predetermined time which is a timing for determining a predetermined value. The timer 25 receives a timing start instruction from the CPU 28, counts the time from the timing start according to the received instruction, and measures the time. A time signal is sequentially sent to the CPU.

操作部26は、利用者からの操作指示を受け付けるための各種操作ボタンを備えており、冷房運転又は暖房運転の選択、目標温度の設定、風向の変更、所定時間の設定、所定範囲の設定、所定値の設定等の指示を受け付け、RAM24へ送る。尚、操作部26は、空気調和機本体に設置されるのみならず、別体が有線で接続されるか、又は無線でリモートコントロールできるようにしてもよい。   The operation unit 26 includes various operation buttons for receiving operation instructions from a user, and selects a cooling operation or a heating operation, setting a target temperature, changing a wind direction, setting a predetermined time, setting a predetermined range, An instruction for setting a predetermined value is received and sent to the RAM 24. The operation unit 26 may be installed not only in the air conditioner main body but also separately connected by wire, or may be remotely controlled by radio.

表示部27は、液晶ディスプレイを備えており、空気調和機の運転状況、操作部26を介して設定された設定情報、利用者に対して報知すべき情報(例えば、冷媒が冷媒回路1から漏洩している旨の警告)等を表示する。   The display unit 27 includes a liquid crystal display. The operating state of the air conditioner, setting information set via the operation unit 26, information to be notified to the user (for example, refrigerant leaks from the refrigerant circuit 1). Warning) and the like.

CPU28は、ROM23から読み出した制御プログラムにより制御部2が構成するハードウェア各部を制御するのみならず、冷媒回路1が構成するハードウェア各部を制御して冷媒が冷媒回路1内を矢印A又はB方向へ循環するように制御する。また、CPU28は、ROM23から読み出した変換プログラムにより温度インタフェース20で受け付けた信号を温度情報に変換し、算出プログラムにより温度情報から温度範囲を算出し、判定プログラムにより複数の温度情報から求まる差が所定値を超えるか否かを判定し、検出プログラムにより冷媒が冷媒回路1から漏洩しているか否かを検出する処理を実行する。   The CPU 28 controls not only the hardware components configured by the control unit 2 by the control program read from the ROM 23, but also controls the hardware components configured by the refrigerant circuit 1 so that the refrigerant passes through the refrigerant circuit 1 with the arrows A or B. Control to circulate in the direction. Further, the CPU 28 converts a signal received by the temperature interface 20 into temperature information by the conversion program read from the ROM 23, calculates a temperature range from the temperature information by the calculation program, and a difference obtained from the plurality of temperature information by the determination program is predetermined. It is determined whether or not the value is exceeded, and processing for detecting whether or not the refrigerant is leaking from the refrigerant circuit 1 is executed by the detection program.

次に、本願発明に係る冷媒漏洩検出方法について説明する。図3は本発明に係る冷媒漏洩検出方法で検出される熱交換器の温度範囲を示すグラフ、図4は本発明に係る冷媒漏洩検出方法で検出される熱交換器及び冷媒回路周辺の温度の温度差を示すグラフである。本実施の形態では、空気調和機を暖房運転で起動した場合を説明する。   Next, the refrigerant leak detection method according to the present invention will be described. FIG. 3 is a graph showing the temperature range of the heat exchanger detected by the refrigerant leak detection method according to the present invention, and FIG. 4 is a graph showing the temperature around the heat exchanger and the refrigerant circuit detected by the refrigerant leak detection method according to the present invention. It is a graph which shows a temperature difference. In the present embodiment, a case where the air conditioner is activated in the heating operation will be described.

空気調和機が冷媒回路1からの冷媒の漏洩なく正常に動作している場合、図3のとおり、起動時(計時開始)t1 から時間t2 までの間、前回運転で室内側熱交換器11内に残留していた液化冷媒が吸熱しながら蒸発(気化)するため、室内側熱交換器11の温度Xは、最低値Xminまで降下する。そして、時間t2 から所定時間到達時t3 までの間、前回運転時に残留した液化冷媒が無くなり、室内側熱交換器11内で冷媒が放熱しながら圧縮(液化)するため、室内側熱交換器11の温度Xは、最高値Xmaxまで上昇する。このように、温度センサ21は、起動時(計時開始)t1 から所定時間到達時t3 までに順次検出した温度Xを信号に生成して温度センサインタフェース20を介してCPU28へ送る。CPU28は、受け付けた信号に基づき温度範囲bを算出する。 When the air conditioner is operating normally without leakage of refrigerant from the refrigerant circuit 1, as shown in FIG. 3, during the previous operation, the indoor heat exchanger from the start (time measurement start) t 1 to the time t 2 Since the liquefied refrigerant remaining in 11 evaporates (vaporizes) while absorbing heat, the temperature X of the indoor heat exchanger 11 drops to the minimum value Xmin. Then, from the time t 2 to the time t 3 when the predetermined time is reached, the liquefied refrigerant remaining at the previous operation disappears, and the refrigerant is compressed (liquefied) while releasing heat in the indoor heat exchanger 11. The temperature X of the vessel 11 rises to the maximum value Xmax. As described above, the temperature sensor 21 generates the temperature X sequentially detected from the time of start (time measurement start) t 1 to the time t 3 when it reaches the predetermined time, and sends it to the CPU 28 via the temperature sensor interface 20. The CPU 28 calculates the temperature range b based on the received signal.

また、図4のとおり、起動時(計時開始)t1 において、温度センサ21が検出した室内側熱交換器11の温度Xは、温度センサ22が検出した冷媒回路1周辺の温度Yより若干高温にある。そして、起動時(計時開始)t1 から時間t2 までの間、室内側熱交換器11の温度Xは冷媒を要因として急激に降下していき、室内側熱交換器11の温度Xは冷媒回路1周辺の温度Yより低くなる。そして、時間t2 から所定時間到達時t3 までの間、冷媒を要因として急激に上昇していき、室内側交換器11の温度Xは冷媒回路1周辺の温度Yより高くなる。このように、温度センサ21(及び22)は、所定時間到達時t3 に検出した温度X(及びY)を信号に生成して温度センサインタフェース20を介してCPU28へ送る。CPU28は、受け付けた信号に基づき温度差dを算出する。尚、本実施の形態での値dは、正の数(室内側交換器11の温度X>冷媒回路1周辺の温度Y)になっている。 Further, as shown in FIG. 4, the temperature X of the indoor heat exchanger 11 detected by the temperature sensor 21 at the start (time measurement start) t 1 is slightly higher than the temperature Y around the refrigerant circuit 1 detected by the temperature sensor 22. It is in. The temperature X of the indoor side heat exchanger 11 rapidly drops due to the refrigerant from the time of start (time measurement start) t 1 to time t 2, and the temperature X of the indoor side heat exchanger 11 is the refrigerant. It becomes lower than the temperature Y around the circuit 1. Then, during the period from time t 2 to arrival time t 3 , the temperature rises rapidly due to the refrigerant, and the temperature X of the indoor side exchanger 11 becomes higher than the temperature Y around the refrigerant circuit 1. As described above, the temperature sensor 21 (and 22) generates the temperature X (and Y) detected at the time t 3 when the predetermined time has been reached as a signal and sends it to the CPU 28 via the temperature sensor interface 20. The CPU 28 calculates the temperature difference d based on the received signal. The value d in the present embodiment is a positive number (the temperature X of the indoor side exchanger 11> the temperature Y around the refrigerant circuit 1).

そして、前記温度範囲bが所定範囲iより大きいか、又は、前記温度差dが所定値jを超えるかのいずれかに該当する場合、CPU28は、少なくとも一方は冷媒が冷媒回路内で不足している場合に発生する現象に基づかないから、冷媒回路1からの冷媒の漏洩はないと判定する。   When the temperature range b is larger than the predetermined range i or the temperature difference d exceeds the predetermined value j, the CPU 28 has insufficient refrigerant in the refrigerant circuit. Therefore, it is determined that there is no refrigerant leakage from the refrigerant circuit 1.

一方、冷媒が冷媒回路1から漏洩している場合、前記正常動作時と同様に、温度センサ21は室内側熱交換器11の温度Xの降下及び上昇を順次検出するが、温度Xの上昇の要因となる冷媒が冷媒回路1内で不足して室内側熱交換器11の温度Xが上昇しにくくなるため、CPU28が最終的に算出する室内側熱交換器11の温度Xの温度範囲aはbより小さくなる(図3参照)。   On the other hand, when the refrigerant is leaking from the refrigerant circuit 1, the temperature sensor 21 sequentially detects the decrease and increase in the temperature X of the indoor heat exchanger 11 as in the normal operation. The temperature range a of the temperature X of the indoor heat exchanger 11 that is finally calculated by the CPU 28 is, because the factor refrigerant is insufficient in the refrigerant circuit 1 and the temperature X of the indoor heat exchanger 11 is difficult to rise. smaller than b (see FIG. 3).

また、前記正常動作時と同様に、温度センサ21(及び22)は室内側熱交換器11の温度X(及び冷媒回路1周辺の温度Y)を検出するが、温度Xの上昇又は降下の要因となる冷媒が冷媒回路1内で不足して室内側熱交換器11の温度Xが上昇しにくくなるため、CPU28が最終的に算出する室内側熱交換器11の温度X及び冷媒回路1周辺の温度Yの温度差cもdより小さくなる(図4参照)。   As in the normal operation, the temperature sensor 21 (and 22) detects the temperature X of the indoor heat exchanger 11 (and the temperature Y around the refrigerant circuit 1). The refrigerant X becomes insufficient in the refrigerant circuit 1 and it becomes difficult for the temperature X of the indoor heat exchanger 11 to rise. Therefore, the CPU 28 finally calculates the temperature X of the indoor heat exchanger 11 and the vicinity of the refrigerant circuit 1. The temperature difference c of the temperature Y is also smaller than d (see FIG. 4).

そして、前記温度範囲aが所定範囲i内(値iを含む)であって、前記温度差cが所定値jを超えない(値jを含む)場合、CPU28は、いずれも冷媒が冷媒回路1内で不足して室内側熱交換器11の温度の上昇又は降下が生じにくくなっている場合に発生する現象であるから、冷媒回路1から冷媒が漏洩して異常動作していると判定する。   When the temperature range a is within the predetermined range i (including the value i) and the temperature difference c does not exceed the predetermined value j (including the value j), the CPU 28 uses the refrigerant circuit 1 as the refrigerant. This is a phenomenon that occurs when the temperature of the indoor heat exchanger 11 is not easily increased or decreased, so that the refrigerant leaks from the refrigerant circuit 1 and is determined to be operating abnormally.

このように、空気調和機を暖房運転で起動した場合であって、室内側熱交換器11の温度Xの上昇の要因となる冷媒が冷媒回路1内で不足している場合は、室内側熱交換器11の温度Xの上昇が生じにくいため、温度Xの上昇に着目すれば、冷媒の不足の有無を判定することができる。しかし、空気調和機の起動直後は、前回運転で室内側熱交換器11内に残留していた液化冷媒により温度Xが一時的に降下するというイレギュラーがある。そこで、本実施の形態では、当該温度Xの上昇又は降下の方向に着目するのではなく、温度Xの温度範囲の大きさに着目して判定を行う。   As described above, when the air conditioner is started in the heating operation and the refrigerant that causes the temperature X of the indoor heat exchanger 11 to increase is insufficient in the refrigerant circuit 1, the indoor heat Since it is difficult for the temperature X of the exchanger 11 to increase, it is possible to determine whether or not the refrigerant is insufficient by paying attention to the increase of the temperature X. However, immediately after the start of the air conditioner, there is an irregularity that the temperature X temporarily drops due to the liquefied refrigerant remaining in the indoor heat exchanger 11 in the previous operation. Therefore, in the present embodiment, the determination is made not by focusing on the direction of increase or decrease of the temperature X but by focusing on the size of the temperature range of the temperature X.

更に、温度Xの温度範囲の大きさは、冷媒回路1周辺の温度Yに影響を受けて変化する場合もあるから、例えば、冷媒が冷媒回路1内で充足しているにもかかわらず、冷媒回路1周辺の熱が室内側熱交換器11に伝わり熱交換器の温度の上昇又は降下を妨げた場合、実際には冷媒漏れが生じていないのに、冷媒の漏れが生じていると誤検出してしまう。また、室内側熱交換器11の温度Xと冷媒回路1周辺の温度Yとは、例えば、冷媒が冷媒回路1内に充足している場合、冷媒を要因として室内側熱交換器11の温度Xが急激に上昇又は降下するので、室内側熱交換器11の温度Xと冷媒回路1周辺の温度Yとの間に温度差が生じる一方、冷媒が冷媒回路1内で不足している場合、冷媒を要因として室内側熱交換器11の温度Xが上昇又は降下しにくくなるので、室内側熱交換器11の温度Xと冷媒回路1周辺の温度Yとの間に温度差が殆ど生じない。従って、本実施の形態では、温度Xの温度範囲のみに着目するのではなく、温度X及び温度Yの温度差にも着目して判定を行う。   Furthermore, since the size of the temperature range of the temperature X may be affected by the temperature Y around the refrigerant circuit 1, for example, the refrigerant is satisfied in the refrigerant circuit 1 even though the refrigerant is satisfied in the refrigerant circuit 1. When the heat around the circuit 1 is transferred to the indoor heat exchanger 11 and prevents the temperature of the heat exchanger from rising or falling, it is erroneously detected that the refrigerant has leaked even though the refrigerant has not actually leaked. Resulting in. Further, the temperature X of the indoor heat exchanger 11 and the temperature Y around the refrigerant circuit 1 are, for example, when the refrigerant is satisfied in the refrigerant circuit 1, the temperature X of the indoor heat exchanger 11 due to the refrigerant. Suddenly rises or falls, a temperature difference occurs between the temperature X of the indoor heat exchanger 11 and the temperature Y around the refrigerant circuit 1, while the refrigerant is insufficient in the refrigerant circuit 1. As a result, the temperature X of the indoor heat exchanger 11 is unlikely to rise or fall, so that there is almost no temperature difference between the temperature X of the indoor heat exchanger 11 and the temperature Y around the refrigerant circuit 1. Therefore, in this embodiment, the determination is made not only on the temperature range of the temperature X but also on the temperature difference between the temperature X and the temperature Y.

次に、本願発明に係る空気調和機による冷媒漏洩検出処理について具体的に説明する。図5は本発明に係る空気調和機による冷媒漏洩検出処理の手順を説明するフローチャートである。本実施の形態では、空気調和機を暖房運転で起動した場合を説明する。   Next, the refrigerant leakage detection process by the air conditioner according to the present invention will be specifically described. FIG. 5 is a flowchart for explaining the procedure of refrigerant leakage detection processing by the air conditioner according to the present invention. In the present embodiment, a case where the air conditioner is activated in the heating operation will be described.

空気調和機の起動に伴い、制御部2のCPU28は、バス29を介してタイマ25に計時開始指示を送る(ステップS101)。計時開始指示を受け付けたタイマ25は、計時を開始し、計時した時間の信号を順次送る。   With the activation of the air conditioner, the CPU 28 of the control unit 2 sends a time measurement start instruction to the timer 25 via the bus 29 (step S101). The timer 25 that has received the timing start instruction starts timing and sequentially transmits signals of the measured times.

CPU28は、タイマ25から送られた時間信号を順次受け付けると共に(ステップS102)、温度センサ21から送られた室内側熱交換器11の温度Xの信号を順次受け付け(ステップS103)、順次受け付けた信号のうち、温度Xの最低値Xmin及び温度Xの最高値XmaxをRAM24に記憶する(S104)。   The CPU 28 sequentially receives the time signal sent from the timer 25 (step S102), and also receives the signal of the temperature X of the indoor heat exchanger 11 sent from the temperature sensor 21 (step S103), and the sequentially received signal. Among these, the minimum value Xmin of the temperature X and the maximum value Xmax of the temperature X are stored in the RAM 24 (S104).

CPU28は、タイマ25から送られた信号が示す時間が、RAM24から読み出した所定時間(例えば、5分)に到達しているか否かを判断し(ステップS105)、到達していないと判断した場合(ステップS105でNO)、ステップS102へ戻りステップS102〜S105を繰り返す。   The CPU 28 determines whether or not the time indicated by the signal sent from the timer 25 has reached a predetermined time (for example, 5 minutes) read from the RAM 24 (step S105), and determines that the time has not reached (NO in step S105), the process returns to step S102 and steps S102 to S105 are repeated.

他方、CPU28は、タイマ25から送られた信号が示す時間が、RAM24から読み出した所定時間に到達したと判断した場合(ステップS105でYES)、最高値Xmax−最低値Xminで求まる、温度Xの温度範囲を算出し(ステップS106)、算出した温度Xの温度範囲が、RAM24から読み出した所定範囲(例えば、2℃)内であるか否かを判定し(ステップS107)、所定範囲内ではないと判定した場合(ステップS107でNO)、冷媒回路1から冷媒は漏洩していないと判定し(ステップS108)、冷媒漏洩検出処理を終了する。   On the other hand, when the CPU 28 determines that the time indicated by the signal sent from the timer 25 has reached the predetermined time read from the RAM 24 (YES in step S105), the CPU 28 obtains the temperature X determined by the maximum value Xmax-the minimum value Xmin. A temperature range is calculated (step S106), and it is determined whether or not the calculated temperature range of the temperature X is within a predetermined range (for example, 2 ° C.) read from the RAM 24 (step S107), and is not within the predetermined range. (NO in step S107), it is determined that the refrigerant has not leaked from the refrigerant circuit 1 (step S108), and the refrigerant leakage detection process is terminated.

他方、CPU28は、所定範囲内であると判定した場合(ステップS107でYES)、所定時間到達時に温度センサ21(及び温度センサ22)から受け付けた室内側熱交換器11の温度X(及び冷媒回路1周辺の温度Y)の信号に基づき、温度X−温度Yで求まる、室内側熱交換器11の温度X及び冷媒回路1周辺の温度Yの温度差を算出し(ステップS108)、算出した温度差が、RAM24から読み出した所定値(例えば、3℃)を超えるか否かを判定し(ステップS109)、所定値を超えていると判定した場合(ステップS109でYES)、冷媒回路1から冷媒が漏洩していないと判定し(ステップS112)、冷媒漏洩検出処理を終了する。   On the other hand, if the CPU 28 determines that the temperature is within the predetermined range (YES in step S107), the temperature X (and the refrigerant circuit) of the indoor heat exchanger 11 received from the temperature sensor 21 (and the temperature sensor 22) when the predetermined time is reached. 1, the temperature difference between the temperature X of the indoor heat exchanger 11 and the temperature Y around the refrigerant circuit 1, which is obtained by the temperature X−temperature Y, is calculated (step S 108), and the calculated temperature It is determined whether or not the difference exceeds a predetermined value (for example, 3 ° C.) read from the RAM 24 (step S109). When it is determined that the difference exceeds the predetermined value (YES in step S109), the refrigerant is supplied from the refrigerant circuit 1. Is not leaked (step S112), and the refrigerant leak detection process is terminated.

他方、CPU28は、所定値を超えていないと判定した場合(ステップ109でNO)、冷媒回路1から冷媒が漏洩していると判定し(ステップS110)、その旨の信号を外部へ出力し(ステップS111)、冷媒漏洩検出処理を終了する。   On the other hand, if the CPU 28 determines that the predetermined value is not exceeded (NO in step 109), the CPU 28 determines that the refrigerant is leaking from the refrigerant circuit 1 (step S110), and outputs a signal to that effect to the outside (step S110). Step S111), the refrigerant leakage detection process is terminated.

尚、CPU28は、冷媒回路1から冷媒が漏洩している旨の信号を表示部27を介して出力し、利用者に報知するように制御しても良い。   The CPU 28 may be controlled to output a signal indicating that the refrigerant is leaking from the refrigerant circuit 1 via the display unit 27 to notify the user.

また、CPU28は、冷媒回路1から冷媒が漏洩している旨の信号を出力した場合(ステップS111)、例えば、安全確保のため、圧縮機15を停止して空気調和機の運転を停止する等の対応処理を実行するようにしても良い。   In addition, when the CPU 28 outputs a signal indicating that the refrigerant is leaking from the refrigerant circuit 1 (step S111), for example, the compressor 15 is stopped to stop the operation of the air conditioner for ensuring safety. The corresponding processing may be executed.

また、CPU28は、冷媒回路1から冷媒が漏洩している旨の信号を出力した場合(ステップS111)、圧縮機15を通常動作から低速動作(例えば、最初の3分間を1800rpmで運転し、残りの2分間を3300rpmで運転する)に切換え、前記冷媒漏洩判定検出処理を数回繰り返し、全ての処理で「冷媒回路1から冷媒が漏洩している」と判定した場合、圧縮機15を低速動作から完全停止して空気調和機の運転を停止する等の対応処理を実行するようにしても良い。   When the CPU 28 outputs a signal indicating that the refrigerant is leaking from the refrigerant circuit 1 (step S111), the CPU 15 operates the compressor 15 from the normal operation to the low speed operation (for example, the first three minutes at 1800 rpm, and the remaining The refrigerant leakage determination detection process is repeated several times, and if it is determined that “refrigerant is leaking from the refrigerant circuit 1” in all the processes, the compressor 15 is operated at a low speed. From this, it is possible to execute a corresponding process such as stopping completely and stopping the operation of the air conditioner.

本発明に係る空気調和機の構成を示す模式図である。It is a schematic diagram which shows the structure of the air conditioner which concerns on this invention. 制御部の構成を示す模式図である。It is a schematic diagram which shows the structure of a control part. 本発明に係る冷媒漏洩検出方法で検出される熱交換器の温度範囲を示すグラフである。It is a graph which shows the temperature range of the heat exchanger detected with the refrigerant | coolant leak detection method which concerns on this invention. 本発明に係る冷媒漏洩検出方法で検出される熱交換器及び冷媒回路周辺の温度の温度差を示すグラフである。It is a graph which shows the temperature difference of the temperature around the heat exchanger and refrigerant circuit detected with the refrigerant leak detection method concerning the present invention. 本発明に係る空気調和機による冷媒漏洩検出処理の手順を説明するフローチャートである。It is a flowchart explaining the procedure of the refrigerant | coolant leak detection process by the air conditioner which concerns on this invention.

符号の説明Explanation of symbols

1 冷媒回路
11 室内側熱交換器
12 膨張弁
15 圧縮機
21 温度センサ
22 温度センサ
25 タイマ
28 CPU
DESCRIPTION OF SYMBOLS 1 Refrigerant circuit 11 Indoor side heat exchanger 12 Expansion valve 15 Compressor 21 Temperature sensor 22 Temperature sensor 25 Timer 28 CPU

Claims (5)

熱交換器を含む冷媒回路からの冷媒の漏洩を検出する方法において、
起動時からの所定時間内で前記熱交換器の温度を繰り返し検出し、
繰り返し検出した前記熱交換器の温度の最高温度と最低温度とから温度範囲を算出し、
算出した前記温度範囲が所定範囲内と判定した場合、前記冷媒回路から冷媒が漏洩していると判断することを特徴とする冷媒漏洩検出方法。
In a method for detecting leakage of refrigerant from a refrigerant circuit including a heat exchanger,
Start or these repeatedly detects the temperature of the heat exchanger within a predetermined time,
Calculate the temperature range from the highest temperature and the lowest temperature of the heat exchanger detected repeatedly,
A refrigerant leakage detection method, wherein, when it is determined that the calculated temperature range is within a predetermined range, it is determined that the refrigerant is leaking from the refrigerant circuit.
熱交換器を含む冷媒回路からの冷媒の漏洩を検出する方法において、
起動時からの所定時間内で前記熱交換器の温度を繰り返し検出し、
繰り返し検出した前記熱交換器の温度の最高温度と最低温度とから温度範囲を算出し、
所定時間到達時に、前記冷媒回路周辺の温度を検出して、前記熱交換器及び冷媒回路周辺の温度差を算出し、
算出した前記温度範囲が所定範囲内であって、かつ、算出した前記温度差が所定値を超えていないと判定した場合、前記冷媒回路から冷媒が漏洩していると判断することを特徴とする冷媒漏洩検出方法。
In a method for detecting leakage of refrigerant from a refrigerant circuit including a heat exchanger,
Start or these repeatedly detects the temperature of the heat exchanger within a predetermined time,
Calculate the temperature range from the highest temperature and the lowest temperature of the heat exchanger detected repeatedly,
When the predetermined time is reached, the temperature around the refrigerant circuit is detected, and the temperature difference between the heat exchanger and the refrigerant circuit is calculated.
When it is determined that the calculated temperature range is within a predetermined range and the calculated temperature difference does not exceed a predetermined value, it is determined that the refrigerant is leaking from the refrigerant circuit. Refrigerant leak detection method.
熱交換器を含む冷媒回路と、該冷媒回路からの冷媒の漏洩を検出する漏洩検出手段とを備える冷媒漏洩検出装置において、
前記熱交換器の温度を検出する温度検出手段と、
計時手段と、
起動時からの所定時間内に前記温度検出手段で繰り返し検出した温度の最高温度と最低温度とから温度範囲を算出する算出手段と
を備え、
前記漏洩検出手段は、前記算出手段で算出した前記温度範囲が所定範囲内と判定した場合、前記冷媒回路から冷媒が漏洩している旨を示す信号を出力するように構成してあることを特徴とする冷媒漏洩検出装置。
In a refrigerant leakage detection device comprising a refrigerant circuit including a heat exchanger and leakage detection means for detecting leakage of the refrigerant from the refrigerant circuit,
Temperature detecting means for detecting the temperature of the heat exchanger;
Timekeeping means,
And a calculating means for calculating the temperature range of the maximum and minimum temperatures of the start or in these repeated detected temperature by said temperature detecting means within a predetermined time,
The leakage detection unit is configured to output a signal indicating that the refrigerant is leaking from the refrigerant circuit when the temperature range calculated by the calculation unit is determined to be within a predetermined range. A refrigerant leakage detection device.
熱交換器を含む冷媒回路と、該冷媒回路からの冷媒の漏洩を検出する漏洩検出手段とを備える冷媒漏洩検出装置において、
前記熱交換器の温度を検出する第1温度検出手段と、
前記冷媒回路周辺の温度を検出する第2温度検出手段と、
計時手段と、
起動時からの所定時間内に前記第1温度検出手段で繰り返し検出した温度の最高温度と最低温度とから前記熱交換器の温度範囲を算出する算出手段と、
起動時からの所定時間到達時に前記第1温度検出手段で検出した前記熱交換器の温度及び前記第2温度検出手段で検出した前記冷媒回路周辺の温度の温度差が所定値を超えたか否かを判定する判定手段と
を備え、
前記漏洩検出手段は、前記算出手段で算出した温度範囲が所定範囲内であって、前記温度差が所定値を超えていないと判定した場合、前記冷媒回路から冷媒が漏洩している旨を示す信号を出力するようにしてあることを特徴とする冷媒漏洩検出装置。
In a refrigerant leakage detection device comprising a refrigerant circuit including a heat exchanger and leakage detection means for detecting leakage of the refrigerant from the refrigerant circuit,
First temperature detecting means for detecting the temperature of the heat exchanger;
Second temperature detecting means for detecting a temperature around the refrigerant circuit;
Timekeeping means,
A calculating means for calculating the temperature range of the heat exchanger to the start or in these within a predetermined time after repeatedly detected temperature maximum and minimum temperatures and in the first temperature detecting means,
Whether the temperature difference between the temperature around the refrigerant circuit detected at startup or these predetermined time temperature of the heat exchanger detected by the first temperature detecting means at the time of arrival and the second temperature detection means exceeds a predetermined value not Determination means for determining whether or not
The leakage detection means indicates that the refrigerant is leaking from the refrigerant circuit when it is determined that the temperature range calculated by the calculation means is within a predetermined range and the temperature difference does not exceed a predetermined value. A refrigerant leakage detection device characterized in that a signal is output.
請求項3又は4に記載の冷媒漏洩検出装置と、
該冷媒漏洩検出装置から出力された冷媒が漏洩している旨を示す信号に応じて、運転を停止する手段と
を備えることを特徴とする空気調和機。
The refrigerant leakage detection device according to claim 3 or 4,
An air conditioner comprising: means for stopping operation in response to a signal indicating that the refrigerant output from the refrigerant leakage detection device is leaking.
JP2006234301A 2006-08-30 2006-08-30 Refrigerant leak detection method, refrigerant leak detection device, and air conditioner Expired - Fee Related JP4606394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006234301A JP4606394B2 (en) 2006-08-30 2006-08-30 Refrigerant leak detection method, refrigerant leak detection device, and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006234301A JP4606394B2 (en) 2006-08-30 2006-08-30 Refrigerant leak detection method, refrigerant leak detection device, and air conditioner

Publications (2)

Publication Number Publication Date
JP2008057837A JP2008057837A (en) 2008-03-13
JP4606394B2 true JP4606394B2 (en) 2011-01-05

Family

ID=39240802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006234301A Expired - Fee Related JP4606394B2 (en) 2006-08-30 2006-08-30 Refrigerant leak detection method, refrigerant leak detection device, and air conditioner

Country Status (1)

Country Link
JP (1) JP4606394B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015058592A1 (en) * 2013-10-23 2015-04-30 珠海格力电器股份有限公司 Method and device for controlling coolant in dehumidifier
CN106594966A (en) * 2016-11-09 2017-04-26 珠海格力电器股份有限公司 Method for detecting refrigerant leakage of air conditioning system and air conditioning system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4990702B2 (en) * 2007-07-19 2012-08-01 シャープ株式会社 Refrigerant leak detection device, air conditioner, and refrigerant leak detection method
JP5948567B2 (en) * 2012-10-04 2016-07-06 パナソニックIpマネジメント株式会社 Air conditioner
CN104655365A (en) * 2014-12-30 2015-05-27 海信科龙电器股份有限公司 Method for detecting refrigerant leakage and air conditioner
CN104964404B (en) * 2015-05-26 2017-10-27 美的集团武汉制冷设备有限公司 The method and apparatus of air-conditioner coolant leak detection
SG11201803484QA (en) * 2015-11-17 2018-06-28 Carrier Corp Method of detecting a loss of refrigerant charge of a refrigeration system
CN107477775B (en) * 2017-08-07 2019-07-09 珠海格力电器股份有限公司 Air conditioner refrigerant leakage detection method and device, storage equipment, terminal and air conditioner
CN113970163A (en) * 2020-07-24 2022-01-25 广东美的制冷设备有限公司 Air conditioner and refrigerant leakage detection method and device thereof, and readable storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH026972U (en) * 1988-06-27 1990-01-17
JP2000105033A (en) * 1998-09-28 2000-04-11 Daikin Ind Ltd Air conditioner
JP2003254646A (en) * 2002-02-26 2003-09-10 Mitsubishi Heavy Ind Ltd Refrigerating device and malfunction detecting method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH026972U (en) * 1988-06-27 1990-01-17
JP2000105033A (en) * 1998-09-28 2000-04-11 Daikin Ind Ltd Air conditioner
JP2003254646A (en) * 2002-02-26 2003-09-10 Mitsubishi Heavy Ind Ltd Refrigerating device and malfunction detecting method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015058592A1 (en) * 2013-10-23 2015-04-30 珠海格力电器股份有限公司 Method and device for controlling coolant in dehumidifier
US20160265826A1 (en) * 2013-10-23 2016-09-15 Gree Electric Appliances, Inc. Of Zhuhai Refrigerant control method and apparatus for dehumidifier
CN106594966A (en) * 2016-11-09 2017-04-26 珠海格力电器股份有限公司 Method for detecting refrigerant leakage of air conditioning system and air conditioning system
CN106594966B (en) * 2016-11-09 2019-03-26 珠海格力电器股份有限公司 Method for detecting refrigerant leakage of air conditioning system and air conditioning system

Also Published As

Publication number Publication date
JP2008057837A (en) 2008-03-13

Similar Documents

Publication Publication Date Title
JP4606394B2 (en) Refrigerant leak detection method, refrigerant leak detection device, and air conditioner
JP4990702B2 (en) Refrigerant leak detection device, air conditioner, and refrigerant leak detection method
CN107255352B (en) Air conditioner and detection method and device for temperature failure or poor contact of radiator of air conditioner
EP3450865B1 (en) Air conditioner
JP5511761B2 (en) Air conditioner
JP2018141607A (en) Refrigerant amount determination device, air conditioning system, refrigerant amount determination method and program
JP2016053452A (en) Air conditioner
CN111442491B (en) Air conditioner, control method and control device thereof, and computer readable storage medium
JP6289403B2 (en) Refrigerant shortage determination device, refrigeration cycle provided with the same, and refrigerant shortage determination method for refrigeration cycle
CN111207482B (en) Air conditioner electronic expansion valve clamping adjustment control method and air conditioner
JPH07248167A (en) Air conditioner
JP2005257219A (en) Air conditioner
JP6653588B2 (en) Air conditioners and air conditioners
JP6576566B2 (en) Air conditioner
JPH08261542A (en) Air conditioner
JP2017207245A (en) Air conditioner
EP3674621B1 (en) Air conditioner
JP2006214617A (en) Air conditioner
JP6146606B2 (en) Air conditioner
JP7062095B2 (en) Air conditioner
JP2010261609A (en) Air conditioner
JP5212330B2 (en) Air conditioner
JP5088586B2 (en) Air conditioner outdoor unit
JP2007278535A (en) Air conditioner
JP2011021851A (en) Refrigerating cycle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101005

R150 Certificate of patent or registration of utility model

Ref document number: 4606394

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees