WO2022211076A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2022211076A1
WO2022211076A1 PCT/JP2022/016796 JP2022016796W WO2022211076A1 WO 2022211076 A1 WO2022211076 A1 WO 2022211076A1 JP 2022016796 W JP2022016796 W JP 2022016796W WO 2022211076 A1 WO2022211076 A1 WO 2022211076A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
valve
flow path
heat exchanger
refrigeration cycle
Prior art date
Application number
PCT/JP2022/016796
Other languages
French (fr)
Japanese (ja)
Inventor
敦史 吉見
拓郎 山田
英二 熊倉
育弘 岩田
猛 宮崎
浩貴 上田
政貴 田中
雅樹 中山
修 田中
宏和 藤野
隆平 加治
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN202280026119.9A priority Critical patent/CN117098960A/en
Priority to EP22781286.4A priority patent/EP4317844A1/en
Publication of WO2022211076A1 publication Critical patent/WO2022211076A1/en
Priority to US18/375,000 priority patent/US20240027105A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/004Outdoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02732Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two three-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02742Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two four-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • F25B2400/121Inflammable refrigerants using R1234
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/19Pumping down refrigerant from one part of the cycle to another part of the cycle, e.g. when the cycle is changed from cooling to heating, or before a defrost cycle is started
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2523Receiver valves

Definitions

  • Patent Document 1 Japanese Patent Application Laid-Open No. 2015-197254
  • the refrigerant circuit is filled with a working fluid whose GWP is equal to or less than a predetermined value.
  • low-pressure refrigerants that are used at relatively low refrigerant pressures.
  • Such a low-pressure refrigerant has a low heat transfer ability and cannot secure a sufficient circulation amount of the refrigerant during heating operation, making heating operation difficult or COP (Coefficient Of Performance) during heating operation. tends to be lower.
  • a dual refrigeration cycle is used to ensure the capacity during heating operation. can be considered.
  • the critical pressure of the carbon dioxide refrigerant on the heat source side is exceeded during cooling operation, and the COP during cooling operation becomes low.
  • a refrigeration cycle device that can efficiently perform cooling operation and heating operation when using high-pressure refrigerant and low-pressure refrigerant is desired.
  • a refrigeration cycle apparatus performs a heating operation by performing a dual refrigeration cycle including a user-side refrigeration cycle using a first refrigerant and a heat source-side refrigeration cycle using a second refrigerant.
  • the first refrigerant is 1 MPa or less at 30°C.
  • the second refrigerant is 1.5 MPa or more at 30°C.
  • the refrigeration cycle device performs cooling operation by performing a unit refrigeration cycle using the first refrigerant.
  • a user-side refrigeration cycle using a first refrigerant that is a low-pressure refrigerant of 1 MPa or less at 30° C. and a second refrigerant that is a high-pressure refrigerant of 1.5 MPa or more at 30° C. are used. Since the dual refrigerating cycle including the refrigerating cycle on the heat source side is performed, it is easy to secure the heating capacity while improving the COP.
  • this refrigerating cycle since a unit refrigerating cycle using the first refrigerant, which is a low-pressure refrigerant of 1 MPa or less at 30° C., is performed during cooling operation, a dual refrigerating cycle using the second refrigerant in the refrigerating cycle on the heat source side. , it is possible to avoid a decrease in COP due to the second refrigerant exceeding the critical pressure. As a result, it is possible to efficiently perform the cooling operation and the heating operation when using the high-pressure refrigerant and the low-pressure refrigerant.
  • the refrigerating cycle device includes an outdoor heat exchanger in the refrigerating cycle device according to the first aspect.
  • the outdoor heat exchanger functions as an evaporator for the second refrigerant during heating operation, and functions as a radiator for the first refrigerant during cooling operation.
  • the outdoor heat exchanger is not particularly limited, for example, the refrigerant flowing through the outdoor heat exchanger may be heat-exchanged with the air.
  • the refrigeration cycle device is the refrigeration cycle device according to the second aspect, and includes a cascade heat exchanger.
  • the cascade heat exchanger is independent of the first cascade flow path through which the first refrigerant flows during heating operation and the first cascade flow path, and the second cascade flow path through which the second refrigerant flows during heating operation. and have A cascade heat exchanger allows heat exchange between the first refrigerant and the second refrigerant.
  • the refrigeration cycle device is the refrigeration cycle device according to the third aspect, and includes a utilization heat exchanger.
  • the utilization heat exchanger the first refrigerant releases heat during heating operation.
  • the first refrigerant evaporates when passing through the first cascade flow path, and heat is released when the second refrigerant passes through the second cascade flow path.
  • the refrigeration cycle device is the refrigeration cycle device according to the fourth aspect, in which the first refrigerant evaporates in the utilization heat exchanger during cooling operation.
  • the refrigeration cycle device is the refrigeration cycle device according to any one of the second aspect to the fifth aspect, in which the first refrigerant can be collected in the first region other than the outdoor heat exchanger.
  • this refrigeration cycle device can collect the second refrigerant in a second area other than the first area and outside the outdoor heat exchanger.
  • a refrigeration cycle device performs a heating operation by performing a dual refrigeration cycle including a user-side refrigeration cycle using a first refrigerant and a heat source-side refrigeration cycle using a second refrigerant.
  • the first refrigerant is 1 MPa or less at 30°C.
  • the second refrigerant is 1.5 MPa or more at 30°C.
  • the refrigeration cycle device performs cooling operation by performing a dual refrigeration cycle including a user-side refrigeration cycle using the second refrigerant and a heat source-side refrigeration cycle using the first refrigerant.
  • a user-side refrigeration cycle using a first refrigerant that is a low-pressure refrigerant of 1 MPa or less at 30° C. and a second refrigerant that is a high-pressure refrigerant of 1.5 MPa or more at 30° C. are used. Since the dual refrigerating cycle including the refrigerating cycle on the heat source side is performed, it is easy to secure the heating capacity while improving the COP.
  • COP due to the second refrigerant exceeding the critical pressure when the second refrigerant is the binary refrigeration cycle used in the refrigeration cycle on the heat source side can be avoided. As a result, it is possible to efficiently perform the cooling operation and the heating operation when using the high-pressure refrigerant and the low-pressure refrigerant.
  • a refrigerating cycle device is the refrigerating cycle device according to the seventh aspect, wherein between the heating operation and the cooling operation, the refrigerant used in the refrigeration cycle on the heat source side and the refrigerant used in the refrigeration cycle on the user side and are replaced.
  • At least a portion of the location through which the first refrigerant flows or the location through which the second refrigerant flows during cooling operation is shared as at least a portion of the location through which the second refrigerant flows or the location through which the first refrigerant flows during heating operation.
  • the refrigeration cycle device is the refrigeration cycle device according to the eighth aspect, including a refrigerant tank.
  • the coolant tank temporarily stores either the first coolant or the second coolant when replacing the coolant.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the seventh to ninth aspects, and includes a cascade heat exchanger.
  • the cascade heat exchanger includes a first cascade flow path in which a first refrigerant evaporates during heating operation, a second cascade flow path independent of the first cascade flow path, and a second cascade flow path in which heat is released from the second refrigerant during heating operation; have A cascade heat exchanger allows heat exchange between the first refrigerant and the second refrigerant.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the seventh to tenth aspects, and includes a utilization heat exchanger.
  • the utilization heat exchanger functions as a radiator for the first refrigerant during heating operation, and functions as an evaporator for the second refrigerant during cooling operation.
  • the utilization heat exchanger is preferably a heat exchanger that processes a heat load, and the refrigerant flowing through the utilization heat exchanger may exchange heat with air, or may exchange heat with a fluid such as brine or water. may be
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the seventh to eleventh aspects, and includes an outdoor heat exchanger.
  • the outdoor heat exchanger functions as an evaporator for the second refrigerant during heating operation, and functions as a condenser for the first refrigerant during cooling operation.
  • the outdoor heat exchanger is not particularly limited, for example, the refrigerant flowing through the outdoor heat exchanger may be heat-exchanged with the air.
  • a refrigerating cycle device detects a mixed state of the first refrigerant and the second refrigerant in the refrigerating cycle device according to any one of the first to twelfth aspects.
  • the mixed state of the first refrigerant and the second refrigerant to be detected is not particularly limited.
  • the weight ratio of the first refrigerant in the fluid is 90% or less, or 95% or less may be detected, or that the weight ratio of the second refrigerant in the fluid has become 90% or less, or that it has become 95% or less.
  • the specific detection method is not particularly limited, either. For example, it may be detected based on an increase in the degree of change in the temperature of the refrigerant flowing through the heat exchanger that functions as an evaporator due to an increase in the mixing ratio.
  • the refrigeration cycle device may notify the detection result.
  • a refrigeration cycle device separates the first refrigerant and the second refrigerant in the refrigeration cycle device according to any one of the first to thirteenth aspects.
  • a method for separating the first refrigerant and the second refrigerant is not particularly limited, and a known separation method can be used.
  • adsorbents having different degrees of adsorption may be used for the first refrigerant and the second refrigerant, and the refrigerant with the higher adsorption efficiency may be separated.
  • the refrigerant with the higher purity is separated from the gas-phase refrigerant and the liquid-phase refrigerant, and the separation is performed by repeating this operation. good too.
  • these separations may be performed as the operation of the refrigeration cycle apparatus.
  • this refrigeration cycle device by separating the first refrigerant and the second refrigerant, it is possible to recover the operating efficiency that has decreased due to the mixing of the first refrigerant and the second refrigerant.
  • a refrigeration cycle device is the refrigeration cycle device according to any one of the first to fourteenth aspects, wherein the first refrigerant contains at least one of R1234yf and R1234ze.
  • the first refrigerant may consist of only R1234yf, or may consist of only R1234ze.
  • This refrigeration cycle device can be operated using a refrigerant with a sufficiently low global warming potential (GWP).
  • GWP global warming potential
  • a refrigeration cycle device is the refrigeration cycle device according to any one of the first to fifteenth aspects, wherein the second refrigerant contains carbon dioxide.
  • the second refrigerant may be composed only of carbon dioxide.
  • This refrigeration cycle device can be operated using a refrigerant with sufficiently low ozone depletion potential (ODP) and global warming potential (GWP).
  • ODP ozone depletion potential
  • GWP global warming potential
  • FIG. 1 is an overall configuration diagram of a refrigeration cycle apparatus according to a first embodiment;
  • FIG. 1 is a functional block configuration diagram of a refrigeration cycle device according to a first embodiment;
  • FIG. 4 is a diagram showing how a refrigerant flows during cooling operation in the first embodiment;
  • FIG. 4 is a diagram showing how a refrigerant flows during heating operation in the first embodiment;
  • It is a whole block diagram of the refrigerating-cycle apparatus which concerns on 2nd Embodiment.
  • It is a functional block configuration diagram of a refrigeration cycle apparatus according to a second embodiment.
  • FIG. 10 is a diagram showing how a refrigerant flows during cooling operation of the second embodiment;
  • FIG. 10 is a diagram showing how a refrigerant flows during cooling operation of the second embodiment;
  • FIG. 10 is a diagram showing how a refrigerant flows during heating operation in the second embodiment; It is a whole block diagram of the refrigerating-cycle apparatus which concerns on 3rd Embodiment. It is a functional block configuration diagram of a refrigeration cycle apparatus according to a third embodiment.
  • FIG. 11 is a diagram showing how a refrigerant flows during cooling operation in the third embodiment;
  • FIG. 11 is a diagram showing how a refrigerant flows during heating operation in the third embodiment;
  • It is a whole block diagram of the refrigerating-cycle apparatus which concerns on 4th Embodiment.
  • FIG. 11 is a diagram showing how a refrigerant flows during cooling operation in the fourth embodiment;
  • FIG. 11 is a diagram showing how a refrigerant flows during heating operation in the fourth embodiment;
  • FIG. 1 the schematic block diagram of the refrigerating-cycle apparatus 1 which concerns on 1st Embodiment is shown.
  • FIG. 2 shows a functional block configuration diagram of the refrigeration cycle device 1 according to the first embodiment.
  • the refrigeration cycle device 1 is a device used to process a heat load by performing vapor compression refrigeration cycle operation.
  • the refrigeration cycle device 1 has a heat load circuit 90 , a refrigerant circuit 10 , an outdoor fan 9 and a controller 7 .
  • the heat load processed by the refrigeration cycle device 1 is not particularly limited, and heat exchange may be performed with fluids such as air, water, and brine.
  • Water flowing through the heat load circuit 90 is supplied to the heat load heat exchanger 91 to process the heat load in the heat load heat exchanger 91 .
  • the heat load circuit 90 is a circuit in which water as a heat medium circulates, and includes a heat load heat exchanger 91, a pump 92, and a utilization heat exchanger 13 shared with the refrigerant circuit 10. there is
  • the pump 92 circulates water in the heat load circuit 90 by being driven and controlled by the controller 7 to be described later.
  • the utilization heat exchanger 13 has a first utilization passage 13a through which the first refrigerant flowing through the refrigerant circuit 10 passes, as will be described later.
  • the water flowing through the heat load channel 13b of the heat utilization exchanger 13 is cooled during the cooling operation and warmed during the heating operation by exchanging heat with the first refrigerant flowing through the first utilization channel 13a.
  • the refrigerant circuit 10 includes a first compressor 11, a second compressor 21, a first switching mechanism 12, a utilization heat exchanger 13 shared with the heat load circuit 90, a first expansion valve 15, a second It has an expansion valve 16 , a third expansion valve 14 , a cascade heat exchanger 17 , an outdoor heat exchanger 18 , a first on-off valve 41 and a second on-off valve 42 .
  • the refrigerant circuit 10 is filled with a first refrigerant, which is a low-pressure refrigerant, and a second refrigerant, which is a high-pressure refrigerant, in a substantially separated state.
  • the first refrigerant is a refrigerant of 1 MPa or less at 30 ° C., for example, a refrigerant containing at least one of R1234yf and R1234ze. good.
  • the second refrigerant is a refrigerant having a pressure of 1.5 MPa or more at 30° C., and may contain, for example, carbon dioxide, or may be composed of only carbon dioxide.
  • the first compressor 11 is a positive displacement compressor driven by a compressor motor.
  • the compressor motor is driven by being supplied with power through an inverter device.
  • the operating capacity of the first compressor 11 can be changed by varying the drive frequency, which is the number of revolutions of the compressor motor.
  • a discharge side of the first compressor 11 is connected to a first port of the first switching mechanism 12 .
  • the suction side of the first compressor 11 is connected to the second port of the first switching mechanism 12 and the gas refrigerant side of the first cascade flow path 17 a of the cascade heat exchanger 17 .
  • the first switching mechanism 12 connects the discharge side of the first compressor 11 to the gas refrigerant side of the first utilization flow path 13 a of the heat utilization heat exchanger 13 , and connects the suction side of the first compressor 11 to the first opening/closing valve 41 . and the state of connecting to the gas refrigerant side of the first cascade flow path 17a of the cascade heat exchanger 17, the discharge side of the first compressor 11 is connected to the first on-off valve 41, and the suction side of the first compressor 11 is connected to The state of connecting to the gas refrigerant side of the first use flow path 13 a of the heat utilization heat exchanger 13 and the state of connecting to the gas refrigerant side of the first cascade flow path 17 a of the cascade heat exchanger 17 is switched.
  • the first switching mechanism 12 is composed of a four-way switching valve having four ports consisting of a first port, a second port, a third port, and a fourth port.
  • a discharge side of the first compressor 11 is connected to the first port.
  • the suction side of the first compressor 11 and the gas refrigerant side of the first cascade flow path 17a of the cascade heat exchanger 17 are connected to the second port.
  • the gas refrigerant side of the first utilization flow path 13a of the utilization heat exchanger 13 is connected to the third port.
  • a first on-off valve 41 is connected to the fourth port.
  • the gas refrigerant side of the first use flow path 13 a through which the first refrigerant flowing through the refrigerant circuit 10 passes in the use heat exchanger 13 is connected to the first switching mechanism 12 . Further, the liquid refrigerant side of the first use channel 13a is connected to the branch point A of the refrigerant circuit 10 .
  • the first expansion valve 15 is composed of an electronic expansion valve whose opening degree can be adjusted.
  • the first expansion valve 15 is provided in the refrigerant circuit 10 between the branch point A and the liquid refrigerant side of the first cascade flow path 17 a of the cascade heat exchanger 17 .
  • the third expansion valve 14 is composed of an electronic expansion valve whose opening degree can be adjusted.
  • the third expansion valve 14 is provided in the middle of a flow path that connects the branch point A and the branch point B in the refrigerant circuit 10 .
  • the flow path extending from the third expansion valve 14, the flow path extending from the second expansion valve 16, and the flow path extending from the liquid refrigerant side of the outdoor heat exchanger 18 are connected.
  • the second expansion valve 16 is composed of an electronic expansion valve whose opening degree can be adjusted.
  • the second expansion valve 16 is provided between the branch point B and the liquid refrigerant side of the second cascade flow path 17 b of the cascade heat exchanger 17 in the refrigerant circuit 10 .
  • the cascade heat exchanger 17 includes a first cascade flow path 17a through which one of the first refrigerant and the second refrigerant passes, and a second cascade flow path through which the other of the first refrigerant and the second refrigerant passes. 17b and a cascade heat exchanger for heat exchange between the first refrigerant and the second refrigerant.
  • the first cascade flow path 17 a and the second cascade flow path 17 b are independent of each other, and the first refrigerant and the second refrigerant do not mix inside the cascade heat exchanger 17 .
  • the gas refrigerant side of the first cascade flow path 17 a is connected to the suction side of the first compressor 11 .
  • the liquid refrigerant side of the first cascade flow path 17 a is connected to a flow path extending from the first expansion valve 15 .
  • the gas refrigerant side of the second cascade flow path 17 b is connected to the discharge side of the second compressor 21 .
  • the liquid refrigerant side of the second cascade flow path 17 b is connected to a flow path extending from the second expansion valve 16 .
  • the outdoor heat exchanger 18 is configured with multiple heat transfer tubes and multiple fins joined to the multiple heat transfer tubes.
  • the outdoor heat exchanger 18 is arranged outdoors. The refrigerant flowing through the outdoor heat exchanger 18 exchanges heat with the air sent to the outdoor heat exchanger 18 .
  • the outdoor fan 9 generates an air flow by the outdoor air passing through the outdoor heat exchanger 18.
  • a channel extending from the gas refrigerant side of the outdoor heat exchanger 18, a channel extending from the first on-off valve 41, and a channel extending from the second on-off valve 42 are connected.
  • the first on-off valve 41 is provided in the middle of the flow path that connects the branch point C and the fourth port of the first switching mechanism 12 .
  • the second on-off valve 42 is provided in the middle of the flow path that connects the branch point C and the suction side of the second compressor 21 .
  • the second compressor 21 is a positive displacement compressor driven by a compressor motor.
  • the compressor motor is driven by being supplied with power through an inverter device.
  • the operating capacity of the second compressor 21 can be changed by varying the drive frequency, which is the number of revolutions of the compressor motor.
  • the discharge side of the second compressor 21 is connected to the gas refrigerant side of the second cascade flow path 17 b of the cascade heat exchanger 17 .
  • a flow path extending from the second on-off valve 42 is connected to the suction side of the second compressor 21 .
  • the controller 7 controls the operation of each device that constitutes the heat load circuit 90 and the refrigerant circuit 10 .
  • the controller 7 has a processor as a CPU provided for control, a memory, and the like.
  • the controller 7 controls each device to execute the refrigeration cycle, thereby performing a cooling operation for processing the cooling load in the thermal load heat exchanger 91 and a heating load in the thermal load heat exchanger 91.
  • a heating operation, a cooling/heating transitional operation, and a heating/cooling transitional operation are performed.
  • Cooling Operation During cooling operation, as shown in FIG. The second refrigerant is confined in the flow path (the flow path indicated by the dotted line) up to the expansion valve 16, and the first refrigerant is circulated through the first compressor 11, the outdoor heat exchanger 18, the third expansion valve 14, and the utilization heat exchanger 13. unit refrigerating cycle is performed.
  • the utilization heat exchanger 13 is caused to function as an evaporator for the first refrigerant
  • the outdoor heat exchanger 18 is caused to function as a condenser for the first refrigerant, thereby performing a unitary refrigeration cycle using the first refrigerant.
  • the single arrow indicates the channel through which the first coolant flows.
  • the second on-off valve 42 and the second expansion valve 16 are controlled to be fully closed, and the second refrigerant is confined in the flow path from the second on-off valve 42 to the second expansion valve 16 .
  • the connection state of the first switching mechanism 12 is switched to the connection state indicated by the solid line in FIG. 3, the pump 92, the first compressor 11, and the outdoor fan 9 are driven, and the first on-off valve 41 is controlled to open,
  • the first expansion valve 15 is controlled to be fully closed, and the second compressor 21 is stopped.
  • the degree of opening of the third expansion valve 14 is controlled so that the degree of superheat of the first refrigerant sucked by the first compressor 11 satisfies a predetermined condition.
  • the first refrigerant discharged from the first compressor 11 is sent to the outdoor heat exchanger 18 via the first switching mechanism 12 and the first on-off valve 41 .
  • the first refrigerant sent to the outdoor heat exchanger 18 is condensed by exchanging heat with the outdoor air supplied by the outdoor fan 9 .
  • the first refrigerant After passing through the outdoor heat exchanger 18, the first refrigerant is depressurized at the third expansion valve 14 after passing through the branch point B, passes through the branch point A, and enters the first utilization flow path 13a of the utilization heat exchanger 13.
  • the first refrigerant flowing through the first utilization channel 13a of the heat utilization exchanger 13 exchanges heat with water flowing through the heat load flow channel 13b of the heat utilization heat exchanger 13 of the heat load circuit 90, thereby evaporating.
  • the water cooled by this heat exchange is sent to the heat load heat exchanger 91 in the heat load circuit 90 to process the cooling load.
  • the first refrigerant evaporated in the first utilization flow path 13 a of the heat utilization exchanger 13 is sucked into the first compressor 11 via the first switching mechanism 12 .
  • the refrigeration cycle apparatus 1 performs a cooling/heating transition operation for transitioning from a cycle state in which cooling operation is performed to a cycle state in which heating operation is performed.
  • the third expansion valve 14 is controlled from the state in which the cooling operation was performed to the fully closed state, and the connection state of the first switching mechanism 12 is changed so that the discharge side of the first compressor 11 is used for heat utilization.
  • the suction side of the first compressor 11 is connected to the first on-off valve 41 and the gas refrigerant side of the first cascade flow path 17a of the cascade heat exchanger 17.
  • the first compressor 11 is operated while the second on-off valve 42 is closed and the first expansion valve 15 and the second expansion valve 16 are fully closed.
  • the flow path from the first on-off valve 41 to the third expansion valve 14 via the first compressor 11 and the utilization heat exchanger 13 is opened. to collect the first refrigerant.
  • FIG. 4 a dual refrigerating cycle is performed in which the second refrigerant is used in the heat source side refrigerating cycle and the first refrigerant is used in the user side refrigerating cycle.
  • the single arrow indicates the channel through which the first coolant flows
  • the double arrow indicates the channel through which the second coolant flows.
  • the utilization heat exchanger 13 functions as a condenser for the first refrigerant
  • the cascade heat exchanger 17 functions as an evaporator for the first refrigerant
  • the cascade heat exchanger 17 functions to dissipate the heat of the second refrigerant.
  • the outdoor heat exchanger 18 functions as an evaporator for the second refrigerant.
  • the third expansion valve 14 is controlled to be fully closed, and the first on-off valve 41 is controlled to be closed, so that the first refrigerant and the second refrigerant are mixed.
  • the pump 92, the first compressor 11, the second compressor 21, the outdoor fan 9 are driven, and the second on-off valve 42 to the open state.
  • the valve opening degree of the first expansion valve 15 is controlled so that the degree of superheat of the first refrigerant sucked by the first compressor 11 satisfies a predetermined condition
  • the valve opening degree of the second expansion valve 16 is controlled for the second compression. Control is performed so that the degree of superheat of the second refrigerant sucked by the machine 21 satisfies a predetermined condition.
  • the second refrigerant discharged from the second compressor 21 is sent to the cascade heat exchanger 17 and, when flowing through the second cascade flow path 17b, heats the first refrigerant flowing through the first cascade flow path 17a. Dissipate heat by exchanging.
  • the second refrigerant that has dissipated heat in the cascade heat exchanger 17 is decompressed in the second expansion valve 16, and then exchanges heat with the outdoor air supplied by the outdoor fan 9 in the outdoor heat exchanger 18 to evaporate. It is sucked into the compressor 21 .
  • the first refrigerant discharged from the first compressor 11 is sent through the first switching mechanism 12 to the first utilization flow path 13 a of the utilization heat exchanger 13 .
  • the first refrigerant flowing through the first use flow path 13a of the heat utilization exchanger 13 is condensed by exchanging heat with water flowing through the heat load flow path 13b of the heat utilization heat exchanger 13 of the heat load circuit 90 .
  • the water warmed by this heat exchange is sent to the heat load heat exchanger 91 in the heat load circuit 90 to treat the heating load.
  • the first refrigerant condensed in the first utilization flow path 13 a of the utilization heat exchanger 13 is decompressed in the first expansion valve 15 after passing through the branch point A.
  • the refrigerant decompressed by the first expansion valve 15 passes through the first cascade flow path 17a of the cascade heat exchanger 17, it evaporates by exchanging heat with the second refrigerant flowing through the second cascade flow path 17b.
  • the first refrigerant evaporated in the first cascade flow path 17 a of the cascade heat exchanger 17 is sucked into the first compressor 11 via the first switching mechanism 12 .
  • the refrigeration cycle apparatus 1 performs a heating/cooling transition operation for transitioning from the cycle state in which the heating operation is performed to the cycle state in which the cooling operation is performed.
  • the second expansion valve 16 is controlled to be fully closed from the state where the heating operation was performed, and the second compressor is operated while the third expansion valve 14 is also maintained in the fully closed state. 21 is driven. After maintaining this operating state for a while, by closing the second on-off valve 42 , the second compressor 21 and the second cascade flow path 17 b of the cascade heat exchanger 17 are transferred from the second on-off valve 42 .
  • the second refrigerant can be collected in the flow path up to the expansion valve 16 .
  • the first expansion valve 15 is controlled to be fully closed, the third expansion valve 14 and the first on-off valve 41 are opened, and the first switching mechanism 12 is closed by the first on-off valve 41 on the discharge side of the first compressor 11 .
  • the suction side of the first compressor 11 is connected to the gas refrigerant side of the first use flow path 13a of the heat utilization heat exchanger 13 and the gas refrigerant side of the first cascade flow path 17a of the cascade heat exchanger 17 to As a result, the cooling operation by the unitary refrigeration cycle using the first refrigerant becomes possible.
  • the first refrigerant having a sufficiently low global warming potential (GWP) and the ozone depletion potential (ODP) and a second refrigerant with a sufficiently low global warming potential (GWP). Therefore, deterioration of the global environment can be suppressed.
  • GWP global warming potential
  • ODP ozone depletion potential
  • GWP global warming potential
  • the second refrigerant which is a high-pressure refrigerant
  • the second refrigerant is used in the heat source side refrigeration cycle for heating operation
  • the low-pressure refrigerant A binary refrigerating cycle is performed using the first refrigerant in the user-side refrigerating cycle.
  • carbon dioxide is used as the second refrigerant in the refrigerant circuit 10 .
  • the unitary refrigerating cycle using the second refrigerant is not performed, nor is the dual refrigerating cycle using the second refrigerant in the heat source side refrigerating cycle and the first refrigerant in the user side refrigerating cycle.
  • a unit refrigeration cycle using one refrigerant is performed.
  • the pressure of the carbon dioxide refrigerant becomes the critical pressure as in the case of performing a single refrigeration cycle using carbon dioxide refrigerant, which is a high-pressure refrigerant, or when performing a dual refrigeration cycle using carbon dioxide, which is a high-pressure refrigerant, in the heat source side cycle.
  • the cooling operation can be performed while avoiding the COP from exceeding and becoming low.
  • FIG. 5 shows a schematic block diagram of the refrigerating-cycle apparatus 1a which concerns on 2nd Embodiment.
  • FIG. 6 shows a functional block configuration diagram of a refrigeration cycle device 1a according to the second embodiment.
  • the refrigeration cycle device 1a is a device used to process a heat load by performing vapor compression refrigeration cycle operation.
  • the refrigerating cycle device 1 a has a heat load circuit 90 , a refrigerant circuit 10 , an outdoor fan 9 and a controller 7 .
  • the heat load processed by the refrigeration cycle device 1a and the heat load circuit 90 are the same as in the first embodiment.
  • the heat utilization exchanger 13 has a first utilization flow path 13a through which the first refrigerant or the second refrigerant flowing through the refrigerant circuit 10 passes, as will be described later.
  • the water flowing through the heat load channel 13b of the heat utilization exchanger 13 is cooled during the cooling operation and warmed during the heating operation by exchanging heat with the first refrigerant or the second refrigerant flowing through the first utilization channel 13a.
  • the refrigerant circuit 10 includes a first compressor 11, a second compressor 21, a first switching mechanism 12, a second switching mechanism 22, a utilization heat exchanger 13 shared with the heat load circuit 90, and a first expansion valve 15, second expansion valve 16, cascade heat exchanger 17, outdoor heat exchanger 18, refrigerant container 19, third on-off valve 43, fourth on-off valve 44, and fifth on-off valve 45 , a sixth on-off valve 46 , a seventh on-off valve 47 , an eighth on-off valve 48 , and a ninth on-off valve 49 .
  • the refrigerant circuit 10 is filled with a first refrigerant, which is a low-pressure refrigerant, and a second refrigerant, which is a high-pressure refrigerant, in a substantially separated state.
  • the first refrigerant is a refrigerant of 1 MPa or less at 30 ° C., for example, a refrigerant containing at least one of R1234yf and R1234ze. good.
  • the second refrigerant is a refrigerant having a pressure of 1.5 MPa or more at 30° C., and may contain, for example, carbon dioxide, or may be composed of only carbon dioxide.
  • the specific configuration of the first compressor 11 itself is the same as that of the first embodiment.
  • a discharge side of the first compressor 11 is connected to a first port of the switching valve 12 a of the first switching mechanism 12 .
  • the suction side of the first compressor 11 is connected to the branch point D1.
  • the second port of the switching valve 12a of the first switching mechanism 12, the second port of the switching valve 12b of the first switching mechanism 12, and the flow path extending from the eighth on-off valve 48 are connected. It is
  • the first switching mechanism 12 has a switching valve 12a and a switching valve 12b.
  • the switching valve 12a is composed of a four-way switching valve having four ports consisting of a first port, a second port, a third port, and a fourth port of the switching valve 12a.
  • a discharge side of the first compressor 11 is connected to a first port of the switching valve 12a.
  • a suction side of the first compressor 11 is connected to a second port of the switching valve 12a.
  • a flow path extending from the branch point E2 is connected to the third port of the switching valve 12a.
  • a fourth port of the switching valve 12a is connected to a first port of the switching valve 12b.
  • the switching valve 12b is composed of a four-way switching valve having four ports consisting of a first port, a second port, a third port, and a fourth port of the switching valve 12b.
  • a fourth port of the switching valve 12a is connected to a first port of the switching valve 12b.
  • a second port of the switching valve 12 b is connected to the suction side of the first compressor 11 .
  • the gas refrigerant side of the first utilization flow path 13a of the utilization heat exchanger 13 is connected to the third port of the switching valve 12b.
  • the gas refrigerant side of the first cascade flow path 17a of the cascade heat exchanger 17 is connected to the fourth port of the switching valve 12b.
  • the switching valve 12a connects the discharge side of the first compressor 11 to the first port of the switching valve 12b and connects the suction side of the first compressor 11 to the branch point E2. side is connected to the branch point E2 and the suction side of the first compressor 11 is connected to the first port of the switching valve 12b.
  • the switching valve 12 b connects the fourth port of the switching valve 12 a to the gas refrigerant side of the first cascade flow path 17 a of the cascade heat exchanger 17 , and connects the suction side of the first compressor 11 to the first port of the utilization heat exchanger 13 .
  • a state of connecting to the gas refrigerant side of the utilization flow path 13a, and a state of connecting the fourth port of the switching valve 12a to the gas refrigerant side of the first utilization flow path 13a of the heat utilization heat exchanger 13 and connecting to the suction side of the first compressor 11. is connected to the gas refrigerant side of the first cascade flow path 17 a of the cascade heat exchanger 17 .
  • the gas refrigerant side of the first use flow path 13 a through which the refrigerant flowing through the refrigerant circuit 10 passes in the use heat exchanger 13 is connected to the switching valve 12 b of the first switching mechanism 12 . Further, the liquid refrigerant side of the first use channel 13a is connected to the branch point A of the refrigerant circuit 10 .
  • a flow path extending from the liquid refrigerant side of the first utilization flow path 13a, a flow path extending on the side opposite to the cascade heat exchanger 17 side of the first expansion valve 15, and a flow extending from the branch point J is connected to the road.
  • the first expansion valve 15 is composed of an electronic expansion valve whose opening degree can be adjusted.
  • the first expansion valve 15 is provided in the middle of the flow path connecting the branch point A and the branch point F in the refrigerant circuit 10 .
  • the branch point F connects the flow path extending from the first expansion valve 15, the flow path extending from the branch point H1, and the flow path extending from the liquid refrigerant side in the first cascade flow path 17a of the cascade heat exchanger 17. ing.
  • the cascade heat exchanger 17 includes a first cascade flow path 17a through which one of the first refrigerant and the second refrigerant passes, and a second cascade flow path through which the other of the first refrigerant and the second refrigerant passes. 17b and a cascade heat exchanger for heat exchange between the first refrigerant and the second refrigerant.
  • the first cascade flow path 17 a and the second cascade flow path 17 b are independent of each other, and the first refrigerant and the second refrigerant do not mix inside the cascade heat exchanger 17 .
  • the gas refrigerant side of the first cascade flow path 17 a is connected to the switching valve 12 b of the first switching mechanism 12 .
  • the liquid refrigerant side of the first cascade channel 17a is connected to a channel extending from the branch point F.
  • the gas refrigerant side of the second cascade flow path 17 b is connected to the switching valve 22 b of the second switching mechanism 22 .
  • the liquid refrigerant side of the second cascade channel 17b is connected to a channel extending from the branch point G. As shown in FIG.
  • the specific configuration of the second compressor 21 itself is the same as that of the first embodiment.
  • a discharge side of the second compressor 21 is connected to a first port of a switching valve 22 a of the second switching mechanism 22 .
  • the suction side of the second compressor 21 is connected to the branch point E1.
  • the second port of the switching valve 22a of the second switching mechanism 22, the second port of the switching valve 22b of the second switching mechanism 22, and the flow path extending from the seventh on-off valve 47 are connected to the branch point E1.
  • the second switching mechanism 22 has a switching valve 22a and a switching valve 22b.
  • the switching valve 22a is composed of a four-way switching valve having four ports consisting of a first port, a second port, a third port, and a fourth port of the switching valve 22a.
  • a discharge side of the second compressor 21 is connected to a first port of the switching valve 22a.
  • the suction side of the second compressor 21 is connected to the second port of the switching valve 22a.
  • a flow path extending from the branch point D2 is connected to the third port of the switching valve 22a.
  • a fourth port of the switching valve 22a is connected to a first port of the switching valve 22b.
  • the switching valve 22b is composed of a four-way switching valve having four ports consisting of a first port, a second port, a third port, and a fourth port of the switching valve 22b.
  • a fourth port of the switching valve 22a is connected to a first port of the switching valve 22b.
  • a second port of the switching valve 22b is connected to the suction side of the second compressor 21 .
  • the gas refrigerant side of the second cascade flow path 17b of the cascade heat exchanger 17 is connected to the third port of the switching valve 22b.
  • the gas refrigerant side of the outdoor heat exchanger 18 is connected to the fourth port of the switching valve 22b.
  • the switching valve 22a connects the discharge side of the second compressor 21 to the first port of the switching valve 22b and connects the suction side of the second compressor 21 to the branch point D2. side is connected to the branch point D2, and the suction side of the second compressor 21 is connected to the first port of the switching valve 22b.
  • the switching valve 22b connects the fourth port of the switching valve 22a to the gas refrigerant side of the outdoor heat exchanger 18, and connects the suction side of the second compressor 21 to the gas refrigerant of the second cascade flow path 17b of the cascade heat exchanger 17.
  • the fourth port of the switching valve 22a is connected to the gas refrigerant side of the second cascade flow path 17b of the cascade heat exchanger 17
  • the suction side of the second compressor 21 is connected to the outdoor heat exchanger 18. Switches between the state of connecting to the gas refrigerant side and the state of connecting to the gas refrigerant side.
  • the second expansion valve 16 is composed of an electronic expansion valve whose opening degree can be adjusted.
  • the second expansion valve 16 is provided between the branch point G and the liquid refrigerant side of the outdoor heat exchanger 18 .
  • the outdoor heat exchanger 18 is configured with multiple heat transfer tubes and multiple fins joined to the multiple heat transfer tubes.
  • the outdoor heat exchanger 18 is arranged outdoors. The refrigerant flowing through the outdoor heat exchanger 18 exchanges heat with the air sent to the outdoor heat exchanger 18 .
  • the outdoor fan 9 generates an air flow by the outdoor air passing through the outdoor heat exchanger 18.
  • the flow path extending from the branch point A, the flow path extending from the sixth on-off valve 46, and the flow path extending from the branch point K1 are connected.
  • the branch point K ⁇ b>1 connects the flow path extending from the branch point J, the flow path extending from the upper end portion of the refrigerant container 19 , and the flow path extending from the ninth on-off valve 49 .
  • the ninth on-off valve 49 is provided in the middle of the flow path connecting the branch point D2 and the branch point K1.
  • the branch point D2 connects the flow path extending from the ninth on-off valve 49, the flow path extending from the eighth on-off valve 48, and the flow path extending from the third port of the switching valve 22a of the second switching mechanism 22.
  • the eighth on-off valve 48 is provided in the middle of the flow path connecting the branch point D2 and the branch point D1.
  • the sixth on-off valve 46 is provided in the middle of the flow path connecting the branch point J and the branch point E2.
  • the branch point E2 connects the flow path extending from the seventh on-off valve 47, the flow path extending from the sixth on-off valve 46, and the flow path extending from the third port of the switching valve 12a of the first switching mechanism 12.
  • the seventh on-off valve 47 is provided in the middle of the flow path connecting the branch point E1 and the branch point E2.
  • the branch point K2 connects the flow path extending from the lower end of the refrigerant container 19, the flow path extending from the fourth on-off valve 44, and the flow path extending from the fifth on-off valve 45.
  • the fourth on-off valve 44 is provided in the middle of the flow path connecting the branch point K2 and the branch point H1.
  • the fifth on-off valve 45 is provided in the middle of the flow path connecting the branch point K2 and the branch point H2.
  • the branch point H1 connects the flow path extending from the third on-off valve 43, the flow path extending from the fourth on-off valve 44, and the flow path extending from the branch point F.
  • the branch point H2 connects the flow path extending from the third on-off valve 43, the flow path extending from the fifth on-off valve 45, and the flow path extending from the branch point G.
  • the third on-off valve 43 is provided in the middle of the flow path connecting the branch point H1 and the branch point H2.
  • the third on-off valve 43, the fourth on-off valve 44, the fifth on-off valve 45, the sixth on-off valve 46, the seventh on-off valve 47, the eighth on-off valve 48, and the ninth on-off valve 49 are electromagnetic valves that can be controlled to switch between an open state and a closed state.
  • the refrigerant container 19 is a container capable of holding the first refrigerant or the second refrigerant inside.
  • the refrigerant container 19 can be used to move the second refrigerant within the refrigerant circuit 10 while the first refrigerant is stored, or to move the first refrigerant within the refrigerant circuit 10 while the second refrigerant is stored. It has a capacity that allows storage of the first refrigerant and storage of the second refrigerant.
  • the refrigerant container 19 used to move the first refrigerant in the refrigerant circuit 10 while the second refrigerant is stored will be described as an example.
  • the controller 7 controls the operation of each device that constitutes the heat load circuit 90 and the refrigerant circuit 10 .
  • the controller 7 has a processor as a CPU provided for control, a memory, and the like.
  • the controller 7 controls each device to execute the refrigeration cycle, thereby performing a cooling operation for processing the cooling load in the thermal load heat exchanger 91 and a heating load in the thermal load heat exchanger 91.
  • a heating operation, a cooling/heating transitional operation, and a heating/cooling transitional operation are performed.
  • the first refrigerant is used in the heat source side refrigerating cycle and the second refrigerant is used in the user side refrigerating cycle.
  • the single arrow indicates the channel through which the first coolant flows
  • the double arrow indicates the channel through which the second coolant flows.
  • the utilization heat exchanger 13 functions as an evaporator for the second refrigerant
  • the cascade heat exchanger 17 functions as a radiator for the second refrigerant
  • the cascade heat exchanger 17 functions as an evaporator for the first refrigerant.
  • the outdoor heat exchanger 18 functions as a condenser for the first refrigerant.
  • the third on-off valve 43, the fourth on-off valve 44, the fifth on-off valve 45, the sixth on-off valve 46, the seventh on-off valve 47, the eighth on-off valve 48, the ninth By controlling all the on-off valves 49 to be in a closed state, mixing of the first refrigerant and the second refrigerant is prevented. Then, the connected state of the first switching mechanism 12 is switched to the connected state indicated by the solid line in FIG. 7, the connected state of the second switching mechanism 22 is switched to the connected state indicated by the solid line in FIG. , the second compressor 21 and the outdoor fan 9 are driven.
  • valve opening degree of the first expansion valve 15 is controlled so that the degree of superheat of the second refrigerant sucked into the first compressor 11 satisfies a predetermined condition
  • valve opening degree of the second expansion valve 16 is controlled for the second compression. Control is performed so that the degree of superheat of the first refrigerant sucked by the machine 21 satisfies a predetermined condition.
  • the first refrigerant discharged from the second compressor 21 is sent to the outdoor heat exchanger 18 via the switching valves 22 a and 22 b of the second switching mechanism 22 .
  • the first refrigerant flowing through the outdoor heat exchanger 18 is condensed by exchanging heat with the outdoor air supplied by the outdoor fan 9 .
  • the first refrigerant condensed in the outdoor heat exchanger 18 is depressurized in the second expansion valve 16 , passes through the branch point G, and is sent to the second cascade flow path 17 b of the cascade heat exchanger 17 .
  • the first refrigerant flows through the second cascade flow path 17b of the cascade heat exchanger 17, the first refrigerant evaporates by exchanging heat with the second refrigerant flowing through the first cascade flow path 17a.
  • the first refrigerant evaporated in the cascade heat exchanger 17 is sucked into the second compressor 21 via the switching valve 22b of the second switching mechanism 22 .
  • the second refrigerant discharged from the first compressor 11 is sent to the first cascade passage 17a of the cascade heat exchanger 17 via the switching valves 12a and 12b of the first switching mechanism 12 .
  • the second refrigerant flows through the first cascade flow path 17a of the cascade heat exchanger 17, the second refrigerant releases heat by exchanging heat with the first refrigerant flowing through the second cascade flow path 17b.
  • the second refrigerant that has radiated heat in the cascade heat exchanger 17 passes through the branch point F, is decompressed in the first expansion valve 15, passes through the branch point A, and flows through the first utilization flow path 13a of the utilization heat exchanger 13. sent to The second refrigerant flowing through the first utilization flow path 13a of the utilization heat exchanger 13 exchanges heat with water flowing through the heat load flow path 13b of the utilization heat exchanger 13 of the heat load circuit 90, thereby evaporating.
  • the water cooled by this heat exchange is sent to the heat load heat exchanger 91 in the heat load circuit 90 to process the cooling load.
  • the second refrigerant evaporated in the first use flow path 13 a of the use heat exchanger 13 is sucked into the first compressor 11 via the switching valve 12 b of the first switching mechanism 12 .
  • the refrigerating cycle device 1a performs the following steps (a1) to (f1) in order to shift from the cycle state in which the cooling operation is performed to the cycle state in which the heating operation is performed. A transition operation is performed.
  • the first expansion valve 15 is controlled to a fully closed state from the state in which the cooling operation was performed, and the first compressor 11 is operated with the fourth on-off valve 44 opened.
  • the second compressor 21 and the like are operated so that the refrigeration cycle during the cooling operation using the first refrigerant is performed.
  • the operation of collecting the second refrigerant into the refrigerant container 19 from below the refrigerant container 19 is performed.
  • the sixth on-off valve 46 between the open state and the closed state at predetermined time intervals, the gas state in the flow path from the upper end of the refrigerant container 19 to the sixth on-off valve 46 changes to the second state.
  • Refrigerant is drawn into the first compressor 11 .
  • the second refrigerant can be efficiently collected into the refrigerant container 19 .
  • This operation is continued for a predetermined time, for example, until a predetermined sufficient amount of the second refrigerant is collected in the refrigerant container 19 .
  • the fourth on-off valve 44 is closed after the collection of the second refrigerant into the refrigerant container 19 has progressed to a predetermined amount or more.
  • the switching valve 12a is switched to a state in which the discharge side of the first compressor 11 is connected to the branch point E2 and the suction side of the first compressor 11 is connected to the first port of the switching valve 12b.
  • the fourth port of the switching valve 12 a is connected to the gas refrigerant side of the first use flow path 13 a of the heat utilization heat exchanger 13
  • the suction side of the first compressor 11 is connected to the first cascade flow path 17 a of the cascade heat exchanger 17 .
  • the switching valve 22a is switched to a state in which the discharge side of the second compressor 21 is connected to the first port of the switching valve 22b and the suction side of the second compressor 21 is connected to the branch point D2.
  • the fourth port of the switching valve 22a is connected to the gas refrigerant side of the second cascade flow path 17b of the cascade heat exchanger 17, and the suction side of the second compressor 21 is connected to the gas refrigerant side of the outdoor heat exchanger 18. switch to state.
  • the sixth on-off valve 46 is controlled to be opened, and the first compressor 11 and the second compressor 21 are operated, whereby the second refrigerant remaining in the first cascade flow path 17a of the cascade heat exchanger 17 is is heated by the heat of the first refrigerant and driven out, and the second refrigerant is collected in the refrigerant container 19 via the first compressor 11, the branch point E2, the sixth on-off valve 46, the branch point J, and the branch point K1.
  • the sixth on-off valve 46 is controlled to be closed, and the collection of the second refrigerant into the refrigerant container 19 is finished.
  • the switching valve 12a is switched to a state in which the discharge side of the first compressor 11 is connected to the first port of the switching valve 12b and the suction side of the first compressor 11 is connected to the branch point E2,
  • the switching valve 12 b connects the fourth port of the switching valve 12 a to the gas refrigerant side of the first utilization flow path 13 a of the utilization heat exchanger 13 , and connects the suction side of the first compressor 11 to the first flow path of the cascade heat exchanger 17 . It is in a state of being connected to the gas refrigerant side of the cascade flow path 17a.
  • the second expansion valve 16 is controlled to be fully closed, the fourth on-off valve 44 and the fifth on-off valve 45 are kept closed, the third on-off valve 43 is opened, and the first compressor 11 and The second compressor 21 is operated.
  • the first refrigerant existing from the second expansion valve 16 to the suction side of the second compressor 21 is transferred to the second switching mechanism 22, the second cascade flow path 17b of the cascade heat exchanger 17, and the branch point G.
  • the branch point H2, the third on-off valve 43, the branch point H1, and the branch point F to the first cascade flow path 17a of the cascade heat exchanger 17.
  • the first refrigerant is sucked into the first compressor 11 via the switching valve 12b of the first switching mechanism 12.
  • the first refrigerant discharged from the first compressor 11 is sent to the utilization heat exchanger 13 via the switching valve 12 a of the first switching mechanism 12 .
  • the eighth on-off valve 48 is closed, the opening degree of the first expansion valve 15 is controlled while being opened, and the switching valve 12a is connected to the first port of the switching valve 12b on the discharge side of the first compressor 11. Then, the suction side of the first compressor 11 is switched to the branch point E2, and the switching valve 12b is connected to the fourth port of the switching valve 12a on the gas refrigerant side of the first cascade flow path 17a of the cascade heat exchanger 17. , and the suction side of the first compressor 11 is switched to the state of connecting to the gas refrigerant side of the first utilization flow path 13 a of the utilization heat exchanger 13 .
  • the fifth on-off valve 45 is opened to connect the switching valve 22a to the first port of the switching valve 22b on the discharge side of the second compressor 21,
  • the suction side of the second compressor 21 is switched to the state where it is connected to the branch point D2
  • the switching valve 22b is connected to the fourth port of the switching valve 22a
  • the second compressor 21 is connected to the gas refrigerant side of the outdoor heat exchanger 18.
  • the first compressor 11 and the second compressor 21 are operated.
  • the second refrigerant stored in the refrigerant container 19 is transferred to the second cascade flow path 17b of the cascade heat exchanger 17 via the branch point K2, the fifth on-off valve 45, the branch point H2, and the branch point G. Draw in.
  • the second refrigerant flowing through the second cascade flow path 17b of the cascade heat exchanger 17 is heated by exchanging heat with the first refrigerant flowing through the first cascade flow path 17a of the cascade heat exchanger 17 .
  • the heated second refrigerant is sent to the second compressor 21 via the switching valve 22b.
  • the second refrigerant is further discharged by the second compressor 21 and stored in the outdoor heat exchanger 18 after passing through the switching valves 22a and 22b.
  • the switching valve 12b connects the fourth port of the switching valve 12a to the gas refrigerant side of the first utilization flow path 13a of the utilization heat exchanger 13, and connects the suction side of the first compressor 11 to the cascade heat exchanger 17. It switches to a state of being connected to the gas refrigerant side of the first cascade flow path 17a. In this state, the second compressor 21 is operated, and the first compressor 11 is operated or stopped.
  • the gaseous second refrigerant remaining above the refrigerant container 19 can be sucked into the second compressor 21 via the branch point K1, the ninth on-off valve 49, the branch point D2, and the switching valve 22a. . After the refrigerant container 19 is emptied by this operation, the ninth on-off valve 49 is closed.
  • a dual refrigerating cycle is performed in which the second refrigerant is used in the heat source side refrigerating cycle and the first refrigerant is used in the user side refrigerating cycle.
  • the single arrow indicates the channel through which the first coolant flows
  • the double arrow indicates the channel through which the second coolant flows.
  • the utilization heat exchanger 13 functions as a condenser for the first refrigerant
  • the cascade heat exchanger 17 functions as an evaporator for the first refrigerant
  • the cascade heat exchanger 17 functions to dissipate the heat of the second refrigerant.
  • the outdoor heat exchanger 18 functions as an evaporator for the second refrigerant.
  • the third on-off valve 43, the fourth on-off valve 44, the fifth on-off valve 45, the sixth on-off valve 46, the seventh on-off valve 47, the eighth on-off valve 48, the ninth By controlling all the on-off valves 49 to be in a closed state, mixing of the first refrigerant and the second refrigerant is prevented.
  • the connection state of the switching valve 12a of the first switching mechanism 12 is set to the state indicated by the solid line in FIG. 8
  • the connection state of the switching valve 12b of the first switching mechanism 12 is set to the state indicated by the broken line in FIG. 8
  • the connection state of the switching valve 22a of the second switching mechanism 22 is switched to the connection state shown by the broken line in FIG.
  • the valve opening degree of the first expansion valve 15 is controlled so that the degree of superheat of the first refrigerant sucked by the first compressor 11 satisfies a predetermined condition
  • the valve opening degree of the second expansion valve 16 is controlled for the second compression. Control is performed so that the degree of superheat of the second refrigerant sucked by the machine 21 satisfies a predetermined condition.
  • the second refrigerant discharged from the second compressor 21 is sent to the cascade heat exchanger 17 and, when flowing through the second cascade flow path 17b, heats the first refrigerant flowing through the first cascade flow path 17a. Dissipate heat by exchanging.
  • the second refrigerant that has dissipated heat in the cascade heat exchanger 17 is decompressed in the second expansion valve 16, and then exchanges heat with the outdoor air supplied by the outdoor fan 9 in the outdoor heat exchanger 18 to evaporate. It is sucked into the compressor 21 .
  • the first refrigerant discharged from the first compressor 11 is sent through the first switching mechanism 12 to the first utilization flow path 13 a of the utilization heat exchanger 13 .
  • the first refrigerant flowing through the first use flow path 13a of the heat utilization exchanger 13 is condensed by exchanging heat with water flowing through the heat load flow path 13b of the heat utilization heat exchanger 13 of the heat load circuit 90 .
  • the water warmed by this heat exchange is sent to the heat load heat exchanger 91 in the heat load circuit 90 to treat the heating load.
  • the first refrigerant condensed in the first utilization flow path 13 a of the utilization heat exchanger 13 is decompressed in the first expansion valve 15 after passing through the branch point A.
  • the first refrigerant depressurized by the first expansion valve 15 evaporates by exchanging heat with the second refrigerant flowing through the second cascade flow path 17b when passing through the first cascade flow path 17a of the cascade heat exchanger 17. do.
  • the first refrigerant evaporated in the first cascade flow path 17 a of the cascade heat exchanger 17 is sucked into the first compressor 11 via the first switching mechanism 12 .
  • the refrigerating cycle device 1a performs heating/cooling in the order of (a2) to (f2) below in order to shift from the cycle state in which the heating operation is performed to the cycle state in which the cooling operation is performed. A transition operation is performed.
  • the second expansion valve 16 is controlled to be fully closed, the fifth on-off valve 45 is controlled to be open, and the second compressor 21 is operated from the state in which the heating operation was performed.
  • the first compressor 11 and the like are operated so as to maintain the refrigeration cycle on the user side during the heating operation using the first refrigerant.
  • the operation of collecting the second refrigerant into the refrigerant container 19 from below the refrigerant container 19 is performed.
  • the ninth on-off valve 49 between the open state and the closed state at predetermined time intervals, the gas state in the flow path from the upper end of the refrigerant container 19 to the ninth on-off valve 49 is changed to the second state.
  • Refrigerant is drawn into the second compressor 21 . Thereby, the second refrigerant can be efficiently collected into the refrigerant container 19 . This operation is continued for a predetermined time, for example, until a predetermined sufficient amount of the second refrigerant is collected in the refrigerant container 19 .
  • the fifth on-off valve 45 is closed after the collection of the second refrigerant into the refrigerant container 19 has progressed to a predetermined amount or more.
  • the switching valve 12a is switched to a state in which the discharge side of the first compressor 11 is connected to the first port of the switching valve 12b and the suction side of the first compressor 11 is connected to the branch point E2.
  • the fourth port of the switching valve 12 a is connected to the gas refrigerant side of the first cascade passage 17 a of the cascade heat exchanger 17
  • the suction side of the first compressor 11 is connected to the first utilization passage 13 a of the heat exchanger 13 .
  • the switching valve 22a is switched to a state in which the discharge side of the second compressor 21 is connected to the branch point D2 and the suction side of the second compressor 21 is connected to the first port of the switching valve 22b.
  • the fourth port of the switching valve 22a is connected to the gas refrigerant side of the outdoor heat exchanger 18, and the suction side of the second compressor 21 is connected to the gas refrigerant side of the second cascade flow path 17b of the cascade heat exchanger 17. switch to state.
  • the ninth on-off valve 49 by opening the ninth on-off valve 49 and operating the first compressor 11 and the second compressor 21, the second refrigerant remaining in the second cascade flow path 17b of the cascade heat exchanger 17 is The second refrigerant is heated by the heat of the first refrigerant and driven out, and the second refrigerant is collected in the refrigerant container 19 via the second compressor 21, the branch point D2, the ninth on-off valve 49, and the branch point K1.
  • the ninth on-off valve 49 is controlled to be closed, and the collection of the second refrigerant into the refrigerant container 19 is finished.
  • the switching valve 22a is switched to a state in which the discharge side of the second compressor 21 is connected to the first port of the switching valve 22b and the suction side of the second compressor 21 is connected to the branch point D2,
  • the fourth port of the switching valve 22b is connected to the gas refrigerant side of the outdoor heat exchanger 18, and the suction side of the second compressor 21 is connected to the gas refrigerant of the second cascade flow path 17b of the cascade heat exchanger 17. connected to the side.
  • the first expansion valve 15 is controlled to be fully closed, the fourth on-off valve 44 and the fifth on-off valve 45 are kept closed, the third on-off valve 43 is opened, and the first compressor 11 and The second compressor 21 is operated.
  • the first refrigerant existing from the first expansion valve 15 to the suction side of the first compressor 11 is transferred to the first switching mechanism 12, the first cascade flow path 17a of the cascade heat exchanger 17, and the branch point F. , the branch point H1, the third on-off valve 43, the branch point H2, and the branch point G to the second cascade flow path 17b of the cascade heat exchanger 17. Further, the first refrigerant is sucked into the second compressor 21 via the switching valve 22b of the second switching mechanism 22. As shown in FIG. Then, the first refrigerant discharged from the second compressor 21 is sent to the outdoor heat exchanger 18 via the switching valve 22 a of the second switching mechanism 22 .
  • the first refrigerant existing from the third on-off valve 43 to the suction side of the first compressor 11 is discharged from the first compressor 11. , and is drawn into the second compressor 21 via the branch point E2, the seventh on-off valve 47, and the branch point E1.
  • the fourth on-off valve 44 is opened to connect the switching valve 12a to the first port of the switching valve 12b on the discharge side of the first compressor 11,
  • the suction side of the first compressor 11 is switched to the branch point E2, and the switching valve 12b is connected to the gas refrigerant side of the first utilization flow path 13a of the utilization heat exchanger 13 by connecting the fourth port of the switching valve 12a.
  • the state is switched to connect the suction side of the first compressor 11 to the gas refrigerant side of the first cascade flow path 17 a of the cascade heat exchanger 17 . In this state, the first compressor 11 and the second compressor 21 are operated.
  • the second refrigerant stored in the refrigerant container 19 is transferred to the first cascade flow path 17a of the cascade heat exchanger 17 via the branch point K2, the fourth on-off valve 44, the branch point H1, and the branch point F. Draw in.
  • the second refrigerant flowing through the first cascade flow path 17a of the cascade heat exchanger 17 is heated by exchanging heat with the first refrigerant flowing through the second cascade flow path 17b of the cascade heat exchanger 17 .
  • the heated second refrigerant is sent to the first compressor 11 via the switching valve 12b.
  • the second refrigerant is further discharged by the first compressor 11 and stored in the utilization heat exchanger 13 after passing through the switching valves 12a and 12b.
  • the second refrigerant which is a high-pressure refrigerant
  • the second refrigerant is used in the heat source side refrigeration cycle for heating operation
  • the low-pressure refrigerant A binary refrigerating cycle is performed using the first refrigerant in the user-side refrigerating cycle.
  • carbon dioxide is used as the second refrigerant in the refrigerant circuit 10 .
  • the unitary refrigerating cycle using the second refrigerant is not performed, nor is the dual refrigerating cycle using the second refrigerant in the heat source side refrigerating cycle and the first refrigerant in the user side refrigerating cycle.
  • a binary refrigerating cycle is performed in which the first refrigerant, which is a refrigerant, is used in the heat source side refrigerating cycle, and the second refrigerant, which is a high pressure refrigerant, is used in the user side refrigerating cycle.
  • the pressure of the carbon dioxide refrigerant becomes the critical pressure as in the case of performing a single refrigeration cycle using carbon dioxide refrigerant, which is a high-pressure refrigerant, or when performing a dual refrigeration cycle using carbon dioxide, which is a high-pressure refrigerant, in the heat source side cycle.
  • the cooling operation can be performed while avoiding the COP from exceeding and becoming low.
  • FIG. 9 the schematic block diagram of the refrigerating-cycle apparatus 1b which concerns on 3rd Embodiment is shown.
  • FIG. 10 shows a functional block configuration diagram of a refrigeration cycle device 1b according to the second embodiment.
  • the refrigeration cycle device 1b is a device used to process a heat load by performing vapor compression refrigeration cycle operation.
  • the refrigerating cycle device 1 b has a heat load circuit 90 , a refrigerant circuit 10 , an outdoor fan 9 and a controller 7 .
  • the heat load processed by the refrigeration cycle device 1b and the heat load circuit 90 are the same as in the first embodiment.
  • the heat utilization exchanger 13 has a first utilization flow path 13a through which the first refrigerant or the second refrigerant flowing through the refrigerant circuit 10 passes, as will be described later.
  • the water flowing through the heat load channel 13b of the heat utilization exchanger 13 is cooled during the cooling operation and warmed during the heating operation by exchanging heat with the first refrigerant or the second refrigerant flowing through the first utilization channel 13a.
  • the refrigerant circuit 10 includes a first compressor 11, a second compressor 21, a first switching mechanism 12, a second switching mechanism 22, a utilization heat exchanger 13 shared with the heat load circuit 90, and a first Expansion valve 15, second expansion valve 16, third expansion valve 33, fourth expansion valve 34, fifth expansion valve 35, sixth expansion valve 36, cascade heat exchanger 17, outdoor heat exchange 18, a first receiver 19a, a second receiver 19b, a tenth on-off valve 50, an eleventh on-off valve 51, a twelfth on-off valve 52, and a thirteenth on-off valve 53.
  • the refrigerant circuit 10 is filled with a first refrigerant, which is a low-pressure refrigerant, and a second refrigerant, which is a high-pressure refrigerant, in a substantially separated state.
  • the first refrigerant is a refrigerant of 1 MPa or less at 30 ° C., for example, a refrigerant containing at least one of R1234yf and R1234ze. good.
  • the second refrigerant is a refrigerant having a pressure of 1.5 MPa or more at 30° C., and may contain, for example, carbon dioxide, or may be composed of only carbon dioxide.
  • the specific configuration of the first compressor 11 itself is the same as that of the first embodiment.
  • a discharge side of the first compressor 11 is connected to a first port of the first switching mechanism 12 .
  • a suction side of the first compressor 11 is connected to a second port of the first switching mechanism 12 .
  • the first switching mechanism 12 is composed of a four-way switching valve having four ports consisting of a first port, a second port, a third port, and a fourth port.
  • a branch point P is connected to the first port of the first switching mechanism 12 .
  • the branch point P is a flow path extending from the discharge side of the first compressor 11 , a flow path extending from the gas refrigerant side of the first cascade flow path 17 a of the cascade heat exchanger 17 , and the first port of the first switching mechanism 12 . and are connected to each other.
  • a suction side of the first compressor 11 is connected to a second port of the first switching mechanism 12 .
  • a flow path extending from the eleventh on-off valve 51 is connected to the third port of the first switching mechanism 12 .
  • a channel extending from a tenth on-off valve 50 is connected to the fourth port of the first switching mechanism 12 .
  • the first switching mechanism 12 connects the branch point P to the 11th on-off valve 51 and connects the suction side of the first compressor 11 to the tenth on-off valve 50 , and connects the branch point P to the tenth on-off valve 50 . connected, and the state in which the suction side of the first compressor 11 is connected to the eleventh on-off valve 51 is switched.
  • the tenth on-off valve 50 is an electromagnetic valve that can be switched between an open state and a closed state.
  • the tenth on-off valve 50 is provided in the middle of the flow path connecting the fourth port of the first switching mechanism 12 and the branch point M. As shown in FIG.
  • a flow path extending from the tenth on-off valve 50, a flow path extending from the thirteenth on-off valve 53, a flow path extending from the gas refrigerant side of the first utilization flow path 13a of the heat utilization heat exchanger 13, is connected.
  • the first use channel 13a through which the refrigerant flowing through the refrigerant circuit 10 passes in the use heat exchanger 13 is connected to the channel extending from the branch point M on the gas refrigerant side. Further, the liquid refrigerant side of the first use channel 13a is connected to a channel extending from the branch point A. As shown in FIG.
  • a flow path extending from the liquid refrigerant side of the first use flow path 13a, a flow path extending from the first expansion valve 15 on the side opposite to the branch point F side, and a flow extending from the sixth expansion valve 36 is connected to the road.
  • the first expansion valve 15 is composed of an electronic expansion valve whose opening degree can be adjusted.
  • the first expansion valve 15 is provided in the middle of the flow path connecting the branch point A and the branch point F in the refrigerant circuit 10 .
  • the branch point F connects the flow path extending from the first expansion valve 15, the flow path extending from the fifth expansion valve 35, and the flow path extending from the upper end of the first receiver 19a.
  • the first receiver 19a is a refrigerant container that stores refrigerant inside.
  • the first receiver 19 a is provided in the middle of the flow path connecting the branch point F and the third expansion valve 33 .
  • the 1st receiver 19a stores a 2nd refrigerant
  • the third expansion valve 33 is composed of an electronic expansion valve whose opening degree can be adjusted.
  • the third expansion valve 33 is provided in the middle of the flow path that connects the lower end of the first receiver 19 a and the liquid refrigerant side of the first cascade flow path 17 a of the cascade heat exchanger 17 .
  • the cascade heat exchanger 17 includes a first cascade flow path 17a through which one of the first refrigerant and the second refrigerant passes, and a second cascade flow path through which the other of the first refrigerant and the second refrigerant passes. 17b and a cascade heat exchanger for heat exchange between the first refrigerant and the second refrigerant.
  • the first cascade flow path 17 a and the second cascade flow path 17 b are independent of each other, and the first refrigerant and the second refrigerant do not mix inside the cascade heat exchanger 17 .
  • the gas refrigerant side of the first cascade flow path 17a is connected to a flow path extending from the branch point P. As shown in FIG.
  • the liquid refrigerant side of the first cascade flow path 17 a is connected to a flow path extending from the third expansion valve 33 .
  • the gas refrigerant side of the second cascade flow path 17 b is connected to the flow path extending from the second port of the second switching mechanism 22 and the flow path extending from the suction side of the second compressor 21 .
  • the liquid refrigerant side of the second cascade flow path 17 b is connected to a flow path extending from the fourth expansion valve 34 .
  • the specific configuration of the second compressor 21 itself is the same as that of the first embodiment.
  • a discharge side of the second compressor 21 is connected to a first port of the second switching mechanism 22 .
  • the suction side of the second compressor 21 is connected to the second port of the second switching mechanism 22 and the gas refrigerant side of the second cascade flow path 17 b of the cascade heat exchanger 17 .
  • the second switching mechanism 22 is composed of a four-way switching valve having four ports consisting of a first port, a second port, a third port, and a fourth port.
  • a first port of the second switching mechanism 22 is connected to the discharge side of the second compressor 21 .
  • a second port of the second switching mechanism 22 is connected to the suction side of the second compressor 21 and the gas refrigerant side of the second cascade flow path 17 b of the cascade heat exchanger 17 .
  • a flow path extending from the thirteenth on-off valve 53 is connected to the third port of the second switching mechanism 22 .
  • a channel extending from the twelfth on-off valve 52 is connected to the fourth port of the second switching mechanism 22 .
  • the second switching mechanism 22 connects the discharge side of the second compressor 21 to the twelfth on-off valve 52, the suction side of the second compressor 21 and the gas refrigerant side of the second cascade flow path 17b of the cascade heat exchanger 17. is connected to the thirteenth on-off valve 53, the discharge side of the second compressor 21 is connected to the thirteenth on-off valve 53, and the suction side of the second compressor 21 and the second cascade flow path of the cascade heat exchanger 17 are connected. 17 b is connected to the twelfth on-off valve 52 .
  • a flow path extending from the fourth expansion valve 34 is connected to the liquid refrigerant side of the second cascade flow path 17 b of the cascade heat exchanger 17 .
  • the fourth expansion valve 34 is composed of an electronic expansion valve whose opening degree can be adjusted.
  • the fourth expansion valve 34 is provided between the liquid refrigerant side of the second cascade flow path 17b of the cascade heat exchanger 17 and the upper end of the second receiver 19b.
  • the second receiver 19b is a refrigerant container that stores refrigerant inside.
  • the second receiver 19 b is provided in the middle of the flow path connecting the branch point G and the fourth expansion valve 34 .
  • the 2nd receiver 19b stores a 1st refrigerant
  • the second expansion valve 16 is composed of an electronic expansion valve whose opening degree can be adjusted.
  • the second expansion valve 16 is provided between the branch point G and the branch point B.
  • the flow path extending from the second expansion valve 16 the flow path extending from the liquid refrigerant side of the outdoor heat exchanger 18, and the flow path extending from the fifth expansion valve 35 are connected.
  • the outdoor heat exchanger 18 is configured with multiple heat transfer tubes and multiple fins joined to the multiple heat transfer tubes.
  • the outdoor heat exchanger 18 is arranged outdoors.
  • the refrigerant flowing through the outdoor heat exchanger 18 exchanges heat with the air sent to the outdoor heat exchanger 18 .
  • the outdoor heat exchanger 18 is provided in the middle of the flow path connecting the branch point B and the branch point N. As shown in FIG.
  • the outdoor fan 9 generates an air flow by the outdoor air passing through the outdoor heat exchanger 18.
  • the flow path extending from the gas refrigerant side of the outdoor heat exchanger 18, the flow path extending from the 12th on-off valve 52, and the flow path extending from the 11th on-off valve 51 are connected.
  • the eleventh on-off valve 51 is an electromagnetic valve that can be switched between an open state and a closed state.
  • the eleventh on-off valve 51 is provided in the middle of the flow path connecting the third port of the first switching mechanism 12 and the branch point N. As shown in FIG.
  • the twelfth on-off valve 52 is an electromagnetic valve that can be switched between an open state and a closed state.
  • the twelfth on-off valve 52 is provided in the middle of the flow path that connects the fourth port of the second switching mechanism 22 and the branch point N. As shown in FIG.
  • the thirteenth on-off valve 53 is an electromagnetic valve that can be switched between an open state and a closed state.
  • the thirteenth on-off valve 53 is provided in the middle of the flow path connecting the third port of the second switching mechanism 22 and the branch point M. As shown in FIG.
  • the fifth expansion valve 35 is composed of an electronic expansion valve whose opening degree can be adjusted.
  • the fifth expansion valve 35 is provided in the middle of the flow path connecting the branch point F and the branch point B. As shown in FIG.
  • the sixth expansion valve 36 is composed of an electronic expansion valve whose opening degree can be adjusted.
  • the sixth expansion valve 36 is provided in the middle of the flow path connecting the branch point A and the branch point G. As shown in FIG.
  • the controller 7 controls the operation of each device that constitutes the heat load circuit 90 and the refrigerant circuit 10 .
  • the controller 7 has a processor as a CPU provided for control, a memory, and the like.
  • the controller 7 controls each device to execute the refrigeration cycle, thereby performing a cooling operation for processing the cooling load in the thermal load heat exchanger 91 and a heating load in the thermal load heat exchanger 91.
  • a heating operation, a cooling/heating transitional operation, and a heating/cooling transitional operation are performed.
  • a dual refrigerating cycle operation is performed using the first refrigerant in the heat source side refrigerating cycle and the second refrigerant in the user side refrigerating cycle.
  • single arrows indicate channels through which the first coolant flows, and double arrows indicate channels through which the second coolant flows.
  • the utilization heat exchanger 13 functions as an evaporator for the second refrigerant
  • the cascade heat exchanger 17 functions as a radiator for the second refrigerant
  • the cascade heat exchanger 17 functions as an evaporator for the first refrigerant.
  • the outdoor heat exchanger 18 functions as a condenser for the first refrigerant.
  • valve opening degree of the first expansion valve 15 is controlled so that the degree of superheat of the second refrigerant sucked into the first compressor 11 satisfies a predetermined condition
  • valve opening degree of the fourth expansion valve 34 is controlled for the second compression. Control is performed so that the degree of superheat of the first refrigerant sucked by the machine 21 satisfies a predetermined condition.
  • the first refrigerant discharged from the second compressor 21 is sent to the outdoor heat exchanger 18 via the second switching mechanism 22 and the twelfth on-off valve 52 .
  • the first refrigerant flowing through the outdoor heat exchanger 18 is condensed by exchanging heat with the outdoor air supplied by the outdoor fan 9 .
  • the first refrigerant condensed in the outdoor heat exchanger 18 passes through the second expansion valve 16 controlled to be fully open, passes through the branch point G, and flows into the second receiver 19b.
  • the refrigerant that has flowed out of the second receiver 19 b is decompressed in the fourth expansion valve 34 and sent to the second cascade flow path 17 b of the cascade heat exchanger 17 .
  • the first refrigerant flows through the second cascade flow path 17b of the cascade heat exchanger 17, the first refrigerant evaporates by exchanging heat with the second refrigerant flowing through the first cascade flow path 17a.
  • the first refrigerant evaporated in the cascade heat exchanger 17 is sucked into the second compressor 21 .
  • the second refrigerant discharged from the first compressor 11 passes through the branch point P and is sent to the first cascade flow path 17 a of the cascade heat exchanger 17 .
  • the second refrigerant releases heat by exchanging heat with the first refrigerant flowing through the second cascade flow path 17b.
  • the second refrigerant that has dissipated heat in the cascade heat exchanger 17 passes through the third expansion valve 33 that is controlled to be fully open and flows into the first receiver 19a.
  • the second refrigerant that has flowed out of the first receiver 19 a is decompressed by the first expansion valve 15 , passes through the branch point A, and is sent to the first utilization flow path 13 a of the heat utilization exchanger 13 .
  • the second refrigerant flowing through the first utilization flow path 13a of the utilization heat exchanger 13 exchanges heat with water flowing through the heat load flow path 13b of the utilization heat exchanger 13 of the heat load circuit 90, thereby evaporating.
  • the water cooled by this heat exchange is sent to the heat load heat exchanger 91 in the heat load circuit 90 to process the cooling load.
  • the second refrigerant evaporated in the first use flow path 13 a of the heat use exchanger 13 is sucked into the first compressor 11 via the tenth on-off valve 50 and the first switching mechanism 12 .
  • the refrigeration cycle device 1b performs the following steps (a3) to (b3) in order to shift from the cycle state in which the cooling operation is performed to the cycle state in which the heating operation is performed. A transition operation is performed.
  • the first compressor 11 is operated while the first expansion valve 15 is controlled to be fully closed from the cooling operation state.
  • the second compressor 21 and the like are operated so that the refrigeration cycle during the cooling operation using the first refrigerant is performed.
  • the operation of recovering the second refrigerant into the first receiver 19a from below the first receiver 19a is performed. This operation is continued for a predetermined time, for example, until a predetermined sufficient amount of the second refrigerant is collected in the first receiver 19a.
  • the 12th on-off valve 52 and the 13th on-off valve 53 are controlled to be opened, the second expansion valve 16 and the fourth expansion valve 34 are controlled to be fully closed, and the sixth expansion valve 36 is controlled to be opened. .
  • the second compressor 21 By operating the second compressor 21 in this state, the first refrigerant remaining in the outdoor heat exchanger 18 is heated by the heat of the air obtained from the outdoor fan 9 and driven out. Via the switching mechanism 22, the second compressor 21 is made to suck. Also, the first refrigerant remaining in the second cascade flow path 17 b of the cascade heat exchanger 17 is also sucked into the second compressor 21 .
  • the first refrigerant discharged from the second compressor 21 is sent through the second switching mechanism 22 , the thirteenth on-off valve 53 and the branch point M to the first utilization flow path 13 a of the utilization heat exchanger 13 . Further, the first refrigerant is condensed while flowing through the first utilization channel 13a of the utilization heat exchanger 13, and flows through the branch point A and the sixth expansion valve 36 into the second receiver 19b. After this operation is continued for a predetermined time, the twelfth on-off valve 52 is controlled to be closed, and the fourth expansion valve 34 is controlled to be opened.
  • a dual refrigerating cycle is performed in which the second refrigerant is used in the heat source side refrigerating cycle and the first refrigerant is used in the user side refrigerating cycle.
  • single arrows indicate channels through which the first coolant flows, and double arrows indicate channels through which the second coolant flows.
  • the utilization heat exchanger 13 functions as a condenser for the first refrigerant
  • the cascade heat exchanger 17 functions as an evaporator for the first refrigerant
  • the cascade heat exchanger 17 functions to dissipate the heat of the second refrigerant.
  • the outdoor heat exchanger 18 functions as an evaporator for the second refrigerant.
  • the tenth on-off valve 50 and the twelfth on-off valve 52 are controlled to be closed, and the first expansion valve 15 and the second expansion valve 16 are controlled to be fully closed.
  • the connection state of the second switching mechanism 22 is switched to the connection state indicated by the broken line in FIG. 12, and the pump 92, the first compressor 11, the 2 Compressor 21 and outdoor fan 9 are driven.
  • the valve opening degree of the fifth expansion valve 35 is controlled so that the degree of superheat of the second refrigerant sucked into the first compressor 11 satisfies a predetermined condition
  • the valve opening degree of the fourth expansion valve 34 is controlled for the second compression. Control is performed so that the degree of superheat of the first refrigerant sucked by the machine 21 satisfies a predetermined condition.
  • the second refrigerant discharged from the first compressor 11 is sent to the cascade heat exchanger 17, and when flowing through the first cascade flow path 17a, the first refrigerant flowing through the second cascade flow path 17b and the heat Dissipate heat by exchanging.
  • the second refrigerant that has released heat in the cascade heat exchanger 17 passes through the third expansion valve 33, the first receiver 19a, and the branch point F, and is decompressed in the fifth expansion valve .
  • the second refrigerant decompressed by the fifth expansion valve 35 is sent to the outdoor heat exchanger 18 via the branch point B.
  • the second refrigerant evaporates by exchanging heat with the outdoor air supplied by the outdoor fan 9 in the outdoor heat exchanger 18, and passes through the branch point N, the eleventh on-off valve 51, and the first switching mechanism 12 to the first It is sucked into the compressor 11 .
  • the first refrigerant discharged from the second compressor 21 is sent through the second switching mechanism 22 , the thirteenth on-off valve 53 and the branch point M to the first utilization flow path 13 a of the utilization heat exchanger 13 .
  • the first refrigerant flowing through the first use flow path 13a of the heat utilization exchanger 13 is condensed by exchanging heat with water flowing through the heat load flow path 13b of the heat utilization heat exchanger 13 of the heat load circuit 90 .
  • the water warmed by this heat exchange is sent to the heat load heat exchanger 91 in the heat load circuit 90 to treat the heating load.
  • the first refrigerant condensed in the first utilization flow path 13a of the utilization heat exchanger 13 passes through the branch point A, passes through the sixth expansion valve 36, and flows into the second receiver 19b.
  • the first refrigerant that has flowed out of the second receiver 19b is decompressed in the fourth expansion valve 34 .
  • the first refrigerant depressurized by the fourth expansion valve 34 evaporates by exchanging heat with the second refrigerant flowing through the first cascade flow path 17a when passing through the second cascade flow path 17b of the cascade heat exchanger 17. do.
  • the first refrigerant evaporated in the second cascade flow path 17 b of the cascade heat exchanger 17 is drawn into the second compressor 21 .
  • the refrigerating cycle device 1b performs heating/cooling in the order of (a4) to (c4) below in order to shift from the cycle state in which the heating operation is performed to the cycle state in which the cooling operation is performed. A transition operation is performed.
  • the fifth expansion valve 35 is controlled to a fully closed state from the state in which the heating operation was performed, and the first compressor 11 is operated.
  • the second compressor 21 and the like are operated so as to maintain the refrigeration cycle on the user side during the heating operation using the first refrigerant.
  • the second refrigerant discharged from the second compressor 21 is supplied to the first cascade flow path 17a of the cascade heat exchanger 17 while the second refrigerant of the outdoor heat exchanger 18 is drawn into the second compressor 21.
  • An operation is performed to radiate heat, flow into the first receiver 19a, and collect the second refrigerant in the first receiver 19a. This operation is continued for a predetermined time, for example, until a predetermined sufficient amount of the second refrigerant is collected in the first receiver 19a.
  • the second compressor 21 By operating the second compressor 21 in this state, the first refrigerant remaining in the first utilization flow path 13a of the utilization heat exchanger 13 and its surroundings is sucked into the second compressor 21, and the second compressor 21 It is condensed in the outdoor heat exchanger 18 by discharging from. The first refrigerant condensed in the outdoor heat exchanger 18 begins to accumulate in the second receiver 19b. Then, this operation is continued for a predetermined time.
  • the second refrigerant which is a high-pressure refrigerant
  • the second refrigerant is used in the heat source side refrigeration cycle for heating operation
  • the low-pressure refrigerant A binary refrigerating cycle is performed using the first refrigerant in the user-side refrigerating cycle.
  • carbon dioxide is used as the second refrigerant in the refrigerant circuit 10 .
  • the unitary refrigerating cycle using the second refrigerant is not performed, nor is the dual refrigerating cycle using the second refrigerant in the heat source side refrigerating cycle and the first refrigerant in the user side refrigerating cycle.
  • a binary refrigerating cycle is performed in which the first refrigerant, which is a refrigerant, is used in the heat source side refrigerating cycle, and the second refrigerant, which is a high pressure refrigerant, is used in the user side refrigerating cycle.
  • the pressure of the carbon dioxide refrigerant becomes the critical pressure as in the case of performing a single refrigeration cycle using carbon dioxide refrigerant, which is a high-pressure refrigerant, or when performing a dual refrigeration cycle using carbon dioxide, which is a high-pressure refrigerant, in the heat source side cycle.
  • the cooling operation can be performed while avoiding the COP from exceeding and becoming low.
  • the first refrigerant and the second refrigerant are obtained by using the first receiver 19a and the second receiver 19b used in the refrigerating cycle on the heat source side and the refrigerating cycle on the user side. are able to collect Therefore, it is not necessary to separately secure the refrigerant container 19 that is not used in the refrigeration cycle on the heat source side and the refrigeration cycle on the user side described in the second embodiment.
  • FIG. 9 shows a schematic configuration diagram of a refrigeration cycle apparatus 1c according to a fourth embodiment.
  • FIG. 10 shows a functional block configuration diagram of a refrigeration cycle device 1c according to the second embodiment.
  • the refrigeration cycle device 1c is a device used to process a heat load by performing vapor compression refrigeration cycle operation.
  • the refrigeration cycle device 1 c has a heat load circuit 90 , a refrigerant circuit 10 , an outdoor fan 9 and a controller 7 .
  • the heat load processed by the refrigeration cycle device 1c and the heat load circuit 90 are the same as in the first embodiment.
  • the heat utilization exchanger 13 has a first utilization flow path 13a through which the first refrigerant or the second refrigerant flowing through the refrigerant circuit 10 passes, as will be described later.
  • the water flowing through the heat load channel 13b of the heat utilization exchanger 13 is cooled during the cooling operation and warmed during the heating operation by exchanging heat with the first refrigerant or the second refrigerant flowing through the first utilization channel 13a.
  • the refrigerant circuit 10 includes a first compressor 11, a second compressor 21, a first switching mechanism 12, a second switching mechanism 22, a utilization heat exchanger 13 shared with the heat load circuit 90, and a first Expansion valve 15, second expansion valve 16, third expansion valve 33, fourth expansion valve 34, fifth expansion valve 35, sixth expansion valve 36, cascade heat exchanger 17, outdoor heat exchange 18 , a first receiver 19 a , a second receiver 19 b , a 14th on-off valve 54 , a 15th on-off valve 55 , a 16th on-off valve 56 , and a 17th on-off valve 57 .
  • the refrigerant circuit 10 is filled with a first refrigerant, which is a low-pressure refrigerant, and a second refrigerant, which is a high-pressure refrigerant, in a substantially separated state.
  • the first refrigerant is a refrigerant of 1 MPa or less at 30 ° C., for example, a refrigerant containing at least one of R1234yf and R1234ze. good.
  • the second refrigerant is a refrigerant having a pressure of 1.5 MPa or more at 30° C., and may contain, for example, carbon dioxide, or may be composed of only carbon dioxide.
  • the specific configuration of the first compressor 11 itself is the same as that of the first embodiment.
  • the discharge side of the first compressor 11 is connected to the switching valve 12c, switching valve 12d, and switching valve 12e of the first switching mechanism 12 .
  • the suction side of the first compressor 11 is connected to different ports of the switching valves 12 c , 12 d and 12 e of the first switching mechanism 12 .
  • the first switching mechanism 12 has a switching valve 12c, a switching valve 12d, and a switching valve 12e provided in parallel on the discharge side of the first compressor 11.
  • each of the switching valve 12c, the switching valve 12d, and the switching valve 12e is a three-way valve.
  • the switching valve 12 c switches between a state in which the discharge side of the first compressor 11 is connected to the fourteenth on-off valve 54 and a state in which the suction side of the first compressor 11 is connected to the fourteenth on-off valve 54 .
  • the switching valve 12d connects the discharge side of the first compressor 11 to the gas refrigerant side of the first cascade flow path 17a of the cascade heat exchanger 17, and connects the suction side of the first compressor 11 to the cascade heat exchanger 17.
  • the switching valve 12 e switches between a state in which the discharge side of the first compressor 11 is connected to the sixteenth on-off valve 56 and a state in which the suction side of the first compressor 11 is connected to the sixteenth on-off valve 56 .
  • the 14th on-off valve 54 is an electromagnetic valve that can be switched between an open state and a closed state.
  • the fourteenth on-off valve 54 is provided in the middle of the flow path connecting the switching valve 12c of the first switching mechanism 12 and the branch point M. As shown in FIG.
  • a flow path extending from the 14th on-off valve 54, a flow path extending from the 15th on-off valve 55, a flow path extending from the gas refrigerant side of the first utilization flow path 13a of the heat utilization heat exchanger 13, is connected.
  • the first use channel 13a through which the refrigerant flowing through the refrigerant circuit 10 passes in the use heat exchanger 13 is connected to the channel extending from the branch point M on the gas refrigerant side. Further, the liquid refrigerant side of the first use channel 13a is connected to a channel extending from the branch point A. As shown in FIG.
  • a flow path extending from the liquid refrigerant side of the first use flow path 13a, a flow path extending from the first expansion valve 15 on the side opposite to the branch point F side, and a flow extending from the sixth expansion valve 36 is connected to the road.
  • the first expansion valve 15 is composed of an electronic expansion valve whose opening degree can be adjusted.
  • the first expansion valve 15 is provided in the middle of the flow path connecting the branch point A and the branch point F in the refrigerant circuit 10 .
  • the branch point F connects the flow path extending from the first expansion valve 15, the flow path extending from the fifth expansion valve 35, and the flow path extending from the upper end of the first receiver 19a.
  • the first receiver 19a is a refrigerant container that stores refrigerant inside.
  • the first receiver 19 a is provided in the middle of the flow path connecting the branch point F and the third expansion valve 33 .
  • the 1st receiver 19a stores a 2nd refrigerant
  • the third expansion valve 33 is composed of an electronic expansion valve whose opening degree can be adjusted.
  • the third expansion valve 33 is provided in the middle of the flow path that connects the lower end of the first receiver 19 a and the liquid refrigerant side of the first cascade flow path 17 a of the cascade heat exchanger 17 .
  • the cascade heat exchanger 17 includes a first cascade flow path 17a through which one of the first refrigerant and the second refrigerant passes, and a second cascade flow path through which the other of the first refrigerant and the second refrigerant passes. 17b and a cascade heat exchanger for heat exchange between the first refrigerant and the second refrigerant.
  • the first cascade flow path 17 a and the second cascade flow path 17 b are independent of each other, and the first refrigerant and the second refrigerant do not mix inside the cascade heat exchanger 17 .
  • a gas refrigerant side of the first cascade flow path 17 a is connected to a flow path extending from the switching valve 12 d of the first switching mechanism 12 .
  • the liquid refrigerant side of the first cascade flow path 17 a is connected to a flow path extending from the third expansion valve 33 .
  • a gas refrigerant side of the second cascade flow path 17 b is connected to a flow path extending from the switching valve 22 d of the second switching mechanism 22 .
  • the liquid refrigerant side of the second cascade flow path 17 b is connected to a flow path extending from the fourth expansion valve 34 .
  • the specific configuration of the second compressor 21 itself is the same as that of the first embodiment.
  • the discharge side of the second compressor 21 is connected to the switching valve 22c, the switching valve 22d, and the switching valve 22e of the second switching mechanism 22.
  • the suction side of the second compressor 21 is connected to different ports of the switching valves 22 c , 22 d and 22 e of the second switching mechanism 22 .
  • the second switching mechanism 22 has a switching valve 22c, a switching valve 22d, and a switching valve 22e provided in parallel with each other on the discharge side of the second compressor 21.
  • each of the switching valve 22c, the switching valve 22d, and the switching valve 22e is a three-way valve.
  • the switching valve 22 c switches between a state in which the discharge side of the second compressor 21 is connected to the fifteenth on-off valve 55 and a state in which the suction side of the second compressor 21 is connected to the fifteenth on-off valve 55 .
  • the switching valve 22d connects the discharge side of the second compressor 21 to the gas refrigerant side of the second cascade flow path 17b of the cascade heat exchanger 17, and connects the suction side of the second compressor 21 to the cascade heat exchanger 17. connected to the gas refrigerant side of the second cascade flow path 17b.
  • the switching valve 22 e switches between a state in which the discharge side of the second compressor 21 is connected to the seventeenth on-off valve 57 and a state in which the suction side of the second compressor 21 is connected to the seventeenth on-off valve 57 .
  • a flow path extending from the fourth expansion valve 34 is connected to the liquid refrigerant side of the second cascade flow path 17 b of the cascade heat exchanger 17 .
  • the fourth expansion valve 34 is composed of an electronic expansion valve whose opening degree can be adjusted.
  • the fourth expansion valve 34 is provided between the liquid refrigerant side of the second cascade flow path 17b of the cascade heat exchanger 17 and the upper end of the second receiver 19b.
  • the second receiver 19b is a refrigerant container that stores refrigerant inside.
  • the second receiver 19 b is provided in the middle of the flow path connecting the branch point G and the fourth expansion valve 34 .
  • the 2nd receiver 19b stores a 1st refrigerant
  • the second expansion valve 16 is composed of an electronic expansion valve whose opening degree can be adjusted.
  • the second expansion valve 16 is provided between the branch point G and the branch point B.
  • the flow path extending from the second expansion valve 16 the flow path extending from the liquid refrigerant side of the outdoor heat exchanger 18, and the flow path extending from the fifth expansion valve 35 are connected.
  • the outdoor heat exchanger 18 is configured with multiple heat transfer tubes and multiple fins joined to the multiple heat transfer tubes.
  • the outdoor heat exchanger 18 is arranged outdoors.
  • the refrigerant flowing through the outdoor heat exchanger 18 exchanges heat with the air sent to the outdoor heat exchanger 18 .
  • the outdoor heat exchanger 18 is provided in the middle of the flow path connecting the branch point B and the branch point N. As shown in FIG.
  • the outdoor fan 9 generates an air flow by the outdoor air passing through the outdoor heat exchanger 18.
  • the flow path extending from the gas refrigerant side of the outdoor heat exchanger 18, the flow path extending from the 16th on-off valve 56, and the flow path extending from the 17th on-off valve 57 are connected.
  • the fifteenth on-off valve 55 is an electromagnetic valve that can be switched between an open state and a closed state.
  • the fifteenth on-off valve 55 is provided in the middle of the flow path connecting the switching valve 22c of the second switching mechanism 22 and the branch point M. As shown in FIG.
  • the 16th on-off valve 56 is an electromagnetic valve that can be switched between an open state and a closed state.
  • the sixteenth on-off valve 56 is provided in the middle of the flow path connecting the switching valve 12e of the first switching mechanism 12 and the branch point N. As shown in FIG.
  • the 17th on-off valve 57 is an electromagnetic valve that can be switched between an open state and a closed state.
  • the seventeenth on-off valve 57 is provided in the middle of the flow path connecting the switching valve 22e of the second switching mechanism 22 and the branch point N. As shown in FIG.
  • the fifth expansion valve 35 is composed of an electronic expansion valve whose opening degree can be adjusted.
  • the fifth expansion valve 35 is provided in the middle of the flow path connecting the branch point F and the branch point B. As shown in FIG.
  • the sixth expansion valve 36 is composed of an electronic expansion valve whose opening degree can be adjusted.
  • the sixth expansion valve 36 is provided in the middle of the flow path connecting the branch point A and the branch point G. As shown in FIG.
  • the controller 7 controls the operation of each device that constitutes the heat load circuit 90 and the refrigerant circuit 10 .
  • the controller 7 has a processor as a CPU provided for control, a memory, and the like.
  • the controller 7 controls each device to execute the refrigeration cycle, thereby performing a cooling operation for processing the cooling load in the thermal load heat exchanger 91 and a heating load in the thermal load heat exchanger 91.
  • a heating operation, a cooling/heating transitional operation, and a heating/cooling transitional operation are performed.
  • the first refrigerant is used in the heat source side refrigerating cycle and the second refrigerant is used in the user side refrigerating cycle.
  • single arrows indicate channels through which the first coolant flows, and double arrows indicate channels through which the second coolant flows.
  • the utilization heat exchanger 13 functions as an evaporator for the second refrigerant
  • the cascade heat exchanger 17 functions as a radiator for the second refrigerant
  • the cascade heat exchanger 17 functions as an evaporator for the first refrigerant.
  • the outdoor heat exchanger 18 functions as a condenser for the first refrigerant.
  • the fifteenth on-off valve 55 and the sixteenth on-off valve 56 are all controlled to be closed, and the fifth expansion valve 35 and the sixth expansion valve 36 are controlled to be fully closed. This prevents the first refrigerant and the second refrigerant from being mixed.
  • the fourteenth on-off valve 54 and the seventeenth on-off valve 57 are controlled to be open. Then, the connected state of the first switching mechanism 12 is switched to the connected state indicated by the solid line in FIG. 15, the connected state of the second switching mechanism 22 is switched to the connected state indicated by the solid line in FIG. , the second compressor 21 and the outdoor fan 9 are driven.
  • valve opening degree of the first expansion valve 15 is controlled so that the degree of superheat of the second refrigerant sucked into the first compressor 11 satisfies a predetermined condition
  • valve opening degree of the fourth expansion valve 34 is controlled for the second compression. Control is performed so that the degree of superheat of the first refrigerant sucked by the machine 21 satisfies a predetermined condition.
  • the first refrigerant discharged from the second compressor 21 is sent to the outdoor heat exchanger 18 via the switching valve 22e of the second switching mechanism 22, the seventeenth on-off valve 57, and the branch point N.
  • the first refrigerant flowing through the outdoor heat exchanger 18 is condensed by exchanging heat with the outdoor air supplied by the outdoor fan 9 .
  • the first refrigerant condensed in the outdoor heat exchanger 18 passes through the second expansion valve 16 controlled to be fully open, passes through the branch point G, and flows into the second receiver 19b.
  • the refrigerant that has flowed out of the second receiver 19 b is decompressed in the fourth expansion valve 34 and sent to the second cascade flow path 17 b of the cascade heat exchanger 17 .
  • the first refrigerant flows through the second cascade flow path 17b of the cascade heat exchanger 17, the first refrigerant evaporates by exchanging heat with the second refrigerant flowing through the first cascade flow path 17a.
  • the first refrigerant evaporated in the cascade heat exchanger 17 is sucked into the second compressor 21 via the switching valve 22d of the second switching mechanism 22 .
  • the second refrigerant discharged from the first compressor 11 is sent to the first cascade flow path 17a of the cascade heat exchanger 17 via the switching valve 12d of the first switching mechanism 12 .
  • the second refrigerant flows through the first cascade flow path 17a of the cascade heat exchanger 17, the second refrigerant releases heat by exchanging heat with the first refrigerant flowing through the second cascade flow path 17b.
  • the second refrigerant that has dissipated heat in the cascade heat exchanger 17 passes through the third expansion valve 33 that is controlled to be fully open and flows into the first receiver 19a.
  • the second refrigerant that has flowed out of the first receiver 19 a is decompressed by the first expansion valve 15 , passes through the branch point A, and is sent to the first utilization flow path 13 a of the heat utilization exchanger 13 .
  • the second refrigerant flowing through the first utilization flow path 13a of the utilization heat exchanger 13 exchanges heat with water flowing through the heat load flow path 13b of the utilization heat exchanger 13 of the heat load circuit 90, thereby evaporating.
  • the water cooled by this heat exchange is sent to the heat load heat exchanger 91 in the heat load circuit 90 to process the cooling load.
  • the second refrigerant evaporated in the first use flow path 13 a of the use heat exchanger 13 is sucked into the first compressor 11 via the fourteenth on-off valve 54 and the switching valve 12 c of the first switching mechanism 12 .
  • the refrigeration cycle device 1c performs the following steps (a5) to (b5) in order to shift from the cycle state in which the cooling operation is performed to the cycle state in which the heating operation is performed. A transition operation is performed.
  • the first compressor 11 is operated while the first expansion valve 15 is controlled to be fully closed from the state in which the cooling operation was performed.
  • the second compressor 21 and the like are operated so that the refrigeration cycle during the cooling operation using the first refrigerant is performed.
  • the operation of recovering the second refrigerant into the first receiver 19a from below the first receiver 19a is performed. This operation is continued for a predetermined time, for example, until a predetermined sufficient amount of the second refrigerant is collected in the first receiver 19a.
  • the fifteenth on-off valve 55 is controlled to be open, the second expansion valve 16 and the fourth expansion valve 34 are controlled to be fully closed, and the sixth expansion valve 36 is controlled to be open.
  • the second compressor 21 By operating the second compressor 21 in this state, the first refrigerant remaining in the outdoor heat exchanger 18 is heated by the heat of the air obtained from the outdoor fan 9 and driven out. Through the switching valve 22 e of the switching mechanism 22 , the second compressor 21 is caused to suck. Further, the first refrigerant remaining in the second cascade flow path 17b of the cascade heat exchanger 17 is also sucked into the second compressor 21 via the switching valve 22d of the second switching mechanism 22.
  • the first refrigerant discharged from the second compressor 21 passes through the switching valve 22c of the second switching mechanism 22, the fifteenth on-off valve 55, and the branch point M to the first utilization flow path 13a of the utilization heat exchanger 13. Sent. Further, the first refrigerant is condensed while flowing through the first utilization channel 13a of the utilization heat exchanger 13, and flows through the branch point A and the sixth expansion valve 36 into the second receiver 19b. After continuing this operation for a predetermined time, the seventeenth on-off valve 57 is controlled to be closed, and the fourth expansion valve 34 is controlled to be opened.
  • a dual refrigerating cycle is performed in which the second refrigerant is used in the heat source side refrigerating cycle and the first refrigerant is used in the user side refrigerating cycle.
  • single arrows indicate channels through which the first coolant flows, and double arrows indicate channels through which the second coolant flows.
  • the utilization heat exchanger 13 functions as a condenser for the first refrigerant
  • the cascade heat exchanger 17 functions as an evaporator for the first refrigerant
  • the cascade heat exchanger 17 functions to dissipate the heat of the second refrigerant.
  • the outdoor heat exchanger 18 functions as an evaporator for the second refrigerant.
  • the 14th on-off valve 54 and the 17th on-off valve 57 are controlled to be closed, and the first expansion valve 15 and the second expansion valve 16 are controlled to be fully closed. , to prevent mixing of the first refrigerant and the second refrigerant.
  • the connection state of the switching valve 12d and the switching valve 12c of the first switching mechanism 12 is set to the state indicated by the solid line in FIG. 16, and the connection state of the switching valve 12e of the first switching mechanism 12 is set to the state indicated by the broken line in FIG.
  • the connection state of the switching valve 22d and the switching valve 22e of the second switching mechanism 22 is switched to the connection state indicated by the solid line in FIG.
  • connection state of the switching valve 22c of the second switching mechanism 22 is switched to the connection state indicated by the broken line in FIG. , the pump 92, the first compressor 11, the second compressor 21, and the outdoor fan 9 are driven. Furthermore, the valve opening degree of the fifth expansion valve 35 is controlled so that the degree of superheat of the second refrigerant sucked into the first compressor 11 satisfies a predetermined condition, and the valve opening degree of the fourth expansion valve 34 is controlled for the second compression. Control is performed so that the degree of superheat of the first refrigerant sucked by the machine 21 satisfies a predetermined condition.
  • the second refrigerant discharged from the first compressor 11 is sent to the cascade heat exchanger 17 via the switching valve 12d of the first switching mechanism 12, and when flowing through the first cascade flow path 17a, the second Heat is dissipated by exchanging heat with the first refrigerant flowing through the second cascade flow path 17b.
  • the second refrigerant that has released heat in the cascade heat exchanger 17 passes through the third expansion valve 33, the first receiver 19a, and the branch point F, and is decompressed in the fifth expansion valve .
  • the second refrigerant decompressed by the fifth expansion valve 35 is sent to the outdoor heat exchanger 18 via the branch point B.
  • the second refrigerant evaporates by exchanging heat with the outdoor air supplied by the outdoor fan 9 in the outdoor heat exchanger 18, and passes through the branch point N, the 16th on-off valve 56, and the switching valve 12c of the first switching mechanism 12. , and is sucked into the first compressor 11 .
  • the first refrigerant discharged from the second compressor 21 is sent to the first utilization passage 13a of the utilization heat exchanger 13 via the switching valve 22c of the second switching mechanism 22, the fifteenth on-off valve 55, and the branch point M. be done.
  • the first refrigerant flowing through the first use flow path 13a of the heat utilization exchanger 13 is condensed by exchanging heat with water flowing through the heat load flow path 13b of the heat utilization heat exchanger 13 of the heat load circuit 90 .
  • the water warmed by this heat exchange is sent to the heat load heat exchanger 91 in the heat load circuit 90 to treat the heating load.
  • the first refrigerant condensed in the first utilization flow path 13a of the utilization heat exchanger 13 passes through the branch point A, passes through the sixth expansion valve 36, and flows into the second receiver 19b.
  • the first refrigerant that has flowed out of the second receiver 19b is decompressed in the fourth expansion valve 34 .
  • the first refrigerant depressurized by the fourth expansion valve 34 evaporates by exchanging heat with the second refrigerant flowing through the first cascade flow path 17a when passing through the second cascade flow path 17b of the cascade heat exchanger 17. do.
  • the first refrigerant evaporated in the second cascade flow path 17 b of the cascade heat exchanger 17 is sucked into the second compressor 21 via the switching valve 22 d of the second switching mechanism 22 .
  • the refrigerating cycle device 1c performs heating/cooling in the order of (a6) to (c6) below in order to shift from the cycle state in which the heating operation is performed to the cycle state in which the cooling operation is performed. A transition operation is performed.
  • the fifth expansion valve 35 is controlled to a fully closed state from the state in which the heating operation was being performed, and the first compressor 11 is operated.
  • the second compressor 21 and the like are operated so as to maintain the refrigeration cycle on the user side during the heating operation using the first refrigerant.
  • the second refrigerant discharged from the second compressor 21 is supplied to the first cascade flow path 17a of the cascade heat exchanger 17 while the second refrigerant of the outdoor heat exchanger 18 is drawn into the second compressor 21.
  • An operation is performed to radiate heat, flow into the first receiver 19a, and collect the second refrigerant in the first receiver 19a. This operation is continued for a predetermined time, for example, until a predetermined sufficient amount of the second refrigerant is collected in the first receiver 19a.
  • the fourth expansion valve 34 and the sixth expansion valve 36 are controlled to be fully closed, the second expansion valve 16 is controlled to be fully open, and the seventeenth on-off valve 57 is controlled to be open.
  • the second compressor 21 By operating the second compressor 21 in this state, the first refrigerant remaining in the first utilization flow path 13a of the utilization heat exchanger 13 and its surroundings is transferred to the branch point M, the fifteenth on-off valve 55, and the second switching mechanism. 22 to the second compressor 21 through the switching valve 22c. Then, the first refrigerant discharged from the second compressor 21 is sent to the outdoor heat exchanger 18 via the switching valve 22 e of the second switching mechanism 22 , the seventeenth on-off valve 57 and the branch point N.
  • the first refrigerant that has exchanged heat with the air sent by the outdoor fan 9 in the outdoor heat exchanger 18 is condensed, passes through the branch point B, the second expansion valve 16, and the branch point G, and begins to accumulate in the second receiver 19b. . Then, this operation is continued for a predetermined time.
  • the fifteenth on-off valve 55 is controlled to be closed. Also, the fourteenth on-off valve 54 is controlled to open, and the first expansion valve 15 is controlled to a predetermined valve opening degree. Then, the switching valve 12c of the first switching mechanism 12 is switched to the state in which the suction side of the first compressor 11 and the fourteenth on-off valve 54 are connected, and the switching valve 12d of the first switching mechanism 12 is switched to the first switching mechanism. 12 switching valve 12e, the discharge side of the first compressor 11 and the 16th on-off valve 56 are connected, and the discharge side of the first compressor 11 and the first cascade flow path 17a of the cascade heat exchanger 17 are connected. Keep the gas refrigerant side connected.
  • the second refrigerant which is a high-pressure refrigerant
  • the second refrigerant is used in the heat source side refrigeration cycle for heating operation
  • the low-pressure refrigerant A binary refrigerating cycle is performed using the first refrigerant in the user-side refrigerating cycle.
  • carbon dioxide is used as the second refrigerant in the refrigerant circuit 10 .
  • the unitary refrigerating cycle using the second refrigerant is not performed, nor is the dual refrigerating cycle using the second refrigerant in the heat source side refrigerating cycle and the first refrigerant in the user side refrigerating cycle.
  • a binary refrigerating cycle is performed in which the first refrigerant, which is a refrigerant, is used in the heat source side refrigerating cycle, and the second refrigerant, which is a high pressure refrigerant, is used in the user side refrigerating cycle.
  • the pressure of the carbon dioxide refrigerant becomes the critical pressure as in the case of performing a single refrigeration cycle using carbon dioxide refrigerant, which is a high-pressure refrigerant, or when performing a dual refrigeration cycle using carbon dioxide, which is a high-pressure refrigerant, in the heat source side cycle.
  • the cooling operation can be performed while avoiding the COP from exceeding and becoming low.
  • the first refrigerant and the second refrigerant are obtained by using the first receiver 19a and the second receiver 19b used in the refrigerating cycle on the heat source side and the refrigerating cycle on the user side. are able to collect Therefore, it is not necessary to separately secure the refrigerant container 19 that is not used in the refrigeration cycle on the heat source side and the refrigeration cycle on the user side described in the second embodiment.
  • each refrigerant is basically circulated while preventing the first refrigerant and the second refrigerant from being mixed with each other.
  • the second refrigerant may flow where the first refrigerant flowed, and the first refrigerant may flow where the second refrigerant flowed. Therefore, it is conceivable that the first refrigerant and the second refrigerant are slightly mixed.
  • this non-azeotropic mixed refrigerant produces a temperature gradient in which the refrigerant temperature on the upstream side when evaporation starts differs from the refrigerant temperature on the downstream side when evaporation ends.
  • this non-azeotropic mixed refrigerant produces a temperature gradient in which the refrigerant temperature on the upstream side when condensation starts differs from the refrigerant temperature on the downstream side when condensation ends.
  • the difference between the refrigerant evaporation temperature at a predetermined upstream position and the refrigerant evaporation temperature at a predetermined downstream position in the heat exchanger functioning as an evaporator is equal to or greater than a predetermined value, Alternatively, it may be evaluated that the first refrigerant and the second refrigerant are mixed. Further, in the heat exchanger functioning as a condenser, if the difference between the condensation temperature of the refrigerant at a predetermined upstream position and the condensation temperature of the refrigerant at a predetermined downstream position is equal to or greater than a predetermined value, Alternatively, it may be evaluated that the first refrigerant and the second refrigerant are mixed.
  • Detection of each of these temperatures is not particularly limited, and can be detected by providing temperature sensors at predetermined upstream and downstream locations in the heat exchanger.
  • the concentration of one of the refrigerants may be 90% by weight or less, or 95% by weight or less. or 98% by weight or less.
  • the controller 7 evaluates that the first refrigerant and the second refrigerant are mixed, the evaluation result may be displayed on a display (not shown) or the like.
  • a separation process for separating the first refrigerant and the second refrigerant may be performed when switching between the cooling operation and the heating operation is performed a certain number of times.
  • the separation process is not particularly limited, and for example, an adsorbent that selectively adsorbs the first refrigerant or the second refrigerant may be provided in the refrigerant container 19, the first receiver 19a, and the second receiver 19b.
  • the adsorbent is not particularly limited, for example, a metal-organic framework (MOF) may be used.
  • the refrigeration cycle device may be capable of distilling the first refrigerant, or may be capable of distilling the second refrigerant.

Abstract

Provided is a refrigeration cycle device which can efficiently carry out a cooling operation and a heating operation using a low-pressure refrigerant and a high-pressure refrigerant. The refrigeration cycle device uses a first refrigerant at 30°C and at 1MPa or less, and a second refrigerant at 30°C and at 1.5MPa or more, the device carrying out a heating operation by carrying out a dual refrigeration cycle that comprises a use-side refrigeration cycle using a first refrigerant, and a heat source-side refrigeration cycle using a second refrigerant, and carries out a cooling operation by carrying out a single refrigeration cycle using the first refrigerant.

Description

冷凍サイクル装置refrigeration cycle equipment
 従来より、地球環境を考慮し、地球温暖化係数(GWP:GlobalWarming  Potential)の低い冷媒を用いた冷凍サイクル装置が提案されている。  Conventionally, refrigeration cycle devices using a refrigerant with a low global warming potential (GWP) have been proposed in consideration of the global environment.
 例えば、特許文献1(特開2015-197254号公報)に記載の冷凍サイクル装置では、冷媒回路において、GWPが所定値以下の作動流体を充填させたものを提案している。 For example, in the refrigeration cycle device described in Patent Document 1 (Japanese Patent Application Laid-Open No. 2015-197254), it is proposed that the refrigerant circuit is filled with a working fluid whose GWP is equal to or less than a predetermined value.
 上述のGWPの低い冷媒の中には、比較的低い冷媒圧力で用いられる低圧冷媒がある。このような低圧冷媒は、熱搬送能力が低く、暖房運転時に冷媒の循環量を十分に確保することができず、暖房運転が困難になってしまうか、暖房運転時のCOP(CoefficientOf Performance)が低くなってしまう傾向がある。 Among the low GWP refrigerants mentioned above, there are low-pressure refrigerants that are used at relatively low refrigerant pressures. Such a low-pressure refrigerant has a low heat transfer ability and cannot secure a sufficient circulation amount of the refrigerant during heating operation, making heating operation difficult or COP (Coefficient Of Performance) during heating operation. tends to be lower.
 これに対して、熱源側の冷媒としてGWPの低い高圧冷媒である二酸化炭素冷媒を用い、利用側の冷媒として低圧冷媒を用いた二元冷凍サイクルを用いることで、暖房運転時の能力を確保することが考えられる。しかし、この場合であっても、冷房運転時には熱源側の二酸化炭素冷媒の臨界圧力を超えてしまい、冷房運転時のCOPが低くなってしまう。 On the other hand, using a carbon dioxide refrigerant, which is a high-pressure refrigerant with a low GWP, as the refrigerant on the heat source side and using a low-pressure refrigerant as the refrigerant on the user side, a dual refrigeration cycle is used to ensure the capacity during heating operation. can be considered. However, even in this case, the critical pressure of the carbon dioxide refrigerant on the heat source side is exceeded during cooling operation, and the COP during cooling operation becomes low.
 以上より、高圧冷媒と低圧冷媒を用いた場合において冷房運転および暖房運転を効率良く行うことが可能な冷凍サイクル装置が望まれる。 From the above, a refrigeration cycle device that can efficiently perform cooling operation and heating operation when using high-pressure refrigerant and low-pressure refrigerant is desired.
 第1観点に係る冷凍サイクル装置は、第1冷媒を用いた利用側の冷凍サイクルと、第2冷媒を用いた熱源側の冷凍サイクルと、を含む二元冷凍サイクルを行うことで暖房運転を行う。第1冷媒は、30℃で1MPa以下である。第2冷媒は、30℃で1.5MPa以上である。冷凍サイクル装置は、第1冷媒を用いた単元冷凍サイクルを行うことで冷房運転を行う。 A refrigeration cycle apparatus according to a first aspect performs a heating operation by performing a dual refrigeration cycle including a user-side refrigeration cycle using a first refrigerant and a heat source-side refrigeration cycle using a second refrigerant. . The first refrigerant is 1 MPa or less at 30°C. The second refrigerant is 1.5 MPa or more at 30°C. The refrigeration cycle device performs cooling operation by performing a unit refrigeration cycle using the first refrigerant.
 この冷凍サイクル装置では、暖房運転時に、30℃で1MPa以下の低圧冷媒である第1冷媒を用いた利用側の冷凍サイクルと、30℃で1.5MPa以上の高圧冷媒である第2冷媒を用いた熱源側の冷凍サイクルと、を含む二元冷凍サイクルを行うため、COPを良好にしつつ暖房能力を確保しやすい。また、この冷凍サイクルでは、冷房運転時に、30℃で1MPa以下の低圧冷媒である第1冷媒を用いた単元冷凍サイクルを行うため、第2冷媒を熱源側の冷凍サイクルで用いた二元冷凍サイクルとする場合に第2冷媒が臨界圧力を超えることによるCOPの低下を避けることができる。これにより、高圧冷媒と低圧冷媒を用いた場合において冷房運転および暖房運転を効率良く行うことが可能である。 In this refrigeration cycle device, during heating operation, a user-side refrigeration cycle using a first refrigerant that is a low-pressure refrigerant of 1 MPa or less at 30° C. and a second refrigerant that is a high-pressure refrigerant of 1.5 MPa or more at 30° C. are used. Since the dual refrigerating cycle including the refrigerating cycle on the heat source side is performed, it is easy to secure the heating capacity while improving the COP. Further, in this refrigerating cycle, since a unit refrigerating cycle using the first refrigerant, which is a low-pressure refrigerant of 1 MPa or less at 30° C., is performed during cooling operation, a dual refrigerating cycle using the second refrigerant in the refrigerating cycle on the heat source side. , it is possible to avoid a decrease in COP due to the second refrigerant exceeding the critical pressure. As a result, it is possible to efficiently perform the cooling operation and the heating operation when using the high-pressure refrigerant and the low-pressure refrigerant.
 第2観点に係る冷凍サイクル装置は、第1観点に係る冷凍サイクル装置において、室外熱交換器を備える。室外熱交換器は、暖房運転時に第2冷媒の蒸発器として機能し、冷房運転時に第1冷媒の放熱器として機能する。 The refrigerating cycle device according to the second aspect includes an outdoor heat exchanger in the refrigerating cycle device according to the first aspect. The outdoor heat exchanger functions as an evaporator for the second refrigerant during heating operation, and functions as a radiator for the first refrigerant during cooling operation.
 なお、室外熱交換器は、特に限定されないが、例えば、室外熱交換器を流れる冷媒は、空気と熱交換されてもよい。 Although the outdoor heat exchanger is not particularly limited, for example, the refrigerant flowing through the outdoor heat exchanger may be heat-exchanged with the air.
 この冷凍サイクル装置では、室外の熱源を用いて暖房運転および冷房運転を効率的に行うことが可能である。 With this refrigeration cycle device, it is possible to efficiently perform heating and cooling operations using an outdoor heat source.
 第3観点に係る冷凍サイクル装置は、第2観点に係る冷凍サイクル装置において、カスケード熱交換器を備える。カスケード熱交換器は、暖房運転時に第1冷媒を流すための第1カスケード流路と、第1カスケード流路とは独立しており、暖房運転時に第2冷媒を流すための第2カスケード流路と、を有する。カスケード熱交換器は、第1冷媒と第2冷媒とを熱交換させる。 The refrigeration cycle device according to the third aspect is the refrigeration cycle device according to the second aspect, and includes a cascade heat exchanger. The cascade heat exchanger is independent of the first cascade flow path through which the first refrigerant flows during heating operation and the first cascade flow path, and the second cascade flow path through which the second refrigerant flows during heating operation. and have A cascade heat exchanger allows heat exchange between the first refrigerant and the second refrigerant.
 この冷凍サイクル装置では、熱源側の冷凍サイクルを流れる冷媒と利用側の冷凍サイクルを流れる冷媒との熱交換効率を高めることができる。 With this refrigeration cycle device, it is possible to increase the heat exchange efficiency between the refrigerant flowing through the refrigeration cycle on the heat source side and the refrigerant flowing through the refrigeration cycle on the user side.
 第4観点に係る冷凍サイクル装置は、第3観点に係る冷凍サイクル装置において、利用熱交換器を備える。利用熱交換器では、暖房運転時に第1冷媒が放熱する。暖房運転時は、第1冷媒が第1カスケード流路を通過する時に蒸発し、第2冷媒が第2カスケード流路を通過する時に放熱する。 The refrigeration cycle device according to the fourth aspect is the refrigeration cycle device according to the third aspect, and includes a utilization heat exchanger. In the utilization heat exchanger, the first refrigerant releases heat during heating operation. During heating operation, the first refrigerant evaporates when passing through the first cascade flow path, and heat is released when the second refrigerant passes through the second cascade flow path.
 この冷凍サイクル装置では、室外の熱源を用いて暖房運転を効率的に行うことが可能である。 With this refrigeration cycle device, it is possible to efficiently perform heating operation using an outdoor heat source.
 第5観点に係る冷凍サイクル装置は、第4観点に係る冷凍サイクル装置において、冷房運転時に第1冷媒が利用熱交換器で蒸発する。 The refrigeration cycle device according to the fifth aspect is the refrigeration cycle device according to the fourth aspect, in which the first refrigerant evaporates in the utilization heat exchanger during cooling operation.
 この冷凍サイクル装置では、室外の熱源を用いて冷房運転を効率的に行うことが可能である。 With this refrigeration cycle device, it is possible to efficiently perform cooling operation using an outdoor heat source.
 第6観点に係る冷凍サイクル装置は、第2観点から第5観点のいずれかに係る冷凍サイクル装置において、室外熱交換器以外の第1領域に第1冷媒を集めることが可能である。また、この冷凍サイクル装置は、室外熱交換器以外で且つ第1領域以外の第2領域に第2冷媒を集めることが可能である。 The refrigeration cycle device according to the sixth aspect is the refrigeration cycle device according to any one of the second aspect to the fifth aspect, in which the first refrigerant can be collected in the first region other than the outdoor heat exchanger. In addition, this refrigeration cycle device can collect the second refrigerant in a second area other than the first area and outside the outdoor heat exchanger.
 この冷凍サイクル装置では、第1領域に第1冷媒を集めることまたは第2領域に第2冷媒を集めることにより、室外熱交換器に流す冷媒を第1冷媒と第2冷媒とで切り換えることが可能になる。 In this refrigeration cycle device, by collecting the first refrigerant in the first area or collecting the second refrigerant in the second area, it is possible to switch between the first refrigerant and the second refrigerant flowing through the outdoor heat exchanger. become.
 第7観点に係る冷凍サイクル装置は、第1冷媒を用いた利用側の冷凍サイクルと、第2冷媒を用いた熱源側の冷凍サイクルと、を含む二元冷凍サイクルを行うことで暖房運転を行う。第1冷媒は、30℃で1MPa以下である。第2冷媒は、30℃で1.5MPa以上である。冷凍サイクル装置は、第2冷媒を用いた利用側の冷凍サイクルと、第1冷媒を用いた熱源側の冷凍サイクルと、を含む二元冷凍サイクルを行うことで冷房運転を行う。 A refrigeration cycle device according to a seventh aspect performs a heating operation by performing a dual refrigeration cycle including a user-side refrigeration cycle using a first refrigerant and a heat source-side refrigeration cycle using a second refrigerant. . The first refrigerant is 1 MPa or less at 30°C. The second refrigerant is 1.5 MPa or more at 30°C. The refrigeration cycle device performs cooling operation by performing a dual refrigeration cycle including a user-side refrigeration cycle using the second refrigerant and a heat source-side refrigeration cycle using the first refrigerant.
 この冷凍サイクル装置では、暖房運転時に、30℃で1MPa以下の低圧冷媒である第1冷媒を用いた利用側の冷凍サイクルと、30℃で1.5MPa以上の高圧冷媒である第2冷媒を用いた熱源側の冷凍サイクルと、を含む二元冷凍サイクルを行うため、COPを良好にしつつ暖房能力を確保しやすい。また、この冷凍サイクルでは、冷房運転時に、30℃で1.5MPa以上の高圧冷媒である第2冷媒を用いた利用側の冷凍サイクルと、30℃で1MPa以下の低圧冷媒である第1冷媒を用いた熱源側の冷凍サイクルと、を含む二元冷凍サイクルを行うため、第2冷媒を熱源側の冷凍サイクルで用いた二元冷凍サイクルとする場合に第2冷媒が臨界圧力を超えることによるCOPの低下を避けることができる。これにより、高圧冷媒と低圧冷媒を用いた場合において冷房運転および暖房運転を効率良く行うことが可能である。 In this refrigeration cycle device, during heating operation, a user-side refrigeration cycle using a first refrigerant that is a low-pressure refrigerant of 1 MPa or less at 30° C. and a second refrigerant that is a high-pressure refrigerant of 1.5 MPa or more at 30° C. are used. Since the dual refrigerating cycle including the refrigerating cycle on the heat source side is performed, it is easy to secure the heating capacity while improving the COP. In addition, in this refrigeration cycle, during cooling operation, a user-side refrigeration cycle using a second refrigerant that is a high-pressure refrigerant of 1.5 MPa or more at 30° C. and a first refrigerant that is a low-pressure refrigerant of 1 MPa or less at 30° C. In order to perform a binary refrigeration cycle including the refrigeration cycle on the heat source side used, COP due to the second refrigerant exceeding the critical pressure when the second refrigerant is the binary refrigeration cycle used in the refrigeration cycle on the heat source side can be avoided. As a result, it is possible to efficiently perform the cooling operation and the heating operation when using the high-pressure refrigerant and the low-pressure refrigerant.
 第8観点に係る冷凍サイクル装置は、第7観点に係る冷凍サイクル装置において、暖房運転と冷房運転との間に、熱源側の冷凍サイクルで用いられる冷媒と、利用側の冷凍サイクルで用いられる冷媒と、が入れ換わる。 A refrigerating cycle device according to an eighth aspect is the refrigerating cycle device according to the seventh aspect, wherein between the heating operation and the cooling operation, the refrigerant used in the refrigeration cycle on the heat source side and the refrigerant used in the refrigeration cycle on the user side and are replaced.
 この冷凍サイクル装置では、冷房運転時に第1冷媒が流れる箇所または第2冷媒が流れる箇所の少なくとも一部を、暖房運転時に第2冷媒が流れる箇所または第1冷媒が流れる箇所の少なくとも一部として共用することが可能になる。 In this refrigeration cycle device, at least a portion of the location through which the first refrigerant flows or the location through which the second refrigerant flows during cooling operation is shared as at least a portion of the location through which the second refrigerant flows or the location through which the first refrigerant flows during heating operation. it becomes possible to
 第9観点に係る冷凍サイクル装置は、第8観点に係る冷凍サイクル装置において、冷媒タンクを備える。冷媒タンクは、冷媒の入れ換え時に、第1冷媒または第2冷媒のいずれかを一時的に貯留する。 The refrigeration cycle device according to the ninth aspect is the refrigeration cycle device according to the eighth aspect, including a refrigerant tank. The coolant tank temporarily stores either the first coolant or the second coolant when replacing the coolant.
 この冷凍サイクル装置では、第1冷媒と第2冷媒の混ざり合いを抑制しながら、冷媒の入れ替えを行うことが可能になる。 With this refrigeration cycle device, it is possible to replace the refrigerant while suppressing mixing of the first refrigerant and the second refrigerant.
 第10観点に係る冷凍サイクル装置は、第7観点から第9観点のいずれかに係る冷凍サイクル装置において、カスケード熱交換器を備える。カスケード熱交換器は、暖房運転時に第1冷媒が蒸発する第1カスケード流路と、第1カスケード流路とは独立しており、暖房運転時に第2冷媒が放熱する第2カスケード流路と、を有する。カスケード熱交換器は、第1冷媒と第2冷媒とを熱交換させる。 A refrigeration cycle apparatus according to a tenth aspect is the refrigeration cycle apparatus according to any one of the seventh to ninth aspects, and includes a cascade heat exchanger. The cascade heat exchanger includes a first cascade flow path in which a first refrigerant evaporates during heating operation, a second cascade flow path independent of the first cascade flow path, and a second cascade flow path in which heat is released from the second refrigerant during heating operation; have A cascade heat exchanger allows heat exchange between the first refrigerant and the second refrigerant.
 この冷凍サイクル装置では、熱源側の冷凍サイクルを流れる冷媒と利用側の冷凍サイクルを流れる冷媒との熱交換効率を高めることができる。 With this refrigeration cycle device, it is possible to increase the heat exchange efficiency between the refrigerant flowing through the refrigeration cycle on the heat source side and the refrigerant flowing through the refrigeration cycle on the user side.
 第11観点に係る冷凍サイクル装置は、第7観点から第10観点のいずれかに係る冷凍サイクル装置において、利用熱交換器を備える。利用熱交換器は、暖房運転時に第1冷媒の放熱器として機能し、冷房運転時に第2冷媒の蒸発器として機能する。 A refrigeration cycle apparatus according to an eleventh aspect is the refrigeration cycle apparatus according to any one of the seventh to tenth aspects, and includes a utilization heat exchanger. The utilization heat exchanger functions as a radiator for the first refrigerant during heating operation, and functions as an evaporator for the second refrigerant during cooling operation.
 なお、利用熱交換器は、熱負荷を処理する熱交換器であることが好ましく、利用熱交換器を流れる冷媒は、空気と熱交換されてもよいし、ブラインや水などの流体と熱交換されてもよい。 The utilization heat exchanger is preferably a heat exchanger that processes a heat load, and the refrigerant flowing through the utilization heat exchanger may exchange heat with air, or may exchange heat with a fluid such as brine or water. may be
 この冷凍サイクル装置では、利用熱交換器において、第1冷媒を用いた熱負荷処理と、第2冷媒を用いた熱負荷処理が可能になる。 In this refrigeration cycle device, heat load processing using the first refrigerant and heat load processing using the second refrigerant are possible in the utilization heat exchanger.
 第12観点に係る冷凍サイクル装置は、第7観点から第11観点のいずれかに係る冷凍サイクル装置において、室外熱交換器を備える。室外熱交換器は、暖房運転時に第2冷媒の蒸発器として機能し、冷房運転時に第1冷媒の凝縮器として機能する。 A refrigeration cycle apparatus according to a twelfth aspect is the refrigeration cycle apparatus according to any one of the seventh to eleventh aspects, and includes an outdoor heat exchanger. The outdoor heat exchanger functions as an evaporator for the second refrigerant during heating operation, and functions as a condenser for the first refrigerant during cooling operation.
 なお、室外熱交換器は、特に限定されないが、例えば、室外熱交換器を流れる冷媒は、空気と熱交換されてもよい。 Although the outdoor heat exchanger is not particularly limited, for example, the refrigerant flowing through the outdoor heat exchanger may be heat-exchanged with the air.
 この冷凍サイクル装置では、室外の熱源を用いて冷房運転および暖房運転を効率的に行うことが可能である。 With this refrigeration cycle device, it is possible to efficiently perform cooling operation and heating operation using an outdoor heat source.
 第13観点に係る冷凍サイクル装置は、第1観点から第12観点のいずれかに係る冷凍サイクル装置において、第1冷媒と第2冷媒の混合状態を検知する。 A refrigerating cycle device according to a thirteenth aspect detects a mixed state of the first refrigerant and the second refrigerant in the refrigerating cycle device according to any one of the first to twelfth aspects.
 なお、検知する第1冷媒と第2冷媒の混合状態は、特に限定されず、例えば、流体中の第1冷媒の重量割合が90%以下になったこと、または、95%以下になったことを検知してもよいし、流体中の第2冷媒の重量割合が90%以下になったこと、または、95%以下になったことを検知してもよい。 The mixed state of the first refrigerant and the second refrigerant to be detected is not particularly limited. For example, the weight ratio of the first refrigerant in the fluid is 90% or less, or 95% or less may be detected, or that the weight ratio of the second refrigerant in the fluid has become 90% or less, or that it has become 95% or less.
 検知の具体的方法も特に限定されず、例えば、混合割合が増大することにより蒸発器として機能する熱交換器を流れる冷媒の温度が変化する程度が増大することに基づいて検知してもよい。 The specific detection method is not particularly limited, either. For example, it may be detected based on an increase in the degree of change in the temperature of the refrigerant flowing through the heat exchanger that functions as an evaporator due to an increase in the mixing ratio.
 なお、冷凍サイクル装置は、検知結果を報知するようにしてもよい。 Note that the refrigeration cycle device may notify the detection result.
 この冷凍サイクル装置では、第1冷媒と第2冷媒の混合により運転効率が低下した状態を把握することが可能になる。 With this refrigeration cycle device, it is possible to grasp the state in which the operating efficiency has decreased due to the mixing of the first refrigerant and the second refrigerant.
 第14観点に係る冷凍サイクル装置は、第1観点から第13観点のいずれかに係る冷凍サイクル装置において、第1冷媒と第2冷媒とを分離させる。 A refrigeration cycle device according to a fourteenth aspect separates the first refrigerant and the second refrigerant in the refrigeration cycle device according to any one of the first to thirteenth aspects.
 第1冷媒と第2冷媒とを分離させる方法は、特に限定されず、公知の分離方法を用いることができる。例えば、第1冷媒と第2冷媒とで吸着程度が異なる吸着剤を用いて、吸着効率が高い方の冷媒を分離するようにしてもよい。また、気液二層状態となっている箇所において、気相冷媒と液相冷媒のうち、純度が高い方の相の冷媒を分離すること、および、この操作を繰り返すことにより、分離を行ってもよい。また、これらの分離は、冷凍サイクル装置の運転として行われてもよい。 A method for separating the first refrigerant and the second refrigerant is not particularly limited, and a known separation method can be used. For example, adsorbents having different degrees of adsorption may be used for the first refrigerant and the second refrigerant, and the refrigerant with the higher adsorption efficiency may be separated. In addition, at the location where the gas-liquid two-layer state is formed, the refrigerant with the higher purity is separated from the gas-phase refrigerant and the liquid-phase refrigerant, and the separation is performed by repeating this operation. good too. Moreover, these separations may be performed as the operation of the refrigeration cycle apparatus.
 この冷凍サイクル装置では、第1冷媒と前記第2冷媒とを分離させることで、第1冷媒と第2冷媒の混合により低下した運転効率を回復させることが可能になる。 In this refrigeration cycle device, by separating the first refrigerant and the second refrigerant, it is possible to recover the operating efficiency that has decreased due to the mixing of the first refrigerant and the second refrigerant.
 第15観点に係る冷凍サイクル装置は、第1観点から第14観点のいずれかに係る冷凍サイクル装置において、第1冷媒は、R1234yfおよびR1234zeの少なくともいずれかを含む。 A refrigeration cycle device according to a fifteenth aspect is the refrigeration cycle device according to any one of the first to fourteenth aspects, wherein the first refrigerant contains at least one of R1234yf and R1234ze.
 なお、第1冷媒は、R1234yfのみから構成されていてもよいし、R1234zeのみから構成されていてもよい。 The first refrigerant may consist of only R1234yf, or may consist of only R1234ze.
 この冷凍サイクル装置では、地球温暖化係数(GWP)が十分に低い冷媒を用いて運転を行うことが可能である。 This refrigeration cycle device can be operated using a refrigerant with a sufficiently low global warming potential (GWP).
 第16観点に係る冷凍サイクル装置は、第1観点から第15観点のいずれかに係る冷凍サイクル装置において、第2冷媒は、二酸化炭素を含む。 A refrigeration cycle device according to a sixteenth aspect is the refrigeration cycle device according to any one of the first to fifteenth aspects, wherein the second refrigerant contains carbon dioxide.
 なお、第2冷媒は、二酸化炭素のみから構成されていてもよい。 Note that the second refrigerant may be composed only of carbon dioxide.
 この冷凍サイクル装置では、オゾン層破壊係数(ODP:Ozone Depletion Potential)および地球温暖化係数(GWP)が十分に低い冷媒を用いて運転を行うことが可能である。 This refrigeration cycle device can be operated using a refrigerant with sufficiently low ozone depletion potential (ODP) and global warming potential (GWP).
第1実施形態に係る冷凍サイクル装置の全体構成図である。1 is an overall configuration diagram of a refrigeration cycle apparatus according to a first embodiment; FIG. 第1実施形態に係る冷凍サイクル装置の機能ブロック構成図である。1 is a functional block configuration diagram of a refrigeration cycle device according to a first embodiment; FIG. 第1実施形態の冷房運転時の冷媒流れの様子を示す図である。FIG. 4 is a diagram showing how a refrigerant flows during cooling operation in the first embodiment; 第1実施形態の暖房運転時の冷媒流れの様子を示す図である。FIG. 4 is a diagram showing how a refrigerant flows during heating operation in the first embodiment; 第2実施形態に係る冷凍サイクル装置の全体構成図である。It is a whole block diagram of the refrigerating-cycle apparatus which concerns on 2nd Embodiment. 第2実施形態に係る冷凍サイクル装置の機能ブロック構成図である。It is a functional block configuration diagram of a refrigeration cycle apparatus according to a second embodiment. 第2実施形態の冷房運転時の冷媒流れの様子を示す図である。FIG. 10 is a diagram showing how a refrigerant flows during cooling operation of the second embodiment; 第2実施形態の暖房運転時の冷媒流れの様子を示す図である。FIG. 10 is a diagram showing how a refrigerant flows during heating operation in the second embodiment; 第3実施形態に係る冷凍サイクル装置の全体構成図である。It is a whole block diagram of the refrigerating-cycle apparatus which concerns on 3rd Embodiment. 第3実施形態に係る冷凍サイクル装置の機能ブロック構成図である。It is a functional block configuration diagram of a refrigeration cycle apparatus according to a third embodiment. 第3実施形態の冷房運転時の冷媒流れの様子を示す図である。FIG. 11 is a diagram showing how a refrigerant flows during cooling operation in the third embodiment; 第3実施形態の暖房運転時の冷媒流れの様子を示す図である。FIG. 11 is a diagram showing how a refrigerant flows during heating operation in the third embodiment; 第4実施形態に係る冷凍サイクル装置の全体構成図である。It is a whole block diagram of the refrigerating-cycle apparatus which concerns on 4th Embodiment. 第4実施形態に係る冷凍サイクル装置の機能ブロック構成図である。It is a functional block block diagram of the refrigerating-cycle apparatus which concerns on 4th Embodiment. 第4実施形態の冷房運転時の冷媒流れの様子を示す図である。FIG. 11 is a diagram showing how a refrigerant flows during cooling operation in the fourth embodiment; 第4実施形態の暖房運転時の冷媒流れの様子を示す図である。FIG. 11 is a diagram showing how a refrigerant flows during heating operation in the fourth embodiment;
 (1)第1実施形態
 図1に、第1実施形態に係る冷凍サイクル装置1の概略構成図を示す。図2に、第1実施形態に係る冷凍サイクル装置1の機能ブロック構成図を示す。
(1) 1st Embodiment In FIG. 1, the schematic block diagram of the refrigerating-cycle apparatus 1 which concerns on 1st Embodiment is shown. FIG. 2 shows a functional block configuration diagram of the refrigeration cycle device 1 according to the first embodiment.
 冷凍サイクル装置1は、蒸気圧縮式の冷凍サイクル運転を行うことによって、熱負荷を処理するために使用される装置である。冷凍サイクル装置1は、熱負荷回路90と、冷媒回路10と、室外ファン9と、コントローラ7と、を有している。 The refrigeration cycle device 1 is a device used to process a heat load by performing vapor compression refrigeration cycle operation. The refrigeration cycle device 1 has a heat load circuit 90 , a refrigerant circuit 10 , an outdoor fan 9 and a controller 7 .
 冷凍サイクル装置1が処理する熱負荷としては、特に限定されず、空気や水やブライン等の流体を対象として熱交換を行うものであってもよいが、本実施形態の冷凍サイクル装置1では、熱負荷回路90を流れる水を熱負荷熱交換器91に供給し、熱負荷熱交換器91における熱負荷を処理する。熱負荷回路90は、内部を熱媒体としての水が循環する回路であり、熱負荷熱交換器91と、ポンプ92と、冷媒回路10と共有される利用熱交換器13と、を有している。ポンプ92は後述するコントローラ7によって駆動制御されることで、熱負荷回路90に水を循環させる。熱負荷回路90では、利用熱交換器13が有する熱負荷流路13bを水が流れる。利用熱交換器13は、後述のように、冷媒回路10を流れる第1冷媒が通過する第1利用流路13aを有している。利用熱交換器13の熱負荷流路13bを流れる水は、第1利用流路13aを流れる第1冷媒と熱交換することにより、冷房運転時には冷却され、暖房運転時には暖められる。 The heat load processed by the refrigeration cycle device 1 is not particularly limited, and heat exchange may be performed with fluids such as air, water, and brine. Water flowing through the heat load circuit 90 is supplied to the heat load heat exchanger 91 to process the heat load in the heat load heat exchanger 91 . The heat load circuit 90 is a circuit in which water as a heat medium circulates, and includes a heat load heat exchanger 91, a pump 92, and a utilization heat exchanger 13 shared with the refrigerant circuit 10. there is The pump 92 circulates water in the heat load circuit 90 by being driven and controlled by the controller 7 to be described later. In the heat load circuit 90 , water flows through the heat load flow path 13 b of the heat utilization heat exchanger 13 . The utilization heat exchanger 13 has a first utilization passage 13a through which the first refrigerant flowing through the refrigerant circuit 10 passes, as will be described later. The water flowing through the heat load channel 13b of the heat utilization exchanger 13 is cooled during the cooling operation and warmed during the heating operation by exchanging heat with the first refrigerant flowing through the first utilization channel 13a.
 冷媒回路10は、第1圧縮機11と、第2圧縮機21と、第1切換機構12と、熱負荷回路90と共有される利用熱交換器13と、第1膨張弁15と、第2膨張弁16と、第3膨張弁14と、カスケード熱交換器17と、室外熱交換器18と、第1開閉弁41と、第2開閉弁42と、を有している。 The refrigerant circuit 10 includes a first compressor 11, a second compressor 21, a first switching mechanism 12, a utilization heat exchanger 13 shared with the heat load circuit 90, a first expansion valve 15, a second It has an expansion valve 16 , a third expansion valve 14 , a cascade heat exchanger 17 , an outdoor heat exchanger 18 , a first on-off valve 41 and a second on-off valve 42 .
 冷媒回路10には、冷媒として、低圧冷媒である第1冷媒と、高圧冷媒である第2冷媒とが、実質的に分離された状態で充填されている。第1冷媒は、30℃で1MPa以下の冷媒であり、例えば、R1234yfとR1234zeとの少なくともいずれかを含む冷媒であり、R1234yfのみから構成されていてもよいし、R1234zeのみから構成されていてもよい。第2冷媒は、30℃で1.5MPa以上の冷媒であり、例えば、二酸化炭素を含んでいてもよいし、二酸化炭素のみから構成されていてもよい。 The refrigerant circuit 10 is filled with a first refrigerant, which is a low-pressure refrigerant, and a second refrigerant, which is a high-pressure refrigerant, in a substantially separated state. The first refrigerant is a refrigerant of 1 MPa or less at 30 ° C., for example, a refrigerant containing at least one of R1234yf and R1234ze. good. The second refrigerant is a refrigerant having a pressure of 1.5 MPa or more at 30° C., and may contain, for example, carbon dioxide, or may be composed of only carbon dioxide.
 第1圧縮機11は、圧縮機用モータによって駆動される容積式圧縮機である。圧縮機用モータは、インバータ装置を介して電力の供給を受けて駆動される。第1圧縮機11は、圧縮機用モータにおける回転数である駆動周波数を可変することによって、運転容量を変えることができる。第1圧縮機11の吐出側は、第1切換機構12が有する第1ポートに接続されている。第1圧縮機11の吸入側は、第1切換機構12が有する第2ポートと、カスケード熱交換器17の第1カスケード流路17aのガス冷媒側と、に接続されている。 The first compressor 11 is a positive displacement compressor driven by a compressor motor. The compressor motor is driven by being supplied with power through an inverter device. The operating capacity of the first compressor 11 can be changed by varying the drive frequency, which is the number of revolutions of the compressor motor. A discharge side of the first compressor 11 is connected to a first port of the first switching mechanism 12 . The suction side of the first compressor 11 is connected to the second port of the first switching mechanism 12 and the gas refrigerant side of the first cascade flow path 17 a of the cascade heat exchanger 17 .
 第1切換機構12は、第1圧縮機11の吐出側を利用熱交換器13の第1利用流路13aのガス冷媒側に接続し、第1圧縮機11の吸入側を第1開閉弁41およびカスケード熱交換器17の第1カスケード流路17aのガス冷媒側に接続する状態と、第1圧縮機11の吐出側を第1開閉弁41に接続し、第1圧縮機11の吸入側を利用熱交換器13の第1利用流路13aのガス冷媒側およびカスケード熱交換器17の第1カスケード流路17aのガス冷媒側に接続する状態と、を切り換える。本実施形態では、第1切換機構12は、第1ポート、第2ポート、第3ポート、第4ポートからなる4つのポートを有する四路切換弁で構成されている。第1ポートには、第1圧縮機11の吐出側が接続されている。第2ポートには、第1圧縮機11の吸入側とカスケード熱交換器17の第1カスケード流路17aのガス冷媒側が接続されている。第3ポートには、利用熱交換器13の第1利用流路13aのガス冷媒側が接続されている。第4ポートには、第1開閉弁41が接続されている。 The first switching mechanism 12 connects the discharge side of the first compressor 11 to the gas refrigerant side of the first utilization flow path 13 a of the heat utilization heat exchanger 13 , and connects the suction side of the first compressor 11 to the first opening/closing valve 41 . and the state of connecting to the gas refrigerant side of the first cascade flow path 17a of the cascade heat exchanger 17, the discharge side of the first compressor 11 is connected to the first on-off valve 41, and the suction side of the first compressor 11 is connected to The state of connecting to the gas refrigerant side of the first use flow path 13 a of the heat utilization heat exchanger 13 and the state of connecting to the gas refrigerant side of the first cascade flow path 17 a of the cascade heat exchanger 17 is switched. In this embodiment, the first switching mechanism 12 is composed of a four-way switching valve having four ports consisting of a first port, a second port, a third port, and a fourth port. A discharge side of the first compressor 11 is connected to the first port. The suction side of the first compressor 11 and the gas refrigerant side of the first cascade flow path 17a of the cascade heat exchanger 17 are connected to the second port. The gas refrigerant side of the first utilization flow path 13a of the utilization heat exchanger 13 is connected to the third port. A first on-off valve 41 is connected to the fourth port.
 利用熱交換器13のうち冷媒回路10を流れる第1冷媒が通過する第1利用流路13aは、ガス冷媒側が第1切換機構12に接続されている。また、第1利用流路13aの液冷媒側は、冷媒回路10が有する分岐点Aに接続されている。 The gas refrigerant side of the first use flow path 13 a through which the first refrigerant flowing through the refrigerant circuit 10 passes in the use heat exchanger 13 is connected to the first switching mechanism 12 . Further, the liquid refrigerant side of the first use channel 13a is connected to the branch point A of the refrigerant circuit 10 .
 分岐点Aでは、第1利用流路13aの液冷媒側から延びる流路と、第1膨張弁15のうちカスケード熱交換器17側とは反対側に延びる流路と、第3膨張弁14から延びる流路と、が接続されている。 At the branch point A, a channel extending from the liquid refrigerant side of the first use channel 13a, a channel extending from the first expansion valve 15 to the side opposite to the cascade heat exchanger 17 side, and the third expansion valve 14 and are connected to each other.
 第1膨張弁15は、弁開度を調節可能な電子膨張弁によって構成されている。第1膨張弁15は、冷媒回路10において、分岐点Aと、カスケード熱交換器17の第1カスケード流路17aの液冷媒側と、の間に設けられている。 The first expansion valve 15 is composed of an electronic expansion valve whose opening degree can be adjusted. The first expansion valve 15 is provided in the refrigerant circuit 10 between the branch point A and the liquid refrigerant side of the first cascade flow path 17 a of the cascade heat exchanger 17 .
 第3膨張弁14は、弁開度を調節可能な電子膨張弁によって構成されている。第3膨張弁14は、冷媒回路10において、分岐点Aと、分岐点Bと、を接続する流路の途中に設けられている。 The third expansion valve 14 is composed of an electronic expansion valve whose opening degree can be adjusted. The third expansion valve 14 is provided in the middle of a flow path that connects the branch point A and the branch point B in the refrigerant circuit 10 .
 分岐点Bでは、第3膨張弁14から延びる流路と、第2膨張弁16から延びる流路と、室外熱交換器18の液冷媒側から延びる流路と、が接続されている。 At the branch point B, the flow path extending from the third expansion valve 14, the flow path extending from the second expansion valve 16, and the flow path extending from the liquid refrigerant side of the outdoor heat exchanger 18 are connected.
 第2膨張弁16は、弁開度を調節可能な電子膨張弁によって構成されている。第2膨張弁16は、冷媒回路10において、分岐点Bと、カスケード熱交換器17の第2カスケード流路17bの液冷媒側と、の間に設けられている。 The second expansion valve 16 is composed of an electronic expansion valve whose opening degree can be adjusted. The second expansion valve 16 is provided between the branch point B and the liquid refrigerant side of the second cascade flow path 17 b of the cascade heat exchanger 17 in the refrigerant circuit 10 .
 カスケード熱交換器17は、第1冷媒と第2冷媒とのいずれか一方が通過する第1カスケード流路17aと、第1冷媒と第2冷媒とのいずれか他方が通過する第2カスケード流路17bと、を有しており、第1冷媒と第2冷媒との間で熱交換を行わせるカスケード熱交換器である。カスケード熱交換器17において、第1カスケード流路17aと第2カスケード流路17bとは互いに独立しており、カスケード熱交換器17内において第1冷媒と第2冷媒が混ざり合うことはない。第1カスケード流路17aのガス冷媒側は、第1圧縮機11の吸入側に接続されている。第1カスケード流路17aの液冷媒側は、第1膨張弁15から延びる流路に接続されている。第2カスケード流路17bのガス冷媒側は、第2圧縮機21の吐出側に接続されている。第2カスケード流路17bの液冷媒側は、第2膨張弁16から延びる流路に接続されている。 The cascade heat exchanger 17 includes a first cascade flow path 17a through which one of the first refrigerant and the second refrigerant passes, and a second cascade flow path through which the other of the first refrigerant and the second refrigerant passes. 17b and a cascade heat exchanger for heat exchange between the first refrigerant and the second refrigerant. In the cascade heat exchanger 17 , the first cascade flow path 17 a and the second cascade flow path 17 b are independent of each other, and the first refrigerant and the second refrigerant do not mix inside the cascade heat exchanger 17 . The gas refrigerant side of the first cascade flow path 17 a is connected to the suction side of the first compressor 11 . The liquid refrigerant side of the first cascade flow path 17 a is connected to a flow path extending from the first expansion valve 15 . The gas refrigerant side of the second cascade flow path 17 b is connected to the discharge side of the second compressor 21 . The liquid refrigerant side of the second cascade flow path 17 b is connected to a flow path extending from the second expansion valve 16 .
 室外熱交換器18は、複数の伝熱管と、複数の伝熱管に接合された複数のフィンと、を有して構成される。本実施形態では、室外熱交換器18は、屋外に配置されている。室外熱交換器18を流れる冷媒は、室外熱交換器18に送られる空気と熱交換を行う。 The outdoor heat exchanger 18 is configured with multiple heat transfer tubes and multiple fins joined to the multiple heat transfer tubes. In this embodiment, the outdoor heat exchanger 18 is arranged outdoors. The refrigerant flowing through the outdoor heat exchanger 18 exchanges heat with the air sent to the outdoor heat exchanger 18 .
 室外ファン9は、室外熱交換器18を通過する屋外空気による空気流れを生じさせる。 The outdoor fan 9 generates an air flow by the outdoor air passing through the outdoor heat exchanger 18.
 分岐点Cは、室外熱交換器18のガス冷媒側から延びる流路と、第1開閉弁41から延びる流路と、第2開閉弁42から延びる流路と、が接続されている。 At the branch point C, a channel extending from the gas refrigerant side of the outdoor heat exchanger 18, a channel extending from the first on-off valve 41, and a channel extending from the second on-off valve 42 are connected.
 第1開閉弁41は、分岐点Cと第1切換機構12の第4ポートとを接続する流路の途中に設けられている。 The first on-off valve 41 is provided in the middle of the flow path that connects the branch point C and the fourth port of the first switching mechanism 12 .
 第2開閉弁42は、分岐点Cと第2圧縮機21の吸入側とを接続する流路の途中に設けられている。 The second on-off valve 42 is provided in the middle of the flow path that connects the branch point C and the suction side of the second compressor 21 .
 第2圧縮機21は、圧縮機用モータによって駆動される容積式圧縮機である。圧縮機用モータは、インバータ装置を介して電力の供給を受けて駆動される。第2圧縮機21は、圧縮機用モータにおける回転数である駆動周波数を可変することによって、運転容量を変えることができる。第2圧縮機21の吐出側は、カスケード熱交換器17の第2カスケード流路17bのガス冷媒側に接続されている。第2圧縮機21の吸入側は、第2開閉弁42から延びる流路が接続されている。 The second compressor 21 is a positive displacement compressor driven by a compressor motor. The compressor motor is driven by being supplied with power through an inverter device. The operating capacity of the second compressor 21 can be changed by varying the drive frequency, which is the number of revolutions of the compressor motor. The discharge side of the second compressor 21 is connected to the gas refrigerant side of the second cascade flow path 17 b of the cascade heat exchanger 17 . A flow path extending from the second on-off valve 42 is connected to the suction side of the second compressor 21 .
 コントローラ7は、熱負荷回路90と冷媒回路10を構成する各機器の動作を制御する。具体的には、コントローラ7は、制御を行うために設けられたCPUとしてのプロセッサとメモリ等を有している。 The controller 7 controls the operation of each device that constitutes the heat load circuit 90 and the refrigerant circuit 10 . Specifically, the controller 7 has a processor as a CPU provided for control, a memory, and the like.
 以上の冷凍サイクル装置1において、コントローラ7が各機器を制御して冷凍サイクルを実行させることで、熱負荷熱交換器91における冷房負荷を処理する冷房運転と、熱負荷熱交換器91における暖房負荷を処理する暖房運転と、冷房暖房移行運転と、暖房冷房移行運転と、が行われる。 In the refrigeration cycle apparatus 1 described above, the controller 7 controls each device to execute the refrigeration cycle, thereby performing a cooling operation for processing the cooling load in the thermal load heat exchanger 91 and a heating load in the thermal load heat exchanger 91. A heating operation, a cooling/heating transitional operation, and a heating/cooling transitional operation are performed.
 (1-1)冷房運転
 冷房運転時は、図3に示すように、第2開閉弁42から、第2圧縮機21とカスケード熱交換器17の第2カスケード流路17bを介して、第2膨張弁16までの流路(点線で示す流路)に第2冷媒を閉じ込め、第1冷媒を第1圧縮機11と室外熱交換器18と第3膨張弁14と利用熱交換器13に循環させることで、単元冷凍サイクルを行う。ここで、利用熱交換器13を第1冷媒の蒸発器として機能させ、室外熱交換器18を第1冷媒の凝縮器として機能させることで、第1冷媒を用いた単元冷凍サイクルを行う。なお、図3では、一重の矢印は第1冷媒が流れる流路を示している。
(1-1) Cooling Operation During cooling operation, as shown in FIG. The second refrigerant is confined in the flow path (the flow path indicated by the dotted line) up to the expansion valve 16, and the first refrigerant is circulated through the first compressor 11, the outdoor heat exchanger 18, the third expansion valve 14, and the utilization heat exchanger 13. unit refrigerating cycle is performed. Here, the utilization heat exchanger 13 is caused to function as an evaporator for the first refrigerant, and the outdoor heat exchanger 18 is caused to function as a condenser for the first refrigerant, thereby performing a unitary refrigeration cycle using the first refrigerant. In addition, in FIG. 3 , the single arrow indicates the channel through which the first coolant flows.
 具体的には、第2開閉弁42と第2膨張弁16を全閉状態に制御し、第2開閉弁42から第2膨張弁16までの流路に第2冷媒を閉じ込める。また、第1切換機構12の接続状態を図3の実線で示す接続状態に切り換え、ポンプ92、第1圧縮機11、室外ファン9を駆動させ、第1開閉弁41を開状態に制御し、第1膨張弁15を全閉状態に制御し、第2圧縮機21を停止させる。さらに、第3膨張弁14の弁開度を、第1圧縮機11の吸入する第1冷媒の過熱度が所定条件を満たすように制御する。 Specifically, the second on-off valve 42 and the second expansion valve 16 are controlled to be fully closed, and the second refrigerant is confined in the flow path from the second on-off valve 42 to the second expansion valve 16 . Further, the connection state of the first switching mechanism 12 is switched to the connection state indicated by the solid line in FIG. 3, the pump 92, the first compressor 11, and the outdoor fan 9 are driven, and the first on-off valve 41 is controlled to open, The first expansion valve 15 is controlled to be fully closed, and the second compressor 21 is stopped. Further, the degree of opening of the third expansion valve 14 is controlled so that the degree of superheat of the first refrigerant sucked by the first compressor 11 satisfies a predetermined condition.
 これにより、第1圧縮機11から吐出された第1冷媒は、第1切換機構12および第1開閉弁41を介して室外熱交換器18に送られる。室外熱交換器18に送られた第1冷媒は、室外ファン9により供給される屋外空気と熱交換を行うことで凝縮する。室外熱交換器18を通過した第1冷媒は、分岐点Bを通過した後、第3膨張弁14において減圧され、分岐点Aを通過して、利用熱交換器13の第1利用流路13aに送られる。利用熱交換器13の第1利用流路13aを流れる第1冷媒は、熱負荷回路90が有する利用熱交換器13の熱負荷流路13bを流れる水と熱交換を行うことで、蒸発する。この熱交換により冷却された水は、熱負荷回路90における熱負荷熱交換器91まで送られることで冷房負荷を処理する。利用熱交換器13の第1利用流路13aで蒸発した第1冷媒は、第1切換機構12を介して第1圧縮機11に吸入される。 As a result, the first refrigerant discharged from the first compressor 11 is sent to the outdoor heat exchanger 18 via the first switching mechanism 12 and the first on-off valve 41 . The first refrigerant sent to the outdoor heat exchanger 18 is condensed by exchanging heat with the outdoor air supplied by the outdoor fan 9 . After passing through the outdoor heat exchanger 18, the first refrigerant is depressurized at the third expansion valve 14 after passing through the branch point B, passes through the branch point A, and enters the first utilization flow path 13a of the utilization heat exchanger 13. sent to The first refrigerant flowing through the first utilization channel 13a of the heat utilization exchanger 13 exchanges heat with water flowing through the heat load flow channel 13b of the heat utilization heat exchanger 13 of the heat load circuit 90, thereby evaporating. The water cooled by this heat exchange is sent to the heat load heat exchanger 91 in the heat load circuit 90 to process the cooling load. The first refrigerant evaporated in the first utilization flow path 13 a of the heat utilization exchanger 13 is sucked into the first compressor 11 via the first switching mechanism 12 .
 (1-2)冷房暖房移行運転
 冷凍サイクル装置1は、冷房運転を行うサイクル状態から、暖房運転を行うサイクル状態に移行させるための冷房暖房移行運転が行われる。
(1-2) Cooling/Heating Transition Operation The refrigeration cycle apparatus 1 performs a cooling/heating transition operation for transitioning from a cycle state in which cooling operation is performed to a cycle state in which heating operation is performed.
 冷房暖房移行運転では、まず、冷房運転が行われていた状態から、第3膨張弁14を全閉状態に制御し、第1切換機構12の接続状態を第1圧縮機11の吐出側が利用熱交換器13の第1利用流路13aのガス冷媒側に接続されて第1圧縮機11の吸入側が第1開閉弁41およびカスケード熱交換器17の第1カスケード流路17aのガス冷媒側に接続された状態に切り換えて、第2開閉弁42を閉じて第1膨張弁15と第2膨張弁16を全閉状態に制御したままで、第1圧縮機11を運転させる。この運転状態をしばらく維持した後、第1開閉弁41を閉じることにより、第1開閉弁41から、第1圧縮機11と利用熱交換器13を介して、第3膨張弁14までの流路に第1冷媒を集めることができる。 In the cooling/heating shift operation, first, the third expansion valve 14 is controlled from the state in which the cooling operation was performed to the fully closed state, and the connection state of the first switching mechanism 12 is changed so that the discharge side of the first compressor 11 is used for heat utilization. The suction side of the first compressor 11 is connected to the first on-off valve 41 and the gas refrigerant side of the first cascade flow path 17a of the cascade heat exchanger 17. Then, the first compressor 11 is operated while the second on-off valve 42 is closed and the first expansion valve 15 and the second expansion valve 16 are fully closed. After maintaining this operating state for a while, by closing the first on-off valve 41, the flow path from the first on-off valve 41 to the third expansion valve 14 via the first compressor 11 and the utilization heat exchanger 13 is opened. to collect the first refrigerant.
 次に、第3膨張弁14を全閉状態に維持させて第1開閉弁41も閉状態に維持させたまま、第1膨張弁15を開けることにより、第1圧縮機11と利用熱交換器13と第1膨張弁15とカスケード熱交換器17を、第1冷媒が循環可能な状態となる。また、第2膨張弁16を開けて、第2開閉弁42を開けることにより、第2圧縮機21とカスケード熱交換器17と第2膨張弁16と室外熱交換器18を、第2冷媒が循環可能な状態となる。 Next, by opening the first expansion valve 15 while maintaining the third expansion valve 14 in a fully closed state and maintaining the first on-off valve 41 in a closed state, the first compressor 11 and the utilization heat exchanger are 13, the first expansion valve 15, and the cascade heat exchanger 17, the first refrigerant can be circulated. Also, by opening the second expansion valve 16 and opening the second on-off valve 42, the second compressor 21, the cascade heat exchanger 17, the second expansion valve 16, and the outdoor heat exchanger 18 are switched by the second refrigerant. Circulation becomes possible.
 以上により、冷房暖房移行運転を終える。 With the above, the cooling/heating shift operation ends.
 (1-3)暖房運転
 暖房運転時は、図4に示すように、第2冷媒を熱源側冷凍サイクルで用い、第1冷媒を利用側冷凍サイクルで用いた二元冷凍サイクルを行う。なお、図4では、一重の矢印は第1冷媒が流れる流路を示しており、二重の矢印は第2冷媒が流れる流路を示している。この二元冷凍サイクルでは、利用熱交換器13を第1冷媒の凝縮器として機能させ、カスケード熱交換器17を第1冷媒の蒸発器として機能させ、カスケード熱交換器17を第2冷媒の放熱器として機能させ、室外熱交換器18を第2冷媒の蒸発器として機能させる。
(1-3) Heating Operation During heating operation, as shown in FIG. 4, a dual refrigerating cycle is performed in which the second refrigerant is used in the heat source side refrigerating cycle and the first refrigerant is used in the user side refrigerating cycle. In FIG. 4, the single arrow indicates the channel through which the first coolant flows, and the double arrow indicates the channel through which the second coolant flows. In this binary refrigerating cycle, the utilization heat exchanger 13 functions as a condenser for the first refrigerant, the cascade heat exchanger 17 functions as an evaporator for the first refrigerant, and the cascade heat exchanger 17 functions to dissipate the heat of the second refrigerant. and the outdoor heat exchanger 18 functions as an evaporator for the second refrigerant.
 具体的には、この二元冷凍サイクルでは、第3膨張弁14を全閉状態に制御し、第1開閉弁41を閉状態に制御することで、第1冷媒と第2冷媒との混ざり合いを防ぎ、第1切換機構12の接続状態を図4の破線で示す接続状態に切り換え、ポンプ92、第1圧縮機11、第2圧縮機21、室外ファン9を駆動させ、第2開閉弁42を開状態に制御する。さらに、第1膨張弁15の弁開度を、第1圧縮機11の吸入する第1冷媒の過熱度が所定条件を満たすように制御し、第2膨張弁16の弁開度を第2圧縮機21の吸入する第2冷媒の過熱度が所定条件を満たすように制御する。 Specifically, in this binary refrigeration cycle, the third expansion valve 14 is controlled to be fully closed, and the first on-off valve 41 is controlled to be closed, so that the first refrigerant and the second refrigerant are mixed. 4, the pump 92, the first compressor 11, the second compressor 21, the outdoor fan 9 are driven, and the second on-off valve 42 to the open state. Furthermore, the valve opening degree of the first expansion valve 15 is controlled so that the degree of superheat of the first refrigerant sucked by the first compressor 11 satisfies a predetermined condition, and the valve opening degree of the second expansion valve 16 is controlled for the second compression. Control is performed so that the degree of superheat of the second refrigerant sucked by the machine 21 satisfies a predetermined condition.
 これにより、第2圧縮機21から吐出された第2冷媒は、カスケード熱交換器17に送られ、第2カスケード流路17bを流れる際に、第1カスケード流路17aを流れる第1冷媒と熱交換することで、放熱する。カスケード熱交換器17で放熱した第2冷媒は、第2膨張弁16において減圧された後、室外熱交換器18において室外ファン9により供給される屋外空気と熱交換を行うこと蒸発し、第2圧縮機21に吸入される。第1圧縮機11から吐出された第1冷媒は、第1切換機構12を介して利用熱交換器13の第1利用流路13aに送られる。利用熱交換器13の第1利用流路13aを流れる第1冷媒は、熱負荷回路90が有する利用熱交換器13の熱負荷流路13bを流れる水と熱交換を行うことで、凝縮する。この熱交換により暖められた水は、熱負荷回路90における熱負荷熱交換器91まで送られることで暖房負荷を処理する。利用熱交換器13の第1利用流路13aで凝縮した第1冷媒は、分岐点Aを通過した後、第1膨張弁15において減圧される。第1膨張弁15で減圧された冷媒は、カスケード熱交換器17の第1カスケード流路17aを通過する際に、第2カスケード流路17bを流れる第2冷媒と熱交換することで蒸発する。カスケード熱交換器17の第1カスケード流路17aで蒸発した第1冷媒は、第1切換機構12を介して第1圧縮機11に吸入される。 As a result, the second refrigerant discharged from the second compressor 21 is sent to the cascade heat exchanger 17 and, when flowing through the second cascade flow path 17b, heats the first refrigerant flowing through the first cascade flow path 17a. Dissipate heat by exchanging. The second refrigerant that has dissipated heat in the cascade heat exchanger 17 is decompressed in the second expansion valve 16, and then exchanges heat with the outdoor air supplied by the outdoor fan 9 in the outdoor heat exchanger 18 to evaporate. It is sucked into the compressor 21 . The first refrigerant discharged from the first compressor 11 is sent through the first switching mechanism 12 to the first utilization flow path 13 a of the utilization heat exchanger 13 . The first refrigerant flowing through the first use flow path 13a of the heat utilization exchanger 13 is condensed by exchanging heat with water flowing through the heat load flow path 13b of the heat utilization heat exchanger 13 of the heat load circuit 90 . The water warmed by this heat exchange is sent to the heat load heat exchanger 91 in the heat load circuit 90 to treat the heating load. The first refrigerant condensed in the first utilization flow path 13 a of the utilization heat exchanger 13 is decompressed in the first expansion valve 15 after passing through the branch point A. When the refrigerant decompressed by the first expansion valve 15 passes through the first cascade flow path 17a of the cascade heat exchanger 17, it evaporates by exchanging heat with the second refrigerant flowing through the second cascade flow path 17b. The first refrigerant evaporated in the first cascade flow path 17 a of the cascade heat exchanger 17 is sucked into the first compressor 11 via the first switching mechanism 12 .
 (1-4)暖房冷房移行運転
 冷凍サイクル装置1は、暖房運転を行うサイクル状態から、冷房運転を行うサイクル状態に移行させるための暖房冷房移行運転が行われる。
(1-4) Heating/Cooling Transition Operation The refrigeration cycle apparatus 1 performs a heating/cooling transition operation for transitioning from the cycle state in which the heating operation is performed to the cycle state in which the cooling operation is performed.
 暖房冷房移行運転では、まず、暖房運転が行われていた状態から、第2膨張弁16を全閉状態に制御し、第3膨張弁14も全閉状態に維持させたままで、第2圧縮機21を駆動させる。この運転状態をしばらく維持した後、第2開閉弁42を閉じることにより、第2開閉弁42から、第2圧縮機21とカスケード熱交換器17の第2カスケード流路17bを介して、第2膨張弁16までの流路に第2冷媒を集めることができる。 In the heating/cooling shift operation, first, the second expansion valve 16 is controlled to be fully closed from the state where the heating operation was performed, and the second compressor is operated while the third expansion valve 14 is also maintained in the fully closed state. 21 is driven. After maintaining this operating state for a while, by closing the second on-off valve 42 , the second compressor 21 and the second cascade flow path 17 b of the cascade heat exchanger 17 are transferred from the second on-off valve 42 . The second refrigerant can be collected in the flow path up to the expansion valve 16 .
 次に、第1膨張弁15を全閉状態に制御し、第3膨張弁14と第1開閉弁41を開けて、第1切換機構12を第1圧縮機11の吐出側が第1開閉弁41に接続され、第1圧縮機11の吸入側が利用熱交換器13の第1利用流路13aのガス冷媒側およびカスケード熱交換器17の第1カスケード流路17aのガス冷媒側に接続された状態にする。これにより、第1冷媒を用いた単元冷凍サイクルによる冷房運転が可能な状態となる。 Next, the first expansion valve 15 is controlled to be fully closed, the third expansion valve 14 and the first on-off valve 41 are opened, and the first switching mechanism 12 is closed by the first on-off valve 41 on the discharge side of the first compressor 11 . , and the suction side of the first compressor 11 is connected to the gas refrigerant side of the first use flow path 13a of the heat utilization heat exchanger 13 and the gas refrigerant side of the first cascade flow path 17a of the cascade heat exchanger 17 to As a result, the cooling operation by the unitary refrigeration cycle using the first refrigerant becomes possible.
 以上により、暖房冷房移行運転を終える。 With the above, the heating/cooling shift operation ends.
 (1-5)第1実施形態の特徴
 第1実施形態の冷凍サイクル装置1では、冷媒回路10において、地球温暖化係数(GWP)が十分に低い第1冷媒と、オゾン層破壊係数(ODP)および地球温暖化係数(GWP)が十分に低い第2冷媒と、が用いられている。このため、地球環境の悪化を抑制することができる。
(1-5) Features of the First Embodiment In the refrigeration cycle apparatus 1 of the first embodiment, in the refrigerant circuit 10, the first refrigerant having a sufficiently low global warming potential (GWP) and the ozone depletion potential (ODP) and a second refrigerant with a sufficiently low global warming potential (GWP). Therefore, deterioration of the global environment can be suppressed.
 また、冷媒回路10において地球温暖化係数(GWP)が十分に低い第1冷媒を用いた場合であっても、暖房運転として、高圧冷媒である第2冷媒を熱源側冷凍サイクルで用い、低圧冷媒である第1冷媒を利用側冷凍サイクルで用いた二元冷凍サイクルを行う。これにより、低圧冷媒である第1冷媒を用いた単元冷凍サイクルを行う場合と比較して、暖房運転時の能力を確保し易い。 Further, even when the first refrigerant having a sufficiently low global warming potential (GWP) is used in the refrigerant circuit 10, the second refrigerant, which is a high-pressure refrigerant, is used in the heat source side refrigeration cycle for heating operation, and the low-pressure refrigerant A binary refrigerating cycle is performed using the first refrigerant in the user-side refrigerating cycle. As a result, it is easier to secure the capacity during the heating operation compared to the case of performing the unitary refrigeration cycle using the first refrigerant, which is the low-pressure refrigerant.
 さらに、冷媒回路10では第2冷媒として二酸化炭素が用いられている。しかし、冷房運転時には、第2冷媒を用いた単元冷凍サイクルは行わず、第2冷媒を熱源側冷凍サイクルで用いて第1冷媒を利用側冷凍サイクルで用いた二元冷凍サイクルも行わず、第1冷媒を用いた単元冷凍サイクルを行う。これにより、高圧冷媒である二酸化炭素冷媒を用いて単元冷凍サイクルを行う場合や高圧冷媒である二酸化炭素を熱源側サイクルで用いる二元冷凍サイクルを行う場合のように二酸化炭素冷媒の圧力が臨界圧力を超えてCOPが低くなってしまうことを避けて、冷房運転を行うことができる。また、高圧冷媒である二酸化炭素が用いられる冷媒回路10の要素部品として求められる耐圧強度の基準を低めのものとすることが可能になる。 Furthermore, carbon dioxide is used as the second refrigerant in the refrigerant circuit 10 . However, during cooling operation, the unitary refrigerating cycle using the second refrigerant is not performed, nor is the dual refrigerating cycle using the second refrigerant in the heat source side refrigerating cycle and the first refrigerant in the user side refrigerating cycle. A unit refrigeration cycle using one refrigerant is performed. As a result, the pressure of the carbon dioxide refrigerant becomes the critical pressure as in the case of performing a single refrigeration cycle using carbon dioxide refrigerant, which is a high-pressure refrigerant, or when performing a dual refrigeration cycle using carbon dioxide, which is a high-pressure refrigerant, in the heat source side cycle. The cooling operation can be performed while avoiding the COP from exceeding and becoming low. In addition, it is possible to lower the standard of pressure resistance strength required for element parts of the refrigerant circuit 10 that uses carbon dioxide, which is a high-pressure refrigerant.
 (2)第2実施形態
 図5に、第2実施形態に係る冷凍サイクル装置1aの概略構成図を示す。図6に、第2実施形態に係る冷凍サイクル装置1aの機能ブロック構成図を示す。
(2) 2nd Embodiment In FIG. 5, the schematic block diagram of the refrigerating-cycle apparatus 1a which concerns on 2nd Embodiment is shown. FIG. 6 shows a functional block configuration diagram of a refrigeration cycle device 1a according to the second embodiment.
 冷凍サイクル装置1aは、蒸気圧縮式の冷凍サイクル運転を行うことによって、熱負荷を処理するために使用される装置である。冷凍サイクル装置1aは、熱負荷回路90と、冷媒回路10と、室外ファン9と、コントローラ7と、を有している。 The refrigeration cycle device 1a is a device used to process a heat load by performing vapor compression refrigeration cycle operation. The refrigerating cycle device 1 a has a heat load circuit 90 , a refrigerant circuit 10 , an outdoor fan 9 and a controller 7 .
 冷凍サイクル装置1aが処理する熱負荷や熱負荷回路90については、第1実施形態と同様である。 The heat load processed by the refrigeration cycle device 1a and the heat load circuit 90 are the same as in the first embodiment.
 なお、本実施形態では、利用熱交換器13は、後述のように、冷媒回路10を流れる第1冷媒または第2冷媒が通過する第1利用流路13aを有している。利用熱交換器13の熱負荷流路13bを流れる水は、第1利用流路13aを流れる第1冷媒または第2冷媒と熱交換することにより、冷房運転時には冷却され、暖房運転時には暖められる。 In this embodiment, the heat utilization exchanger 13 has a first utilization flow path 13a through which the first refrigerant or the second refrigerant flowing through the refrigerant circuit 10 passes, as will be described later. The water flowing through the heat load channel 13b of the heat utilization exchanger 13 is cooled during the cooling operation and warmed during the heating operation by exchanging heat with the first refrigerant or the second refrigerant flowing through the first utilization channel 13a.
 冷媒回路10は、第1圧縮機11と、第2圧縮機21と、第1切換機構12と、第2切換機構22と、熱負荷回路90と共有される利用熱交換器13と、第1膨張弁15と、第2膨張弁16と、カスケード熱交換器17と、室外熱交換器18と、冷媒容器19と、第3開閉弁43と、第4開閉弁44と、第5開閉弁45と、第6開閉弁46と、第7開閉弁47と、第8開閉弁48と、第9開閉弁49と、を有している。 The refrigerant circuit 10 includes a first compressor 11, a second compressor 21, a first switching mechanism 12, a second switching mechanism 22, a utilization heat exchanger 13 shared with the heat load circuit 90, and a first expansion valve 15, second expansion valve 16, cascade heat exchanger 17, outdoor heat exchanger 18, refrigerant container 19, third on-off valve 43, fourth on-off valve 44, and fifth on-off valve 45 , a sixth on-off valve 46 , a seventh on-off valve 47 , an eighth on-off valve 48 , and a ninth on-off valve 49 .
 冷媒回路10には、冷媒として、低圧冷媒である第1冷媒と、高圧冷媒である第2冷媒とが、実質的に分離された状態で充填されている。第1冷媒は、30℃で1MPa以下の冷媒であり、例えば、R1234yfとR1234zeとの少なくともいずれかを含む冷媒であり、R1234yfのみから構成されていてもよいし、R1234zeのみから構成されていてもよい。第2冷媒は、30℃で1.5MPa以上の冷媒であり、例えば、二酸化炭素を含んでいてもよいし、二酸化炭素のみから構成されていてもよい。 The refrigerant circuit 10 is filled with a first refrigerant, which is a low-pressure refrigerant, and a second refrigerant, which is a high-pressure refrigerant, in a substantially separated state. The first refrigerant is a refrigerant of 1 MPa or less at 30 ° C., for example, a refrigerant containing at least one of R1234yf and R1234ze. good. The second refrigerant is a refrigerant having a pressure of 1.5 MPa or more at 30° C., and may contain, for example, carbon dioxide, or may be composed of only carbon dioxide.
 第1圧縮機11自体の具体的構成は第1実施形態のものと同様である。第1圧縮機11の吐出側は、第1切換機構12の切換弁12aが有する第1ポートに接続されている。第1圧縮機11の吸入側は、分岐点D1に接続されている。 The specific configuration of the first compressor 11 itself is the same as that of the first embodiment. A discharge side of the first compressor 11 is connected to a first port of the switching valve 12 a of the first switching mechanism 12 . The suction side of the first compressor 11 is connected to the branch point D1.
 分岐点D1は、第1切換機構12の切換弁12aが有する第2ポートと、第1切換機構12の切換弁12bが有する第2ポートと、第8開閉弁48から延びる流路と、が接続されている。 At the branch point D1, the second port of the switching valve 12a of the first switching mechanism 12, the second port of the switching valve 12b of the first switching mechanism 12, and the flow path extending from the eighth on-off valve 48 are connected. It is
 第1切換機構12は、切換弁12aと、切換弁12bと、を有している。 The first switching mechanism 12 has a switching valve 12a and a switching valve 12b.
 本実施形態では、切換弁12aは、切換弁12aの第1ポート、第2ポート、第3ポート、第4ポートからなる4つのポートを有する四路切換弁で構成されている。切換弁12aの第1ポートには、第1圧縮機11の吐出側が接続されている。切換弁12aの第2ポートには、第1圧縮機11の吸入側が接続されている。切換弁12aの第3ポートには、分岐点E2から延びる流路が接続されている。切換弁12aの第4ポートには、切換弁12bの第1ポートが接続されている。 In this embodiment, the switching valve 12a is composed of a four-way switching valve having four ports consisting of a first port, a second port, a third port, and a fourth port of the switching valve 12a. A discharge side of the first compressor 11 is connected to a first port of the switching valve 12a. A suction side of the first compressor 11 is connected to a second port of the switching valve 12a. A flow path extending from the branch point E2 is connected to the third port of the switching valve 12a. A fourth port of the switching valve 12a is connected to a first port of the switching valve 12b.
 本実施形態では、切換弁12bは、切換弁12bの第1ポート、第2ポート、第3ポート、第4ポートからなる4つのポートを有する四路切換弁で構成されている。切換弁12bの第1ポートには、切換弁12aの第4ポートが接続されている。切換弁12bの第2ポートは、第1圧縮機11の吸入側と接続されている。切換弁12bの第3ポートには、利用熱交換器13の第1利用流路13aのガス冷媒側が接続されている。切換弁12bの第4ポートには、カスケード熱交換器17の第1カスケード流路17aのガス冷媒側が接続されている。 In this embodiment, the switching valve 12b is composed of a four-way switching valve having four ports consisting of a first port, a second port, a third port, and a fourth port of the switching valve 12b. A fourth port of the switching valve 12a is connected to a first port of the switching valve 12b. A second port of the switching valve 12 b is connected to the suction side of the first compressor 11 . The gas refrigerant side of the first utilization flow path 13a of the utilization heat exchanger 13 is connected to the third port of the switching valve 12b. The gas refrigerant side of the first cascade flow path 17a of the cascade heat exchanger 17 is connected to the fourth port of the switching valve 12b.
 切換弁12aは、第1圧縮機11の吐出側を切換弁12bの第1ポートに接続し、第1圧縮機11の吸入側を分岐点E2に接続する状態と、第1圧縮機11の吐出側を分岐点E2に接続し、第1圧縮機11の吸入側を切換弁12bの第1ポートに接続する状態と、を切り換える。 The switching valve 12a connects the discharge side of the first compressor 11 to the first port of the switching valve 12b and connects the suction side of the first compressor 11 to the branch point E2. side is connected to the branch point E2 and the suction side of the first compressor 11 is connected to the first port of the switching valve 12b.
 切換弁12bは、切換弁12aの第4ポートをカスケード熱交換器17の第1カスケード流路17aのガス冷媒側に接続し、第1圧縮機11の吸入側を利用熱交換器13の第1利用流路13aのガス冷媒側に接続する状態と、切換弁12aの第4ポートを利用熱交換器13の第1利用流路13aのガス冷媒側に接続し、第1圧縮機11の吸入側をカスケード熱交換器17の第1カスケード流路17aのガス冷媒側に接続する状態と、を切り換える。 The switching valve 12 b connects the fourth port of the switching valve 12 a to the gas refrigerant side of the first cascade flow path 17 a of the cascade heat exchanger 17 , and connects the suction side of the first compressor 11 to the first port of the utilization heat exchanger 13 . A state of connecting to the gas refrigerant side of the utilization flow path 13a, and a state of connecting the fourth port of the switching valve 12a to the gas refrigerant side of the first utilization flow path 13a of the heat utilization heat exchanger 13 and connecting to the suction side of the first compressor 11. is connected to the gas refrigerant side of the first cascade flow path 17 a of the cascade heat exchanger 17 .
 利用熱交換器13のうち冷媒回路10を流れる冷媒が通過する第1利用流路13aは、ガス冷媒側が第1切換機構12の切換弁12bに接続されている。また、第1利用流路13aの液冷媒側は、冷媒回路10が有する分岐点Aに接続されている。 The gas refrigerant side of the first use flow path 13 a through which the refrigerant flowing through the refrigerant circuit 10 passes in the use heat exchanger 13 is connected to the switching valve 12 b of the first switching mechanism 12 . Further, the liquid refrigerant side of the first use channel 13a is connected to the branch point A of the refrigerant circuit 10 .
 分岐点Aでは、第1利用流路13aの液冷媒側から延びる流路と、第1膨張弁15のうちカスケード熱交換器17側とは反対側に延びる流路と、分岐点Jから延びる流路と、が接続されている。 At the branch point A, a flow path extending from the liquid refrigerant side of the first utilization flow path 13a, a flow path extending on the side opposite to the cascade heat exchanger 17 side of the first expansion valve 15, and a flow extending from the branch point J is connected to the road.
 第1膨張弁15は、弁開度を調節可能な電子膨張弁によって構成されている。第1膨張弁15は、冷媒回路10において、分岐点Aと分岐点Fを繋ぐ流路の途中に設けられている。 The first expansion valve 15 is composed of an electronic expansion valve whose opening degree can be adjusted. The first expansion valve 15 is provided in the middle of the flow path connecting the branch point A and the branch point F in the refrigerant circuit 10 .
 分岐点Fは、第1膨張弁15から延びる流路と、分岐点H1から延びる流路と、カスケード熱交換器17の第1カスケード流路17aにおける液冷媒側から延びる流路と、を接続している。 The branch point F connects the flow path extending from the first expansion valve 15, the flow path extending from the branch point H1, and the flow path extending from the liquid refrigerant side in the first cascade flow path 17a of the cascade heat exchanger 17. ing.
 カスケード熱交換器17は、第1冷媒と第2冷媒とのいずれか一方が通過する第1カスケード流路17aと、第1冷媒と第2冷媒とのいずれか他方が通過する第2カスケード流路17bと、を有しており、第1冷媒と第2冷媒との間で熱交換を行わせるカスケード熱交換器である。カスケード熱交換器17において、第1カスケード流路17aと第2カスケード流路17bとは互いに独立しており、カスケード熱交換器17内において第1冷媒と第2冷媒が混ざり合うことはない。第1カスケード流路17aのガス冷媒側は、第1切換機構12の切換弁12bに接続されている。第1カスケード流路17aの液冷媒側は、分岐点Fから延びる流路に接続されている。第2カスケード流路17bのガス冷媒側は、第2切換機構22の切換弁22bに接続されている。第2カスケード流路17bの液冷媒側は、分岐点Gから延びる流路に接続されている。 The cascade heat exchanger 17 includes a first cascade flow path 17a through which one of the first refrigerant and the second refrigerant passes, and a second cascade flow path through which the other of the first refrigerant and the second refrigerant passes. 17b and a cascade heat exchanger for heat exchange between the first refrigerant and the second refrigerant. In the cascade heat exchanger 17 , the first cascade flow path 17 a and the second cascade flow path 17 b are independent of each other, and the first refrigerant and the second refrigerant do not mix inside the cascade heat exchanger 17 . The gas refrigerant side of the first cascade flow path 17 a is connected to the switching valve 12 b of the first switching mechanism 12 . The liquid refrigerant side of the first cascade channel 17a is connected to a channel extending from the branch point F. As shown in FIG. The gas refrigerant side of the second cascade flow path 17 b is connected to the switching valve 22 b of the second switching mechanism 22 . The liquid refrigerant side of the second cascade channel 17b is connected to a channel extending from the branch point G. As shown in FIG.
 第2圧縮機21自体の具体的構成は第1実施形態のものと同様である。第2圧縮機21の吐出側は、第2切換機構22の切換弁22aの第1ポートに接続されている。第2圧縮機21の吸入側は、分岐点E1に接続されている。 The specific configuration of the second compressor 21 itself is the same as that of the first embodiment. A discharge side of the second compressor 21 is connected to a first port of a switching valve 22 a of the second switching mechanism 22 . The suction side of the second compressor 21 is connected to the branch point E1.
 分岐点E1は、第2切換機構22の切換弁22aの第2ポートと、第2切換機構22の切換弁22bの第2ポートと、第7開閉弁47から延びる流路が接続されている。 The second port of the switching valve 22a of the second switching mechanism 22, the second port of the switching valve 22b of the second switching mechanism 22, and the flow path extending from the seventh on-off valve 47 are connected to the branch point E1.
 第2切換機構22は、切換弁22aと、切換弁22bと、を有している。 The second switching mechanism 22 has a switching valve 22a and a switching valve 22b.
 本実施形態では、切換弁22aは、切換弁22aの第1ポート、第2ポート、第3ポート、第4ポートからなる4つのポートを有する四路切換弁で構成されている。切換弁22aの第1ポートには、第2圧縮機21の吐出側が接続されている。切換弁22aの第2ポートには、第2圧縮機21の吸入側が接続されている。切換弁22aの第3ポートには、分岐点D2から延びる流路が接続されている。切換弁22aの第4ポートには、切換弁22bの第1ポートが接続されている。 In this embodiment, the switching valve 22a is composed of a four-way switching valve having four ports consisting of a first port, a second port, a third port, and a fourth port of the switching valve 22a. A discharge side of the second compressor 21 is connected to a first port of the switching valve 22a. The suction side of the second compressor 21 is connected to the second port of the switching valve 22a. A flow path extending from the branch point D2 is connected to the third port of the switching valve 22a. A fourth port of the switching valve 22a is connected to a first port of the switching valve 22b.
 本実施形態では、切換弁22bは、切換弁22bの第1ポート、第2ポート、第3ポート、第4ポートからなる4つのポートを有する四路切換弁で構成されている。切換弁22bの第1ポートには、切換弁22aの第4ポートが接続されている。切換弁22bの第2ポートは、第2圧縮機21の吸入側と接続されている。切換弁22bの第3ポートには、カスケード熱交換器17の第2カスケード流路17bのガス冷媒側が接続されている。切換弁22bの第4ポートには、室外熱交換器18のガス冷媒側が接続されている。 In this embodiment, the switching valve 22b is composed of a four-way switching valve having four ports consisting of a first port, a second port, a third port, and a fourth port of the switching valve 22b. A fourth port of the switching valve 22a is connected to a first port of the switching valve 22b. A second port of the switching valve 22b is connected to the suction side of the second compressor 21 . The gas refrigerant side of the second cascade flow path 17b of the cascade heat exchanger 17 is connected to the third port of the switching valve 22b. The gas refrigerant side of the outdoor heat exchanger 18 is connected to the fourth port of the switching valve 22b.
 切換弁22aは、第2圧縮機21の吐出側を切換弁22bの第1ポートに接続し、第2圧縮機21の吸入側を分岐点D2に接続する状態と、第2圧縮機21の吐出側を分岐点D2に接続し、第2圧縮機21の吸入側を切換弁22bの第1ポートに接続する状態と、を切り換える。 The switching valve 22a connects the discharge side of the second compressor 21 to the first port of the switching valve 22b and connects the suction side of the second compressor 21 to the branch point D2. side is connected to the branch point D2, and the suction side of the second compressor 21 is connected to the first port of the switching valve 22b.
 切換弁22bは、切換弁22aの第4ポートを室外熱交換器18のガス冷媒側に接続し、第2圧縮機21の吸入側をカスケード熱交換器17の第2カスケード流路17bのガス冷媒側に接続する状態と、切換弁22aの第4ポートをカスケード熱交換器17の第2カスケード流路17bのガス冷媒側に接続し、第2圧縮機21の吸入側を室外熱交換器18のガス冷媒側に接続する状態と、を切り換える。 The switching valve 22b connects the fourth port of the switching valve 22a to the gas refrigerant side of the outdoor heat exchanger 18, and connects the suction side of the second compressor 21 to the gas refrigerant of the second cascade flow path 17b of the cascade heat exchanger 17. side, the fourth port of the switching valve 22a is connected to the gas refrigerant side of the second cascade flow path 17b of the cascade heat exchanger 17, and the suction side of the second compressor 21 is connected to the outdoor heat exchanger 18. Switches between the state of connecting to the gas refrigerant side and the state of connecting to the gas refrigerant side.
 分岐点Gは、カスケード熱交換器17の第2カスケード流路17bの液冷媒側から延びる流路と、第2膨張弁16から延びる流路と、分岐点H2から延びる流路と、が接続されている。 At the branch point G, a flow path extending from the liquid refrigerant side of the second cascade flow path 17b of the cascade heat exchanger 17, a flow path extending from the second expansion valve 16, and a flow path extending from the branch point H2 are connected. ing.
 第2膨張弁16は、弁開度を調節可能な電子膨張弁によって構成されている。第2膨張弁16は、分岐点Gと、室外熱交換器18の液冷媒側と、の間に設けられている。 The second expansion valve 16 is composed of an electronic expansion valve whose opening degree can be adjusted. The second expansion valve 16 is provided between the branch point G and the liquid refrigerant side of the outdoor heat exchanger 18 .
 室外熱交換器18は、複数の伝熱管と、複数の伝熱管に接合された複数のフィンと、を有して構成される。本実施形態では、室外熱交換器18は、屋外に配置されている。室外熱交換器18を流れる冷媒は、室外熱交換器18に送られる空気と熱交換を行う。 The outdoor heat exchanger 18 is configured with multiple heat transfer tubes and multiple fins joined to the multiple heat transfer tubes. In this embodiment, the outdoor heat exchanger 18 is arranged outdoors. The refrigerant flowing through the outdoor heat exchanger 18 exchanges heat with the air sent to the outdoor heat exchanger 18 .
 室外ファン9は、室外熱交換器18を通過する屋外空気による空気流れを生じさせる。 The outdoor fan 9 generates an air flow by the outdoor air passing through the outdoor heat exchanger 18.
 分岐点Jは、分岐点Aから延びる流路と、第6開閉弁46から延びる流路と、分岐点K1から延びる流路と、が接続されている。分岐点K1は、分岐点Jから延びる流路と、冷媒容器19の上端部から延びる流路と、第9開閉弁49から延びる流路と、を接続している。第9開閉弁49は、分岐点D2と分岐点K1とを接続する流路の途中に設けられている。分岐点D2は、第9開閉弁49から延びる流路と、第8開閉弁48から延びる流路と、第2切換機構22の切換弁22aの第3ポートから延びる流路と、を接続している。第8開閉弁48は、分岐点D2と分岐点D1とを接続する流路の途中に設けられている。第6開閉弁46は、分岐点Jと分岐点E2とを接続する流路の途中に設けられている。分岐点E2は、第7開閉弁47から延びる流路と、第6開閉弁46から延びる流路と、第1切換機構12の切換弁12aの第3ポートから延びる流路と、を接続している。第7開閉弁47は、分岐点E1と分岐点E2とを接続する流路の途中に設けられている。 At the branch point J, the flow path extending from the branch point A, the flow path extending from the sixth on-off valve 46, and the flow path extending from the branch point K1 are connected. The branch point K<b>1 connects the flow path extending from the branch point J, the flow path extending from the upper end portion of the refrigerant container 19 , and the flow path extending from the ninth on-off valve 49 . The ninth on-off valve 49 is provided in the middle of the flow path connecting the branch point D2 and the branch point K1. The branch point D2 connects the flow path extending from the ninth on-off valve 49, the flow path extending from the eighth on-off valve 48, and the flow path extending from the third port of the switching valve 22a of the second switching mechanism 22. there is The eighth on-off valve 48 is provided in the middle of the flow path connecting the branch point D2 and the branch point D1. The sixth on-off valve 46 is provided in the middle of the flow path connecting the branch point J and the branch point E2. The branch point E2 connects the flow path extending from the seventh on-off valve 47, the flow path extending from the sixth on-off valve 46, and the flow path extending from the third port of the switching valve 12a of the first switching mechanism 12. there is The seventh on-off valve 47 is provided in the middle of the flow path connecting the branch point E1 and the branch point E2.
 分岐点K2は、冷媒容器19の下端部から延びる流路と、第4開閉弁44から延びる流路と、第5開閉弁45から延びる流路と、を接続している。第4開閉弁44は、分岐点K2と分岐点H1とを接続する流路の途中に設けられている。第5開閉弁45は、分岐点K2と分岐点H2とを接続する流路の途中に設けられている。分岐点H1は、第3開閉弁43から延びる流路と、第4開閉弁44から延びる流路と、分岐点Fから延びる流路と、を接続している。分岐点H2は、第3開閉弁43から延びる流路と、第5開閉弁45から延びる流路と、分岐点Gから延びる流路と、を接続している。第3開閉弁43は、分岐点H1と分岐点H2とを接続する流路の途中に設けられている。 The branch point K2 connects the flow path extending from the lower end of the refrigerant container 19, the flow path extending from the fourth on-off valve 44, and the flow path extending from the fifth on-off valve 45. The fourth on-off valve 44 is provided in the middle of the flow path connecting the branch point K2 and the branch point H1. The fifth on-off valve 45 is provided in the middle of the flow path connecting the branch point K2 and the branch point H2. The branch point H1 connects the flow path extending from the third on-off valve 43, the flow path extending from the fourth on-off valve 44, and the flow path extending from the branch point F. The branch point H2 connects the flow path extending from the third on-off valve 43, the flow path extending from the fifth on-off valve 45, and the flow path extending from the branch point G. The third on-off valve 43 is provided in the middle of the flow path connecting the branch point H1 and the branch point H2.
 なお、第3開閉弁43と、第4開閉弁44と、第5開閉弁45と、第6開閉弁46と、第7開閉弁47と、第8開閉弁48と、第9開閉弁49とは、いずれも開状態と閉状態とに切り換え制御可能な電磁弁である。 The third on-off valve 43, the fourth on-off valve 44, the fifth on-off valve 45, the sixth on-off valve 46, the seventh on-off valve 47, the eighth on-off valve 48, and the ninth on-off valve 49 are electromagnetic valves that can be controlled to switch between an open state and a closed state.
 冷媒容器19は、第1冷媒または第2冷媒を内部に保持することが可能な容器である。冷媒容器19は、第1冷媒を溜めた状態で第2冷媒を冷媒回路10内で移動させるか、第2冷媒を溜めた状態で第1冷媒を冷媒回路10内で移動させるために用いることができ、当該第1冷媒の貯留と第2冷媒の貯留が可能な程度の容積を有している。なお、本実施形態では、第2冷媒を溜めた状態で第1冷媒を冷媒回路10内で移動させるために用いられる冷媒容器19を例として説明する。 The refrigerant container 19 is a container capable of holding the first refrigerant or the second refrigerant inside. The refrigerant container 19 can be used to move the second refrigerant within the refrigerant circuit 10 while the first refrigerant is stored, or to move the first refrigerant within the refrigerant circuit 10 while the second refrigerant is stored. It has a capacity that allows storage of the first refrigerant and storage of the second refrigerant. In this embodiment, the refrigerant container 19 used to move the first refrigerant in the refrigerant circuit 10 while the second refrigerant is stored will be described as an example.
 コントローラ7は、熱負荷回路90と冷媒回路10を構成する各機器の動作を制御する。具体的には、コントローラ7は、制御を行うために設けられたCPUとしてのプロセッサとメモリ等を有している。 The controller 7 controls the operation of each device that constitutes the heat load circuit 90 and the refrigerant circuit 10 . Specifically, the controller 7 has a processor as a CPU provided for control, a memory, and the like.
 以上の冷凍サイクル装置1aにおいて、コントローラ7が各機器を制御して冷凍サイクルを実行させることで、熱負荷熱交換器91における冷房負荷を処理する冷房運転と、熱負荷熱交換器91における暖房負荷を処理する暖房運転と、冷房暖房移行運転と、暖房冷房移行運転と、が行われる。 In the refrigeration cycle apparatus 1a described above, the controller 7 controls each device to execute the refrigeration cycle, thereby performing a cooling operation for processing the cooling load in the thermal load heat exchanger 91 and a heating load in the thermal load heat exchanger 91. A heating operation, a cooling/heating transitional operation, and a heating/cooling transitional operation are performed.
 (2-1)冷房運転
 冷房運転時は、図7に示すように、第1冷媒を熱源側冷凍サイクルで用い、第2冷媒を利用側冷凍サイクルで用いた二元冷凍サイクル運転を行う。なお、図7では、一重の矢印は第1冷媒が流れる流路を示しており、二重の矢印は第2冷媒が流れる流路を示している。この二元冷凍サイクルでは、利用熱交換器13を第2冷媒の蒸発器として機能させ、カスケード熱交換器17を第2冷媒の放熱器として機能させ、カスケード熱交換器17を第1冷媒の蒸発器として機能させ、室外熱交換器18を第1冷媒の凝縮器として機能させる。
(2-1) Cooling Operation During cooling operation, as shown in FIG. 7, the first refrigerant is used in the heat source side refrigerating cycle and the second refrigerant is used in the user side refrigerating cycle. In FIG. 7, the single arrow indicates the channel through which the first coolant flows, and the double arrow indicates the channel through which the second coolant flows. In this binary refrigeration cycle, the utilization heat exchanger 13 functions as an evaporator for the second refrigerant, the cascade heat exchanger 17 functions as a radiator for the second refrigerant, and the cascade heat exchanger 17 functions as an evaporator for the first refrigerant. and the outdoor heat exchanger 18 functions as a condenser for the first refrigerant.
 具体的には、この二元冷凍サイクルでは、第3開閉弁43と第4開閉弁44と第5開閉弁45と第6開閉弁46と第7開閉弁47と第8開閉弁48と第9開閉弁49の全てを閉状態に制御することで、第1冷媒と第2冷媒の混ざり合いを防いでいる。そして、第1切換機構12の接続状態を図7の実線で示す接続状態に切り換え、第2切換機構22の接続状態を図7の実線で示す接続状態に切り換え、ポンプ92、第1圧縮機11、第2圧縮機21、室外ファン9を駆動させる。さらに、第1膨張弁15の弁開度を、第1圧縮機11の吸入する第2冷媒の過熱度が所定条件を満たすように制御し、第2膨張弁16の弁開度を第2圧縮機21の吸入する第1冷媒の過熱度が所定条件を満たすように制御する。 Specifically, in this binary refrigeration cycle, the third on-off valve 43, the fourth on-off valve 44, the fifth on-off valve 45, the sixth on-off valve 46, the seventh on-off valve 47, the eighth on-off valve 48, the ninth By controlling all the on-off valves 49 to be in a closed state, mixing of the first refrigerant and the second refrigerant is prevented. Then, the connected state of the first switching mechanism 12 is switched to the connected state indicated by the solid line in FIG. 7, the connected state of the second switching mechanism 22 is switched to the connected state indicated by the solid line in FIG. , the second compressor 21 and the outdoor fan 9 are driven. Further, the valve opening degree of the first expansion valve 15 is controlled so that the degree of superheat of the second refrigerant sucked into the first compressor 11 satisfies a predetermined condition, and the valve opening degree of the second expansion valve 16 is controlled for the second compression. Control is performed so that the degree of superheat of the first refrigerant sucked by the machine 21 satisfies a predetermined condition.
 これにより、第2圧縮機21から吐出された第1冷媒は、第2切換機構22の切換弁22aと切換弁22bを介して、室外熱交換器18に送られる。室外熱交換器18を流れる第1冷媒は、室外ファン9により供給される屋外空気と熱交換を行うことで凝縮する。室外熱交換器18で凝縮した第1冷媒は、第2膨張弁16において減圧され、分岐点Gを通過して、カスケード熱交換器17の第2カスケード流路17bに送られる。第1冷媒は、カスケード熱交換器17の第2カスケード流路17bを流れる際に、第1カスケード流路17aを流れる第2冷媒と熱交換することで、蒸発する。カスケード熱交換器17で蒸発した第1冷媒は、第2切換機構22の切換弁22bを介して、第2圧縮機21に吸入される。第1圧縮機11から吐出された第2冷媒は、第1切換機構12の切換弁12aと切換弁12bを介して、カスケード熱交換器17の第1カスケード流路17aに送られる。第2冷媒は、カスケード熱交換器17の第1カスケード流路17aを流れる際に、第2カスケード流路17bを流れる第1冷媒と熱交換することで放熱する。カスケード熱交換器17で放熱した第2冷媒は、分岐点Fを通過して、第1膨張弁15において減圧され、分岐点Aを通過して、利用熱交換器13の第1利用流路13aに送られる。利用熱交換器13の第1利用流路13aを流れる第2冷媒は、熱負荷回路90が有する利用熱交換器13の熱負荷流路13bを流れる水と熱交換を行うことで、蒸発する。この熱交換により冷やされた水は、熱負荷回路90における熱負荷熱交換器91まで送られることで冷房負荷を処理する。利用熱交換器13の第1利用流路13aで蒸発した第2冷媒は、第1切換機構12の切換弁12bを介して第1圧縮機11に吸入される。 As a result, the first refrigerant discharged from the second compressor 21 is sent to the outdoor heat exchanger 18 via the switching valves 22 a and 22 b of the second switching mechanism 22 . The first refrigerant flowing through the outdoor heat exchanger 18 is condensed by exchanging heat with the outdoor air supplied by the outdoor fan 9 . The first refrigerant condensed in the outdoor heat exchanger 18 is depressurized in the second expansion valve 16 , passes through the branch point G, and is sent to the second cascade flow path 17 b of the cascade heat exchanger 17 . When the first refrigerant flows through the second cascade flow path 17b of the cascade heat exchanger 17, the first refrigerant evaporates by exchanging heat with the second refrigerant flowing through the first cascade flow path 17a. The first refrigerant evaporated in the cascade heat exchanger 17 is sucked into the second compressor 21 via the switching valve 22b of the second switching mechanism 22 . The second refrigerant discharged from the first compressor 11 is sent to the first cascade passage 17a of the cascade heat exchanger 17 via the switching valves 12a and 12b of the first switching mechanism 12 . When the second refrigerant flows through the first cascade flow path 17a of the cascade heat exchanger 17, the second refrigerant releases heat by exchanging heat with the first refrigerant flowing through the second cascade flow path 17b. The second refrigerant that has radiated heat in the cascade heat exchanger 17 passes through the branch point F, is decompressed in the first expansion valve 15, passes through the branch point A, and flows through the first utilization flow path 13a of the utilization heat exchanger 13. sent to The second refrigerant flowing through the first utilization flow path 13a of the utilization heat exchanger 13 exchanges heat with water flowing through the heat load flow path 13b of the utilization heat exchanger 13 of the heat load circuit 90, thereby evaporating. The water cooled by this heat exchange is sent to the heat load heat exchanger 91 in the heat load circuit 90 to process the cooling load. The second refrigerant evaporated in the first use flow path 13 a of the use heat exchanger 13 is sucked into the first compressor 11 via the switching valve 12 b of the first switching mechanism 12 .
 (2-2)冷房暖房移行運転
 冷凍サイクル装置1aは、冷房運転を行うサイクル状態から、暖房運転を行うサイクル状態に移行させるために、以下の(a1)~(f1)の順からなる冷房暖房移行運転が行われる。
(2-2) Cooling/heating transition operation The refrigerating cycle device 1a performs the following steps (a1) to (f1) in order to shift from the cycle state in which the cooling operation is performed to the cycle state in which the heating operation is performed. A transition operation is performed.
 (a1)まず、冷房運転が行われていた状態から、第1膨張弁15を全閉状態に制御し、第4開閉弁44を開けた状態で、第1圧縮機11を運転させる。ここで、第1冷媒を用いた冷房運転時の冷凍サイクルが行われるように、第2圧縮機21等を運転させる。これにより、冷媒容器19の下方から冷媒容器19内に第2冷媒を回収する運転を行う。この際、第6開閉弁46を所定時間間隔で開状態と閉状態とを切り換える制御を行うことで、冷媒容器19の上端から第6開閉弁46に至るまでの流路のガス状態の第2冷媒を第1圧縮機11に吸入させる。これにより、冷媒容器19への第2冷媒の回収を効率的に行うことができる。この運転は、冷媒容器19に所定の十分な量の第2冷媒が回収された状態になるまで、例えば、所定時間継続される。 (a1) First, the first expansion valve 15 is controlled to a fully closed state from the state in which the cooling operation was performed, and the first compressor 11 is operated with the fourth on-off valve 44 opened. Here, the second compressor 21 and the like are operated so that the refrigeration cycle during the cooling operation using the first refrigerant is performed. As a result, the operation of collecting the second refrigerant into the refrigerant container 19 from below the refrigerant container 19 is performed. At this time, by performing control to switch the sixth on-off valve 46 between the open state and the closed state at predetermined time intervals, the gas state in the flow path from the upper end of the refrigerant container 19 to the sixth on-off valve 46 changes to the second state. Refrigerant is drawn into the first compressor 11 . Thereby, the second refrigerant can be efficiently collected into the refrigerant container 19 . This operation is continued for a predetermined time, for example, until a predetermined sufficient amount of the second refrigerant is collected in the refrigerant container 19 .
 (b1)次に、冷媒容器19への第2冷媒の回収が所定量以上に進んだ状態で、第4開閉弁44を閉じる。その後、切換弁12aを、第1圧縮機11の吐出側を分岐点E2に接続し、第1圧縮機11の吸入側を切換弁12bの第1ポートに接続する状態に切り換え、切換弁12bを、切換弁12aの第4ポートを利用熱交換器13の第1利用流路13aのガス冷媒側に接続し、第1圧縮機11の吸入側をカスケード熱交換器17の第1カスケード流路17aのガス冷媒側に接続する状態に切り換える。さらに、切換弁22aを、第2圧縮機21の吐出側を切換弁22bの第1ポートに接続し、第2圧縮機21の吸入側を分岐点D2に接続する状態に切り換え、切換弁22bを、切換弁22aの第4ポートをカスケード熱交換器17の第2カスケード流路17bのガス冷媒側に接続し、第2圧縮機21の吸入側を室外熱交換器18のガス冷媒側に接続する状態に切り換える。この状態で、第6開閉弁46を開状態に制御し、第1圧縮機11と第2圧縮機21を運転させることで、カスケード熱交換器17の第1カスケード流路17aに残る第2冷媒を、第1冷媒の熱によって加熱して追い出し、第1圧縮機11、分岐点E2、第6開閉弁46、分岐点J、分岐点K1を介して、冷媒容器19に第2冷媒を集める。そして、この運転を所定時間継続させた後、第6開閉弁46を閉状態に制御し、第2冷媒の冷媒容器19への回収を終える。 (b1) Next, the fourth on-off valve 44 is closed after the collection of the second refrigerant into the refrigerant container 19 has progressed to a predetermined amount or more. Thereafter, the switching valve 12a is switched to a state in which the discharge side of the first compressor 11 is connected to the branch point E2 and the suction side of the first compressor 11 is connected to the first port of the switching valve 12b. , the fourth port of the switching valve 12 a is connected to the gas refrigerant side of the first use flow path 13 a of the heat utilization heat exchanger 13 , and the suction side of the first compressor 11 is connected to the first cascade flow path 17 a of the cascade heat exchanger 17 . switch to the state of connecting to the gas refrigerant side of the Further, the switching valve 22a is switched to a state in which the discharge side of the second compressor 21 is connected to the first port of the switching valve 22b and the suction side of the second compressor 21 is connected to the branch point D2. , the fourth port of the switching valve 22a is connected to the gas refrigerant side of the second cascade flow path 17b of the cascade heat exchanger 17, and the suction side of the second compressor 21 is connected to the gas refrigerant side of the outdoor heat exchanger 18. switch to state. In this state, the sixth on-off valve 46 is controlled to be opened, and the first compressor 11 and the second compressor 21 are operated, whereby the second refrigerant remaining in the first cascade flow path 17a of the cascade heat exchanger 17 is is heated by the heat of the first refrigerant and driven out, and the second refrigerant is collected in the refrigerant container 19 via the first compressor 11, the branch point E2, the sixth on-off valve 46, the branch point J, and the branch point K1. After continuing this operation for a predetermined time, the sixth on-off valve 46 is controlled to be closed, and the collection of the second refrigerant into the refrigerant container 19 is finished.
 (c1)次に、切換弁12aを、第1圧縮機11の吐出側を切換弁12bの第1ポートに接続し、第1圧縮機11の吸入側を分岐点E2に接続する状態に切り換え、切換弁12bを、切換弁12aの第4ポートを利用熱交換器13の第1利用流路13aのガス冷媒側に接続し、第1圧縮機11の吸入側をカスケード熱交換器17の第1カスケード流路17aのガス冷媒側に接続する状態とする。この状態で、第2膨張弁16を全閉状態に制御し、第4開閉弁44と第5開閉弁45は閉状態に維持しつつ、第3開閉弁43を開き、第1圧縮機11と第2圧縮機21を運転させる。これにより、第2膨張弁16から第2圧縮機21の吸入側までに存在していた第1冷媒が、第2切換機構22、カスケード熱交換器17の第2カスケード流路17b、分岐点G、分岐点H2、第3開閉弁43、分岐点H1、分岐点Fを介して、カスケード熱交換器17の第1カスケード流路17aに送られる。さらに、第1冷媒は、第1切換機構12の切換弁12bを介して第1圧縮機11に吸入される。そして、第1圧縮機11から吐出された第1冷媒は、第1切換機構12の切換弁12aを介して利用熱交換器13に送られる。 (c1) Next, the switching valve 12a is switched to a state in which the discharge side of the first compressor 11 is connected to the first port of the switching valve 12b and the suction side of the first compressor 11 is connected to the branch point E2, The switching valve 12 b connects the fourth port of the switching valve 12 a to the gas refrigerant side of the first utilization flow path 13 a of the utilization heat exchanger 13 , and connects the suction side of the first compressor 11 to the first flow path of the cascade heat exchanger 17 . It is in a state of being connected to the gas refrigerant side of the cascade flow path 17a. In this state, the second expansion valve 16 is controlled to be fully closed, the fourth on-off valve 44 and the fifth on-off valve 45 are kept closed, the third on-off valve 43 is opened, and the first compressor 11 and The second compressor 21 is operated. As a result, the first refrigerant existing from the second expansion valve 16 to the suction side of the second compressor 21 is transferred to the second switching mechanism 22, the second cascade flow path 17b of the cascade heat exchanger 17, and the branch point G. , the branch point H2, the third on-off valve 43, the branch point H1, and the branch point F to the first cascade flow path 17a of the cascade heat exchanger 17. Further, the first refrigerant is sucked into the first compressor 11 via the switching valve 12b of the first switching mechanism 12. As shown in FIG. The first refrigerant discharged from the first compressor 11 is sent to the utilization heat exchanger 13 via the switching valve 12 a of the first switching mechanism 12 .
 (d1)次に、第3開閉弁43を閉じ、第8開閉弁48を開けて、切換弁22aを、第2圧縮機21の吐出側を分岐点D2に接続し、第2圧縮機21の吸入側を切換弁22bの第1ポートに接続する状態に切り換え、切換弁22bを、切換弁22aの第4ポートを室外熱交換器18のガス冷媒側に接続し、第2圧縮機21の吸入側をカスケード熱交換器17の第2カスケード流路17bのガス冷媒側に接続する状態に切り換える。この状態で第1圧縮機11と第2圧縮機21を運転させることで、第3開閉弁43から第2圧縮機21の吸入側までに存在する第1冷媒を、第2圧縮機21から吐出させ、分岐点D2、第8開閉弁48、分岐点D1を介して、第1圧縮機11に吸入させる。 (d1) Next, the third on-off valve 43 is closed, the eighth on-off valve 48 is opened, the switching valve 22a is connected to the branch point D2 on the discharge side of the second compressor 21, and the The suction side is switched to the first port of the switching valve 22b, the switching valve 22b and the fourth port of the switching valve 22a are connected to the gas refrigerant side of the outdoor heat exchanger 18, and the suction side of the second compressor 21 is connected. side is connected to the gas refrigerant side of the second cascade flow path 17 b of the cascade heat exchanger 17 . By operating the first compressor 11 and the second compressor 21 in this state, the first refrigerant existing from the third on-off valve 43 to the suction side of the second compressor 21 is discharged from the second compressor 21. , and is drawn into the first compressor 11 via the branch point D2, the eighth on-off valve 48, and the branch point D1.
 (e1)次に、第8開閉弁48を閉じ、第1膨張弁15を開きつつ開度制御し、切換弁12aを、第1圧縮機11の吐出側を切換弁12bの第1ポートに接続し、第1圧縮機11の吸入側を分岐点E2に接続する状態に切り換え、切換弁12bを、切換弁12aの第4ポートをカスケード熱交換器17の第1カスケード流路17aのガス冷媒側に接続し、第1圧縮機11の吸入側を利用熱交換器13の第1利用流路13aのガス冷媒側に接続する状態に切り換える。また、第2膨張弁16を全閉状態に維持させつつ、第5開閉弁45を開けて、切換弁22aを、第2圧縮機21の吐出側を切換弁22bの第1ポートに接続し、第2圧縮機21の吸入側を分岐点D2に接続する状態に切り換え、切換弁22bを、切換弁22aの第4ポートを室外熱交換器18のガス冷媒側に接続し、第2圧縮機21の吸入側をカスケード熱交換器17の第2カスケード流路17bのガス冷媒側に接続する状態に切り換える。この状態で第1圧縮機11および第2圧縮機21を運転する。これにより、冷媒容器19に貯留されていた第2冷媒を、分岐点K2、第5開閉弁45、分岐点H2、分岐点Gを介して、カスケード熱交換器17の第2カスケード流路17bに引き込む。この際、カスケード熱交換器17の第2カスケード流路17bを流れる第2冷媒は、カスケード熱交換器17の第1カスケード流路17aを流れる第1冷媒と熱交換を行うことで加熱される。その後、加熱された第2冷媒は、切換弁22bを介して第2圧縮機21に送られる。第2冷媒は、さらに、第2圧縮機21により吐出され、切換弁22aと切換弁22bを通過した後、室外熱交換器18に溜められる。 (e1) Next, the eighth on-off valve 48 is closed, the opening degree of the first expansion valve 15 is controlled while being opened, and the switching valve 12a is connected to the first port of the switching valve 12b on the discharge side of the first compressor 11. Then, the suction side of the first compressor 11 is switched to the branch point E2, and the switching valve 12b is connected to the fourth port of the switching valve 12a on the gas refrigerant side of the first cascade flow path 17a of the cascade heat exchanger 17. , and the suction side of the first compressor 11 is switched to the state of connecting to the gas refrigerant side of the first utilization flow path 13 a of the utilization heat exchanger 13 . Further, while maintaining the second expansion valve 16 in a fully closed state, the fifth on-off valve 45 is opened to connect the switching valve 22a to the first port of the switching valve 22b on the discharge side of the second compressor 21, The suction side of the second compressor 21 is switched to the state where it is connected to the branch point D2, the switching valve 22b is connected to the fourth port of the switching valve 22a, and the second compressor 21 is connected to the gas refrigerant side of the outdoor heat exchanger 18. is connected to the gas refrigerant side of the second cascade flow path 17 b of the cascade heat exchanger 17 . In this state, the first compressor 11 and the second compressor 21 are operated. As a result, the second refrigerant stored in the refrigerant container 19 is transferred to the second cascade flow path 17b of the cascade heat exchanger 17 via the branch point K2, the fifth on-off valve 45, the branch point H2, and the branch point G. Draw in. At this time, the second refrigerant flowing through the second cascade flow path 17b of the cascade heat exchanger 17 is heated by exchanging heat with the first refrigerant flowing through the first cascade flow path 17a of the cascade heat exchanger 17 . After that, the heated second refrigerant is sent to the second compressor 21 via the switching valve 22b. The second refrigerant is further discharged by the second compressor 21 and stored in the outdoor heat exchanger 18 after passing through the switching valves 22a and 22b.
 (f1)最後に、第2切換機構22の接続状態を維持させたまま、第2膨張弁16を全閉状態に維持しつつ、第5開閉弁45を閉じ、第9開閉弁49を開ける。なお、切換弁12bは、切換弁12aの第4ポートを利用熱交換器13の第1利用流路13aのガス冷媒側に接続し、第1圧縮機11の吸入側をカスケード熱交換器17の第1カスケード流路17aのガス冷媒側に接続する状態に切り換える。この状態で、第2圧縮機21を運転させ、第1圧縮機11は運転または停止させる。これにより、冷媒容器19の上方に残るガス状態の第2冷媒を、分岐点K1、第9開閉弁49、分岐点D2、切換弁22aを介して、第2圧縮機21に吸入させることができる。この運転により冷媒容器19を空にした後、第9開閉弁49を閉じる。 (f1) Finally, while maintaining the connected state of the second switching mechanism 22, the fifth on-off valve 45 is closed and the ninth on-off valve 49 is opened while maintaining the second expansion valve 16 in the fully closed state. The switching valve 12b connects the fourth port of the switching valve 12a to the gas refrigerant side of the first utilization flow path 13a of the utilization heat exchanger 13, and connects the suction side of the first compressor 11 to the cascade heat exchanger 17. It switches to a state of being connected to the gas refrigerant side of the first cascade flow path 17a. In this state, the second compressor 21 is operated, and the first compressor 11 is operated or stopped. As a result, the gaseous second refrigerant remaining above the refrigerant container 19 can be sucked into the second compressor 21 via the branch point K1, the ninth on-off valve 49, the branch point D2, and the switching valve 22a. . After the refrigerant container 19 is emptied by this operation, the ninth on-off valve 49 is closed.
 以上により、冷房暖房移行運転を終える。 With the above, the cooling/heating shift operation ends.
 (2-3)暖房運転
 暖房運転時は、図8に示すように、第2冷媒を熱源側冷凍サイクルで用い、第1冷媒を利用側冷凍サイクルで用いた二元冷凍サイクルを行う。なお、図8では、一重の矢印は第1冷媒が流れる流路を示しており、二重の矢印は第2冷媒が流れる流路を示している。この二元冷凍サイクルでは、利用熱交換器13を第1冷媒の凝縮器として機能させ、カスケード熱交換器17を第1冷媒の蒸発器として機能させ、カスケード熱交換器17を第2冷媒の放熱器として機能させ、室外熱交換器18を第2冷媒の蒸発器として機能させる。
(2-3) Heating Operation During heating operation, as shown in FIG. 8, a dual refrigerating cycle is performed in which the second refrigerant is used in the heat source side refrigerating cycle and the first refrigerant is used in the user side refrigerating cycle. In FIG. 8, the single arrow indicates the channel through which the first coolant flows, and the double arrow indicates the channel through which the second coolant flows. In this binary refrigerating cycle, the utilization heat exchanger 13 functions as a condenser for the first refrigerant, the cascade heat exchanger 17 functions as an evaporator for the first refrigerant, and the cascade heat exchanger 17 functions to dissipate the heat of the second refrigerant. and the outdoor heat exchanger 18 functions as an evaporator for the second refrigerant.
 具体的には、この二元冷凍サイクルでは、第3開閉弁43と第4開閉弁44と第5開閉弁45と第6開閉弁46と第7開閉弁47と第8開閉弁48と第9開閉弁49の全てを閉状態に制御することで、第1冷媒と第2冷媒の混ざり合いを防いでいる。そして、第1切換機構12の切換弁12aの接続状態を図8に実線で示す状態とし、第1切換機構12の切換弁12bの接続状態を図8に破線で示す状態とし、第2切換機構22の切換弁22aの接続状態を図8に実線で示す状態とし、第2切換機構22の切換弁22bの接続状態を図8に破線で示す接続状態に切り換え、ポンプ92、第1圧縮機11、第2圧縮機21、室外ファン9を駆動させる。さらに、第1膨張弁15の弁開度を、第1圧縮機11の吸入する第1冷媒の過熱度が所定条件を満たすように制御し、第2膨張弁16の弁開度を第2圧縮機21の吸入する第2冷媒の過熱度が所定条件を満たすように制御する。 Specifically, in this binary refrigeration cycle, the third on-off valve 43, the fourth on-off valve 44, the fifth on-off valve 45, the sixth on-off valve 46, the seventh on-off valve 47, the eighth on-off valve 48, the ninth By controlling all the on-off valves 49 to be in a closed state, mixing of the first refrigerant and the second refrigerant is prevented. The connection state of the switching valve 12a of the first switching mechanism 12 is set to the state indicated by the solid line in FIG. 8, the connection state of the switching valve 12b of the first switching mechanism 12 is set to the state indicated by the broken line in FIG. 8, the connection state of the switching valve 22a of the second switching mechanism 22 is switched to the connection state shown by the broken line in FIG. , the second compressor 21 and the outdoor fan 9 are driven. Furthermore, the valve opening degree of the first expansion valve 15 is controlled so that the degree of superheat of the first refrigerant sucked by the first compressor 11 satisfies a predetermined condition, and the valve opening degree of the second expansion valve 16 is controlled for the second compression. Control is performed so that the degree of superheat of the second refrigerant sucked by the machine 21 satisfies a predetermined condition.
 これにより、第2圧縮機21から吐出された第2冷媒は、カスケード熱交換器17に送られ、第2カスケード流路17bを流れる際に、第1カスケード流路17aを流れる第1冷媒と熱交換することで、放熱する。カスケード熱交換器17で放熱した第2冷媒は、第2膨張弁16において減圧された後、室外熱交換器18において室外ファン9により供給される屋外空気と熱交換を行うこと蒸発し、第2圧縮機21に吸入される。第1圧縮機11から吐出された第1冷媒は、第1切換機構12を介して利用熱交換器13の第1利用流路13aに送られる。利用熱交換器13の第1利用流路13aを流れる第1冷媒は、熱負荷回路90が有する利用熱交換器13の熱負荷流路13bを流れる水と熱交換を行うことで、凝縮する。この熱交換により暖められた水は、熱負荷回路90における熱負荷熱交換器91まで送られることで暖房負荷を処理する。利用熱交換器13の第1利用流路13aで凝縮した第1冷媒は、分岐点Aを通過した後、第1膨張弁15において減圧される。第1膨張弁15で減圧された第1冷媒は、カスケード熱交換器17の第1カスケード流路17aを通過する際に、第2カスケード流路17bを流れる第2冷媒と熱交換することで蒸発する。カスケード熱交換器17の第1カスケード流路17aで蒸発した第1冷媒は、第1切換機構12を介して第1圧縮機11に吸入される。 As a result, the second refrigerant discharged from the second compressor 21 is sent to the cascade heat exchanger 17 and, when flowing through the second cascade flow path 17b, heats the first refrigerant flowing through the first cascade flow path 17a. Dissipate heat by exchanging. The second refrigerant that has dissipated heat in the cascade heat exchanger 17 is decompressed in the second expansion valve 16, and then exchanges heat with the outdoor air supplied by the outdoor fan 9 in the outdoor heat exchanger 18 to evaporate. It is sucked into the compressor 21 . The first refrigerant discharged from the first compressor 11 is sent through the first switching mechanism 12 to the first utilization flow path 13 a of the utilization heat exchanger 13 . The first refrigerant flowing through the first use flow path 13a of the heat utilization exchanger 13 is condensed by exchanging heat with water flowing through the heat load flow path 13b of the heat utilization heat exchanger 13 of the heat load circuit 90 . The water warmed by this heat exchange is sent to the heat load heat exchanger 91 in the heat load circuit 90 to treat the heating load. The first refrigerant condensed in the first utilization flow path 13 a of the utilization heat exchanger 13 is decompressed in the first expansion valve 15 after passing through the branch point A. The first refrigerant depressurized by the first expansion valve 15 evaporates by exchanging heat with the second refrigerant flowing through the second cascade flow path 17b when passing through the first cascade flow path 17a of the cascade heat exchanger 17. do. The first refrigerant evaporated in the first cascade flow path 17 a of the cascade heat exchanger 17 is sucked into the first compressor 11 via the first switching mechanism 12 .
 (2-4)暖房冷房移行運転
 冷凍サイクル装置1aは、暖房運転を行うサイクル状態から、冷房運転を行うサイクル状態に移行させるために、以下の(a2)~(f2)の順からなる暖房冷房移行運転が行われる。
(2-4) Heating/cooling shift operation The refrigerating cycle device 1a performs heating/cooling in the order of (a2) to (f2) below in order to shift from the cycle state in which the heating operation is performed to the cycle state in which the cooling operation is performed. A transition operation is performed.
 (a2)まず、暖房運転が行われていた状態から、第2膨張弁16を全閉状態に制御し、第5開閉弁45を開状態に制御し、第2圧縮機21を運転させる。ここで、第1冷媒を用いた暖房運転時の利用側の冷凍サイクルが維持されるように第1圧縮機11等を運転させる。これにより、冷媒容器19の下方から冷媒容器19内に第2冷媒を回収する運転を行う。この際、第9開閉弁49を所定時間間隔で開状態と閉状態とを切り換える制御を行うことで、冷媒容器19の上端から第9開閉弁49に至るまでの流路のガス状態の第2冷媒を第2圧縮機21に吸入させる。これにより、冷媒容器19への第2冷媒の回収を効率的に行うことができる。この運転は、冷媒容器19に所定の十分な量の第2冷媒が回収された状態になるまで、例えば、所定時間継続される。 (a2) First, the second expansion valve 16 is controlled to be fully closed, the fifth on-off valve 45 is controlled to be open, and the second compressor 21 is operated from the state in which the heating operation was performed. Here, the first compressor 11 and the like are operated so as to maintain the refrigeration cycle on the user side during the heating operation using the first refrigerant. As a result, the operation of collecting the second refrigerant into the refrigerant container 19 from below the refrigerant container 19 is performed. At this time, by performing control to switch the ninth on-off valve 49 between the open state and the closed state at predetermined time intervals, the gas state in the flow path from the upper end of the refrigerant container 19 to the ninth on-off valve 49 is changed to the second state. Refrigerant is drawn into the second compressor 21 . Thereby, the second refrigerant can be efficiently collected into the refrigerant container 19 . This operation is continued for a predetermined time, for example, until a predetermined sufficient amount of the second refrigerant is collected in the refrigerant container 19 .
 (b2)次に、冷媒容器19への第2冷媒の回収が所定量以上に進んだ状態で、第5開閉弁45を閉じる。その後、切換弁12aを、第1圧縮機11の吐出側を切換弁12bの第1ポートに接続し、第1圧縮機11の吸入側を分岐点E2に接続する状態に切り換え、切換弁12bを、切換弁12aの第4ポートをカスケード熱交換器17の第1カスケード流路17aのガス冷媒側に接続し、第1圧縮機11の吸入側を利用熱交換器13の第1利用流路13aのガス冷媒側に接続する状態に切り換える。さらに、切換弁22aを、第2圧縮機21の吐出側を分岐点D2に接続し、第2圧縮機21の吸入側を切換弁22bの第1ポートに接続する状態に切り換え、切換弁22bを、切換弁22aの第4ポートを室外熱交換器18のガス冷媒側に接続し、第2圧縮機21の吸入側をカスケード熱交換器17の第2カスケード流路17bのガス冷媒側に接続する状態に切り換える。この状態で、第9開閉弁49を開けて、第1圧縮機11と第2圧縮機21を運転させることで、カスケード熱交換器17の第2カスケード流路17bに残る第2冷媒を、第1冷媒の熱によって加熱して追い出し、第2圧縮機21、分岐点D2、第9開閉弁49、分岐点K1を介して、冷媒容器19に第2冷媒を集める。そして、この運転を所定時間継続させた後、第9開閉弁49を閉状態に制御し、第2冷媒の冷媒容器19への回収を終える。 (b2) Next, the fifth on-off valve 45 is closed after the collection of the second refrigerant into the refrigerant container 19 has progressed to a predetermined amount or more. After that, the switching valve 12a is switched to a state in which the discharge side of the first compressor 11 is connected to the first port of the switching valve 12b and the suction side of the first compressor 11 is connected to the branch point E2. , the fourth port of the switching valve 12 a is connected to the gas refrigerant side of the first cascade passage 17 a of the cascade heat exchanger 17 , and the suction side of the first compressor 11 is connected to the first utilization passage 13 a of the heat exchanger 13 . switch to the state of connecting to the gas refrigerant side of the Further, the switching valve 22a is switched to a state in which the discharge side of the second compressor 21 is connected to the branch point D2 and the suction side of the second compressor 21 is connected to the first port of the switching valve 22b. , the fourth port of the switching valve 22a is connected to the gas refrigerant side of the outdoor heat exchanger 18, and the suction side of the second compressor 21 is connected to the gas refrigerant side of the second cascade flow path 17b of the cascade heat exchanger 17. switch to state. In this state, by opening the ninth on-off valve 49 and operating the first compressor 11 and the second compressor 21, the second refrigerant remaining in the second cascade flow path 17b of the cascade heat exchanger 17 is The second refrigerant is heated by the heat of the first refrigerant and driven out, and the second refrigerant is collected in the refrigerant container 19 via the second compressor 21, the branch point D2, the ninth on-off valve 49, and the branch point K1. After continuing this operation for a predetermined time, the ninth on-off valve 49 is controlled to be closed, and the collection of the second refrigerant into the refrigerant container 19 is finished.
 (c2)次に、切換弁22aを、第2圧縮機21の吐出側を切換弁22bの第1ポートに接続し、第2圧縮機21の吸入側を分岐点D2に接続する状態に切り換え、切換弁22bを、切換弁22aの第4ポートを室外熱交換器18のガス冷媒側に接続し、第2圧縮機21の吸入側をカスケード熱交換器17の第2カスケード流路17bのガス冷媒側に接続する状態とする。この状態で、第1膨張弁15を全閉状態に制御し、第4開閉弁44と第5開閉弁45は閉状態に維持しつつ、第3開閉弁43を開き、第1圧縮機11と第2圧縮機21を運転させる。これにより、第1膨張弁15から第1圧縮機11の吸入側までに存在していた第1冷媒が、第1切換機構12、カスケード熱交換器17の第1カスケード流路17a、分岐点F、分岐点H1、第3開閉弁43、分岐点H2、分岐点Gを介して、カスケード熱交換器17の第2カスケード流路17bに送られる。さらに、第1冷媒は、第2切換機構22の切換弁22bを介して第2圧縮機21に吸入される。そして、第2圧縮機21から吐出された第1冷媒は、第2切換機構22の切換弁22aを介して室外熱交換器18に送られる。 (c2) Next, the switching valve 22a is switched to a state in which the discharge side of the second compressor 21 is connected to the first port of the switching valve 22b and the suction side of the second compressor 21 is connected to the branch point D2, The fourth port of the switching valve 22b is connected to the gas refrigerant side of the outdoor heat exchanger 18, and the suction side of the second compressor 21 is connected to the gas refrigerant of the second cascade flow path 17b of the cascade heat exchanger 17. connected to the side. In this state, the first expansion valve 15 is controlled to be fully closed, the fourth on-off valve 44 and the fifth on-off valve 45 are kept closed, the third on-off valve 43 is opened, and the first compressor 11 and The second compressor 21 is operated. As a result, the first refrigerant existing from the first expansion valve 15 to the suction side of the first compressor 11 is transferred to the first switching mechanism 12, the first cascade flow path 17a of the cascade heat exchanger 17, and the branch point F. , the branch point H1, the third on-off valve 43, the branch point H2, and the branch point G to the second cascade flow path 17b of the cascade heat exchanger 17. Further, the first refrigerant is sucked into the second compressor 21 via the switching valve 22b of the second switching mechanism 22. As shown in FIG. Then, the first refrigerant discharged from the second compressor 21 is sent to the outdoor heat exchanger 18 via the switching valve 22 a of the second switching mechanism 22 .
 (d2)次に、第3開閉弁43を閉じ、第7開閉弁47を開けて、切換弁12aを、第1圧縮機11の吐出側を分岐点E2に接続し、第1圧縮機11の吸入側を切換弁12bの第1ポートに接続する状態に切り換え、切換弁12bを、切換弁12aの第4ポートを利用熱交換器13の第1利用流路13aのガス冷媒側に接続し、第1圧縮機11の吸入側をカスケード熱交換器17の第1カスケード流路17aのガス冷媒側に接続する状態に切り換える。この状態で第1圧縮機11と第2圧縮機21を運転させることで、第3開閉弁43から第1圧縮機11の吸入側までに存在する第1冷媒を、第1圧縮機11から吐出させ、分岐点E2、第7開閉弁47、分岐点E1を介して、第2圧縮機21に吸入させる。 (d2) Next, the third on-off valve 43 is closed, the seventh on-off valve 47 is opened, the switching valve 12a is connected to the branch point E2 on the discharge side of the first compressor 11, and the switching to a state in which the suction side is connected to the first port of the switching valve 12b, connecting the fourth port of the switching valve 12a to the gas refrigerant side of the first utilization flow path 13a of the utilization heat exchanger 13, The suction side of the first compressor 11 is switched to the state of being connected to the gas refrigerant side of the first cascade flow path 17 a of the cascade heat exchanger 17 . By operating the first compressor 11 and the second compressor 21 in this state, the first refrigerant existing from the third on-off valve 43 to the suction side of the first compressor 11 is discharged from the first compressor 11. , and is drawn into the second compressor 21 via the branch point E2, the seventh on-off valve 47, and the branch point E1.
 (e2)次に、第7開閉弁47を閉じ、第2膨張弁16を開きつつ開度制御し、切換弁22aを、第2圧縮機21の吐出側を切換弁22bの第1ポートに接続し、第2圧縮機21の吸入側を分岐点D2に接続する状態に切り換え、切換弁22bを、切換弁22aの第4ポートをカスケード熱交換器17の第2カスケード流路17bのガス冷媒側に接続し、第2圧縮機21の吸入側を室外熱交換器18のガス冷媒側に接続する状態に切り換える。また、第1膨張弁15を全閉状態に維持させつつ、第4開閉弁44を開けて、切換弁12aを、第1圧縮機11の吐出側を切換弁12bの第1ポートに接続し、第1圧縮機11の吸入側を分岐点E2に接続する状態に切り換え、切換弁12bを、切換弁12aの第4ポートを利用熱交換器13の第1利用流路13aのガス冷媒側に接続し、第1圧縮機11の吸入側をカスケード熱交換器17の第1カスケード流路17aのガス冷媒側に接続する状態に切り換える。この状態で第1圧縮機11および第2圧縮機21を運転する。これにより、冷媒容器19に貯留されていた第2冷媒を、分岐点K2、第4開閉弁44、分岐点H1、分岐点Fを介して、カスケード熱交換器17の第1カスケード流路17aに引き込む。この際、カスケード熱交換器17の第1カスケード流路17aを流れる第2冷媒は、カスケード熱交換器17の第2カスケード流路17bを流れる第1冷媒と熱交換を行うことで加熱される。その後、加熱された第2冷媒は、切換弁12bを介して第1圧縮機11に送られる。第2冷媒は、さらに、第1圧縮機11により吐出され、切換弁12aと切換弁12bを通過した後、利用熱交換器13に溜められる。 (e2) Next, the seventh on-off valve 47 is closed, the opening degree of the second expansion valve 16 is controlled while being opened, and the switching valve 22a is connected to the first port of the switching valve 22b on the discharge side of the second compressor 21. Then, the suction side of the second compressor 21 is switched to the branch point D2, and the switching valve 22b is connected to the fourth port of the switching valve 22a on the gas refrigerant side of the second cascade flow path 17b of the cascade heat exchanger 17. , and the suction side of the second compressor 21 is switched to the state of connecting to the gas refrigerant side of the outdoor heat exchanger 18 . Further, while maintaining the first expansion valve 15 in a fully closed state, the fourth on-off valve 44 is opened to connect the switching valve 12a to the first port of the switching valve 12b on the discharge side of the first compressor 11, The suction side of the first compressor 11 is switched to the branch point E2, and the switching valve 12b is connected to the gas refrigerant side of the first utilization flow path 13a of the utilization heat exchanger 13 by connecting the fourth port of the switching valve 12a. Then, the state is switched to connect the suction side of the first compressor 11 to the gas refrigerant side of the first cascade flow path 17 a of the cascade heat exchanger 17 . In this state, the first compressor 11 and the second compressor 21 are operated. As a result, the second refrigerant stored in the refrigerant container 19 is transferred to the first cascade flow path 17a of the cascade heat exchanger 17 via the branch point K2, the fourth on-off valve 44, the branch point H1, and the branch point F. Draw in. At this time, the second refrigerant flowing through the first cascade flow path 17a of the cascade heat exchanger 17 is heated by exchanging heat with the first refrigerant flowing through the second cascade flow path 17b of the cascade heat exchanger 17 . After that, the heated second refrigerant is sent to the first compressor 11 via the switching valve 12b. The second refrigerant is further discharged by the first compressor 11 and stored in the utilization heat exchanger 13 after passing through the switching valves 12a and 12b.
 (f2)最後に、第1切換機構12の接続状態を維持させたまま、第1膨張弁15を全閉状態に維持しつつ、第4開閉弁44を閉じ、第6開閉弁46を開ける。この状態で第1圧縮機11を運転させ、第2圧縮機21は運転または停止させる。これにより、冷媒容器19の上方に残るガス状態の第2冷媒を、分岐点K1、分岐点J、第6開閉弁46、分岐点E2、切換弁12aを介して、第1圧縮機11に吸入させることができる。この運転により冷媒容器19を空にした後、第6開閉弁46を閉じる。 (f2) Finally, while maintaining the connected state of the first switching mechanism 12, the fourth on-off valve 44 is closed and the sixth on-off valve 46 is opened while maintaining the first expansion valve 15 in the fully closed state. In this state, the first compressor 11 is operated, and the second compressor 21 is operated or stopped. As a result, the gaseous second refrigerant remaining above the refrigerant container 19 is sucked into the first compressor 11 via the branch point K1, the branch point J, the sixth on-off valve 46, the branch point E2, and the switching valve 12a. can be made After the refrigerant container 19 is emptied by this operation, the sixth on-off valve 46 is closed.
 以上により、暖房冷房移行運転を終える。 With the above, the heating/cooling shift operation ends.
 (2-5)第2実施形態の特徴
 第2実施形態の冷凍サイクル装置1aでは、冷媒回路10において、地球温暖化係数(GWP)が十分に低い第1冷媒と、オゾン層破壊係数(ODP)および地球温暖化係数(GWP)が十分に低い第2冷媒と、が用いられている。このため、地球環境の悪化を抑制することができる。
(2-5) Features of Second Embodiment In the refrigeration cycle device 1a of the second embodiment, in the refrigerant circuit 10, the first refrigerant having a sufficiently low global warming potential (GWP) and the ozone depletion potential (ODP) and a second refrigerant with a sufficiently low global warming potential (GWP). Therefore, deterioration of the global environment can be suppressed.
 また、冷媒回路10において地球温暖化係数(GWP)が十分に低い第1冷媒を用いた場合であっても、暖房運転として、高圧冷媒である第2冷媒を熱源側冷凍サイクルで用い、低圧冷媒である第1冷媒を利用側冷凍サイクルで用いた二元冷凍サイクルを行う。これにより、低圧冷媒である第1冷媒を用いた単元冷凍サイクルを行う場合と比較して、暖房運転時の能力を確保し易い。 Further, even when the first refrigerant having a sufficiently low global warming potential (GWP) is used in the refrigerant circuit 10, the second refrigerant, which is a high-pressure refrigerant, is used in the heat source side refrigeration cycle for heating operation, and the low-pressure refrigerant A binary refrigerating cycle is performed using the first refrigerant in the user-side refrigerating cycle. As a result, it is easier to secure the capacity during the heating operation compared to the case of performing the unitary refrigeration cycle using the first refrigerant, which is the low-pressure refrigerant.
 さらに、冷媒回路10では第2冷媒として二酸化炭素が用いられている。しかし、冷房運転時には、第2冷媒を用いた単元冷凍サイクルは行わず、第2冷媒を熱源側冷凍サイクルで用いて第1冷媒を利用側冷凍サイクルで用いた二元冷凍サイクルも行わず、低圧冷媒である第1冷媒を熱源側冷凍サイクルで用い、高圧冷媒である第2冷媒を利用側冷凍サイクルで用いた二元冷凍サイクルを行う。これにより、高圧冷媒である二酸化炭素冷媒を用いて単元冷凍サイクルを行う場合や高圧冷媒である二酸化炭素を熱源側サイクルで用いる二元冷凍サイクルを行う場合のように二酸化炭素冷媒の圧力が臨界圧力を超えてCOPが低くなってしまうことを避けて、冷房運転を行うことができる。また、高圧冷媒である二酸化炭素が用いられる冷媒回路10の要素部品として求められる耐圧強度の基準を低めのものとすることが可能になる。 Furthermore, carbon dioxide is used as the second refrigerant in the refrigerant circuit 10 . However, during cooling operation, the unitary refrigerating cycle using the second refrigerant is not performed, nor is the dual refrigerating cycle using the second refrigerant in the heat source side refrigerating cycle and the first refrigerant in the user side refrigerating cycle. A binary refrigerating cycle is performed in which the first refrigerant, which is a refrigerant, is used in the heat source side refrigerating cycle, and the second refrigerant, which is a high pressure refrigerant, is used in the user side refrigerating cycle. As a result, the pressure of the carbon dioxide refrigerant becomes the critical pressure as in the case of performing a single refrigeration cycle using carbon dioxide refrigerant, which is a high-pressure refrigerant, or when performing a dual refrigeration cycle using carbon dioxide, which is a high-pressure refrigerant, in the heat source side cycle. The cooling operation can be performed while avoiding the COP from exceeding and becoming low. In addition, it is possible to lower the standard of pressure resistance strength required for element parts of the refrigerant circuit 10 that uses carbon dioxide, which is a high-pressure refrigerant.
 (3)第3実施形態
 図9に、第3実施形態に係る冷凍サイクル装置1bの概略構成図を示す。図10に、第2実施形態に係る冷凍サイクル装置1bの機能ブロック構成図を示す。
(3) 3rd Embodiment In FIG. 9, the schematic block diagram of the refrigerating-cycle apparatus 1b which concerns on 3rd Embodiment is shown. FIG. 10 shows a functional block configuration diagram of a refrigeration cycle device 1b according to the second embodiment.
 冷凍サイクル装置1bは、蒸気圧縮式の冷凍サイクル運転を行うことによって、熱負荷を処理するために使用される装置である。冷凍サイクル装置1bは、熱負荷回路90と、冷媒回路10と、室外ファン9と、コントローラ7と、を有している。 The refrigeration cycle device 1b is a device used to process a heat load by performing vapor compression refrigeration cycle operation. The refrigerating cycle device 1 b has a heat load circuit 90 , a refrigerant circuit 10 , an outdoor fan 9 and a controller 7 .
 冷凍サイクル装置1bが処理する熱負荷や熱負荷回路90については、第1実施形態と同様である。 The heat load processed by the refrigeration cycle device 1b and the heat load circuit 90 are the same as in the first embodiment.
 なお、本実施形態では、利用熱交換器13は、後述のように、冷媒回路10を流れる第1冷媒または第2冷媒が通過する第1利用流路13aを有している。利用熱交換器13の熱負荷流路13bを流れる水は、第1利用流路13aを流れる第1冷媒または第2冷媒と熱交換することにより、冷房運転時には冷却され、暖房運転時には暖められる。 In this embodiment, the heat utilization exchanger 13 has a first utilization flow path 13a through which the first refrigerant or the second refrigerant flowing through the refrigerant circuit 10 passes, as will be described later. The water flowing through the heat load channel 13b of the heat utilization exchanger 13 is cooled during the cooling operation and warmed during the heating operation by exchanging heat with the first refrigerant or the second refrigerant flowing through the first utilization channel 13a.
 冷媒回路10は、第1圧縮機11と、第2圧縮機21と、第1切換機構12と、第2切換機構22と、熱負荷回路90と共有される利用熱交換器13と、第1膨張弁15と、第2膨張弁16と、第3膨張弁33と、第4膨張弁34と、第5膨張弁35と、第6膨張弁36と、カスケード熱交換器17と、室外熱交換器18と、第1レシーバ19aと、第2レシーバ19bと、第10開閉弁50と、第11開閉弁51と、第12開閉弁52と、第13開閉弁53と、を有している。 The refrigerant circuit 10 includes a first compressor 11, a second compressor 21, a first switching mechanism 12, a second switching mechanism 22, a utilization heat exchanger 13 shared with the heat load circuit 90, and a first Expansion valve 15, second expansion valve 16, third expansion valve 33, fourth expansion valve 34, fifth expansion valve 35, sixth expansion valve 36, cascade heat exchanger 17, outdoor heat exchange 18, a first receiver 19a, a second receiver 19b, a tenth on-off valve 50, an eleventh on-off valve 51, a twelfth on-off valve 52, and a thirteenth on-off valve 53.
 冷媒回路10には、冷媒として、低圧冷媒である第1冷媒と、高圧冷媒である第2冷媒とが、実質的に分離された状態で充填されている。第1冷媒は、30℃で1MPa以下の冷媒であり、例えば、R1234yfとR1234zeとの少なくともいずれかを含む冷媒であり、R1234yfのみから構成されていてもよいし、R1234zeのみから構成されていてもよい。第2冷媒は、30℃で1.5MPa以上の冷媒であり、例えば、二酸化炭素を含んでいてもよいし、二酸化炭素のみから構成されていてもよい。 The refrigerant circuit 10 is filled with a first refrigerant, which is a low-pressure refrigerant, and a second refrigerant, which is a high-pressure refrigerant, in a substantially separated state. The first refrigerant is a refrigerant of 1 MPa or less at 30 ° C., for example, a refrigerant containing at least one of R1234yf and R1234ze. good. The second refrigerant is a refrigerant having a pressure of 1.5 MPa or more at 30° C., and may contain, for example, carbon dioxide, or may be composed of only carbon dioxide.
 第1圧縮機11自体の具体的構成は第1実施形態のものと同様である。第1圧縮機11の吐出側は、第1切換機構12が有する第1ポートに接続されている。第1圧縮機11の吸入側は、第1切換機構12が有する第2ポートに接続されている。 The specific configuration of the first compressor 11 itself is the same as that of the first embodiment. A discharge side of the first compressor 11 is connected to a first port of the first switching mechanism 12 . A suction side of the first compressor 11 is connected to a second port of the first switching mechanism 12 .
 第1切換機構12は、本実施形態では、第1ポート、第2ポート、第3ポート、第4ポートからなる4つのポートを有する四路切換弁で構成されている。第1切換機構12の第1ポートには、分岐点Pが接続されている。分岐点Pは、第1圧縮機11の吐出側から延びる流路と、カスケード熱交換器17の第1カスケード流路17aのガス冷媒側から延びる流路と、第1切換機構12の第1ポートから延びる流路と、が接続されている。第1切換機構12の第2ポートには、第1圧縮機11の吸入側が接続されている。第1切換機構12の第3ポートには、第11開閉弁51から延びる流路が接続されている。第1切換機構12の第4ポートには、第10開閉弁50から延びる流路が接続されている。 In this embodiment, the first switching mechanism 12 is composed of a four-way switching valve having four ports consisting of a first port, a second port, a third port, and a fourth port. A branch point P is connected to the first port of the first switching mechanism 12 . The branch point P is a flow path extending from the discharge side of the first compressor 11 , a flow path extending from the gas refrigerant side of the first cascade flow path 17 a of the cascade heat exchanger 17 , and the first port of the first switching mechanism 12 . and are connected to each other. A suction side of the first compressor 11 is connected to a second port of the first switching mechanism 12 . A flow path extending from the eleventh on-off valve 51 is connected to the third port of the first switching mechanism 12 . A channel extending from a tenth on-off valve 50 is connected to the fourth port of the first switching mechanism 12 .
 第1切換機構12は、分岐点Pを第11開閉弁51に接続し、第1圧縮機11の吸入側を第10開閉弁50に接続する状態と、分岐点Pを第10開閉弁50に接続し、第1圧縮機11の吸入側を第11開閉弁51に接続する状態と、を切り換える。 The first switching mechanism 12 connects the branch point P to the 11th on-off valve 51 and connects the suction side of the first compressor 11 to the tenth on-off valve 50 , and connects the branch point P to the tenth on-off valve 50 . connected, and the state in which the suction side of the first compressor 11 is connected to the eleventh on-off valve 51 is switched.
 第10開閉弁50は、開状態と閉状態とに切り換え制御可能な電磁弁である。第10開閉弁50は、第1切換機構12の第4ポートと分岐点Mとを繋ぐ流路の途中に設けられている。 The tenth on-off valve 50 is an electromagnetic valve that can be switched between an open state and a closed state. The tenth on-off valve 50 is provided in the middle of the flow path connecting the fourth port of the first switching mechanism 12 and the branch point M. As shown in FIG.
 分岐点Mには、第10開閉弁50から延びる流路と、第13開閉弁53から延びる流路と、利用熱交換器13の第1利用流路13aのガス冷媒側から延びる流路と、が接続されている。 At the branch point M, a flow path extending from the tenth on-off valve 50, a flow path extending from the thirteenth on-off valve 53, a flow path extending from the gas refrigerant side of the first utilization flow path 13a of the heat utilization heat exchanger 13, is connected.
 利用熱交換器13のうち冷媒回路10を流れる冷媒が通過する第1利用流路13aは、ガス冷媒側が分岐点Mから延びる流路に接続されている。また、第1利用流路13aの液冷媒側は、分岐点Aから延びる流路に接続されている。 The first use channel 13a through which the refrigerant flowing through the refrigerant circuit 10 passes in the use heat exchanger 13 is connected to the channel extending from the branch point M on the gas refrigerant side. Further, the liquid refrigerant side of the first use channel 13a is connected to a channel extending from the branch point A. As shown in FIG.
 分岐点Aでは、第1利用流路13aの液冷媒側から延びる流路と、第1膨張弁15のうち分岐点F側とは反対側に延びる流路と、第6膨張弁36から延びる流路と、が接続されている。 At the branch point A, a flow path extending from the liquid refrigerant side of the first use flow path 13a, a flow path extending from the first expansion valve 15 on the side opposite to the branch point F side, and a flow extending from the sixth expansion valve 36 is connected to the road.
 第1膨張弁15は、弁開度を調節可能な電子膨張弁によって構成されている。第1膨張弁15は、冷媒回路10において、分岐点Aと分岐点Fを繋ぐ流路の途中に設けられている。 The first expansion valve 15 is composed of an electronic expansion valve whose opening degree can be adjusted. The first expansion valve 15 is provided in the middle of the flow path connecting the branch point A and the branch point F in the refrigerant circuit 10 .
 分岐点Fは、第1膨張弁15から延びる流路と、第5膨張弁35から延びる流路と、第1レシーバ19aの上端から延びる流路と、を接続している。 The branch point F connects the flow path extending from the first expansion valve 15, the flow path extending from the fifth expansion valve 35, and the flow path extending from the upper end of the first receiver 19a.
 第1レシーバ19aは、内部に冷媒を貯留する冷媒容器である。第1レシーバ19aは、分岐点Fと第3膨張弁33とを繋ぐ流路の途中に設けられている。なお、本実施形態では、第1レシーバ19aは、第2冷媒を貯留する。 The first receiver 19a is a refrigerant container that stores refrigerant inside. The first receiver 19 a is provided in the middle of the flow path connecting the branch point F and the third expansion valve 33 . In addition, in this embodiment, the 1st receiver 19a stores a 2nd refrigerant|coolant.
 第3膨張弁33は、弁開度を調節可能な電子膨張弁によって構成されている。第3膨張弁33は、第1レシーバ19aの下端とカスケード熱交換器17の第1カスケード流路17aの液冷媒側とを繋ぐ流路の途中に設けられている。 The third expansion valve 33 is composed of an electronic expansion valve whose opening degree can be adjusted. The third expansion valve 33 is provided in the middle of the flow path that connects the lower end of the first receiver 19 a and the liquid refrigerant side of the first cascade flow path 17 a of the cascade heat exchanger 17 .
 カスケード熱交換器17は、第1冷媒と第2冷媒とのいずれか一方が通過する第1カスケード流路17aと、第1冷媒と第2冷媒とのいずれか他方が通過する第2カスケード流路17bと、を有しており、第1冷媒と第2冷媒との間で熱交換を行わせるカスケード熱交換器である。カスケード熱交換器17において、第1カスケード流路17aと第2カスケード流路17bとは互いに独立しており、カスケード熱交換器17内において第1冷媒と第2冷媒が混ざり合うことはない。第1カスケード流路17aのガス冷媒側は、分岐点Pから延びる流路に接続されている。第1カスケード流路17aの液冷媒側は、第3膨張弁33から延びる流路に接続されている。第2カスケード流路17bのガス冷媒側は、第2切換機構22の第2ポートから延びる流路および第2圧縮機21の吸入側から延びる流路に接続されている。第2カスケード流路17bの液冷媒側は、第4膨張弁34から延びる流路に接続されている。 The cascade heat exchanger 17 includes a first cascade flow path 17a through which one of the first refrigerant and the second refrigerant passes, and a second cascade flow path through which the other of the first refrigerant and the second refrigerant passes. 17b and a cascade heat exchanger for heat exchange between the first refrigerant and the second refrigerant. In the cascade heat exchanger 17 , the first cascade flow path 17 a and the second cascade flow path 17 b are independent of each other, and the first refrigerant and the second refrigerant do not mix inside the cascade heat exchanger 17 . The gas refrigerant side of the first cascade flow path 17a is connected to a flow path extending from the branch point P. As shown in FIG. The liquid refrigerant side of the first cascade flow path 17 a is connected to a flow path extending from the third expansion valve 33 . The gas refrigerant side of the second cascade flow path 17 b is connected to the flow path extending from the second port of the second switching mechanism 22 and the flow path extending from the suction side of the second compressor 21 . The liquid refrigerant side of the second cascade flow path 17 b is connected to a flow path extending from the fourth expansion valve 34 .
 第2圧縮機21自体の具体的構成は第1実施形態のものと同様である。第2圧縮機21の吐出側は、第2切換機構22の第1ポートに接続されている。第2圧縮機21の吸入側は、第2切換機構22の第2ポートおよびカスケード熱交換器17の第2カスケード流路17bのガス冷媒側に接続されている。 The specific configuration of the second compressor 21 itself is the same as that of the first embodiment. A discharge side of the second compressor 21 is connected to a first port of the second switching mechanism 22 . The suction side of the second compressor 21 is connected to the second port of the second switching mechanism 22 and the gas refrigerant side of the second cascade flow path 17 b of the cascade heat exchanger 17 .
 第2切換機構22は、本実施形態では、第1ポート、第2ポート、第3ポート、第4ポートからなる4つのポートを有する四路切換弁で構成されている。第2切換機構22の第1ポートには、第2圧縮機21の吐出側が接続されている。第2切換機構22の第2ポートには、第2圧縮機21の吸入側およびカスケード熱交換器17の第2カスケード流路17bのガス冷媒側が接続されている。第2切換機構22の第3ポートには、第13開閉弁53から延びる流路が接続されている。第2切換機構22の第4ポートには、第12開閉弁52から延びる流路が接続されている。 In this embodiment, the second switching mechanism 22 is composed of a four-way switching valve having four ports consisting of a first port, a second port, a third port, and a fourth port. A first port of the second switching mechanism 22 is connected to the discharge side of the second compressor 21 . A second port of the second switching mechanism 22 is connected to the suction side of the second compressor 21 and the gas refrigerant side of the second cascade flow path 17 b of the cascade heat exchanger 17 . A flow path extending from the thirteenth on-off valve 53 is connected to the third port of the second switching mechanism 22 . A channel extending from the twelfth on-off valve 52 is connected to the fourth port of the second switching mechanism 22 .
 第2切換機構22は、第2圧縮機21の吐出側を第12開閉弁52に接続し、第2圧縮機21の吸入側およびカスケード熱交換器17の第2カスケード流路17bのガス冷媒側を第13開閉弁53に接続する状態と、第2圧縮機21の吐出側を第13開閉弁53に接続し、第2圧縮機21の吸入側およびカスケード熱交換器17の第2カスケード流路17bのガス冷媒側を第12開閉弁52に接続する状態と、を切り換える。 The second switching mechanism 22 connects the discharge side of the second compressor 21 to the twelfth on-off valve 52, the suction side of the second compressor 21 and the gas refrigerant side of the second cascade flow path 17b of the cascade heat exchanger 17. is connected to the thirteenth on-off valve 53, the discharge side of the second compressor 21 is connected to the thirteenth on-off valve 53, and the suction side of the second compressor 21 and the second cascade flow path of the cascade heat exchanger 17 are connected. 17 b is connected to the twelfth on-off valve 52 .
 カスケード熱交換器17の第2カスケード流路17bの液冷媒側は、第4膨張弁34から延びる流路が接続されている。 A flow path extending from the fourth expansion valve 34 is connected to the liquid refrigerant side of the second cascade flow path 17 b of the cascade heat exchanger 17 .
 第4膨張弁34は、弁開度を調節可能な電子膨張弁によって構成されている。第4膨張弁34は、カスケード熱交換器17の第2カスケード流路17bの液冷媒側と、第2レシーバ19bの上端と、の間に設けられている。 The fourth expansion valve 34 is composed of an electronic expansion valve whose opening degree can be adjusted. The fourth expansion valve 34 is provided between the liquid refrigerant side of the second cascade flow path 17b of the cascade heat exchanger 17 and the upper end of the second receiver 19b.
 第2レシーバ19bは、内部に冷媒を貯留する冷媒容器である。第2レシーバ19bは、分岐点Gと第4膨張弁34とを繋ぐ流路の途中に設けられている。なお、本実施形態では、第2レシーバ19bは、第1冷媒を貯留する。 The second receiver 19b is a refrigerant container that stores refrigerant inside. The second receiver 19 b is provided in the middle of the flow path connecting the branch point G and the fourth expansion valve 34 . In addition, in this embodiment, the 2nd receiver 19b stores a 1st refrigerant|coolant.
 分岐点Gは、第2レシーバ19bの下端から延びる流路と、第6膨張弁36から延びる流路と、第2膨張弁16から延びる流路と、が接続されている。 At the branch point G, the flow path extending from the lower end of the second receiver 19b, the flow path extending from the sixth expansion valve 36, and the flow path extending from the second expansion valve 16 are connected.
 第2膨張弁16は、弁開度を調節可能な電子膨張弁によって構成されている。第2膨張弁16は、分岐点Gと、分岐点Bと、の間に設けられている。 The second expansion valve 16 is composed of an electronic expansion valve whose opening degree can be adjusted. The second expansion valve 16 is provided between the branch point G and the branch point B.
 分岐点Bは、第2膨張弁16から延びる流路と、室外熱交換器18の液冷媒側から延びる流路と、第5膨張弁35から延びる流路と、が接続されている。 At the branch point B, the flow path extending from the second expansion valve 16, the flow path extending from the liquid refrigerant side of the outdoor heat exchanger 18, and the flow path extending from the fifth expansion valve 35 are connected.
 室外熱交換器18は、複数の伝熱管と、複数の伝熱管に接合された複数のフィンと、を有して構成される。本実施形態では、室外熱交換器18は、屋外に配置されている。室外熱交換器18を流れる冷媒は、室外熱交換器18に送られる空気と熱交換を行う。室外熱交換器18は、分岐点Bと分岐点Nとを繋ぐ流路の途中に設けられている。 The outdoor heat exchanger 18 is configured with multiple heat transfer tubes and multiple fins joined to the multiple heat transfer tubes. In this embodiment, the outdoor heat exchanger 18 is arranged outdoors. The refrigerant flowing through the outdoor heat exchanger 18 exchanges heat with the air sent to the outdoor heat exchanger 18 . The outdoor heat exchanger 18 is provided in the middle of the flow path connecting the branch point B and the branch point N. As shown in FIG.
 室外ファン9は、室外熱交換器18を通過する屋外空気による空気流れを生じさせる。 The outdoor fan 9 generates an air flow by the outdoor air passing through the outdoor heat exchanger 18.
 分岐点Nは、室外熱交換器18のガス冷媒側から延びる流路と、第12開閉弁52から延びる流路と、第11開閉弁51から延びる流路と、が接続されている。 At the branch point N, the flow path extending from the gas refrigerant side of the outdoor heat exchanger 18, the flow path extending from the 12th on-off valve 52, and the flow path extending from the 11th on-off valve 51 are connected.
 第11開閉弁51は、開状態と閉状態とに切り換え制御可能な電磁弁である。第11開閉弁51は、第1切換機構12の第3ポートと分岐点Nとを繋ぐ流路の途中に設けられている。 The eleventh on-off valve 51 is an electromagnetic valve that can be switched between an open state and a closed state. The eleventh on-off valve 51 is provided in the middle of the flow path connecting the third port of the first switching mechanism 12 and the branch point N. As shown in FIG.
 第12開閉弁52は、開状態と閉状態とに切り換え制御可能な電磁弁である。第12開閉弁52は、第2切換機構22の第4ポートと分岐点Nとを繋ぐ流路の途中に設けられている。 The twelfth on-off valve 52 is an electromagnetic valve that can be switched between an open state and a closed state. The twelfth on-off valve 52 is provided in the middle of the flow path that connects the fourth port of the second switching mechanism 22 and the branch point N. As shown in FIG.
 第13開閉弁53は、開状態と閉状態とに切り換え制御可能な電磁弁である。第13開閉弁53は、第2切換機構22の第3ポートと分岐点Mとを繋ぐ流路の途中に設けられている。 The thirteenth on-off valve 53 is an electromagnetic valve that can be switched between an open state and a closed state. The thirteenth on-off valve 53 is provided in the middle of the flow path connecting the third port of the second switching mechanism 22 and the branch point M. As shown in FIG.
 第5膨張弁35は、弁開度を調節可能な電子膨張弁によって構成されている。第5膨張弁35は、分岐点Fと分岐点Bとを繋ぐ流路の途中に設けられている。 The fifth expansion valve 35 is composed of an electronic expansion valve whose opening degree can be adjusted. The fifth expansion valve 35 is provided in the middle of the flow path connecting the branch point F and the branch point B. As shown in FIG.
 第6膨張弁36は、弁開度を調節可能な電子膨張弁によって構成されている。第6膨張弁36は、分岐点Aと分岐点Gとを繋ぐ流路の途中に設けられている。 The sixth expansion valve 36 is composed of an electronic expansion valve whose opening degree can be adjusted. The sixth expansion valve 36 is provided in the middle of the flow path connecting the branch point A and the branch point G. As shown in FIG.
 コントローラ7は、熱負荷回路90と冷媒回路10を構成する各機器の動作を制御する。具体的には、コントローラ7は、制御を行うために設けられたCPUとしてのプロセッサとメモリ等を有している。 The controller 7 controls the operation of each device that constitutes the heat load circuit 90 and the refrigerant circuit 10 . Specifically, the controller 7 has a processor as a CPU provided for control, a memory, and the like.
 以上の冷凍サイクル装置1bにおいて、コントローラ7が各機器を制御して冷凍サイクルを実行させることで、熱負荷熱交換器91における冷房負荷を処理する冷房運転と、熱負荷熱交換器91における暖房負荷を処理する暖房運転と、冷房暖房移行運転と、暖房冷房移行運転と、が行われる。 In the refrigeration cycle apparatus 1b described above, the controller 7 controls each device to execute the refrigeration cycle, thereby performing a cooling operation for processing the cooling load in the thermal load heat exchanger 91 and a heating load in the thermal load heat exchanger 91. A heating operation, a cooling/heating transitional operation, and a heating/cooling transitional operation are performed.
 (3-1)冷房運転
 冷房運転時は、図11に示すように、第1冷媒を熱源側冷凍サイクルで用い、第2冷媒を利用側冷凍サイクルで用いた二元冷凍サイクル運転を行う。なお、図11では、一重の矢印は第1冷媒が流れる流路を示しており、二重の矢印は第2冷媒が流れる流路を示している。この二元冷凍サイクルでは、利用熱交換器13を第2冷媒の蒸発器として機能させ、カスケード熱交換器17を第2冷媒の放熱器として機能させ、カスケード熱交換器17を第1冷媒の蒸発器として機能させ、室外熱交換器18を第1冷媒の凝縮器として機能させる。
(3-1) Cooling Operation During cooling operation, as shown in FIG. 11, a dual refrigerating cycle operation is performed using the first refrigerant in the heat source side refrigerating cycle and the second refrigerant in the user side refrigerating cycle. In FIG. 11 , single arrows indicate channels through which the first coolant flows, and double arrows indicate channels through which the second coolant flows. In this binary refrigeration cycle, the utilization heat exchanger 13 functions as an evaporator for the second refrigerant, the cascade heat exchanger 17 functions as a radiator for the second refrigerant, and the cascade heat exchanger 17 functions as an evaporator for the first refrigerant. and the outdoor heat exchanger 18 functions as a condenser for the first refrigerant.
 具体的には、この二元冷凍サイクルでは、第11開閉弁51と第13開閉弁53の全てを閉状態に制御し、第5膨張弁35および第6膨張弁36を全閉状態に制御することで、第1冷媒と第2冷媒の混ざり合いを防いでいる。第10開閉弁50および第12開閉弁52は、開状態に制御される。そして、第1切換機構12の接続状態を図11の実線で示す接続状態に切り換え、第2切換機構22の接続状態を図11の実線で示す接続状態に切り換え、ポンプ92、第1圧縮機11、第2圧縮機21、室外ファン9を駆動させる。さらに、第1膨張弁15の弁開度を、第1圧縮機11の吸入する第2冷媒の過熱度が所定条件を満たすように制御し、第4膨張弁34の弁開度を第2圧縮機21の吸入する第1冷媒の過熱度が所定条件を満たすように制御する。 Specifically, in this binary refrigerating cycle, all of the eleventh on-off valve 51 and the thirteenth on-off valve 53 are controlled to be closed, and the fifth expansion valve 35 and the sixth expansion valve 36 are controlled to be fully closed. This prevents the first refrigerant and the second refrigerant from being mixed. The tenth on-off valve 50 and the twelfth on-off valve 52 are controlled to be open. Then, the connected state of the first switching mechanism 12 is switched to the connected state indicated by the solid line in FIG. 11, the connected state of the second switching mechanism 22 is switched to the connected state indicated by the solid line in FIG. , the second compressor 21 and the outdoor fan 9 are driven. Further, the valve opening degree of the first expansion valve 15 is controlled so that the degree of superheat of the second refrigerant sucked into the first compressor 11 satisfies a predetermined condition, and the valve opening degree of the fourth expansion valve 34 is controlled for the second compression. Control is performed so that the degree of superheat of the first refrigerant sucked by the machine 21 satisfies a predetermined condition.
 これにより、第2圧縮機21から吐出された第1冷媒は、第2切換機構22と第12開閉弁52を介して、室外熱交換器18に送られる。室外熱交換器18を流れる第1冷媒は、室外ファン9により供給される屋外空気と熱交換を行うことで凝縮する。室外熱交換器18で凝縮した第1冷媒は、全開状態に制御された第2膨張弁16を通過した後、分岐点Gを通過して、第2レシーバ19bに流入する。第2レシーバ19bから流出した冷媒は、第4膨張弁34において減圧され、カスケード熱交換器17の第2カスケード流路17bに送られる。第1冷媒は、カスケード熱交換器17の第2カスケード流路17bを流れる際に、第1カスケード流路17aを流れる第2冷媒と熱交換することで、蒸発する。カスケード熱交換器17で蒸発した第1冷媒は、第2圧縮機21に吸入される。第1圧縮機11から吐出された第2冷媒は、分岐点Pを通過し、カスケード熱交換器17の第1カスケード流路17aに送られる。第2冷媒は、カスケード熱交換器17の第1カスケード流路17aを流れる際に、第2カスケード流路17bを流れる第1冷媒と熱交換することで放熱する。カスケード熱交換器17で放熱した第2冷媒は、全開状態に制御された第3膨張弁33を通過して、第1レシーバ19aに流入する。第1レシーバ19aから流出した第2冷媒は、第1膨張弁15において減圧され、分岐点Aを通過して、利用熱交換器13の第1利用流路13aに送られる。利用熱交換器13の第1利用流路13aを流れる第2冷媒は、熱負荷回路90が有する利用熱交換器13の熱負荷流路13bを流れる水と熱交換を行うことで、蒸発する。この熱交換により冷やされた水は、熱負荷回路90における熱負荷熱交換器91まで送られることで冷房負荷を処理する。利用熱交換器13の第1利用流路13aで蒸発した第2冷媒は、第10開閉弁50と第1切換機構12を介して第1圧縮機11に吸入される。 As a result, the first refrigerant discharged from the second compressor 21 is sent to the outdoor heat exchanger 18 via the second switching mechanism 22 and the twelfth on-off valve 52 . The first refrigerant flowing through the outdoor heat exchanger 18 is condensed by exchanging heat with the outdoor air supplied by the outdoor fan 9 . The first refrigerant condensed in the outdoor heat exchanger 18 passes through the second expansion valve 16 controlled to be fully open, passes through the branch point G, and flows into the second receiver 19b. The refrigerant that has flowed out of the second receiver 19 b is decompressed in the fourth expansion valve 34 and sent to the second cascade flow path 17 b of the cascade heat exchanger 17 . When the first refrigerant flows through the second cascade flow path 17b of the cascade heat exchanger 17, the first refrigerant evaporates by exchanging heat with the second refrigerant flowing through the first cascade flow path 17a. The first refrigerant evaporated in the cascade heat exchanger 17 is sucked into the second compressor 21 . The second refrigerant discharged from the first compressor 11 passes through the branch point P and is sent to the first cascade flow path 17 a of the cascade heat exchanger 17 . When the second refrigerant flows through the first cascade flow path 17a of the cascade heat exchanger 17, the second refrigerant releases heat by exchanging heat with the first refrigerant flowing through the second cascade flow path 17b. The second refrigerant that has dissipated heat in the cascade heat exchanger 17 passes through the third expansion valve 33 that is controlled to be fully open and flows into the first receiver 19a. The second refrigerant that has flowed out of the first receiver 19 a is decompressed by the first expansion valve 15 , passes through the branch point A, and is sent to the first utilization flow path 13 a of the heat utilization exchanger 13 . The second refrigerant flowing through the first utilization flow path 13a of the utilization heat exchanger 13 exchanges heat with water flowing through the heat load flow path 13b of the utilization heat exchanger 13 of the heat load circuit 90, thereby evaporating. The water cooled by this heat exchange is sent to the heat load heat exchanger 91 in the heat load circuit 90 to process the cooling load. The second refrigerant evaporated in the first use flow path 13 a of the heat use exchanger 13 is sucked into the first compressor 11 via the tenth on-off valve 50 and the first switching mechanism 12 .
 (3-2)冷房暖房移行運転
 冷凍サイクル装置1bは、冷房運転を行うサイクル状態から、暖房運転を行うサイクル状態に移行させるために、以下の(a3)~(b3)の順からなる冷房暖房移行運転が行われる。
(3-2) Cooling/heating shift operation The refrigeration cycle device 1b performs the following steps (a3) to (b3) in order to shift from the cycle state in which the cooling operation is performed to the cycle state in which the heating operation is performed. A transition operation is performed.
 (a3)まず、冷房運転が行われていた状態から、第1膨張弁15を全閉状態に制御した状態で、第1圧縮機11を運転させる。ここで、第1冷媒を用いた冷房運転時の冷凍サイクルが行われるように、第2圧縮機21等を運転させる。これにより、第1レシーバ19aの下方から第1レシーバ19a内に第2冷媒を回収する運転を行う。この運転は、第1レシーバ19aに所定の十分な量の第2冷媒が回収された状態になるまで、例えば、所定時間継続される。 (a3) First, the first compressor 11 is operated while the first expansion valve 15 is controlled to be fully closed from the cooling operation state. Here, the second compressor 21 and the like are operated so that the refrigeration cycle during the cooling operation using the first refrigerant is performed. As a result, the operation of recovering the second refrigerant into the first receiver 19a from below the first receiver 19a is performed. This operation is continued for a predetermined time, for example, until a predetermined sufficient amount of the second refrigerant is collected in the first receiver 19a.
 (b3)次に、第1レシーバ19aへの第2冷媒の回収が所定量以上に進んだ状態で、第10開閉弁50を閉じ、第1圧縮機11を停止させる。その後、第2切換機構22について、第2圧縮機21の吐出側を第13開閉弁53に接続し、第2圧縮機21の吸入側を第12開閉弁52およびカスケード熱交換器17の第2カスケード流路17bのガス冷媒側に接続する状態に切り換える。さらに、第12開閉弁52と第13開閉弁53を開状態に制御し、第2膨張弁16および第4膨張弁34を全閉状態に制御し、第6膨張弁36を開状態に制御する。この状態で、第2圧縮機21を運転させることで、室外熱交換器18に残る第1冷媒を、室外ファン9から得られる空気の熱により加熱して追い出し、第12開閉弁52、第2切換機構22を介して、第2圧縮機21に吸入させる。また、カスケード熱交換器17の第2カスケード流路17bに残る第1冷媒も、第2圧縮機21に吸入される。第2圧縮機21から吐出された第1冷媒は、第2切換機構22、第13開閉弁53、分岐点Mを介して、利用熱交換器13の第1利用流路13aに送られる。さらに、第1冷媒は、利用熱交換器13の第1利用流路13aを流れる際に凝縮し、分岐点Aおよび第6膨張弁36を介して、第2レシーバ19bに流入する。そして、この運転を所定時間継続させた後、第12開閉弁52を閉状態に制御し、第4膨張弁34を開状態に制御する。 (b3) Next, the tenth on-off valve 50 is closed and the first compressor 11 is stopped in a state where the recovery of the second refrigerant to the first receiver 19a has progressed to a predetermined amount or more. After that, regarding the second switching mechanism 22 , the discharge side of the second compressor 21 is connected to the thirteenth on-off valve 53 , and the suction side of the second compressor 21 is connected to the twelfth on-off valve 52 and the second switch of the cascade heat exchanger 17 . It switches to the state of being connected to the gas refrigerant side of the cascade flow path 17b. Furthermore, the 12th on-off valve 52 and the 13th on-off valve 53 are controlled to be opened, the second expansion valve 16 and the fourth expansion valve 34 are controlled to be fully closed, and the sixth expansion valve 36 is controlled to be opened. . By operating the second compressor 21 in this state, the first refrigerant remaining in the outdoor heat exchanger 18 is heated by the heat of the air obtained from the outdoor fan 9 and driven out. Via the switching mechanism 22, the second compressor 21 is made to suck. Also, the first refrigerant remaining in the second cascade flow path 17 b of the cascade heat exchanger 17 is also sucked into the second compressor 21 . The first refrigerant discharged from the second compressor 21 is sent through the second switching mechanism 22 , the thirteenth on-off valve 53 and the branch point M to the first utilization flow path 13 a of the utilization heat exchanger 13 . Further, the first refrigerant is condensed while flowing through the first utilization channel 13a of the utilization heat exchanger 13, and flows through the branch point A and the sixth expansion valve 36 into the second receiver 19b. After this operation is continued for a predetermined time, the twelfth on-off valve 52 is controlled to be closed, and the fourth expansion valve 34 is controlled to be opened.
 以上により、冷房暖房移行運転を終える。 With the above, the cooling/heating shift operation ends.
 (3-3)暖房運転
 暖房運転時は、図12に示すように、第2冷媒を熱源側冷凍サイクルで用い、第1冷媒を利用側冷凍サイクルで用いた二元冷凍サイクルを行う。なお、図12では、一重の矢印は第1冷媒が流れる流路を示しており、二重の矢印は第2冷媒が流れる流路を示している。この二元冷凍サイクルでは、利用熱交換器13を第1冷媒の凝縮器として機能させ、カスケード熱交換器17を第1冷媒の蒸発器として機能させ、カスケード熱交換器17を第2冷媒の放熱器として機能させ、室外熱交換器18を第2冷媒の蒸発器として機能させる。
(3-3) Heating Operation During heating operation, as shown in FIG. 12, a dual refrigerating cycle is performed in which the second refrigerant is used in the heat source side refrigerating cycle and the first refrigerant is used in the user side refrigerating cycle. In FIG. 12 , single arrows indicate channels through which the first coolant flows, and double arrows indicate channels through which the second coolant flows. In this binary refrigerating cycle, the utilization heat exchanger 13 functions as a condenser for the first refrigerant, the cascade heat exchanger 17 functions as an evaporator for the first refrigerant, and the cascade heat exchanger 17 functions to dissipate the heat of the second refrigerant. and the outdoor heat exchanger 18 functions as an evaporator for the second refrigerant.
 具体的には、この二元冷凍サイクルでは、第10開閉弁50と第12開閉弁52を閉状態に制御し、第1膨張弁15および第2膨張弁16を全閉状態に制御することで、第1冷媒と第2冷媒の混ざり合いを防いでいる。そして、第1切換機構12の接続状態を図12に破線で示す状態とし、第2切換機構22の接続状態を図12に破線で示す接続状態に切り換え、ポンプ92、第1圧縮機11、第2圧縮機21、室外ファン9を駆動させる。さらに、第5膨張弁35の弁開度を、第1圧縮機11の吸入する第2冷媒の過熱度が所定条件を満たすように制御し、第4膨張弁34の弁開度を第2圧縮機21の吸入する第1冷媒の過熱度が所定条件を満たすように制御する。 Specifically, in this binary refrigeration cycle, the tenth on-off valve 50 and the twelfth on-off valve 52 are controlled to be closed, and the first expansion valve 15 and the second expansion valve 16 are controlled to be fully closed. , to prevent mixing of the first refrigerant and the second refrigerant. 12, the connection state of the second switching mechanism 22 is switched to the connection state indicated by the broken line in FIG. 12, and the pump 92, the first compressor 11, the 2 Compressor 21 and outdoor fan 9 are driven. Furthermore, the valve opening degree of the fifth expansion valve 35 is controlled so that the degree of superheat of the second refrigerant sucked into the first compressor 11 satisfies a predetermined condition, and the valve opening degree of the fourth expansion valve 34 is controlled for the second compression. Control is performed so that the degree of superheat of the first refrigerant sucked by the machine 21 satisfies a predetermined condition.
 これにより、第1圧縮機11から吐出された第2冷媒は、カスケード熱交換器17に送られ、第1カスケード流路17aを流れる際に、第2カスケード流路17bを流れる第1冷媒と熱交換することで、放熱する。カスケード熱交換器17で放熱した第2冷媒は、第3膨張弁33、第1レシーバ19a、分岐点Fを介して、第5膨張弁35において減圧される。第5膨張弁35において減圧された第2冷媒は、分岐点Bを介して、室外熱交換器18に送られる。第2冷媒は、室外熱交換器18において室外ファン9により供給される屋外空気と熱交換を行うこと蒸発し、分岐点N、第11開閉弁51、第1切換機構12を介して、第1圧縮機11に吸入される。第2圧縮機21から吐出された第1冷媒は、第2切換機構22、第13開閉弁53、分岐点Mを介して利用熱交換器13の第1利用流路13aに送られる。利用熱交換器13の第1利用流路13aを流れる第1冷媒は、熱負荷回路90が有する利用熱交換器13の熱負荷流路13bを流れる水と熱交換を行うことで、凝縮する。この熱交換により暖められた水は、熱負荷回路90における熱負荷熱交換器91まで送られることで暖房負荷を処理する。利用熱交換器13の第1利用流路13aで凝縮した第1冷媒は、分岐点Aを通過した後、第6膨張弁36を通過し、第2レシーバ19bに流入する。第2レシーバ19bから流出した第1冷媒は、第4膨張弁34において減圧される。第4膨張弁34で減圧された第1冷媒は、カスケード熱交換器17の第2カスケード流路17bを通過する際に、第1カスケード流路17aを流れる第2冷媒と熱交換することで蒸発する。カスケード熱交換器17の第2カスケード流路17bで蒸発した第1冷媒は、第2圧縮機21に吸入される。 As a result, the second refrigerant discharged from the first compressor 11 is sent to the cascade heat exchanger 17, and when flowing through the first cascade flow path 17a, the first refrigerant flowing through the second cascade flow path 17b and the heat Dissipate heat by exchanging. The second refrigerant that has released heat in the cascade heat exchanger 17 passes through the third expansion valve 33, the first receiver 19a, and the branch point F, and is decompressed in the fifth expansion valve . The second refrigerant decompressed by the fifth expansion valve 35 is sent to the outdoor heat exchanger 18 via the branch point B. The second refrigerant evaporates by exchanging heat with the outdoor air supplied by the outdoor fan 9 in the outdoor heat exchanger 18, and passes through the branch point N, the eleventh on-off valve 51, and the first switching mechanism 12 to the first It is sucked into the compressor 11 . The first refrigerant discharged from the second compressor 21 is sent through the second switching mechanism 22 , the thirteenth on-off valve 53 and the branch point M to the first utilization flow path 13 a of the utilization heat exchanger 13 . The first refrigerant flowing through the first use flow path 13a of the heat utilization exchanger 13 is condensed by exchanging heat with water flowing through the heat load flow path 13b of the heat utilization heat exchanger 13 of the heat load circuit 90 . The water warmed by this heat exchange is sent to the heat load heat exchanger 91 in the heat load circuit 90 to treat the heating load. The first refrigerant condensed in the first utilization flow path 13a of the utilization heat exchanger 13 passes through the branch point A, passes through the sixth expansion valve 36, and flows into the second receiver 19b. The first refrigerant that has flowed out of the second receiver 19b is decompressed in the fourth expansion valve 34 . The first refrigerant depressurized by the fourth expansion valve 34 evaporates by exchanging heat with the second refrigerant flowing through the first cascade flow path 17a when passing through the second cascade flow path 17b of the cascade heat exchanger 17. do. The first refrigerant evaporated in the second cascade flow path 17 b of the cascade heat exchanger 17 is drawn into the second compressor 21 .
 (3-4)暖房冷房移行運転
 冷凍サイクル装置1bは、暖房運転を行うサイクル状態から、冷房運転を行うサイクル状態に移行させるために、以下の(a4)~(c4)の順からなる暖房冷房移行運転が行われる。
(3-4) Heating/cooling shift operation The refrigerating cycle device 1b performs heating/cooling in the order of (a4) to (c4) below in order to shift from the cycle state in which the heating operation is performed to the cycle state in which the cooling operation is performed. A transition operation is performed.
 (a4)まず、暖房運転が行われていた状態から、第5膨張弁35を全閉状態に制御し、第1圧縮機11を運転させる。ここで、第1冷媒を用いた暖房運転時の利用側の冷凍サイクルが維持されるように第2圧縮機21等を運転させる。これにより、室外熱交換器18の第2冷媒を第2圧縮機21に吸入させつつ、第2圧縮機21から吐出される第2冷媒を、カスケード熱交換器17の第1カスケード流路17aにおいて放熱させ、第1レシーバ19aに流入させ、第1レシーバ19a内に第2冷媒を回収する運転を行う。この運転は、第1レシーバ19aに所定の十分な量の第2冷媒が回収された状態になるまで、例えば、所定時間継続される。 (a4) First, the fifth expansion valve 35 is controlled to a fully closed state from the state in which the heating operation was performed, and the first compressor 11 is operated. Here, the second compressor 21 and the like are operated so as to maintain the refrigeration cycle on the user side during the heating operation using the first refrigerant. As a result, the second refrigerant discharged from the second compressor 21 is supplied to the first cascade flow path 17a of the cascade heat exchanger 17 while the second refrigerant of the outdoor heat exchanger 18 is drawn into the second compressor 21. An operation is performed to radiate heat, flow into the first receiver 19a, and collect the second refrigerant in the first receiver 19a. This operation is continued for a predetermined time, for example, until a predetermined sufficient amount of the second refrigerant is collected in the first receiver 19a.
 (b4)次に、冷媒容器19への第2冷媒の回収が所定量以上に進んだ状態で、第11開閉弁51を閉じ、第1圧縮機11を停止させる。その後、第2切換機構22について、第2圧縮機21の吐出側を第12開閉弁52に接続し、第2圧縮機21の吸入側を第13開閉弁53およびカスケード熱交換器17の第2カスケード流路17bのガス冷媒側に接続する状態に切り換える。そして、第6膨張弁36および第4膨張弁34を全閉状態に制御し、第2膨張弁16を全開状態に制御する。この状態で第2圧縮機21を運転させることで、利用熱交換器13の第1利用流路13aおよびその周囲に残る第1冷媒を、第2圧縮機21に吸入させ、第2圧縮機21から吐出させることで、室外熱交換器18において凝縮させる。室外熱交換器18において凝縮した第1冷媒は、第2レシーバ19bに溜まり始める。そして、この運転を所定時間継続させる。 (b4) Next, the eleventh on-off valve 51 is closed and the first compressor 11 is stopped in a state where the recovery of the second refrigerant to the refrigerant container 19 has progressed to a predetermined amount or more. After that, regarding the second switching mechanism 22 , the discharge side of the second compressor 21 is connected to the 12th on-off valve 52 , and the suction side of the second compressor 21 is connected to the 13th on-off valve 53 and the second opening of the cascade heat exchanger 17 . It switches to the state of being connected to the gas refrigerant side of the cascade flow path 17b. Then, the sixth expansion valve 36 and the fourth expansion valve 34 are controlled to be fully closed, and the second expansion valve 16 is controlled to be fully open. By operating the second compressor 21 in this state, the first refrigerant remaining in the first utilization flow path 13a of the utilization heat exchanger 13 and its surroundings is sucked into the second compressor 21, and the second compressor 21 It is condensed in the outdoor heat exchanger 18 by discharging from. The first refrigerant condensed in the outdoor heat exchanger 18 begins to accumulate in the second receiver 19b. Then, this operation is continued for a predetermined time.
 (c4)次に、第2レシーバ19bに第1冷媒が所定量以上溜まった段階で、第13開閉弁53を閉状態に制御する。そして、第1切換機構12について、第1圧縮機11の吐出側を第11開閉弁51に接続し、第1圧縮機11の吸入側を第10開閉弁50に接続する状態に切り換え、第10開閉弁50を開状態に制御し、第1膨張弁15を所定の弁開度に制御する。 (c4) Next, when the second receiver 19b has accumulated more than a predetermined amount of the first refrigerant, the thirteenth on-off valve 53 is controlled to be closed. Then, the first switching mechanism 12 is switched to a state in which the discharge side of the first compressor 11 is connected to the eleventh on-off valve 51, the suction side of the first compressor 11 is connected to the tenth on-off valve 50, and the tenth on-off valve 50 is connected. The on-off valve 50 is controlled to open, and the first expansion valve 15 is controlled to a predetermined opening degree.
 以上により、暖房冷房移行運転を終える。 With the above, the heating/cooling shift operation ends.
 (3-5)第3実施形態の特徴
 第3実施形態の冷凍サイクル装置1bでは、冷媒回路10において、地球温暖化係数(GWP)が十分に低い第1冷媒と、オゾン層破壊係数(ODP)および地球温暖化係数(GWP)が十分に低い第2冷媒と、が用いられている。このため、地球環境の悪化を抑制することができる。
(3-5) Features of Third Embodiment In the refrigeration cycle device 1b of the third embodiment, in the refrigerant circuit 10, the first refrigerant having a sufficiently low global warming potential (GWP) and the ozone depletion potential (ODP) and a second refrigerant with a sufficiently low global warming potential (GWP). Therefore, deterioration of the global environment can be suppressed.
 また、冷媒回路10において地球温暖化係数(GWP)が十分に低い第1冷媒を用いた場合であっても、暖房運転として、高圧冷媒である第2冷媒を熱源側冷凍サイクルで用い、低圧冷媒である第1冷媒を利用側冷凍サイクルで用いた二元冷凍サイクルを行う。これにより、低圧冷媒である第1冷媒を用いた単元冷凍サイクルを行う場合と比較して、暖房運転時の能力を確保し易い。 Further, even when the first refrigerant having a sufficiently low global warming potential (GWP) is used in the refrigerant circuit 10, the second refrigerant, which is a high-pressure refrigerant, is used in the heat source side refrigeration cycle for heating operation, and the low-pressure refrigerant A binary refrigerating cycle is performed using the first refrigerant in the user-side refrigerating cycle. As a result, it is easier to secure the capacity during the heating operation compared to the case of performing the unitary refrigeration cycle using the first refrigerant, which is the low-pressure refrigerant.
 さらに、冷媒回路10では第2冷媒として二酸化炭素が用いられている。しかし、冷房運転時には、第2冷媒を用いた単元冷凍サイクルは行わず、第2冷媒を熱源側冷凍サイクルで用いて第1冷媒を利用側冷凍サイクルで用いた二元冷凍サイクルも行わず、低圧冷媒である第1冷媒を熱源側冷凍サイクルで用い、高圧冷媒である第2冷媒を利用側冷凍サイクルで用いた二元冷凍サイクルを行う。これにより、高圧冷媒である二酸化炭素冷媒を用いて単元冷凍サイクルを行う場合や高圧冷媒である二酸化炭素を熱源側サイクルで用いる二元冷凍サイクルを行う場合のように二酸化炭素冷媒の圧力が臨界圧力を超えてCOPが低くなってしまうことを避けて、冷房運転を行うことができる。また、高圧冷媒である二酸化炭素が用いられる冷媒回路10の要素部品として求められる耐圧強度の基準を低めのものとすることが可能になる。 Furthermore, carbon dioxide is used as the second refrigerant in the refrigerant circuit 10 . However, during cooling operation, the unitary refrigerating cycle using the second refrigerant is not performed, nor is the dual refrigerating cycle using the second refrigerant in the heat source side refrigerating cycle and the first refrigerant in the user side refrigerating cycle. A binary refrigerating cycle is performed in which the first refrigerant, which is a refrigerant, is used in the heat source side refrigerating cycle, and the second refrigerant, which is a high pressure refrigerant, is used in the user side refrigerating cycle. As a result, the pressure of the carbon dioxide refrigerant becomes the critical pressure as in the case of performing a single refrigeration cycle using carbon dioxide refrigerant, which is a high-pressure refrigerant, or when performing a dual refrigeration cycle using carbon dioxide, which is a high-pressure refrigerant, in the heat source side cycle. The cooling operation can be performed while avoiding the COP from exceeding and becoming low. In addition, it is possible to lower the standard of pressure resistance strength required for element parts of the refrigerant circuit 10 that uses carbon dioxide, which is a high-pressure refrigerant.
 また、第3実施形態の冷凍サイクル装置1bでは、熱源側の冷凍サイクルや利用側の冷凍サイクルにおいて用いられている第1レシーバ19aと第2レシーバ19bを利用して、第1冷媒や第2冷媒を集めることができている。このため、第2実施形態に記載されている熱源側の冷凍サイクルや利用側の冷凍サイクルで用いられない冷媒容器19を別途確保する必要がない。 Further, in the refrigerating cycle device 1b of the third embodiment, the first refrigerant and the second refrigerant are obtained by using the first receiver 19a and the second receiver 19b used in the refrigerating cycle on the heat source side and the refrigerating cycle on the user side. are able to collect Therefore, it is not necessary to separately secure the refrigerant container 19 that is not used in the refrigeration cycle on the heat source side and the refrigeration cycle on the user side described in the second embodiment.
 (4)第4実施形態
 図9に、第4実施形態に係る冷凍サイクル装置1cの概略構成図を示す。図10に、第2実施形態に係る冷凍サイクル装置1cの機能ブロック構成図を示す。
(4) Fourth Embodiment FIG. 9 shows a schematic configuration diagram of a refrigeration cycle apparatus 1c according to a fourth embodiment. FIG. 10 shows a functional block configuration diagram of a refrigeration cycle device 1c according to the second embodiment.
 冷凍サイクル装置1cは、蒸気圧縮式の冷凍サイクル運転を行うことによって、熱負荷を処理するために使用される装置である。冷凍サイクル装置1cは、熱負荷回路90と、冷媒回路10と、室外ファン9と、コントローラ7と、を有している。 The refrigeration cycle device 1c is a device used to process a heat load by performing vapor compression refrigeration cycle operation. The refrigeration cycle device 1 c has a heat load circuit 90 , a refrigerant circuit 10 , an outdoor fan 9 and a controller 7 .
 冷凍サイクル装置1cが処理する熱負荷や熱負荷回路90については、第1実施形態と同様である。 The heat load processed by the refrigeration cycle device 1c and the heat load circuit 90 are the same as in the first embodiment.
 なお、本実施形態では、利用熱交換器13は、後述のように、冷媒回路10を流れる第1冷媒または第2冷媒が通過する第1利用流路13aを有している。利用熱交換器13の熱負荷流路13bを流れる水は、第1利用流路13aを流れる第1冷媒または第2冷媒と熱交換することにより、冷房運転時には冷却され、暖房運転時には暖められる。 In this embodiment, the heat utilization exchanger 13 has a first utilization flow path 13a through which the first refrigerant or the second refrigerant flowing through the refrigerant circuit 10 passes, as will be described later. The water flowing through the heat load channel 13b of the heat utilization exchanger 13 is cooled during the cooling operation and warmed during the heating operation by exchanging heat with the first refrigerant or the second refrigerant flowing through the first utilization channel 13a.
 冷媒回路10は、第1圧縮機11と、第2圧縮機21と、第1切換機構12と、第2切換機構22と、熱負荷回路90と共有される利用熱交換器13と、第1膨張弁15と、第2膨張弁16と、第3膨張弁33と、第4膨張弁34と、第5膨張弁35と、第6膨張弁36と、カスケード熱交換器17と、室外熱交換器18と、第1レシーバ19aと、第2レシーバ19bと、第14開閉弁54と、第15開閉弁55と、第16開閉弁56と、第17開閉弁57と、を有している。 The refrigerant circuit 10 includes a first compressor 11, a second compressor 21, a first switching mechanism 12, a second switching mechanism 22, a utilization heat exchanger 13 shared with the heat load circuit 90, and a first Expansion valve 15, second expansion valve 16, third expansion valve 33, fourth expansion valve 34, fifth expansion valve 35, sixth expansion valve 36, cascade heat exchanger 17, outdoor heat exchange 18 , a first receiver 19 a , a second receiver 19 b , a 14th on-off valve 54 , a 15th on-off valve 55 , a 16th on-off valve 56 , and a 17th on-off valve 57 .
 冷媒回路10には、冷媒として、低圧冷媒である第1冷媒と、高圧冷媒である第2冷媒とが、実質的に分離された状態で充填されている。第1冷媒は、30℃で1MPa以下の冷媒であり、例えば、R1234yfとR1234zeとの少なくともいずれかを含む冷媒であり、R1234yfのみから構成されていてもよいし、R1234zeのみから構成されていてもよい。第2冷媒は、30℃で1.5MPa以上の冷媒であり、例えば、二酸化炭素を含んでいてもよいし、二酸化炭素のみから構成されていてもよい。 The refrigerant circuit 10 is filled with a first refrigerant, which is a low-pressure refrigerant, and a second refrigerant, which is a high-pressure refrigerant, in a substantially separated state. The first refrigerant is a refrigerant of 1 MPa or less at 30 ° C., for example, a refrigerant containing at least one of R1234yf and R1234ze. good. The second refrigerant is a refrigerant having a pressure of 1.5 MPa or more at 30° C., and may contain, for example, carbon dioxide, or may be composed of only carbon dioxide.
 第1圧縮機11自体の具体的構成は第1実施形態のものと同様である。第1圧縮機11の吐出側は、第1切換機構12の切換弁12c、切換弁12d、切換弁12eに接続されている。第1圧縮機11の吸入側は、第1切換機構12の切換弁12c、切換弁12d、切換弁12eが有する別異のポートに接続されている。 The specific configuration of the first compressor 11 itself is the same as that of the first embodiment. The discharge side of the first compressor 11 is connected to the switching valve 12c, switching valve 12d, and switching valve 12e of the first switching mechanism 12 . The suction side of the first compressor 11 is connected to different ports of the switching valves 12 c , 12 d and 12 e of the first switching mechanism 12 .
 第1切換機構12は、第1圧縮機11の吐出側に互いに並列に設けられた切換弁12c、切換弁12d、切換弁12eを有している。本実施形態では、切換弁12c、切換弁12d、切換弁12eは、それぞれ3方弁で構成されている。切換弁12cは、第1圧縮機11の吐出側を第14開閉弁54に接続する状態と、第1圧縮機11の吸入側を第14開閉弁54に接続する状態と、を切り換える。切換弁12dは、第1圧縮機11の吐出側をカスケード熱交換器17の第1カスケード流路17aのガス冷媒側に接続する状態と、第1圧縮機11の吸入側をカスケード熱交換器17の第1カスケード流路17aのガス冷媒側に接続する状態と、を切り換える。切換弁12eは、第1圧縮機11の吐出側を第16開閉弁56に接続する状態と、第1圧縮機11の吸入側を第16開閉弁56に接続する状態と、を切り換える。 The first switching mechanism 12 has a switching valve 12c, a switching valve 12d, and a switching valve 12e provided in parallel on the discharge side of the first compressor 11. In this embodiment, each of the switching valve 12c, the switching valve 12d, and the switching valve 12e is a three-way valve. The switching valve 12 c switches between a state in which the discharge side of the first compressor 11 is connected to the fourteenth on-off valve 54 and a state in which the suction side of the first compressor 11 is connected to the fourteenth on-off valve 54 . The switching valve 12d connects the discharge side of the first compressor 11 to the gas refrigerant side of the first cascade flow path 17a of the cascade heat exchanger 17, and connects the suction side of the first compressor 11 to the cascade heat exchanger 17. connected to the gas refrigerant side of the first cascade flow path 17a. The switching valve 12 e switches between a state in which the discharge side of the first compressor 11 is connected to the sixteenth on-off valve 56 and a state in which the suction side of the first compressor 11 is connected to the sixteenth on-off valve 56 .
 第14開閉弁54は、開状態と閉状態とに切り換え制御可能な電磁弁である。第14開閉弁54は、第1切換機構12の切換弁12cと分岐点Mとを繋ぐ流路の途中に設けられている。 The 14th on-off valve 54 is an electromagnetic valve that can be switched between an open state and a closed state. The fourteenth on-off valve 54 is provided in the middle of the flow path connecting the switching valve 12c of the first switching mechanism 12 and the branch point M. As shown in FIG.
 分岐点Mには、第14開閉弁54から延びる流路と、第15開閉弁55から延びる流路と、利用熱交換器13の第1利用流路13aのガス冷媒側から延びる流路と、が接続されている。 At the branch point M, a flow path extending from the 14th on-off valve 54, a flow path extending from the 15th on-off valve 55, a flow path extending from the gas refrigerant side of the first utilization flow path 13a of the heat utilization heat exchanger 13, is connected.
 利用熱交換器13のうち冷媒回路10を流れる冷媒が通過する第1利用流路13aは、ガス冷媒側が分岐点Mから延びる流路に接続されている。また、第1利用流路13aの液冷媒側は、分岐点Aから延びる流路に接続されている。 The first use channel 13a through which the refrigerant flowing through the refrigerant circuit 10 passes in the use heat exchanger 13 is connected to the channel extending from the branch point M on the gas refrigerant side. Further, the liquid refrigerant side of the first use channel 13a is connected to a channel extending from the branch point A. As shown in FIG.
 分岐点Aでは、第1利用流路13aの液冷媒側から延びる流路と、第1膨張弁15のうち分岐点F側とは反対側に延びる流路と、第6膨張弁36から延びる流路と、が接続されている。 At the branch point A, a flow path extending from the liquid refrigerant side of the first use flow path 13a, a flow path extending from the first expansion valve 15 on the side opposite to the branch point F side, and a flow extending from the sixth expansion valve 36 is connected to the road.
 第1膨張弁15は、弁開度を調節可能な電子膨張弁によって構成されている。第1膨張弁15は、冷媒回路10において、分岐点Aと分岐点Fを繋ぐ流路の途中に設けられている。 The first expansion valve 15 is composed of an electronic expansion valve whose opening degree can be adjusted. The first expansion valve 15 is provided in the middle of the flow path connecting the branch point A and the branch point F in the refrigerant circuit 10 .
 分岐点Fは、第1膨張弁15から延びる流路と、第5膨張弁35から延びる流路と、第1レシーバ19aの上端から延びる流路と、を接続している。 The branch point F connects the flow path extending from the first expansion valve 15, the flow path extending from the fifth expansion valve 35, and the flow path extending from the upper end of the first receiver 19a.
 第1レシーバ19aは、内部に冷媒を貯留する冷媒容器である。第1レシーバ19aは、分岐点Fと第3膨張弁33とを繋ぐ流路の途中に設けられている。なお、本実施形態では、第1レシーバ19aは、第2冷媒を貯留する。 The first receiver 19a is a refrigerant container that stores refrigerant inside. The first receiver 19 a is provided in the middle of the flow path connecting the branch point F and the third expansion valve 33 . In addition, in this embodiment, the 1st receiver 19a stores a 2nd refrigerant|coolant.
 第3膨張弁33は、弁開度を調節可能な電子膨張弁によって構成されている。第3膨張弁33は、第1レシーバ19aの下端とカスケード熱交換器17の第1カスケード流路17aの液冷媒側とを繋ぐ流路の途中に設けられている。 The third expansion valve 33 is composed of an electronic expansion valve whose opening degree can be adjusted. The third expansion valve 33 is provided in the middle of the flow path that connects the lower end of the first receiver 19 a and the liquid refrigerant side of the first cascade flow path 17 a of the cascade heat exchanger 17 .
 カスケード熱交換器17は、第1冷媒と第2冷媒とのいずれか一方が通過する第1カスケード流路17aと、第1冷媒と第2冷媒とのいずれか他方が通過する第2カスケード流路17bと、を有しており、第1冷媒と第2冷媒との間で熱交換を行わせるカスケード熱交換器である。カスケード熱交換器17において、第1カスケード流路17aと第2カスケード流路17bとは互いに独立しており、カスケード熱交換器17内において第1冷媒と第2冷媒が混ざり合うことはない。第1カスケード流路17aのガス冷媒側は、第1切換機構12の切換弁12dから延びる流路に接続されている。第1カスケード流路17aの液冷媒側は、第3膨張弁33から延びる流路に接続されている。第2カスケード流路17bのガス冷媒側は、第2切換機構22の切換弁22dから延びる流路に接続されている。第2カスケード流路17bの液冷媒側は、第4膨張弁34から延びる流路に接続されている。 The cascade heat exchanger 17 includes a first cascade flow path 17a through which one of the first refrigerant and the second refrigerant passes, and a second cascade flow path through which the other of the first refrigerant and the second refrigerant passes. 17b and a cascade heat exchanger for heat exchange between the first refrigerant and the second refrigerant. In the cascade heat exchanger 17 , the first cascade flow path 17 a and the second cascade flow path 17 b are independent of each other, and the first refrigerant and the second refrigerant do not mix inside the cascade heat exchanger 17 . A gas refrigerant side of the first cascade flow path 17 a is connected to a flow path extending from the switching valve 12 d of the first switching mechanism 12 . The liquid refrigerant side of the first cascade flow path 17 a is connected to a flow path extending from the third expansion valve 33 . A gas refrigerant side of the second cascade flow path 17 b is connected to a flow path extending from the switching valve 22 d of the second switching mechanism 22 . The liquid refrigerant side of the second cascade flow path 17 b is connected to a flow path extending from the fourth expansion valve 34 .
 第2圧縮機21自体の具体的構成は第1実施形態のものと同様である。第2圧縮機21の吐出側は、第2切換機構22の切換弁22c、切換弁22d、切換弁22eに接続されている。第2圧縮機21の吸入側は、第2切換機構22の切換弁22c、切換弁22d、切換弁22eが有する別異のポートに接続されている。 The specific configuration of the second compressor 21 itself is the same as that of the first embodiment. The discharge side of the second compressor 21 is connected to the switching valve 22c, the switching valve 22d, and the switching valve 22e of the second switching mechanism 22. As shown in FIG. The suction side of the second compressor 21 is connected to different ports of the switching valves 22 c , 22 d and 22 e of the second switching mechanism 22 .
 第2切換機構22は、第2圧縮機21の吐出側に互いに並列に設けられた切換弁22c、切換弁22d、切換弁22eを有している。本実施形態では、切換弁22c、切換弁22d、切換弁22eは、それぞれ3方弁で構成されている。切換弁22cは、第2圧縮機21の吐出側を第15開閉弁55に接続する状態と、第2圧縮機21の吸入側を第15開閉弁55に接続する状態と、を切り換える。切換弁22dは、第2圧縮機21の吐出側をカスケード熱交換器17の第2カスケード流路17bのガス冷媒側に接続する状態と、第2圧縮機21の吸入側をカスケード熱交換器17の第2カスケード流路17bのガス冷媒側に接続する状態と、を切り換える。切換弁22eは、第2圧縮機21の吐出側を第17開閉弁57に接続する状態と、第2圧縮機21の吸入側を第17開閉弁57に接続する状態と、を切り換える。 The second switching mechanism 22 has a switching valve 22c, a switching valve 22d, and a switching valve 22e provided in parallel with each other on the discharge side of the second compressor 21. In this embodiment, each of the switching valve 22c, the switching valve 22d, and the switching valve 22e is a three-way valve. The switching valve 22 c switches between a state in which the discharge side of the second compressor 21 is connected to the fifteenth on-off valve 55 and a state in which the suction side of the second compressor 21 is connected to the fifteenth on-off valve 55 . The switching valve 22d connects the discharge side of the second compressor 21 to the gas refrigerant side of the second cascade flow path 17b of the cascade heat exchanger 17, and connects the suction side of the second compressor 21 to the cascade heat exchanger 17. connected to the gas refrigerant side of the second cascade flow path 17b. The switching valve 22 e switches between a state in which the discharge side of the second compressor 21 is connected to the seventeenth on-off valve 57 and a state in which the suction side of the second compressor 21 is connected to the seventeenth on-off valve 57 .
 カスケード熱交換器17の第2カスケード流路17bの液冷媒側は、第4膨張弁34から延びる流路が接続されている。 A flow path extending from the fourth expansion valve 34 is connected to the liquid refrigerant side of the second cascade flow path 17 b of the cascade heat exchanger 17 .
 第4膨張弁34は、弁開度を調節可能な電子膨張弁によって構成されている。第4膨張弁34は、カスケード熱交換器17の第2カスケード流路17bの液冷媒側と、第2レシーバ19bの上端と、の間に設けられている。 The fourth expansion valve 34 is composed of an electronic expansion valve whose opening degree can be adjusted. The fourth expansion valve 34 is provided between the liquid refrigerant side of the second cascade flow path 17b of the cascade heat exchanger 17 and the upper end of the second receiver 19b.
 第2レシーバ19bは、内部に冷媒を貯留する冷媒容器である。第2レシーバ19bは、分岐点Gと第4膨張弁34とを繋ぐ流路の途中に設けられている。なお、本実施形態では、第2レシーバ19bは、第1冷媒を貯留する。 The second receiver 19b is a refrigerant container that stores refrigerant inside. The second receiver 19 b is provided in the middle of the flow path connecting the branch point G and the fourth expansion valve 34 . In addition, in this embodiment, the 2nd receiver 19b stores a 1st refrigerant|coolant.
 分岐点Gは、第2レシーバ19bの下端から延びる流路と、第6膨張弁36から延びる流路と、第2膨張弁16から延びる流路と、が接続されている。 At the branch point G, the flow path extending from the lower end of the second receiver 19b, the flow path extending from the sixth expansion valve 36, and the flow path extending from the second expansion valve 16 are connected.
 第2膨張弁16は、弁開度を調節可能な電子膨張弁によって構成されている。第2膨張弁16は、分岐点Gと、分岐点Bと、の間に設けられている。 The second expansion valve 16 is composed of an electronic expansion valve whose opening degree can be adjusted. The second expansion valve 16 is provided between the branch point G and the branch point B.
 分岐点Bは、第2膨張弁16から延びる流路と、室外熱交換器18の液冷媒側から延びる流路と、第5膨張弁35から延びる流路と、が接続されている。 At the branch point B, the flow path extending from the second expansion valve 16, the flow path extending from the liquid refrigerant side of the outdoor heat exchanger 18, and the flow path extending from the fifth expansion valve 35 are connected.
 室外熱交換器18は、複数の伝熱管と、複数の伝熱管に接合された複数のフィンと、を有して構成される。本実施形態では、室外熱交換器18は、屋外に配置されている。室外熱交換器18を流れる冷媒は、室外熱交換器18に送られる空気と熱交換を行う。室外熱交換器18は、分岐点Bと分岐点Nとを繋ぐ流路の途中に設けられている。 The outdoor heat exchanger 18 is configured with multiple heat transfer tubes and multiple fins joined to the multiple heat transfer tubes. In this embodiment, the outdoor heat exchanger 18 is arranged outdoors. The refrigerant flowing through the outdoor heat exchanger 18 exchanges heat with the air sent to the outdoor heat exchanger 18 . The outdoor heat exchanger 18 is provided in the middle of the flow path connecting the branch point B and the branch point N. As shown in FIG.
 室外ファン9は、室外熱交換器18を通過する屋外空気による空気流れを生じさせる。 The outdoor fan 9 generates an air flow by the outdoor air passing through the outdoor heat exchanger 18.
 分岐点Nは、室外熱交換器18のガス冷媒側から延びる流路と、第16開閉弁56から延びる流路と、第17開閉弁57から延びる流路と、が接続されている。 At the branch point N, the flow path extending from the gas refrigerant side of the outdoor heat exchanger 18, the flow path extending from the 16th on-off valve 56, and the flow path extending from the 17th on-off valve 57 are connected.
 第15開閉弁55は、開状態と閉状態とに切り換え制御可能な電磁弁である。第15開閉弁55は、第2切換機構22の切換弁22cと分岐点Mとを繋ぐ流路の途中に設けられている。 The fifteenth on-off valve 55 is an electromagnetic valve that can be switched between an open state and a closed state. The fifteenth on-off valve 55 is provided in the middle of the flow path connecting the switching valve 22c of the second switching mechanism 22 and the branch point M. As shown in FIG.
 第16開閉弁56は、開状態と閉状態とに切り換え制御可能な電磁弁である。第16開閉弁56は、第1切換機構12の切換弁12eと分岐点Nとを繋ぐ流路の途中に設けられている。 The 16th on-off valve 56 is an electromagnetic valve that can be switched between an open state and a closed state. The sixteenth on-off valve 56 is provided in the middle of the flow path connecting the switching valve 12e of the first switching mechanism 12 and the branch point N. As shown in FIG.
 第17開閉弁57は、開状態と閉状態とに切り換え制御可能な電磁弁である。第17開閉弁57は、第2切換機構22の切換弁22eと分岐点Nとを繋ぐ流路の途中に設けられている。 The 17th on-off valve 57 is an electromagnetic valve that can be switched between an open state and a closed state. The seventeenth on-off valve 57 is provided in the middle of the flow path connecting the switching valve 22e of the second switching mechanism 22 and the branch point N. As shown in FIG.
 第5膨張弁35は、弁開度を調節可能な電子膨張弁によって構成されている。第5膨張弁35は、分岐点Fと分岐点Bとを繋ぐ流路の途中に設けられている。 The fifth expansion valve 35 is composed of an electronic expansion valve whose opening degree can be adjusted. The fifth expansion valve 35 is provided in the middle of the flow path connecting the branch point F and the branch point B. As shown in FIG.
 第6膨張弁36は、弁開度を調節可能な電子膨張弁によって構成されている。第6膨張弁36は、分岐点Aと分岐点Gとを繋ぐ流路の途中に設けられている。 The sixth expansion valve 36 is composed of an electronic expansion valve whose opening degree can be adjusted. The sixth expansion valve 36 is provided in the middle of the flow path connecting the branch point A and the branch point G. As shown in FIG.
 コントローラ7は、熱負荷回路90と冷媒回路10を構成する各機器の動作を制御する。具体的には、コントローラ7は、制御を行うために設けられたCPUとしてのプロセッサとメモリ等を有している。 The controller 7 controls the operation of each device that constitutes the heat load circuit 90 and the refrigerant circuit 10 . Specifically, the controller 7 has a processor as a CPU provided for control, a memory, and the like.
 以上の冷凍サイクル装置1cにおいて、コントローラ7が各機器を制御して冷凍サイクルを実行させることで、熱負荷熱交換器91における冷房負荷を処理する冷房運転と、熱負荷熱交換器91における暖房負荷を処理する暖房運転と、冷房暖房移行運転と、暖房冷房移行運転と、が行われる。 In the refrigeration cycle apparatus 1c described above, the controller 7 controls each device to execute the refrigeration cycle, thereby performing a cooling operation for processing the cooling load in the thermal load heat exchanger 91 and a heating load in the thermal load heat exchanger 91. A heating operation, a cooling/heating transitional operation, and a heating/cooling transitional operation are performed.
 (4-1)冷房運転
 冷房運転時は、図15に示すように、第1冷媒を熱源側冷凍サイクルで用い、第2冷媒を利用側冷凍サイクルで用いた二元冷凍サイクル運転を行う。なお、図11では、一重の矢印は第1冷媒が流れる流路を示しており、二重の矢印は第2冷媒が流れる流路を示している。この二元冷凍サイクルでは、利用熱交換器13を第2冷媒の蒸発器として機能させ、カスケード熱交換器17を第2冷媒の放熱器として機能させ、カスケード熱交換器17を第1冷媒の蒸発器として機能させ、室外熱交換器18を第1冷媒の凝縮器として機能させる。
(4-1) Cooling Operation During the cooling operation, as shown in FIG. 15, the first refrigerant is used in the heat source side refrigerating cycle and the second refrigerant is used in the user side refrigerating cycle. In FIG. 11 , single arrows indicate channels through which the first coolant flows, and double arrows indicate channels through which the second coolant flows. In this binary refrigeration cycle, the utilization heat exchanger 13 functions as an evaporator for the second refrigerant, the cascade heat exchanger 17 functions as a radiator for the second refrigerant, and the cascade heat exchanger 17 functions as an evaporator for the first refrigerant. and the outdoor heat exchanger 18 functions as a condenser for the first refrigerant.
 具体的には、この二元冷凍サイクルでは、第15開閉弁55と第16開閉弁56の全てを閉状態に制御し、第5膨張弁35および第6膨張弁36を全閉状態に制御することで、第1冷媒と第2冷媒の混ざり合いを防いでいる。第14開閉弁54および第17開閉弁57は、開状態に制御される。そして、第1切換機構12の接続状態を図15の実線で示す接続状態に切り換え、第2切換機構22の接続状態を図15の実線で示す接続状態に切り換え、ポンプ92、第1圧縮機11、第2圧縮機21、室外ファン9を駆動させる。さらに、第1膨張弁15の弁開度を、第1圧縮機11の吸入する第2冷媒の過熱度が所定条件を満たすように制御し、第4膨張弁34の弁開度を第2圧縮機21の吸入する第1冷媒の過熱度が所定条件を満たすように制御する。 Specifically, in this binary refrigerating cycle, the fifteenth on-off valve 55 and the sixteenth on-off valve 56 are all controlled to be closed, and the fifth expansion valve 35 and the sixth expansion valve 36 are controlled to be fully closed. This prevents the first refrigerant and the second refrigerant from being mixed. The fourteenth on-off valve 54 and the seventeenth on-off valve 57 are controlled to be open. Then, the connected state of the first switching mechanism 12 is switched to the connected state indicated by the solid line in FIG. 15, the connected state of the second switching mechanism 22 is switched to the connected state indicated by the solid line in FIG. , the second compressor 21 and the outdoor fan 9 are driven. Further, the valve opening degree of the first expansion valve 15 is controlled so that the degree of superheat of the second refrigerant sucked into the first compressor 11 satisfies a predetermined condition, and the valve opening degree of the fourth expansion valve 34 is controlled for the second compression. Control is performed so that the degree of superheat of the first refrigerant sucked by the machine 21 satisfies a predetermined condition.
 これにより、第2圧縮機21から吐出された第1冷媒は、第2切換機構22の切換弁22eと第17開閉弁57と分岐点Nを介して、室外熱交換器18に送られる。室外熱交換器18を流れる第1冷媒は、室外ファン9により供給される屋外空気と熱交換を行うことで凝縮する。室外熱交換器18で凝縮した第1冷媒は、全開状態に制御された第2膨張弁16を通過した後、分岐点Gを通過して、第2レシーバ19bに流入する。第2レシーバ19bから流出した冷媒は、第4膨張弁34において減圧され、カスケード熱交換器17の第2カスケード流路17bに送られる。第1冷媒は、カスケード熱交換器17の第2カスケード流路17bを流れる際に、第1カスケード流路17aを流れる第2冷媒と熱交換することで、蒸発する。カスケード熱交換器17で蒸発した第1冷媒は、第2切換機構22の切換弁22dを介して、第2圧縮機21に吸入される。第1圧縮機11から吐出された第2冷媒は、第1切換機構12の切換弁12dを介して、カスケード熱交換器17の第1カスケード流路17aに送られる。第2冷媒は、カスケード熱交換器17の第1カスケード流路17aを流れる際に、第2カスケード流路17bを流れる第1冷媒と熱交換することで放熱する。カスケード熱交換器17で放熱した第2冷媒は、全開状態に制御された第3膨張弁33を通過して、第1レシーバ19aに流入する。第1レシーバ19aから流出した第2冷媒は、第1膨張弁15において減圧され、分岐点Aを通過して、利用熱交換器13の第1利用流路13aに送られる。利用熱交換器13の第1利用流路13aを流れる第2冷媒は、熱負荷回路90が有する利用熱交換器13の熱負荷流路13bを流れる水と熱交換を行うことで、蒸発する。この熱交換により冷やされた水は、熱負荷回路90における熱負荷熱交換器91まで送られることで冷房負荷を処理する。利用熱交換器13の第1利用流路13aで蒸発した第2冷媒は、第14開閉弁54と第1切換機構12の切換弁12cを介して第1圧縮機11に吸入される。 As a result, the first refrigerant discharged from the second compressor 21 is sent to the outdoor heat exchanger 18 via the switching valve 22e of the second switching mechanism 22, the seventeenth on-off valve 57, and the branch point N. The first refrigerant flowing through the outdoor heat exchanger 18 is condensed by exchanging heat with the outdoor air supplied by the outdoor fan 9 . The first refrigerant condensed in the outdoor heat exchanger 18 passes through the second expansion valve 16 controlled to be fully open, passes through the branch point G, and flows into the second receiver 19b. The refrigerant that has flowed out of the second receiver 19 b is decompressed in the fourth expansion valve 34 and sent to the second cascade flow path 17 b of the cascade heat exchanger 17 . When the first refrigerant flows through the second cascade flow path 17b of the cascade heat exchanger 17, the first refrigerant evaporates by exchanging heat with the second refrigerant flowing through the first cascade flow path 17a. The first refrigerant evaporated in the cascade heat exchanger 17 is sucked into the second compressor 21 via the switching valve 22d of the second switching mechanism 22 . The second refrigerant discharged from the first compressor 11 is sent to the first cascade flow path 17a of the cascade heat exchanger 17 via the switching valve 12d of the first switching mechanism 12 . When the second refrigerant flows through the first cascade flow path 17a of the cascade heat exchanger 17, the second refrigerant releases heat by exchanging heat with the first refrigerant flowing through the second cascade flow path 17b. The second refrigerant that has dissipated heat in the cascade heat exchanger 17 passes through the third expansion valve 33 that is controlled to be fully open and flows into the first receiver 19a. The second refrigerant that has flowed out of the first receiver 19 a is decompressed by the first expansion valve 15 , passes through the branch point A, and is sent to the first utilization flow path 13 a of the heat utilization exchanger 13 . The second refrigerant flowing through the first utilization flow path 13a of the utilization heat exchanger 13 exchanges heat with water flowing through the heat load flow path 13b of the utilization heat exchanger 13 of the heat load circuit 90, thereby evaporating. The water cooled by this heat exchange is sent to the heat load heat exchanger 91 in the heat load circuit 90 to process the cooling load. The second refrigerant evaporated in the first use flow path 13 a of the use heat exchanger 13 is sucked into the first compressor 11 via the fourteenth on-off valve 54 and the switching valve 12 c of the first switching mechanism 12 .
 (4-2)冷房暖房移行運転
 冷凍サイクル装置1cは、冷房運転を行うサイクル状態から、暖房運転を行うサイクル状態に移行させるために、以下の(a5)~(b5)の順からなる冷房暖房移行運転が行われる。
(4-2) Cooling/heating shift operation The refrigeration cycle device 1c performs the following steps (a5) to (b5) in order to shift from the cycle state in which the cooling operation is performed to the cycle state in which the heating operation is performed. A transition operation is performed.
 (a5)まず、冷房運転が行われていた状態から、第1膨張弁15を全閉状態に制御した状態で、第1圧縮機11を運転させる。ここで、第1冷媒を用いた冷房運転時の冷凍サイクルが行われるように、第2圧縮機21等を運転させる。これにより、第1レシーバ19aの下方から第1レシーバ19a内に第2冷媒を回収する運転を行う。この運転は、第1レシーバ19aに所定の十分な量の第2冷媒が回収された状態になるまで、例えば、所定時間継続される。 (a5) First, the first compressor 11 is operated while the first expansion valve 15 is controlled to be fully closed from the state in which the cooling operation was performed. Here, the second compressor 21 and the like are operated so that the refrigeration cycle during the cooling operation using the first refrigerant is performed. As a result, the operation of recovering the second refrigerant into the first receiver 19a from below the first receiver 19a is performed. This operation is continued for a predetermined time, for example, until a predetermined sufficient amount of the second refrigerant is collected in the first receiver 19a.
 (b5)次に、第1レシーバ19aへの第2冷媒の回収が所定量以上に進んだ状態で、第14開閉弁54を閉じ、第1圧縮機11を停止させる。その後、第2切換機構22の切換弁22cについて、第2圧縮機21の吐出側を第15開閉弁55に接続した状態に切り換え、第2切換機構22の切換弁22eについて、第2圧縮機21の吸入側を第17開閉弁57に接続した状態に切り換え、第2切換機構22の切換弁22dは、第2圧縮機21の吸入側がカスケード熱交換器17の第2カスケード流路17bのガス冷媒側に接続された状態に維持する。さらに、第15開閉弁55を開状態に制御し、第2膨張弁16および第4膨張弁34を全閉状態に制御し、第6膨張弁36を開状態に制御する。この状態で、第2圧縮機21を運転させることで、室外熱交換器18に残る第1冷媒を、室外ファン9から得られる空気の熱により加熱して追い出し、第17開閉弁57、第2切換機構22の切換弁22eを介して、第2圧縮機21に吸入させる。また、カスケード熱交換器17の第2カスケード流路17bに残る第1冷媒も、第2切換機構22の切換弁22dを介して第2圧縮機21に吸入される。第2圧縮機21から吐出された第1冷媒は、第2切換機構22の切換弁22c、第15開閉弁55、分岐点Mを介して、利用熱交換器13の第1利用流路13aに送られる。さらに、第1冷媒は、利用熱交換器13の第1利用流路13aを流れる際に凝縮し、分岐点Aおよび第6膨張弁36を介して、第2レシーバ19bに流入する。そして、この運転を所定時間継続させた後、第17開閉弁57を閉状態に制御し、第4膨張弁34を開状態に制御する。 (b5) Next, when the recovery of the second refrigerant to the first receiver 19a has progressed to a predetermined amount or more, the fourteenth on-off valve 54 is closed and the first compressor 11 is stopped. After that, the switching valve 22c of the second switching mechanism 22 is switched to the state in which the discharge side of the second compressor 21 is connected to the fifteenth on-off valve 55, and the switching valve 22e of the second switching mechanism 22 is switched to the second compressor 21. is connected to the seventeenth on-off valve 57, and the switching valve 22d of the second switching mechanism 22 connects the suction side of the second compressor 21 to the gas refrigerant in the second cascade flow path 17b of the cascade heat exchanger 17. remain connected to the side. Furthermore, the fifteenth on-off valve 55 is controlled to be open, the second expansion valve 16 and the fourth expansion valve 34 are controlled to be fully closed, and the sixth expansion valve 36 is controlled to be open. By operating the second compressor 21 in this state, the first refrigerant remaining in the outdoor heat exchanger 18 is heated by the heat of the air obtained from the outdoor fan 9 and driven out. Through the switching valve 22 e of the switching mechanism 22 , the second compressor 21 is caused to suck. Further, the first refrigerant remaining in the second cascade flow path 17b of the cascade heat exchanger 17 is also sucked into the second compressor 21 via the switching valve 22d of the second switching mechanism 22. The first refrigerant discharged from the second compressor 21 passes through the switching valve 22c of the second switching mechanism 22, the fifteenth on-off valve 55, and the branch point M to the first utilization flow path 13a of the utilization heat exchanger 13. Sent. Further, the first refrigerant is condensed while flowing through the first utilization channel 13a of the utilization heat exchanger 13, and flows through the branch point A and the sixth expansion valve 36 into the second receiver 19b. After continuing this operation for a predetermined time, the seventeenth on-off valve 57 is controlled to be closed, and the fourth expansion valve 34 is controlled to be opened.
 以上により、冷房暖房移行運転を終える。 With the above, the cooling/heating shift operation ends.
 (4-3)暖房運転
 暖房運転時は、図16に示すように、第2冷媒を熱源側冷凍サイクルで用い、第1冷媒を利用側冷凍サイクルで用いた二元冷凍サイクルを行う。なお、図16では、一重の矢印は第1冷媒が流れる流路を示しており、二重の矢印は第2冷媒が流れる流路を示している。この二元冷凍サイクルでは、利用熱交換器13を第1冷媒の凝縮器として機能させ、カスケード熱交換器17を第1冷媒の蒸発器として機能させ、カスケード熱交換器17を第2冷媒の放熱器として機能させ、室外熱交換器18を第2冷媒の蒸発器として機能させる。
(4-3) Heating Operation During heating operation, as shown in FIG. 16, a dual refrigerating cycle is performed in which the second refrigerant is used in the heat source side refrigerating cycle and the first refrigerant is used in the user side refrigerating cycle. In FIG. 16 , single arrows indicate channels through which the first coolant flows, and double arrows indicate channels through which the second coolant flows. In this binary refrigerating cycle, the utilization heat exchanger 13 functions as a condenser for the first refrigerant, the cascade heat exchanger 17 functions as an evaporator for the first refrigerant, and the cascade heat exchanger 17 functions to dissipate the heat of the second refrigerant. and the outdoor heat exchanger 18 functions as an evaporator for the second refrigerant.
 具体的には、この二元冷凍サイクルでは、第14開閉弁54と第17開閉弁57を閉状態に制御し、第1膨張弁15および第2膨張弁16を全閉状態に制御することで、第1冷媒と第2冷媒の混ざり合いを防いでいる。そして、第1切換機構12の切換弁12dと切換弁12cの接続状態を図16に実線で示す状態とし、第1切換機構12の切換弁12eの接続状態を図16に破線で示す状態とし、第2切換機構22の切換弁22dと切換弁22eの接続状態を図16に実線で示す接続状態とし、第2切換機構22の切換弁22cの接続状態を図16に破線で示す接続状態に切り換え、ポンプ92、第1圧縮機11、第2圧縮機21、室外ファン9を駆動させる。さらに、第5膨張弁35の弁開度を、第1圧縮機11の吸入する第2冷媒の過熱度が所定条件を満たすように制御し、第4膨張弁34の弁開度を第2圧縮機21の吸入する第1冷媒の過熱度が所定条件を満たすように制御する。 Specifically, in this binary refrigeration cycle, the 14th on-off valve 54 and the 17th on-off valve 57 are controlled to be closed, and the first expansion valve 15 and the second expansion valve 16 are controlled to be fully closed. , to prevent mixing of the first refrigerant and the second refrigerant. The connection state of the switching valve 12d and the switching valve 12c of the first switching mechanism 12 is set to the state indicated by the solid line in FIG. 16, and the connection state of the switching valve 12e of the first switching mechanism 12 is set to the state indicated by the broken line in FIG. The connection state of the switching valve 22d and the switching valve 22e of the second switching mechanism 22 is switched to the connection state indicated by the solid line in FIG. 16, and the connection state of the switching valve 22c of the second switching mechanism 22 is switched to the connection state indicated by the broken line in FIG. , the pump 92, the first compressor 11, the second compressor 21, and the outdoor fan 9 are driven. Furthermore, the valve opening degree of the fifth expansion valve 35 is controlled so that the degree of superheat of the second refrigerant sucked into the first compressor 11 satisfies a predetermined condition, and the valve opening degree of the fourth expansion valve 34 is controlled for the second compression. Control is performed so that the degree of superheat of the first refrigerant sucked by the machine 21 satisfies a predetermined condition.
 これにより、第1圧縮機11から吐出された第2冷媒は、第1切換機構12の切換弁12dを介してカスケード熱交換器17に送られ、第1カスケード流路17aを流れる際に、第2カスケード流路17bを流れる第1冷媒と熱交換することで、放熱する。カスケード熱交換器17で放熱した第2冷媒は、第3膨張弁33、第1レシーバ19a、分岐点Fを介して、第5膨張弁35において減圧される。第5膨張弁35において減圧された第2冷媒は、分岐点Bを介して、室外熱交換器18に送られる。第2冷媒は、室外熱交換器18において室外ファン9により供給される屋外空気と熱交換を行うこと蒸発し、分岐点N、第16開閉弁56、第1切換機構12の切換弁12cを介して、第1圧縮機11に吸入される。第2圧縮機21から吐出された第1冷媒は、第2切換機構22の切換弁22c、第15開閉弁55、分岐点Mを介して利用熱交換器13の第1利用流路13aに送られる。利用熱交換器13の第1利用流路13aを流れる第1冷媒は、熱負荷回路90が有する利用熱交換器13の熱負荷流路13bを流れる水と熱交換を行うことで、凝縮する。この熱交換により暖められた水は、熱負荷回路90における熱負荷熱交換器91まで送られることで暖房負荷を処理する。利用熱交換器13の第1利用流路13aで凝縮した第1冷媒は、分岐点Aを通過した後、第6膨張弁36を通過し、第2レシーバ19bに流入する。第2レシーバ19bから流出した第1冷媒は、第4膨張弁34において減圧される。第4膨張弁34で減圧された第1冷媒は、カスケード熱交換器17の第2カスケード流路17bを通過する際に、第1カスケード流路17aを流れる第2冷媒と熱交換することで蒸発する。カスケード熱交換器17の第2カスケード流路17bで蒸発した第1冷媒は、第2切換機構22の切換弁22dを介して第2圧縮機21に吸入される。 As a result, the second refrigerant discharged from the first compressor 11 is sent to the cascade heat exchanger 17 via the switching valve 12d of the first switching mechanism 12, and when flowing through the first cascade flow path 17a, the second Heat is dissipated by exchanging heat with the first refrigerant flowing through the second cascade flow path 17b. The second refrigerant that has released heat in the cascade heat exchanger 17 passes through the third expansion valve 33, the first receiver 19a, and the branch point F, and is decompressed in the fifth expansion valve . The second refrigerant decompressed by the fifth expansion valve 35 is sent to the outdoor heat exchanger 18 via the branch point B. The second refrigerant evaporates by exchanging heat with the outdoor air supplied by the outdoor fan 9 in the outdoor heat exchanger 18, and passes through the branch point N, the 16th on-off valve 56, and the switching valve 12c of the first switching mechanism 12. , and is sucked into the first compressor 11 . The first refrigerant discharged from the second compressor 21 is sent to the first utilization passage 13a of the utilization heat exchanger 13 via the switching valve 22c of the second switching mechanism 22, the fifteenth on-off valve 55, and the branch point M. be done. The first refrigerant flowing through the first use flow path 13a of the heat utilization exchanger 13 is condensed by exchanging heat with water flowing through the heat load flow path 13b of the heat utilization heat exchanger 13 of the heat load circuit 90 . The water warmed by this heat exchange is sent to the heat load heat exchanger 91 in the heat load circuit 90 to treat the heating load. The first refrigerant condensed in the first utilization flow path 13a of the utilization heat exchanger 13 passes through the branch point A, passes through the sixth expansion valve 36, and flows into the second receiver 19b. The first refrigerant that has flowed out of the second receiver 19b is decompressed in the fourth expansion valve 34 . The first refrigerant depressurized by the fourth expansion valve 34 evaporates by exchanging heat with the second refrigerant flowing through the first cascade flow path 17a when passing through the second cascade flow path 17b of the cascade heat exchanger 17. do. The first refrigerant evaporated in the second cascade flow path 17 b of the cascade heat exchanger 17 is sucked into the second compressor 21 via the switching valve 22 d of the second switching mechanism 22 .
 (4-4)暖房冷房移行運転
 冷凍サイクル装置1cは、暖房運転を行うサイクル状態から、冷房運転を行うサイクル状態に移行させるために、以下の(a6)~(c6)の順からなる暖房冷房移行運転が行われる。
(4-4) Heating/cooling shift operation The refrigerating cycle device 1c performs heating/cooling in the order of (a6) to (c6) below in order to shift from the cycle state in which the heating operation is performed to the cycle state in which the cooling operation is performed. A transition operation is performed.
 (a6)まず、暖房運転が行われていた状態から、第5膨張弁35を全閉状態に制御し、第1圧縮機11を運転させる。ここで、第1冷媒を用いた暖房運転時の利用側の冷凍サイクルが維持されるように第2圧縮機21等を運転させる。これにより、室外熱交換器18の第2冷媒を第2圧縮機21に吸入させつつ、第2圧縮機21から吐出される第2冷媒を、カスケード熱交換器17の第1カスケード流路17aにおいて放熱させ、第1レシーバ19aに流入させ、第1レシーバ19a内に第2冷媒を回収する運転を行う。この運転は、第1レシーバ19aに所定の十分な量の第2冷媒が回収された状態になるまで、例えば、所定時間継続される。 (a6) First, the fifth expansion valve 35 is controlled to a fully closed state from the state in which the heating operation was being performed, and the first compressor 11 is operated. Here, the second compressor 21 and the like are operated so as to maintain the refrigeration cycle on the user side during the heating operation using the first refrigerant. As a result, the second refrigerant discharged from the second compressor 21 is supplied to the first cascade flow path 17a of the cascade heat exchanger 17 while the second refrigerant of the outdoor heat exchanger 18 is drawn into the second compressor 21. An operation is performed to radiate heat, flow into the first receiver 19a, and collect the second refrigerant in the first receiver 19a. This operation is continued for a predetermined time, for example, until a predetermined sufficient amount of the second refrigerant is collected in the first receiver 19a.
 (b6)次に、冷媒容器19への第2冷媒の回収が所定量以上に進んだ状態で、第16開閉弁56を閉じ、第1圧縮機11を停止させる。その後、第2切換機構22の切換弁22cについて、第2圧縮機21の吸入側が第15開閉弁55に接続された状態に切り換え、第2切換機構22の切換弁22eについて、第2圧縮機21の吐出側が第17開閉弁57に接続された状態に切り換え、第2切換機構22の切換弁22dについては、第2圧縮機21の吸入側がカスケード熱交換器17の第2カスケード流路17bのガス冷媒側に接続された状態を維持する。そして、第4膨張弁34および第6膨張弁36を全閉状態に制御し、第2膨張弁16を全開状態に制御し、第17開閉弁57を開状態に制御する。この状態で第2圧縮機21を運転させることで、利用熱交換器13の第1利用流路13aおよびその周囲に残る第1冷媒を、分岐点M、第15開閉弁55、第2切換機構22の切換弁22cを介して第2圧縮機21に吸入させる。そして、第2圧縮機21から吐出された第1冷媒を、第2切換機構22の切換弁22e、第17開閉弁57、分岐点Nを介して、室外熱交換器18に送る。室外ファン9により送られる空気と室外熱交換器18において熱交換した第1冷媒は、凝縮し、分岐点B、第2膨張弁16、分岐点Gを通過して、第2レシーバ19bに溜まり始める。そして、この運転を所定時間継続させる。 (b6) Next, when the collection of the second refrigerant into the refrigerant container 19 progresses to a predetermined amount or more, the sixteenth on-off valve 56 is closed to stop the first compressor 11 . After that, the switching valve 22c of the second switching mechanism 22 is switched to the state in which the suction side of the second compressor 21 is connected to the fifteenth on-off valve 55, and the switching valve 22e of the second switching mechanism 22 is switched to the second compressor 21. is connected to the 17th on-off valve 57, and for the switching valve 22d of the second switching mechanism 22, the suction side of the second compressor 21 is connected to the second cascade flow path 17b of the cascade heat exchanger 17. Stay connected to the refrigerant side. Then, the fourth expansion valve 34 and the sixth expansion valve 36 are controlled to be fully closed, the second expansion valve 16 is controlled to be fully open, and the seventeenth on-off valve 57 is controlled to be open. By operating the second compressor 21 in this state, the first refrigerant remaining in the first utilization flow path 13a of the utilization heat exchanger 13 and its surroundings is transferred to the branch point M, the fifteenth on-off valve 55, and the second switching mechanism. 22 to the second compressor 21 through the switching valve 22c. Then, the first refrigerant discharged from the second compressor 21 is sent to the outdoor heat exchanger 18 via the switching valve 22 e of the second switching mechanism 22 , the seventeenth on-off valve 57 and the branch point N. The first refrigerant that has exchanged heat with the air sent by the outdoor fan 9 in the outdoor heat exchanger 18 is condensed, passes through the branch point B, the second expansion valve 16, and the branch point G, and begins to accumulate in the second receiver 19b. . Then, this operation is continued for a predetermined time.
 (c6)次に、第2レシーバ19bに第1冷媒が所定量以上溜まった段階で、第15開閉弁55を閉状態に制御する。また、第14開閉弁54を開状態に制御し、第1膨張弁15を所定の弁開度に制御する。そして、第1切換機構12の切換弁12cについて、第1圧縮機11の吸入側と第14開閉弁54が接続された状態に切り換え、第1切換機構12の切換弁12dについて、第1切換機構12の切換弁12eについて、第1圧縮機11の吐出側と第16開閉弁56が接続された状態とし、第1圧縮機11の吐出側とカスケード熱交換器17の第1カスケード流路17aのガス冷媒側が接続された状態を維持する。 (c6) Next, when the second receiver 19b is filled with a predetermined amount or more of the first refrigerant, the fifteenth on-off valve 55 is controlled to be closed. Also, the fourteenth on-off valve 54 is controlled to open, and the first expansion valve 15 is controlled to a predetermined valve opening degree. Then, the switching valve 12c of the first switching mechanism 12 is switched to the state in which the suction side of the first compressor 11 and the fourteenth on-off valve 54 are connected, and the switching valve 12d of the first switching mechanism 12 is switched to the first switching mechanism. 12 switching valve 12e, the discharge side of the first compressor 11 and the 16th on-off valve 56 are connected, and the discharge side of the first compressor 11 and the first cascade flow path 17a of the cascade heat exchanger 17 are connected. Keep the gas refrigerant side connected.
 以上により、暖房冷房移行運転を終える。 With the above, the heating/cooling shift operation ends.
 (4-5)第4実施形態の特徴
 第4実施形態の冷凍サイクル装置1cでは、冷媒回路10において、地球温暖化係数(GWP)が十分に低い第1冷媒と、オゾン層破壊係数(ODP)および地球温暖化係数(GWP)が十分に低い第2冷媒と、が用いられている。このため、地球環境の悪化を抑制することができる。
(4-5) Features of the Fourth Embodiment In the refrigeration cycle device 1c of the fourth embodiment, in the refrigerant circuit 10, the first refrigerant having a sufficiently low global warming potential (GWP) and the ozone depletion potential (ODP) and a second refrigerant with a sufficiently low global warming potential (GWP). Therefore, deterioration of the global environment can be suppressed.
 また、冷媒回路10において地球温暖化係数(GWP)が十分に低い第1冷媒を用いた場合であっても、暖房運転として、高圧冷媒である第2冷媒を熱源側冷凍サイクルで用い、低圧冷媒である第1冷媒を利用側冷凍サイクルで用いた二元冷凍サイクルを行う。これにより、低圧冷媒である第1冷媒を用いた単元冷凍サイクルを行う場合と比較して、暖房運転時の能力を確保し易い。 Further, even when the first refrigerant having a sufficiently low global warming potential (GWP) is used in the refrigerant circuit 10, the second refrigerant, which is a high-pressure refrigerant, is used in the heat source side refrigeration cycle for heating operation, and the low-pressure refrigerant A binary refrigerating cycle is performed using the first refrigerant in the user-side refrigerating cycle. As a result, it is easier to secure the capacity during the heating operation compared to the case of performing the unitary refrigeration cycle using the first refrigerant, which is the low-pressure refrigerant.
 さらに、冷媒回路10では第2冷媒として二酸化炭素が用いられている。しかし、冷房運転時には、第2冷媒を用いた単元冷凍サイクルは行わず、第2冷媒を熱源側冷凍サイクルで用いて第1冷媒を利用側冷凍サイクルで用いた二元冷凍サイクルも行わず、低圧冷媒である第1冷媒を熱源側冷凍サイクルで用い、高圧冷媒である第2冷媒を利用側冷凍サイクルで用いた二元冷凍サイクルを行う。これにより、高圧冷媒である二酸化炭素冷媒を用いて単元冷凍サイクルを行う場合や高圧冷媒である二酸化炭素を熱源側サイクルで用いる二元冷凍サイクルを行う場合のように二酸化炭素冷媒の圧力が臨界圧力を超えてCOPが低くなってしまうことを避けて、冷房運転を行うことができる。また、高圧冷媒である二酸化炭素が用いられる冷媒回路10の要素部品として求められる耐圧強度の基準を低めのものとすることが可能になる。 Furthermore, carbon dioxide is used as the second refrigerant in the refrigerant circuit 10 . However, during cooling operation, the unitary refrigerating cycle using the second refrigerant is not performed, nor is the dual refrigerating cycle using the second refrigerant in the heat source side refrigerating cycle and the first refrigerant in the user side refrigerating cycle. A binary refrigerating cycle is performed in which the first refrigerant, which is a refrigerant, is used in the heat source side refrigerating cycle, and the second refrigerant, which is a high pressure refrigerant, is used in the user side refrigerating cycle. As a result, the pressure of the carbon dioxide refrigerant becomes the critical pressure as in the case of performing a single refrigeration cycle using carbon dioxide refrigerant, which is a high-pressure refrigerant, or when performing a dual refrigeration cycle using carbon dioxide, which is a high-pressure refrigerant, in the heat source side cycle. The cooling operation can be performed while avoiding the COP from exceeding and becoming low. In addition, it is possible to lower the standard of pressure resistance strength required for element parts of the refrigerant circuit 10 that uses carbon dioxide, which is a high-pressure refrigerant.
 また、第4実施形態の冷凍サイクル装置1cでは、熱源側の冷凍サイクルや利用側の冷凍サイクルにおいて用いられている第1レシーバ19aと第2レシーバ19bを利用して、第1冷媒や第2冷媒を集めることができている。このため、第2実施形態に記載されている熱源側の冷凍サイクルや利用側の冷凍サイクルで用いられない冷媒容器19を別途確保する必要がない。 Further, in the refrigerating cycle device 1c of the fourth embodiment, the first refrigerant and the second refrigerant are obtained by using the first receiver 19a and the second receiver 19b used in the refrigerating cycle on the heat source side and the refrigerating cycle on the user side. are able to collect Therefore, it is not necessary to separately secure the refrigerant container 19 that is not used in the refrigeration cycle on the heat source side and the refrigeration cycle on the user side described in the second embodiment.
 (5)他の実施形態
 (5-1)他の実施形態A
 上記実施形態では、基本的には第1冷媒と第2冷媒とが互いに混ざり合うことを抑制させながら、各冷媒を循環させている。しかし、冷媒回路10において各種運転が行われることで、第1冷媒が流れていた箇所に第2冷媒が流れることがあり、第2冷媒が流れていた箇所に第1冷媒が流れることがある。このため、第1冷媒と第2冷媒が僅かに混ざり合う場合も考えられる。
(5) Other Embodiments (5-1) Other Embodiment A
In the above embodiment, each refrigerant is basically circulated while preventing the first refrigerant and the second refrigerant from being mixed with each other. However, as various operations are performed in the refrigerant circuit 10, the second refrigerant may flow where the first refrigerant flowed, and the first refrigerant may flow where the second refrigerant flowed. Therefore, it is conceivable that the first refrigerant and the second refrigerant are slightly mixed.
 ここで、第1冷媒と第2冷媒とは互いに異なる冷媒種を用いているが、これらの冷媒が混ざり合った場合には、非共沸混合冷媒が流れることになる。この非共沸混合冷媒は、蒸発器として機能する熱交換器においては、蒸発を始める際の上流側の冷媒温度と蒸発を終える下流側の冷媒温度が異なるという温度勾配が生じる。また、この非共沸混合冷媒は、凝縮器として機能する熱交換器においては、凝縮を始める際の上流側の冷媒温度と凝縮を終える下流側の冷媒温度が異なるという温度勾配が生じる。 Here, different refrigerant species are used for the first refrigerant and the second refrigerant, but when these refrigerants are mixed, a non-azeotropic mixed refrigerant flows. In the heat exchanger functioning as an evaporator, this non-azeotropic mixed refrigerant produces a temperature gradient in which the refrigerant temperature on the upstream side when evaporation starts differs from the refrigerant temperature on the downstream side when evaporation ends. In addition, in the heat exchanger functioning as a condenser, this non-azeotropic mixed refrigerant produces a temperature gradient in which the refrigerant temperature on the upstream side when condensation starts differs from the refrigerant temperature on the downstream side when condensation ends.
 したがって、コントローラ7は、蒸発器として機能する熱交換器において所定の上流側の位置における冷媒の蒸発温度と、所定の下流側の位置における冷媒の蒸発温度と、の差異が所定値以上である場合に、第1冷媒と第2冷媒が混合していると評価してもよい。また、コントローラ7は、凝縮器として機能する熱交換器において所定の上流側の位置における冷媒の凝縮温度と、所定の下流側の位置における冷媒の凝縮温度と、の差異が所定値以上である場合に、第1冷媒と第2冷媒が混合していると評価してもよい。これらの各温度の検知は、特に限定されず、熱交換器における所定の上流および下流の箇所に温度センサを設けておくことで検知できる。なお、第1冷媒と第2冷媒が混合していると評価する場合としては、いずれかの冷媒の濃度が90重量%以下になった場合であってもよく、95重量%以下になった場合であってもよいし、98重量%以下になった場合であってもよい。 Therefore, when the difference between the refrigerant evaporation temperature at a predetermined upstream position and the refrigerant evaporation temperature at a predetermined downstream position in the heat exchanger functioning as an evaporator is equal to or greater than a predetermined value, Alternatively, it may be evaluated that the first refrigerant and the second refrigerant are mixed. Further, in the heat exchanger functioning as a condenser, if the difference between the condensation temperature of the refrigerant at a predetermined upstream position and the condensation temperature of the refrigerant at a predetermined downstream position is equal to or greater than a predetermined value, Alternatively, it may be evaluated that the first refrigerant and the second refrigerant are mixed. Detection of each of these temperatures is not particularly limited, and can be detected by providing temperature sensors at predetermined upstream and downstream locations in the heat exchanger. In addition, when evaluating that the first refrigerant and the second refrigerant are mixed, the concentration of one of the refrigerants may be 90% by weight or less, or 95% by weight or less. or 98% by weight or less.
 さらに、コントローラ7は、第1冷媒と第2冷媒が混合していると評価した場合には、当該評価結果を、図示しないディスプレイに表示出力する等により報知してもよい。 Further, when the controller 7 evaluates that the first refrigerant and the second refrigerant are mixed, the evaluation result may be displayed on a display (not shown) or the like.
 (5-2)他の実施形態B
 上述の他の実施形態Aに記載の通り、第1冷媒と第2冷媒とは互いに混ざり合う場合がある。
(5-2) Other embodiment B
As described in other embodiment A above, the first refrigerant and the second refrigerant may intermix.
 このため、冷凍サイクル装置としては、上記他の実施形態Aに記載のように第1冷媒と第2冷媒が混ざり合っていると評価された場合、冷房運転と暖房運転の切り換えが行われた場合、または、冷房運転と暖房運転の切り換えが所低回数行われた場合に、第1冷媒と第2冷媒とを分離させる分離処理を行えるものであってもよい。 Therefore, in the refrigeration cycle device, when it is evaluated that the first refrigerant and the second refrigerant are mixed as described in the other embodiment A, when switching between the cooling operation and the heating operation is performed Alternatively, a separation process for separating the first refrigerant and the second refrigerant may be performed when switching between the cooling operation and the heating operation is performed a certain number of times.
 分離処理は、特に限定されず、例えば、冷媒容器19、第1レシーバ19a、第2レシーバ19bにおいて、第1冷媒または第2冷媒を選択的に吸着する吸着剤を設けておいてもよい。吸着剤としては、特に限定されないが、例えば、金属有機構造体(MOF:metal-organic framework)を用いてもよい。 The separation process is not particularly limited, and for example, an adsorbent that selectively adsorbs the first refrigerant or the second refrigerant may be provided in the refrigerant container 19, the first receiver 19a, and the second receiver 19b. Although the adsorbent is not particularly limited, for example, a metal-organic framework (MOF) may be used.
 また、冷凍サイクル装置としては、第1冷媒について蒸溜する運転が可能なものであってもよいし、第2冷媒について蒸溜する運転が可能なものであってもよい。 In addition, the refrigeration cycle device may be capable of distilling the first refrigerant, or may be capable of distilling the second refrigerant.
 (付記)
 以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
(Appendix)
Although embodiments of the present disclosure have been described above, it will be appreciated that various changes in form and detail may be made without departing from the spirit and scope of the present disclosure as set forth in the appended claims. .
1、1a、1b、1c    :冷凍サイクル装置
12   :第1切換機構
12x  :第1切換機構
13   :利用熱交換器
13a  :第1利用流路
13b  :熱負荷流路
14   :第3利用膨張弁
15   :第1膨張弁
16   :第2膨張弁
17   :カスケード熱交換器
17a  :第1カスケード流路
17b  :第2カスケード流路
18   :室外熱交換器
19   :冷媒容器(第2領域)
19a  :第1レシーバ(第2領域)
19b  :第2レシーバ(第1領域)
21   :第2圧縮機
33-36   :第3-第6膨張弁
41-49   :第1-第9開閉弁
50-57   :第10-第17開閉弁
90   :熱負荷回路
91   :熱負荷熱交換器
92   :ポンプ
Reference Signs List 1, 1a, 1b, 1c: refrigeration cycle device 12: first switching mechanism 12x: first switching mechanism 13: utilization heat exchanger 13a: first utilization passage 13b: heat load passage 14: third utilization expansion valve 15 : First expansion valve 16 : Second expansion valve 17 : Cascade heat exchanger 17a : First cascade channel 17b : Second cascade channel 18 : Outdoor heat exchanger 19 : Refrigerant container (second region)
19a: first receiver (second area)
19b: second receiver (first area)
21: Second compressor 33-36: Third to sixth expansion valves 41-49: First to ninth on-off valves 50-57: Tenth to seventeenth on-off valves 90: Heat load circuit 91: Heat load heat exchange Device 92: pump
特開2015-197254号公報JP 2015-197254 A

Claims (16)

  1.  30℃で1MPa以下の第1冷媒を用いた利用側の冷凍サイクルと、30℃で1.5MPa以上の第2冷媒を用いた熱源側の冷凍サイクルと、を含む二元冷凍サイクルを行うことで暖房運転を行い、
     前記第1冷媒を用いた単元冷凍サイクルを行うことで冷房運転を行う、
    冷凍サイクル装置(1)。
    By performing a dual refrigeration cycle including a user side refrigeration cycle using a first refrigerant of 1 MPa or less at 30° C. and a heat source side refrigeration cycle using a second refrigerant of 1.5 MPa or more at 30° C. heating operation,
    Cooling operation is performed by performing a unit refrigeration cycle using the first refrigerant,
    A refrigeration cycle device (1).
  2.  前記暖房運転時に前記第2冷媒の蒸発器として機能し、前記冷房運転時に前記第1冷媒の放熱器として機能する室外熱交換器(18)を備えた、
    請求項1に記載の冷凍サイクル装置。
    An outdoor heat exchanger (18) that functions as an evaporator for the second refrigerant during the heating operation and functions as a radiator for the first refrigerant during the cooling operation,
    The refrigeration cycle apparatus according to claim 1.
  3.  前記暖房運転時に前記第1冷媒を流すための第1カスケード流路(17a)と、前記第1カスケード流路とは独立しており、前記暖房運転時に前記第2冷媒を流すための第2カスケード流路(17b)と、を有し、前記第1冷媒と前記第2冷媒とを熱交換させるカスケード熱交換器(17)を備える、
    請求項2に記載の冷凍サイクル装置。
    A first cascade flow path (17a) for flowing the first refrigerant during the heating operation and a second cascade flow path for flowing the second refrigerant during the heating operation are independent of the first cascade flow path (17a). a cascade heat exchanger (17) having a flow path (17b) for exchanging heat between the first refrigerant and the second refrigerant;
    The refrigeration cycle apparatus according to claim 2.
  4.  前記暖房運転時に前記第1冷媒が放熱する利用熱交換器(13)を備え、
     前記暖房運転時は、前記第1冷媒が前記第1カスケード流路(17a)を通過する時に蒸発し、前記第2冷媒が前記第2カスケード流路(17b)を通過する時に放熱する、
    請求項3に記載の冷凍サイクル装置。
    A utilization heat exchanger (13) in which the first refrigerant releases heat during the heating operation,
    During the heating operation, the first refrigerant evaporates when passing through the first cascade flow path (17a), and heat is released when the second refrigerant passes through the second cascade flow path (17b).
    The refrigeration cycle device according to claim 3.
  5.  前記冷房運転時に前記第1冷媒が前記利用熱交換器(13)で蒸発する、
    請求項4に記載の冷凍サイクル装置。
    The first refrigerant evaporates in the utilization heat exchanger (13) during the cooling operation,
    The refrigeration cycle apparatus according to claim 4.
  6.  前記室外熱交換器以外の第1領域(19b)に前記第1冷媒を集めることが可能であり、前記室外熱交換器以外で且つ前記第1領域以外の第2領域(19、19a)に前記第2冷媒を集めることが可能である、
    請求項2から5のいずれか1項に記載の冷凍サイクル装置。
    The first refrigerant can be collected in a first region (19b) other than the outdoor heat exchanger, and the second region (19, 19a) other than the outdoor heat exchanger and other than the first region capable of collecting a second refrigerant,
    The refrigeration cycle apparatus according to any one of claims 2 to 5.
  7.  30℃で1MPa以下の第1冷媒を用いた利用側の冷凍サイクルと、30℃で1.5MPa以上の第2冷媒を用いた熱源側の冷凍サイクルと、を含む二元冷凍サイクルを行うことで暖房運転を行い、
     前記第2冷媒を用いた利用側の冷凍サイクルと、前記第1冷媒を用いた熱源側の冷凍サイクルと、を含む二元冷凍サイクルを行うことで冷房運転を行う、
    冷凍サイクル装置(1a、1b、1c)。
    By performing a dual refrigeration cycle including a user side refrigeration cycle using a first refrigerant of 1 MPa or less at 30° C. and a heat source side refrigeration cycle using a second refrigerant of 1.5 MPa or more at 30° C. heating operation,
    Cooling operation is performed by performing a dual refrigeration cycle including a user-side refrigeration cycle using the second refrigerant and a heat source-side refrigeration cycle using the first refrigerant,
    A refrigeration cycle device (1a, 1b, 1c).
  8.  前記暖房運転と前記冷房運転との間に、熱源側の冷凍サイクルで用いられる冷媒と、利用側の冷凍サイクルで用いられる冷媒と、が入れ換わる、
    請求項7に記載の冷凍サイクル装置。
    Between the heating operation and the cooling operation, the refrigerant used in the refrigeration cycle on the heat source side and the refrigerant used in the refrigeration cycle on the user side are replaced.
    The refrigeration cycle apparatus according to claim 7.
  9.  前記冷媒の入れ換え時に、前記第1冷媒または前記第2冷媒のいずれかを一時的に貯留する冷媒タンク(19、19a、19b)を備えた、
    請求項8に記載の冷凍サイクル装置。
    A refrigerant tank (19, 19a, 19b) that temporarily stores either the first refrigerant or the second refrigerant when the refrigerant is replaced,
    The refrigeration cycle apparatus according to claim 8.
  10.  前記暖房運転時に前記第1冷媒が蒸発する第1カスケード流路(17a)と、前記第1カスケード流路とは独立しており、前記暖房運転時に前記第2冷媒が放熱する第2カスケード流路(17b)と、を有し、前記第1冷媒と前記第2冷媒とを熱交換させるカスケード熱交換器(17)を備える、
    請求項7から9のいずれか1項に記載の冷凍サイクル装置。
    A first cascade flow path (17a) in which the first refrigerant evaporates during the heating operation is independent of the first cascade flow path (17a), and a second cascade flow path in which the second refrigerant releases heat during the heating operation. (17b), comprising a cascade heat exchanger (17) for exchanging heat between the first refrigerant and the second refrigerant;
    The refrigeration cycle apparatus according to any one of claims 7 to 9.
  11.  前記暖房運転時に前記第1冷媒の放熱器として機能し、前記冷房運転時に前記第2冷媒の蒸発器として機能する利用熱交換器(13)を備える、
    請求項7から10のいずれか1項に記載の冷凍サイクル装置。
    a utilization heat exchanger (13) that functions as a radiator for the first refrigerant during the heating operation and functions as an evaporator for the second refrigerant during the cooling operation;
    The refrigeration cycle apparatus according to any one of claims 7 to 10.
  12.  前記暖房運転時に前記第2冷媒の蒸発器として機能し、前記冷房運転時に前記第1冷媒の凝縮器として機能する室外熱交換器(18)を備える、
    請求項7から11のいずれか1項に記載の冷凍サイクル装置。
    an outdoor heat exchanger (18) that functions as an evaporator for the second refrigerant during the heating operation and functions as a condenser for the first refrigerant during the cooling operation;
    The refrigeration cycle apparatus according to any one of claims 7 to 11.
  13.  前記第1冷媒と前記第2冷媒の混合状態を検知する、
    請求項1から12のいずれか1項に記載の冷凍サイクル装置。
    detecting a mixed state of the first refrigerant and the second refrigerant;
    The refrigeration cycle apparatus according to any one of claims 1 to 12.
  14.  前記第1冷媒と前記第2冷媒とを分離させる、
    請求項1から13のいずれか1項に記載の冷凍サイクル装置。
    separating the first refrigerant and the second refrigerant;
    The refrigeration cycle apparatus according to any one of claims 1 to 13.
  15.  前記第1冷媒は、R1234yfおよびR1234zeの少なくともいずれかを含む、
    請求項1から14のいずれか1項に記載の冷凍サイクル装置。
    The first refrigerant contains at least one of R1234yf and R1234ze,
    The refrigeration cycle apparatus according to any one of claims 1 to 14.
  16.  前記第2冷媒は、二酸化炭素を含む、
    請求項1から15のいずれか1項に記載の冷凍サイクル装置。
    The second refrigerant contains carbon dioxide,
    The refrigeration cycle apparatus according to any one of claims 1 to 15.
PCT/JP2022/016796 2021-03-31 2022-03-31 Refrigeration cycle device WO2022211076A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280026119.9A CN117098960A (en) 2021-03-31 2022-03-31 Refrigeration cycle device
EP22781286.4A EP4317844A1 (en) 2021-03-31 2022-03-31 Refrigeration cycle device
US18/375,000 US20240027105A1 (en) 2021-03-31 2023-09-29 Refrigeration cycle apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-061278 2021-03-31
JP2021061278 2021-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/375,000 Continuation US20240027105A1 (en) 2021-03-31 2023-09-29 Refrigeration cycle apparatus

Publications (1)

Publication Number Publication Date
WO2022211076A1 true WO2022211076A1 (en) 2022-10-06

Family

ID=83459644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016796 WO2022211076A1 (en) 2021-03-31 2022-03-31 Refrigeration cycle device

Country Status (5)

Country Link
US (1) US20240027105A1 (en)
EP (1) EP4317844A1 (en)
JP (1) JP7208576B2 (en)
CN (1) CN117098960A (en)
WO (1) WO2022211076A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000320914A (en) * 1999-05-14 2000-11-24 Daikin Ind Ltd Refrigerating machine
JP2015197254A (en) 2014-04-01 2015-11-09 東芝キヤリア株式会社 Refrigeration cycle device
WO2017221382A1 (en) * 2016-06-23 2017-12-28 三菱電機株式会社 Binary refrigeration device
JP2021011985A (en) * 2019-07-08 2021-02-04 富士電機株式会社 Two-stage refrigerator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3950704A1 (en) * 2011-03-15 2022-02-09 Massachusetts Institute Of Technology Multiplexed detection with isotope-coded reporters

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000320914A (en) * 1999-05-14 2000-11-24 Daikin Ind Ltd Refrigerating machine
JP2015197254A (en) 2014-04-01 2015-11-09 東芝キヤリア株式会社 Refrigeration cycle device
WO2017221382A1 (en) * 2016-06-23 2017-12-28 三菱電機株式会社 Binary refrigeration device
JP2021011985A (en) * 2019-07-08 2021-02-04 富士電機株式会社 Two-stage refrigerator

Also Published As

Publication number Publication date
JP2022159195A (en) 2022-10-17
US20240027105A1 (en) 2024-01-25
JP7208576B2 (en) 2023-01-19
EP4317844A1 (en) 2024-02-07
CN117098960A (en) 2023-11-21

Similar Documents

Publication Publication Date Title
JP4675927B2 (en) Air conditioner
JP5137933B2 (en) Air conditioner
JP6656402B2 (en) Refrigeration cycle device
WO2011125111A1 (en) Air conditioning and hot-water supply composite system
WO2016059696A1 (en) Refrigeration cycle device
JP2008215697A (en) Air conditioning device
JP2009228979A (en) Air conditioner
JP6774769B2 (en) Refrigeration cycle equipment
US20110192181A1 (en) Refrigerant system
JP5908183B1 (en) Air conditioner
WO2014049673A1 (en) Combined air-conditioning and hot-water supply system
WO2009150798A1 (en) Freezer device
JP2016020760A (en) Air conditioner
WO2012098582A1 (en) Refrigeration cycle apparatus
JP2010196963A (en) Dual type heat pump and refrigerating device
JP4156422B2 (en) Refrigeration cycle equipment
JP2017026171A (en) Air conditioner
WO2022211076A1 (en) Refrigeration cycle device
JP2010032205A (en) Refrigeration device
JP3953976B2 (en) Air conditioner
JP2010139098A (en) Refrigerating cycle device and water heater having the same
JP2008190790A (en) Refrigerating device
JP4063229B2 (en) Piping cleaning method and piping cleaning device
JP2009115336A (en) Refrigeration system
JP6507635B2 (en) Heat storage type air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22781286

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280026119.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022781286

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022781286

Country of ref document: EP

Effective date: 20231031

NENP Non-entry into the national phase

Ref country code: DE