JP2015197254A - Refrigeration cycle device - Google Patents
Refrigeration cycle device Download PDFInfo
- Publication number
- JP2015197254A JP2015197254A JP2014075743A JP2014075743A JP2015197254A JP 2015197254 A JP2015197254 A JP 2015197254A JP 2014075743 A JP2014075743 A JP 2014075743A JP 2014075743 A JP2014075743 A JP 2014075743A JP 2015197254 A JP2015197254 A JP 2015197254A
- Authority
- JP
- Japan
- Prior art keywords
- heat exchanger
- filling amount
- refrigerant
- gwp
- working fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/12—Inflammable refrigerants
- F25B2400/121—Inflammable refrigerants using R1234
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
Description
本発明の実施形態は、冷凍サイクル装置に関する。 Embodiments described herein relate generally to a refrigeration cycle apparatus.
空気調和装置等の冷凍サイクル装置では、地球温暖化防止の観点から、現在主に使用されているR410A等のHFC系冷媒に比べて、地球温暖化係数(GWP:global warming potential)の低い冷媒への転換が検討されている。 In a refrigeration cycle apparatus such as an air conditioner, a refrigerant with a lower global warming potential (GWP) than a currently used HFC refrigerant such as R410A is used from the viewpoint of preventing global warming. Is being considered.
ここで、地球温暖化防止を図るにあたっては、GWPの低い冷媒を使用した上で、所望の冷凍能力や機器効率(COP(成績係数)やAPF(通年エネルギー消費効率)等)を確保する必要がある。すなわち、GWPの低い冷媒を使用したことに伴い、冷凍サイクル装置の冷凍能力や機器効率が大幅に低下すると、従来と同等の性能を維持するためには、電力量を増加させる等の必要がある。この場合には、電力使用時の二酸化炭素の排出量が増加し、地球温暖化防止の効果的な対策にはならない可能性があった。 Here, in order to prevent global warming, it is necessary to secure desired refrigeration capacity and equipment efficiency (COP (coefficient of performance), APF (year-round energy consumption efficiency), etc.) after using a refrigerant with low GWP. is there. That is, when the refrigerant having a low GWP is used and the refrigeration capacity and equipment efficiency of the refrigeration cycle apparatus are significantly reduced, it is necessary to increase the amount of electric power in order to maintain the same performance as before. . In this case, the amount of carbon dioxide emissions when using electricity increases, which may not be an effective measure to prevent global warming.
本発明が解決しようとする課題は、所望の冷凍能力や機器効率を確保した上で、地球温暖化防止を図ることができる冷凍サイクル装置を提供することである。 The problem to be solved by the present invention is to provide a refrigeration cycle apparatus capable of preventing global warming while ensuring desired refrigeration capacity and equipment efficiency.
実施形態の冷凍サイクル装置は、圧縮機、室外熱交換器、減圧弁、及び室内熱交換器を持つ。圧縮機、室外熱交換器、減圧弁、及び室内熱交換器は、GWPが600以下の作動流体が充填された冷媒回路に順次接続されている。作動流体は、単一冷媒または混合冷媒からなる。作動流体のGWPをGWP1とする。室外熱交換器の水平方向の長さと高さ方向の長さとの積を前面面積とする。そして、前面面積1m2当たりの作動流体の充填量Ma(kg/m2)は、次式(1)により算出されるピーク充填量M(kg/m2)の0.48倍以上1.8倍以下に設定されている。 The refrigeration cycle apparatus of the embodiment includes a compressor, an outdoor heat exchanger, a pressure reducing valve, and an indoor heat exchanger. The compressor, the outdoor heat exchanger, the pressure reducing valve, and the indoor heat exchanger are sequentially connected to a refrigerant circuit filled with a working fluid having a GWP of 600 or less. The working fluid consists of a single refrigerant or a mixed refrigerant. The GWP of the working fluid is GWP 1 . The front area is defined as the product of the length in the horizontal direction and the length in the height direction of the outdoor heat exchanger. The working fluid filling amount Ma (kg / m 2 ) per 1 m 2 of the front surface area is not less than 0.48 times the peak filling amount M (kg / m 2 ) calculated by the following equation (1) and 1.8. It is set to less than double.
以下、実施形態の冷凍サイクル装置を、図面を参照して説明する。
図1に示すように、本実施形態の冷凍サイクル装置1は、圧縮機2、四方弁3、室外熱交換器4、減圧弁5、及び室内熱交換器6が冷媒回路7によって順次接続されて構成されている。なお、これら各構成品のうち、圧縮機2、四方弁3、室外熱交換器4、及び減圧弁5は室外機11内に収容され、室内熱交換器6は室内機12内に収容されている。また、図1に示す例において、実線矢印は冷房時、破線矢印は暖房時の冷媒の流通方向を示している。
Hereinafter, the refrigeration cycle apparatus of the embodiment will be described with reference to the drawings.
As shown in FIG. 1, a
このような冷凍サイクル装置1では、四方弁3により冷媒の流れを変えることにより、冷房運転や暖房運転等を行う。例えば、冷房運転では、圧縮機2、四方弁3、室外熱交換器4、減圧弁5、室内熱交換器6が順に接続される。このとき、室外熱交換器4を凝縮器として機能させ、室内熱交換器6を蒸発器として機能させ、室内を冷房する。
一方、暖房運転では、圧縮機2、四方弁3、室内熱交換器6、減圧弁5、及び室外熱交換器4が順に接続される。このとき、室内熱交換器6を凝縮器として機能させ、室外熱交換器4を蒸発器として機能させ、室内を暖房する。
In such a
On the other hand, in the heating operation, the
上述した冷凍サイクルを図2に示すモリエル線図(p−h線図)で説明する。
図2に示す点Aから点Bの区間は、圧縮機2にて冷媒が圧縮される工程であって、圧縮機2の内部に取り込まれる低圧の気体冷媒を圧縮して高温・高圧の気体冷媒とする。点Bから点Cの区間は、熱交換器4,6のうち凝縮器内の冷媒と、凝縮器を通過する空気と、が熱交換する工程であって、圧縮機2から送り込まれる高温・高圧の気体冷媒から熱を放熱させ、高温・高圧の気体冷媒を高圧の液体冷媒にする。点Cから点Dの区間は、減圧弁5にて冷媒が減圧する工程であって、熱交換器4,6のうち凝縮器から送り込まれる高圧の液体冷媒の圧力を下げ、高圧の液体冷媒を低温・低圧の気液二相状態の冷媒にする。点Dから点Aの区間は、熱交換器4,6のうち蒸発器内の冷媒と、蒸発器を通過する空気と、が熱交換する工程であって、減圧弁5から送り込まれる低温・低圧の気液二相状態の冷媒に吸熱させ、低温・低圧の気液二相状態の冷媒を低圧の気体冷媒にする。
The above-described refrigeration cycle will be described with reference to a Mollier diagram (ph diagram) shown in FIG.
The section from point A to point B shown in FIG. 2 is a step in which the refrigerant is compressed by the
図3にフィンアンドチューブ型熱交換器からなる室外熱交換器4を示す。室外熱交換器4は、互いに間隔をあけて積層された複数枚のフィン21と、これらフィン21を積層方向の両側から挟持する一対の端板22と、これらフィン21及び端板22を積層方向に貫通するとともに、冷媒が流通する熱交換チューブ23(冷媒回路7)と、を有している。なお、室外熱交換器4はフィンアンドチューブ型熱交換器に限らず、例えば、内部流路を分割した扁平管とヘッダを有するパラレルフロー型熱交換器等でも良い。
FIG. 3 shows an outdoor heat exchanger 4 composed of a fin-and-tube heat exchanger. The outdoor heat exchanger 4 includes a plurality of
図示の例において、各フィン21は、例えばアルミニウム等、熱伝導率が優れた材料により構成されている。室外熱交換器4では、各フィン21間の隙間を空気が通過するようになっている。
端板22は、フィン21よりも剛性の高い材料により構成されている。なお、端板22は、フィン21の積層方向の両側に位置して、フィン21を挟持する構成であれば、例えばフィン21と同様の材質であっても構わない。
In the illustrated example, each
The
熱交換チューブ23は、例えば銅等、熱伝導率に優れた材料により構成されている。熱交換チューブ23は、フィン21及び端板22を積層方向に貫通するとともに、端板22の外側において折り返されている。これにより、熱交換チューブ23は、フィン21及び端板22の厚さ方向に複数段に亘って蛇行しながら、フィン21及び端板22の高さ方向(延在方向)に延在している。
The
本実施形態の冷凍サイクル装置1において、冷媒回路7内には作動流体としてGWPが600以下であり、単一冷媒または混合冷媒からなる冷媒が充填されている。なお、GWPとは、CO2を基準にして、ほかの温室効果ガスがどれだけ温暖化する能力があるかを表した数字である。すなわち、単位質量(例えば、1kg)の温室効果ガスが大気中に放出されたときに、一定時間内(例えば、100年)に地球に与える放射エネルギーの積算値(すなわち温暖化への影響)を、CO2に対する比率として見積もったものである。
In the
上述した冷媒として、本実施形態では、HFO−1234yfの単一冷媒、またはHFO−1234yfとR32との混合冷媒や、HFO−1234zeの単一冷媒、またはHFO−1234zeとR32との混合冷媒等が好適に用いられる。なお、HFO−1234yfのGWPは「4」であり、HFO−1234zeのGWPは「6」であり、R32のGWPは「675」である。 As the above-described refrigerant, in this embodiment, a single refrigerant of HFO-1234yf, a mixed refrigerant of HFO-1234yf and R32, a single refrigerant of HFO-1234ze, a mixed refrigerant of HFO-1234ze and R32, or the like. Preferably used. The GFO of HFO-1234yf is “4”, the GWP of HFO-1234ze is “6”, and the GWP of R32 is “675”.
HFO−1234yfとR32との混合冷媒において、混合割合(濃度)とGWPとの関係は、表1に示す通りである。 In the mixed refrigerant of HFO-1234yf and R32, the relationship between the mixing ratio (concentration) and GWP is as shown in Table 1.
また、HFO−1234zeとR32との混合冷媒において、混合割合(濃度)とGWPとの関係は、表2に示す通りである。 Further, in the mixed refrigerant of HFO-1234ze and R32, the relationship between the mixing ratio (concentration) and GWP is as shown in Table 2.
ここで、本願発明者は、まず本実施形態の冷凍サイクル装置1において、所望の冷凍能力が得られ、高い機器効率を確保できる最適な充填量(以下、ピーク充填量M(kg/m2)という)を求めた。具体的に、ピーク充填量Mは、現在一般的に使用されているGWPが600よりも大きいR410A(GWPが2090)冷媒を用いた冷凍サイクル装置(比較例)と冷凍能力を同一とし、かつ図2に示すp−h線図において過冷却度h1及び過熱度h2を比較例の冷凍サイクル装置と同等に設定した場合に、高い機器効率を確保できる充填量である。
Here, the inventor of the present application firstly obtains a desired refrigeration capacity in the
また、上述した過冷却度h1及び過熱度h2の設定値は、表3に示す通りである。 Further, the set values of the degree of supercooling h1 and the degree of superheat h2 described above are as shown in Table 3.
このような条件のもと、GWPの異なる複数種類の冷媒において、室外熱交換器4の前面面積Sの1m2当たりのピーク充填量Mを求めた結果、図4のグラフに示す実線が得られた。なお、前面面積Sとは、図2に示す室外熱交換器4において、水平方向の長さである一対の端板22間の距離をL、高さ方向の長さであるフィン21(端板22)の高さをHとした場合の積(S=L×H)である(空気の通過面積)。この場合、室外熱交換器4におけるフィン21の積層枚数に応じて距離Lが調整されるとともに、熱交換チューブ23の段数に応じて高さHが調整されることで、前面面積Sを調整することができる。
Under these conditions, the peak filling amount M per 1 m 2 of the front surface area S of the outdoor heat exchanger 4 is obtained for a plurality of types of refrigerants having different GWPs. As a result, the solid line shown in the graph of FIG. 4 is obtained. It was. In addition, in the outdoor heat exchanger 4 shown in FIG. 2, the front surface area S is the distance between the pair of
また、図4のグラフに示すピーク充填量Mは、使用する冷媒のGWPをGWP1とすると、次式(1)で表される。なお、次式(1)中の「2090」は比較例として用いたR410AのGWPである。 Further, the peak filling amount M shown in the graph of FIG. 4 is expressed by the following equation (1), where GWP of the refrigerant to be used is GWP 1 . Note that “2090” in the following formula (1) is the G410 of R410A used as a comparative example.
このように、GWPと、前面面積Sの1m2当たりのピーク充填量Mと、は、相関関係にあることが分かる。すなわち、GWPが大きいほど、ピーク充填量Mが小さくなることがわかる。 Thus, it can be seen that the GWP and the peak filling amount M per 1 m 2 of the front surface area S have a correlation. That is, it can be seen that the peak filling amount M decreases as the GWP increases.
次に、本願発明者は、上述したピーク充填量Mに対して所望の冷凍能力や機器効率を最低限確保できる範囲の充填量Ma(kg/m2)を設定した。具体的に、充填量Maは、ピーク充填量Mに対して0.48倍以上1.8倍以下の範囲(図4中の鎖線範囲)に設定することが好ましく、0.9倍以上1.2倍以下の範囲(図4中の破線範囲)に設定することがより好ましい。 Next, the inventor of the present application has set a filling amount Ma (kg / m 2 ) within a range in which a desired refrigeration capacity and device efficiency can be secured at a minimum with respect to the peak filling amount M described above. Specifically, the filling amount Ma is preferably set in a range of 0.48 times or more and 1.8 times or less of the peak filling amount M (a chain line range in FIG. 4). It is more preferable to set to a range that is twice or less (the dashed line range in FIG. 4).
ピーク充填量Mに対して充填量Maを増加または減少させると、冷凍能力や機器効率についても減少傾向にある。
具体的には、充填量Maをピーク充填量Mの0.9倍以上(Ma≧0.9M)とすることで、冷凍能力についてはピーク充填量Mの場合と同等の能力を確保し、機器効率(COP)でもピーク充填量Mの場合に対して97%以上の効率を確保できた。なお、COPはAPFと相関関係にあるため、COPの増加または減少に伴ってAPFも増加または減少するようになっている。
また、充填量Maをピーク充填量Mの0.48倍以上0.9倍未満(0.9M>Ma≧0.48M)とすると、冷凍能力については所望の能力を確保することができるものの、機器効率については若干減少した(97%未満)。
When the filling amount Ma is increased or decreased with respect to the peak filling amount M, the refrigerating capacity and the equipment efficiency also tend to decrease.
Specifically, by setting the filling amount Ma to 0.9 times or more (Ma ≧ 0.9M) of the peak filling amount M (Ma ≧ 0.9M), the refrigeration capacity is ensured to be equal to the peak filling amount M, and the equipment Even in the efficiency (COP), an efficiency of 97% or more with respect to the peak filling amount M could be secured. Since COP has a correlation with APF, APF also increases or decreases as COP increases or decreases.
In addition, when the filling amount Ma is 0.48 times or more and less than 0.9 times the peak filling amount M (0.9M> Ma ≧ 0.48M), a desired capacity can be secured for the refrigeration capacity. Equipment efficiency decreased slightly (less than 97%).
一方、充填量Maがピーク充填量Mの0.48倍未満(Ma<0.48M)の場合には、冷媒潜熱の大幅な減少に伴い、冷凍能力を確保できなくなる場合があった。また、充填量Maがピーク充填量Mの0.48倍未満(Ma<0.48M)の場合には、圧縮機2への吸込み過熱度が大きくなり、圧縮機2の信頼性を損なうおそれがあった。
このような結果から、本実施形態における充填量Maの下限は、冷凍能力や圧縮機2の信頼性を確保するためには、ピーク充填量Mに対して0.48倍以上に設定し、機器効率を確保するためには、ピーク充填量Mに対して0.9倍以上に設定することが好ましい。
On the other hand, when the filling amount Ma is less than 0.48 times the peak filling amount M (Ma <0.48M), the refrigerating capacity may not be ensured due to a significant decrease in refrigerant latent heat. In addition, when the filling amount Ma is less than 0.48 times the peak filling amount M (Ma <0.48M), the degree of superheat to the
From such a result, in order to ensure the refrigerating capacity and the reliability of the
また、充填量Maをピーク充填量Mの1.2倍以下(Ma≦1.2M)とすると、冷凍能力についてはピーク充填量Mの場合と同等の能力を確保し、機器効率でもピーク充填量Mの場合に対して97%以上の効率を確保できた。
さらに、充填量Maをピーク充填量Mの1.2倍より大きく1.8倍以下(1.2M<Ma≦1.8M)とすると、冷凍能力については所望の能力を確保することができるものの、機器効率については若干減少した。
Further, when the filling amount Ma is 1.2 times or less of the peak filling amount M (Ma ≦ 1.2M), the refrigerating capacity is ensured to be equal to that of the peak filling amount M, and the peak filling amount is also obtained in terms of equipment efficiency. The efficiency of 97% or more was ensured with respect to M.
Furthermore, when the filling amount Ma is set to be larger than 1.2 times the peak filling amount M and not more than 1.8 times (1.2M <Ma ≦ 1.8M), the refrigerating capacity can secure a desired capacity. The equipment efficiency decreased slightly.
一方、充填量Maがピーク充填量Mの1.8倍よりも大きい場合には、凝縮器として機能する熱交換器4,6での有効な伝熱面積の減少(凝縮伝熱性能の低下)がする。その結果、吐出圧力が高くなり、機器(圧縮機2等)の信頼性を損なう場合があった。
このような結果から、本実施形態における充填量Maの上限は、機器効率を確保するためには、ピーク充填量Mに対して1.2倍以下に設定し、機器の信頼性を確保するためには、1.8倍以下に設定することが好ましい。
On the other hand, when the filling amount Ma is larger than 1.8 times the peak filling amount M, the effective heat transfer area decreases in the heat exchangers 4 and 6 functioning as a condenser (decrease in condensation heat transfer performance). I will. As a result, the discharge pressure increases, and the reliability of the device (
From these results, the upper limit of the filling amount Ma in the present embodiment is set to 1.2 times or less with respect to the peak filling amount M in order to ensure the equipment efficiency, in order to ensure the reliability of the equipment. Is preferably set to 1.8 times or less.
このように、本実施形態では、前面面積Sの1m2当たりの充填量Maを、上述した式(1)により算出されるピーク充填量Mの0.48倍以上1.8倍以下に設定する構成とした。
この構成によれば、所望の冷凍能力や機器の信頼性を確保した上で、低GWP化を図ることができるので、地球温暖化に与える影響を小さくし、環境負荷を低減できる。
As described above, in this embodiment, the filling amount Ma per 1 m 2 of the front surface area S is set to 0.48 times or more and 1.8 times or less of the peak filling amount M calculated by the above-described equation (1). The configuration.
According to this configuration, since it is possible to achieve low GWP while ensuring the desired refrigeration capacity and device reliability, it is possible to reduce the impact on global warming and reduce the environmental load.
さらに、本実施形態では、充填量Maをピーク充填量Mの0.9倍以上1.2倍以下の範囲に設定することで、低GWP化を図った上で、所望の機器効率も確保できる。 Furthermore, in the present embodiment, by setting the filling amount Ma in the range of 0.9 times or more and 1.2 times or less of the peak filling amount M, it is possible to secure desired equipment efficiency while achieving low GWP. .
なお、上述した実施形態では、HFO−1234yfやHFO−1234ze、R32を冷媒として用いる場合について説明したが、これに限られない。すなわち、GWPが600以下の冷媒であれば、単一冷媒または混合冷媒等、冷媒の種類は適宜変更が可能である。 In addition, although embodiment mentioned above demonstrated the case where HFO-1234yf, HFO-1234ze, and R32 were used as a refrigerant | coolant, it is not restricted to this. That is, if the GWP is 600 or less, the type of refrigerant, such as a single refrigerant or a mixed refrigerant, can be changed as appropriate.
さらに、上述した実施形態では、前面面積Sの1m2当たりのピーク充填量Mに対して充填量Maの範囲を表す場合について説明したが、他の条件に基づいて充填量を設定しても構わない。例えば、冷凍サイクル装置1の冷凍能力1kw当たりの冷媒の充填量Mb(g/kW)を、次式(2)の範囲に設定してもよい。
Furthermore, in the above-described embodiment, the case where the range of the filling amount Ma is expressed with respect to the peak filling amount M per 1 m 2 of the front surface area S has been described. However, the filling amount may be set based on other conditions. Absent. For example, the refrigerant charging amount Mb (g / kW) per
また、冷凍サイクル装置1の室外熱交換器4の内容積1L当たりの冷媒の充填量Mc(g/L)を、次式(3)の範囲に設定してもよい。
Further, the refrigerant charging amount Mc (g / L) per 1 L of the internal volume of the outdoor heat exchanger 4 of the
上述した式(2)、(3)の範囲に設定した場合であっても、GWPの低い冷媒を使用した上で、所望の冷凍能力を確保するとともに、機器の信頼性を確保できる。 Even if it is a case where it sets to the range of Formula (2) and (3) mentioned above, while using a refrigerant | coolant with low GWP, while ensuring desired refrigeration capacity, the reliability of an apparatus can be ensured.
以上説明した少なくともひとつの実施形態によれば、室外熱交換器の前面面積1m2当たりの冷媒の充填量Ma(kg/m2)が、上述した式(1)により算出されるピーク充填量Mの0.48倍以上1.8倍以下に設定されていることにより、所望の冷凍能力や機器の信頼性を確保した上で、低GWP化を図ることができるので、地球温暖化に与える影響を小さくし、環境負荷を低減できる。 According to at least one embodiment described above, the refrigerant charging amount Ma (kg / m 2 ) per 1 m 2 of the front surface area of the outdoor heat exchanger is calculated by the above-described equation (1). Since it is set to 0.48 times or more and 1.8 times or less of the above, it is possible to achieve low GWP while ensuring the desired refrigeration capacity and reliability of the equipment, so the impact on global warming The environmental load can be reduced.
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.
1…冷凍サイクル装置、2…圧縮機、4…室外熱交換器、5…減圧弁、6…室外熱交換器
DESCRIPTION OF
Claims (2)
前記作動流体は、単一冷媒または混合冷媒からなり、
前記作動流体のGWPをGWP1とし、前記室外熱交換器の水平方向の長さと高さ方向の長さとの積を前面面積としたとき、
前記前面面積1m2当たりの前記作動流体の充填量Ma(kg/m2)は、次式(1)により算出されるピーク充填量M(kg/m2)の0.48倍以上1.8倍以下に設定されている冷凍サイクル装置。
The working fluid consists of a single refrigerant or a mixed refrigerant,
When the GWP of the working fluid is GWP 1 and the product of the length in the horizontal direction and the length in the height direction of the outdoor heat exchanger is defined as the front area,
The working fluid filling amount Ma (kg / m 2 ) per 1 m 2 of the front surface area is not less than 0.48 times the peak filling amount M (kg / m 2 ) calculated by the following equation (1) and 1.8. A refrigeration cycle device that is set to double or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014075743A JP6293557B2 (en) | 2014-04-01 | 2014-04-01 | Refrigeration cycle equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014075743A JP6293557B2 (en) | 2014-04-01 | 2014-04-01 | Refrigeration cycle equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015197254A true JP2015197254A (en) | 2015-11-09 |
JP6293557B2 JP6293557B2 (en) | 2018-03-14 |
Family
ID=54547057
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014075743A Active JP6293557B2 (en) | 2014-04-01 | 2014-04-01 | Refrigeration cycle equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6293557B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106123243A (en) * | 2016-07-27 | 2016-11-16 | 长沙海赛电装科技股份有限公司 | Air-conditioning device refrigeration capacity test method based on multidimensional curve fitting algorithm |
CN106766304A (en) * | 2016-12-22 | 2017-05-31 | 中科美菱低温科技股份有限公司 | A kind of separate type cryogenic refrigeration equipment |
WO2022211076A1 (en) | 2021-03-31 | 2022-10-06 | ダイキン工業株式会社 | Refrigeration cycle device |
WO2022211077A1 (en) | 2021-03-31 | 2022-10-06 | ダイキン工業株式会社 | Refrigeration cycle device |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002267232A (en) * | 2001-03-12 | 2002-09-18 | Hitachi Ltd | Service system and service-providing device for air conditioner |
JP2004257610A (en) * | 2003-02-25 | 2004-09-16 | Sanyo Electric Co Ltd | Method of manufacturing refrigerant cycle device |
JP2009236331A (en) * | 2008-03-25 | 2009-10-15 | Toshiba Corp | Refrigerator-freezer |
JP2011002217A (en) * | 2009-05-18 | 2011-01-06 | Panasonic Corp | Refrigerating device and air conditioning apparatus |
JP2012013348A (en) * | 2010-07-02 | 2012-01-19 | Panasonic Corp | Air conditioner |
JP2012107805A (en) * | 2010-11-17 | 2012-06-07 | Mitsubishi Electric Corp | Refrigerating device |
JP3185434U (en) * | 2013-06-05 | 2013-08-15 | グローバル・リンク株式会社 | Refrigeration system |
-
2014
- 2014-04-01 JP JP2014075743A patent/JP6293557B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002267232A (en) * | 2001-03-12 | 2002-09-18 | Hitachi Ltd | Service system and service-providing device for air conditioner |
JP2004257610A (en) * | 2003-02-25 | 2004-09-16 | Sanyo Electric Co Ltd | Method of manufacturing refrigerant cycle device |
JP2009236331A (en) * | 2008-03-25 | 2009-10-15 | Toshiba Corp | Refrigerator-freezer |
JP2011002217A (en) * | 2009-05-18 | 2011-01-06 | Panasonic Corp | Refrigerating device and air conditioning apparatus |
JP2012013348A (en) * | 2010-07-02 | 2012-01-19 | Panasonic Corp | Air conditioner |
JP2012107805A (en) * | 2010-11-17 | 2012-06-07 | Mitsubishi Electric Corp | Refrigerating device |
JP3185434U (en) * | 2013-06-05 | 2013-08-15 | グローバル・リンク株式会社 | Refrigeration system |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106123243A (en) * | 2016-07-27 | 2016-11-16 | 长沙海赛电装科技股份有限公司 | Air-conditioning device refrigeration capacity test method based on multidimensional curve fitting algorithm |
CN106123243B (en) * | 2016-07-27 | 2019-06-04 | 长沙海赛电装科技股份有限公司 | Air-conditioning device refrigeration capacity test method based on multidimensional curve fitting algorithm |
CN106766304A (en) * | 2016-12-22 | 2017-05-31 | 中科美菱低温科技股份有限公司 | A kind of separate type cryogenic refrigeration equipment |
WO2022211076A1 (en) | 2021-03-31 | 2022-10-06 | ダイキン工業株式会社 | Refrigeration cycle device |
WO2022211077A1 (en) | 2021-03-31 | 2022-10-06 | ダイキン工業株式会社 | Refrigeration cycle device |
Also Published As
Publication number | Publication date |
---|---|
JP6293557B2 (en) | 2018-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang | System performance of R-1234yf refrigerant in air-conditioning and heat pump system–An overview of current status | |
JP4738401B2 (en) | Air conditioner | |
JP6065429B2 (en) | Air conditioner | |
EP3118541B1 (en) | Refrigeration cycle apparatus | |
JP6293557B2 (en) | Refrigeration cycle equipment | |
JP2008275201A (en) | Refrigerating air-conditioning device | |
WO2016071955A1 (en) | Air conditioning apparatus | |
JPWO2018029784A1 (en) | Heat exchanger and refrigeration cycle apparatus equipped with the heat exchanger | |
WO2021065944A1 (en) | Air conditioning apparatus | |
JP2009300001A (en) | Refrigerating cycle device | |
EP2578966B1 (en) | Refrigeration device and cooling and heating device | |
Horie et al. | Study on cycle property and LCCP evaluation of heat pump using HFO-1234yf, HFC-32, and HFC-410A as refrigerant | |
WO2016103437A1 (en) | Refrigeration cycle apparatus | |
JP5646257B2 (en) | Refrigeration cycle equipment | |
JP7118247B2 (en) | air conditioner | |
WO2013084455A1 (en) | Heat exchanger and air conditioner provided with same | |
WO2014203500A1 (en) | Air conditioner | |
WO2019198175A1 (en) | Refrigeration cycle device | |
EP3220075A1 (en) | Heat pump apparatus | |
JP2010078256A (en) | Fin tube type heat exchanger, and refrigerating cycle device and air conditioner using the same | |
Mali | SIMULATED PERFORMANCE COMPARISON OF HFC-32 IN FINNED TUBE AND PARALLEL FLOW CONDENSER | |
JP2008215773A (en) | Air conditioner | |
JP6147576B2 (en) | Operation method of heat pump water heater | |
WO2017138052A1 (en) | Refrigeration cycle device | |
JP2021042871A (en) | Fin-and-tube type heat exchanger and refrigeration cycle device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160916 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170626 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170711 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170908 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180130 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180214 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6293557 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |