WO2016103437A1 - Refrigeration cycle apparatus - Google Patents

Refrigeration cycle apparatus Download PDF

Info

Publication number
WO2016103437A1
WO2016103437A1 PCT/JP2014/084466 JP2014084466W WO2016103437A1 WO 2016103437 A1 WO2016103437 A1 WO 2016103437A1 JP 2014084466 W JP2014084466 W JP 2014084466W WO 2016103437 A1 WO2016103437 A1 WO 2016103437A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
refrigeration cycle
cycle apparatus
flat tube
flow path
Prior art date
Application number
PCT/JP2014/084466
Other languages
French (fr)
Japanese (ja)
Inventor
中村 伸
英明 前山
石橋 晃
真哉 東井上
伊東 大輔
繁佳 松井
拓未 西山
裕樹 宇賀神
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2014/084466 priority Critical patent/WO2016103437A1/en
Priority to EP14909044.1A priority patent/EP3239640A4/en
Priority to JP2016565792A priority patent/JP6415600B2/en
Publication of WO2016103437A1 publication Critical patent/WO2016103437A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles

Definitions

  • the present invention relates to a refrigeration cycle apparatus equipped with a heat exchanger.
  • a conventional refrigeration cycle apparatus has been proposed that uses HFO-1123 as a working fluid (see, for example, Patent Document 1).
  • a refrigerant containing an HFO refrigerant such as HFO-1123 described in Patent Document 1 generally has a short atmospheric life because it has a low global warming potential (hereinafter referred to as “GWP”). That is, since the stability is poor, the refrigerant is easily decomposed even when it exists in the refrigerant circuit including the heat exchanger. Therefore, it becomes a factor of the performance fall and reliability fall of a refrigerating cycle device.
  • GWP global warming potential
  • the present invention has been made in the background of the above-described problems, and in the case of using HFO-1123 or a mixed refrigerant containing HFO-1123 as the refrigerant circulating in the refrigerant circuit, the heat transfer performance of the heat exchanger It aims at providing the refrigerating cycle device which can improve.
  • the refrigeration cycle apparatus includes a refrigerant circuit in which a compressor, a first heat exchanger, an expansion unit, and a second heat exchanger are sequentially connected by piping to circulate the refrigerant, and the refrigerant is HFO-1123.
  • at least one of the first heat exchanger and the second heat exchanger has a plurality of fins and a plurality of flow paths through which the refrigerant flows formed therein.
  • the plurality of flat tubes satisfy the relationship of 0.9 mm ⁇ DA ⁇ 3.0 mm when the width is DA.
  • the present invention satisfies the relationship of 0.9 mm ⁇ DA ⁇ 3.0 mm when the width of the flat tube is DA. For this reason, in the case where HFO-1123 or a mixed refrigerant containing HFO-1123 is used as the refrigerant circulating in the refrigerant circuit, the heat transfer performance of the heat exchanger can be improved.
  • COP coefficient of performance
  • FIG. 1 is a circuit diagram illustrating an example of a refrigerant circuit of a refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • a refrigeration cycle apparatus 10 includes a compressor 11, a first heat exchanger 12, an expansion means 13, and a second heat exchanger 14 that are sequentially connected by a pipe, and circulate the refrigerant. It has a circuit.
  • the first heat exchanger 12 is provided with a fan 15a that blows air
  • the second heat exchanger 14 is provided with a fan 15b that blows air.
  • the heat exchanger 1 when the first heat exchanger 12 and the second heat exchanger 14 are not distinguished, they are referred to as the heat exchanger 1.
  • 1,1,2-trifluoroethylene (HFO-1123) having one double bond in the molecular structure or a mixed refrigerant containing HFO-1123 is used.
  • HFC hydrofluorocarbon
  • HFC-410A hydrofluorocarbon refrigerant
  • HCFC hydrochlorofluorocarbon
  • HCFC22 hydrochlorofluorocarbon
  • ODP ozone depletion coefficient
  • the HFC refrigerant has a possibility of causing global warming, and its index, GWP, shows a high value.
  • HFC-32 having a GWP lower than that of HFC-410A exists among HFC refrigerants having no carbon double bond in the composition.
  • this refrigerant is used as the working fluid of the refrigeration cycle apparatus 10, the discharge temperature at the outlet of the compressor 11 is higher than that of a conventional refrigerant, and therefore it is necessary to use a material that can withstand high temperatures.
  • HFO hydrofluoroolefin
  • examples of such HFO refrigerants include HFO-1234yf and HFO-1234ze.
  • these refrigerants are refrigerants having a high standard boiling point, the pressure is lower than that at the same saturation temperature as that of conventional refrigerants. That is, the refrigerant density becomes smaller than that of the conventional HFC refrigerant, and the frequency of the compressor 11 needs to be increased in order to keep the refrigerant circulation amount in the refrigeration cycle apparatus 10 equal to that of the conventional refrigerant. Therefore, the power consumption increases, which causes a reduction in energy saving performance.
  • the refrigerant circulating in the refrigerant circuit in the first embodiment is HFO-1123.
  • HFO-1123 or a mixed refrigerant containing HFO-1123 is used.
  • HFO-1123 is a refrigerant having a low standard boiling point, and therefore has a higher pressure than at the same saturation temperature as that of a conventional HFC refrigerant. That is, the refrigerant density is larger than that of the conventional refrigerant, and even if the frequency of the compressor 11 is lowered, the refrigerant circulation amount in the refrigeration cycle apparatus 10 can be kept equal to that of the conventional refrigerant.
  • HFO-1123 is superior in energy saving performance among other HFO refrigerants.
  • HFO-1123 has a larger latent heat than HFC-410A that has been used in the past, so that it is possible to reduce the refrigerant circulation amount in the refrigeration cycle apparatus 10. That is, the refrigeration cycle apparatus 10 using HFO-1123 as a working fluid reduces heat loss in the flat tube 2 (heat transfer tube) in the heat exchanger 1 and radiates heat equivalent to the case where a conventional refrigerant is used ( It is possible to demonstrate (cooling) capability.
  • the compressor 11 compresses the refrigerant discharged from the second heat exchanger 14 and supplies the high-temperature and high-pressure refrigerant to the first heat exchanger 12.
  • the first heat exchanger 12 functions as a condenser, performs heat exchange between the air supplied from the fan 15a and the refrigerant, and condenses and liquefies the refrigerant.
  • the expansion means 13 includes an expansion valve, a capillary tube, a decompression device, a throttling device, and the like. The expansion means 13 expands the refrigerant discharged from the first heat exchanger 12 and supplies it to the second heat exchanger 14 as a low-temperature and low-pressure refrigerant.
  • the second heat exchanger 14 functions as an evaporator, performs heat exchange between the air supplied from the fan 15b and the refrigerant, and evaporates the refrigerant.
  • the first heat exchanger 12 functions as an evaporator and the second heat exchanger 14 functions as a condenser. You may do it.
  • FIG. 2 is a perspective view showing an example of a heat exchanger of the refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • the heat exchanger 1 includes a plurality of flat tubes 2, a plurality of fins 3, and a pair of headers 4a and 4b.
  • the plurality of fins 3 are arranged at intervals, and are configured such that a fluid such as air flows through the intervals.
  • the plurality of flat tubes 2 are inserted into the plurality of fins 3.
  • the direction of the longitudinal dimension in the flat cross section faces the flow direction of the air flowing between the plurality of fins 3, and the direction of the width dimension in the flat cross section ( Hereinafter, they are arranged at intervals in the short axis direction).
  • the headers 4a and 4b extend vertically and are opposed to each other, and connect both ends of the plurality of flat tubes 2 respectively.
  • the refrigerant that has flowed into the header 4 a is branched into multiple portions within the header 4 a and flows into each of the plurality of flat tubes 2.
  • the refrigerant flowing through the refrigerant flow paths in the plurality of flat tubes 2 exchanges heat with the air flowing between the plurality of fins 3 and between the plurality of flat tubes 2 and flows into the header 4b.
  • the refrigerant flowing into the header 4b joins inside the header 4b and then flows out from the header 4b.
  • the headers 4a and 4b are written vertically in the drawing, and the refrigerant flows in the horizontal direction toward the flat tube 2.
  • the orientation of the headers 4a and 4b is not limited to this direction.
  • the headers 4a and 4b may be installed sideways, and the refrigerant may flow in the vertical direction.
  • a branch pipe that branches the refrigerant may be provided instead of at least one of the headers 4a and 4b.
  • the fin 3 is made of aluminum, for example.
  • the fin 3 is produced
  • the material of the fin 3 is not limited to aluminum, and any material such as copper can be used.
  • the shape of the fin 3 can use arbitrary shapes, such as a plate-shaped plate fin or the corrugated fin formed in the wave shape, for example. Moreover, you may provide the fin 3 in the shape which improves heat exchange performance, such as cutting and raising processing or forming an uneven
  • FIG. 3 is a cross-sectional view showing an example of a flat tube of the refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • the flat tube 2 has a flat cross section.
  • the flat tube 2 is configured by a flat multi-hole tube, and a plurality of flow paths 21 partitioned by the partition wall 20 are formed along the longitudinal direction of the flat tube 2.
  • the flat tube 2 is made of, for example, aluminum.
  • brazing can be used for joining the fins 3 and the flat tubes 2.
  • the joining of the fin 3 and the flat tube 2 by brazing is a heat exchanger 1 that has higher heat transfer performance and superior heat exchange performance than the pipe expansion method in which the pipe inserted into the fin 3 is expanded and joined. Can be provided.
  • FIG. 4 is a cross-sectional view showing an example of the heat exchanger of the refrigeration cycle apparatus in Embodiment 1 of the present invention.
  • the flat tubes 2 are arranged in, for example, two rows in the row direction that is the air flow direction. Further, the flat tubes 2 are arranged in a plurality of stages in the step direction orthogonal to the row direction. Further, the flat tubes 2 are arranged so that adjacent rows of flat tubes 2 do not overlap in the step direction (for example, a staggered arrangement). And air flows in from the side where the fin 3 is attached upstream of the flat tube 2.
  • the flat tube 2 has, for example, a width dimension (hereinafter referred to as a short axis diameter DA) in a flat cross section of 2.0 mm and a long dimension (hereinafter referred to as a long axis diameter DB) in a flat cross section of 19.0 mm.
  • a width dimension hereinafter referred to as a short axis diameter DA
  • a long dimension hereinafter referred to as a long axis diameter DB
  • the number of holes in the flow path 21 is 20, and the thickness ti of the partition wall 20 in the flow path 21 is 0.20 mm.
  • the wall thickness to between the outer wall of the flat tube 2 and the inner wall of the flow path 21 is 0.30 mm.
  • a step pitch DP which is a distance in the step direction connecting the centers of the adjacent flat tubes 2, is arranged at 13.6 mm.
  • the fin 3 has an air flow direction width L of 22 mm.
  • the heat exchanger 1 has a height H_HEX of 600 mm and a fin product width H_W of 850 mm (see FIG. 2).
  • FIG. 5 is a characteristic diagram showing the relationship between the short axis diameter DA of the flat tube and the coefficient of performance (COP) in the refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • the case where the heat exchanger 1 is used as an evaporator is taken as an example, and the coefficient of performance (COP) at each short axis diameter DA is extracted by simulation using the short axis diameter DA of the flat tube 2 as a parameter.
  • FIG. 5 shows a comparison between the case of using HFC-410A and the case of using HFO-1123 as the refrigerant circulating in the refrigerant circuit.
  • a certain aspect ratio B / A is constant at a preset value.
  • the aspect ratio B / A is equivalent to the dimension example described above. That is, in the dimension example described above, the in-pipe length B of the flow path 21 is 0.73 mm and the in-pipe length A is 1.4 mm, so the aspect ratio B / A is 0.52.
  • the ratio between the step pitch DP of the flat tube 2 and the short axis diameter DA is constant at a preset value.
  • the dimension example described above it is equivalent to the dimension example described above. That is, DP / DA is 6.8, for example. Further, the ratio between the wall thickness to of the flat tube 2 and the short axis diameter DA is constant at a preset value. For example, it is equivalent to the dimension example described above. That is, to / DA is 0.15, for example. Further, the long axis diameter DB of the flat tube 2, the height H_HEX of the heat exchanger 1, and the fin product width H_W are equivalent to the above-described dimension example.
  • the amount of heat released from the fins 3 and the flat tubes 2 to the air (the amount of heat received) is constant.
  • the parameters of the heat transfer tubes and the heat exchanger 1 other than the above, such as the pitch of the fins 3, the number of holes, the path configuration of the heat exchanger 1, and the operating conditions of the refrigeration cycle are values at which the coefficient of performance is almost optimal. is there.
  • the ventilation resistance between the adjacent flat tubes 2 is reduced.
  • the step pitch DP / the short axis diameter DA is constant at a preset value
  • the flat tube 2 can be mounted with high density.
  • the aspect ratio B / A and the wall thickness to / short axis diameter DA are constant at preset values, when the short axis diameter DA of the flat tube 2 becomes small, the flow path 21 inside the flat tube 2 is reduced. The number of holes will increase.
  • tube of the flat tube 2 contacts with a heat-transfer surface increases, and it can heat-exchange efficiently. Therefore, the performance of the heat exchanger 1 is improved and the coefficient of performance is also improved.
  • the short axis diameter DA of the flat tube 2 becomes too small, the cross-sectional area of the flow path 21 of the flat tube 2 is also narrowed, so that the pressure loss in the tube increases. In order to suppress an increase in the pressure loss in the pipe, it is necessary to increase the number of passes of the heat exchanger 1.
  • the headers 4a and 4b can be used evenly in order to exhibit sufficient performance. It is necessary to distribute the refrigerant.
  • the short axis diameter DA of the flat tube 2 becomes too small, it becomes difficult to distribute the refrigerant evenly.
  • the upper limit of the number of passes is determined depending on the size of the heat exchanger 1, if the short axis diameter DA is reduced, it becomes impossible to cope with an increase in the pressure loss in the pipe due to an increase in the number of passes. For this reason, when the short axis diameter DA of the flat tube 2 becomes too small, the performance of the heat exchanger 1 is lowered and the coefficient of performance is also lowered.
  • the short axis diameter DA of the flat tube 2 is less than 0.8 mm, it becomes difficult in manufacturing the flat tube 2 such as extrusion.
  • the short axis diameter DA of the flat tube 2 is 0.9 mm, for example, when the aspect ratio B / A is 0.52 and the wall thickness to / short axis diameter DA is 0.15 as in the above-described dimension example,
  • the in-tube length B of the flow path 21 in the long axis direction of the flat tube 2 is 0.33 mm.
  • the size of the sludge produced by the chemical reaction of the decomposition product of HFO-1123 is about 0.15 mm. Therefore, if the in-pipe length B of the flow channel 21 is 0.33 mm, sludge is accumulated in the flow channel 21 even when HFO-1123 flowing through the flat tube 2 is decomposed and sludge is generated. It becomes possible to flow without. For this reason, it becomes possible to ensure sufficient reliability.
  • the minor axis diameter DA of the flat tube 2 should satisfy the relationship of 0.9 mm ⁇ DA ⁇ 3.0 mm.
  • the aspect ratio B / A If a smaller value is selected for the aspect ratio B / A, the in-pipe length B of the flow path 21 in the long axis direction of the flat tube 2 is not sufficient, but the pressure loss in the pipe increases. In general, the aspect ratio is increased to such an extent that the pressure resistance is maintained.
  • the heat transfer performance of the heat exchanger 1 is improved when HFO-1123 or a mixed refrigerant containing HFO-1123 is used as the refrigerant circulating in the refrigerant circuit. Can do. Moreover, even if it is a case where the sludge resulting from decomposition
  • FIG. FIG. 6 is a cross-sectional view showing an example of a flat tube of the refrigeration cycle apparatus according to Embodiment 2 of the present invention.
  • FIG. 7 is an enlarged cross-sectional view showing an example of a flat tube of the refrigeration cycle apparatus according to Embodiment 2 of the present invention.
  • one or a plurality of protrusions 22 are formed on the inner wall surface of the flow channel 21 along the flow channel direction. 7 shows a case where a gas-liquid two-phase refrigerant flows, 25 indicates a two-phase liquid film, and 26 indicates a gas-liquid interface.
  • the contact area between the inner wall surface of the flow path 21 and the refrigerant can be increased.
  • the liquid refrigerant concentrates on the bottom 24 of the protrusion 22 due to the surface tension of the refrigerant, so that the drainage in the tube axis direction is improved and the two phases around the bottom 24 of the protrusion 22 are improved.
  • the thickness of the flowing liquid film 25 can be reduced. Therefore, heat exchange can be performed more efficiently than in the case where the protrusions 22 are not provided.
  • the protrusion 22 has a triangular cross-sectional shape, but the present invention is not limited to this.
  • any projection shape such as a semicircular shape, an elliptical shape, or a rectangular shape, an effect equivalent to the above-described object can be achieved.
  • the sludge 31 generated when the HFO-1123 is decomposed is It is easy to deposit.
  • sludge 31 is particularly easily deposited on the inner wall surface 23 facing downward in the gravitational direction.
  • the distance D between the adjacent protrusions 22 satisfies 0.15 mm ⁇ D.
  • the refrigerant can flow without the sludge 31 being deposited.
  • tube falls by increasing the space
  • the distance D between adjacent protrusions 22 has a relationship of 0.15 mm ⁇ D ⁇ 0.50 mm. Try to meet. Thereby, even when the plurality of protrusions 22 are formed on the inner wall surface of the flow path 21, the sludge 31 can flow without being deposited.
  • FIG. 9 is a cross-sectional view showing an example of a flat tube of the refrigeration cycle apparatus according to Embodiment 2 of the present invention.
  • FIG. 10 is an enlarged cross-sectional view showing an example of a flat tube of the refrigeration cycle apparatus according to Embodiment 2 of the present invention.
  • 9 and 10 show a case in which one protrusion 22 is provided on the inner wall surface 23 facing downward in the gravity direction and one protrusion 22 is provided on the inner wall surface facing upward in the gravity direction among the inner wall surfaces of the flow path 21. .
  • the number of protrusions 22 is not limited to this, and a plurality of protrusions 22 may be provided on one inner wall surface.
  • interval D is formed so that the relationship mentioned above may be satisfy
  • sludge 31 generated when the HFO-1123 is decomposed easily accumulates between the protrusion 22 and the side wall of the flow path 21.
  • sludge 31 is particularly easily deposited on the inner wall surface 23 facing downward in the gravitational direction. For this reason, when the distance C from the bottom 24 of the protrusion 22 to the side wall of the flow path 21 satisfies 0.15 mm ⁇ C, the refrigerant can flow without depositing sludge 31 in the flow path 21.
  • the distance C is preferably 0.50 mm or less.
  • the distance C from the bottom 24 of the protrusion 22 to the side wall of the flow path 21 is 0.
  • the relationship of 15 mm ⁇ D ⁇ 0.50 mm is satisfied.
  • FIG. FIG. 11 is a characteristic diagram showing the relationship between the pressure ratio performance and the ratio between the thickness to of the flat tube and the minor axis diameter DA of the refrigeration cycle apparatus according to Embodiment 3 of the present invention.
  • HFO-1123 or a mixed refrigerant containing HFO-1123 is used as the refrigerant circulating in the refrigerant circuit
  • HFO-1123 is a refrigerant having a lower standard boiling point than the conventionally used HFC-410A.
  • the pressure becomes larger than that at the saturation temperature equivalent to that of HFC-410A. For this reason, it is necessary to sufficiently ensure the pressure resistance performance of the flat tube 2.
  • the wall thickness to of the flat tube 2 and the short axis diameter DA are used as parameters in the calculation conditions during the performance coefficient simulation shown in FIG. 5 of the first embodiment described above.
  • the horizontal axis indicates the ratio to / DA between the wall thickness to of the flat tube 2 and the short axis diameter DA
  • the vertical axis indicates the pressure resistance Pr of the flat tube 2 and the flat tube 2 required. The ratio Pr / Pn to the breakdown voltage Pn is shown.
  • the pressure resistance performance Pr needs to exceed the required pressure resistance Pn. That is, when Pr / Pn is 1 or less, the pressure resistance performance cannot be sufficiently ensured, so it is necessary to satisfy Pr / Pn> 1. In the example shown in FIG. 11, when to / DA is less than 0.10, Pr / Pn is 1 or less. Therefore, it is necessary to satisfy the relationship of 0.10 ⁇ to / DA. On the other hand, when to / DA increases too much, the pressure resistance is sufficiently ensured, but the cross-sectional area of the flow path 21 and the heat transfer area of the flow path 21 are reduced, and the heat exchange performance is also reduced.
  • the pressure resistance performance is improved in the case of using HFO-1123 or a mixed refrigerant containing HFO-1123. Sufficiently can be secured and the heat exchange performance can be improved.
  • the heat exchanger 1 has been described as an example when used as an evaporator in an outdoor unit of an air conditioner.
  • the heat exchanger 1 is used as a condenser in an indoor unit of an air conditioner.
  • the same effect can be achieved when used as another heat exchanger 1.
  • the same effect can be achieved also when it is applied to at least one of the first heat exchanger 12 and the second heat exchanger 14 in the refrigeration cycle apparatus 10 using the heat exchanger 1 described above.

Abstract

This refrigeration cycle apparatus is configured such that a mixed refrigerant including HFO-1123 or HFO-1123 is used as a refrigerant, and at least one of a first heat exchanger and a second heat exchanger has a plurality of fins and a plurality of flat tubes in which a plurality of channels through which the refrigerant flows are formed, wherein the plurality of flat tubes satisfy the relationship in which 0.9 mm ≤ DA ≤ 3.0 mm, where DA is the width of the flat tube.

Description

冷凍サイクル装置Refrigeration cycle equipment
 本発明は、熱交換器を備えた冷凍サイクル装置に関するものである。 The present invention relates to a refrigeration cycle apparatus equipped with a heat exchanger.
 従来の冷凍サイクル装置においては、作動流体として、HFO-1123を用いるものが提案されている(例えば、特許文献1参照)。 A conventional refrigeration cycle apparatus has been proposed that uses HFO-1123 as a working fluid (see, for example, Patent Document 1).
特開2014-98166号公報JP 2014-98166 A
 特許文献1に記載のHFO-1123のようなHFO冷媒を含む冷媒は、一般に地球温暖化係数(以下「GWP」と称す)低いため大気寿命が短い。すなわち安定性が悪いため、熱交換器を含む冷媒回路内に存在している場合においても、冷媒が分解しやすい。よって、冷凍サイクル装置の性能低下および信頼性低下の要因となる。 A refrigerant containing an HFO refrigerant such as HFO-1123 described in Patent Document 1 generally has a short atmospheric life because it has a low global warming potential (hereinafter referred to as “GWP”). That is, since the stability is poor, the refrigerant is easily decomposed even when it exists in the refrigerant circuit including the heat exchanger. Therefore, it becomes a factor of the performance fall and reliability fall of a refrigerating cycle device.
 本発明は、上記のような課題を背景になされたもので、冷媒回路を循環する冷媒として、HFO-1123、またはHFO-1123を含む混合冷媒を使用する場合において、熱交換器の伝熱性能を向上することができる冷凍サイクル装置を提供することを目的とする。 The present invention has been made in the background of the above-described problems, and in the case of using HFO-1123 or a mixed refrigerant containing HFO-1123 as the refrigerant circulating in the refrigerant circuit, the heat transfer performance of the heat exchanger It aims at providing the refrigerating cycle device which can improve.
 本発明に係る冷凍サイクル装置は、圧縮機、第1熱交換器、膨張手段、および第2熱交換器を順次配管で接続し、冷媒を循環させる冷媒回路を備え、前記冷媒は、HFO-1123、またはHFO-1123を含む混合冷媒であり、前記第1熱交換器および前記第2熱交換器の少なくとも一方は、複数のフィンと、前記冷媒が流れる複数の流路が、内部に形成された、複数の扁平管と、を有し、前記複数の扁平管は、幅をDAとした場合、0.9mm≦DA≦3.0mmなる関係を満たす。 The refrigeration cycle apparatus according to the present invention includes a refrigerant circuit in which a compressor, a first heat exchanger, an expansion unit, and a second heat exchanger are sequentially connected by piping to circulate the refrigerant, and the refrigerant is HFO-1123. Or at least one of the first heat exchanger and the second heat exchanger has a plurality of fins and a plurality of flow paths through which the refrigerant flows formed therein. The plurality of flat tubes satisfy the relationship of 0.9 mm ≦ DA ≦ 3.0 mm when the width is DA.
 本発明は、扁平管の幅をDAとした場合、0.9mm≦DA≦3.0mmなる関係を満たす。このため、冷媒回路を循環する冷媒として、HFO-1123、またはHFO-1123を含む混合冷媒を使用する場合において、熱交換器の伝熱性能を向上することができる。 The present invention satisfies the relationship of 0.9 mm ≦ DA ≦ 3.0 mm when the width of the flat tube is DA. For this reason, in the case where HFO-1123 or a mixed refrigerant containing HFO-1123 is used as the refrigerant circulating in the refrigerant circuit, the heat transfer performance of the heat exchanger can be improved.
本発明の実施の形態1における冷凍サイクル装置の冷媒回路の一例を示す回路図である。It is a circuit diagram which shows an example of the refrigerant circuit of the refrigerating-cycle apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における冷凍サイクル装置の熱交換器の一例を示す斜視図である。It is a perspective view which shows an example of the heat exchanger of the refrigeration cycle apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における冷凍サイクル装置の扁平管の一例を示す断面図である。It is sectional drawing which shows an example of the flat tube of the refrigerating-cycle apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における冷凍サイクル装置の熱交換器の一例を示す断面図である。It is sectional drawing which shows an example of the heat exchanger of the refrigerating-cycle apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における冷凍サイクル装置の、扁平管の短軸径DAと成績係数(COP)との関係を示す特性図である。It is a characteristic view which shows the relationship between the short axis diameter DA of a flat tube, and a coefficient of performance (COP) of the refrigerating-cycle apparatus in Embodiment 1 of this invention. 本発明の実施の形態2における冷凍サイクル装置の扁平管の一例を示す断面図である。It is sectional drawing which shows an example of the flat tube of the refrigerating-cycle apparatus in Embodiment 2 of this invention. 本発明の実施の形態2における冷凍サイクル装置の扁平管の一例を示す断面拡大図である。It is a cross-sectional enlarged view which shows an example of the flat tube of the refrigerating-cycle apparatus in Embodiment 2 of this invention. 扁平管内に突起を複数個設けた場合に、突起間にスラッジが堆積した場合の一例を示す断面図である。It is sectional drawing which shows an example when sludge accumulates between protrusions when multiple protrusions are provided in a flat tube. 本発明の実施の形態2における冷凍サイクル装置の扁平管の一例を示す断面図である。It is sectional drawing which shows an example of the flat tube of the refrigerating-cycle apparatus in Embodiment 2 of this invention. 本発明の実施の形態2における冷凍サイクル装置の扁平管の一例を示す断面拡大図である。It is a cross-sectional enlarged view which shows an example of the flat tube of the refrigerating-cycle apparatus in Embodiment 2 of this invention. 本発明の実施の形態3における冷凍サイクル装置の、扁平管の肉厚toと短軸径DAの比と、耐圧性能との関係を示す特性図である。It is a characteristic view which shows the relationship between the ratio of the thickness to of the flat tube and the short axis diameter DA, and pressure | voltage resistance performance of the refrigerating-cycle apparatus in Embodiment 3 of this invention.
 以下、図面を適宜参照しながら本発明の実施の形態について説明する。
 なお、以下の図面では各構成部材の大きさの関係が、実際のものとは異なる場合がある。また、以下の図面において、同一の符号を付したものは、同一またはこれに相当するものであり、このことは明細書の全文において共通することとなる。さらに、明細書全文に表されている構成要素の形態は、あくまでも例示であって、これらの記載に限定されるものではない。
 なお、以下の実施の形態では、本発明の冷凍サイクル装置の一例として空気調和機を説明するが、本発明はこれに限定されず、例えば、冷凍装置、給湯装置など熱交換器を有する他の装置にも本発明の冷凍サイクル装置を適用することができる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings as appropriate.
In the following drawings, the size relationship between the constituent members may be different from the actual one. In the following drawings, the same reference numerals denote the same or corresponding parts, and this is common throughout the entire specification. Furthermore, the forms of the constituent elements shown in the entire specification are merely examples, and are not limited to these descriptions.
In the following embodiments, an air conditioner will be described as an example of the refrigeration cycle apparatus of the present invention. The refrigeration cycle apparatus of the present invention can also be applied to the apparatus.
実施の形態1.
 図1は、本発明の実施の形態1における冷凍サイクル装置の冷媒回路の一例を示す回路図である。
 図1に示すように、冷凍サイクル装置10は、圧縮機11と、第1熱交換器12と、膨張手段13と、第2熱交換器14とが順次配管で接続され、冷媒を循環させる冷媒回路を備えている。また、第1熱交換器12には、空気を送風するファン15aが設けられ、第2熱交換器14には、空気を送風するファン15bが設けられている。
 なお、以下の説明において、第1熱交換器12と第2熱交換器14とを区別しないときは、熱交換器1と称する。
Embodiment 1 FIG.
1 is a circuit diagram illustrating an example of a refrigerant circuit of a refrigeration cycle apparatus according to Embodiment 1 of the present invention.
As shown in FIG. 1, a refrigeration cycle apparatus 10 includes a compressor 11, a first heat exchanger 12, an expansion means 13, and a second heat exchanger 14 that are sequentially connected by a pipe, and circulate the refrigerant. It has a circuit. The first heat exchanger 12 is provided with a fan 15a that blows air, and the second heat exchanger 14 is provided with a fan 15b that blows air.
In the following description, when the first heat exchanger 12 and the second heat exchanger 14 are not distinguished, they are referred to as the heat exchanger 1.
 冷媒回路を循環する冷媒は、分子構造中に二重結合を1つ有する1,1,2-トリフルオロエチレン(HFO-1123)、またはHFO-1123を含む混合冷媒が用いられる。 As the refrigerant circulating in the refrigerant circuit, 1,1,2-trifluoroethylene (HFO-1123) having one double bond in the molecular structure or a mixed refrigerant containing HFO-1123 is used.
 ここで、従来の冷凍サイクル装置においては、作動流体として、HFC-410Aのようなヒドロフルオロカーボン(HFC)冷媒が用いられている。このHFC-410Aは、HCFC22のようなヒドロクロロフルオロカーボン(HCFC)冷媒と違い、成層圏のオゾン層への影響の指標である、オゾン層破壊係数(ODP)が0であり、オゾン層を破壊することはない。しかし、HFC冷媒は、地球温暖化の原因となる可能性を有しており、その指標である、GWPが高い値を示す。 Here, in a conventional refrigeration cycle apparatus, a hydrofluorocarbon (HFC) refrigerant such as HFC-410A is used as a working fluid. Unlike hydrochlorofluorocarbon (HCFC) refrigerants such as HCFC22, this HFC-410A has an ozone depletion coefficient (ODP) that is an index of the impact on the ozone layer in the stratosphere, and destroys the ozone layer. There is no. However, the HFC refrigerant has a possibility of causing global warming, and its index, GWP, shows a high value.
 GWPの低い冷媒として、組成中に炭素の二重結合を有さないHFC冷媒の中で、HFC-410AよりもGWPの低いHFC-32が存在する。しかし、この冷媒を冷凍サイクル装置10の作動流体として使用する場合には、圧縮機11の出口の吐出温度が従来の冷媒に比べ高くなるため、高温に耐久できる材料等を使用する必要がある。 As a refrigerant having a low GWP, HFC-32 having a GWP lower than that of HFC-410A exists among HFC refrigerants having no carbon double bond in the composition. However, when this refrigerant is used as the working fluid of the refrigeration cycle apparatus 10, the discharge temperature at the outlet of the compressor 11 is higher than that of a conventional refrigerant, and therefore it is necessary to use a material that can withstand high temperatures.
 また、GWPの低い冷媒の冷媒として、大気中のOHラジカルによって分解されやすい、組成中に炭素の二重結合を有するヒドロフルオロオレフィン(HFO)が存在する。このようなHFO冷媒としては、例えば、HFO-1234yf、およびHFO-1234zeが存在する。しかし、これらの冷媒は、標準沸点の高い冷媒であるため、従来の冷媒と同等の飽和温度時と比較して圧力が小さくなる。つまり、従来のHFC冷媒と比較して冷媒密度が小さくなってしまい、冷凍サイクル装置10内の冷媒循環量を従来の冷媒と同等に保つには圧縮機11の周波数を高くする必要がある。ゆえに消費電力が増大するため、省エネルギー性能を低下させる要因となる。 Further, as a refrigerant having a low GWP, there is hydrofluoroolefin (HFO) having a carbon double bond in its composition, which is easily decomposed by OH radicals in the atmosphere. Examples of such HFO refrigerants include HFO-1234yf and HFO-1234ze. However, since these refrigerants are refrigerants having a high standard boiling point, the pressure is lower than that at the same saturation temperature as that of conventional refrigerants. That is, the refrigerant density becomes smaller than that of the conventional HFC refrigerant, and the frequency of the compressor 11 needs to be increased in order to keep the refrigerant circulation amount in the refrigeration cycle apparatus 10 equal to that of the conventional refrigerant. Therefore, the power consumption increases, which causes a reduction in energy saving performance.
 上述したように本実施の形態1における冷媒回路を循環する冷媒は、HFO-1123
HFO-1123またはHFO-1123を含む混合冷媒が用いられる。HFO-1123は、前述のHFO-1234yfおよびHFO-1234zeと異なり、標準沸点の低い冷媒であるため、従来のHFC冷媒と同等の飽和温度時と比較して圧力が大きくなる。つまり、従来の冷媒と比較して冷媒密度が大きく、圧縮機11の周波数を低くしても、冷凍サイクル装置10内の冷媒循環量を従来の冷媒と同等に保つことが可能となる。ゆえに、HFO-1123は、他のHFO冷媒の中でも省エネルギー性能に優れている。また、HFO-1123は、従来用いられているHFC-410Aと比べ、潜熱が大きいため、冷凍サイクル装置10内の冷媒循環量を小さくすることが可能となる。すなわち、HFO-1123を作動流体として用いた冷凍サイクル装置10は、熱交換器1における扁平管2(伝熱管)内の圧損の低減をしつつ、従来の冷媒を用いた場合と同等の放熱(冷熱)能力を発揮することが可能となる。
As described above, the refrigerant circulating in the refrigerant circuit in the first embodiment is HFO-1123.
HFO-1123 or a mixed refrigerant containing HFO-1123 is used. Unlike HFO-1234yf and HFO-1234ze described above, HFO-1123 is a refrigerant having a low standard boiling point, and therefore has a higher pressure than at the same saturation temperature as that of a conventional HFC refrigerant. That is, the refrigerant density is larger than that of the conventional refrigerant, and even if the frequency of the compressor 11 is lowered, the refrigerant circulation amount in the refrigeration cycle apparatus 10 can be kept equal to that of the conventional refrigerant. Therefore, HFO-1123 is superior in energy saving performance among other HFO refrigerants. In addition, HFO-1123 has a larger latent heat than HFC-410A that has been used in the past, so that it is possible to reduce the refrigerant circulation amount in the refrigeration cycle apparatus 10. That is, the refrigeration cycle apparatus 10 using HFO-1123 as a working fluid reduces heat loss in the flat tube 2 (heat transfer tube) in the heat exchanger 1 and radiates heat equivalent to the case where a conventional refrigerant is used ( It is possible to demonstrate (cooling) capability.
 圧縮機11は、第2熱交換器14から排出された冷媒を圧縮して、高温高圧の冷媒を第1熱交換器12に供給する。第1熱交換器12は、凝縮器として機能し、ファン15aから供給される空気と冷媒との間で熱交換を行い、冷媒を凝縮液化させる。膨張手段13は、膨張弁、キャピラリーチューブ、減圧装置、絞り装置などで構成される。膨張手段13は、第1熱交換器12から排出された冷媒を膨張させ、低温低圧の冷媒にして第2熱交換器14へ供給する。第2熱交換器14は、蒸発器として機能し、ファン15bから供給される空気と冷媒との間で熱交換を行い、冷媒を蒸発ガス化させる。 The compressor 11 compresses the refrigerant discharged from the second heat exchanger 14 and supplies the high-temperature and high-pressure refrigerant to the first heat exchanger 12. The first heat exchanger 12 functions as a condenser, performs heat exchange between the air supplied from the fan 15a and the refrigerant, and condenses and liquefies the refrigerant. The expansion means 13 includes an expansion valve, a capillary tube, a decompression device, a throttling device, and the like. The expansion means 13 expands the refrigerant discharged from the first heat exchanger 12 and supplies it to the second heat exchanger 14 as a low-temperature and low-pressure refrigerant. The second heat exchanger 14 functions as an evaporator, performs heat exchange between the air supplied from the fan 15b and the refrigerant, and evaporates the refrigerant.
 なお、四方弁などの流路切替装置を設け、冷媒回路における冷媒の流れ方向を切り替えることで、第1熱交換器12を蒸発器として機能させ、第2熱交換器14を凝縮器として機能させるようにしても良い。 In addition, by providing a flow path switching device such as a four-way valve and switching the flow direction of the refrigerant in the refrigerant circuit, the first heat exchanger 12 functions as an evaporator and the second heat exchanger 14 functions as a condenser. You may do it.
 図2は、本発明の実施の形態1における冷凍サイクル装置の熱交換器の一例を示す斜視図である。
 図2において、熱交換器1は、複数の扁平管2と、複数のフィン3と、一対のヘッダー4a、4bとにより構成されている。複数のフィン3は、間隔を空けて配置され、その間隔に空気などの流体が流れるように構成されている。複数の扁平管2は、複数のフィン3に挿入されている。複数の扁平管2は、扁平形状断面における長手寸法の向き(以下、長軸方向という)が、複数のフィン3の間を流通する空気の流通方向を向き、扁平形状断面における幅寸法の向き(以下、短軸方向という)に間隔を空けて配置されている。
FIG. 2 is a perspective view showing an example of a heat exchanger of the refrigeration cycle apparatus according to Embodiment 1 of the present invention.
In FIG. 2, the heat exchanger 1 includes a plurality of flat tubes 2, a plurality of fins 3, and a pair of headers 4a and 4b. The plurality of fins 3 are arranged at intervals, and are configured such that a fluid such as air flows through the intervals. The plurality of flat tubes 2 are inserted into the plurality of fins 3. In the plurality of flat tubes 2, the direction of the longitudinal dimension in the flat cross section (hereinafter referred to as the major axis direction) faces the flow direction of the air flowing between the plurality of fins 3, and the direction of the width dimension in the flat cross section ( Hereinafter, they are arranged at intervals in the short axis direction).
 ヘッダー4a、4bは、上下に延び対向して配置され、複数の扁平管2の両端をそれぞれ接続する。ヘッダー4aに流入した冷媒は、ヘッダー4aの内部で多分岐され、複数の扁平管2のそれぞれに流入する。複数の扁平管2内の冷媒流路を流通する冷媒は、複数のフィン3の間および複数の扁平管2の間を流通する空気と熱交換し、ヘッダー4bへ流入する。ヘッダー4bに流入した冷媒は、ヘッダー4bの内部で合流されたあと、ヘッダー4bから流出する。 The headers 4a and 4b extend vertically and are opposed to each other, and connect both ends of the plurality of flat tubes 2 respectively. The refrigerant that has flowed into the header 4 a is branched into multiple portions within the header 4 a and flows into each of the plurality of flat tubes 2. The refrigerant flowing through the refrigerant flow paths in the plurality of flat tubes 2 exchanges heat with the air flowing between the plurality of fins 3 and between the plurality of flat tubes 2 and flows into the header 4b. The refrigerant flowing into the header 4b joins inside the header 4b and then flows out from the header 4b.
 なお、ヘッダー4a、4bは、図面上は縦長に書かれており、冷媒が扁平管2に向かって水平方向に流れるようになっているが、ヘッダー4a、4bの向きはこの向きに限らず、例えばヘッダー4a、4bを横向きに設置し、冷媒が垂直方向に流れてもよい。
 なお、ヘッダー4a、4bの少なくとも一方に代えて、冷媒を分岐する分岐管を設けても良い。
The headers 4a and 4b are written vertically in the drawing, and the refrigerant flows in the horizontal direction toward the flat tube 2. However, the orientation of the headers 4a and 4b is not limited to this direction. For example, the headers 4a and 4b may be installed sideways, and the refrigerant may flow in the vertical direction.
A branch pipe that branches the refrigerant may be provided instead of at least one of the headers 4a and 4b.
 フィン3は、例えばアルミニウム製である。フィン3は、例えばアルミ条材を所定の大きさに切断した後、プレス等の加工をすることで任意の形に生成する。なお、このフィン3の材質はアルミニウムに限らず、例えば銅製など、任意の材料を用いることができる。また、フィン3の形状は、例えば板状のプレートフィン、または波状に形成されたコルゲートフィン等、任意の形状を用いることができる。また、フィン3に、切り起こし加工、または凹凸部を形成するなど、熱交換性能を向上せる形状を設けても良い。 The fin 3 is made of aluminum, for example. The fin 3 is produced | generated in arbitrary shapes by processing, such as a press, after cut | disconnecting an aluminum strip to a predetermined magnitude | size, for example. The material of the fin 3 is not limited to aluminum, and any material such as copper can be used. Moreover, the shape of the fin 3 can use arbitrary shapes, such as a plate-shaped plate fin or the corrugated fin formed in the wave shape, for example. Moreover, you may provide the fin 3 in the shape which improves heat exchange performance, such as cutting and raising processing or forming an uneven | corrugated | grooved part.
 図3は、本発明の実施の形態1における冷凍サイクル装置の扁平管の一例を示す断面図である。
 図3に示すように、扁平管2は、断面が扁平形状を有している。扁平管2は、扁平多穴管によって構成され、隔壁20によって区画された複数の流路21が扁平管2の長手方向に沿って形成されている。扁平管2は、例えばアルミニウム製である。
FIG. 3 is a cross-sectional view showing an example of a flat tube of the refrigeration cycle apparatus according to Embodiment 1 of the present invention.
As shown in FIG. 3, the flat tube 2 has a flat cross section. The flat tube 2 is configured by a flat multi-hole tube, and a plurality of flow paths 21 partitioned by the partition wall 20 are formed along the longitudinal direction of the flat tube 2. The flat tube 2 is made of, for example, aluminum.
 なお、例えば、フィン3および扁平管2の材料をアルミニウムにすることで、異種金属接触による腐食を防ぐことができる。また、フィン3と扁平管2との接合にロウ付けを用いることが可能となる。なお、フィン3と扁平管2の接合にはロウ付けの他に接着剤があるが、例えばアルミロウ材などのロウ材を用いたロウ付けによりフィン3と扁平管2とが接合される場合は、フィン3と扁平管2の密着性が接着材よりも優れている。また、ロウ付けによるフィン3と扁平管2との接合は、フィン3に挿入した管を拡管して接合する拡管方式に比べ、伝熱性能が高く、熱交換性能の優れた熱交換器1を提供することができる。 Note that, for example, by using aluminum for the material of the fins 3 and the flat tubes 2, corrosion due to contact with different metals can be prevented. Also, brazing can be used for joining the fins 3 and the flat tubes 2. In addition, there is an adhesive in addition to brazing for joining the fin 3 and the flat tube 2, but when the fin 3 and the flat tube 2 are joined by brazing using a brazing material such as an aluminum brazing material, The adhesion between the fin 3 and the flat tube 2 is superior to that of the adhesive. Also, the joining of the fin 3 and the flat tube 2 by brazing is a heat exchanger 1 that has higher heat transfer performance and superior heat exchange performance than the pipe expansion method in which the pipe inserted into the fin 3 is expanded and joined. Can be provided.
 図4は、本発明の実施の形態1における冷凍サイクル装置の熱交換器の一例を示す断面図である。
 図4の例では、扁平管2は、空気の流通方向である列方向に例えば2列配置されている。また、扁平管2は、列方向に直交する段方向に複数段配置されている。また、扁平管2は、隣り合う列の扁平管2が段方向において重ならないように配置されている(例えば千鳥配列)。そして、空気は扁平管2の上流にフィン3が付設される側から流入する。
FIG. 4 is a cross-sectional view showing an example of the heat exchanger of the refrigeration cycle apparatus in Embodiment 1 of the present invention.
In the example of FIG. 4, the flat tubes 2 are arranged in, for example, two rows in the row direction that is the air flow direction. Further, the flat tubes 2 are arranged in a plurality of stages in the step direction orthogonal to the row direction. Further, the flat tubes 2 are arranged so that adjacent rows of flat tubes 2 do not overlap in the step direction (for example, a staggered arrangement). And air flows in from the side where the fin 3 is attached upstream of the flat tube 2.
 扁平管2は、例えば、扁平形状断面における幅寸法(以下、短軸径DAという)が2.0mm、扁平形状断面における長手寸法(以下、長軸径DBという)が19.0mmである。扁平管2は、例えば、流路21の穴数が20穴、流路21の隔壁20の厚さtiが0.20mmである。扁平管2の外壁と流路21の内壁との間の肉厚toが0.30mmである。また、隣り合う扁平管2の中心を結んだ段方向の距離である段ピッチDPが13.6mmで配置されている。 The flat tube 2 has, for example, a width dimension (hereinafter referred to as a short axis diameter DA) in a flat cross section of 2.0 mm and a long dimension (hereinafter referred to as a long axis diameter DB) in a flat cross section of 19.0 mm. In the flat tube 2, for example, the number of holes in the flow path 21 is 20, and the thickness ti of the partition wall 20 in the flow path 21 is 0.20 mm. The wall thickness to between the outer wall of the flat tube 2 and the inner wall of the flow path 21 is 0.30 mm. Further, a step pitch DP, which is a distance in the step direction connecting the centers of the adjacent flat tubes 2, is arranged at 13.6 mm.
 フィン3は、空気の流通方向の幅Lが22mmである。熱交換器1は、高さH_HEXが600mm、フィン積幅H_Wが850mmである(図2参照)。 The fin 3 has an air flow direction width L of 22 mm. The heat exchanger 1 has a height H_HEX of 600 mm and a fin product width H_W of 850 mm (see FIG. 2).
 なお、これらの寸法はあくまでも一例であり、本発明はこれに限られるものではなく、後述する寸法の条件を満たす形状であれば良い。 It should be noted that these dimensions are merely examples, and the present invention is not limited to this, and may be any shape that satisfies the dimensional requirements described below.
 図5は、本発明の実施の形態1における冷凍サイクル装置の、扁平管の短軸径DAと成績係数(COP)との関係を示す特性図である。
 図5においては、熱交換器1を蒸発器として使用した場合を例として、扁平管2の短軸径DAをパラメータとし、各短軸径DAにおける成績係数(COP)をシミュレーションにより抽出した結果を示す。また図5においては、冷媒回路を循環する冷媒に、HFC-410Aを用いた場合と、HFO-1123を用いた場合とを比較して示す。
FIG. 5 is a characteristic diagram showing the relationship between the short axis diameter DA of the flat tube and the coefficient of performance (COP) in the refrigeration cycle apparatus according to Embodiment 1 of the present invention.
In FIG. 5, the case where the heat exchanger 1 is used as an evaporator is taken as an example, and the coefficient of performance (COP) at each short axis diameter DA is extracted by simulation using the short axis diameter DA of the flat tube 2 as a parameter. Show. FIG. 5 shows a comparison between the case of using HFC-410A and the case of using HFO-1123 as the refrigerant circulating in the refrigerant circuit.
 また、図5に示すシミュレーションの結果においては、扁平管2の長軸方向における流路21の管内長さBと、扁平管2の短軸方向における流路21の管内長さAとの比であるアスペクト比B/Aは、予め設定した値で一定である。例えば、アスペクト比B/Aは、上述した寸法例と同等である。つまり、上述した寸法例では、流路21の管内長さBが0.73mm、管内長さAが1.4mmであるので、アスペクト比B/Aは0.52である。また、扁平管2の段ピッチDPと、短軸径DAとの比は、予め設定した値で一定である。例えば、上述した寸法例と同等である。つまり、DP/DAは例えば6.8である。また、扁平管2の肉厚toと短軸径DAとの比は、予め設定した値で一定である。例えば、上述した寸法例と同等である。つまり、to/DAは例えば0.15である。また、扁平管2の長軸径DB、熱交換器1の高さH_HEX、フィン積幅H_Wは、上述した寸法例と同等である。 Further, in the simulation result shown in FIG. 5, the ratio between the in-pipe length B of the flow channel 21 in the long axis direction of the flat tube 2 and the in-pipe length A of the flow channel 21 in the short axis direction of the flat tube 2. A certain aspect ratio B / A is constant at a preset value. For example, the aspect ratio B / A is equivalent to the dimension example described above. That is, in the dimension example described above, the in-pipe length B of the flow path 21 is 0.73 mm and the in-pipe length A is 1.4 mm, so the aspect ratio B / A is 0.52. Further, the ratio between the step pitch DP of the flat tube 2 and the short axis diameter DA is constant at a preset value. For example, it is equivalent to the dimension example described above. That is, DP / DA is 6.8, for example. Further, the ratio between the wall thickness to of the flat tube 2 and the short axis diameter DA is constant at a preset value. For example, it is equivalent to the dimension example described above. That is, to / DA is 0.15, for example. Further, the long axis diameter DB of the flat tube 2, the height H_HEX of the heat exchanger 1, and the fin product width H_W are equivalent to the above-described dimension example.
 また、図5に示すシミュレーションの結果においては、フィン3および扁平管2から空気への放熱量(受熱量)は一定である。また、フィン3のピッチ、穴数、熱交換器1のパス構成等の上記以外の伝熱管および熱交換器1のパラメータ、および冷凍サイクルの運転条件は、成績係数がほぼ最適値になる値である。 Further, in the simulation result shown in FIG. 5, the amount of heat released from the fins 3 and the flat tubes 2 to the air (the amount of heat received) is constant. In addition, the parameters of the heat transfer tubes and the heat exchanger 1 other than the above, such as the pitch of the fins 3, the number of holes, the path configuration of the heat exchanger 1, and the operating conditions of the refrigeration cycle are values at which the coefficient of performance is almost optimal. is there.
 図5に示されるように、扁平管2の短軸径DAが小さくなると、隣り合う扁平管2の間の通風抵抗が低減する。また、段ピッチDP/短軸径DAが予め設定した値で一定であるので、扁平管2の短軸径DAが小さくなると、扁平管2を高密度に実装することが可能となる。また、アスペクト比B/Aと肉厚to/短軸径DAとが予め設定した値で一定であるので、扁平管2の短軸径DAが小さくなると、扁平管2の内部の流路21の穴数が増えることとになる。このため、扁平管2の管内の冷媒が伝熱面と接する面積が増え、効率良く熱交換できる。よって、熱交換器1の性能が向上し、成績係数も向上する。 As shown in FIG. 5, when the short axis diameter DA of the flat tube 2 is reduced, the ventilation resistance between the adjacent flat tubes 2 is reduced. Further, since the step pitch DP / the short axis diameter DA is constant at a preset value, when the short axis diameter DA of the flat tube 2 is small, the flat tube 2 can be mounted with high density. Further, since the aspect ratio B / A and the wall thickness to / short axis diameter DA are constant at preset values, when the short axis diameter DA of the flat tube 2 becomes small, the flow path 21 inside the flat tube 2 is reduced. The number of holes will increase. For this reason, the area which the refrigerant | coolant in the pipe | tube of the flat tube 2 contacts with a heat-transfer surface increases, and it can heat-exchange efficiently. Therefore, the performance of the heat exchanger 1 is improved and the coefficient of performance is also improved.
 なお、扁平管2の短軸径DAが小さくなりすぎると、扁平管2の流路21の断面積も狭まるため、管内圧損が増加する。管内圧損の増加を抑制するために、熱交換器1のパス数を増加させる必要があるが、冷媒を多分岐させる場合に、十分に性能を発揮するには、ヘッダー4a、4bにより、均等に冷媒を分配させる必要がある。しかし、扁平管2の短軸径DAが小さくなりすぎると、均等に冷媒を分配させることが困難となる。また、熱交換器1の大きさによって、パス数の上限が決まるため、短軸径DAを小さくしていくと、パス数の増加により管内圧損の増加に対応することができなくなる。このようなことから、扁平管2の短軸径DAが小さくなりすぎると、熱交換器1の性能が低下し、成績係数も低下する。 In addition, when the short axis diameter DA of the flat tube 2 becomes too small, the cross-sectional area of the flow path 21 of the flat tube 2 is also narrowed, so that the pressure loss in the tube increases. In order to suppress an increase in the pressure loss in the pipe, it is necessary to increase the number of passes of the heat exchanger 1. However, when the refrigerant is multi-branched, the headers 4a and 4b can be used evenly in order to exhibit sufficient performance. It is necessary to distribute the refrigerant. However, if the short axis diameter DA of the flat tube 2 becomes too small, it becomes difficult to distribute the refrigerant evenly. Further, since the upper limit of the number of passes is determined depending on the size of the heat exchanger 1, if the short axis diameter DA is reduced, it becomes impossible to cope with an increase in the pressure loss in the pipe due to an increase in the number of passes. For this reason, when the short axis diameter DA of the flat tube 2 becomes too small, the performance of the heat exchanger 1 is lowered and the coefficient of performance is also lowered.
 また、扁平管2の短軸径DAが0.8mmを下回ると、扁平管2の押し出し加工等の製造上、困難となる。 Moreover, when the short axis diameter DA of the flat tube 2 is less than 0.8 mm, it becomes difficult in manufacturing the flat tube 2 such as extrusion.
 一方、扁平管2の短軸径DAが大きくなりすぎると、隣り合う扁平管2の間の通風抵抗が増加する。また、扁平管2の内部の流路21の穴数がすくなくなる。このため、扁平管2の管内の冷媒が伝熱面と接する面積が減り、熱交換の効率が悪くなる。よって、十分な熱交換性能を発揮しにくくなり、成績係数も低下する。 On the other hand, if the short axis diameter DA of the flat tube 2 becomes too large, the ventilation resistance between the adjacent flat tubes 2 increases. Further, the number of holes in the flow path 21 inside the flat tube 2 is reduced. For this reason, the area which the refrigerant | coolant in the pipe | tube of the flat tube 2 contacts with a heat-transfer surface reduces, and the efficiency of heat exchange worsens. Therefore, it becomes difficult to exhibit sufficient heat exchange performance, and the coefficient of performance also decreases.
 図5に示すように、冷媒の種類で比較すると、扁平管2を流れる冷媒がHFO-1123である場合、HFC-410Aと比較して扁平管2の管内圧損が低減する。このため、同等の短軸径DAにおいても、パス数を低減させることができ、成績係数が向上する。特に、短軸径DAが0.9mm≦DA≦3.0mmとなる場合に、冷媒がHFO-1123である場合の成績係数が、HFC-410Aである場合の成績係数のピーク値とほぼ同等かそれ以上となり、十分な性能を発揮することが可能となる。 As shown in FIG. 5, when compared with the type of refrigerant, when the refrigerant flowing through the flat tube 2 is HFO-1123, the pressure loss in the flat tube 2 is reduced as compared with HFC-410A. For this reason, the number of passes can be reduced even with an equivalent minor axis diameter DA, and the coefficient of performance is improved. In particular, when the minor axis diameter DA is 0.9 mm ≦ DA ≦ 3.0 mm, the coefficient of performance when the refrigerant is HFO-1123 is almost equal to the peak value of the coefficient of performance when HFC-410A is used. It becomes more than that and it becomes possible to exhibit sufficient performance.
 また、扁平管2の短軸径DAが0.9mmのとき、上述した寸法例のように例えばアスペクト比B/Aが0.52、肉厚to/短軸径DAが0.15の場合、扁平管2の長軸方向における流路21の管内長さBは0.33mmとなる。ここで、HFO-1123の分解物が化学反応することで生成されるスラッジの大きさは、0.15mm程度である。このため、流路21の管内長さBが0.33mmであれば、扁平管2を流れるHFO-1123が分解してスラッジが発生した場合であっても、スラッジが流路21内に堆積せずに流れることが可能となる。このため、十分な信頼性を確保することが可能となる。 When the short axis diameter DA of the flat tube 2 is 0.9 mm, for example, when the aspect ratio B / A is 0.52 and the wall thickness to / short axis diameter DA is 0.15 as in the above-described dimension example, The in-tube length B of the flow path 21 in the long axis direction of the flat tube 2 is 0.33 mm. Here, the size of the sludge produced by the chemical reaction of the decomposition product of HFO-1123 is about 0.15 mm. Therefore, if the in-pipe length B of the flow channel 21 is 0.33 mm, sludge is accumulated in the flow channel 21 even when HFO-1123 flowing through the flat tube 2 is decomposed and sludge is generated. It becomes possible to flow without. For this reason, it becomes possible to ensure sufficient reliability.
 したがって、扁平管2の短軸径DAは、0.9mm≦DA≦3.0mmとなる関係を満たすようにする。これにより、冷媒回路を循環する冷媒として、HFO-1123、またはHFO-1123を含む混合冷媒を使用する場合において、熱交換器1の伝熱性能を向上することができ、冷媒の分解に起因したスラッジが発生した場合であっても信頼性の低下を抑制することができる。 Therefore, the minor axis diameter DA of the flat tube 2 should satisfy the relationship of 0.9 mm ≦ DA ≦ 3.0 mm. As a result, in the case of using HFO-1123 or a mixed refrigerant containing HFO-1123 as the refrigerant circulating in the refrigerant circuit, the heat transfer performance of the heat exchanger 1 can be improved, resulting from the decomposition of the refrigerant. Even when sludge is generated, a decrease in reliability can be suppressed.
 なおアスペクト比B/Aがさらに小さい値を選定すると、扁平管2の長軸方向における流路21の管内長さBが十分ではなくなるが、管内圧損が増加するため、このような短軸径DAが小さい場合では、アスペクト比について耐圧性能を保つ程度に大きくするのが一般的である。 If a smaller value is selected for the aspect ratio B / A, the in-pipe length B of the flow path 21 in the long axis direction of the flat tube 2 is not sufficient, but the pressure loss in the pipe increases. In general, the aspect ratio is increased to such an extent that the pressure resistance is maintained.
 また、図5に示すように、扁平管2の短軸径DAが1.0mm≦DA≦1.8mmとなるときに、扁平管2を流れる冷媒がHFO-1123である場合の成績係数が、最大値の2%以内となる。このため、扁平管2の短軸径DAが1.0mm≦DA≦1.8mmとなる関係を満たすようにすることで、特に優れた性能を発揮することが可能となる。 In addition, as shown in FIG. 5, when the short axis diameter DA of the flat tube 2 is 1.0 mm ≦ DA ≦ 1.8 mm, the coefficient of performance when the refrigerant flowing through the flat tube 2 is HFO-1123 is Within 2% of the maximum value. For this reason, when the short axis diameter DA of the flat tube 2 satisfies the relationship of 1.0 mm ≦ DA ≦ 1.8 mm, particularly excellent performance can be exhibited.
 以上のように本実施の形態1においては、冷媒回路を循環する冷媒として、HFO-1123、またはHFO-1123を含む混合冷媒を使用する場合において、熱交換器1の伝熱性能を向上することができる。また、冷媒の分解に起因したスラッジが発生した場合であっても信頼性の低下を抑制することができる冷凍サイクル装置10を提供することができる。 As described above, in the first embodiment, the heat transfer performance of the heat exchanger 1 is improved when HFO-1123 or a mixed refrigerant containing HFO-1123 is used as the refrigerant circulating in the refrigerant circuit. Can do. Moreover, even if it is a case where the sludge resulting from decomposition | disassembly of a refrigerant | coolant generate | occur | produces, the refrigerating-cycle apparatus 10 which can suppress a reliability fall can be provided.
実施の形態2.
 図6は、本発明の実施の形態2における冷凍サイクル装置の扁平管の一例を示す断面図である。
 図7は、本発明の実施の形態2における冷凍サイクル装置の扁平管の一例を示す断面拡大図である。
 図6および図7に示すように、実施の形態2における扁平管2は、流路21の内壁面に、1つまたは複数の突起22が流路方向に沿って形成されている。なお、図7の例では、気液二相冷媒が流れている場合を示しており、25は二相流液膜を示し、26は気液界面を示している。
Embodiment 2. FIG.
FIG. 6 is a cross-sectional view showing an example of a flat tube of the refrigeration cycle apparatus according to Embodiment 2 of the present invention.
FIG. 7 is an enlarged cross-sectional view showing an example of a flat tube of the refrigeration cycle apparatus according to Embodiment 2 of the present invention.
As shown in FIGS. 6 and 7, in the flat tube 2 in the second embodiment, one or a plurality of protrusions 22 are formed on the inner wall surface of the flow channel 21 along the flow channel direction. 7 shows a case where a gas-liquid two-phase refrigerant flows, 25 indicates a two-phase liquid film, and 26 indicates a gas-liquid interface.
 流路21の内壁面に突起22を形成することで、流路21の内壁面と冷媒との接触面積を増加させることができる。また、流路21内において冷媒の流れの乱れを促進させることができる。さらに、図7に示すように、冷媒の表面張力により、突起22の底部24に液冷媒が集中することで、管軸方向の排液性が向上し、突起22の底部24の周りの二相流液膜25の厚さを低減させることができる。したがって、突起22を設けない場合と比較して、より効率よく熱交換させることが可能となる。 By forming the protrusions 22 on the inner wall surface of the flow path 21, the contact area between the inner wall surface of the flow path 21 and the refrigerant can be increased. In addition, it is possible to promote disturbance of the refrigerant flow in the flow path 21. Furthermore, as shown in FIG. 7, the liquid refrigerant concentrates on the bottom 24 of the protrusion 22 due to the surface tension of the refrigerant, so that the drainage in the tube axis direction is improved and the two phases around the bottom 24 of the protrusion 22 are improved. The thickness of the flowing liquid film 25 can be reduced. Therefore, heat exchange can be performed more efficiently than in the case where the protrusions 22 are not provided.
 なお、図6および7に示す例では、突起22は断面形状が三角形型であるが、本発明はこれに限定されない。例えば断面形状が半円型、楕円型、矩形型など、どのような突起形状においても、上記の目的と同等の効果を達成することができる。 In the example shown in FIGS. 6 and 7, the protrusion 22 has a triangular cross-sectional shape, but the present invention is not limited to this. For example, in any projection shape such as a semicircular shape, an elliptical shape, or a rectangular shape, an effect equivalent to the above-described object can be achieved.
 ここで、図8に示すように、扁平管2の流路21の内壁面に、複数の突起22を形成する場合、HFO-1123が分解した場合に発生するスラッジ31が、隣り合う突起22の間等に堆積しやすい。扁平管2の流路21の内壁面のうち重力方向下向きの内壁面23は、特にスラッジ31が堆積しやすい。このようなスラッジ31が流路21に堆積すると、管内圧損の増大または詰りの原因となり、冷媒回路内の圧力が必要以上に上昇するため、信頼性が低下する可能性がある。 Here, as shown in FIG. 8, when a plurality of protrusions 22 are formed on the inner wall surface of the flow path 21 of the flat tube 2, the sludge 31 generated when the HFO-1123 is decomposed is It is easy to deposit. Of the inner wall surface of the flow channel 21 of the flat tube 2, sludge 31 is particularly easily deposited on the inner wall surface 23 facing downward in the gravitational direction. When such sludge 31 accumulates in the flow path 21, the pressure loss in the pipe increases or becomes clogged, and the pressure in the refrigerant circuit rises more than necessary, which may reduce the reliability.
 HFO-1123の分解物が化学反応することで生成されるスラッジの大きさは、0.15mmより小さいので、隣り合う突起22の間隔Dが0.15mm≦Dを満たすことで、流路21にスラッジ31が堆積せずに冷媒が流れることが可能となる。また、隣り合う突起22の間隔Dが大きくすることで管内圧損は低下するが、隣り合う突起22の間隔Dが大きくなりすぎると、流路21の内壁面の伝熱面積の増分率が低下する。また、流路21内の冷媒の流れの乱れを十分に促進できない。このようなことから、隣り合う突起22の間隔Dは0.50mm以下となることが望ましい。 Since the size of the sludge generated by the chemical reaction of the decomposition product of HFO-1123 is smaller than 0.15 mm, the distance D between the adjacent protrusions 22 satisfies 0.15 mm ≦ D. The refrigerant can flow without the sludge 31 being deposited. Moreover, although the pressure loss in a pipe | tube falls by increasing the space | interval D of the adjacent protrusion 22, when the space | interval D of the adjacent protrusion 22 becomes large too much, the increment rate of the heat-transfer area of the inner wall face of the flow path 21 will fall. . Further, the disturbance of the refrigerant flow in the flow path 21 cannot be sufficiently promoted. For this reason, the distance D between the adjacent protrusions 22 is preferably 0.50 mm or less.
 したがって、流路21の内壁面のうち重力方向下側の内壁面23に、複数の突起22を形成する場合、隣り合う突起22の間隔Dは0.15mm≦D≦0.50mmとなる関係を満たすようにする。これにより、流路21の内壁面に複数の突起22を形成する場合であっても、スラッジ31が堆積せずに流れることが可能となる。 Therefore, when the plurality of protrusions 22 are formed on the inner wall surface 23 on the lower side in the gravity direction among the inner wall surfaces of the flow path 21, the distance D between adjacent protrusions 22 has a relationship of 0.15 mm ≦ D ≦ 0.50 mm. Try to meet. Thereby, even when the plurality of protrusions 22 are formed on the inner wall surface of the flow path 21, the sludge 31 can flow without being deposited.
 図9は、本発明の実施の形態2における冷凍サイクル装置の扁平管の一例を示す断面図である。
 図10は、本発明の実施の形態2における冷凍サイクル装置の扁平管の一例を示す断面拡大図である。
 図9および図10においては、流路21の内壁面のうち重力方向下向きの内壁面23に突起22を1つ設け、重力方向上向きの内壁面に突起22を1つ設けた場合を示している。なお、突起22の数はこれに限定されず、1つの内壁面に複数の突起22を設けても良い。なお、複数の突起22を設ける場合には、その間隔Dは上述した関係を満たすように形成する。
FIG. 9 is a cross-sectional view showing an example of a flat tube of the refrigeration cycle apparatus according to Embodiment 2 of the present invention.
FIG. 10 is an enlarged cross-sectional view showing an example of a flat tube of the refrigeration cycle apparatus according to Embodiment 2 of the present invention.
9 and 10 show a case in which one protrusion 22 is provided on the inner wall surface 23 facing downward in the gravity direction and one protrusion 22 is provided on the inner wall surface facing upward in the gravity direction among the inner wall surfaces of the flow path 21. . The number of protrusions 22 is not limited to this, and a plurality of protrusions 22 may be provided on one inner wall surface. In addition, when providing the some protrusion 22, the space | interval D is formed so that the relationship mentioned above may be satisfy | filled.
 流路21の内壁面に1つまたは複数の突起22を形成する場合、HFO-1123が分解した場合に発生するスラッジ31が、突起22と流路21の側壁との間に堆積しやすい。扁平管2の流路21の内壁面のうち重力方向下向きの内壁面23は、特にスラッジ31が堆積しやすい。このため、突起22の底部24から流路21の側壁までの距離Cが0.15mm≦Cを満たすことで、流路21にスラッジ31が堆積せずに冷媒が流れることが可能となる。また、距離Cが大きくなりすぎると、流路21の内壁面の伝熱面積の増分率が低下する。また、流路21内の冷媒の流れの乱れを十分に促進できない。このようなことから、距離Cは0.50mm以下となることが望ましい。 When one or a plurality of protrusions 22 are formed on the inner wall surface of the flow path 21, sludge 31 generated when the HFO-1123 is decomposed easily accumulates between the protrusion 22 and the side wall of the flow path 21. Of the inner wall surface of the flow channel 21 of the flat tube 2, sludge 31 is particularly easily deposited on the inner wall surface 23 facing downward in the gravitational direction. For this reason, when the distance C from the bottom 24 of the protrusion 22 to the side wall of the flow path 21 satisfies 0.15 mm ≦ C, the refrigerant can flow without depositing sludge 31 in the flow path 21. Moreover, when the distance C becomes too large, the increment rate of the heat transfer area of the inner wall surface of the flow path 21 will fall. Further, the disturbance of the refrigerant flow in the flow path 21 cannot be sufficiently promoted. Therefore, the distance C is preferably 0.50 mm or less.
 したがって、流路21の内壁面のうち重力方向下側の内壁面23に、1つまたは複数の突起22を形成する場合、突起22の底部24から流路21の側壁までの距離Cは0.15mm≦D≦0.50mmとなる関係を満たすようにする。これにより、流路21の内壁面に1つまたは複数の突起22を形成する場合であっても、スラッジ31が堆積せずに流れることが可能となる。 Therefore, when one or more protrusions 22 are formed on the inner wall surface 23 on the lower side in the gravity direction of the inner wall surface of the flow path 21, the distance C from the bottom 24 of the protrusion 22 to the side wall of the flow path 21 is 0. The relationship of 15 mm ≦ D ≦ 0.50 mm is satisfied. Thus, even when one or a plurality of protrusions 22 are formed on the inner wall surface of the flow path 21, the sludge 31 can flow without being deposited.
実施の形態3.
 図11は、本発明の実施の形態3における冷凍サイクル装置の、扁平管の肉厚toと短軸径DAの比と、耐圧性能との関係を示す特性図である。
 冷媒回路を循環する冷媒としてHFO-1123、またはHFO-1123を含む混合冷媒を用いる場合、HFO-1123は、従来用いられているHFC-410Aと比較して標準沸点の低い冷媒である。このため、HFC-410Aと同等の飽和温度時と比較して圧力が大きくなる。このようなことから、扁平管2の耐圧性能を十分に確保する必要がある。
Embodiment 3 FIG.
FIG. 11 is a characteristic diagram showing the relationship between the pressure ratio performance and the ratio between the thickness to of the flat tube and the minor axis diameter DA of the refrigeration cycle apparatus according to Embodiment 3 of the present invention.
When HFO-1123 or a mixed refrigerant containing HFO-1123 is used as the refrigerant circulating in the refrigerant circuit, HFO-1123 is a refrigerant having a lower standard boiling point than the conventionally used HFC-410A. For this reason, the pressure becomes larger than that at the saturation temperature equivalent to that of HFC-410A. For this reason, it is necessary to sufficiently ensure the pressure resistance performance of the flat tube 2.
 図11の例では、上述した実施の形態1の図5に示した成績係数のシミュレーション時の計算条件において、扁平管2の肉厚toと短軸径DAとをパラメータとしたものである。図11においては、横軸に、扁平管2の肉厚toと短軸径DAとの比to/DAを示し、縦軸に、扁平管2の耐圧性能Prと扁平管2に要求される必要耐圧Pnとの比Pr/Pnを示す。 In the example of FIG. 11, the wall thickness to of the flat tube 2 and the short axis diameter DA are used as parameters in the calculation conditions during the performance coefficient simulation shown in FIG. 5 of the first embodiment described above. In FIG. 11, the horizontal axis indicates the ratio to / DA between the wall thickness to of the flat tube 2 and the short axis diameter DA, and the vertical axis indicates the pressure resistance Pr of the flat tube 2 and the flat tube 2 required. The ratio Pr / Pn to the breakdown voltage Pn is shown.
 図11に示すように、to/DAとPr/Pnとはほぼ比例関係となる。すなわち、扁平管2の短軸径DAの絶対値に関わらず、to/DAが減少するほど、Pr/Pnの値も減少する。to/DAが減少すると、短軸径DAに対する肉厚toが小さくなるため、流路21の断面積、および流路21の伝熱面積が増加し、熱交換性能も増加する。また、to/DAが減少すると、短軸径DAに対する肉厚toが小さくなるため、耐圧性能Prが小さくなり、Pr/Pnが低下する。 As shown in FIG. 11, to / DA and Pr / Pn are in a proportional relationship. That is, regardless of the absolute value of the short axis diameter DA of the flat tube 2, the value of Pr / Pn decreases as to / DA decreases. When to / DA decreases, the wall thickness to with respect to the minor axis diameter DA decreases, so that the cross-sectional area of the flow path 21 and the heat transfer area of the flow path 21 increase, and the heat exchange performance also increases. Further, when to / DA decreases, the thickness to with respect to the minor axis diameter DA decreases, so that the pressure resistance performance Pr decreases and Pr / Pn decreases.
 耐圧性能Prは、必要耐圧Pnを上回る必要がある。つまり、Pr/Pnが1以下となると、耐圧性能を十分に確保することができないため、Pr/Pn>1となる必要がある。図11に示す例では、to/DAが0.10を下回る場合、Pr/Pnが1以下となる。よって、0.10≦to/DAの関係を満たす必要がある。一方、to/DAが増加しすぎる場合、耐圧性能は十分に確保されるが、流路21の流路断面積、および流路21の伝熱面積が減少し、熱交換性能も減少する。特に、to/DAが0.20を上回る場合、扁平管2の短軸方向の半分近くを肉厚で埋めてしまうこととなり、十分に性能を発揮できなくなる。以上より、to/DAは0.10≦to/DA≦0.20となることが望ましい。 The pressure resistance performance Pr needs to exceed the required pressure resistance Pn. That is, when Pr / Pn is 1 or less, the pressure resistance performance cannot be sufficiently ensured, so it is necessary to satisfy Pr / Pn> 1. In the example shown in FIG. 11, when to / DA is less than 0.10, Pr / Pn is 1 or less. Therefore, it is necessary to satisfy the relationship of 0.10 ≦ to / DA. On the other hand, when to / DA increases too much, the pressure resistance is sufficiently ensured, but the cross-sectional area of the flow path 21 and the heat transfer area of the flow path 21 are reduced, and the heat exchange performance is also reduced. In particular, when to / DA exceeds 0.20, nearly half of the flat tube 2 in the short axis direction is filled with a thickness, and the performance cannot be sufficiently exhibited. From the above, it is desirable that to / DA is 0.10 ≦ to / DA ≦ 0.20.
 また、肉厚toの絶対値自体が小さい場合には、扁平管2の腐食等により、管に穴が開いてしまう可能性もある。このため、上述したto/DAの範囲に加え、to≧0.10mmの関係を満たすことが望ましい。 In addition, when the absolute value of the wall thickness to itself is small, there is a possibility that a hole is opened in the tube due to corrosion of the flat tube 2 or the like. For this reason, it is desirable to satisfy the relationship of to ≧ 0.10 mm in addition to the above-mentioned range of to / DA.
 このように、0.10≦to/DA≦0.20、且つ、to≧0.10mmなる関係を満たすことにより、HFO-1123、またはHFO-1123を含む混合冷媒を用いる場合において、耐圧性能を十分に確保することができ、且つ熱交換性能を向上することができる。 In this way, by satisfying the relationship of 0.10 ≦ to / DA ≦ 0.20 and to ≧ 0.10 mm, the pressure resistance performance is improved in the case of using HFO-1123 or a mixed refrigerant containing HFO-1123. Sufficiently can be secured and the heat exchange performance can be improved.
 なお、上記実施の形態1~3においては、熱交換器1は、空気調和機の室外機に蒸発器として使用する場合は例として挙げたが、例えば空気調和機の室内機で凝縮器として使用するように、他の熱交換器1として使用する場合にも同様の効果を達成することができる。 In the first to third embodiments, the heat exchanger 1 has been described as an example when used as an evaporator in an outdoor unit of an air conditioner. For example, the heat exchanger 1 is used as a condenser in an indoor unit of an air conditioner. Thus, the same effect can be achieved when used as another heat exchanger 1.
 加えて、空気調和機に限らず、少なくとも圧縮機11、第1熱交換器12、膨張手段13、および第2熱交換器14を順次配管で接続することで構成される冷媒回路内の、前記第1熱交換器12および第2熱交換器14の少なくとも一方に、上述した熱交換器1を用いる冷凍サイクル装置10に適用した場合にも、同様の効果を達成することができる。 In addition to the air conditioner, in the refrigerant circuit configured by sequentially connecting at least the compressor 11, the first heat exchanger 12, the expansion means 13, and the second heat exchanger 14 by piping, The same effect can be achieved also when it is applied to at least one of the first heat exchanger 12 and the second heat exchanger 14 in the refrigeration cycle apparatus 10 using the heat exchanger 1 described above.
 1 熱交換器、2 扁平管、3 フィン、4a ヘッダー、4b ヘッダー、10 冷凍サイクル装置、11 圧縮機、12 第1熱交換器、13 膨張手段、14 第2熱交換器、15a ファン、15b ファン、20 隔壁、21 流路、22 突起、23 内壁面、24 底部、25 二相流液膜、31 スラッジ。 1 heat exchanger, 2 flat tube, 3 fins, 4a header, 4b header, 10 refrigeration cycle device, 11 compressor, 12 1st heat exchanger, 13 expansion means, 14 2nd heat exchanger, 15a fan, 15b fan 20 partition walls, 21 flow paths, 22 protrusions, 23 inner wall surfaces, 24 bottom parts, 25 two-phase liquid film, 31 sludge.

Claims (8)

  1.  圧縮機、第1熱交換器、膨張手段、および第2熱交換器を順次配管で接続し、冷媒を循環させる冷媒回路を備え、
     前記冷媒は、HFO-1123、またはHFO-1123を含む混合冷媒であり、
     前記第1熱交換器および前記第2熱交換器の少なくとも一方は、
     複数のフィンと、
     前記冷媒が流れる複数の流路が、内部に形成された、複数の扁平管と、を有し、
     前記複数の扁平管は、幅をDAとした場合、
     0.9mm≦DA≦3.0mm
     なる関係を満たす
     冷凍サイクル装置。
    A compressor, a first heat exchanger, an expansion means, and a second heat exchanger are sequentially connected by piping, and a refrigerant circuit for circulating the refrigerant is provided.
    The refrigerant is HFO-1123 or a mixed refrigerant containing HFO-1123,
    At least one of the first heat exchanger and the second heat exchanger is
    Multiple fins,
    A plurality of flow paths through which the refrigerant flows have a plurality of flat tubes formed therein;
    The plurality of flat tubes, when the width is DA,
    0.9mm ≦ DA ≦ 3.0mm
    A refrigeration cycle device that satisfies the relationship
  2.  前記複数の扁平管は、
     0.9mm≦DA≦3.0mm
     なる関係を満たし、且つ、
     隣り合う前記扁平管の中心を結んだ距離である段ピッチと、前記幅との比が、予め設定した値となるように構成された
     請求項1記載の冷凍サイクル装置。
    The plurality of flat tubes are
    0.9mm ≦ DA ≦ 3.0mm
    Satisfy the relationship, and
    The refrigeration cycle apparatus according to claim 1, wherein a ratio between a step pitch, which is a distance connecting the centers of adjacent flat tubes, and the width becomes a preset value.
  3.  前記複数の扁平管は、
     0.9mm≦DA≦3.0mm
     なる関係を満たし、且つ、
     前記流路の前記他の方向の長さと前記一つの方向の長さの比、および前記扁平管の肉厚と前記幅との比が、予め設定した値となるように構成された
     請求項1または2に記載の冷凍サイクル装置。
    The plurality of flat tubes are
    0.9mm ≦ DA ≦ 3.0mm
    Satisfy the relationship, and
    The ratio between the length in the other direction of the flow path and the length in the one direction, and the ratio between the thickness of the flat tube and the width are set to predetermined values. Or the refrigeration cycle apparatus of 2.
  4.  前記複数の扁平管は、
     1.0mm≦DA≦1.8mm
     なる関係を満たすように構成された
     請求項1~3の何れか一項に記載の冷凍サイクル装置。
    The plurality of flat tubes are
    1.0mm ≦ DA ≦ 1.8mm
    The refrigeration cycle apparatus according to any one of claims 1 to 3, wherein the refrigeration cycle apparatus is configured to satisfy the following relationship.
  5.  前記扁平管は、
     前記流路の内壁面に、1つまたは複数の突起が流路方向に沿って形成された
     請求項1~4の何れか一項に記載の冷凍サイクル装置。
    The flat tube is
    The refrigeration cycle apparatus according to any one of claims 1 to 4, wherein one or more protrusions are formed along the flow path direction on an inner wall surface of the flow path.
  6.  前記扁平管は、
     前記流路の内壁面のうち重力方向下側の内壁面に、少なくとも1つの突起が流路方向に沿って形成され、
     前記突起の底部から前記流路の側壁までの距離をCとした場合、
     0.15mm≦C≦0.50mm
     なる関係を満たすように構成された
     請求項1~4の何れか一項に記載の冷凍サイクル装置。
    The flat tube is
    At least one protrusion is formed along the flow path direction on the inner wall surface on the lower side in the gravity direction among the inner wall surfaces of the flow path,
    When the distance from the bottom of the projection to the side wall of the flow path is C,
    0.15mm ≦ C ≦ 0.50mm
    The refrigeration cycle apparatus according to any one of claims 1 to 4, wherein the refrigeration cycle apparatus is configured to satisfy the following relationship.
  7.  前記扁平管は、
     前記流路の内壁面に、複数の突起が流路方向に沿って形成され、
     隣り合う前記突起の間隔をDとした場合、
     0.15mm≦D≦0.50mm
     なる関係を満たすように構成された
     請求項1~4の何れか一項に記載の冷凍サイクル装置。
    The flat tube is
    A plurality of protrusions are formed along the flow path direction on the inner wall surface of the flow path,
    When the interval between adjacent protrusions is D,
    0.15mm ≦ D ≦ 0.50mm
    The refrigeration cycle apparatus according to any one of claims 1 to 4, wherein the refrigeration cycle apparatus is configured to satisfy the following relationship.
  8.  前記扁平管は、
     前記扁平管の外壁と前記流路の内壁との間の肉厚をtoとした場合、
     0.10≦to/DA≦0.20、且つ、
     to≧0.10mm
     なる関係を満たすように構成された
     請求項1~7の何れか一項に記載の冷凍サイクル装置。
    The flat tube is
    When the wall thickness between the outer wall of the flat tube and the inner wall of the flow path is to,
    0.10 ≦ to / DA ≦ 0.20, and
    to ≧ 0.10mm
    The refrigeration cycle apparatus according to any one of claims 1 to 7, wherein the refrigeration cycle apparatus is configured to satisfy the following relationship.
PCT/JP2014/084466 2014-12-26 2014-12-26 Refrigeration cycle apparatus WO2016103437A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2014/084466 WO2016103437A1 (en) 2014-12-26 2014-12-26 Refrigeration cycle apparatus
EP14909044.1A EP3239640A4 (en) 2014-12-26 2014-12-26 Refrigeration cycle apparatus
JP2016565792A JP6415600B2 (en) 2014-12-26 2014-12-26 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/084466 WO2016103437A1 (en) 2014-12-26 2014-12-26 Refrigeration cycle apparatus

Publications (1)

Publication Number Publication Date
WO2016103437A1 true WO2016103437A1 (en) 2016-06-30

Family

ID=56149530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084466 WO2016103437A1 (en) 2014-12-26 2014-12-26 Refrigeration cycle apparatus

Country Status (3)

Country Link
EP (1) EP3239640A4 (en)
JP (1) JP6415600B2 (en)
WO (1) WO2016103437A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018059638A (en) * 2016-09-30 2018-04-12 株式会社富士通ゼネラル Heat exchanger and refrigeration cycle device
WO2021095567A1 (en) * 2019-11-14 2021-05-20 ダイキン工業株式会社 Heat transfer pipe and heat exchanger
WO2022085067A1 (en) * 2020-10-20 2022-04-28 三菱電機株式会社 Heat exchanger and refrigeration cycle device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000356488A (en) * 1999-06-11 2000-12-26 Showa Alum Corp Tube for heat exchanger
JP2001165532A (en) * 1999-12-09 2001-06-22 Denso Corp Refrigerant condenser
JP2009063228A (en) * 2007-09-06 2009-03-26 Showa Denko Kk Flat heat transfer tube
CN102269536A (en) * 2011-08-17 2011-12-07 三花丹佛斯(杭州)微通道换热器有限公司 Flat tube used for heat exchanger and heat exchanger with same
JP2012102969A (en) * 2010-11-12 2012-05-31 Showa Denko Kk Evaporator with cool storage function
WO2014203353A1 (en) * 2013-06-19 2014-12-24 三菱電機株式会社 Air conditioner

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63116095A (en) * 1986-10-31 1988-05-20 Matsushita Refrig Co Flat type heat exchanging pipe
JPH06185885A (en) * 1992-07-24 1994-07-08 Furukawa Electric Co Ltd:The Flat multi-holed condensing and heat transfer pipe
JP2000154987A (en) * 1998-11-19 2000-06-06 Daikin Ind Ltd Air heat exchanger
JP2002318086A (en) * 2001-04-16 2002-10-31 Japan Climate Systems Corp Heat exchanger tube
JP2010255864A (en) * 2009-04-21 2010-11-11 Showa Denko Kk Flat tube and heat exchanger
CN103562338B (en) * 2011-05-19 2016-09-07 旭硝子株式会社 Working media and heat circulating system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000356488A (en) * 1999-06-11 2000-12-26 Showa Alum Corp Tube for heat exchanger
JP2001165532A (en) * 1999-12-09 2001-06-22 Denso Corp Refrigerant condenser
JP2009063228A (en) * 2007-09-06 2009-03-26 Showa Denko Kk Flat heat transfer tube
JP2012102969A (en) * 2010-11-12 2012-05-31 Showa Denko Kk Evaporator with cool storage function
CN102269536A (en) * 2011-08-17 2011-12-07 三花丹佛斯(杭州)微通道换热器有限公司 Flat tube used for heat exchanger and heat exchanger with same
WO2014203353A1 (en) * 2013-06-19 2014-12-24 三菱電機株式会社 Air conditioner

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3239640A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018059638A (en) * 2016-09-30 2018-04-12 株式会社富士通ゼネラル Heat exchanger and refrigeration cycle device
WO2021095567A1 (en) * 2019-11-14 2021-05-20 ダイキン工業株式会社 Heat transfer pipe and heat exchanger
JP2021081081A (en) * 2019-11-14 2021-05-27 ダイキン工業株式会社 Heat transfer pipe and heat exchanger
WO2022085067A1 (en) * 2020-10-20 2022-04-28 三菱電機株式会社 Heat exchanger and refrigeration cycle device

Also Published As

Publication number Publication date
JP6415600B2 (en) 2018-10-31
EP3239640A1 (en) 2017-11-01
EP3239640A4 (en) 2018-09-26
JPWO2016103437A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
EP3021064B1 (en) Heat pump device
JP6109303B2 (en) Heat exchanger and refrigeration cycle apparatus
JP2009133500A (en) Air conditioner
EP3156752B1 (en) Heat exchanger
WO2014147788A1 (en) Heat exchanger, refrigeration cycle device, and production method for heat exchanger
WO2017073715A1 (en) Aluminum extruded flat perforated tube and heat exchanger
JP2002206890A (en) Heat exchanger, and freezing air-conditioning cycle device using it
JP2019500572A (en) Heat exchanger with water chamber
JP6415600B2 (en) Refrigeration cycle equipment
EP3062037B1 (en) Heat exchanger and refrigeration cycle device using said heat exchanger
CN105823271B (en) Heat exchanger
JP6293557B2 (en) Refrigeration cycle equipment
EP2796822B1 (en) Air conditioner
JP5627635B2 (en) Air conditioner
JP5646257B2 (en) Refrigeration cycle equipment
JP5591285B2 (en) Heat exchanger and air conditioner
JP2008122059A (en) Heat exchanger and refrigeration system
JP2008309443A (en) Heat transfer pipe connecting structure
JP2011058771A (en) Heat exchanger, and refrigerator and air conditioner including the heat exchanger
US20160076828A1 (en) Turbulators in enhanced tubes
JP2008309442A (en) Heat transfer pipe and heat exchanger
WO2016092655A1 (en) Refrigeration cycle device
JP2003004396A (en) Heat exchanger and refrigerating air conditioner
JP2019052824A (en) Heat exchanger
JPH11108483A (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14909044

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016565792

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014909044

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE