JPH06185885A - Flat multi-holed condensing and heat transfer pipe - Google Patents

Flat multi-holed condensing and heat transfer pipe

Info

Publication number
JPH06185885A
JPH06185885A JP5200304A JP20030493A JPH06185885A JP H06185885 A JPH06185885 A JP H06185885A JP 5200304 A JP5200304 A JP 5200304A JP 20030493 A JP20030493 A JP 20030493A JP H06185885 A JPH06185885 A JP H06185885A
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
height
flat
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5200304A
Other languages
Japanese (ja)
Inventor
Jiyunji Sotani
順二 素谷
Shingoro Fukuoka
新五郎 福岡
Katsuya Nagata
勝也 永田
Masabumi Katsuta
正文 勝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Waseda University
Original Assignee
Furukawa Electric Co Ltd
Waseda University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Waseda University filed Critical Furukawa Electric Co Ltd
Priority to JP5200304A priority Critical patent/JPH06185885A/en
Priority claimed from GB9324091A external-priority patent/GB2284471B/en
Publication of JPH06185885A publication Critical patent/JPH06185885A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05383Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To provide a flat multi-holed condensing and heat transfer pipe of small diameter which is used in a car cooler and other small-sized condensors and has a higher heat transfer performance without increasing a pressure loss. CONSTITUTION:In a flat type heat transfer pipe having a plurality of independent flat refrigerant flow passages arranged in a width direction and continuous in a length-wise direction, a height (h) of the heat transfer pipe is set to be 2.0mm or less. The refrigerant flow passage has a height (h) of 1.2mm or less and a ratio of a width (w1) in respect to the height (h1) of a range of 1.8 to 6.0, respectively. An inner wall surface of the refrigerant passage is formed with a plurality of continuous projections extending along a longitudinal direction and at the same time grooves adjacent to the projections are formed in the flat smooth bottom surface. In addition, a ratio of the height (h2) of the projection in respect to the height (h1) of the refrigerant flow passage is set in a range of 0.055 to 0.25. It is preferable that a pitch (p) of the projection is in a range of 0.25 to 0.6mm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、一般的には偏平多穴
凝縮伝熱管に関するものであり、さらに具体的には、カ
ークーラーのように小型の熱交換器(凝縮器)に使用す
るのに適する凝縮伝熱管に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention generally relates to a flat multi-hole condensing heat transfer tube, and more specifically, to a small heat exchanger (condenser) such as a car cooler. The present invention relates to a condensation heat transfer tube suitable for.

【0002】[0002]

【従来の技術】例えば特開昭62−175588号公
報、及びその米国における最初の特許出願に関する米国
特許第4998580号明細書には、図18のような凝
縮器が提案されている。この凝縮器は、一定の間隔で相
対する一対のヘッダ管8,9と、このヘッダ管8,9の
相対する側に連通された互いに平行な多数の偏平な多穴
凝縮伝熱管7と、ヘッダ管8,9に結合された上下の部
品5,6とを備えている。そして各凝縮伝熱管7相互の
間には、波形に形成された放熱フィン70が固定されて
いる。一方のヘッダ管8は蒸気の供給側として作用する
もので、一端に蒸気供給口80が取り付けられ、他端に
蓋81が取り付けられている。また、他方のヘッダ管9
は凝縮液の排出側として作用するもので、一端に導管9
2と連通するための凝縮液排出口90が取り付けられ、
他端に蓋91が取り付けられている。前記凝縮器に使用
されている偏平な多穴凝縮伝熱管7の内部には、図19
で拡大して示すように、波形に成形されている隔壁71
を挿入固定することにより、断面がほぼ三角形状の独立
した複数の冷媒流路72を長さ方向に沿って形成してい
る。
2. Description of the Related Art For example, Japanese Patent Laid-Open No. 62-175588 and US Pat. No. 4,998,580 relating to the first patent application in the United States propose a condenser as shown in FIG. This condenser is composed of a pair of header tubes 8 and 9 facing each other at regular intervals, a large number of parallel flat multi-hole condensing heat transfer tubes 7 connected to opposite sides of the header tubes 8 and 9, and a header. It comprises upper and lower parts 5, 6 connected to tubes 8, 9. A corrugated radiating fin 70 is fixed between the condensing heat transfer tubes 7. One header tube 8 acts as a steam supply side, and has a steam supply port 80 attached to one end and a lid 81 attached to the other end. Also, the other header tube 9
Acts as the discharge side of the condensate, and has a conduit 9 at one end.
A condensate outlet 90 for communicating with 2 is attached,
A lid 91 is attached to the other end. The inside of the flat multi-hole condensing heat transfer tube 7 used in the condenser is shown in FIG.
As enlarged and shown in FIG.
Is inserted and fixed, a plurality of independent refrigerant channels 72 having a substantially triangular cross section are formed along the length direction.

【0003】この種の凝縮器は、凝縮伝熱管7における
蒸気の凝縮熱伝達率に比較して放熱フィン70の外気と
の熱伝達率の方がはるかに小さい。したがって、前記凝
縮器の伝熱管7は、冷媒流路72内の圧力損失があまり
大きくならない程度に蒸気の流入断面積を小さくするこ
とによって、放熱フィン70の放熱面積を相対的に増大
させるため、伝熱管7における各冷媒流路72の流体直
径(冷媒流路の断面積に4を乗じ、これを当該冷媒流路
の濡れ周長で除したもの)を0.015〜0.040イ
ンチ(約0.4〜1.0mm)の範囲に設定している。
In this type of condenser, the heat transfer coefficient with respect to the outside air of the radiation fins 70 is much smaller than the condensation heat transfer coefficient of the vapor in the condensation heat transfer tube 7. Therefore, the heat transfer tube 7 of the condenser relatively increases the heat dissipation area of the heat dissipation fins 70 by reducing the steam inflow cross-sectional area to the extent that the pressure loss in the refrigerant flow path 72 does not become so large. The fluid diameter of each refrigerant passage 72 in the heat transfer tube 7 (the cross-sectional area of the refrigerant passage multiplied by 4 and this divided by the wet perimeter of the refrigerant passage) is 0.015 to 0.040 inches (about The range is 0.4 to 1.0 mm).

【0004】[0004]

【発明が解決しようとする課題】前述の凝縮伝熱管7の
ように、冷媒流路の流体直径を小さくすると、放熱フィ
ン70の放熱面積が相対的に増大するから伝熱性能は向
上する。ところで最近は、特にカークーラーその他の小
型の熱交換器の分野において、さらに小型でより高いレ
ベルの伝熱性能を有する凝縮器の開発が望まれている。
発明者らはこのような要請に対応するために、前述の従
来の多穴凝縮伝熱管7のように、冷媒流路の流体直径が
1.0mm以下で当該冷媒流路の内壁面に突起が無い伝熱
管を各種試作して性能試験を行ったところ、この伝熱管
はその伝熱性能はともかくとして、圧力損失が非常に大
きいために実用的でないことが判明した。
When the diameter of the fluid in the refrigerant passage is reduced as in the condensation heat transfer tube 7 described above, the heat dissipation area of the heat dissipation fins 70 is relatively increased, so that the heat transfer performance is improved. By the way, in recent years, particularly in the field of car coolers and other small heat exchangers, there has been a demand for the development of a more compact condenser having a higher level of heat transfer performance.
In order to meet such a demand, the inventors have proposed a conventional multi-hole condensing heat transfer tube 7 as described above, in which a refrigerant flow path has a fluid diameter of 1.0 mm or less and a protrusion is formed on the inner wall surface of the refrigerant flow path. When various prototypes of heat transfer tubes that did not exist were subjected to performance tests, it was found that this heat transfer tube was impractical because of its extremely large pressure loss, regardless of its heat transfer performance.

【0005】すなわち、発明者らは、流体直径が1mm以
下の複数の冷媒流路を有する偏平な凝縮伝熱管について
種々の実験を行った結果、次のような改良すべき点を見
出してこの発明を完成するに到ったものである。その一
つは最も重要な点であって、前記従来の偏平な多穴凝縮
伝熱管は、隣接の冷媒流路相互を隔てている隔壁のうち
の一部の隔壁を削除して、各冷媒流路の幅を内部高さよ
りも一定以上大きくするとともに、前記削除された隔壁
に代えて長さ方向に沿って連続する突起を形成すること
により、冷媒流路の圧力損失はより小さくなり、同時に
伝熱性能もさらに向上することを見出したことである。
他の一つは、前記冷媒流路の内部高さに対する前記突起
の高さの比が一定の範囲内であるときに、当該凝縮伝熱
管の伝熱性能がより高いレベルになることを見出したこ
とである。さらに他の一つは、前記突起に隣接する溝が
平滑な底面を有するとき(好ましくは、溝の形状が逆台
形であるとき)に、当該凝縮伝熱管の伝熱性能がさらに
高いレベルになることを見出したことである。さらに他
の一つは、冷媒流路内に形成される前記突起相互のピッ
チが一定の範囲内であるときに、伝熱性能がさらに一層
高いレベルになることを見出したことである。
That is, the inventors have conducted various experiments on a flat condensing heat transfer tube having a plurality of refrigerant passages having a fluid diameter of 1 mm or less, and as a result, have found the following points to be improved and found the present invention. Has been completed. One of them is the most important point.In the conventional flat multi-hole condensing heat transfer tube, some of the partition walls separating the adjacent refrigerant flow passages are deleted to remove each refrigerant flow. By making the width of the passage larger than the internal height by a certain amount or more and forming a continuous projection along the length direction in place of the deleted partition wall, the pressure loss of the refrigerant flow passage becomes smaller, and at the same time, the transmission loss increases. It was found that the thermal performance is further improved.
The other one has found that when the ratio of the height of the protrusion to the internal height of the refrigerant channel is within a certain range, the heat transfer performance of the condensation heat transfer tube becomes a higher level. That is. Still another is that when the groove adjacent to the protrusion has a smooth bottom surface (preferably when the shape of the groove is an inverted trapezoid), the heat transfer performance of the condensation heat transfer tube becomes higher. I have found that. Still another is to find out that the heat transfer performance becomes even higher when the pitch between the protrusions formed in the refrigerant flow path is within a certain range.

【0006】この発明の目的は、前述の従来の偏平な多
穴凝縮伝熱管と比較して、冷媒流路の圧力損失がはるか
に小さく、しかも伝熱性能をさらに向上させることがで
きる偏平多穴凝縮伝熱管を提供することにある。この発
明の他の目的は、カークーラーその他の小型の凝縮器に
ついて、より一層の小型化を図ることができる偏平多穴
凝縮伝熱管を提供することにある。
The object of the present invention is to reduce the pressure loss in the refrigerant flow path as compared with the above-described conventional flat multi-hole condensing heat transfer tube and to further improve the heat transfer performance. It is to provide a condensing heat transfer tube. Another object of the present invention is to provide a flat multi-hole condensing heat transfer tube capable of further miniaturizing a car cooler or other small condenser.

【0007】[0007]

【課題を解決するための手段】この発明によれば、幅方
向に並びかつ長さ方向に連続する独立した複数の偏平状
冷媒流路を有する偏平伝熱管において、当該偏平伝熱管
の高さを2.0mm以下に設定し、前記偏平状冷媒流路
は、その高さを1.2mm以下に、高さに対する幅の比を
1.8〜6.0の範囲内にそれぞれ設定し、前記偏平状
冷媒流路の内壁面には長さ方向に沿って連続する複数の
突起を形成するとともに、各突起に隣接する溝の底面を
平滑に形成し、前記偏平状冷媒流路の内部高さに対する
前記突起の高さの比を0.055〜0.25に設定した
偏平多穴凝縮伝熱管が提供される。前記偏平状冷媒流路
の内壁面とは、上下の幅方向の壁面及び高さ方向の壁面
をいう。
According to the present invention, in a flat heat transfer tube having a plurality of independent flat refrigerant passages arranged in the width direction and continuous in the length direction, the height of the flat heat transfer tube is increased. The height of the flat refrigerant passage is set to 1.2 mm or less and the width-to-height ratio is set to a range of 1.8 to 6.0. A plurality of projections that are continuous along the length direction are formed on the inner wall surface of the flat refrigerant passage, and the bottom surface of the groove adjacent to each projection is formed to be smooth, with respect to the internal height of the flat refrigerant passage. Provided is a flat multi-hole condensing heat transfer tube in which the height ratio of the protrusions is set to 0.055 to 0.25. The inner wall surface of the flat refrigerant flow passage means a wall surface in the upper and lower width directions and a wall surface in the height direction.

【0008】この発明による偏平な多穴凝縮伝熱管にお
いて、前記突起のピッチは0.25〜0.6mmであるの
が好ましい。前記突起相互間の溝の断面形状は、例えば
前記突起の断面形状を三角形に形成することによってほ
ぼ逆台形とするのが好ましい。また、前記偏平状の冷媒
流路の流体直径は0.7〜1.5mmであるのが好まし
い。
In the flat multi-hole condensing heat transfer tube according to the present invention, the pitch of the protrusions is preferably 0.25 to 0.6 mm. The cross-sectional shape of the groove between the protrusions is preferably substantially inverted trapezoidal, for example, by forming the cross-sectional shape of the protrusion into a triangle. The fluid diameter of the flat refrigerant passage is preferably 0.7 to 1.5 mm.

【0009】[0009]

【作用】この発明による偏平多穴凝縮伝熱管は、それが
横長になる状態に凝縮器へ組み込んで使用される。この
発明による凝縮伝熱管は、前述の従来の偏平多穴凝縮伝
熱管と比較した場合、各冷媒流路の幅が高さよりも大き
く、各冷媒流路の内壁面には長さ方向に連続する突起が
形成され、かつ突起に隣接する溝は平滑な底面を有して
いるので、前記突起の表面に接触した冷媒の蒸気は効率
よく凝縮し、凝縮した冷媒は前記溝に沿ってより迅速に
一定方向へ移動する。したがって、管内の圧力損失は比
較的小さく、伝熱性能もより向上する。
The flat multi-hole condensing heat transfer tube according to the present invention is used by incorporating it into a condenser in a horizontally elongated state. When the condensation heat transfer tube according to the present invention is compared with the above-described conventional flat multi-hole condensation heat transfer tube, the width of each refrigerant passage is larger than the height, and the inner wall surface of each refrigerant passage is continuous in the length direction. Since the protrusion is formed and the groove adjacent to the protrusion has a smooth bottom surface, the vapor of the refrigerant contacting the surface of the protrusion is efficiently condensed, and the condensed refrigerant is more quickly distributed along the groove. Move in a certain direction. Therefore, the pressure loss in the pipe is relatively small, and the heat transfer performance is further improved.

【0010】なお、この発明による凝縮伝熱管の高さ
(全体の厚み)を2.0mm以下に、前記冷媒流路の高さ
を1.2mm以下にそれぞれ設定した理由は、これらの値
以上である場合には、凝縮伝熱管の表面に取り付ける放
熱フィンの表面積の割合が、冷媒流路の伝熱面積に対し
て相対的に小さくなり、熱交換器の伝熱性能を低下させ
ることと、熱交換器の小型化を図ることができなくなる
ためである。また、各冷媒流路の高さに対する幅の比を
1.8〜6.0に設定した理由は、両者の比を1.8以
下に設定すると冷媒流路の圧力損失を増大させ、両者の
比を6.0以上に設定すると、内部を冷媒が通過すると
きの内圧に対する伝熱管の耐圧力が著しく低下するため
である。この発明による凝縮伝熱管のその他の作用は、
以下の詳細な実施例とともに説明する。
The reason why the height (total thickness) of the condensation heat transfer tube according to the present invention is set to 2.0 mm or less and the height of the refrigerant passage is set to 1.2 mm or less is that these values are not less than these values. In some cases, the ratio of the surface area of the radiating fins attached to the surface of the condensing heat transfer tube becomes relatively small with respect to the heat transfer area of the refrigerant flow path, which lowers the heat transfer performance of the heat exchanger. This is because it becomes impossible to reduce the size of the exchanger. Further, the reason why the ratio of the width to the height of each refrigerant channel is set to 1.8 to 6.0 is that if the ratio of both is set to 1.8 or less, the pressure loss of the refrigerant channel increases and both of them are increased. This is because if the ratio is set to 6.0 or more, the pressure resistance of the heat transfer tube against the internal pressure when the refrigerant passes through the inside is significantly reduced. Other functions of the condensation heat transfer tube according to the present invention are:
A detailed example will be described below.

【0011】[0011]

【実施例】図1〜図17を参照しながら、この発明によ
る凝縮伝熱管の好ましい実施例を説明する。図1はこの
発明による凝縮伝熱管の第1実施例を示す拡大断面図、
図2は図1の凝縮伝熱管における冷媒流路内の突起の拡
大断面図、図3はこの発明による凝縮伝熱管の第2実施
例を示す部分拡大断面図、図4は図3の凝縮伝熱管にお
ける冷媒流路内の突起の拡大断面図、図5は冷媒流路内
の突起の変形例を示す拡大断面図、図6はこの発明によ
る凝縮伝熱管の第5実施例を示す部分拡大断面図、図7
はこの発明による凝縮伝熱管の第6実施例を示す部分拡
大断面図、図8はこの発明による凝縮伝熱管の第7実施
例を示す部分拡大断面図、図9はこの発明による凝縮伝
熱管の第8実施例を示す部分拡大断面図、図10はこの
発明による凝縮伝熱管の第9実施例を示す部分拡大断面
図、図11は冷媒流路内の突起の他の変形例を示す拡大
断面図、図12はこの発明による凝縮伝熱管の実施例に
対する比較例を示す部分拡大断面図、図13はこの発明
による凝縮伝熱管の実施例に対する他の比較例を示す部
分拡大断面図、図14はこの発明による一部の実施例の
凝縮伝熱管と、図12及び図13の比較例の凝縮伝熱管
との管内熱伝達率を比較した棒グラフ、図15はこの発
明による一部の実施例の凝縮伝熱管と、図12及び図1
3の比較例の凝縮伝熱管との圧力損失比を示す棒グラ
フ、図16はこの発明による凝縮伝熱管の実施例おい
て、突起ピッチと管内熱伝達率との関係を示す線グラ
フ、図17はこの発明による凝縮伝熱管の実施例おい
て、突起高さと管内熱伝達率との関係を示す線グラフ、
図18は従来の偏平多穴凝縮伝熱管を使用した凝縮器の
部分分解斜視図、図19は図18の凝縮器における偏平
多穴凝縮伝熱管の拡大断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the condensing heat transfer tube according to the present invention will be described with reference to FIGS. FIG. 1 is an enlarged sectional view showing a first embodiment of a condensation heat transfer tube according to the present invention,
2 is an enlarged cross-sectional view of the protrusions in the refrigerant flow path of the condensation heat transfer tube of FIG. 1, FIG. 3 is a partially enlarged cross-sectional view showing a second embodiment of the condensation heat transfer tube according to the present invention, and FIG. 4 is the condensation transfer tube of FIG. FIG. 5 is an enlarged cross-sectional view showing a protrusion in the refrigerant passage in the heat pipe, FIG. 5 is an enlarged sectional view showing a modified example of the protrusion in the refrigerant passage, and FIG. 6 is a partially enlarged cross-section showing a fifth embodiment of the condensation heat transfer pipe according to the present invention. Figure, Figure 7
Is a partially enlarged sectional view showing a sixth embodiment of the condensation heat transfer tube according to the present invention, FIG. 8 is a partially enlarged sectional view showing a seventh embodiment of the condensation heat transfer tube according to the present invention, and FIG. 9 is a condensation heat transfer tube according to the present invention. FIG. 10 is a partially enlarged cross-sectional view showing an eighth embodiment, FIG. 10 is a partially enlarged cross-sectional view showing a ninth embodiment of the condensing heat transfer tube according to the present invention, and FIG. 11 is an enlarged cross-sectional view showing another modified example of the protrusion in the refrigerant passage. FIG. 12 is a partially enlarged cross-sectional view showing a comparative example with respect to the embodiment of the condensation heat transfer tube according to the present invention, and FIG. 13 is a partially enlarged cross-sectional view showing another comparative example with respect to the embodiment of the condensation heat transfer tube according to the present invention. Is a bar graph comparing the heat transfer coefficients in the tubes of the condensing heat transfer tubes of some examples according to the present invention and the condensing heat transfer tubes of the comparative examples of FIGS. 12 and 13, and FIG. 15 is a bar graph of some examples of the present invention. Condensation heat transfer tube and FIGS. 12 and 1
3 is a bar graph showing the pressure loss ratio with the condensation heat transfer tube of the comparative example of FIG. 3, FIG. 16 is a line graph showing the relationship between the projection pitch and the heat transfer coefficient in the tube in the embodiment of the condensation heat transfer tube according to the present invention, and FIG. In the embodiment of the condensation heat transfer tube according to the present invention, a line graph showing the relationship between the projection height and the heat transfer coefficient in the tube,
FIG. 18 is a partially exploded perspective view of a conventional condenser using a flat multi-hole condensing heat transfer tube, and FIG. 19 is an enlarged sectional view of the flat multi-hole condensing heat transfer tube in the condenser of FIG.

【0012】第1実施例 図1に例示された第1実施例の凝縮伝熱管1は、その材
質がアルミニウム合金であり、コンフォーム押し出し
(精密押し出し)によって製造された偏平管である。こ
の凝縮伝熱管1には、高さh1よりも幅w1が大きい偏
平状の独立した冷媒流路10,10,11,11が、そ
れぞれ隔壁14を介して幅方向に並び、かつ長さ方向に
沿って連続するように形成されている。各冷媒流路1
0,11の上下の内壁面には、それぞれほぼ均一なピッ
チで多数の突起12が長さ方向へ連続するように形成さ
れている。前記突起12の断面形状が図2のようにほぼ
三角形であることによって、各突起12相互の間の各溝
13はその断面形状がほぼ逆台形になっている。したが
って、各溝13は平滑な底面を有している。
First Embodiment The condensing heat transfer tube 1 of the first embodiment illustrated in FIG. 1 is a flat tube made of aluminum alloy and manufactured by conform extrusion (precision extrusion). In this condensing heat transfer tube 1, flat independent refrigerant passages 10, 10, 11, 11 each having a width w1 larger than a height h1 are arranged in the width direction via a partition wall 14 and in the length direction. It is formed so as to be continuous along. Each refrigerant channel 1
A large number of protrusions 12 are formed on the upper and lower inner wall surfaces of 0 and 11 so as to be continuous in the length direction at substantially uniform pitches. Since the cross-sectional shape of the protrusion 12 is substantially triangular as shown in FIG. 2, each groove 13 between the protrusions 12 has a substantially inverted trapezoidal cross-sectional shape. Therefore, each groove 13 has a smooth bottom surface.

【0013】図1の凝縮伝熱管1のサイズは次のとおり
である。 長さ=850mm 幅w=17mm 高さh=1.8mm 肉厚t=0.45mm 中央部の冷媒流路10の幅w1=3.87mm 両側の冷媒流路11の幅w1=3.755mm 冷媒流路10,11の高さh1=0.9mm 隔壁14の肉厚t1=0.25mm 突起12の高さh2=0.15mm 突起12の幅w2=0.15mm 突起12のピッチp=0.48mm 溝13の平滑な底面幅w3=0.33mm 冷媒流路10の高さh1に対する幅w1の比=4.3 冷媒流路11の高さh1に対する幅w1の比≒4.2 流路の高さh1に対する突起12の高さh2の比≒0.
17 冷媒流路10の流体直径≒1.06mm 冷媒流路11の流体直径≒1.14mm 突起12の頂角θ(図2)=約54° この第1実施例の凝縮伝熱管は、後述の性能試験−1の
サンプルNo.1である。
The size of the condensation heat transfer tube 1 in FIG. 1 is as follows. Length = 850 mm Width w = 17 mm Height h = 1.8 mm Wall thickness t = 0.45 mm Width w1 of the central refrigerant passage 10 = 3.87 mm Width of both sides of the refrigerant passage 11 w1 = 3.755 mm Refrigerant Height of flow paths 10 and 11 = 0.9 mm Thickness of partition wall t1 = 0.25 mm Height of protrusion 12 h2 = 0.15 mm Width of protrusion 12 w2 = 0.15 mm Pitch of protrusion 12 p = 0. 48 mm Smooth bottom width of groove 13 w3 = 0.33 mm Ratio of width w1 to height h1 of refrigerant channel 10 = 4.3 Ratio of width w1 to height h1 of refrigerant channel 11≈4.2 Ratio of height h2 of protrusion 12 to height h1≈0.
17 Refrigerant channel 10 fluid diameter ≈ 1.06 mm Refrigerant channel 11 fluid diameter ≈ 1.14 mm Protrusion 12 apex angle θ (Fig. 2) = about 54 ° The condensation heat transfer tube of the first embodiment will be described later. It is sample No. 1 of performance test-1.

【0014】第1実施例の凝縮伝熱管によれば、図18
のように凝縮器に組み込んで使用されるとき、冷媒流路
10,11内を一定方向へ流れる冷媒の蒸気は、例えば
図2のように突起12の表面に接触して効率よく凝縮す
る。凝縮した液4は、常時ではないが図2のような状態
で溝13に沿って一定方向へ迅速に移動する。
According to the condensing heat transfer tube of the first embodiment, FIG.
When it is used by being incorporated in the condenser as described above, the vapor of the refrigerant flowing in a certain direction in the refrigerant flow paths 10 and 11 comes into contact with the surfaces of the protrusions 12 and efficiently condenses as shown in FIG. The condensed liquid 4 rapidly moves in a fixed direction along the groove 13 in a state as shown in FIG. 2, although not always.

【0015】第2実施例 図3及び図4に例示した第2実施例の凝縮伝熱管1は、
第1実施例の凝縮伝熱管と同じ材質,同じ方法によって
製造されたものである。冷媒流路10,11の内壁面の
突起12aは、図4のようにそれらの頂部がR=0.1
mmの円弧状に形成されている。この凝縮伝熱管1のサイ
ズは次のとおりであり、次に記載されていない部分のサ
イズは、第1実施例の凝縮伝熱管と同じである。 突起12aの幅w2=0.25mm 突起12aのピッチp=1.03mm 溝13の平滑な底面幅w3=0.78mm 冷媒流路10,11の流体直径≒1.21mm この第2実施例の凝縮伝熱管は、後述の性能試験−1の
サンプルNo.2である。
Second Embodiment The condensation heat transfer tube 1 of the second embodiment illustrated in FIGS. 3 and 4 is
It is manufactured by the same material and the same method as the condensing heat transfer tube of the first embodiment. The projections 12a on the inner wall surfaces of the refrigerant flow passages 10 and 11 have their tops R = 0.1 as shown in FIG.
It is formed in an arc shape of mm. The size of the condensing heat transfer tube 1 is as follows, and the sizes of parts not described next are the same as those of the condensing heat transfer tube of the first embodiment. Width w2 of the projection 12a = 0.25 mm Pitch of the projection 12a p = 1.03 mm Smooth bottom width w3 of the groove 13 = 0.78 mm Fluid diameter of the refrigerant channels 10 and 11≈1.21 mm Condensation of the second embodiment The heat transfer tube is Sample No. 2 of Performance Test-1 described later.

【0016】第3実施例 図3の凝縮伝熱管1の各突起12aの代えて、冷媒流路
の内壁面に図5で示すように高さh2=0.15mm、幅
w2=0.25mmの断面四角形の突起12bを有する凝
縮伝熱管を製造し、この伝熱管を後述の性能試験−1の
サンプルNo.3とした。サンプルNo.3の凝縮伝熱管は、冷
媒流路の流体直径=1.24mmであり、この凝縮伝熱管
の他の部分のサイズは第2実施例の凝縮伝熱管と同じで
ある。
Third Embodiment Instead of the projections 12a of the condensing heat transfer tube 1 of FIG. 3, the inner wall surface of the refrigerant passage has a height h2 = 0.15 mm and a width w2 = 0.25 mm as shown in FIG. A condensing heat transfer tube having a protrusion 12b having a quadrangular cross section was manufactured, and this heat transfer tube was designated as Sample No. 3 of Performance Test-1 described later. The condensing heat transfer tube of Sample No. 3 has a fluid diameter of the refrigerant flow path of 1.24 mm, and the size of the other parts of this condensing heat transfer tube is the same as the condensing heat transfer tube of the second embodiment.

【0017】第4実施例 図3の凝縮伝熱管1の各突起12aに代えて、冷媒流路
の内壁面に図2のように高さh2=0.15mm、幅w2
=0.15mmの断面三角形の突起12を有する凝縮伝熱
管を製造し、この伝熱管を後述の性能試験−1のサンプ
ルNo.4とした。サンプルNo.4の凝縮伝熱管は、冷媒流路
の流体直径≒1.28mmであり、この凝縮伝熱管の他の
部分のサイズは第2実施例の凝縮伝熱管と同じである。
Fourth Embodiment Instead of the projections 12a of the condensing heat transfer tube 1 of FIG. 3, a height h2 = 0.15 mm and a width w2 are formed on the inner wall surface of the refrigerant passage as shown in FIG.
A condensing heat transfer tube having a protrusion 12 having a triangular cross section of 0.15 mm was manufactured, and this heat transfer tube was designated as Sample No. 4 of Performance Test-1 described later. The condensing heat transfer tube of Sample No. 4 has a fluid diameter of the refrigerant passage ≈1.28 mm, and the size of the other parts of this condensing heat transfer tube is the same as the condensing heat transfer tube of the second embodiment.

【0018】第5実施例 図6に例示した第5実施例の凝縮伝熱管1は、それぞれ
の冷媒流路10,11の一方の幅面(使用状態における
上部の幅面)にのみ、図4と同様な断面形状の突起12
aを形成したもので、冷媒流路10,11の他方の幅面
は平滑である。この実施例の凝縮伝熱管1は、材質及び
製造方法が第1実施例の凝縮伝熱管と同じである。ま
た、冷媒流路10,11の流体直径≒1.33mmであ
り、その他の部分のサイズは第2実施例の凝縮伝熱管と
同じである。この第5実施例の凝縮伝熱管は、後述の性
能試験のサンプルNo.5である。
Fifth Embodiment The condensing heat transfer tube 1 of the fifth embodiment illustrated in FIG. 6 is similar to that of FIG. 4 only in one width surface (upper width surface in use) of each of the refrigerant passages 10 and 11. Protrusion 12 with various cross-sectional shapes
a is formed, and the other width faces of the refrigerant channels 10 and 11 are smooth. The condensing heat transfer tube 1 of this embodiment is the same in material and manufacturing method as the condensing heat transfer tube of the first embodiment. Further, the fluid diameter of the refrigerant passages 10 and 11 is approximately 1.33 mm, and the size of the other portions is the same as that of the condensation heat transfer tube of the second embodiment. The condensing heat transfer tube of the fifth embodiment is sample No. 5 of the performance test described later.

【0019】第6実施例 図7で例示する第6実施例の凝縮伝熱管1は、隔壁14
を介して八つの平行な冷媒流路10,11を形成し、各
冷媒流路10,11の両方の幅面の中央にそれぞれ図4
と同様な断面形状の突起12aを形成している。この凝
縮伝熱管1は、後述する図13の凝縮伝熱管3の隔壁1
4を、一つ置きに突起12aと置換した構造である。こ
の第6実施例の凝縮伝熱管1は、材質,製造方法が第1
実施例の凝縮伝熱管と同じである。また、そのサイズな
どは次のとおりであり、次に記載されていない部分のサ
イズは、第2実施例の凝縮伝熱管と同じである。 冷媒流路10,11の幅w1=1.81 冷媒流路10,11の流体直径≒1.07 流路幅w1/高さh1≒2.0 この第6実施例の凝縮伝熱管は、後述の性能試験のサン
プルNo.6である。
Sixth Embodiment A condensing heat transfer tube 1 of a sixth embodiment illustrated in FIG.
8 parallel refrigerant flow paths 10 and 11 are formed through the holes, and each of the refrigerant flow paths 10 and 11 is formed in the center of both width surfaces of the refrigerant flow paths 10 and 11 as shown in FIG.
A protrusion 12a having a cross-sectional shape similar to that is formed. This condensation heat transfer tube 1 is a partition wall 1 of a condensation heat transfer tube 3 shown in FIG.
This is a structure in which every other 4 is replaced by a protrusion 12a. The condensing heat transfer tube 1 of the sixth embodiment has the first material and the first manufacturing method.
This is the same as the condensation heat transfer tube of the embodiment. The size and the like are as follows, and the sizes of the parts not described next are the same as those of the condensing heat transfer tube of the second embodiment. Width w1 of the refrigerant channels 10 and 11 = 1.81 Fluid diameter of the refrigerant channels 10 and 11 ≈1.07 Channel width w1 / height h1 ≈2.0 The condensation heat transfer tube of the sixth embodiment will be described later. It is sample No. 6 of the performance test of.

【0020】比較例−1 図12の凝縮伝熱管2は、前述の各実施例の凝縮伝熱管
1と比較するための比較例の凝縮伝熱管であり、この凝
縮伝熱管2を後述の性能試験−1におけるサンプルNo.7
とした。この凝縮伝熱管2には、垂直な隔壁14を介し
て八つの冷媒流路20が幅方向に並ぶように形成されて
おり、各冷媒流路20の内壁面には突起が形成されてい
ない。各冷媒流路20は、流体直径≒1.20mmであ
り、この伝熱管2のその他の部分のサイズは図7の凝縮
伝熱管と同じである。
Comparative Example-1 The condensation heat transfer tube 2 of FIG. 12 is a condensation heat transfer tube of a comparative example for comparison with the condensation heat transfer tube 1 of each of the above-mentioned embodiments. Sample No.7 in -1
And Eight refrigerant flow paths 20 are formed in the condensing heat transfer tube 2 so as to be aligned in the width direction via the vertical partition walls 14, and no projection is formed on the inner wall surface of each refrigerant flow path 20. Each refrigerant passage 20 has a fluid diameter of ≈1.20 mm, and the size of the other parts of this heat transfer tube 2 is the same as the condensation heat transfer tube of FIG. 7.

【0021】比較例−2 図13の凝縮伝熱管3は、前述の各実施例の凝縮伝熱管
1と比較するための他の比較例の凝縮伝熱管であり、こ
の凝縮伝熱管3を後述の性能試験−1におけるサンプル
No.8とした。この凝縮伝熱管3は、隔壁14を介して十
六個の冷媒流路30が幅方向に並ぶように形成されてお
り、各冷媒流路30の内壁面には突起が形成されていな
い。この凝縮伝熱管3は、冷媒流路30の幅w1=0.
78、冷媒流路30の流体直径≒0.84mm(特開昭6
2−175588号に記載された凝縮伝熱管の範囲内に
含まれる。)、流路幅w1/内部高さh1≒0.87で
あり、その他の部分のサイズは図7の凝縮伝熱管と同じ
である。
Comparative Example-2 The condensing heat transfer tube 3 of FIG. 13 is a condensing heat transfer tube of another comparative example for comparison with the condensing heat transfer tube 1 of each of the above-mentioned embodiments, and this condensing heat transfer tube 3 will be described later. Performance test-1 sample
No.8 The condensing heat transfer tube 3 is formed so that the sixteen refrigerant passages 30 are arranged side by side in the width direction via the partition walls 14, and no protrusion is formed on the inner wall surface of each refrigerant passage 30. The condensing heat transfer tube 3 has a width w1 = 0.
78, the fluid diameter of the refrigerant channel 30 ≈ 0.84 mm
It is included in the range of the condensation heat transfer tube described in No. 2-175588. ), The flow path width w1 / the internal height h1≈0.87, and the sizes of the other parts are the same as those of the condensation heat transfer tube in FIG.

【0022】性能試験−1 アルミニウム合金を使用し、コンフォーム熱間押し出し
により前述したサンプルNo.1〜サンプルNo.8の偏平な多
穴凝縮伝熱管を試作し、各サンプルNo.1〜No.8につい
て、蒸気(134a)流入温度を40℃,管外温度を3
0℃にそれぞれ保ち、管内の平均熱伝達率と圧力損失を
測定したところ図14及び図15のような結果であっ
た。なお、図15はNo.8の凝縮伝熱管3の圧力損失を1
とした場合の圧力損失比を示している。
Performance test-1 Using aluminum alloy, the flat multi-hole condensing heat transfer tubes of sample No. 1 to sample No. 8 described above were prototyped by conform hot extrusion, and each sample No. 1 to No. Regarding No. 8, the steam (134a) inflow temperature was 40 ° C and the outside temperature was 3
The average heat transfer coefficient and the pressure loss inside the tube were measured at 0 ° C. respectively, and the results were as shown in FIGS. 14 and 15. In addition, FIG. 15 shows the pressure loss of the No. 8 condensing heat transfer tube 3 as 1
Shows the pressure loss ratio.

【0023】図14の結果によれば、従来の凝縮伝熱管
と同様な仕様で製造したサンプルNo.8の凝縮伝熱管は、
伝熱性能の面において、冷媒流路の流体直径が約1.2
0mmであるサンプルNo.7の凝縮伝熱管よりも僅かに優れ
ている。しかしながら、サンプルNo.8の凝縮伝熱管3
は、当該伝熱管3の隔壁14のうちの一つ置きの隔壁1
4を突起12aと置換したサンプルNo.6(第6実施例)
の凝縮伝熱管よりも伝熱性能が劣っているし、サンプル
No.1〜No.5の凝縮伝熱管との伝熱性能の差はさらに大き
い。
According to the result of FIG. 14, the condensing heat transfer tube of sample No. 8 manufactured with the same specifications as the conventional condensing heat transfer tube was
In terms of heat transfer performance, the fluid diameter of the refrigerant channel is about 1.2.
It is slightly better than the condensing heat transfer tube of Sample No. 7 which is 0 mm. However, condensing heat transfer tube 3 of sample No. 8
Is every other partition wall 1 of the partition walls 14 of the heat transfer tube 3.
Sample No. 6 in which 4 is replaced by the protrusion 12a (sixth embodiment)
The heat transfer performance is inferior to the condensation heat transfer tube of
The difference in heat transfer performance from the No. 1 to No. 5 condensation heat transfer tubes is even greater.

【0024】図15の結果によれば、圧力損失の面にお
いて、サンプルNo.6の凝縮伝熱管はNo.7の凝縮伝熱管よ
り僅かに劣るものの、サンプルNo.8の凝縮伝熱管よりは
るかに優れており、特にサンプルNo.1〜No.5の凝縮伝熱
管の圧力損失はサンプルNo.8よりもさらに小さい。
According to the results shown in FIG. 15, the condensation heat transfer tube of Sample No. 6 is slightly inferior to the condensation heat transfer tube of No. 7 in terms of pressure loss, but is far superior to the condensation heat transfer tube of Sample No. 8. It is excellent, and the pressure loss of the condensing heat transfer tubes of samples No.1 to No.5 is even smaller than that of sample No.8.

【0025】性能試験−1の結果によれば、圧力損失を
あまり大きくしないで熱性能をさらに向上させる目的
は、凝縮伝熱管における冷媒流路の流体直径を小さくす
ることによって達成することができるのではなく、前述
のこの発明による実施例の凝縮伝熱管のように、内部高
さよりも幅が広い偏平状の冷媒流路の内壁面に小さな突
起を形成することによってよりよく達成されることが明
らかである。特にサンプルNo.1の凝縮伝熱管は、サンプ
ルNo.8の凝縮伝熱管と比較して、圧力損失及び熱伝達率
の両面ではるかに優れている。
According to the results of performance test-1, the purpose of further improving the thermal performance without increasing the pressure loss can be achieved by reducing the fluid diameter of the refrigerant passage in the condensation heat transfer tube. Rather, it is better achieved by forming a small protrusion on the inner wall surface of the flat refrigerant passage having a width wider than the internal height, like the condensation heat transfer tube of the embodiment according to the present invention described above. Is. In particular, the condensing heat transfer tube of Sample No. 1 is far superior in both pressure loss and heat transfer coefficient to the condensing heat transfer tube of Sample No. 8.

【0026】性能試験−2 幅w,長さ,高さh,冷媒流路10,11の高さh1及
び幅w1がそれぞれ第1実施例(図1)の凝縮伝熱管と
同じであり、突起の断面形状及びサイズがそれぞれ図
2,図4及び図5のとおりであって、突起ピッチpが
0.23〜1.94mmの範囲内であるアルミニウム合金
製の凝縮伝熱管を、コンフォーム熱間押し出しによって
試作し、これらの試作品について性能試験−1の場合と
同様な要領で平均管内熱伝達率を測定した。その結果は
図16のとおりであった。図16において、突起の断面
形状が三角形(図2)である伝熱管については実線で、
突起の断面形状が四角形(図5)である伝熱管について
は一点鎖線で、突起の断面形状が頭部円弧(図4)であ
る伝熱管については二点鎖線でそれぞれ示されている。
なお、これらの凝縮伝熱管は、それぞれの冷媒流路の流
体直径がいずれも0.7〜1.5の範囲内である。ま
た、これらの凝縮伝熱管の圧力損失は、前記サンプルN
o.8の凝縮伝熱管の圧力損失を1とした場合、いずれも
0.55〜0.6の範囲内(圧力損失の大きさは突起ピ
ッチpの大きさに反比例する)であった。
Performance test-2 The width w, the length, the height h, the height h1 and the width w1 of the refrigerant passages 10 and 11 are the same as those of the condensation heat transfer tube of the first embodiment (FIG. 1), and the protrusions 2 and 4 and 5, respectively, and the projection pitch p is within the range of 0.23 to 1.94 mm. Prototypes were made by extrusion, and the average heat transfer coefficient in tubes was measured for these prototypes in the same manner as in Performance Test-1. The result was as shown in FIG. In FIG. 16, the heat transfer tubes whose protrusions have a triangular cross-sectional shape (FIG. 2) are solid lines,
A heat transfer tube having a quadrangular protrusion (FIG. 5) has a dashed-dotted line, and a heat transfer tube having a protrusion having a circular arc shape (FIG. 4) has a dashed-two dotted line.
In addition, in these condensation heat transfer tubes, the fluid diameter of each refrigerant flow path is in the range of 0.7 to 1.5. Also, the pressure loss of these condensation heat transfer tubes is
When the pressure loss of the condensing heat transfer tube of 0.8 was set to 1, it was in the range of 0.55 to 0.6 (the magnitude of the pressure loss is inversely proportional to the magnitude of the projection pitch p).

【0027】この性能試験−2によれば、冷媒流路内の
突起ピッチpがほぼ0.25〜0.6mmの範囲内にある
凝縮伝熱管は、冷媒流路の圧力損失が比較的小さくかつ
より高レベルの伝熱性能を発揮することが明らかになっ
た。また、実験によれば、凝縮伝熱管における冷媒流路
内の突起が断面三角形である場合は、その頂角が30〜
60°であるのが最も好ましい。
According to this performance test-2, the condensation heat transfer tubes having the projection pitch p within the range of 0.25 to 0.6 mm in the refrigerant passage have relatively small pressure loss in the refrigerant passage. It has been revealed that it exhibits a higher level of heat transfer performance. Further, according to the experiment, when the protrusion in the refrigerant flow path in the condensation heat transfer tube has a triangular cross section, the apex angle is 30 to
Most preferably, it is 60 °.

【0028】性能試験−3 幅w,長さ,高さh,冷媒流路10,11の高さh1及
び幅w1がそれぞれ第1実施例(図1)の凝縮伝熱管と
同じであり、突起の断面形状及びサイズが図2のとおり
(突起断面が三角形で、当該三角形の高さと底辺が同
じ)であって、突起高さが0,0.05〜0.3mmの範
囲内(突起高さh2/冷媒流路の高さh1=0,0.0
55〜0.33)であるアルミニウム合金製の凝縮伝熱
管を、コンフォーム熱間押し出しによって試作し、これ
らの試作品について性能試験−1の場合と同様な要領で
平均管内熱伝達率を測定した。その結果は図17のとお
りであった。なお、これらの凝縮伝熱管は、それぞれの
冷媒流路の流体直径がいずれも0.7〜1.5の範囲内
である。
Performance test-3 The width w, the length, the height h, the height h1 and the width w1 of the refrigerant passages 10 and 11 are the same as those of the condensation heat transfer tube of the first embodiment (FIG. 1), and the protrusions 2 has the same cross-sectional shape and size (the cross section of the protrusion is triangular, and the height of the triangle is the same as the base), and the height of the protrusion is within the range of 0.05 to 0.3 mm (the height of the protrusion). h2 / height of refrigerant flow path h1 = 0,0.0
55 to 0.33) aluminum alloy condensation heat transfer tubes were prototyped by conform hot extrusion, and the average heat transfer coefficient in tubes was measured for these prototypes in the same manner as in Performance Test-1. . The results are shown in FIG. In addition, in these condensation heat transfer tubes, the fluid diameter of each refrigerant flow path is in the range of 0.7 to 1.5.

【0029】この性能試験−3によれば、冷媒流路の内
部高さh1に対する突起高さh2の比が0.055〜
0.25の範囲内である凝縮伝熱管は、冷媒流路の圧力
損失が比較的小さくかつより高レベルの伝熱性能を発揮
することが明らかになった。なお、突起高さh2に対す
る冷媒流路の高さh1が0.055〜0.25の範囲内
である凝縮伝熱管の圧力損失は、前記サンプルNo.8の凝
縮伝熱管の圧力損失を1とした場合、0.55〜0.7
の範囲内(圧力損失の大きさは突起高さh2の大きさに
比例する)であった。
According to this performance test-3, the ratio of the protrusion height h2 to the internal height h1 of the refrigerant passage is 0.055.
It has been revealed that the condensation heat transfer tube having the range of 0.25 has a relatively small pressure loss in the refrigerant flow path and exhibits a higher level of heat transfer performance. In addition, the pressure loss of the condensation heat transfer tube in which the height h1 of the refrigerant flow path with respect to the protrusion height h2 is within the range of 0.055 to 0.25, the pressure loss of the condensation heat transfer tube of Sample No. 8 is 1 If done, 0.55-0.7
Within the range (the magnitude of the pressure loss is proportional to the magnitude of the protrusion height h2).

【0030】この発明による凝縮伝熱管においては、図
8で示す第7実施例の凝縮伝熱管1のように、冷媒流路
10(11)の上下の幅面の突起12(12a,12
b)相互が水平方向へ互い違いに位置するように構成す
ることができる。すなわち、この第7実施例の凝縮伝熱
管1は、冷媒流路10(11)の上の幅面に形成された
突起12と下の幅面に形成された突起12相互は、同一
垂直面において相対しない状態になっている。第7実施
例の凝縮伝熱管1では、冷媒流路10(11)の上の幅
面の突起数と下の幅面の突起数は異なるが、使用状態に
おける冷媒流路10(11)の上の幅面の突起の数が、
下の幅面における突起の数よりも多いのが好ましい。
In the condensing heat transfer tube according to the present invention, like the condensing heat transfer tube 1 of the seventh embodiment shown in FIG. 8, the projections 12 (12a, 12) on the upper and lower width surfaces of the refrigerant flow passage 10 (11).
b) It can be configured such that they are staggered horizontally. That is, in the condensing heat transfer tube 1 of the seventh embodiment, the projections 12 formed on the upper width surface of the refrigerant channel 10 (11) and the projections 12 formed on the lower width surface thereof do not face each other on the same vertical surface. It is in a state. In the condensing heat transfer tube 1 of the seventh embodiment, the number of protrusions on the upper width surface of the refrigerant flow passage 10 (11) and the number of protrusions on the lower width surface are different, but the width surface above the refrigerant flow passage 10 (11) in use. The number of protrusions in
It is preferably larger than the number of protrusions on the lower width surface.

【0031】また、この発明による凝縮伝熱管において
は、図9で示す第8実施例の凝縮伝熱管1ように、凝縮
伝熱管1の冷媒流路10,11内の上下の幅面に突起1
2(12a,12b)を形成するほか、隔壁14又は側
部の内壁面に突起12(12a,12b)を形成するこ
とができる。
Further, in the condensing heat transfer tube according to the present invention, as in the condensing heat transfer tube 1 of the eighth embodiment shown in FIG. 9, the projections 1 are formed on the upper and lower width surfaces in the refrigerant flow passages 10 and 11 of the condensing heat transfer tube 1.
In addition to forming 2 (12a, 12b), the protrusion 12 (12a, 12b) can be formed on the partition wall 14 or the inner wall surface of the side portion.

【0032】さらに、図10で示す第9実施例の凝縮伝
熱管のように、凝縮伝熱管1内の突起12を断面三角形
に成形するとともに、隔壁14の基部をテーパー状に成
形することによって、当該隔壁14へ隣接する溝13の
断面形状が逆台形になるように構成することができる。
また、前述の各実施例の凝縮伝熱管1においては、図1
1で示すように断面形状が台形状の突起12cを形成し
てもよい。
Further, like the condensing heat transfer tube of the ninth embodiment shown in FIG. 10, by forming the projection 12 in the condensing heat transfer tube 1 to have a triangular cross section and forming the base of the partition wall 14 into a tapered shape, The cross-sectional shape of the groove 13 adjacent to the partition wall 14 may be an inverted trapezoid.
Further, in the condensation heat transfer tube 1 of each of the above-described embodiments,
As shown by 1, a protrusion 12c having a trapezoidal cross section may be formed.

【0033】[0033]

【発明の効果】この発明の偏平多穴凝縮伝熱管によれ
ば、冷媒流路の圧力損失が比較的小さく、かつより高レ
ベルの伝熱性能を発揮する凝縮伝熱管を提供することが
できるとともに、より一層小型化した凝縮器を製造する
ことができる。
According to the flat multi-hole condensing heat transfer tube of the present invention, it is possible to provide a condensing heat transfer tube which has a relatively small pressure loss in the refrigerant passage and exhibits a higher level of heat transfer performance. Therefore, it is possible to manufacture a further downsized condenser.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明による凝縮伝熱管の第1実施例を示す
拡大断面図である。
FIG. 1 is an enlarged sectional view showing a first embodiment of a condensing heat transfer tube according to the present invention.

【図2】図1の凝縮伝熱管における冷媒流路内の突起の
拡大断面図である。
FIG. 2 is an enlarged cross-sectional view of a protrusion in a refrigerant passage in the condensation heat transfer tube of FIG.

【図3】この発明による凝縮伝熱管の第2実施例を示す
部分拡大断面図である。
FIG. 3 is a partially enlarged sectional view showing a second embodiment of the condensation heat transfer tube according to the present invention.

【図4】図4は図3の凝縮伝熱管における冷媒流路内の
突起の拡大断面図である。
FIG. 4 is an enlarged cross-sectional view of a protrusion in a refrigerant flow path in the condensation heat transfer tube of FIG.

【図5】冷媒流路内の突起の変形例を示す拡大断面図で
ある。
FIG. 5 is an enlarged cross-sectional view showing a modified example of protrusions in the coolant channel.

【図6】この発明による凝縮伝熱管の第5実施例を示す
部分拡大断面図である。
FIG. 6 is a partially enlarged sectional view showing a fifth embodiment of the condensation heat transfer tube according to the present invention.

【図7】この発明による凝縮伝熱管の第6実施例を示す
部分拡大断面図である。
FIG. 7 is a partially enlarged sectional view showing a sixth embodiment of the condensation heat transfer tube according to the present invention.

【図8】この発明による凝縮伝熱管の第7実施例を示す
部分拡大断面図である。
FIG. 8 is a partially enlarged sectional view showing a seventh embodiment of the condensation heat transfer tube according to the present invention.

【図9】この発明による凝縮伝熱管の第8実施例を示す
部分拡大断面図である。
FIG. 9 is a partially enlarged sectional view showing an eighth embodiment of the condensation heat transfer tube according to the present invention.

【図10】この発明による凝縮伝熱管の第9実施例を示
す部分拡大断面図である。
FIG. 10 is a partially enlarged sectional view showing a ninth embodiment of the condensation heat transfer tube according to the present invention.

【図11】冷媒流路内の突起の他の変形例を示す拡大断
面図である。
FIG. 11 is an enlarged cross-sectional view showing another modified example of the protrusion in the coolant channel.

【図12】この発明による凝縮伝熱管の実施例に対する
比較例を示す部分拡大断面図である。
FIG. 12 is a partially enlarged cross-sectional view showing a comparative example with respect to the embodiment of the condensation heat transfer tube according to the present invention.

【図13】この発明による凝縮伝熱管の実施例に対する
他の比較例を示す部分拡大断面図である。
FIG. 13 is a partially enlarged sectional view showing another comparative example with respect to the embodiment of the condensation heat transfer tube according to the present invention.

【図14】この発明による一部の実施例の凝縮伝熱管
と、図12及び図13の比較例の凝縮伝熱管との管内熱
伝達率を比較した棒グラフである。
FIG. 14 is a bar graph comparing in-tube heat transfer coefficients of the condensation heat transfer tubes of some examples according to the present invention and the condensation heat transfer tubes of the comparative examples of FIGS. 12 and 13.

【図15】この発明による一部の実施例の凝縮伝熱管
と、図12及び図13の比較例の凝縮伝熱管との圧力損
失比率を示す棒グラフである。
FIG. 15 is a bar graph showing the pressure loss ratios of the condensation heat transfer tubes of some examples according to the present invention and the condensation heat transfer tubes of the comparative examples of FIGS. 12 and 13.

【図16】この発明による凝縮伝熱管の実施例おいて、
突起ピッチと管内熱伝達率との関係を示す線グラフであ
る。
FIG. 16 shows an embodiment of a condensing heat transfer tube according to the present invention,
It is a line graph which shows the relationship between a protrusion pitch and a heat transfer coefficient in a pipe.

【図17】この発明による凝縮伝熱管の実施例おいて、
突起高さと管内熱伝達率との関係を示す線グラフであ
る。
FIG. 17 shows an embodiment of a condensing heat transfer tube according to the present invention,
It is a line graph which shows the relationship between projection height and heat transfer coefficient in a pipe.

【図18】従来の偏平多穴凝縮伝熱管を使用した熱交換
器の部分分解斜視図である。
FIG. 18 is a partial exploded perspective view of a heat exchanger using a conventional flat multi-hole condensing heat transfer tube.

【図19】図18の熱交換器における偏平多穴凝縮伝熱
管の拡大断面図である。 1,2,3 凝縮伝熱管 10,11,20,3072 冷媒流路 12,12a,12b,12c 突起 13 溝 14,71 隔壁 4 冷媒の凝縮液 5,6 上下の部品 70 放熱フィン 8,9 ヘッダ管 80 蒸気供給口 81,91 蓋 90 凝縮液排出口 92 導管 h 伝熱管の高さ h1 冷媒流路の内部高さ h2 突起高さ w 伝熱管の幅 w1 冷媒流路の内幅 w2 突起の幅
19 is an enlarged sectional view of a flat multi-hole condensing heat transfer tube in the heat exchanger of FIG. 1,2,3 Condensation heat transfer tube 10,11,20,3072 Refrigerant flow path 12,12a, 12b, 12c Protrusion 13 Groove 14,71 Partition wall 4 Refrigerant condensate 5,6 Upper and lower parts 70 Radiating fin 8,9 Header Tube 80 Steam supply port 81, 91 Lid 90 Condensate discharge port 92 Conduit h Height of heat transfer tube h1 Internal height of refrigerant passage h2 Height of protrusion w Width of heat transfer tube w1 Inner width of refrigerant passage w2 Width of protrusion

───────────────────────────────────────────────────── フロントページの続き (72)発明者 永田 勝也 東京都新宿区大久保三丁目4番1号 早稲 田大学理工学部機械工学科内 (72)発明者 勝田 正文 東京都新宿区大久保三丁目4番1号 早稲 田大学理工学部機械工学科内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Katsuya Nagata 3-4-1, Okubo, Shinjuku-ku, Tokyo Department of Mechanical Engineering, Waseda University (72) Masafumi Katsuda 3-4-1 Okubo, Shinjuku-ku, Tokyo Waseda University Faculty of Science and Engineering Department of Mechanical Engineering

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 幅方向に並びかつ長さ方向に連続する独
立した複数の偏平状冷媒流路を有する偏平伝熱管におい
て、 前記偏平伝熱管は高さhが2.0mm以下に設定され、 前記偏平状冷媒流路は、高さh1が1.2mm以下であっ
て高さh1に対する幅w1の比が1.8〜6.0の範囲
内に設定され、 前記偏平状冷媒流路の内壁面には、長さ方向に沿って連
続する複数の突起を有するとともに突起に隣接する溝は
平滑な底面を有し、 前記偏平状冷媒流路の高さh1に対する前記突起の高さ
h2の比が0.055〜0.25の範囲内であることを
特徴とする、偏平多穴凝縮伝熱管。
1. A flat heat transfer tube having a plurality of independent flat refrigerant passages arranged in the width direction and continuous in the length direction, wherein the flat heat transfer tube has a height h of 2.0 mm or less, The flat refrigerant passage has a height h1 of 1.2 mm or less, and a ratio of the width w1 to the height h1 is set within a range of 1.8 to 6.0, and the flat refrigerant passage has an inner wall surface. Has a plurality of projections continuous along the length direction, and the groove adjacent to the projections has a smooth bottom surface, and the ratio of the height h2 of the projections to the height h1 of the flat refrigerant passage is A flat multi-hole condensing heat transfer tube, which is in the range of 0.055 to 0.25.
【請求項2】 前記突起のピッチpが0.25〜0.6
mmである、請求項1に記載の偏平多穴凝縮伝熱管。
2. The pitch p of the protrusions is 0.25 to 0.6.
The flat multi-hole condensing heat transfer tube according to claim 1, having a size of mm.
【請求項3】 前記突起相互間の溝の断面形状が逆台形
状である、請求項1又は2に記載の偏平多穴凝縮伝熱
管。
3. The flat multi-hole condensing heat transfer tube according to claim 1, wherein the cross-sectional shape of the groove between the protrusions is an inverted trapezoid.
【請求項4】 前記突起は断面形状がほぼ三角形であ
る、請求項3に記載の偏平多穴凝縮伝熱管。
4. The flat multi-hole condensing heat transfer tube according to claim 3, wherein the protrusion has a substantially triangular cross-sectional shape.
【請求項5】 前記偏平状冷媒流路の流体直径が0.7
〜1.5mmである、請求項1〜3のいずれかに記載の偏
平多穴凝縮伝熱管。
5. The fluid diameter of the flat refrigerant channel is 0.7.
The flat multi-hole condensing heat transfer tube according to any one of claims 1 to 3, which has a diameter of ~ 1.5 mm.
JP5200304A 1992-07-24 1993-07-20 Flat multi-holed condensing and heat transfer pipe Pending JPH06185885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5200304A JPH06185885A (en) 1992-07-24 1993-07-20 Flat multi-holed condensing and heat transfer pipe

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP21828492 1992-07-24
JP4-218284 1992-07-24
JP5200304A JPH06185885A (en) 1992-07-24 1993-07-20 Flat multi-holed condensing and heat transfer pipe
GB9324091A GB2284471B (en) 1992-07-24 1993-11-23 Flat condenser tube

Publications (1)

Publication Number Publication Date
JPH06185885A true JPH06185885A (en) 1994-07-08

Family

ID=27266946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5200304A Pending JPH06185885A (en) 1992-07-24 1993-07-20 Flat multi-holed condensing and heat transfer pipe

Country Status (1)

Country Link
JP (1) JPH06185885A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0949692A (en) * 1995-08-09 1997-02-18 Akutoronikusu Kk Manufacture of thin tunnel plate heat pipe
KR19990057640A (en) * 1997-12-30 1999-07-15 신영주 heat transmitter
EP1128148A2 (en) * 2000-02-25 2001-08-29 Denso Corporation Heat exchanger
US6289981B1 (en) * 1997-05-30 2001-09-18 Showa Denko K.K. Multi-bored flat tube for use in a heat exchanger and heat exchanger including said tubes
JP2001304719A (en) * 2000-04-17 2001-10-31 Korea Mach Res Inst Module type multi-channel flat pipe evaporator
JP2002318086A (en) * 2001-04-16 2002-10-31 Japan Climate Systems Corp Heat exchanger tube
KR100522668B1 (en) * 1998-11-14 2005-12-30 한라공조주식회사 Heat exchanger tube
KR100606332B1 (en) * 2005-03-10 2006-07-28 주식회사 두원공조 Flat tube for heat exchanger for use in air conditioning or refrigeration systems
JP2007322007A (en) * 2006-05-30 2007-12-13 Showa Denko Kk Heat exchange pipe and evaporator
KR100819011B1 (en) * 2001-08-29 2008-04-02 한라공조주식회사 Heat exchanger
DE102008045710A1 (en) 2007-09-06 2009-03-12 Showa Denko K.K. Flat heat transfer tube
US20110000657A1 (en) * 2008-01-10 2011-01-06 Jens Ruckwied Extruded tube for a heat exchanger
JP2011058771A (en) * 2009-09-14 2011-03-24 Mitsubishi Electric Corp Heat exchanger, and refrigerator and air conditioner including the heat exchanger
JP2014001882A (en) * 2012-06-18 2014-01-09 Mitsubishi Electric Corp Heat exchanger and air conditioner
JPWO2016103437A1 (en) * 2014-12-26 2017-04-27 三菱電機株式会社 Refrigeration cycle equipment
WO2017073715A1 (en) * 2015-10-29 2017-05-04 株式会社Uacj Aluminum extruded flat perforated tube and heat exchanger
JP2017172821A (en) * 2016-03-18 2017-09-28 日本軽金属株式会社 Heat exchange member and heat exchanger
WO2021095567A1 (en) * 2019-11-14 2021-05-20 ダイキン工業株式会社 Heat transfer pipe and heat exchanger
EP4060275A1 (en) * 2021-03-17 2022-09-21 Carrier Corporation Microchannel heat exchanger

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0949692A (en) * 1995-08-09 1997-02-18 Akutoronikusu Kk Manufacture of thin tunnel plate heat pipe
US6289981B1 (en) * 1997-05-30 2001-09-18 Showa Denko K.K. Multi-bored flat tube for use in a heat exchanger and heat exchanger including said tubes
KR19990057640A (en) * 1997-12-30 1999-07-15 신영주 heat transmitter
KR100522668B1 (en) * 1998-11-14 2005-12-30 한라공조주식회사 Heat exchanger tube
EP1128148A2 (en) * 2000-02-25 2001-08-29 Denso Corporation Heat exchanger
EP1128148A3 (en) * 2000-02-25 2002-03-20 Denso Corporation Heat exchanger
JP2001304719A (en) * 2000-04-17 2001-10-31 Korea Mach Res Inst Module type multi-channel flat pipe evaporator
JP2002318086A (en) * 2001-04-16 2002-10-31 Japan Climate Systems Corp Heat exchanger tube
KR100819011B1 (en) * 2001-08-29 2008-04-02 한라공조주식회사 Heat exchanger
KR100606332B1 (en) * 2005-03-10 2006-07-28 주식회사 두원공조 Flat tube for heat exchanger for use in air conditioning or refrigeration systems
JP2007322007A (en) * 2006-05-30 2007-12-13 Showa Denko Kk Heat exchange pipe and evaporator
DE102008045710A1 (en) 2007-09-06 2009-03-12 Showa Denko K.K. Flat heat transfer tube
JP2009063228A (en) * 2007-09-06 2009-03-26 Showa Denko Kk Flat heat transfer tube
DE102008045710B4 (en) * 2007-09-06 2020-02-06 Keihin Thermal Technology Corp. Flat heat transfer tube and heat exchanger
US20110000657A1 (en) * 2008-01-10 2011-01-06 Jens Ruckwied Extruded tube for a heat exchanger
JP2011058771A (en) * 2009-09-14 2011-03-24 Mitsubishi Electric Corp Heat exchanger, and refrigerator and air conditioner including the heat exchanger
JP2014001882A (en) * 2012-06-18 2014-01-09 Mitsubishi Electric Corp Heat exchanger and air conditioner
JPWO2016103437A1 (en) * 2014-12-26 2017-04-27 三菱電機株式会社 Refrigeration cycle equipment
EP3239640A4 (en) * 2014-12-26 2018-09-26 Mitsubishi Electric Corporation Refrigeration cycle apparatus
KR20180077171A (en) * 2015-10-29 2018-07-06 가부시키가이샤 유에이씨제이 Aluminum extruded flat pore and heat exchanger
CN108474630A (en) * 2015-10-29 2018-08-31 株式会社Uacj Aluminum squeezes out flat perforated pipe and heat exchanger
JPWO2017073715A1 (en) * 2015-10-29 2018-09-06 株式会社Uacj Aluminum extruded flat multi-hole tube and heat exchanger
US20180313610A1 (en) * 2015-10-29 2018-11-01 Uacj Corporation Extruded aluminum flat multi-hole tube and heat exchanger
WO2017073715A1 (en) * 2015-10-29 2017-05-04 株式会社Uacj Aluminum extruded flat perforated tube and heat exchanger
JP2021073431A (en) * 2015-10-29 2021-05-13 株式会社Uacj Aluminum extruded flat multi-hole tube and heat exchanger
US11009295B2 (en) 2015-10-29 2021-05-18 Uacj Corporation Extruded aluminum flat multi-hole tube and heat exchanger
JP2017172821A (en) * 2016-03-18 2017-09-28 日本軽金属株式会社 Heat exchange member and heat exchanger
WO2021095567A1 (en) * 2019-11-14 2021-05-20 ダイキン工業株式会社 Heat transfer pipe and heat exchanger
JP2021081081A (en) * 2019-11-14 2021-05-27 ダイキン工業株式会社 Heat transfer pipe and heat exchanger
EP4060275A1 (en) * 2021-03-17 2022-09-21 Carrier Corporation Microchannel heat exchanger

Similar Documents

Publication Publication Date Title
JPH06185885A (en) Flat multi-holed condensing and heat transfer pipe
EP1231448B1 (en) Heat exchanger
US7913750B2 (en) Louvered air center with vortex generating extensions for compact heat exchanger
US7882708B2 (en) Flat pipe-shaped heat exchanger
US20100115771A1 (en) Heat exchanger, heat exchanger tubes and method
KR102634151B1 (en) Aluminum extruded flat perforated tube and heat exchanger
US6019169A (en) Heat transfer device and method of making same
US7299863B2 (en) Louver fin type heat exchanger having improved heat exchange efficiency by controlling water blockage
JPH0198896A (en) Heat exchanger
US3983932A (en) Heat exchanger
US20170211892A1 (en) Tube for heat exchanger
KR960029756A (en) Plate Fins for Finned Tube Heat Exchangers
JPH04177091A (en) Heat exchanger
GB2284471A (en) Flat condenser tube
US20090159253A1 (en) Heat exchanger tubes and combo-coolers including the same
JPH0510694A (en) Heat transfer tube for heat exchanger
JP2004138306A (en) Heat exchanger
JPH05215482A (en) Heat exchanger
US11796191B2 (en) Heat exchanger and air conditioner including same
JP4638583B2 (en) Fluid transport tube and automotive cooler comprising the tube
JP3415013B2 (en) Heat transfer tube for condenser
KR100213778B1 (en) Heat exchanger
JP2001141382A (en) Air heat exchanger
JP2001133076A (en) Heat exchanger
JPH0968396A (en) Heat exchanger