JPH0198896A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPH0198896A
JPH0198896A JP25664287A JP25664287A JPH0198896A JP H0198896 A JPH0198896 A JP H0198896A JP 25664287 A JP25664287 A JP 25664287A JP 25664287 A JP25664287 A JP 25664287A JP H0198896 A JPH0198896 A JP H0198896A
Authority
JP
Japan
Prior art keywords
coolant
passages
louvers
flat tube
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25664287A
Other languages
Japanese (ja)
Inventor
Ken Yamamoto
憲 山本
Shigeo Ito
茂雄 伊藤
Masahiro Shitaya
昌宏 下谷
Shigenobu Fukumi
重信 福見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP25664287A priority Critical patent/JPH0198896A/en
Publication of JPH0198896A publication Critical patent/JPH0198896A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05375Assemblies of conduits connected to common headers, e.g. core type radiators with particular pattern of flow, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • F28F3/027Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements with openings, e.g. louvered corrugated fins; Assemblies of corrugated strips

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To improve a heat exchanging performance by a method wherein inner fins are integrally formed with louvers for crossing flow of heat exchanging medium between the adjoining heat exchanging medium passages defined by the inner fins. CONSTITUTION:Although coolant passes within a flat tube 4 along a plurality of coolant passages 7 defined by inner fins 10, the inner fins 10 are formed with several louvers 11, so that the coolant which is apt to flow toward a downstream side of the coolant passages 7 is changed in its flow direction by the louvers 11. The louvers 11 are cut and raised toward the coolant passages 7 adjacent to the upstream side of the air flow. The coolant flowing in the coolant passage 7 at the downstream side of the air flow direction is guided toward the coolant passages 7 adjacent to the upstream side of the air in sequence. The coolant is guided between the adjoining coolant passages 7 toward the high condensing side, so that the coolant may be mixed to each other and then there is no difference in temperature between the coolant passages 7 in a direction of air flow. Due to this fact, no eccentric condensation of air is generated and thus an efficiency of heat exchanging operation is improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、車両用や家庭用のニアコンディショナ等に使
用される熱交換器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat exchanger used in near conditioners for vehicles and homes.

[従来の技術1 熱交換器は周知の通り、管内を流れる熱交換媒体と、管
外を流れる空気との間で熱伝導による熱交換をなすもの
であり、ニアコンディショナの場合は熱交換媒体により
外部の空気を暖めたり、冷却するようになっている。
[Prior art 1] As is well known, a heat exchanger exchanges heat by thermal conduction between a heat exchange medium flowing inside a tube and air flowing outside the tube, and in the case of a near conditioner, the heat exchange medium It is designed to heat or cool the outside air.

従来のこの種の熱交換器の構造について、第10図ない
し第12図に示すカーエアコン用コンデンサにもとづき
説明する。
The structure of a conventional heat exchanger of this type will be explained based on a car air conditioner condenser shown in FIGS. 10 to 12.

図において1は入口側ヘッダ、2は出口側ヘッダ、3.
3はサイドプレート、4は偏平チューブ、5はアウタフ
ィンとしてのコルゲートフィンである。
In the figure, 1 is the inlet header, 2 is the outlet header, and 3.
3 is a side plate, 4 is a flat tube, and 5 is a corrugated fin as an outer fin.

偏平チューブ4は、アルミなどの熱伝導性に優れた金属
を押し出しまたは引抜き加工により断面偏平な形状に加
工され、上記入口側ヘッダ1と出口側ヘッダ2の間に、
全体として蛇行形の通路を構成するように掛渡してろう
材により接合されている。
The flat tube 4 is formed into a flat cross-sectional shape by extruding or drawing a metal with excellent thermal conductivity such as aluminum, and is provided between the inlet header 1 and the outlet header 2.
They are spanned and joined by brazing material so as to form a meandering path as a whole.

アウタフィンとしてのフルゲートフィン5もアルミなど
のような熱伝導性に優れた金属板を波形に加工したもの
であり、隣接する偏平チューブ4間にろう材を介して接
合されている。なお、偏平チューブ4とフルゲートフィ
ン5の接合構造体はコア部と称されている。
The full gate fin 5 as an outer fin is also made of a metal plate having excellent thermal conductivity, such as aluminum, processed into a corrugated shape, and is joined between adjacent flat tubes 4 via a brazing material. Note that the joint structure between the flat tube 4 and the full gate fins 5 is called a core portion.

このような構成においては、入口側ヘッダ1より熱交換
媒体、例えばガス化された熱冷媒を供給し、このガス冷
媒を偏平チューブ4・・・を通じて蛇行形の経路に沿っ
て流して出口側ヘッダ2に導き、この間に外部空気を図
示しないファンなどにより矢印へで示すようにコルゲー
トフィン5に強制的に通過させる。すると、ガス冷媒と
空気との間で熱交換され、外部空気によって熱冷媒が冷
却され、ガス冷媒は凝縮される。すなわち、この熱交換
器はコンデンサとして機能する。
In such a configuration, a heat exchange medium, for example, a gasified thermal refrigerant, is supplied from the inlet header 1, and this gas refrigerant is flowed along a meandering path through the flat tubes 4... to the outlet header. 2, and during this time, external air is forced to pass through the corrugated fins 5 as shown by the arrow by a fan or the like (not shown). Then, heat is exchanged between the gas refrigerant and the air, the thermal refrigerant is cooled by the external air, and the gas refrigerant is condensed. That is, this heat exchanger functions as a condenser.

ところで、従来において熱交換効率を高めるため、第1
1図および第12図に示されるように、偏平チューブ4
は一体に成形した隔壁6・・・を有し、これら隔壁6・
・・により冷媒通路を複数の通路7・・・に区画する構
造が採用されていた。
By the way, in the past, in order to increase heat exchange efficiency, the first
As shown in FIGS. 1 and 12, the flat tube 4
has partition walls 6 formed integrally, and these partition walls 6.
... has adopted a structure in which the refrigerant passage is divided into a plurality of passages 7....

このようにすると、熱交換媒体が偏平チューブ4の表面
に接触する面積が大きくなり、熱伝導性が良くなるので
熱交換効率が向上する。
In this way, the area in which the heat exchange medium contacts the surface of the flat tube 4 increases, improving thermal conductivity and improving heat exchange efficiency.

しかしながら、このような隔壁6・・・は偏平チューブ
4を押し出しまたは引抜き加工により加工する時同時に
成形するものであり、このため隔壁6・・・の肉厚をあ
まり薄くできないとともに、通路7・・・の大きさを小
さくできず、したがって分割される通路数に制約があり
、熱交換媒体の偏平チューブ4に対する接触面積を大き
くするのには制限がある。
However, such partition walls 6 are formed at the same time as the flat tube 4 is processed by extrusion or drawing, and therefore the wall thickness of partition walls 6 cannot be made very thin, and the passages 7... The size of the heat exchange medium cannot be made small, so there is a limit to the number of divided passages, and there is a limit to increasing the contact area of the heat exchange medium with the flat tube 4.

このようなことから、第13図および第14図に示すよ
うに、隔壁6・・・に代わり、偏平チューブ4内に波形
に加工されたインナフィン8を嵌合してろう付けしたも
のが開発されている。このものによると、インナフィン
8は、偏平チューブ4の押し出しまたは引抜き加工とは
別に独立して成形するので、板厚や波形のピッチに制約
を受けず、したがって各通路1・・・の大きさを小さく
することができるとともに、分割される通路数を多くす
ることができ、熱交換媒体の偏平チューブ4に対する接
触面積を大きくすることが可能となる。
For this reason, as shown in FIGS. 13 and 14, instead of the partition wall 6, a structure in which a corrugated inner fin 8 is fitted into the flat tube 4 and brazed has been developed. ing. According to this, the inner fin 8 is formed independently of the extrusion or drawing process of the flat tube 4, so it is not restricted by the plate thickness or the pitch of the corrugations, and therefore the size of each passage 1 can be controlled. It can be made smaller, the number of divided passages can be increased, and the contact area of the heat exchange medium with the flat tube 4 can be increased.

[発明が解決しようとする問題点] しかしながら、一般にこの種の熱交換器では、空気の入
口側は熱交換性能が高い傾向をもち、したがって、偏平
チューブ4内の熱交換媒体は空気の流れ方向に沿って温
度分布(第12図および第14図で特性Tとして示す。
[Problems to be Solved by the Invention] However, in general, in this type of heat exchanger, the heat exchange performance tends to be high on the air inlet side, and therefore, the heat exchange medium in the flat tube 4 is along the temperature distribution (shown as characteristic T in FIGS. 12 and 14).

)が発生する。) occurs.

この結果、上記第12図や第14図に示された従来のカ
ーエアコン用コンデンサのように、隔壁6・・・やイン
ナフィン8によって空気流の方向に沿って冷媒通路7・
・・を区画した構造の場合、空気流の上流側の冷媒通路
7・・・では冷媒が早く凝縮されて凝縮液が溜り、下流
側では依然としてガス化された状態の冷媒が残ることに
なり、したがって、偏平チューブ4内では冷媒の流れに
アンバランスが発生し、放熱性能が不十分になる不具合
がある。
As a result, as in the conventional car air conditioner condenser shown in FIGS. 12 and 14, the refrigerant passages 7 and
In the case of a structure in which the refrigerant passage 7 on the upstream side of the airflow is divided, the refrigerant is quickly condensed and condensate accumulates, and on the downstream side, the refrigerant remains in a gasified state. Therefore, an imbalance occurs in the flow of the refrigerant within the flat tube 4, resulting in a problem that heat dissipation performance becomes insufficient.

本発明においては、空気流の方向に沿って区画された冷
媒通路間で冷媒に温度差が生じることを解消し、熱交換
性能が向上する熱交換器を提供しようとするものである
The present invention aims to provide a heat exchanger that eliminates temperature differences in refrigerant between refrigerant passages divided along the direction of airflow and improves heat exchange performance.

[問題点を解決するための手段] 本発明は、偏平チューブ内に嵌合されたインナフィンに
、このインナフィンにより区画された隣接する熱交換媒
体通路間で熱交換媒体の流れを交流させるルーバを一体
に形成したことを特徴とする。
[Means for Solving the Problems] The present invention integrates a louver into an inner fin fitted into a flat tube, which allows the flow of a heat exchange medium to be exchanged between adjacent heat exchange medium passages partitioned by the inner fin. It is characterized by being formed.

[作用] 本発明の構成によれば、インナフィンに形成したルーバ
により、隣接する通路間で熱交換媒体が交流し、したが
って区画された通路間で温度差を生じることが低減され
、偏平チューブ内で偏った放熱や凝縮等を発生するのが
防止されることから熱交換性能が高くなる。
[Function] According to the configuration of the present invention, the louvers formed in the inner fins allow the heat exchange medium to interact between adjacent passages, thereby reducing the occurrence of temperature differences between the partitioned passages. Since uneven heat radiation and condensation are prevented from occurring, heat exchange performance is improved.

[実施例] 以下本発明について、第1図ないし第4図に示す第1の
実施例にもとづき説明する。
[Example] The present invention will be described below based on a first example shown in FIGS. 1 to 4.

この実施例で、偏平チューブ4およびアウタフィン5は
従来と同様であってよく、本実施例では偏平チューブ4
内に収容されたインナフィン10が従来と異なる。
In this embodiment, the flat tube 4 and the outer fin 5 may be the same as the conventional ones, and in this embodiment, the flat tube 4
The inner fin 10 housed inside is different from the conventional one.

すなわち、波形に加工されたインナフィン10は上記偏
平チューブ4内に嵌合されることにより、偏平チューブ
4内を空気の流れ方向に沿って複数の冷媒通路7・・・
に区画するが、このインナフィン10には多数のルーバ
11・・・が切り起こし成形されている。
That is, by fitting the inner fin 10 processed into a corrugated shape into the flat tube 4, a plurality of refrigerant passages 7 are formed inside the flat tube 4 along the air flow direction.
The inner fin 10 has a large number of louvers 11 cut and raised.

これらルーバ11・・・は冷媒の流れ方向に沿って多に
向かって、しかも冷媒の流れ方向下流側に向かって斜め
に切り起こしされた舌片形状とされている。
These louvers 11 are in the shape of tongues that are cut and raised obliquely toward the end along the flow direction of the refrigerant and further toward the downstream side in the flow direction of the refrigerant.

このような構成においては、冷媒は矢印B方向に通され
るとともに、外部の空気は図示しないファンなどにより
矢印六方向に強制的に送風される。
In such a configuration, the refrigerant is passed in the direction of arrow B, and the outside air is forcibly blown in the six directions of arrows by a fan (not shown).

偏平チューブ4内では、冷媒がインナフィン10により
区画された複数の冷媒通路1・・・に沿って通過しよう
とするが、このインナフィン10には多数のルーバ11
・・・を形成したので、冷媒通路7・・・を下流側に向
かって流れようとする冷媒はルーバ11・・・により流
れ方向が変えられる。すなわち、ルーバ11・・・は空
気の流れ方向上流側に隣接する冷媒通路7・・・に向か
って切り起こされているので、空気の流れ方向下流側の
冷媒通路7・・・を流れる冷媒は順次空気の流れ方向上
流側に隣接する冷媒通路7・・・に向かフて導かれる。
Inside the flat tube 4, the refrigerant tries to pass along a plurality of refrigerant passages 1 divided by inner fins 10, but this inner fin 10 has a large number of louvers 11.
. . is formed, the refrigerant flowing toward the downstream side through the refrigerant passages 7 . . . has its flow direction changed by the louvers 11 . That is, since the louvers 11 are cut up toward the refrigerant passages 7 adjacent to the upstream side in the air flow direction, the refrigerant flowing through the refrigerant passages 7 on the downstream side in the air flow direction is The air is sequentially guided toward the refrigerant passages 7 adjacent to the upstream side in the air flow direction.

すなわち、隣接する冷媒通路7・・・間で冷媒は凝縮性
能の高い方向へ導かれ、したがって冷媒は交流して混ざ
り合い、このため冷媒通路7・・・間で空気の流れ方向
に温度差を生じることがなくなる。
That is, the refrigerant is guided between adjacent refrigerant passages 7 in the direction of high condensation performance, and therefore the refrigerants interact and mix, resulting in a temperature difference between the refrigerant passages 7 in the direction of air flow. It will no longer occur.

このため、゛凝縮が偏って発生することはなくなり、熱
交換効率が向上する。
Therefore, condensation does not occur unevenly, and heat exchange efficiency is improved.

なお、本発明は上記第1の実施例に制約されるものでは
ない。
Note that the present invention is not limited to the first embodiment described above.

すなわち、第5図ないし第7図は本発明の第2の実施例
を示し、本実施例のインナフィン20には、舌片形のル
ーバ21・・・、22・・・を隣接して形成し、しかも
これらルーバ21・・・、22・・・は互いに逆向きに
形成されている。
That is, FIGS. 5 to 7 show a second embodiment of the present invention, in which the inner fin 20 of this embodiment has tongue-shaped louvers 21, 22, etc. formed adjacent to each other. Moreover, these louvers 21..., 22... are formed in opposite directions.

このような構造であると、空気の流れ方向に隣接する冷
媒通路7・・・間で冷媒が交互に入れ替わるようになり
、温度差の発生が防止される。
With such a structure, the refrigerant is alternately exchanged between the refrigerant passages 7 adjacent to each other in the air flow direction, thereby preventing a temperature difference from occurring.

また、第8図および第9図には、本発明の第3および第
4の実施例を示し、これら実施例のインナフィン30.
40は、いづれもルーバ31・・・、32・・・。
Further, FIGS. 8 and 9 show third and fourth embodiments of the present invention, and the inner fin 30 of these embodiments.
40 are louvers 31..., 32...

41・・・、42・・・が、打ち出し形のリブにより形
成され一端が開口されているものであり、このようにし
ても前記実施例と同様の効果を奏する。
41 . . . , 42 . . . are formed of stamped-out ribs with one end open, and even in this case, the same effects as in the previous embodiment can be obtained.

さらに本発明は、ニアコンディショナにおける凝縮器ば
かりでなく、蒸発器、そのた種々の熱交換器に適用可能
である。
Furthermore, the present invention is applicable not only to a condenser in a near conditioner but also to an evaporator and various other heat exchangers.

[発明の効果コ 以上説明したように本発明によれば、インナフィンに形
成したルーバにより、隣接する通路間で熱交換媒体が交
流し、したがって空気流の方向に沿って区画された冷媒
通路間で冷媒に温度差が生じることが低減される。この
ため、偏平チューブ内で偏った放熱や凝縮等を発生する
のが防止されるので、熱交換性能が向上する。
[Effects of the Invention] As explained above, according to the present invention, the louvers formed in the inner fins allow the heat exchange medium to exchange between adjacent passages, and therefore the heat exchange medium exchanges between the refrigerant passages divided along the direction of air flow. Temperature differences in the refrigerant are reduced. This prevents uneven heat radiation, condensation, etc. from occurring within the flat tube, thereby improving heat exchange performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図は本発明の第1の実施例を示し、第
1図はアウタフィンおよび偏平チューブよりなるコア部
の斜視図、第2図はインナフィンの斜視図、第3図は偏
平チューブの正面図、第4図は第1図中rV−IV線の
断面図、第5図ないし第7図は本発明の第2実施例を示
し、第5図はインナフィンの斜視図、第6図は偏平チュ
ーブの正面図、第7図は第4図に相当する断面図、第8
図および第9図はそれぞれ本発明の第3および第4実施
例を示すインナフィンの斜視図、第10図ないし第12
図は従来の構造を示し、第10図は熱交換器の全体を示
す斜視図、第11図はアウタフィンおよび偏平チューブ
よりなるコア部の斜視図、第12図は第11図中x■−
x■線の断面図、第13図および第14図は他の従来の
構造を示し、第13図はアウタフィンおよび偏平チュー
ブよりなるコア部の斜視図、第14図は第13図中Xr
V−xrv線の断面図である。 1・・・入口側ヘッダ、2・・・出口側ヘッダ、4・・
・偏平チューブ、7・・・冷媒通路、10.20.30
.40・・・インナフィン、11.21.22.31.
32.41.42・・・ルーバ。 出顆人代理人 弁理士 鈴江武彦 第1図 第3図 第6図 第7図 莞8図 第9図
1 to 4 show a first embodiment of the present invention, FIG. 1 is a perspective view of a core portion consisting of an outer fin and a flat tube, FIG. 2 is a perspective view of an inner fin, and FIG. 3 is a flat tube. FIG. 4 is a sectional view taken along line rV-IV in FIG. 1, FIGS. 5 to 7 show a second embodiment of the present invention, FIG. 5 is a perspective view of the inner fin, and FIG. is a front view of the flat tube, Figure 7 is a cross-sectional view corresponding to Figure 4, and Figure 8 is a front view of the flat tube.
9 and 9 are perspective views of inner fins showing third and fourth embodiments of the present invention, respectively, and FIGS.
The figures show the conventional structure, Fig. 10 is a perspective view showing the entire heat exchanger, Fig. 11 is a perspective view of the core section consisting of outer fins and flat tubes, and Fig. 12 is x - in Fig. 11.
13 and 14 show other conventional structures, FIG. 13 is a perspective view of the core section consisting of an outer fin and a flat tube, and FIG.
It is a sectional view taken along the V-xrv line. 1...Inlet side header, 2...Outlet side header, 4...
・Flat tube, 7... Refrigerant passage, 10.20.30
.. 40... Innafin, 11.21.22.31.
32.41.42...Luba. Patent attorney Takehiko Suzue Figure 1 Figure 3 Figure 6 Figure 7 Guan 8 Figure 9

Claims (1)

【特許請求の範囲】  熱交換媒体を通す偏平チユーブ内に、この偏平チユー
ブ内を複数の熱交換媒体通路に区画するインナフィンを
設けた熱交換器において、 上記インナフィンには、このインナフィンにより区画さ
れた隣接する熱交換媒体通路間で熱交換媒体の流れを交
流させるルーバを一体に形成したことを特徴とする熱交
換器。
[Scope of Claims] A heat exchanger in which a flat tube through which a heat exchange medium passes is provided with an inner fin that divides the inside of the flat tube into a plurality of heat exchange medium passages, A heat exchanger characterized in that a louver is integrally formed to exchange the flow of a heat exchange medium between adjacent heat exchange medium passages.
JP25664287A 1987-10-12 1987-10-12 Heat exchanger Pending JPH0198896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25664287A JPH0198896A (en) 1987-10-12 1987-10-12 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25664287A JPH0198896A (en) 1987-10-12 1987-10-12 Heat exchanger

Publications (1)

Publication Number Publication Date
JPH0198896A true JPH0198896A (en) 1989-04-17

Family

ID=17295439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25664287A Pending JPH0198896A (en) 1987-10-12 1987-10-12 Heat exchanger

Country Status (1)

Country Link
JP (1) JPH0198896A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0492166U (en) * 1990-12-04 1992-08-11
JPH06129734A (en) * 1992-10-15 1994-05-13 Showa Alum Corp Heat exchanger
US5638897A (en) * 1993-03-26 1997-06-17 Showa Aluminum Corporation Refrigerant tubes for heat exchangers
US5784776A (en) * 1993-06-16 1998-07-28 Showa Aluminum Corporation Process for producing flat heat exchange tubes
US5931226A (en) * 1993-03-26 1999-08-03 Showa Aluminum Corporation Refrigerant tubes for heat exchangers
US6253840B1 (en) * 1998-02-10 2001-07-03 Denso Corporation Refrigerant evaporator including refrigerant passage with inner fin
JP2003222488A (en) * 2002-02-01 2003-08-08 Denso Corp Waste gas heat exchanging device
WO2004085948A1 (en) * 2003-03-26 2004-10-07 Calsonic Kansei Corp. Inner fin withi cutout window for heat exchanger
WO2007000991A1 (en) * 2005-06-27 2007-01-04 Kabushiki Kaisha Toyota Jidoshokki Heat sink for power module
KR100809514B1 (en) * 2004-09-08 2008-03-04 우수이 고쿠사이 산교 가부시키가이샤 Fin structure, heat-transfer tube having the fin structure housed therein, and heat exchanger having the heat-transfer tube assembled therein
CN104048544A (en) * 2014-06-25 2014-09-17 上海理工大学 Twisted-tooth longitudinal finned tube
JP2015023044A (en) * 2013-07-16 2015-02-02 株式会社Uacj Cooler
WO2015162897A1 (en) * 2014-04-21 2015-10-29 株式会社デンソー Exhaust heat exchanger
CN105387748A (en) * 2015-11-25 2016-03-09 重庆祥吉机械制造有限公司 Novel heat exchange enhanced pipe
CN105387746A (en) * 2015-11-25 2016-03-09 重庆祥吉机械制造有限公司 Heat exchange enhanced water heater
CN105466039A (en) * 2016-01-04 2016-04-06 山东理工大学 Solar system capable of intelligently adjusting valve opening according to temperature of water in water tank
CN105466046A (en) * 2016-01-04 2016-04-06 山东理工大学 Solar thermal collector system capable of intelligently controlling water level height
CN105546850A (en) * 2016-01-12 2016-05-04 山东理工大学 Solar heat accumulation and utilization system capable of intelligently controlling flow according to inlet temperature
CN105605960A (en) * 2015-12-23 2016-05-25 山东大学 Fat heat exchange pipe with communicated inner fins
CN105605945A (en) * 2015-12-30 2016-05-25 赵炜 Heat exchanger with triangular through holes different in bottom side lengths
CN105627602A (en) * 2016-01-04 2016-06-01 山东理工大学 Solar heat collector system capable of controlling water temperature intelligently
CN105627597A (en) * 2016-01-12 2016-06-01 山东理工大学 Solar heat accumulation system for intelligently calculating heat loss
CN107166772A (en) * 2016-01-12 2017-09-15 山东理工大学 A kind of solar heat-preservation system of intelligent control
CN107367078A (en) * 2016-01-12 2017-11-21 山东理工大学 A kind of solar heat-preservation system using bypass conduit intelligent control
WO2019189477A1 (en) * 2018-03-30 2019-10-03 日本軽金属株式会社 Heat sink
JP2020060355A (en) * 2018-10-12 2020-04-16 株式会社ティラド Flat tube for heat exchanger
WO2020100687A1 (en) * 2018-11-13 2020-05-22 株式会社デンソー Heat exchanger
JP2020079693A (en) * 2018-11-13 2020-05-28 株式会社デンソー Heat exchanger
WO2021166482A1 (en) * 2020-02-18 2021-08-26 株式会社デンソー Heat exchanger

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57105690A (en) * 1980-12-24 1982-07-01 Nippon Denso Co Ltd Heat exchanger

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57105690A (en) * 1980-12-24 1982-07-01 Nippon Denso Co Ltd Heat exchanger

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0492166U (en) * 1990-12-04 1992-08-11
JPH06129734A (en) * 1992-10-15 1994-05-13 Showa Alum Corp Heat exchanger
US5931226A (en) * 1993-03-26 1999-08-03 Showa Aluminum Corporation Refrigerant tubes for heat exchangers
US5730215A (en) * 1993-03-26 1998-03-24 Showa Aluminum Corporation Refrigerant tubes for heat exchangers
US5749144A (en) * 1993-03-26 1998-05-12 Showa Aluminum Corporation Method of making refrigerant tubes for heat exchangers
US5638897A (en) * 1993-03-26 1997-06-17 Showa Aluminum Corporation Refrigerant tubes for heat exchangers
US5784776A (en) * 1993-06-16 1998-07-28 Showa Aluminum Corporation Process for producing flat heat exchange tubes
US6253840B1 (en) * 1998-02-10 2001-07-03 Denso Corporation Refrigerant evaporator including refrigerant passage with inner fin
JP2003222488A (en) * 2002-02-01 2003-08-08 Denso Corp Waste gas heat exchanging device
US7290595B2 (en) 2003-03-26 2007-11-06 Calsonic Kansei Corporation Inner fin with cutout window for heat exchanger
WO2004085948A1 (en) * 2003-03-26 2004-10-07 Calsonic Kansei Corp. Inner fin withi cutout window for heat exchanger
KR100764263B1 (en) * 2003-03-26 2007-10-05 칼소닉 칸세이 가부시끼가이샤 Inner fin with cutout window for heat exchanger
KR100809514B1 (en) * 2004-09-08 2008-03-04 우수이 고쿠사이 산교 가부시키가이샤 Fin structure, heat-transfer tube having the fin structure housed therein, and heat exchanger having the heat-transfer tube assembled therein
WO2007000991A1 (en) * 2005-06-27 2007-01-04 Kabushiki Kaisha Toyota Jidoshokki Heat sink for power module
JP2007005673A (en) * 2005-06-27 2007-01-11 Toyota Industries Corp Heat sink for power module
KR100973445B1 (en) * 2005-06-27 2010-08-02 가부시키가이샤 도요다 지도숏키 Heat sink for power module
US8411438B2 (en) 2005-06-27 2013-04-02 Kabushiki Kaisha Toyota Jidoshokki Heat sink for power module
JP2015023044A (en) * 2013-07-16 2015-02-02 株式会社Uacj Cooler
WO2015162897A1 (en) * 2014-04-21 2015-10-29 株式会社デンソー Exhaust heat exchanger
JP2015206535A (en) * 2014-04-21 2015-11-19 株式会社デンソー exhaust heat exchanger
US10202880B2 (en) 2014-04-21 2019-02-12 Denso Corporation Exhaust heat exchanger
CN106233088A (en) * 2014-04-21 2016-12-14 株式会社电装 Exhaust heat exchanger
CN104048544A (en) * 2014-06-25 2014-09-17 上海理工大学 Twisted-tooth longitudinal finned tube
CN105387746A (en) * 2015-11-25 2016-03-09 重庆祥吉机械制造有限公司 Heat exchange enhanced water heater
CN105387748A (en) * 2015-11-25 2016-03-09 重庆祥吉机械制造有限公司 Novel heat exchange enhanced pipe
CN105605960A (en) * 2015-12-23 2016-05-25 山东大学 Fat heat exchange pipe with communicated inner fins
CN105605945A (en) * 2015-12-30 2016-05-25 赵炜 Heat exchanger with triangular through holes different in bottom side lengths
CN105605945B (en) * 2015-12-30 2017-07-28 于仁麟 A kind of different triangle through hole heat exchanger of base length
CN105627602B (en) * 2016-01-04 2017-08-25 山东理工大学 A kind of solar energy collector system of intelligent control water temperature
CN105627602A (en) * 2016-01-04 2016-06-01 山东理工大学 Solar heat collector system capable of controlling water temperature intelligently
CN105466046A (en) * 2016-01-04 2016-04-06 山东理工大学 Solar thermal collector system capable of intelligently controlling water level height
CN105466039A (en) * 2016-01-04 2016-04-06 山东理工大学 Solar system capable of intelligently adjusting valve opening according to temperature of water in water tank
CN107289647A (en) * 2016-01-12 2017-10-24 山东理工大学 Pass through the solar heat-preservation system of accumulation of heat pipeline flowmeter intelligent monitoring heat loss
CN107289647B (en) * 2016-01-12 2019-02-22 山东理工大学 Pass through the solar heat-preservation system of accumulation of heat pipeline flowmeter intelligent monitoring heat loss
CN105627597A (en) * 2016-01-12 2016-06-01 山东理工大学 Solar heat accumulation system for intelligently calculating heat loss
CN107367078A (en) * 2016-01-12 2017-11-21 山东理工大学 A kind of solar heat-preservation system using bypass conduit intelligent control
CN105546850A (en) * 2016-01-12 2016-05-04 山东理工大学 Solar heat accumulation and utilization system capable of intelligently controlling flow according to inlet temperature
CN107367078B (en) * 2016-01-12 2019-02-22 山东理工大学 A kind of solar heat-preservation system using bypass conduit intelligent control
CN107166772B (en) * 2016-01-12 2019-02-22 山东理工大学 A kind of solar heat-preservation system of intelligent control
CN107166772A (en) * 2016-01-12 2017-09-15 山东理工大学 A kind of solar heat-preservation system of intelligent control
WO2019189477A1 (en) * 2018-03-30 2019-10-03 日本軽金属株式会社 Heat sink
JP2020060355A (en) * 2018-10-12 2020-04-16 株式会社ティラド Flat tube for heat exchanger
WO2020100687A1 (en) * 2018-11-13 2020-05-22 株式会社デンソー Heat exchanger
JP2020079693A (en) * 2018-11-13 2020-05-28 株式会社デンソー Heat exchanger
WO2021166482A1 (en) * 2020-02-18 2021-08-26 株式会社デンソー Heat exchanger
US20220390183A1 (en) * 2020-02-18 2022-12-08 Denso Corporation Heat exchanger

Similar Documents

Publication Publication Date Title
JPH0198896A (en) Heat exchanger
US20060237178A1 (en) Heat exchanger
JP2004144460A (en) Heat exchanger
US20090173480A1 (en) Louvered air center with vortex generating extensions for compact heat exchanger
JPH04187990A (en) Heat exchanging device
US7299863B2 (en) Louver fin type heat exchanger having improved heat exchange efficiency by controlling water blockage
KR900006245B1 (en) Heat exchanger
KR100497847B1 (en) Evaporator
JP3068761B2 (en) Heat exchanger
JPH09189493A (en) Heat exchanger with fins
JP2000018867A (en) Tube material for heat exchanger and heat exchanger
US20030150601A1 (en) Heat exchanger fin for air conditioner
JPH10332162A (en) Heat-exchanger
WO2022220159A1 (en) Heat exchanger
JP3048614B2 (en) Heat exchanger
JP3215587B2 (en) Heat exchanger
JP2891486B2 (en) Heat exchanger
JP2008215737A (en) Fin tube type heat exchanger and refrigerating cycle
JP2003222436A (en) Heat exchanger for heat pump type air conditioner
JP2002235994A (en) Heat transfer tube for heat exchanger, its manufacturing method, heat exchanger and refrigeration air conditioning device using it
JP2001133076A (en) Heat exchanger
JPH02171591A (en) Laminated type heat exchanger
JP7226364B2 (en) Heat exchanger
JP7006376B2 (en) Heat exchanger
KR100368664B1 (en) Coolant tube of heat exchanger