JPH04187990A - Heat exchanging device - Google Patents

Heat exchanging device

Info

Publication number
JPH04187990A
JPH04187990A JP2318366A JP31836690A JPH04187990A JP H04187990 A JPH04187990 A JP H04187990A JP 2318366 A JP2318366 A JP 2318366A JP 31836690 A JP31836690 A JP 31836690A JP H04187990 A JPH04187990 A JP H04187990A
Authority
JP
Japan
Prior art keywords
tube
heat exchange
air
shape
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2318366A
Other languages
Japanese (ja)
Other versions
JP3043051B2 (en
Inventor
Hironaka Sasaki
広仲 佐々木
Keiji Yamazaki
啓司 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP2318366A priority Critical patent/JP3043051B2/en
Publication of JPH04187990A publication Critical patent/JPH04187990A/en
Application granted granted Critical
Publication of JP3043051B2 publication Critical patent/JP3043051B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0475Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a single U-bend
    • F28D1/0476Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a single U-bend the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
    • F28F9/262Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators for radiators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

PURPOSE:To increase heat exchange efficiency by a method wherein a heat exchanger is formed such that the intermediate part in the direction of length of a tube is bent to form an approximate V-shape, and is disposed in an air flow passage in a state that it is formed approximately in a inverted V-shape the bent part of which is located on the windward side in the direction of an air flow. CONSTITUTION:When a heat exchange device is applicable for a heat exchange device used as an indoor machine for a room air conditioner, a vaporizer A is formed approximately in an inverted V-shape where a bent part 70 is positioned on the windward side in a direction W of a down air flow. After suction air uniformly passes the whole of a core part 70 of the vaporizer A with the aid of a fan C, it is discharged to the outside of a casing B. During discharge of suction air, air is heat-exchanged with a refrigerant passing through a tube 3 of a vaporizer and cooled. Bedewing water produced owing to condensation of flow air is adhered on the surface of the tube 3, the bedewing water is moved in the directions of headers on both sides along the tube by means of the energizing force of flow air. As a result, flying of water can be suppressed and when the size of the whole of a device is the same, the heat exchanger having a long length can be contained, whereby heat exchange performance can be increased.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、例えばルームクーラー用室内機等として使
用される熱交換装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention This invention relates to a heat exchange device used, for example, as an indoor unit for a room cooler.

従来の技術及び課題 従来、ルームクーラー用室内機等の熱交換装置として、
拡管タイプの蒸発器即ち多数枚の薄肉板状フィンが所定
間隙を隔てて並列状に配置されると共に、これらフィン
に複数本のヘアピン状のパイプが貫通状に差し込まれ、
かつ拡管されてフィンに密着されると共に、上記パイプ
の各端部どおしがU字状管で連通された型式の蒸発器を
備えた熱交換装置が用いられていた。。
Conventional technology and issues Conventionally, as a heat exchange device for indoor units for room coolers, etc.
A tube expansion type evaporator, that is, a large number of thin plate-like fins are arranged in parallel with a predetermined gap, and a plurality of hairpin-shaped pipes are inserted through these fins,
A heat exchange device was used which included an evaporator that was expanded and tightly attached to the fins, and in which each end of the pipe was communicated with a U-shaped tube. .

ところが、このような拡管式の蒸発器を用いた熱交換装
置では、熱交換効率の向上に限界があった。
However, in a heat exchange device using such a tube expansion type evaporator, there is a limit to the improvement in heat exchange efficiency.

そこで、上記熱蒸発器に代えて、熱交換効率の一層優れ
たいわゆるマルチフロー型と称される蒸発器を用いるこ
とが考えられる。この型式の熱交換器は、第9図および
第10図に示すように、複数本の偏平チューブ(13)
が並列状に配置されるとともに隣接チューブ間にフィン
(14)が配置され、かつ各チューブ(13)の両端に
筒状中空ヘッダー(11)  (12)が連通接続され
たものである。同図において、(15)は冷媒入口管、
(I6)は同80管、(C′)はファンである。
Therefore, instead of the above thermal evaporator, it may be possible to use a so-called multi-flow type evaporator which has even better heat exchange efficiency. This type of heat exchanger consists of multiple flat tubes (13) as shown in Figures 9 and 10.
are arranged in parallel, fins (14) are arranged between adjacent tubes, and cylindrical hollow headers (11) and (12) are connected to both ends of each tube (13). In the same figure, (15) is a refrigerant inlet pipe;
(I6) is the same 80 tube, and (C') is a fan.

ところで、ルームエアコン用室内機では、設置スペース
との関係で全体を可及的コンパクトにまとめる必要があ
る。従って、コンパクト化のため蒸発器(A′)は第9
図及び第10図に示すように、ケーシング(B′)内の
空気流通路に空気流通方向に対して傾斜して配置される
ことが多い。
By the way, the indoor unit for a room air conditioner needs to be made as compact as possible in relation to the installation space. Therefore, for compactness, the evaporator (A') is the ninth
As shown in FIG. 1 and FIG. 10, it is often disposed in the air flow passage in the casing (B') at an angle with respect to the air flow direction.

しかしながら、蒸発器を傾斜させて設置してもなお、全
体がかさばりコンパクト化の要請に十分対応することは
できなかった。もとより、蒸発器の長さを短縮すること
でコンパクト化は可能になるが、この場合は熱交換性能
が低下するという別の問題を派生するものであった。
However, even if the evaporator was installed at an angle, the entire structure remained bulky and could not sufficiently meet the demand for compactness. Although it is possible to make the evaporator more compact by shortening the length of the evaporator, this creates another problem: the heat exchange performance deteriorates.

この発明は、上述の問題点を解消すべくなされたもので
、装置全体のコンパクト化を図ることができ、あるいは
装置を同じ大きさに保った場合には熱交換効率を増大で
きる熱交換装置の提供を目的とするものである。
This invention was made to solve the above-mentioned problems, and is a heat exchange device that can make the entire device more compact, or increase the heat exchange efficiency if the device is kept the same size. It is intended for the purpose of providing.

課題を解決するための手段 上記目的を達成すべく、この発明は、複数本の偏平チュ
ーブとフィンとが交互配置となされるとともに、各チュ
ーブの両端か1対の中空ヘッダーに連通接続された熱交
換器を備え、該熱交換器が空気流通路に配設された熱交
換装置であって、前記熱交換器がチューブの長さ方向の
中間部で略V状に曲成されるとともに、空気流通方向に
対し曲成部を風上側とする略逆V形あるいは曲成部を風
下側とする略V形をなして空気流通路に配設されてなる
ことを特徴とするものである。
Means for Solving the Problems In order to achieve the above-mentioned object, the present invention has a plurality of flat tubes and fins arranged alternately, and a heat source connected to both ends of each tube or to a pair of hollow headers. A heat exchange device comprising a heat exchanger disposed in an air flow path, wherein the heat exchanger is bent into a substantially V shape at a longitudinally intermediate portion of the tube, and the heat exchanger is arranged in an air flow passage. It is characterized in that it is disposed in the airflow passage in a substantially inverted V-shape with the curved portion on the windward side or in a substantially V-shape with the curved portion on the leeward side with respect to the flow direction.

作用 熱交換器か空気流通方向に対し曲成部を風上側とする略
逆V形あるいは曲成部を風下側とする略V形をなして空
気流通路に配置されているから、同一長さのチューブを
用いた場合には少なくとも空気流通方向における熱交換
器の見掛上の長さを短縮でき、ひいては装置全体をコン
パクトにてきる。一方、装置の大きさが同じてあれば、
チューブ長さの長い熱交換器を収容できるから、熱交換
効率が増大する。
The working heat exchanger is arranged in the air flow passage in a substantially inverted V shape with the curved part on the windward side or in a substantially V shape with the curved part on the leeward side with respect to the air flow direction, so the lengths are the same. When such tubes are used, the apparent length of the heat exchanger at least in the air flow direction can be shortened, and the entire device can be made more compact. On the other hand, if the devices are the same size,
Heat exchange efficiency is increased because heat exchangers with long tube lengths can be accommodated.

実施例 以下、この発明をルームエアコン用室内機として用いら
れる熱交換装置に適用した図示実施例に基づいて説明す
る。
EXAMPLE The present invention will be described below based on an illustrated example in which the present invention is applied to a heat exchange device used as an indoor unit for a room air conditioner.

第1図および第2図に示す熱交換装置において、(B)
はケーシング、(A)は該ケーシング内に収容された蒸
発器、(C)は蒸発器の下方中央に配置されたファンで
ある。
In the heat exchange device shown in FIGS. 1 and 2, (B)
is a casing, (A) is an evaporator housed within the casing, and (C) is a fan disposed at the center below the evaporator.

前記蒸発器(A)は、両端に一対のヘッダー(1)(2
)が配置されると共に側面視略逆V字状に曲成されたコ
ア部(7)を有する。このコア部(7)は、所定間隙を
隔てて並列上に配置された複数本の偏平チューブ(3)
とそれらの空気流通間隙に介在配置されたフィン(4)
とで構成されている。前記偏平チューブ(3)はアルミ
ニウム材による押出型材をもって構成されたものであり
、耐圧性を向上させる目的で内部に補強壁を有するいわ
ゆるハモニカチ二一ブと称される偏平多孔押出型材か好
適に用いらる。もっとも、かかる押出型材に代えて電縫
管等を用いても良い。上記隣接チューブ(3)間に介在
配置されたフィン(4)は、蛇行状に曲成されたいわゆ
るコルゲートフィンであり、ろう付によりチューブ(3
)に接合されている。
The evaporator (A) has a pair of headers (1) (2) at both ends.
) is arranged and has a core portion (7) which is bent into an approximately inverted V shape when viewed from the side. This core part (7) consists of a plurality of flat tubes (3) arranged in parallel with a predetermined gap between them.
and fins (4) interposed in the air circulation gap between them.
It is made up of. The flat tube (3) is made of an extruded aluminum material, and is preferably a flat perforated extruded material called a so-called harmonica tube, which has a reinforcing wall inside for the purpose of improving pressure resistance. I need it. However, an electric resistance welded tube or the like may be used instead of such an extruded material. The fins (4) interposed between the adjacent tubes (3) are so-called corrugated fins bent in a meandering manner, and are brazed to the tubes (3).
).

フィン(4)は、望ましくはルーバーを切り起こしたも
のを用いるのが良く、また熱交換効率向上の目的でチュ
ーブ(3)より広幅状に設定されたものを用いても良い
The fins (4) are preferably formed by cutting and raising louvers, and may be wider than the tube (3) for the purpose of improving heat exchange efficiency.

上記コア部(7)の両端に連通接続された一対のヘッダ
ー(1)(2)は、それぞれ−本の断面円形のアルミニ
ウム製パイプ材をもって形成されたものである。これら
ヘッダー(1)(2)には、チューブ挿入孔(la) 
 (2a)が穿設されると共に、該挿入孔(la)  
(2a)に上記各チューブ(3)の端部が挿入され、か
つろう付により液密状態に強固に接合連結されている。
A pair of headers (1) and (2) connected to both ends of the core portion (7) are each made of aluminum pipe material with a circular cross section. These headers (1) and (2) have tube insertion holes (la).
(2a) is drilled, and the insertion hole (la)
The ends of each of the tubes (3) are inserted into (2a), and are firmly and liquid-tightly connected by brazing.

上記チューブ(3)およびフィン(4)で構成されたコ
ア部(7)は、チューブ(3)の長さ方向の中間の曲成
部(70)において側面視略逆V字状に曲成されている
The core portion (7) composed of the tube (3) and the fins (4) is bent into a substantially inverted V-shape when viewed from the side at a curved portion (70) in the middle of the length of the tube (3). ing.

なお、上記ろう付に関しては、ヘッダー(1)(2)を
外面にろう材層が被覆形成されたプレージングシートか
らなる電縫管により、またフィン(4)をプレージング
シートによりそれぞれ形成し、各ヘッダー(1)(2)
、チューブ(3)およびフィン(4)を仮組した軟性て
真空加熱炉等に搬入し、これらを−括ろう付にて接合一
体化するものとなすのが、生産性を向上する点で極めて
望ましい。
Regarding the above-mentioned brazing, the headers (1) and (2) are formed from an electric resistance welded tube made of a plating sheet whose outer surface is coated with a brazing metal layer, and the fins (4) are formed from a plating sheet, respectively. Each header (1) (2)
In terms of improving productivity, it is extremely effective to temporarily assemble the tube (3) and fin (4), transport them into a vacuum heating furnace, etc., and then join them together using bracket brazing. desirable.

一方のヘッダー(1)の一端外側面には冷媒入口管(5
)が取着されると共に、他方のヘッダー(2)の他端外
側面には冷媒出口管(6)が取着されている。而して、
冷媒入口管(5)から流入した冷媒は第2図に示すよう
にチューブ(3)で構成される全冷媒通路を流通して冷
媒出口管(6)から流出し、この間にチューブ(3)(
3)間に形成されたフィン(4)を含む空気流通間隙を
流通する空気と熱交換を行い、蒸発するものとなされて
いる。
One end of one header (1) has a refrigerant inlet pipe (5
) is attached to the outer surface of the other end of the other header (2), and a refrigerant outlet pipe (6) is attached to the other end outer surface of the other header (2). Then,
As shown in Fig. 2, the refrigerant flowing in from the refrigerant inlet pipe (5) flows through the entire refrigerant passage composed of tubes (3) and flows out from the refrigerant outlet pipe (6).
3) It exchanges heat with the air flowing through the air circulation gap including the fins (4) formed therebetween, and evaporates.

上記蒸発器は、第1図および第2図に示すように、下向
きの空気流通方向Wに対し曲成部(70)が風上側に位
置する略述V形をなして空気流通路に配置されている。
As shown in FIGS. 1 and 2, the evaporator is arranged in the air flow passage in a roughly V-shape with the curved portion (70) located on the windward side with respect to the downward air flow direction W. ing.

第1図及び第2図に示す熱交換装置では、ファン(C)
により吸入空気は蒸発器(A)のコア部(70)全体を
均等に通過したのちケージジグ(B)の外部に吹き出さ
れる。この間に空気は蒸発器のチューブ(3)内を流通
する冷媒と熱交換して冷却される。また、図示のように
蒸発器(A)を空気流通方向に対し略逆V形をなして設
置されることにより、特に次のような利点がある。即ち
、チューブ(3)の表面には流通空気の凝縮から生じる
結露水が付着するか、この結露水は流通空気の付勢力に
よってチューブを伝って両側ヘッダ一方向に移動する。
In the heat exchange device shown in FIGS. 1 and 2, the fan (C)
As a result, the intake air passes evenly through the entire core portion (70) of the evaporator (A) and is then blown out to the outside of the cage jig (B). During this time, the air is cooled by exchanging heat with the refrigerant flowing through the tubes (3) of the evaporator. Moreover, by installing the evaporator (A) in a substantially inverted V shape with respect to the air flow direction as shown in the figure, there are particularly the following advantages. That is, condensed water resulting from condensation of the circulating air adheres to the surface of the tube (3), or this condensed water moves along the tube in one direction on both side headers due to the biasing force of the circulating air.

従ってコア部(70)の中央部分に生した結露水がその
まま流通空気に吹飛ばされるいわゆる水飛びを抑制する
ことができ、結露水を両端ヘッダー部分からスムーズに
排出てきるという利点かある。
Therefore, it is possible to suppress so-called water splashing, in which the condensed water formed in the central part of the core part (70) is blown away by the circulating air, and there is an advantage that the condensed water can be smoothly discharged from the header parts at both ends.

第3図は蒸発器の構造を変形した第2実施例を示すもの
である。この蒸発器は、第1図及び第2図に図示した蒸
発器と略同様の構成であるか、冷媒人口管(5)および
同出口管(6)かいずれも一方のヘッダー(1)の両端
に取着されると共に、同ヘッダー(1)の長さ方向の中
間に仕切部材(8)が設けられ、人口管(5)より流入
した冷媒は他方のヘッダー(2)に至ったのち、Uター
ンして出口管(6)より流出するものとなされている。
FIG. 3 shows a second embodiment in which the structure of the evaporator is modified. This evaporator may have approximately the same configuration as the evaporator shown in FIGS. At the same time, a partition member (8) is provided in the middle of the header (1) in the length direction, and the refrigerant flowing from the artificial pipe (5) reaches the other header (2), and then passes through the U It turns and flows out from the outlet pipe (6).

第4図、第5図は第3実施例を示すもので、使用される
蒸発器の構造が上記とは異なっている。即ち、曲成部(
70)においてチューブ(3)及びフィン(4)が左右
に分割されるとともに、曲成部に中間ヘッダー(9)を
設けてチューブ(3)の分割端部をヘッダー(9)に連
通接続したものである。さらにまた、中間ヘッダー(9
)の両側のチューブ群が半チューブピンチずつずれた交
互配置状態で中間ヘッダー(9)に連結されている。蒸
発器をかかる構成とすることで、一方のチューブ群から
流入した冷媒か一端中間ヘッダー(9)で合流され、撹
拌されてから他方のチューブ群に流出することになり、
両端にのみヘッダーか存在する場合に較べて熱交換効率
を向上できる利点かある。
4 and 5 show a third embodiment, in which the structure of the evaporator used is different from the above. That is, the bending part (
70), the tube (3) and fins (4) are divided into left and right parts, and an intermediate header (9) is provided at the curved part, and the divided end of the tube (3) is connected to the header (9). It is. Furthermore, the intermediate header (9
) are connected to the intermediate header (9) in an alternating arrangement in which the tube groups on both sides are shifted by half tube pinches. By configuring the evaporator in this way, the refrigerant flowing from one tube group is combined at one end at the intermediate header (9), stirred, and then flows out to the other tube group.
This has the advantage of improving heat exchange efficiency compared to the case where headers are present only at both ends.

第6図及び第7図は第4実施例を示すものである。この
実施例では、各チューブ(3)を曲成部(70)で捩っ
て表裏を転換させ、もって蒸発器を略V字形に形成した
ものである。使用される蒸発器をこのように構成するこ
とて、チューブの捩りにより冷媒流れの空気流れに対す
る前側と後側即ちチューブの幅方向の前側と後側とが曲
成部で入れ代わるため、冷媒温度を均一にでき熱交換効
率を向上できる利点かある。
FIGS. 6 and 7 show a fourth embodiment. In this embodiment, each tube (3) is twisted at a bending portion (70) to turn the front and back sides, thereby forming the evaporator into a substantially V-shape. By configuring the evaporator used in this way, the front side and the rear side of the refrigerant flow relative to the air flow, that is, the front side and the rear side in the width direction of the tube, change places at the bent part due to the twisting of the tube, so that the refrigerant temperature can be reduced. It has the advantage of being able to make it uniform and improve heat exchange efficiency.

以上の実施例では蒸発器を略逆V字形にして空気流通路
に配置した場合を示したか、第8図に示すように、蒸発
器をその曲成部(70)か風下側となる略V形をなすよ
うに空気流通路に配設しても良い。
In the above embodiments, the evaporator is arranged in a substantially inverted V-shape in the airflow passage, or as shown in FIG. It may be arranged in the airflow passage so as to form a shape.

なお、第3図〜第8図に示す実施例において、第1図及
び第2図に示した第1実施例と同一名称部分については
対応箇所に同一符号を付してその説明を省略する。
In the embodiments shown in FIGS. 3 to 8, parts with the same names as those in the first embodiment shown in FIGS. 1 and 2 are given the same reference numerals, and the explanation thereof will be omitted.

発明の効果 この発明に係る熱交換装置は、上述のとおり、複数本の
偏平チューブとフィンとが交互配置となされるとともに
、各チューブの両端が1対の中空ヘッダーに連通接続さ
れた熱交換器を備え、該熱交換器が空気流通路に配設さ
れた熱交換装置であって、前記熱交換器がチューブの長
さ方向の中間部で略V状に曲成されるとともに、空気流
通方向に対し曲成部を風上側とする略逆V形あるいは曲
成部を風下側とする略V形をなして空気流通路に配設さ
れてなることを特徴とするものである。従ってます、使
用する熱交換器がマルチフロー型のものであることによ
り、それ自体拡管式の熱交換器に較べて熱交換性能を向
上することができる。かつまた、このマルチフロー型の
熱交換器か略V形に曲成されるとともに、空気流通方向
に対して略V形あるいは略逆V形に配設されているから
、直線状の熱交換器に較べて熱交換器の長さ(チューブ
長さ)か同しであれば少なくとも空気流通方向における
見掛上の長さを短縮でき、熱交換装置全体の大きさをコ
ンパクトにまとめることができる。しかも、ドレンパン
の位置を高くすることもてき、ドレン処理も容易となし
うる。一方、装置全体の大きさか同じである場合は、熱
交換器の長さ(チューブ長さ)の長い熱交換器を収容で
きるから、熱交換性能の増大を図ることができる。
Effects of the Invention As described above, the heat exchange device according to the present invention is a heat exchanger in which a plurality of flat tubes and fins are arranged alternately, and both ends of each tube are connected to a pair of hollow headers. , the heat exchanger is arranged in an air flow passage, the heat exchanger is bent into a substantially V shape at a longitudinally intermediate portion of the tube, and the heat exchanger is bent in a substantially V shape in the longitudinal direction of the tube, and On the other hand, it is characterized in that it is disposed in the air flow passage in a substantially inverted V shape with the curved portion on the windward side or in a substantially V shape with the curved portion on the leeward side. Therefore, by using a multi-flow type heat exchanger, the heat exchange performance can be improved compared to a tube expansion type heat exchanger. Moreover, since this multi-flow type heat exchanger is bent into a substantially V shape and is arranged in a substantially V shape or a substantially inverted V shape with respect to the air flow direction, it is different from a linear heat exchanger. Compared to this, if the length of the heat exchanger (tube length) is the same, at least the apparent length in the air flow direction can be shortened, and the size of the entire heat exchange device can be made compact. Furthermore, the position of the drain pan can be raised, making drain processing easier. On the other hand, if the overall size of the device is the same, a heat exchanger with a longer heat exchanger length (tube length) can be accommodated, so that the heat exchange performance can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の第1実施例を示す熱交換装置の正面
図、第2図は第1図の装置に用いた熱交換器とファンを
示す斜視図、第3図はこの発明の第2実施例を示すもの
で熱交換器の斜視図、第4図はこの発明の第3実施例に
係る熱交換装置の正面図、第5図は第4図の装置に用い
た熱交換器の斜視図、第6図はこの発明の第4実施例を
示すもので、熱交換器の正面図、第7図は同平面図、第
8図はこの発明の第5実施例に係る熱交換装置の正面図
、第9図はV形に曲成しないマルチフロー形熱交換器を
用いた熱交換装置の正面図、第10図は第9図の装置に
用いた熱交換器とファンを示す斜視図である。 (1)(2)・・・ヘッダー、(3)・・偏平チューブ
、(4)・・フィン、(7)・・コア部、(7o)・・
・曲成部、 以上 第6図 /U 第7図 −へ90−
FIG. 1 is a front view of a heat exchange device showing a first embodiment of the present invention, FIG. 2 is a perspective view showing a heat exchanger and fan used in the device of FIG. 1, and FIG. Embodiment 2 is a perspective view of a heat exchanger, FIG. 4 is a front view of a heat exchange device according to a third embodiment of the present invention, and FIG. 5 is a diagram of a heat exchanger used in the device of FIG. 4. A perspective view and FIG. 6 show a fourth embodiment of the present invention, a front view of the heat exchanger, FIG. 7 a plan view thereof, and FIG. 8 a heat exchange device according to a fifth embodiment of the present invention. 9 is a front view of a heat exchange device using a multi-flow heat exchanger that is not bent into a V shape, and FIG. 10 is a perspective view showing the heat exchanger and fan used in the device of FIG. 9. It is a diagram. (1) (2)...Header, (3)...Flat tube, (4)...Fin, (7)...Core part, (7o)...
・Bending part, Figure 6/U Figure 7-90-

Claims (1)

【特許請求の範囲】[Claims] 複数本の偏平チューブ(3)とフィン(4)とが交互配
置となされるとともに、各チューブ(3)の両端が1対
の中空ヘッダー(1)(2)に連通接続された熱交換器
(A)を備え、該熱交換器(A)が空気流通路に配設さ
れた熱交換装置であって、前記熱交換器(A)がチュー
ブ(3)の長さ方向の中間部で略V状に曲成されるとと
もに、空気流通方向に対し曲成部(70)を風上側とす
る略逆V形あるいは曲成部を風下側とする略V形をなし
て空気流通路に配設されてなることを特徴とする熱交換
装置。
A heat exchanger (in which a plurality of flat tubes (3) and fins (4) are arranged alternately, and both ends of each tube (3) are connected in communication with a pair of hollow headers (1) and (2). A), the heat exchanger (A) is disposed in an air flow passage, the heat exchanger (A) having a diameter of about V at a longitudinally intermediate portion of the tube (3). It is arranged in the air flow passage in a substantially inverted V shape with the curved part (70) on the windward side or in a substantially V shape with the curved part on the leeward side with respect to the air flow direction. A heat exchange device characterized by:
JP2318366A 1990-11-22 1990-11-22 Heat exchange equipment Expired - Lifetime JP3043051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2318366A JP3043051B2 (en) 1990-11-22 1990-11-22 Heat exchange equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2318366A JP3043051B2 (en) 1990-11-22 1990-11-22 Heat exchange equipment

Publications (2)

Publication Number Publication Date
JPH04187990A true JPH04187990A (en) 1992-07-06
JP3043051B2 JP3043051B2 (en) 2000-05-22

Family

ID=18098348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2318366A Expired - Lifetime JP3043051B2 (en) 1990-11-22 1990-11-22 Heat exchange equipment

Country Status (1)

Country Link
JP (1) JP3043051B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5531268A (en) * 1993-11-24 1996-07-02 Showa Aluminum Corporation Heat exchanger
WO2004074756A3 (en) * 2003-02-18 2004-10-21 Behr Gmbh & Co Kg Flat pipe comprising a return bend section and a heat exchanger constructed therewith
WO2005038380A1 (en) * 2003-10-16 2005-04-28 Calsonic Kansei Corp. Counterflow heat exchanger
JP2008045862A (en) * 2006-08-21 2008-02-28 Daikin Ind Ltd Heat exchanger, and method of manufacturing heat exchanger
WO2009018159A2 (en) * 2007-07-27 2009-02-05 Johnson Controls Technology Company Multi-slab multichannel heat exchanger
WO2010112392A1 (en) * 2009-04-03 2010-10-07 Nv Bekaert Sa 3 d heat exchanger
WO2010072221A3 (en) * 2008-12-23 2011-01-13 Noise Limit Aps Cooling device with bended flat tube and related manufacturing method
US7942020B2 (en) 2007-07-27 2011-05-17 Johnson Controls Technology Company Multi-slab multichannel heat exchanger
JP2011220674A (en) * 2010-04-13 2011-11-04 Danfoss Sanhua (Hangzhou) Micro Channel Heat Exchanger Co Ltd Heat exchanger
EP2402699A3 (en) * 2010-06-29 2014-04-09 Sanhua Holding Group Co., Ltd. Fin and heat exchanger comprising the same
WO2014146505A1 (en) * 2013-03-21 2014-09-25 杭州三花微通道换热器有限公司 Bending type heat exchanger and manufacturing method therefor
JP2015175539A (en) * 2014-03-14 2015-10-05 パナソニックIpマネジメント株式会社 heat exchanger
JP2015224844A (en) * 2014-05-29 2015-12-14 パナソニックIpマネジメント株式会社 Heat exchanger
WO2016071945A1 (en) * 2014-11-04 2016-05-12 三菱電機株式会社 Indoor unit for air conditioning device
WO2016081306A1 (en) * 2014-11-17 2016-05-26 Carrier Corporation Multi-pass and multi-slab folded microchannel heat exchanger
CN105698564A (en) * 2014-11-24 2016-06-22 丹佛斯微通道换热器(嘉兴)有限公司 Heat exchanger
US20170130974A1 (en) * 2015-11-09 2017-05-11 Carrier Corporation Residential outdoor heat exchanger unit
US9752833B2 (en) 2010-06-21 2017-09-05 Sanhua (Hangzhou) Micro Channel Heat Exchange Co., Ltd Heat exchanger
EP3205967A4 (en) * 2014-10-07 2018-09-26 Mitsubishi Electric Corporation Heat exchanger and air conditioning device
JP2018204936A (en) * 2017-06-06 2018-12-27 青▲島▼易▲図▼▲令▼科技有限公司 Outdoor machine of air conditioner, and air conditioner
EP3379175A4 (en) * 2015-11-18 2019-07-17 Sanhua (Hangzhou) Micro Channel Heat Exchanger Co., Ltd. Heat pump system
US10514204B2 (en) 2014-09-05 2019-12-24 Carrier Corporation Multiport extruded heat exchanger
WO2020147218A1 (en) * 2019-01-14 2020-07-23 青岛海尔空调电子有限公司 Heat exchanger applied to ceiling air conditioner and ceiling air conditioner
US20220252349A1 (en) * 2021-02-11 2022-08-11 Mahle International Gmbh Heat exchanger
US11885512B2 (en) 2018-12-19 2024-01-30 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101902017B1 (en) 2011-11-18 2018-09-27 엘지전자 주식회사 A heat exchanger and a manufacturing method the same
CN104296424B (en) * 2014-09-29 2017-01-18 杭州三花微通道换热器有限公司 Heat exchanger

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5531268A (en) * 1993-11-24 1996-07-02 Showa Aluminum Corporation Heat exchanger
WO2004074756A3 (en) * 2003-02-18 2004-10-21 Behr Gmbh & Co Kg Flat pipe comprising a return bend section and a heat exchanger constructed therewith
CN100362303C (en) * 2003-02-18 2008-01-16 贝洱两合公司 Flat pipe comprising a return bend section and a heat exchanger constructed therewith
WO2005038380A1 (en) * 2003-10-16 2005-04-28 Calsonic Kansei Corp. Counterflow heat exchanger
US7267159B2 (en) 2003-10-16 2007-09-11 Calsonic Kansei Corporation Counterflow heat exchanger
JP2008045862A (en) * 2006-08-21 2008-02-28 Daikin Ind Ltd Heat exchanger, and method of manufacturing heat exchanger
US8561427B2 (en) 2007-07-27 2013-10-22 Johnson Controls Technology Company Multi-slab multichannel heat exchanger
WO2009018159A3 (en) * 2007-07-27 2009-04-23 Johnson Controls Tech Co Multi-slab multichannel heat exchanger
US7942020B2 (en) 2007-07-27 2011-05-17 Johnson Controls Technology Company Multi-slab multichannel heat exchanger
WO2009018159A2 (en) * 2007-07-27 2009-02-05 Johnson Controls Technology Company Multi-slab multichannel heat exchanger
WO2010072221A3 (en) * 2008-12-23 2011-01-13 Noise Limit Aps Cooling device with bended flat tube and related manufacturing method
WO2010112392A1 (en) * 2009-04-03 2010-10-07 Nv Bekaert Sa 3 d heat exchanger
JP2011220674A (en) * 2010-04-13 2011-11-04 Danfoss Sanhua (Hangzhou) Micro Channel Heat Exchanger Co Ltd Heat exchanger
US9528770B2 (en) 2010-04-13 2016-12-27 Sanhua (Hangzhou) Micro Channel Heat Exchanger Co. Heat exchanger
EP2378232A3 (en) * 2010-04-13 2017-04-19 Sanhua (Hangzhou) Micro Channel Heat Exchanger Co., Ltd. Bent micro-channel heat exchanger
US9752833B2 (en) 2010-06-21 2017-09-05 Sanhua (Hangzhou) Micro Channel Heat Exchange Co., Ltd Heat exchanger
EP2402699A3 (en) * 2010-06-29 2014-04-09 Sanhua Holding Group Co., Ltd. Fin and heat exchanger comprising the same
US9891007B2 (en) 2013-03-21 2018-02-13 Sanhua (Hangzhou) Micro Channel Heat Exchanger Co., Ltd. Bent heat exchanger and method for manufacturing the same
WO2014146505A1 (en) * 2013-03-21 2014-09-25 杭州三花微通道换热器有限公司 Bending type heat exchanger and manufacturing method therefor
JP2015175539A (en) * 2014-03-14 2015-10-05 パナソニックIpマネジメント株式会社 heat exchanger
JP2015224844A (en) * 2014-05-29 2015-12-14 パナソニックIpマネジメント株式会社 Heat exchanger
US10514204B2 (en) 2014-09-05 2019-12-24 Carrier Corporation Multiport extruded heat exchanger
EP3205967A4 (en) * 2014-10-07 2018-09-26 Mitsubishi Electric Corporation Heat exchanger and air conditioning device
US10047963B2 (en) 2014-11-04 2018-08-14 Mitsubishi Electric Corporation Indoor unit for air-conditioning apparatus
GB2546202B (en) * 2014-11-04 2020-07-01 Mitsubishi Electric Corp Indoor unit for air-conditioning apparatus
WO2016071945A1 (en) * 2014-11-04 2016-05-12 三菱電機株式会社 Indoor unit for air conditioning device
JPWO2016071945A1 (en) * 2014-11-04 2017-04-27 三菱電機株式会社 Air conditioner indoor unit
GB2546202A (en) * 2014-11-04 2017-07-12 Mitsubishi Electric Corp Indoor unit for air conditioning device
RU2722930C2 (en) * 2014-11-17 2020-06-04 Кэрриер Корпорейшн Multi-stroke microchannel heat exchanger with multiple bent plates
WO2016081306A1 (en) * 2014-11-17 2016-05-26 Carrier Corporation Multi-pass and multi-slab folded microchannel heat exchanger
CN105698564B (en) * 2014-11-24 2018-01-23 丹佛斯微通道换热器(嘉兴)有限公司 Heat exchanger
CN105698564A (en) * 2014-11-24 2016-06-22 丹佛斯微通道换热器(嘉兴)有限公司 Heat exchanger
US20170130974A1 (en) * 2015-11-09 2017-05-11 Carrier Corporation Residential outdoor heat exchanger unit
EP3379175A4 (en) * 2015-11-18 2019-07-17 Sanhua (Hangzhou) Micro Channel Heat Exchanger Co., Ltd. Heat pump system
US10914498B2 (en) 2015-11-18 2021-02-09 Sanhua (Hangzhou) Micro Channel Heat Exchanger Co., Ltd. Heat pump system
JP2018204936A (en) * 2017-06-06 2018-12-27 青▲島▼易▲図▼▲令▼科技有限公司 Outdoor machine of air conditioner, and air conditioner
US11885512B2 (en) 2018-12-19 2024-01-30 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle device
WO2020147218A1 (en) * 2019-01-14 2020-07-23 青岛海尔空调电子有限公司 Heat exchanger applied to ceiling air conditioner and ceiling air conditioner
US20220252349A1 (en) * 2021-02-11 2022-08-11 Mahle International Gmbh Heat exchanger

Also Published As

Publication number Publication date
JP3043051B2 (en) 2000-05-22

Similar Documents

Publication Publication Date Title
JPH04187990A (en) Heat exchanging device
US20160033182A1 (en) Heat exchanger for air-cooled chiller
JPH0198896A (en) Heat exchanger
JPH04187991A (en) Heat exchanger
JPH05312492A (en) Heat exchanger
JP2002139295A (en) Heat exchanger for air conditioning
JP2006084078A (en) Thin heat transfer tube unit of thin multitubular heat exchanger
JP2901338B2 (en) Heat exchanger
JP3048614B2 (en) Heat exchanger
JP2528121B2 (en) Heat exchanger
JP2009145010A (en) Fin-less heat exchanger for air conditioner
JP3215587B2 (en) Heat exchanger
JPH06129734A (en) Heat exchanger
JPH0410530Y2 (en)
JPS62131195A (en) Heat exchanger
JP2570310Y2 (en) Heat exchanger
JP2003222436A (en) Heat exchanger for heat pump type air conditioner
JPH0933189A (en) Heat exchanger for outdoor machine
JPH04363591A (en) Heat exchanger
JP4328411B2 (en) Heat exchanger
JPH0624710Y2 (en) Heat exchanger
EP1256771A1 (en) Heat exchanger
JPH11304377A (en) Heat exchanger
JPH04340094A (en) Heat exchanger
JP2000227230A (en) Heat exchange coil for air-conditioner