JP2000018867A - Tube material for heat exchanger and heat exchanger - Google Patents

Tube material for heat exchanger and heat exchanger

Info

Publication number
JP2000018867A
JP2000018867A JP10176303A JP17630398A JP2000018867A JP 2000018867 A JP2000018867 A JP 2000018867A JP 10176303 A JP10176303 A JP 10176303A JP 17630398 A JP17630398 A JP 17630398A JP 2000018867 A JP2000018867 A JP 2000018867A
Authority
JP
Japan
Prior art keywords
curvature
radius
curved surface
heat exchanger
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10176303A
Other languages
Japanese (ja)
Inventor
Atsushi Suzuki
敦 鈴木
Masashi Inoue
正志 井上
Hiroshi Ikagawa
博 五百川
明 ▲吉▼越
Akira Yoshikoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP10176303A priority Critical patent/JP2000018867A/en
Publication of JP2000018867A publication Critical patent/JP2000018867A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To assure an excellent heat transfer performance by molding a plurality of hollow parts in a sectional shape having continued protrusions and recesses of curved surfaces of a flat tube material having the plurality of the parts aligned in a width direction, thereby increasing a contact circumferential length of a heat exchanging medium per one channel while maintaining good processability. SOLUTION: In a condenser used for a refrigerant system of an air conditioner for a vehicle, a pair of right and left headers communicate with one another via a plurality of refrigerant tubes 10 arranged horizontally therebetween. The tubes 10 are used for a flat heat exchanger having a plurality of spaces 11 to become refrigerant channels formed therein, and manufactured by extrusion molding aluminum. The six spaces 11 aligned in parallel between the spaces 11a and 11b of both ends are all molded in the same sectional shape, arranged at an equal pitch, and a side 13 for forming the section is molded by continuing many curved surfaces 13a to 13l. Thus, a contact circumferential length of the medium is increased by protrusions and recesses of the surfaces 13a to 13l, thereby assuring an excellent heat transferring operation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、たとえば車両用空
気調和装置のコンデンサ、エバポレータなどの熱交換器
に用いられる熱交換器用チューブ材、及びこの熱交換器
用チューブ材を使用してなる熱交換器に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger tube used for a heat exchanger such as a condenser or an evaporator of a vehicle air conditioner, and a heat exchanger using the heat exchanger tube. It is about.

【0002】[0002]

【従来の技術】車両用空調装置のコンデンサやエバポレ
ータのような熱交換器は、熱交換の媒体として冷媒を用
いている。このような熱交換器における冷媒通路として
は、たとえばアルミニウムのように熱伝導性に優れた金
属材料を押し出し成形したチューブ材が一般的に使用さ
れている。
2. Description of the Related Art A heat exchanger such as a condenser or an evaporator of a vehicle air conditioner uses a refrigerant as a heat exchange medium. As a refrigerant passage in such a heat exchanger, a tube material formed by extruding a metal material having excellent thermal conductivity, such as aluminum, is generally used.

【0003】図6は従来の熱交換器用チューブ材1の断
面を示したもので、冷媒通路となる空間部2が幅方向に
1列に合計8個並んでおり、全体としては偏平の形状と
なっている。空間部2の断面形状は、両端部に位置する
端部空間部2a,2bを除いて、平坦な面で構成された
矩形となっている。また、端部空間部2a,2bについ
ても、チューブ材1の両端面(厚み部分)に対応する曲
面を除いて、残る3面はいずれも平坦な面となってい
る。なお、端部空間部2a,2bの曲面は、凹凸のない
単純な半円形状となっている。
FIG. 6 shows a cross section of a conventional tube member 1 for a heat exchanger, in which a total of eight spaces 2 serving as refrigerant passages are arranged in a row in the width direction. Has become. The cross-sectional shape of the space 2 is a rectangle formed of a flat surface except for the end spaces 2a and 2b located at both ends. Also, as for the end space portions 2a and 2b, the remaining three surfaces are flat surfaces except for the curved surfaces corresponding to both end surfaces (thickness portions) of the tube material 1. The curved surfaces of the end space portions 2a and 2b have a simple semicircular shape with no irregularities.

【0004】[0004]

【発明が解決しようとする課題】ところで、近年大きさ
を変えずに熱交換器の能力を向上させたり、あるいは熱
交換器を小型化して同等の能力を確保するといった要求
が高まっている。このような要求に答える一つの方法と
して、上述した冷媒通路となるチューブ材1の空間部2
の断面形状を変え、一つの流路当たりの冷媒濡れ周長を
大きくすることが考えられる。しかしながら、上述した
従来のチューブ材1の場合、押し出し成形をする際の加
工性には優れるものの、一つの流路(空間部)当たりの
冷媒濡れ周長を大きくとれないため、液化した冷媒が熱
交換する面に付着しにくいなどの問題がある。
In recent years, there has been an increasing demand for improving the performance of a heat exchanger without changing its size, or for reducing the size of the heat exchanger to ensure the same performance. As one method for responding to such a demand, the space 2 of the tube material 1 serving as the above-described refrigerant passage is provided.
It is conceivable to change the cross-sectional shape of and increase the coolant wetting perimeter per channel. However, in the case of the conventional tube material 1 described above, although the processability during extrusion molding is excellent, the refrigerant wetting perimeter per one flow path (space portion) cannot be made large, so that the liquefied refrigerant generates heat. There is a problem that it does not easily adhere to the surface to be replaced.

【0005】このような背景から、図7に示すように、
空間部2の面に突起部3を設けることが考えられる。し
かし、図示のような直線を主体とする突起部3を設ける
と、押し出し成形の際の加工性が著しく悪化する。具体
的に説明すると、突起部3を成形する芯金部分の強度が
著しく低下するので、押し出し速度を極端に遅くする必
要が生じ、したがって量産に対応できないという問題が
ある。
From such a background, as shown in FIG.
It is conceivable to provide the projection 3 on the surface of the space 2. However, when the projections 3 mainly composed of straight lines as shown in the figure are provided, the workability at the time of extrusion molding is significantly deteriorated. More specifically, since the strength of the core portion for forming the projection 3 is significantly reduced, it is necessary to extremely reduce the extrusion speed, and therefore there is a problem that mass production cannot be performed.

【0006】また、特開平3−251688号公報に
は、押し出し成形した後に、さらに厚さ方向に圧潰して
所定の高さに偏平させる、インナーフィンを有する熱交
換器用チューブ材の製造方法が開示されている。このよ
うな製造方法では、押し出し成形工程と圧潰工程との2
工程が必要となり、生産性やコストの面で不利になると
いう問題がある。また、圧潰を受けたインナーフィンの
形状は、押し出し成形後と異なってしまい、しかも、こ
のような圧潰の影響は場所によって大きく異なるもので
あった。
Japanese Unexamined Patent Publication (Kokai) No. 3-251688 discloses a method for manufacturing a heat exchanger tube material having inner fins, which is extruded and then crushed in the thickness direction to flatten it to a predetermined height. Have been. In such a manufacturing method, there are two steps of an extrusion molding step and a crushing step.
There is a problem that a process is required, which is disadvantageous in terms of productivity and cost. Moreover, the shape of the crushed inner fin is different from that after extrusion molding, and the influence of such crushing differs greatly depending on the location.

【0007】そこで、本発明は、良好な加工性を維持
し、かつ1流路当たりの熱交換媒体の接触周長(冷媒濡
れ周長)を増すことができる、熱交換器用チューブ材及
びこのチューブ材を使用した熱交換器の提供を課題とし
ている。
Therefore, the present invention provides a tube material for a heat exchanger, which can maintain good workability and can increase the contact circumference of the heat exchange medium per one flow path (refrigerant wetting circumference). The task is to provide a heat exchanger using materials.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明においては以下の手段を採用した。請求項1
に記載の熱交換器用チューブ材は、複数の中空部が幅方
向に並べて設けられた偏平のチューブ材であって、前記
中空部が曲面の凹凸を連続させてなる断面形状を有する
ことを特徴とするものである。
In order to solve the above problems, the present invention employs the following means. Claim 1
The heat exchanger tube material according to the above is a flat tube material provided with a plurality of hollow portions arranged side by side in the width direction, characterized in that the hollow portion has a cross-sectional shape formed by continuous curved surface irregularities Is what you do.

【0009】このような熱交換器用チューブ材によれ
ば、曲面の凹凸により中空部を流れる熱交換媒体の接触
周長が増すので、熱伝達性能が向上する。
According to such a heat exchanger tube material, the heat transfer performance is improved since the contact circumference of the heat exchange medium flowing through the hollow portion is increased by the unevenness of the curved surface.

【0010】請求項2に記載の熱交換器用チューブ材
は、押し出し成形により成形されたことを特徴とするも
のである。
[0010] The tube material for a heat exchanger according to claim 2 is characterized by being formed by extrusion.

【0011】このような熱交換器用チューブ材によれ
ば、熱伝達性能が優れた熱交換器用チューブ材を容易に
量産をすることが可能になる。
According to such a heat exchanger tube material, it becomes possible to easily mass-produce a heat exchanger tube material having excellent heat transfer performance.

【0012】請求項3に記載の熱交換器は、複数の中空
部が幅方向に並べて設けられた偏平のチューブ材であっ
て、前記中空部が曲面の凹凸を連続させてなる断面形状
を有する熱交換器用チューブ材を熱交換の媒体流路に用
いたことを特徴とするものである。
A heat exchanger according to a third aspect is a flat tube material in which a plurality of hollow portions are provided side by side in the width direction, and the hollow portions have a cross-sectional shape formed by continuous curved unevenness. The heat exchanger tube material is used for a heat exchange medium flow path.

【0013】このような熱交換器によれば、熱伝達性能
に優れた熱交換器用チューブを使用したので、熱交換器
の単位面積当たりの熱交換能力を向上させることが可能
になる。
According to such a heat exchanger, since the heat exchanger tube having excellent heat transfer performance is used, the heat exchange capacity per unit area of the heat exchanger can be improved.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態を、図
面に基づいて説明する。図1は、熱交換器の一例とし
て、車両用空気調和装置の冷媒系に用いられるコンデン
サ4を示している。このコンデンサ4は、コンプレッサ
から送られてきた高温高圧のガス冷媒を外気で冷却して
凝縮させる機能を有している。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a condenser 4 used in a refrigerant system of a vehicle air conditioner as an example of a heat exchanger. The condenser 4 has a function of cooling and condensing the high-temperature and high-pressure gas refrigerant sent from the compressor with outside air.

【0015】さて、ここで上述したコンデンサ4の構成
を説明する。このコンデンサ4は、左右に一対設けられ
たヘッダ5,6の間が水平方向に複数配列された冷媒チ
ューブ10で連通され、各冷媒チューブ10間にはそれ
ぞれフィン7が配設されている。なお、図中の符号8は
冷媒入口、9は冷媒出口である。
Now, the structure of the above-described capacitor 4 will be described. In the condenser 4, a pair of headers 5, 6 provided on the left and right sides communicate with each other by refrigerant tubes 10 arranged in a plurality in the horizontal direction, and fins 7 are arranged between the refrigerant tubes 10. In addition, the code | symbol 8 in a figure is a refrigerant | coolant inlet, 9 is a refrigerant | coolant outlet.

【0016】ここで使用される冷媒チューブ10は、図
2に示すように、内部に冷媒流路となる空間部11が複
数形成されている偏平の熱交換器用チューブであり、ア
ルミニウムを押し出し成形して製造したものである。図
示の冷媒チューブ10は、図3にその詳細を示したよう
に、厚さ(T)が2ミリメートル程度でかつ幅(W)が
16ミリメートル程度の偏平であり、その内部には幅方
向に合計8個の空間部11が1列に並んで設けられてい
る。また、冷媒チューブ10の両端は半円形状に成形さ
れており、これに伴って両端部に位置する空間部11
a,11bの形状は中央部に位置する他の6個の空間部
11と異なっている。
As shown in FIG. 2, the refrigerant tube 10 used here is a flat heat exchanger tube in which a plurality of spaces 11 serving as refrigerant channels are formed, and is formed by extruding aluminum. It was manufactured. As shown in detail in FIG. 3, the illustrated refrigerant tube 10 is a flat plate having a thickness (T) of about 2 mm and a width (W) of about 16 mm, and has a total inside in the width direction. Eight space portions 11 are provided in a line. Further, both ends of the refrigerant tube 10 are formed in a semicircular shape, and accordingly, the space portions 11 located at both ends are formed.
The shapes of a and 11b are different from the other six spaces 11 located at the center.

【0017】右側の端部に位置する空間部11aは、お
およそ幅(w)が1.65ミリメートル程度でかつ厚さ
(t)が1.2ミリメートル程度のものであり、その断
面を形成する壁面12は曲面の凹凸を連続させたもので
あって直線部分は全く存在しない。すなわち、曲率半径
が0.6ミリメートルの第1凹曲面12aと、曲率半径
が0.5ミリメートルの第1凸曲面12bと、曲率半径
が0.2ミリメートルの第2凹曲面12cと、曲率半径
が1.3ミリメートルの第2凸曲面12dと、曲率半径
が0.2ミリメートルの第3凹曲面12eと、曲率半径
が0.5ミリメートルの第3凸曲面12fとが連続し
て、一つの閉断面を形成している。なお、左側の端部に
位置する空間部11bは、上述した右側の空間部11a
と左右対称である。
The space 11a located at the right end has a width (w) of about 1.65 mm and a thickness (t) of about 1.2 mm, and a wall surface forming a cross section thereof. Numeral 12 indicates a continuous irregularity of the curved surface, and there is no linear portion at all. That is, a first concave curved surface 12a having a radius of curvature of 0.6 mm, a first convex curved surface 12b having a radius of curvature of 0.5 mm, a second concave curved surface 12c having a radius of curvature of 0.2 mm, and a radius of curvature of A second convex curved surface 12d of 1.3 mm, a third concave curved surface 12e having a radius of curvature of 0.2 millimeter, and a third convex curved surface 12f having a radius of curvature of 0.5 millimeter continue to form one closed cross section. Is formed. The space 11b located at the left end is the same as the space 11a described above.
Is symmetrical.

【0018】両端部の空間部11a,11bの間に並ん
でいる6個の空間部11は、いずれも同じ断面形状を有
して等ピッチで配列されている。この空間部11は、お
およそ幅(w)が1.6ミリメートル程度でかつ厚さ
(t)が1.2ミリメートル程度のものであり、その断
面を形成する壁面13は曲面の凹凸を連続させたもので
あって、やはり直線部分は全く存在していない。すなわ
ち、曲率半径が0.2ミリメートルの第1凹曲面13a
と、曲率半径が0.2ミリメートルの第1凸曲面13b
と、曲率半径が0.2ミリメートルの第2凹曲面13c
と、曲率半径が0.2ミリメートルの第2凸曲面13d
と、曲率半径が0.2ミリメートルの第3凹曲面13e
と、曲率半径が1.3ミリメートルの第3凸曲面13f
と、曲率半径が0.2ミリメートルの第4凹曲面13g
と、曲率半径が0.2ミリメートルの第4凸曲面13h
と、曲率半径が0.2ミリメートルの第5凹曲面13i
と、曲率半径が0.2ミリメートルの第5凸曲面13j
と、曲率半径が0.2ミリメートルの第6凹曲面13k
と、曲率半径が1.3ミリメートルの第6凸曲面13l
とが連続して、一つの閉断面を形成している。
The six spaces 11 arranged between the spaces 11a and 11b at both ends have the same sectional shape and are arranged at equal pitches. The space portion 11 has a width (w) of about 1.6 mm and a thickness (t) of about 1.2 mm, and a wall surface 13 forming a cross section of the space portion 11 has continuous curved irregularities. In this case, there is no linear part at all. That is, the first concave curved surface 13a having a curvature radius of 0.2 mm
And the first convex curved surface 13b having a radius of curvature of 0.2 mm
And the second concave curved surface 13c having a curvature radius of 0.2 mm
And the second convex curved surface 13d having a curvature radius of 0.2 mm
And a third concave curved surface 13e having a radius of curvature of 0.2 mm.
And the third convex curved surface 13f having a radius of curvature of 1.3 mm.
And a fourth concave curved surface 13g having a radius of curvature of 0.2 mm.
And the fourth convex curved surface 13h having a radius of curvature of 0.2 mm.
And the fifth concave curved surface 13i having a curvature radius of 0.2 mm
And the fifth convex curved surface 13j having a radius of curvature of 0.2 mm
And a sixth concave surface 13k having a radius of curvature of 0.2 mm.
And a sixth convex curved surface 131 having a radius of curvature of 1.3 mm.
Are continuously formed to form one closed section.

【0019】上述したような各曲率半径は、生産性や押
し出し成形時の加工性を考慮して、すなわち適切な押し
出し速度で均一な成形形状を得られるように設定したも
のである。発明者の試作や試験によれば、熱交換器用と
して好適な寸法の偏平チューブの場合、曲率半径が図4
(a)に示す最大値から図4(b)に示す最小値の範囲
の曲面であれば、良好な加工性を維持して量産できるこ
とが分かっている。
The respective radii of curvature as described above are set in consideration of productivity and workability during extrusion molding, that is, so as to obtain a uniform molding shape at an appropriate extrusion speed. According to the prototypes and tests of the inventor, in the case of a flat tube having a size suitable for a heat exchanger, the radius of curvature is shown in FIG.
It is known that a curved surface having a range from the maximum value shown in FIG. 4A to the minimum value shown in FIG. 4B can be mass-produced while maintaining good workability.

【0020】図4(a)は、図3(b)に示した空間部
11,11aを形成している連続する曲面の曲率半径を
最大にしたものを示している。この場合、端部の空間部
11aの断面を形成する壁面12は、曲率半径が0.6
ミリメートルの第1凹曲面12aと、曲率半径が0.5
ミリメートルの第1凸曲面12bと、曲率半径が0.3
ミリメートルの第2凹曲面12cと、曲率半径が0.6
25ミリメートルの第2凸曲面12dと、曲率半径が
0.3ミリメートルの第3凹曲面12eと、曲率半径が
0.5ミリメートルの第3凸曲面12fとが連続して、
一つの閉断面を形成している。また、空間部11を形成
する壁面13は、曲率半径が0.3ミリメートルの第1
凹曲面13aと、曲率半径が0.5ミリメートルの第1
凸曲面13bと、曲率半径が0.3ミリメートルの第2
凹曲面13cと、曲率半径が0.625ミリメートルの
第2凸曲面13dと、曲率半径が0.3ミリメートルの
第3凹曲面13eと、曲率半径が0.5ミリメートルの
第3凸曲面13fと、曲率半径が0.3ミリメートルの
第4凹曲面13gと、曲率半径が0.625ミリメート
ルの第4凸曲面13hとが連続して、一つの閉断面を形
成している。
FIG. 4A shows the case where the radius of curvature of the continuous curved surface forming the space portions 11 and 11a shown in FIG. 3B is maximized. In this case, the wall surface 12 forming the cross section of the space 11a at the end has a radius of curvature of 0.6.
A first concave curved surface 12a of millimeter and a radius of curvature of 0.5
A first convex curved surface 12b of millimeters and a radius of curvature of 0.3
The second concave curved surface 12c of millimeter and the radius of curvature are 0.6
A second convex curved surface 12d having a diameter of 25 mm, a third concave curved surface 12e having a radius of curvature of 0.3 mm, and a third convex curved surface 12f having a radius of curvature of 0.5 mm are continuous,
It forms one closed section. The wall surface 13 forming the space 11 has a first radius of curvature of 0.3 mm.
A concave curved surface 13a and a first radius of curvature of 0.5 mm
A second convex surface 13b having a radius of curvature of 0.3 mm;
A concave curved surface 13c, a second convex curved surface 13d having a radius of curvature of 0.625 mm, a third concave curved surface 13e having a radius of curvature of 0.3 mm, and a third convex curved surface 13f having a radius of curvature of 0.5 mm; A fourth concave curved surface 13g having a radius of curvature of 0.3 mm and a fourth convex curved surface 13h having a radius of curvature of 0.625 mm are continuous to form one closed cross section.

【0021】そして、図4(b)は、図3(b)に示し
た空間部11,11aを形成している連続する曲面の曲
率半径を最小にしたものを示している。この場合、端部
の空間部11aの断面を形成する壁面12は、曲率半径
が0.6ミリメートルの第1凹曲面12aと、曲率半径
が0.05ミリメートルの第1凸曲面12bと、曲率半
径が0.1ミリメートルの第2凹曲面12cと、曲率半
径が0.05ミリメートルの第2凸曲面12dと、曲率
半径が0.1ミリメートルの第3凹曲面12eと、曲率
半径が0.05ミリメートルの第3凸曲面12fと、曲
率半径が0.1ミリメートルの第4凹曲面12gと、曲
率半径が2.425ミリメートルの第4凸曲面12h
と、曲率半径が0.1ミリメートルの第5凹曲面12i
と、曲率半径が0.05ミリメートルの第5凸曲面12
jと、曲率半径が0.1ミリメートルの第6凹曲面12
kと、曲率半径が0.05ミリメートルの第6凸曲面1
2lと、曲率半径が0.1ミリメートルの第7凹曲面1
2mと、曲率半径が0.05ミリメートルの第7凸曲面
12nとが連続して、一つの閉断面を形成している。ま
た、空間部11を形成する壁面13は、曲率半径が0.
1ミリメートルの第1凹曲面13aと、曲率半径が0.
05ミリメートルの第1凸曲面13bと、曲率半径が
0.1ミリメートルの第2凹曲面13cと、曲率半径が
0.05ミリメートルの第2凸曲面13dと、曲率半径
が0.1ミリメートルの第3凹曲面13eと、曲率半径
が0.05ミリメートルの第3凸曲面13fと、曲率半
径が0.1ミリメートルの第4凹曲面13gと、曲率半
径が0.05ミリメートルの第4凸曲面13hと、曲率
半径が0.1ミリメートルの第5凹曲面13iと、曲率
半径が0.05ミリメートルの第5凸曲面13jと、曲
率半径が0.1ミリメートルの第6凹曲面13kと、曲
率半径が2.425ミリメートルの第6凸曲面13l
と、曲率半径が0.1ミリメートルの第7凹曲面13m
と、曲率半径が0.05ミリメートルの第7凸曲面13
nと、曲率半径が0.1ミリメートルの第8凹曲面13
oと、曲率半径が0.05ミリメートルの第8凸曲面1
3pと、曲率半径が0.1ミリメートルの第9凹曲面1
3qと、曲率半径が0.05ミリメートルの第9凸曲面
13rと、曲率半径が0.1ミリメートルの第10凹曲
面13sと、曲率半径が0.05ミリメートルの第10
凸曲面13tと、曲率半径が0.1ミリメートルの第1
1凹曲面13uと、曲率半径が0.05ミリメートルの
第11凸曲面13vと、曲率半径が0.1ミリメートル
の第12凹曲面13wと、曲率半径が2.425ミリメ
ートルの第12凸曲面13xとが連続して、一つの閉断
面を形成している。
FIG. 4B shows a continuous curved surface forming the space portions 11 and 11a shown in FIG. 3B with a minimum radius of curvature. In this case, the wall surface 12 forming the cross section of the end space 11a has a first concave curved surface 12a having a radius of curvature of 0.6 mm, a first convex curved surface 12b having a radius of curvature of 0.05 mm, and a radius of curvature. Is a second concave curved surface 12c having a radius of curvature of 0.1 mm, a second convex curved surface 12d having a radius of curvature of 0.05 mm, a third concave surface 12e having a radius of curvature of 0.1 mm, and a radius of curvature of 0.05 mm. , A fourth concave surface 12g having a radius of curvature of 0.1 millimeter, and a fourth convex surface 12h having a radius of curvature of 2.425 millimeters
And a fifth concave curved surface 12i having a curvature radius of 0.1 mm
And the fifth convex curved surface 12 having a curvature radius of 0.05 mm
j and a sixth concave curved surface 12 having a radius of curvature of 0.1 mm
k and a sixth convex curved surface 1 having a curvature radius of 0.05 mm
2l, seventh concave curved surface 1 having a radius of curvature of 0.1 mm
2 m and a seventh convex curved surface 12 n having a curvature radius of 0.05 mm are continuous to form one closed cross section. Further, the wall surface 13 forming the space 11 has a radius of curvature of 0.1.
A first concave curved surface 13a of 1 millimeter and a radius of curvature of 0.1 mm.
A first convex curved surface 13b having a radius of curvature of 0.05 mm, a second convex curved surface 13d having a radius of curvature of 0.05 mm, and a third convex surface 13d having a radius of curvature of 0.1 mm. A concave curved surface 13e, a third convex curved surface 13f having a radius of curvature of 0.05 millimeter, a fourth concave curved surface 13g having a radius of curvature of 0.1 millimeter, and a fourth convex curved surface 13h having a radius of curvature of 0.05 millimeter; A fifth concave surface 13i having a radius of curvature of 0.1 millimeter, a fifth convex surface 13j having a radius of curvature of 0.05 millimeter, a sixth concave surface 13k having a radius of curvature of 0.1 millimeter, and a radius of curvature of 2. 425 mm sixth convex curved surface 13 l
13 m of the seventh concave curved surface having a curvature radius of 0.1 mm
And the seventh convex curved surface 13 having a curvature radius of 0.05 mm
n and an eighth concave curved surface 13 having a radius of curvature of 0.1 mm
o, the eighth convex curved surface 1 having a curvature radius of 0.05 mm
3p and a ninth concave curved surface 1 having a radius of curvature of 0.1 mm
3q, a ninth convex curved surface 13r having a radius of curvature of 0.05 millimeter, a tenth concave curved surface 13s having a radius of curvature of 0.1 millimeter, and a tenth concave surface 13s having a radius of curvature of 0.05 millimeter.
A convex curved surface 13t and a first radius of curvature of 0.1 mm;
A concave surface 13u, an eleventh convex surface 13v having a radius of curvature of 0.05 mm, a twelfth concave surface 13w having a radius of curvature of 0.1 mm, and a twelfth convex surface 13x having a radius of curvature of 2.425 mm. Continuously form one closed section.

【0022】したがって、上述した曲面の凹凸は、その
曲率半径を所定の範囲内で適宜変更して組み合わせるこ
とが可能であり、図示のものに限定されるものではな
い。また、空間部11の数についても、上述した8個に
限定されるものではなく、たとえば6個や10個など必
要に応じて適宜変更することが可能である。なお、押し
出し成形により成形された冷媒チューブ10は、フィン
7との電位差を利用した防食を目的として、その全外表
面に亜鉛溶射が施されている。
Therefore, the above-mentioned unevenness of the curved surface can be combined by appropriately changing the radius of curvature within a predetermined range, and is not limited to the illustrated one. Further, the number of the space portions 11 is not limited to the above-described eight, and may be changed as needed, for example, six or ten. In addition, the entire outer surface of the refrigerant tube 10 formed by extrusion molding is subjected to zinc spraying for the purpose of corrosion prevention utilizing a potential difference from the fin 7.

【0023】このようにして製造された冷媒チューブ1
0は、コンデンサ4のヘッダ5,6に設けられた連結口
にそれぞれの先端部を挿入してろう付けされる。こうし
てヘッダ5,6と連結された冷媒チューブ10は、図示
省略のコンプレッサから冷媒入口8に送られてきた冷媒
を流して循環させる冷媒流路となる。また、フィン7
は、外気との接触面積を増して冷却効率を上げるため、
一般的にはコルゲート状に加工したものを採用して冷媒
チューブ10に接着している。したがって、冷媒チュー
ブ10の内部を流れる冷媒の熱は、冷媒チューブ10の
壁面12,13からフィン7へ伝達され、さらにフィン
7の周囲を流れる外気に伝達される。なお、フィン7に
はルーバやスリットなどが適切に設けられており、フィ
ン7を通過する外気の流れが各面と均等に接触するよう
配慮して、冷却効率の向上を図っている。
The refrigerant tube 1 manufactured as described above
No. 0 is brazed by inserting the respective tips into the connection ports provided in the headers 5 and 6 of the capacitor 4. The refrigerant tube 10 connected to the headers 5 and 6 serves as a refrigerant channel for flowing and circulating the refrigerant sent from the compressor (not shown) to the refrigerant inlet 8. In addition, fin 7
Increases cooling area by increasing the contact area with outside air,
Generally, what is processed into a corrugated shape is employed and adhered to the refrigerant tube 10. Therefore, the heat of the refrigerant flowing inside the refrigerant tube 10 is transmitted from the wall surfaces 12 and 13 of the refrigerant tube 10 to the fins 7 and further transmitted to the outside air flowing around the fins 7. The fins 7 are appropriately provided with louvers, slits, and the like, and the cooling efficiency is improved in consideration of making the flow of the outside air passing through the fins 7 evenly contact each surface.

【0024】上述したような曲面の凹凸が連続する断面
形状の空間部11を有する冷媒チューブ10としたこと
により、空間部11を形成する壁面の周長が増加し、こ
の空間部11を流路とする冷媒は、熱交換面となる壁面
12,13に液化して付着しやすくなる。このようにし
て冷媒濡れ周長が増加すると、冷媒チューブ10自体の
熱伝達率が向上するので、これを使用してなるコンデン
サ4の放熱能力も著しく向上する。図5は、コンデンサ
の正面風速と放熱能力との関係を対数目盛りのグラフに
示したものである。このグラフにおいて、実線が本発明
の曲面流路形状(図3)の冷媒チューブ10を使用した
ものを表し、一点鎖線が従来の矩形流路形状(図6)の
冷媒チューブ1を使用したものを表しており、同じ正面
風速で比較すると、曲面流路形状の冷媒チューブ10を
使用したコンデンサ4の放熱能力が非常に優れているの
が分かる。したがって、曲面流路形状の冷媒チューブ1
0を使用することにより、熱伝達作用に優れて放熱能力
が高いコンデンサ4を低コストで生産できるようにな
る。なお、以上の説明では、熱交換器が空気調和装置に
おいてガス冷媒を凝縮させるコンデンサであったが、本
発明の熱交換器用チューブ材は、エバポレータなど空調
装置を構成する他の熱交換器にも適用可能なことは言う
までもなく、この他にも、ラジエターやオイルクーラな
ど各種の熱交換器用チューブ材としても適用可能であ
る。
The circumferential length of the wall forming the space 11 is increased by forming the refrigerant tube 10 having the space 11 having a cross section having continuous curved irregularities as described above. Is liquefied and easily attached to the wall surfaces 12 and 13 serving as heat exchange surfaces. When the coolant wetting circumference increases in this way, the heat transfer coefficient of the coolant tube 10 itself improves, so that the heat radiation capability of the condenser 4 using the coolant tube 10 also significantly improves. FIG. 5 is a graph on a logarithmic scale showing the relationship between the front wind speed and the heat radiation capacity of the capacitor. In this graph, the solid line represents the case using the refrigerant tube 10 having the curved flow path shape (FIG. 3) of the present invention, and the dashed line represents the one using the refrigerant tube 1 having the conventional rectangular flow path shape (FIG. 6). Comparing at the same front wind speed, it can be seen that the condenser 4 using the refrigerant tube 10 having the curved flow path shape has a very good heat radiation capability. Therefore, the refrigerant tube 1 having the curved flow path shape
By using 0, a capacitor 4 having an excellent heat transfer function and a high heat dissipation ability can be produced at low cost. In the above description, the heat exchanger is a condenser for condensing a gas refrigerant in an air conditioner.However, the heat exchanger tube material of the present invention is also applicable to other heat exchangers constituting an air conditioner such as an evaporator. Needless to say, the present invention can also be applied to various heat exchanger tube materials such as a radiator and an oil cooler.

【0025】[0025]

【発明の効果】上述した本発明によれば、下記のような
効果を奏する。請求項1及び請求項2に記載の熱交換器
用チューブ材によれば、曲面の凹凸により熱交換媒体の
接触周長が増すので、優れた熱伝達作用を得ることがで
きる。そして、押し出し工程のみで容易に成形でき、特
に、押し出し成形に対して優れた加工性を有しているの
で量産が可能になり、低コストで熱伝達率の高いチュー
ブ材を提供できるといった効果を奏する。
According to the present invention described above, the following effects can be obtained. According to the tube material for a heat exchanger according to the first and second aspects, the contact circumference of the heat exchange medium is increased by the unevenness of the curved surface, so that an excellent heat transfer action can be obtained. And it can be easily formed only by the extrusion process. In particular, since it has excellent workability for extrusion, mass production becomes possible, and it is possible to provide a tube material having a high heat transfer coefficient at a low cost. Play.

【0026】請求項3に記載の熱交換器によれば、低コ
ストで熱伝達率の高い熱交換器用チューブ材を使用する
ので、熱交換器の熱交換能力を低コストで向上させるこ
とが可能となる。したがって、たとえば熱交換器がコン
デンサの場合、このコンデンサを構成要素とする空気調
和装置は、その入力動力を低減できるといった効果を奏
する。
According to the heat exchanger of the third aspect, since the heat exchanger tube material having a high heat transfer coefficient is used at low cost, the heat exchange capacity of the heat exchanger can be improved at low cost. Becomes Therefore, for example, when the heat exchanger is a condenser, the air conditioner including the condenser as a constituent element has an effect that its input power can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態に係るコンデンサの構造
を示す斜視図である。
FIG. 1 is a perspective view showing a structure of a capacitor according to an embodiment of the present invention.

【図2】 熱交換器用チューブ材の一例として図1の冷
媒チューブの外観の一部を示した斜視図である。
FIG. 2 is a perspective view showing a part of the appearance of the refrigerant tube of FIG. 1 as an example of a tube material for a heat exchanger.

【図3】 (a)は図2のA−A線に沿って見た断面
図、(b)は(a)の要部拡大図である。
3A is a sectional view taken along line AA of FIG. 2, and FIG. 3B is an enlarged view of a main part of FIG.

【図4】 空間部を形成する好適な曲面の曲率半径の範
囲を示す図で、(a)は最大値、(b)は最小値であ
る。
FIGS. 4A and 4B are diagrams illustrating a range of a radius of curvature of a suitable curved surface forming a space, where FIG. 4A is a maximum value and FIG.

【図5】 コンデンサにおける正面風速と放熱能力との
関係を示すグラフである。
FIG. 5 is a graph showing a relationship between a frontal wind speed and a heat dissipation capability in a capacitor.

【図6】 従来の熱交換器用チューブ材を示す断面図で
ある。
FIG. 6 is a sectional view showing a conventional heat exchanger tube material.

【図7】 突起部を設けた従来の熱交換器用チューブ材
を示す要部断面図である。
FIG. 7 is a sectional view of a main part showing a conventional heat exchanger tube member provided with a projection.

【符号の説明】[Explanation of symbols]

4 コンデンサ 10 冷媒チューブ(熱交換器用チューブ) 11 空間部 12,13 壁面 4 Condenser 10 Refrigerant tube (tube for heat exchanger) 11 Space part 12, 13 Wall surface

───────────────────────────────────────────────────── フロントページの続き (72)発明者 五百川 博 愛知県西春日井郡西枇杷島町旭町3丁目1 番地 三菱重工業株式会社エアコン製作所 内 (72)発明者 ▲吉▼越 明 愛知県名古屋市中村区岩塚町字高道1番地 三菱重工業株式会社名古屋研究所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Hiroshi Gomokawa 3-1-1 Asahimachi, Nishibiwajima-cho, Nishi-Kasugai-gun, Aichi Prefecture Inside Air Conditioning Works of Mitsubishi Heavy Industries, Ltd. (72) Inventor 1 Iwazuka-cho Takamichi Inside Nagoya Research Laboratory, Mitsubishi Heavy Industries, Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数の中空部が幅方向に並べて設けられ
た偏平のチューブ材であって、前記中空部が曲面の凹凸
を連続させてなる断面形状を有することを特徴とする熱
交換器用チューブ材。
1. A heat exchanger tube comprising: a flat tube member provided with a plurality of hollow portions arranged side by side in a width direction, wherein the hollow portions have a cross-sectional shape formed by continuous curved surface irregularities. Wood.
【請求項2】 押し出し成形により成形されたことを特
徴とする請求項1に記載の熱交換器用チューブ材。
2. The heat exchanger tube material according to claim 1, wherein the tube material is formed by extrusion molding.
【請求項3】 複数の中空部が幅方向に並べて設けられ
た偏平のチューブ材であって、前記中空部が曲面の凹凸
を連続させてなる断面形状を有する熱交換器用チューブ
材を熱交換の媒体流路に用いたことを特徴とする熱交換
器。
3. A flat tube material having a plurality of hollow portions arranged side by side in the width direction, wherein the hollow portions have a cross-sectional shape formed by continuous curved surface irregularities. A heat exchanger used for a medium flow path.
JP10176303A 1998-06-23 1998-06-23 Tube material for heat exchanger and heat exchanger Pending JP2000018867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10176303A JP2000018867A (en) 1998-06-23 1998-06-23 Tube material for heat exchanger and heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10176303A JP2000018867A (en) 1998-06-23 1998-06-23 Tube material for heat exchanger and heat exchanger

Publications (1)

Publication Number Publication Date
JP2000018867A true JP2000018867A (en) 2000-01-18

Family

ID=16011238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10176303A Pending JP2000018867A (en) 1998-06-23 1998-06-23 Tube material for heat exchanger and heat exchanger

Country Status (1)

Country Link
JP (1) JP2000018867A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002318086A (en) * 2001-04-16 2002-10-31 Japan Climate Systems Corp Heat exchanger tube
WO2003095923A1 (en) * 2002-05-10 2003-11-20 Usui Kokusai Sangyo Kaisha, Ltd. Heat transfer pipe and heat exchange incorporating such heat transfer pipe
JP2004191044A (en) * 2002-12-11 2004-07-08 Modine Mfg Co Heat exchanger assembly with wedge-shaped refrigerant pipe generating balanced refrigerant flow
US6854512B2 (en) 2002-01-31 2005-02-15 Halla Climate Control Corporation Heat exchanger tube and heat exchanger using the same
US6907922B2 (en) * 2003-06-23 2005-06-21 Denso Corporation Heat exchanger
KR100606332B1 (en) * 2005-03-10 2006-07-28 주식회사 두원공조 Flat tube for heat exchanger for use in air conditioning or refrigeration systems
KR100998955B1 (en) 2003-06-24 2010-12-09 한라공조주식회사 A heat exchanger tube
JP2011509393A (en) * 2008-01-10 2011-03-24 ベール ゲーエムベーハー ウント コー カーゲー Extruded tube for heat exchanger
US9322602B2 (en) 2008-06-19 2016-04-26 Mitsubishi Electric Corporation Heat exchanger having a plurality of plate-like fins and a plurality of flat-shaped heat transfer pipes orthogonal to the plate-like fins
CN106225328A (en) * 2016-09-09 2016-12-14 珠海格力电器股份有限公司 Microchannel heat exchanger fluid channel, flat pipe, microchannel heat exchanger and air conditioning equipment
CN106767069A (en) * 2016-12-06 2017-05-31 中山市华控光电热能科技有限公司 A kind of double the dimension flat heat pipe of array trench aluminium and its manufacture methods
FR3101139A1 (en) * 2019-09-24 2021-03-26 Safran HEAT EXCHANGER FOR TURBOMACHINE, TURBOMACHINE AND EXCHANGER MANUFACTURING PROCESS
WO2021095567A1 (en) * 2019-11-14 2021-05-20 ダイキン工業株式会社 Heat transfer pipe and heat exchanger
WO2024024235A1 (en) * 2022-07-29 2024-02-01 株式会社Uacj鋳鍛 Heat transfer plate

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002318086A (en) * 2001-04-16 2002-10-31 Japan Climate Systems Corp Heat exchanger tube
US6854512B2 (en) 2002-01-31 2005-02-15 Halla Climate Control Corporation Heat exchanger tube and heat exchanger using the same
CN100338425C (en) * 2002-01-31 2007-09-19 汉拏空调株式会社 Heat exchanger tube with tumbling toy-shaped passages and heat exchanger using the same
KR100906769B1 (en) * 2002-01-31 2009-07-10 한라공조주식회사 Heat exchanger tube with tumbling toy-shaped passages and heat exchanger using the same
WO2003095923A1 (en) * 2002-05-10 2003-11-20 Usui Kokusai Sangyo Kaisha, Ltd. Heat transfer pipe and heat exchange incorporating such heat transfer pipe
US7044210B2 (en) 2002-05-10 2006-05-16 Usui Kokusai Sangyo Kaisha, Ltd. Heat transfer pipe and heat exchange incorporating such heat transfer pipe
CN100339675C (en) * 2002-05-10 2007-09-26 臼井国际产业株式会社 Heat transfer pipe and heat exchange incorporating such heat transfer pipe
JP2004191044A (en) * 2002-12-11 2004-07-08 Modine Mfg Co Heat exchanger assembly with wedge-shaped refrigerant pipe generating balanced refrigerant flow
US6907922B2 (en) * 2003-06-23 2005-06-21 Denso Corporation Heat exchanger
KR100998955B1 (en) 2003-06-24 2010-12-09 한라공조주식회사 A heat exchanger tube
KR100606332B1 (en) * 2005-03-10 2006-07-28 주식회사 두원공조 Flat tube for heat exchanger for use in air conditioning or refrigeration systems
JP2011509393A (en) * 2008-01-10 2011-03-24 ベール ゲーエムベーハー ウント コー カーゲー Extruded tube for heat exchanger
US9322602B2 (en) 2008-06-19 2016-04-26 Mitsubishi Electric Corporation Heat exchanger having a plurality of plate-like fins and a plurality of flat-shaped heat transfer pipes orthogonal to the plate-like fins
CN106225328A (en) * 2016-09-09 2016-12-14 珠海格力电器股份有限公司 Microchannel heat exchanger fluid channel, flat pipe, microchannel heat exchanger and air conditioning equipment
CN106767069A (en) * 2016-12-06 2017-05-31 中山市华控光电热能科技有限公司 A kind of double the dimension flat heat pipe of array trench aluminium and its manufacture methods
FR3101139A1 (en) * 2019-09-24 2021-03-26 Safran HEAT EXCHANGER FOR TURBOMACHINE, TURBOMACHINE AND EXCHANGER MANUFACTURING PROCESS
WO2021095567A1 (en) * 2019-11-14 2021-05-20 ダイキン工業株式会社 Heat transfer pipe and heat exchanger
JP2021081081A (en) * 2019-11-14 2021-05-27 ダイキン工業株式会社 Heat transfer pipe and heat exchanger
JP2021191996A (en) * 2019-11-14 2021-12-16 ダイキン工業株式会社 Heat transfer pipe and heat exchanger
CN114729793A (en) * 2019-11-14 2022-07-08 大金工业株式会社 Heat transfer tube and heat exchanger
EP4060252A4 (en) * 2019-11-14 2022-12-07 Daikin Industries, Ltd. Heat transfer pipe and heat exchanger
JP7381909B2 (en) 2019-11-14 2023-11-16 ダイキン工業株式会社 Heat exchanger tubes and heat exchangers
CN114729793B (en) * 2019-11-14 2024-04-02 大金工业株式会社 Heat transfer tube and heat exchanger
WO2024024235A1 (en) * 2022-07-29 2024-02-01 株式会社Uacj鋳鍛 Heat transfer plate
JP7457760B2 (en) 2022-07-29 2024-03-28 株式会社Uacj鋳鍛 heat transfer plate

Similar Documents

Publication Publication Date Title
US7882708B2 (en) Flat pipe-shaped heat exchanger
US6357522B2 (en) Multi-channel flat tube
JP5539742B2 (en) Heat exchange insert for heat exchanger
JP2000018867A (en) Tube material for heat exchanger and heat exchanger
JP4451981B2 (en) Heat exchange tube and finless heat exchanger
US20090173480A1 (en) Louvered air center with vortex generating extensions for compact heat exchanger
JPH0198896A (en) Heat exchanger
KR100347894B1 (en) Heat exchanger
US6170566B1 (en) High performance louvered fin for a heat exchanger
JP2002098486A (en) Heat exchanger and manufacturing method therefor
US6672376B2 (en) Twisted-louver high performance heat exchanger fin
JPH04177091A (en) Heat exchanger
JP2002318086A (en) Heat exchanger tube
AU1373000A (en) Regulating device for a coolant circuit of an air conditioning system
US6267174B1 (en) Double heat exchanger having condenser and radiator
WO2005073655A1 (en) Heat exchanger and air-conditioning system employing same
JPH02166394A (en) Heat exchanger with fin
JPS6391492A (en) Heat exchanger
JPH03102193A (en) Condenser
CN209744773U (en) Heat exchanger for air conditioner and air conditioner
JPH11304378A (en) Heat exchanger for vehicle
KR100213778B1 (en) Heat exchanger
JP2001133076A (en) Heat exchanger
JPH01147286A (en) Heat exchanger
JPH1194481A (en) Heat exchanger and tube therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080701