JP7457760B2 - heat transfer plate - Google Patents

heat transfer plate Download PDF

Info

Publication number
JP7457760B2
JP7457760B2 JP2022121090A JP2022121090A JP7457760B2 JP 7457760 B2 JP7457760 B2 JP 7457760B2 JP 2022121090 A JP2022121090 A JP 2022121090A JP 2022121090 A JP2022121090 A JP 2022121090A JP 7457760 B2 JP7457760 B2 JP 7457760B2
Authority
JP
Japan
Prior art keywords
pair
side surfaces
opposing
distance
fitting member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022121090A
Other languages
Japanese (ja)
Other versions
JP2024018045A (en
Inventor
英憲 ▲桑▼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UACJ Foundry & Forging Corporation
Original Assignee
UACJ Foundry & Forging Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UACJ Foundry & Forging Corporation filed Critical UACJ Foundry & Forging Corporation
Priority to JP2022121090A priority Critical patent/JP7457760B2/en
Priority to PCT/JP2023/019058 priority patent/WO2024024235A1/en
Priority to TW112120152A priority patent/TW202405364A/en
Publication of JP2024018045A publication Critical patent/JP2024018045A/en
Application granted granted Critical
Publication of JP7457760B2 publication Critical patent/JP7457760B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本開示は、伝熱板に関する。 The present disclosure relates to heat exchanger plates.

従来、伝熱板として、特許文献1に記載の技術が知られている。特許文献1に記載の伝熱板は、アルミニウム又はアルミニウム合金基部材(金属基部材)に伝熱媒体が流通する伝熱媒体流路を備え、その上から接合用アルミニウム又はアルミニウム合金部材(接合用金属部材)を、鍛圧圧接して密封した構造を持つ。この伝熱板は、液晶製造装置等の各種薄型ディスプレー(FPD)製造装置や半導体製造装置の伝熱板として使用可能である。 Conventionally, the technology described in Patent Document 1 is known as a heat exchanger plate. The heat transfer plate described in Patent Document 1 includes a heat transfer medium flow path through which a heat transfer medium flows through an aluminum or aluminum alloy base member (metal base member), and a bonding aluminum or aluminum alloy member (for bonding) from above the heat transfer medium flow path. It has a structure in which metal parts) are sealed by forging pressure welding. This heat transfer plate can be used as a heat transfer plate for various flat panel display (FPD) manufacturing equipment such as liquid crystal manufacturing equipment and semiconductor manufacturing equipment.

特許第6948832号公報Patent No. 6948832

特許文献1に開示の伝熱板について、金属基部材と接合用金属部材との接合強度を高め、内部空間の気密性をより向上することが望ましい。また、伝熱板の伝熱性をより向上することが望ましい。 Regarding the heat transfer plate disclosed in Patent Document 1, it is desirable to increase the bonding strength between the metal base member and the bonding metal member to further improve the airtightness of the internal space. Further, it is desirable to further improve the heat conductivity of the heat exchanger plate.

本開示は上記のような事情に基づいて完成された技術であって、接合強度を向上可能な伝熱板を提供することを目的の一つとする。また、伝熱性を向上可能な伝熱板を提供することを目的の一つとする。 The present disclosure is a technology completed based on the above circumstances, and one of the objects is to provide a heat exchanger plate that can improve bonding strength. Another object of the present invention is to provide a heat exchanger plate that can improve heat conductivity.

本開示は、第1溝部と前記第1溝部から窪んだ第2溝部とを有し、金属からなる基材と、前記第1溝部に嵌合し、金属からなる嵌合部材と、を備え、前記第1溝部は、前記基材の表面から立ち下がり、互いに対向する一対の第1側面を備え、前記第2溝部は、当該第2溝部の底を構成する底面と、前記底面から立ち上がり、互いに対向する一対の第2側面と、を備え、前記一対の第2側面間の距離は、前記一対の第1側面間の距離よりも小さく、前記一対の第2側面は、一方の前記第2側面が、他方の前記第2側面側に向かって膨出しており、前記嵌合部材において前記底面に対向する対向面は、前記底面側に向かって膨出している、伝熱板である。 The present disclosure has a first groove and a second groove recessed from the first groove, and includes a base material made of metal, and a fitting member made of metal that fits into the first groove, The first groove part is provided with a pair of first side surfaces that fall from the surface of the base material and are opposite to each other, and the second groove part has a bottom surface that forms the bottom of the second groove part and a bottom surface that rises from the bottom surface and that are opposite to each other. a pair of opposing second side surfaces, the distance between the pair of second side surfaces is smaller than the distance between the pair of first side surfaces, and the pair of second side surfaces is one of the second side surfaces. is a heat exchanger plate that bulges toward the other second side surface, and the opposing surface of the fitting member that faces the bottom surface is a heat exchanger plate that bulges toward the bottom surface side.

このような伝熱板によると、対向面、一対の第2側面、及び底面によって囲まれた内部空間(伝熱媒体が流れる流路)の表面積を、第2側面や対向面が膨出していない場合のものに比して大きくすることができる。これにより、伝熱媒体との接触面積を大きくして伝熱板の伝熱性を向上することができる。また、第2側面や対向面が膨出する程、嵌合部材が第1溝部に対し加圧されて嵌合すれば、嵌合部材と第1溝部との当接部分において摩擦により酸化被膜を剥がし、金属の融点以下の温度であっても当該当接部分を金属結合させて接合強度を高めることができる。これにより、伝熱板の内部空間の気密性を向上することができる。 According to such a heat transfer plate, the surface area of the internal space (the flow path through which the heat transfer medium flows) surrounded by the opposing surface, the pair of second side surfaces, and the bottom surface is reduced by the second side surface and the opposing surface not protruding. It can be made larger than the case. Thereby, the contact area with the heat transfer medium can be increased and the heat transfer properties of the heat transfer plate can be improved. Furthermore, if the fitting member is pressurized and fitted to the first groove so that the second side surface or the opposing surface bulges, an oxide film is formed due to friction at the contact portion between the fitting member and the first groove. Even when peeled off, the abutting portions can be metallurgically bonded to increase the bonding strength even at temperatures below the melting point of the metal. Thereby, the airtightness of the internal space of the heat exchanger plate can be improved.

上記構成において、前記対向面は、第2側面側の端部である対向端部と、前記底面に最も近接した対向近接部と、を備え、前記対向端部と前記底面との間の距離をAとし、前記対向近接部と前記底面との間の距離をAとした場合に、下記式(1)を満たす第1膨出率R(%)が0.3%以上であってもよい。
(%)={(A-A)/2A}×100・・・式(1)
In the above configuration, the opposing surface includes an opposing end that is an end on the second side surface side, and an opposing proximal portion that is closest to the bottom surface, and the distance between the opposing end and the bottom surface is A is 1 , and when the distance between the opposing proximal portion and the bottom surface is A 2 , the first bulge ratio R 1 (%) that satisfies the following formula (1) is 0.3% or more. Good too.
R 1 (%) = {(A 1 - A 2 )/2A 2 }×100...Formula (1)

また、上記構成において、前記一対の第2側面は、前記底面側又は前記対向面側の端部である一対の側面端部と、互いに最も近接した一対の側面近接部と、を備え、前記一対の側面端部間の距離をBとし、前記一対の側面近接部間の距離をBとした場合に、下記式(2)を満たす第2膨出率R(%)が0.5%以上であってもよい。
(%)={(B-B)/2B}×100・・・式(2)
Further, in the above configuration, the pair of second side surfaces include a pair of side surface end portions that are ends on the bottom surface side or the opposing surface side, and a pair of side surface adjacent portions that are closest to each other, When the distance between the side edges of is B1 , and the distance between the pair of adjacent side surfaces is B2 , the second bulge ratio R2 (%) that satisfies the following formula ( 2 ) is 0.5 % or more.
R 2 (%) = {(B 1 - B 2 )/2B 2 }×100...Formula (2)

このような構成によると、伝熱板の内部空間の気密性を好適に保つことが可能な程度に嵌合部材と第1溝部とが接合した伝熱板とすることができる。 With this configuration, the heat transfer plate can be made such that the fitting member and the first groove portion are joined to an extent that the airtightness of the internal space of the heat transfer plate can be suitably maintained.

本開示によれば、接合強度を向上できる伝熱板を提供することが可能となる。また、伝熱性を向上できる伝熱板を提供することが可能となる。 According to the present disclosure, it is possible to provide a heat exchanger plate that can improve bonding strength. Moreover, it becomes possible to provide a heat exchanger plate that can improve heat conductivity.

実施形態1に係る伝熱板を表面側から視た図A diagram of the heat exchanger plate according to Embodiment 1 viewed from the front side. 伝熱板の断面図(図1のII-II線断面)Cross-sectional view of the heat transfer plate (cross-section of line II-II in FIG. 1) 基材の溝部に嵌合部材を挿入する態様を示す断面図FIG. 11 is a cross-sectional view showing a state in which a fitting member is inserted into a groove of a base material. 実施形態2に係る伝熱板の断面図Cross-sectional view of a heat exchanger plate according to Embodiment 2

<実施形態1>
本開示の実施形態1を図1から図3によって説明する。本実施形態では、液晶パネルディスプレイ(LCD)や有機ELディスプレイ(OLED)を製造する際に、基板ガラスに電極膜やコーティング膜等の各種薄膜を成膜する工程において、基板ガラスの温度を制御するために用いられる伝熱板100について説明する。このような伝熱板100は、基板ガラスの温度均一性を確保する観点から、基材1の表面1Aの広さが基板ガラスに合わせたサイズとなっている。
<Embodiment 1>
Embodiment 1 of the present disclosure will be described with reference to FIGS. 1 to 3. In this embodiment, when manufacturing a liquid crystal panel display (LCD) or an organic EL display (OLED), the temperature of the substrate glass is controlled in the process of forming various thin films such as electrode films and coating films on the substrate glass. The heat exchanger plate 100 used for this purpose will be explained. In such a heat exchanger plate 100, from the viewpoint of ensuring temperature uniformity of the substrate glass, the width of the surface 1A of the base material 1 is sized to match the substrate glass.

図1及び図2に示すように、伝熱板100は、表面1A側において所定形状をなして設けられた溝部2を有する板状の基材1と、溝部2に対し基材1の表面1A側から嵌合した嵌合部材3と、を備える。基材1及び嵌合部材3の材料としては、金属が用いられる。この金属としては、伝熱性向上の観点から、アルミニウム合金が好ましく、JIS1050,1100,3003,3004,5052,5005,6061,6063,7003,7N01等のアルミニウム合金がより好ましい。 As shown in FIGS. 1 and 2, the heat transfer plate 100 includes a plate-shaped base material 1 having a groove 2 having a predetermined shape on the surface 1A side, and a surface 1A of the base material 1 with respect to the groove 2. A fitting member 3 fitted from the side is provided. Metal is used as the material for the base material 1 and the fitting member 3. From the viewpoint of improving heat conductivity, this metal is preferably an aluminum alloy, and more preferably an aluminum alloy such as JIS 1050, 1100, 3003, 3004, 5052, 5005, 6061, 6063, 7003, 7N01 or the like.

図1に示すように、溝部2は、一端2Aと他端2Bとの間で、表面1Aの面方向において直線状に延伸した部分や曲線状に曲がった部分が複数繋がり、全体として1つの流路を形成している。図2に示すように、溝部2は、基材1の表面1Aから裏面1B側に(基材1の厚さ方向に)窪んだ第1溝部10と、第1溝部10から基材1の厚さ方向に窪んだ第2溝部20と、を備える。嵌合部材3は、表面1Aの面方向において溝部2に沿った外形をなして第1溝部10に嵌合している。 As shown in FIG. 1, the groove portion 2 has a plurality of linearly extending portions and curved portions connected in the plane direction of the surface 1A between one end 2A and the other end 2B, forming one stream as a whole. forming a road. As shown in FIG. 2, the groove 2 includes a first groove 10 that is recessed from the front surface 1A of the base material 1 to the back surface 1B side (in the thickness direction of the base material 1), and a A second groove portion 20 recessed in the horizontal direction is provided. The fitting member 3 has an outer shape along the groove 2 in the surface direction of the surface 1A, and fits into the first groove 10.

第1溝部10は、基材1の表面1Aから厚さ方向に立ち下がり、互いに対向する一対の第1側面11,11と、一対の第1側面11,11から基材1の板面方向に立ち上がって延び、第1溝部10の底を構成する一対の第1底面12,12と、を備える。第2溝部20は、当該第2溝部20の底を構成する第2底面22と、第2底面22から第1溝部10側に立ち上がり、一対の第1底面12,12に至るまで延び、互いに対向する一対の第2側面21,21と、を備える。一対の第2側面21,21間の距離B(又はB2もしくはB3)は、一対の第1側面11,11間の距離Lよりも小さい。 The first groove portion 10 includes a pair of first side surfaces 11, 11 that fall from the surface 1A of the substrate 1 in the thickness direction and face each other, and a pair of first bottom surfaces 12, 12 that rise from the pair of first side surfaces 11, 11 and extend in the plate surface direction of the substrate 1 and form the bottom of the first groove portion 10. The second groove portion 20 includes a second bottom surface 22 that forms the bottom of the second groove portion 20, and a pair of second side surfaces 21, 21 that rise from the second bottom surface 22 toward the first groove portion 10 and extend to the pair of first bottom surfaces 12, 12 and face each other. The distance B 1 (or B2 or B3) between the pair of second side surfaces 21, 21 is smaller than the distance L between the pair of first side surfaces 11, 11.

一対の第1側面11,11及び一対の第1底面12,12は、溝部2に嵌合した嵌合部材3に当接している。嵌合部材3は、断面視長方形状をなしており、その厚さが、第1溝部10の深さ(第1側面11の厚さ方向における長さ)に略等しく、その板面方向における長さが、一対の第1側面11,11間の距離Lに略等しい。 The pair of first side surfaces 11, 11 and the pair of first bottom surfaces 12, 12 abut against the fitting member 3 fitted into the groove portion 2. The fitting member 3 has a rectangular shape in cross section, and its thickness is approximately equal to the depth of the first groove portion 10 (the length in the thickness direction of the first side surface 11), and its length in the plate surface direction is approximately equal to the distance L between the pair of first side surfaces 11, 11.

第2底面22と、一対の第2側面21,21と、嵌合部材3において第2底面22に対向する対向面31と、により囲まれる空間を、内部空間Sとする。内部空間Sは、油等の伝熱媒体が通る流路とされる。図1に示すように、伝熱媒体は、溝部2の一端2Aから内部空間Sを通り溝部2の他端2Bに流れる。本実施形態における伝熱板100は、上記したLCD等の製膜工程において真空装置内の高真空環境下で使用されるため、図2に示す内部空間Sから基材1と嵌合部材3とが当接した部分を通じて気体や液体が漏れないような気密性が要求される。そして、基材1と嵌合部材3とが当接した部分は、例えば、後述する鍛接工程を経ることにより接合されている。 The space surrounded by the second bottom surface 22, the pair of second side surfaces 21, 21, and the opposing surface 31 facing the second bottom surface 22 in the fitting member 3 is defined as an internal space S. The internal space S is a flow path through which a heat transfer medium such as oil passes. As shown in FIG. 1, the heat transfer medium flows from one end 2A of the groove 2 through the internal space S to the other end 2B of the groove 2. The heat exchanger plate 100 in this embodiment is used in a high vacuum environment in a vacuum apparatus in the above-mentioned film forming process for LCDs, etc., so the base material 1 and the fitting member 3 are removed from the internal space S shown in FIG. Airtightness is required to prevent gas or liquid from leaking through the contact area. The portions where the base material 1 and the fitting member 3 are in contact with each other are joined by, for example, a forge welding process that will be described later.

嵌合部材3の対向面31は、第2底面22側に向かって膨出している。第2底面22は、対向面31側に膨出しておらず、水平面とされる(又は、対向面31よりも膨出していない)。対向面31は、一対の第2側面21,21側の端部である対向端部31A1,31A3と、当該対向面31の板面方向における中央部分であって第2底面22に最も近接した部分である対向近接部31A2と、を備える。左側の対向端部31A1と第2底面22との間の距離をAとし、対向近接部31A2と第2底面22との間の距離をAとした場合に、下記式(1)を満たす第1膨出率R(%)は、0.3%以上とされる。
(%)={(A-A)/2A}×100・・・式(1)
尚、第1膨出率Rは、右側の対向端部31A3と第2底面22との間の距離をAとした場合に、上記式(1)のAをAに読み替えて得られる値としてもよい。
The opposing surface 31 of the fitting member 3 bulges toward the second bottom surface 22 side. The second bottom surface 22 does not bulge toward the opposing surface 31 and is a horizontal surface (or does not bulge out more than the opposing surface 31). The opposing surface 31 includes opposing ends 31A1 and 31A3 that are the ends on the side of the pair of second side surfaces 21 and 21, and a central portion of the opposing surface 31 in the plate surface direction that is closest to the second bottom surface 22. A facing proximal portion 31A2 is provided. When the distance between the left opposing end 31A1 and the second bottom surface 22 is A1 , and the distance between the opposing proximal portion 31A2 and the second bottom surface 22 is A2 , the following formula (1) is satisfied. The first swelling ratio R 1 (%) is 0.3% or more.
R 1 (%) = {(A 1 - A 2 )/2A 2 }×100...Formula (1)
Note that the first bulge ratio R1 can be obtained by replacing A1 in the above formula (1) with A3 , assuming that the distance between the right opposing end 31A3 and the second bottom surface 22 is A3 . It may be a value that is

第1膨出率Rは、0.4%以上としてもよく、0.5%以上としてもよく、25%以下としてもよく、10%以下としてもよく、5%以下としてもよく、1%以下としてもよく、0.8%以下としてもよい。このような範囲によると、基材1と嵌合部材3とが好適に接合された伝熱板100となり、また、伝熱性を向上させつつ伝熱媒体を内部空間Sに上手く流すことができる伝熱板100となる。 The first bulge ratio R1 may be 0.4% or more, 0.5% or more, 25% or less, 10% or less, 5% or less, 1% It may be less than or equal to 0.8%. According to such a range, the base material 1 and the fitting member 3 become the heat transfer plate 100 suitably joined, and the heat transfer medium can be effectively flowed into the internal space S while improving the heat transfer property. This becomes a hot plate 100.

一対の第2側面21,21は、図中、左側(一方)の第2側面21が、右側(他方)の第2側面21側に向かって膨出している。同様に、一対の第2側面21,21は、図中、右側の第2側面21が、左側の第2側面21側に向かって膨出している。一対の第2側面21,21は、対向面31側の端部である一対の側面端部21B1,21B1と、当該一対の第2側面21,21の厚さ方向における中央部分であって互いに最も近接した部分である一対の側面近接部21B2,21B2と、第2底面22側の端部である一対の側面端部21B3,21B3と、を備える。上側の一対の側面端部21B1,21B1間の距離をBとし、一対の側面近接部21B2,21B2間の距離をBとした場合に、下記式(2)を満たす第2膨出率R(%)は、0.5%以上である。
(%)={(B-B)/2B}×100・・・式(2)
尚、第2膨出率Rは、下側の一対の側面端部21B3,21B3間の距離をBとした場合に、上記式(2)のBをBに読み替えて得られる値としてもよい。
In the pair of second side surfaces 21, 21, the left side (one) second side surface 21 in the figure bulges out toward the right side (other) second side surface 21 side. Similarly, in the pair of second side surfaces 21, 21, the second side surface 21 on the right side in the figure bulges out toward the second side surface 21 on the left side. The pair of second side surfaces 21, 21 are the pair of side surface ends 21B1, 21B1 which are the ends on the opposing surface 31 side, and the central portions in the thickness direction of the pair of second side surfaces 21, 21, which are the most mutually It includes a pair of side surface proximal portions 21B2, 21B2 which are adjacent portions, and a pair of side surface end portions 21B3, 21B3 which are end portions on the second bottom surface 22 side. When the distance between the upper pair of side surface ends 21B1 and 21B1 is B1 , and the distance between the pair of side surface proximal portions 21B2 and 21B2 is B2 , the second bulge ratio R that satisfies the following formula (2) 2 (%) is 0.5% or more.
R 2 (%) = {(B 1 - B 2 )/2B 2 }×100...Formula (2)
The second bulge ratio R2 is the value obtained by replacing B1 in the above formula (2) with B3 , assuming that the distance between the pair of lower side edges 21B3 and 21B3 is B3 . You can also use it as

第2膨出率Rは、0.55%以上としてもよく、0.6%以上としてもよく、0.65%以上としてもよく、25%以下としてもよく、10%以下としてもよく、5%以下としてもよく、1%以下としてもよく、0.7%以下としてもよい。このような範囲によると、基材1と嵌合部材3とが好適に接合された伝熱板100となり、また、伝熱性を向上させつつ伝熱媒体を内部空間Sに上手く流すことができる伝熱板100となる。 The second swelling ratio R2 may be 0.55% or more, 0.6% or more, 0.65% or more, 25% or less, 10% or less, It may be 5% or less, 1% or less, or 0.7% or less. According to such a range, the base material 1 and the fitting member 3 become the heat transfer plate 100 suitably joined, and the heat transfer medium can be effectively flowed into the internal space S while improving the heat transfer property. This becomes a hot plate 100.

続いて、伝熱板100の製造方法について説明する。伝熱板100の製造方法は、基材1に溝部2を切削等により形成する溝部形成工程と、基材1及び嵌合部材3を所定温度で加熱し所定圧力で加圧して接合する鍛接工程と、を含む。 Next, a method for manufacturing the heat exchanger plate 100 will be described. The manufacturing method of the heat exchanger plate 100 includes a groove forming step in which the grooves 2 are formed in the base material 1 by cutting or the like, and a forge welding step in which the base material 1 and the fitting member 3 are heated at a predetermined temperature and pressed at a predetermined pressure to join them. and, including.

図3に示すように、鍛接工程では、第1溝部10に嵌合部材3を挿入する。このとき、嵌合部材3の対向面31及び第2溝部20における一対の第2側面21,21は、膨出しておらず、例えば対向面31は水平面に沿っており、一対の第2側面21,21は鉛直面に沿っている。 As shown in FIG. 3, in the forge welding process, the fitting member 3 is inserted into the first groove 10. At this time, the opposing surface 31 of the fitting member 3 and the pair of second side surfaces 21, 21 in the second groove 20 are not bulged, and for example, the opposing surface 31 is along a horizontal plane, and the pair of second side surfaces 21, 21 are not bulged. , 21 are along the vertical plane.

そして、一対の第1側面11,11(又は一対の第1側面11,11及び一対の第1底面12,12)が嵌合部材3に当接した状態で、基材1及び嵌合部材3を加熱し、その後(又は加熱と同時に)、嵌合部材3を基材1に対し押し込むようにして加圧する(これを鍛接と呼ぶ)。このときの加熱温度は、基材1及び嵌合部材3を構成する金属の融点以下としてもよく、250度以上500度以下でもよく、300度以上450度以下でもよく、350度以上420度以下でもよい。また、嵌合部材3を押し込む圧力は、嵌合部材3が第1溝部10において塑性変形を起こすことが可能な程度の圧力(熱間変形抵抗以上の圧力)とする。このような範囲によると、基材1と嵌合部材3との当接部分の表面において摩擦により酸化被膜が破壊され、当該表面にアルミニウム新生面が露出することで、当接部分を金属接合させることができる。 Then, with the pair of first side surfaces 11, 11 (or the pair of first side surfaces 11, 11 and the pair of first bottom surfaces 12, 12) in contact with the fitting member 3, the base material 1 and the fitting member 3 is heated, and then (or at the same time as heating), the fitting member 3 is pressed against the base material 1 and pressurized (this is called forge welding). The heating temperature at this time may be below the melting point of the metals constituting the base material 1 and the fitting member 3, may be 250 degrees or more and 500 degrees or less, 300 degrees or more and 450 degrees or less, or 350 degrees or more and 420 degrees or less. But that's fine. Further, the pressure with which the fitting member 3 is pushed is set to a pressure that allows the fitting member 3 to undergo plastic deformation in the first groove portion 10 (pressure that is higher than hot deformation resistance). According to such a range, the oxide film is destroyed by friction on the surface of the abutting part between the base material 1 and the fitting member 3, and a new aluminum surface is exposed on the surface, so that the abutting part can be metal-bonded. Can be done.

鍛接工程が完了すると、図2に示すように、嵌合部材3が第1溝部10に嵌合し、対向面31及び一対の第2側面21,21が膨出した、伝熱板100を得ることができる。尚、このような伝熱板100の製造工程を行い、対向面31及び一対の第2側面21,21が膨出する割合(第1膨出率R及び第2膨出率R)を算出し、別途、溝部形成工程にて、その膨出する割合分、対向面と一対の第2側面とを予め凹形状に切削した(膨出する割合分差し引いてなる形状とした)基材及び嵌合部材を用いて、鍛接工程を行うことにより、対向面及び一対の第2側面が膨出していないものの、嵌合部材と基材とが金属接合して、方形状の内部空間を有する別の伝熱板を得ることができる。 When the forge welding process is completed, as shown in FIG. 2, the fitting member 3 is fitted into the first groove 10 to obtain a heat exchanger plate 100 in which the opposing surface 31 and the pair of second side surfaces 21, 21 are bulged. be able to. Incidentally, by carrying out the manufacturing process of the heat exchanger plate 100 as described above, the rate at which the opposing surface 31 and the pair of second side surfaces 21, 21 bulge (the first bulging ratio R 1 and the second bulging ratio R 2 ) is determined. A base material in which the opposing surface and the pair of second side surfaces are pre-cut into a concave shape by the amount of the bulge in the groove forming step (the shape is obtained by subtracting the bulge); and By performing a forge welding process using the fitting member, the fitting member and the base material are metallurgically bonded and a rectangular inner space is formed, although the opposing surfaces and the pair of second side surfaces are not bulged. heat exchanger plates can be obtained.

続いて、本実施形態の効果について説明する。本実施形態では、第1溝部10と第1溝部10から窪んだ第2溝部20とを有し、金属からなる基材1と、第1溝部10に嵌合し、金属からなる嵌合部材3と、を備え、第1溝部10は、基材1の表面から立ち下がり、互いに対向する一対の第1側面11,11を備え、第2溝部20は、当該第2溝部20の底を構成する第2底面22と、第2底面22から立ち上がり、互いに対向する一対の第2側面21,21と、を備え、一対の第2側面21,21間の距離は、一対の第1側面11,11間の距離よりも小さく、一対の第2側面21,21は、一方の第2側面が、他方の第2側面側に向かって膨出しており、嵌合部材3において第2底面22に対向する対向面31は、第2底面22側に向かって膨出している、伝熱板100を示した。 Next, the effects of this embodiment will be explained. In this embodiment, it has a first groove part 10 and a second groove part 20 recessed from the first groove part 10, and a base material 1 made of metal and a fitting member 3 made of metal that fits into the first groove part 10. The first groove part 10 includes a pair of first side surfaces 11, 11 that fall from the surface of the base material 1 and face each other, and the second groove part 20 constitutes the bottom of the second groove part 20. It includes a second bottom surface 22 and a pair of second side surfaces 21, 21 rising from the second bottom surface 22 and facing each other, and the distance between the pair of second side surfaces 21, 21 is equal to the distance between the pair of first side surfaces 11, 11. In the pair of second side surfaces 21, 21, one second side surface bulges toward the other second side surface side, and faces the second bottom surface 22 in the fitting member 3. The opposing surface 31 showed the heat exchanger plate 100 bulging toward the second bottom surface 22 side.

このような伝熱板100によると、対向面31、一対の第2側面21,21、及び第2底面22によって囲まれた内部空間S(伝熱媒体が流れる流路)の表面積を、第2側面や対向面31が膨出していない場合のものに比して大きくすることができる。これにより、伝熱媒体との接触面積を大きくして伝熱板100の伝熱性を向上することができる。また、第2側面や対向面31が膨出する程、嵌合部材3が第1溝部10に対し加圧されて嵌合すれば、嵌合部材3と第1溝部10との当接部分において摩擦により酸化被膜を剥がし、金属の融点以下の温度であっても当該当接部分を金属結合させて接合強度を高めることができる。これにより、伝熱板100の内部空間の気密性を向上することができる。 According to such a heat transfer plate 100, the surface area of the internal space S (the flow path through which the heat transfer medium flows) surrounded by the opposing surface 31, the pair of second side surfaces 21, 21, and the second bottom surface 22 is It can be made larger than the case where the side surface and the opposing surface 31 are not bulged. Thereby, the contact area with the heat transfer medium can be increased and the heat transfer properties of the heat transfer plate 100 can be improved. Moreover, if the fitting member 3 is pressurized and fitted to the first groove 10 as the second side surface or the opposing surface 31 bulges out, the contact portion between the fitting member 3 and the first groove 10 will be The oxide film is peeled off by friction, and even at temperatures below the melting point of the metal, the abutting parts can be metallurgically bonded to increase the bonding strength. Thereby, the airtightness of the internal space of the heat exchanger plate 100 can be improved.

上記構成において、対向面31は、第2側面側の端部である対向端部31A1と、第2底面22に最も近接した対向近接部31A2と、を備え、対向端部31A1と第2底面22との間の距離をAとし、対向近接部31A2と第2底面22との間の距離をAとした場合に、下記式(1)を満たす第1膨出率R(%)が0.3%以上であってもよい。
(%)={(A-A)/2A}×100・・・式(1)
In the above configuration, the opposing surface 31 includes an opposing end 31A1 that is an end on the second side surface side, and an opposing proximal portion 31A2 that is closest to the second bottom surface 22, and the opposing end 31A1 and the second bottom surface 22 When the distance between the opposing proximal portion 31A2 and the second bottom surface 22 is A2 , the first bulge ratio R1 (%) that satisfies the following formula (1 ) is It may be 0.3% or more.
R 1 (%) = {(A 1 - A 2 )/2A 2 }×100...Formula (1)

また、上記構成において、一対の第2側面21,21は、第2底面22側又は対向面31側の端部である一対の側面端部21B1と、互いに最も近接した一対の側面近接部21B2と、を備え、一対の側面端部21B1間の距離をBとし、一対の側面近接部21B2間の距離をBとした場合に、下記式(2)を満たす第2膨出率R(%)が0.5%以上であってもよい。
(%)={(B-B)/2B}×100・・・式(2)
In the above configuration, the pair of second side surfaces 21, 21 include a pair of side surface ends 21B1 which are ends on the second bottom surface 22 side or the opposing surface 31 side, and a pair of side surface proximal portions 21B2 which are closest to each other. , where the distance between the pair of side edge portions 21B1 is B1 , and the distance between the pair of side surface proximal portions 21B2 is B2 , a second bulge rate R2 that satisfies the following formula (2) ( %) may be 0.5% or more.
R 2 (%) = {(B 1 - B 2 )/2B 2 }×100...Formula (2)

このような構成によると、伝熱板100の内部空間の気密性を好適に保つことが可能な程度に嵌合部材3と第1溝部10とが接合した伝熱板100とすることができる。 With this configuration, the heat transfer plate 100 can be formed in such a way that the fitting member 3 and the first groove portion 10 are joined to an extent that the airtightness of the internal space of the heat transfer plate 100 can be suitably maintained.

<実施形態2>
次に、本開示の実施形態2を図4によって説明する。本実施形態では、上記実施形態と構造、作用及び効果について重複する説明は省略する。
<Embodiment 2>
Next, a second embodiment of the present disclosure will be described with reference to Fig. 4. In this embodiment, the description of the structure, operation, and effects that overlap with those of the above embodiment will be omitted.

伝熱板200は、表面201A側において所定形状をなして設けられた溝部202を有する基材201と、溝部202に対し基材201の表面201A側から嵌合した嵌合部材203と、を備える。溝部202は、基材201の表面201Aから基材201の厚さ方向に窪んだ第1溝部210と、第1溝部210から基材201の厚さ方向に窪んだ第2溝部220と、を備える。 The heat transfer plate 200 comprises a substrate 201 having a groove 202 formed in a predetermined shape on the surface 201A side, and a fitting member 203 fitted into the groove 202 from the surface 201A side of the substrate 201. The groove 202 comprises a first groove 210 recessed from the surface 201A of the substrate 201 in the thickness direction of the substrate 201, and a second groove 220 recessed from the first groove 210 in the thickness direction of the substrate 201.

第1溝部210は、基材201の表面201Aから厚さ方向に立ち下がり、互いに対向し、下方に向かうほど互いに近接するように傾斜した一対の第1側面211,211を備えており、断面視テーパ状をなしている。第1溝部210は、上記実施形態1において示した一対の第1底面12,12を備えていない。第2溝部220は、当該第2溝部220の底を構成する第2底面222と、第2底面222から第1溝部210側に立ち上がり、一対の第1側面211,211に至るまで延び、互いに対向する一対の第2側面221,221と、を備える。嵌合部材203は、断面視逆台形状(テーパ状)をなしている。第2底面222と、一対の第2側面221,221と、嵌合部材203において第2底面222に対向する対向面231と、により囲まれる空間を、内部空間Sとする。 The first groove portion 210 is provided with a pair of first side surfaces 211, 211 that fall down in the thickness direction from the surface 201A of the base material 201, face each other, and are inclined so that they approach each other as they go downward. It has a tapered shape. The first groove portion 210 does not include the pair of first bottom surfaces 12, 12 shown in the first embodiment. The second groove portion 220 has a second bottom surface 222 forming the bottom of the second groove portion 220, and a second bottom surface 222 that rises from the second bottom surface 222 toward the first groove portion 210 side, extends to a pair of first side surfaces 211, 211, and faces each other. A pair of second side surfaces 221, 221. The fitting member 203 has an inverted trapezoidal shape (tapered shape) in cross section. The space surrounded by the second bottom surface 222, the pair of second side surfaces 221, 221, and the opposing surface 231 facing the second bottom surface 222 in the fitting member 203 is defined as an internal space S.

嵌合部材203の対向面231は、第2底面222側に向かって膨出している。一対の第2側面221,221は、図中、左側の第2側面221が、右側の第2側面221側に向かって膨出している。同様に、一対の第2側面221,221は、図中、右側の第2側面221が、左側の第2側面221側に向かって膨出している。 The opposing surface 231 of the fitting member 203 bulges toward the second bottom surface 222 side. In the pair of second side surfaces 221, 221, the second side surface 221 on the left side in the figure bulges out toward the second side surface 221 on the right side. Similarly, in the pair of second side surfaces 221, 221, the second side surface 221 on the right side in the figure bulges out toward the second side surface 221 on the left side.

以下、実施例に基づいて本技術を詳細に説明する。なお、本技術はこれらの実施例により何ら限定されるものではない。 The present technology will be described in detail below based on examples. Note that the present technology is not limited in any way by these examples.

[伝熱板の製造]
アルミニウム合金からなる基材に第1溝部及び第2溝部を切削により形成し、図3に示すように、アルミニウム合金からなる嵌合部材を第1溝部に挿入した。このとき、一対の第2側面の厚み方向(上下方向)における長さは、それぞれ20mmであり、対向面及び底面の板面方向(左右方向)における長さは、それぞれ20mmであり、内部空間の断面積は、400mmであった(内部空間は、一辺が20mmの正方形をなしていた)。続いて、基材及び嵌合部材を400度に加熱しつつ、嵌合部材を荷重5000トンで加圧して、嵌合部材を第1溝部に接合(鍛接)することで、一対の第2側面と対向面とが膨出した伝熱板を製造した。
[Manufacture of heat exchanger plates]
A first groove and a second groove were formed in a base material made of an aluminum alloy by cutting, and a fitting member made of an aluminum alloy was inserted into the first groove as shown in FIG. At this time, the lengths of the pair of second side surfaces in the thickness direction (vertical direction) are each 20 mm, and the lengths of the opposing surfaces and the bottom surface in the plate surface direction (horizontal direction) are each 20 mm. The cross-sectional area was 400 mm 2 (the internal space was a square with sides of 20 mm). Next, while heating the base material and the fitting member to 400 degrees, the fitting member is pressurized with a load of 5000 tons to join (forge weld) the fitting member to the first groove, thereby forming the pair of second side surfaces. A heat exchanger plate having a bulged surface and a facing surface was manufactured.

[各距離の測定及び膨出率の算出]
得られた伝熱板について、図2に示すように、対向端部と第2底面との間の距離A,A、対向近接部と第2底面との間の距離A、一対の側面端部間の距離B,B、及び一対の側面近接部間の距離Bを、それぞれ4回測定した。4回の測定結果を、表1の実施例1-1から実施例1-4にそれぞれ示す。また、各距離の測定結果と上記実施形態1に記載した式(1),式(2)を用いて、各実施例について第1膨出率R及び第2膨出率Rを算出した。結果を表1に示す。
[Measurement of each distance and calculation of bulge rate]
Regarding the obtained heat exchanger plate , as shown in FIG . The distances B 1 and B 3 between the side edges and the distance B 2 between the pair of side edges were each measured four times. The results of the four measurements are shown in Examples 1-1 to 1-4 in Table 1, respectively. In addition, the first bulge ratio R 1 and the second bulge ratio R 2 were calculated for each example using the measurement results of each distance and equations ( 1 ) and (2) described in Embodiment 1 above. . The results are shown in Table 1.

尚、測定されたAまたはAのうち値が大きい方を、上記式(1)におけるAとみなしてRを算出し、測定されたBまたはBのうち値が大きい方を、上記式(2)におけるBとみなしてRを算出している。例えば、4回目の測定結果である実施例1-4では、Aを上記式(1)におけるAとみなしてRを算出し、Bを上記式(2)におけるBとみなしてRを算出している。また、参考例1には、各距離について4回分の測定結果の平均値と当該平均値に基づいて算出された膨出率R,Rを示している。 The larger of the measured values A1 or A3 is regarded as A1 in the above formula ( 1 ) to calculate R1 , and the larger of the measured values B1 or B3 is regarded as B1 in the above formula (2) to calculate R2 . For example, in Example 1-4, which is the result of the fourth measurement, A3 is regarded as A1 in the above formula ( 1 ) to calculate R1, and B3 is regarded as B1 in the above formula (2) to calculate R2. Reference Example 1 also shows the average value of the four measurement results for each distance and the swelling ratios R1 and R2 calculated based on the average value.

[断面観察]
基材と嵌合部材とにより形成される内部空間が延びる方向(伝熱媒体が流れる方向)に直交する断面(図2に示す断面)を露出させるように伝熱板を部分的に切断し、当該断面を目視にて観察した。基材と嵌合部材との当接部分において隙間のない状態を「〇」とし、一部隙間のある状態を「×」とした。結果を表1に示す。
[Cross-sectional observation]
Partially cutting the heat transfer plate to expose a cross section (the cross section shown in FIG. 2) perpendicular to the direction in which the internal space formed by the base material and the fitting member extends (the direction in which the heat transfer medium flows); The cross section was visually observed. A state in which there was no gap in the contact portion between the base material and the fitting member was marked as "O", and a state in which there was a partial gap was marked as "x". The results are shown in Table 1.

[リークテスト]
伝熱板において伝熱媒体が通る流路(内部空間)の一端(図1の2A)を塞ぎ、他端(図1の2B)をヘリウムリークディテクタに接続した後、内部空間を真空にして、伝熱板の表面にヘリウムを吹き付け、ヘリウムの漏れの有無を評価した(真空吹付法)。ヘリウムの漏れが無い場合を「〇」とし、ヘリウムの漏れがあった場合を「×」とした。結果を表1に示す。
[Leak test]
One end (2A in FIG. 1) of the flow path (internal space) through which the heat transfer medium passes in the heat transfer plate was blocked, and the other end (2B in FIG. 1) was connected to a helium leak detector. The internal space was then evacuated, and helium was sprayed onto the surface of the heat transfer plate to evaluate the presence or absence of helium leakage (vacuum spray method). Cases where there was no helium leakage were marked with "◯", and cases where there was a helium leak were marked with "X". The results are shown in Table 1.

<比較例1>
上記実施例と同様の製造方法により、対向面及び一対の第2側面が目視にて殆ど膨出していない伝熱板を製造した。この伝熱板について、対向端部と第2底面との間の距離A,A、対向近接部と第2底面との間の距離A、一対の側面端部間の距離B,B、及び一対の側面近接部間の距離Bを測定し、上記実施形態1に記載した式(1),式(2)を用いて、第1膨出率R及び第2膨出率Rを算出した。さらに、上記実施例と同様の断面観察及びリークテストを行った。結果を表1に示す。
<Comparative example 1>
A heat exchanger plate in which the opposing surface and the pair of second side surfaces were hardly visually bulged was manufactured using the same manufacturing method as in the above example. Regarding this heat exchanger plate, the distances A 1 and A 3 between the opposing ends and the second bottom surface, the distance A 2 between the opposing proximal portion and the second bottom surface, the distance B 1 between the pair of side edges, B 3 and the distance B 2 between the pair of adjacent side surfaces, and using equations (1) and (2) described in Embodiment 1 above, the first bulge ratio R 1 and the second bulge are determined. The rate R2 was calculated. Furthermore, the same cross-sectional observation and leak test as in the above example was performed. The results are shown in Table 1.

Figure 0007457760000001
Figure 0007457760000001

実施例1-1から実施例1-4では、比較例1に比して第1膨出率R及び第2膨出率Rが高く、断面観察及びリークテストでも不具合は見られなかった。参考例1に示すように、各距離の4回の測定の結果、第1膨出率Rの平均値は0.5%であり、第2膨出率Rの平均値は0.5%であった。このような膨出率となる伝熱板では、基材と嵌合部材とが好適に鍛接されていると考えられる。各距離の4回の測定結果について、第1膨出率Rは、第2膨出率Rよりもばらつきがある(各実施例のうち、第1膨出率Rの最小値は0.3%であり最大値は0.8%であるのに対して、第2膨出率Rの最小値は0.5%であり最大値は0.7%である)。比較例1では、断面観察の結果、対向面及び一対の第2側面が目視にて殆ど膨出しておらず、嵌合部材と第1底面との間に隙間が見られた。 In Examples 1-1 to 1-4, the first bulge ratio R 1 and the second bulge ratio R 2 were higher than in Comparative Example 1, and no defects were observed in cross-sectional observation and leak tests. . As shown in Reference Example 1, as a result of four measurements at each distance, the average value of the first bulge ratio R1 was 0.5%, and the average value of the second bulge ratio R2 was 0.5%. %Met. In a heat exchanger plate having such a swelling ratio, it is considered that the base material and the fitting member are suitably forge-welded. Regarding the measurement results of four times for each distance, the first bulge ratio R 1 has more variation than the second bulge ratio R 2 (among the examples, the minimum value of the first bulge ratio R 1 is 0 .3% and the maximum value is 0.8%, whereas the minimum value of the second bulge ratio R2 is 0.5% and the maximum value is 0.7%). In Comparative Example 1, as a result of cross-sectional observation, it was found that the opposing surface and the pair of second side surfaces were hardly bulged visually, and a gap was observed between the fitting member and the first bottom surface.

<他の実施形態>
本開示は上記記述及び図面によって説明した実施形態に限定されず、例えば次のような実施形態も本開示の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
<Other embodiments>
The present disclosure is not limited to the embodiments described above and illustrated in the drawings; for example, the following embodiments are also included within the technical scope of the present disclosure, and various modifications other than those described below may be made without departing from the spirit of the disclosure. It can be implemented by

(1)上記実施形態以外にも、溝部や嵌合部材の形状は適宜変更可能である。基材の表面に形成された溝部のパターン(伝熱媒体が通る流路の平面形状)については特に限定されない。また、溝部の寸法や断面形状も特に限定されない。更に、嵌合部材の厚さは、特に限定されず、内部空間を通る伝熱媒体の圧力等を考慮し、耐圧性・気密性が確保されるような厚さであればよい。 (1) In addition to the embodiments described above, the shapes of the groove and the fitting member can be changed as appropriate. The pattern of the grooves formed on the surface of the base material (the planar shape of the flow path through which the heat transfer medium passes) is not particularly limited. Furthermore, the dimensions and cross-sectional shape of the groove are not particularly limited. Furthermore, the thickness of the fitting member is not particularly limited, and may be any thickness that ensures pressure resistance and airtightness in consideration of the pressure of the heat transfer medium passing through the internal space.

(2)上記実施形態では、一対の第2側面について、いずれも膨出した形をなしていることとしたが、これに限定されない。例えば、一対の第2側面のうち一方だけが膨出した形をなしていてもよい。 (2) In the above embodiment, both of the pair of second side surfaces have a bulged shape, but the present invention is not limited to this. For example, only one of the pair of second side surfaces may be bulged.

(3)距離Aは、距離Aと距離Aの両方に対し、第1膨出率Rが0.3%以上となる構成であってもよい。また、距離Bは、距離Bと距離Bの両方に対し、第2膨出率Rが0.5%以上となる構成であってもよい。 (3) The distance A2 may be configured such that the first expansion rate R1 is 0.3% or more for both the distance A1 and the distance A3 . Also, the distance B2 may be configured such that the second expansion rate R2 is 0.5% or more for both the distance B1 and the distance B3 .

1,201…基材、1A,201A…表面、3,203…嵌合部材、10,210…第1溝部、11,211…第1側面、20,220…第2溝部、21,221…第2側面、21B1,21B3…側面端部、21B2…側面近接部、22,222…第2底面、31,231…対向面、31A1,31A3…対向端部、31A2…対向近接部、100…伝熱板 DESCRIPTION OF SYMBOLS 1,201...Base material, 1A,201A...Surface, 3,203...Fitting member, 10,210...1st groove part, 11,211...1st side surface, 20,220...2nd groove part, 21,221...th 2 side surfaces, 21B1, 21B3... side surface end, 21B2... side surface proximate portion, 22, 222... second bottom surface, 31, 231... opposing surface, 31A1, 31A3... opposing end, 31A2... opposing proximate portion, 100... heat transfer board

Claims (3)

第1溝部と前記第1溝部から窪んだ第2溝部とを有し、金属からなる基材と、
前記第1溝部に嵌合し、金属からなる嵌合部材と、を備え、
前記第1溝部は、前記基材の表面から立ち下がり、互いに対向する一対の第1側面を備え、
前記第2溝部は、
当該第2溝部の底を構成する底面と、
前記底面から立ち上がり、互いに対向する一対の第2側面と、を備え、
前記一対の第2側面間の距離は、前記一対の第1側面間の距離よりも小さく、
前記一対の第2側面は、一方の前記第2側面が、他方の前記第2側面側に向かって膨出すると共に、前記他方の第2側面が、前記一方の第2側面に向かって膨出しており、
前記嵌合部材において前記底面に対向する対向面は、前記底面側に向かって膨出しており、
前記基材の前記第1溝部と前記嵌合部材との当接部分は金属結合している、伝熱板。
a base material made of metal, the base material having a first groove portion and a second groove portion recessed from the first groove portion;
a fitting member made of metal and fitted into the first groove portion,
The first groove portion has a pair of first side surfaces that extend downward from the surface of the base material and face each other,
The second groove portion is
A bottom surface that constitutes a bottom of the second groove portion;
a pair of second side surfaces rising from the bottom surface and facing each other;
a distance between the pair of second side surfaces is smaller than a distance between the pair of first side surfaces;
one of the pair of second side surfaces bulges toward the other of the second side surfaces , and the other of the second side surfaces bulges toward the one of the second side surfaces ,
The fitting member has an opposing surface that faces the bottom surface and bulges out toward the bottom surface ,
A heat transfer plate , wherein a contact portion between the first groove portion of the base material and the fitting member is metallurgically bonded .
前記対向面は、
第2側面側の端部である対向端部と、
前記底面に最も近接した対向近接部と、を備え、
前記対向端部と前記底面との間の距離をAとし、前記対向近接部と前記底面との間の距離をAとした場合に、下記式(1)を満たす第1膨出率R(%)が0.3%以上である、請求項1に記載の伝熱板。
(%)={(A-A)/2A}×100・・・式(1)
The opposing surface is
an opposing end that is an end on the second side surface side;
an opposing proximal portion closest to the bottom surface;
When the distance between the opposing end and the bottom surface is A1 , and the distance between the opposing proximal portion and the bottom surface is A2 , a first bulge ratio R that satisfies the following formula (1) The heat exchanger plate according to claim 1, wherein 1 (%) is 0.3% or more.
R 1 (%) = {(A 1 - A 2 )/2A 2 }×100...Formula (1)
前記一対の第2側面は、
前記底面側又は前記対向面側の端部である一対の側面端部と、
互いに最も近接した一対の側面近接部と、を備え、
前記一対の側面端部間の距離をBとし、前記一対の側面近接部間の距離をBとした場合に、下記式(2)を満たす第2膨出率R(%)が0.5%以上である、請求項1または請求項2に記載の伝熱板。
(%)={(B-B)/2B}×100・・・式(2)
The pair of second side surfaces are
A pair of side end portions which are end portions on the bottom surface side or the opposing surface side;
a pair of side adjacent portions closest to each other;
The heat transfer plate according to claim 1 or claim 2 , wherein, when the distance between the pair of side end portions is B1 and the distance between the pair of side adjacent portions is B2, a second expansion rate R2 (%) satisfying the following formula (2) is 0.5% or more.
R 2 (%)={(B 1 −B 2 )/2B 2 }×100 (2)
JP2022121090A 2022-07-29 2022-07-29 heat transfer plate Active JP7457760B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022121090A JP7457760B2 (en) 2022-07-29 2022-07-29 heat transfer plate
PCT/JP2023/019058 WO2024024235A1 (en) 2022-07-29 2023-05-23 Heat transfer plate
TW112120152A TW202405364A (en) 2022-07-29 2023-05-30 Heat transfer plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022121090A JP7457760B2 (en) 2022-07-29 2022-07-29 heat transfer plate

Publications (2)

Publication Number Publication Date
JP2024018045A JP2024018045A (en) 2024-02-08
JP7457760B2 true JP7457760B2 (en) 2024-03-28

Family

ID=89706093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022121090A Active JP7457760B2 (en) 2022-07-29 2022-07-29 heat transfer plate

Country Status (3)

Country Link
JP (1) JP7457760B2 (en)
TW (1) TW202405364A (en)
WO (1) WO2024024235A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000018867A (en) 1998-06-23 2000-01-18 Mitsubishi Heavy Ind Ltd Tube material for heat exchanger and heat exchanger
US20040112572A1 (en) 2002-12-17 2004-06-17 Moon Seok Hwan Micro heat pipe with poligonal cross-section manufactured via extrusion or drawing
JP2006342367A (en) 2005-06-07 2006-12-21 Hitachi Cable Ltd Cooling plate
US20120291997A1 (en) 2011-05-20 2012-11-22 Chien-An Chen Liquid cooling device
JP2014240706A (en) 2013-06-11 2014-12-25 京浜ラムテック株式会社 Heat transfer plate and manufacturing method thereof
WO2015093619A1 (en) 2013-12-21 2015-06-25 京セラ株式会社 Heat exchanger member and heat exchanger
JP2018194273A (en) 2017-05-22 2018-12-06 株式会社Uacj鋳鍛 Heat transfer plate for vacuum device and manufacturing method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000018867A (en) 1998-06-23 2000-01-18 Mitsubishi Heavy Ind Ltd Tube material for heat exchanger and heat exchanger
US20040112572A1 (en) 2002-12-17 2004-06-17 Moon Seok Hwan Micro heat pipe with poligonal cross-section manufactured via extrusion or drawing
JP2006342367A (en) 2005-06-07 2006-12-21 Hitachi Cable Ltd Cooling plate
US20120291997A1 (en) 2011-05-20 2012-11-22 Chien-An Chen Liquid cooling device
JP2014240706A (en) 2013-06-11 2014-12-25 京浜ラムテック株式会社 Heat transfer plate and manufacturing method thereof
WO2015093619A1 (en) 2013-12-21 2015-06-25 京セラ株式会社 Heat exchanger member and heat exchanger
JP2018194273A (en) 2017-05-22 2018-12-06 株式会社Uacj鋳鍛 Heat transfer plate for vacuum device and manufacturing method thereof

Also Published As

Publication number Publication date
WO2024024235A1 (en) 2024-02-01
TW202405364A (en) 2024-02-01
JP2024018045A (en) 2024-02-08

Similar Documents

Publication Publication Date Title
US11150030B2 (en) Vapor chamber
US10060687B2 (en) Connecting member and micro-channel heat exchanger
TWI669405B (en) Backing plate (backing plate), sputtering target and their manufacturing method
US10744603B2 (en) Heat exchangers with plates having surface patterns for enhancing flatness and methods for manufacturing same
US9863721B2 (en) Heat exchanger
JP2011174689A (en) Method of manufacturing plate type heat exchanger and the plate type heat exchanger
JP6377915B2 (en) Plate heat exchanger and manufacturing method thereof
JP7457760B2 (en) heat transfer plate
CN106715028B (en) Electric joint method and electric engagement device
JP6948832B2 (en) Heat transfer plate for vacuum equipment and its manufacturing method
JP4868737B2 (en) Heater plate and heater plate manufacturing method
JP2015152283A (en) Plate type heat exchanger and method of manufacturing the same
CN211205018U (en) Box-shaped laminated heat exchanger
CN112665430A (en) Thin type temperature-equalizing plate and manufacturing method thereof
US12044487B2 (en) Plate-type heat exchanger and a method for manufacturing same
JP6944469B2 (en) Metal plate burring method
JP6153584B2 (en) Method for producing metal plate, and use of metal plate produced by the production method for plate heat exchanger
JP6377914B2 (en) Plate heat exchanger and manufacturing method thereof
KR102094532B1 (en) Plate type heat exchanger
CN216894082U (en) Spacing strip, door and window
JP6479603B2 (en) Steel plate for welding backing
TW201814234A (en) Titanium plate heat exchanger
JP6664989B2 (en) Metal plate and plate heat exchanger
KR101972523B1 (en) Welded type plate heat exchanger for improved pressure resistant
JP5841823B2 (en) Target assembly and sputtering target

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240229

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240315

R150 Certificate of patent or registration of utility model

Ref document number: 7457760

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150