JP2002318086A - Heat exchanger tube - Google Patents

Heat exchanger tube

Info

Publication number
JP2002318086A
JP2002318086A JP2001116933A JP2001116933A JP2002318086A JP 2002318086 A JP2002318086 A JP 2002318086A JP 2001116933 A JP2001116933 A JP 2001116933A JP 2001116933 A JP2001116933 A JP 2001116933A JP 2002318086 A JP2002318086 A JP 2002318086A
Authority
JP
Japan
Prior art keywords
hole
flat tube
heat exchanger
ribs
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001116933A
Other languages
Japanese (ja)
Inventor
Takashi Yoshida
吉田  敬
Taisuke Ueno
泰典 植野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Climate Systems Corp
Original Assignee
Japan Climate Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Climate Systems Corp filed Critical Japan Climate Systems Corp
Priority to JP2001116933A priority Critical patent/JP2002318086A/en
Publication of JP2002318086A publication Critical patent/JP2002318086A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve heat transfer efficiency more than conventionally by reducing the area of a zone with a slow flow velocity, since a fluid diameter D is in proportion to the area of a hole and in inverse proportion to the length of the periphery of the hole to cause differences in the flow velocity and the like of refrigerant flowing inside and the heat exchange efficiency in some shapes of the hole even in the same fluid diameter. SOLUTION: In the perforated type flat tube of a heat exchanger, the fluid diameter of the hole of the flat tube is 0.6 mm to 1.1 mm, and a plurality of ribs projecting on the inner peripheral surface of the hole are provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、コンデンサ等の熱
交換器に使用される熱交換器用チューブに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger tube used for a heat exchanger such as a condenser.

【0002】[0002]

【従来の技術】一般的に、コンデンサ等の熱交換器で
は、熱交換部に高圧の熱交換流体を循環させるための熱
交換器用チューブが配置されており、従来、このような
熱交換器用チューブとして、例えば、特開平06−21
3534号公報に開示されたものが知られている。
2. Description of the Related Art Generally, a heat exchanger such as a condenser is provided with a heat exchanger tube for circulating a high-pressure heat exchange fluid in a heat exchange section. For example, Japanese Patent Application Laid-Open No. H06-21
The one disclosed in Japanese Patent No. 3534 is known.

【0003】この種の熱交換器用チューブを用いた熱交
換器はマルチフロー型の凝縮器が知られている。即ち、
対向配置されるヘッダータンクの間に扁平チューブと放
熱フィンとが積層配置されている。各ヘッダータンク内
には、セパレータが所定位置に配設されており、扁平チ
ューブを通じてヘッダータンク間を蛇行状に冷媒が流れ
るように構成されている。
As a heat exchanger using such a heat exchanger tube, a multi-flow type condenser is known. That is,
The flat tubes and the radiating fins are stacked and arranged between the header tanks arranged to face each other. In each header tank, a separator is provided at a predetermined position, and the refrigerant flows in a meandering manner between the header tanks through the flat tubes.

【0004】この種の扁平チューブは、多穴を有する扁
平チューブを一体押出しで成形している。この穴の大き
さや数値は所定範囲で設定されている(図8)。穴の数
を多くすると、穴間に仕切壁が多く設けられるので、扁
平チューブの変形防止上は有効である。しかし、1つの
穴の大きさが小さくなるために、製作が困難となる。そ
れとともに管内側の圧力損失が増加することにより冷媒
圧力が低下し、それに伴なって冷媒の凝縮温度が低下す
る。その結果、外気温と冷媒との温度差が小さくなって
熱交換効率が低下する。
[0004] This type of flat tube is formed by integrally extruding a flat tube having multiple holes. The size and numerical value of this hole are set within a predetermined range (FIG. 8). Increasing the number of holes increases the number of partition walls between the holes, which is effective in preventing deformation of the flat tube. However, manufacturing becomes difficult because the size of one hole is small. At the same time, the pressure loss inside the tube increases, so that the refrigerant pressure decreases, and the condensing temperature of the refrigerant decreases accordingly. As a result, the temperature difference between the outside air temperature and the refrigerant decreases, and the heat exchange efficiency decreases.

【0005】一方、扁平チューブの穴数を少なくする
と、仕切壁が少なくなることにより、強度不足になり、
扁平チューブが変形する不具合を発生する。それととも
に、冷媒の流速が低下することにより、管内側熱伝達率
が小さくなり、また管内側面積の低下により性能が低下
するという事情がある。
On the other hand, when the number of holes in the flat tube is reduced, the number of partition walls is reduced, resulting in insufficient strength.
The flat tube is deformed. At the same time, when the flow rate of the refrigerant decreases, the heat transfer coefficient inside the tube decreases, and the performance decreases due to the decrease in the area inside the tube.

【0006】これらのことから、適切な穴の数や大きさ
が存在するはずである。穴面積(S)に対する穴周囲の
長さ(L)の関係で求められる流体直径(D)を適切な
数値に設定することが提案されている。 D=4×S/L 例えば、特開平06−213534号公報では、0.6
0mm<D<1.15mmにして、扁平チューブ間を蛇
行して流れる経路管の長さを設定することを開示してい
る。
[0006] From these, there should be an appropriate number and size of holes. It has been proposed to set the fluid diameter (D) obtained from the relationship between the hole area (S) and the length around the hole (L) to an appropriate value. D = 4 × S / L For example, in Japanese Patent Application Laid-Open No. 06-213534, 0.6
It discloses that 0 mm <D <1.15 mm is set and the length of the path pipe that flows meandering between the flat tubes is set.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、流体直
径Dは、D=4×S/Lの関係から、穴面積に比例し、
穴周囲の長さに反比例するが、同じ流体直径であって
も、穴形状が丸形状、多角形状等によっては、内部を流
れる冷媒の流速分布等が異なり、熱交換効率が異なるは
ずである。
However, the fluid diameter D is proportional to the hole area from the relation of D = 4 × S / L.
Although it is inversely proportional to the perimeter of the hole, even if the fluid diameter is the same, depending on the hole shape, such as a round shape or a polygonal shape, the flow velocity distribution of the refrigerant flowing inside is different and the heat exchange efficiency should be different.

【0008】例えば、扁平チューブの個々の穴形状を矩
形状にした場合、図6で示すように、中央部分では流速
が早く、四角部分では流速が遅くなり、熱伝達効率が悪
い。図6の斜線部分が流速の遅いエリアを示す。穴形状
を三角形状にしても、図7の斜線で示すように、三つの
角で流速が遅く、熱伝達効率が悪い。特に、これらの形
状では、四角や三角部分の流速の遅い領域面積が大き
く、熱伝達効率が劣る結果となっている。
For example, when the shape of each hole of the flat tube is rectangular, as shown in FIG. 6, the flow velocity is high in the central part and the flow velocity is low in the square part, so that the heat transfer efficiency is poor. The hatched portion in FIG. 6 indicates an area where the flow velocity is low. Even if the shape of the hole is triangular, the flow velocity is slow at three corners and the heat transfer efficiency is poor, as shown by hatching in FIG. In particular, in these shapes, the area of the region where the flow velocity is low in the square or triangular portion is large, resulting in poor heat transfer efficiency.

【0009】本発明は角の流速の遅い領域の面積を少な
くすることにより、熱伝達効率を従来よりも改善するこ
とを狙いとする。このような問題を解決するために、
扁平チューブの穴壁に内部に突出する突起を形成し、穴
中央部分と周囲との流速差を少なくし、かつ流速の遅い
領域の面積を少なくすることを目的とする。
It is an object of the present invention to improve the heat transfer efficiency as compared with the prior art by reducing the area of the region where the angular flow velocity is low. To solve such a problem,
An object of the present invention is to form a protrusion protruding into the inside of a hole wall of a flat tube, reduce the flow velocity difference between the central part of the hole and the periphery, and reduce the area of a region where the flow velocity is low.

【0010】[0010]

【課題を解決するための手段】請求項1の発明は、熱交
換器の多穴式扁平チューブにおいて、扁平チューブの穴
の流体直径が0.6mm〜1.1mmであって、かつ穴
の内周面に突出するリブを複数個設けてなる構成であ
り、熱交換効率に優れた熱交換器を得られる。
According to a first aspect of the present invention, there is provided a multi-well flat tube of a heat exchanger, wherein the fluid diameter of the hole of the flat tube is 0.6 mm to 1.1 mm, and This is a configuration in which a plurality of ribs protruding from the peripheral surface are provided, and a heat exchanger excellent in heat exchange efficiency can be obtained.

【0011】請求項2の発明は、請求項1記載の熱交換
器用チューブにおいて、1穴当たりのリブ数が4〜10
個である構成であり、更に熱交換効率の良い熱交換器を
得られる。
According to a second aspect of the present invention, in the heat exchanger tube according to the first aspect, the number of ribs per hole is 4 to 10.
It is possible to obtain a heat exchanger having more heat exchange efficiency.

【0012】請求項3の発明は、請求項1または2記載
の熱交換器用チューブにおいて、扁平チューブは押出し
チューブからなる構成であり、穴内部に突出するリブも
扁平チューブの押出し成形時に同時に成形することがで
き、製作工数、コストの増加を伴うことなく製造でき
る。
According to a third aspect of the present invention, in the heat exchanger tube according to the first or second aspect, the flat tube is constituted by an extruded tube, and the rib protruding into the hole is formed at the same time when the flat tube is extruded. It can be manufactured without increasing manufacturing man-hours and costs.

【0013】本発明では、熱交換効率の関係で、穴の流
体直径を0.6mm〜1.1mmの範囲に設定してい
る。この理由は、0.6mmより小さいものでは、穴形
状が小さくなりすぎる。そのため、管内圧損が増加し凝
縮温度が低下することにより熱交換効率が低下する。ま
た、扁平チューブ内の穴を製作することが非常に難しく
なる。穴の流体直径を1.1mmより大きくすると、大
きな穴となり、穴数が少なくなる。そのため、冷媒流速
が低下することによる管内側熱伝達率の低下及び管内側
面積の低下により性能が悪化する。
In the present invention, the fluid diameter of the hole is set in the range of 0.6 mm to 1.1 mm in view of the heat exchange efficiency. The reason for this is that if it is smaller than 0.6 mm, the hole shape becomes too small. Therefore, heat exchange efficiency is reduced due to an increase in pressure loss in the pipe and a decrease in condensation temperature. Also, it is very difficult to make a hole in a flat tube. When the fluid diameter of the hole is larger than 1.1 mm, the hole becomes large and the number of holes is reduced. Therefore, the performance is deteriorated due to a decrease in the heat transfer coefficient inside the tube and a decrease in the area inside the tube due to a decrease in the flow rate of the refrigerant.

【0014】また、リブ数は4個〜10個の範囲とする
ことが好ましい。4個よりも少ないと、それと同等の流
体直径の穴を得るには、穴の面積を小さくする必要があ
るが、穴の面積を小さくすると内部を流通する熱交換流
体の管内圧損が増大することによる性能低下と、リブの
数が少ないため内表面積近傍流速の遅い領域が増え管内
側熱伝達率が低下する。
The number of ribs is preferably in the range of 4 to 10. If the number is less than four, it is necessary to reduce the area of the hole in order to obtain a hole of the same fluid diameter. Owing to the small number of ribs, the number of regions near the inner surface area where the flow velocity is slow increases, and the heat transfer coefficient inside the tube decreases.

【0015】一方、リブ数を10個よりも多くすると、
同じ流体直径を得るためには、リブ高さを小さくする必
要がある。小さくなりすぎるとリブによって内表面積近
傍で流速の遅い領域を減少させる効果が弱くなり管内側
熱伝達率が低下する。
On the other hand, if the number of ribs is more than 10,
To obtain the same fluid diameter, the rib height must be reduced. If the diameter is too small, the effect of reducing the region where the flow velocity is low near the inner surface area by the rib is weakened, and the heat transfer coefficient inside the tube is reduced.

【0016】[0016]

【発明の実施の形態】以下に、本発明の一実施例を図面
に基づいて説明する。この実施例のマルチフロー型凝縮
機10は、図1に示すように、複数の扁平チューブ11
が放熱用の波状フィン12を介して積層されている。積
層された扁平チューブ11及び波状フィン12の上下に
サイドプレート13,14が設けられている。これらの
複数の扁平チューブ11の各開口端部が両側のヘッダー
タンク15,16に形成された挿入穴(図示せず)に挿
入されている。また、図示してないが、各ヘッダータン
ク15,16の上下の開口部は蓋部材により閉塞され、
各ヘッダータンク15,16の所定箇所には仕切板が設
けられている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. As shown in FIG. 1, the multi-flow condenser 10 of this embodiment includes a plurality of flat tubes 11.
Are laminated via the radiating fins 12 for heat radiation. Side plates 13 and 14 are provided above and below the laminated flat tube 11 and corrugated fin 12. The open ends of the plurality of flat tubes 11 are inserted into insertion holes (not shown) formed in the header tanks 15 and 16 on both sides. Although not shown, upper and lower openings of the header tanks 15 and 16 are closed by lid members.
A partition plate is provided at a predetermined position of each of the header tanks 15 and 16.

【0017】更に、一方のヘッダータンク15に入口接
続部18、他方のヘッダータンク16に出口接続部19
が設けられている。この入口接続部18から流入する熱
交換流体はヘッダータンク15,16、扁平チューブ1
1の間で複数回蛇行して通流され、出口接続部19から
流出する。尚、この実施例では、入口接続部18、出口
接続部19は別々のヘッダータンク15,16に設けら
れているが、同じヘッダータンクに設けるように流路を
形成しても良い。
Further, one header tank 15 has an inlet connection 18 and the other header tank 16 has an outlet connection 19.
Is provided. The heat exchange fluid flowing from the inlet connection 18 is supplied to the header tanks 15 and 16 and the flat tube 1.
The fluid flows in a meandering manner a plurality of times and flows out of the outlet connection portion 19. In this embodiment, the inlet connection portion 18 and the outlet connection portion 19 are provided in separate header tanks 15 and 16, however, a flow path may be formed so as to be provided in the same header tank.

【0018】上記各扁平チューブ11は、図4及び図5
に示すように、内部に仕切壁21を有し、この仕切壁2
1で仕切られた個々の穴22内を熱交換流体が通流する
ようになっている。穴22内周面の上下面に対向するリ
ブ23が形成されている。実施例では、リブ23は上下
面にそれぞれ図4では3個づつ、図5では5個づつ設け
られている。
Each of the flat tubes 11 is shown in FIGS.
As shown in FIG.
The heat exchange fluid flows through each of the holes 22 partitioned by 1. Ribs 23 facing the upper and lower surfaces of the inner peripheral surface of the hole 22 are formed. In the embodiment, three ribs 23 are provided on the upper and lower surfaces, respectively, in FIG. 4 and five in FIG.

【0019】次に、扁平チューブの製造方法を説明す
る。5個の穴を有し、個々の穴の上下面にリブを有する
扁平チューブが押出し成形により同時に成形される。従
来のリブのない扁平チューブを成形する場合と比較し
て、製作工数などに大差なく製作できる。
Next, a method of manufacturing a flat tube will be described. A flat tube having five holes and having ribs on the upper and lower surfaces of each hole is simultaneously formed by extrusion. Compared to the conventional case of forming a flat tube without ribs, it can be manufactured without much difference in the number of manufacturing steps.

【0020】穴内部のリブ数を変更し、流体直径も変更
した扁平チューブについて、放熱量比(%)を測定し
た。コアサイズ:コア幅=603mm、コア高さ=29
7mm、コア厚さ=18mmチューブ本数:26本、フ
ィンピッチは1.4、チューブは下記のサンプルa〜h
の8種類の押出しチューブを試作した。 a:14穴6リブ b:8穴10リブ c:6穴8
リブ d:7穴4リブ e:18穴0リブ f:10穴2リブ g:9穴2
リブ h:8穴0リブ 実験条件は、コンデンサ入口の空気温度が37℃、コン
デンサ入口圧力1.74MPa、コンデンサ入口のスー
パーヒート25℃、コンデンサ出口のサブクール5℃、
コンデンサ入口の風速1.5m/s、使用冷媒はHFC
−134aを採用した。
The heat release ratio (%) was measured for a flat tube in which the number of ribs inside the hole was changed and the fluid diameter was also changed. Core size: core width = 603 mm, core height = 29
7 mm, core thickness = 18 mm Number of tubes: 26, fin pitch is 1.4, tubes are the following samples a to h
Eight types of extrusion tubes were manufactured. a: 14 holes 6 ribs b: 8 holes 10 ribs c: 6 holes 8
Rib d: 7 hole 4 rib e: 18 hole 0 rib f: 10 hole 2 rib g: 9 hole 2
Rib h: 8 holes 0 ribs The experimental conditions were as follows: the air temperature at the condenser inlet was 37 ° C, the condenser inlet pressure was 1.74 MPa, the superheat was 25 ° C at the condenser inlet, the subcool was 5 ° C at the condenser outlet,
1.5m / s wind velocity at the inlet of condenser, HFC used
-134a was adopted.

【0021】サンプルa〜hについて、3パス及び4パ
スを試作し性能評価を行った。それぞれ性能の高いほう
を選択し、横軸に流体直径(mm)、縦軸に放熱量比
(%)をとり、測定した結果を図2に示す。図2に示す
ように、流体直径0.8〜0.9付近を頂点とした放物
線を描くように流体直径が大きくても、小さくても放熱
量比は低下する。この実験結果からして、流体直径は
0.6mm〜1.1mmとする。
With respect to the samples a to h, three passes and four passes were made as prototypes and their performance was evaluated. The higher performance was selected, the fluid diameter (mm) was plotted on the horizontal axis, and the heat release ratio (%) was plotted on the vertical axis, and the measurement results are shown in FIG. As shown in FIG. 2, even if the fluid diameter is large or small so as to draw a parabola having a peak near the fluid diameter of 0.8 to 0.9, the heat release ratio decreases. Based on the results of this experiment, the fluid diameter should be between 0.6 mm and 1.1 mm.

【0022】そして、この放物線が、リブ数が0〜2の
グループとリブ数が4〜10のグループでは異なった軌
跡上になった。リブ数が0〜2のグループとリブ数が4
〜10のグループとで性能が分かれるので、この2つの
グループについて、別の観点から性能を評価した。流体
直径がほぼ同じであるサンプルbとfについて、管内流
速と管内側熱伝達係数を比較した。その結果を図3に示
す。同じ流体直径1.1であっても、サンプルfの10
穴2リブに対してサンプルbの8穴10リブの構造のほ
うが管内側熱伝達係数が高い。このことは、サンプルb
のほうが熱交換効率が良いことを意味している。これ
は、サンプルfの10穴2リブに対してサンプルbの8
穴10リブの構造のほうが穴内周面近傍の低流速エリア
が少なくなっているからと思われる(図5参照)。この
実験結果からして、同じ流体直径でも、リブ数を特定の
範囲に設定すると熱交換効率が向上することが判明し
た。特にリブ数を4〜10とすることが好ましいと判っ
た。
The parabola has different trajectories in the group having 0 to 2 ribs and the group having 4 to 10 ribs. Group with 0-2 ribs and 4 ribs
Since the performance is divided into groups of 10 to 10, the performance of these two groups was evaluated from another viewpoint. With respect to the samples b and f having substantially the same fluid diameter, the flow velocity in the pipe and the heat transfer coefficient inside the pipe were compared. The result is shown in FIG. Even with the same fluid diameter of 1.1, 10 of sample f
The heat transfer coefficient inside the tube is higher in the structure of 8 holes and 10 ribs of the sample b than in the hole 2 rib. This means that sample b
Means that the heat exchange efficiency is better. This corresponds to 8 ribs of sample b against 10 ribs 2 ribs of sample f.
This is probably because the low-flow area near the inner surface of the hole is smaller in the structure of the hole 10 rib (see FIG. 5). From this experimental result, it has been found that, even with the same fluid diameter, setting the number of ribs in a specific range improves the heat exchange efficiency. In particular, it was found that the number of ribs was preferably 4 to 10.

【0023】この結果から、扁平チューブの穴の流体直
径を0.6mm〜1.1mmとし、かつ1穴当たりのリ
ブ数は4〜10個とすると最適な熱交換効率のものが得
られる。
From these results, it is possible to obtain an optimum heat exchange efficiency when the fluid diameter of the flat tube hole is 0.6 mm to 1.1 mm and the number of ribs per hole is 4 to 10 ribs.

【0024】[0024]

【発明の効果】本発明では、熱交換器の多穴式扁平チュ
ーブにおいて、扁平チューブの穴の流体直径が0.6m
m〜1.1mmであって、かつ穴の内周面に突出するリ
ブを複数個設けてなる構成とすることにより、熱交換効
率の優れた熱交換器用扁平チューブを得ることができ
る。
According to the present invention, in the multi-well flat tube of the heat exchanger, the fluid diameter of the hole of the flat tube is 0.6 m.
A flat tube for a heat exchanger having excellent heat exchange efficiency can be obtained by providing a plurality of ribs having a length of m to 1.1 mm and protruding from the inner peripheral surface of the hole.

【0025】また、更に1穴当たりのリブ数を4〜10
個とした場合には、更に熱交換効率の良い熱交換器用扁
平チューブが得られる。
Further, the number of ribs per hole is 4 to 10
When it is used, a flat tube for a heat exchanger having higher heat exchange efficiency can be obtained.

【0026】扁平チューブを押出しチューブからなる場
合には、穴内部に突出するリブも扁平チューブの押出し
成形時に同時に成形することができ、製作工数、コスト
の増加を伴うことなく製造できる。
When the flat tube is formed of an extruded tube, the rib protruding into the hole can be formed simultaneously with the extrusion of the flat tube, and can be manufactured without increasing the number of manufacturing steps and costs.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用した熱交換器を示す概略図であ
る。
FIG. 1 is a schematic diagram showing a heat exchanger to which the present invention is applied.

【図2】流体直径と放熱量比との関係を示す図である。FIG. 2 is a diagram showing a relationship between a fluid diameter and a heat radiation amount ratio.

【図3】管内流速と管内側熱伝達係数を示す図である。FIG. 3 is a diagram showing a flow velocity in a pipe and a heat transfer coefficient inside the pipe.

【図4】本発明の実施例による扁平チューブの断面図で
ある。
FIG. 4 is a cross-sectional view of a flat tube according to an embodiment of the present invention.

【図5】本発明の実施例による扁平チューブの穴形状を
示す図である。
FIG. 5 is a view showing a hole shape of a flat tube according to an embodiment of the present invention.

【図6】従来の扁平チューブの穴形状を示す図である。FIG. 6 is a view showing a hole shape of a conventional flat tube.

【図7】従来の扁平チューブの別の穴形状を示す図であ
る。
FIG. 7 is a view showing another hole shape of a conventional flat tube.

【図8】従来の扁平チューブの断面図である。FIG. 8 is a sectional view of a conventional flat tube.

【符号の説明】[Explanation of symbols]

10 熱交換器 11 扁平チューブ 12 波状フィン 13 サイドプレート 14 サイドプレート 15 ヘッダータンク 16 ヘッダータンク 18 入口接続部 19 出口接続部 DESCRIPTION OF SYMBOLS 10 Heat exchanger 11 Flat tube 12 Wavy fin 13 Side plate 14 Side plate 15 Header tank 16 Header tank 18 Inlet connection 19 Outlet connection

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】熱交換器の多穴式扁平チューブにおいて、
扁平チューブの穴の流体直径が0.6mm〜1.1mm
であって、かつ穴の内周面に突出するリブを複数個設け
てなることを特徴とする熱交換器用チューブ。
1. A multi-hole flat tube of a heat exchanger,
Fluid diameter of flat tube hole is 0.6mm ~ 1.1mm
A heat exchanger tube comprising a plurality of ribs protruding from an inner peripheral surface of a hole.
【請求項2】1穴当たりのリブ数が4〜10個であるこ
とを特徴とする請求項1記載の熱交換器用チューブ。
2. The heat exchanger tube according to claim 1, wherein the number of ribs per hole is 4 to 10.
【請求項3】該扁平チューブは押出しチューブからなる
ことを特徴とする請求項1または2記載の熱交換器用チ
ューブ。
3. The heat exchanger tube according to claim 1, wherein said flat tube is an extruded tube.
JP2001116933A 2001-04-16 2001-04-16 Heat exchanger tube Pending JP2002318086A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001116933A JP2002318086A (en) 2001-04-16 2001-04-16 Heat exchanger tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001116933A JP2002318086A (en) 2001-04-16 2001-04-16 Heat exchanger tube

Publications (1)

Publication Number Publication Date
JP2002318086A true JP2002318086A (en) 2002-10-31

Family

ID=18967585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001116933A Pending JP2002318086A (en) 2001-04-16 2001-04-16 Heat exchanger tube

Country Status (1)

Country Link
JP (1) JP2002318086A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100430502B1 (en) * 2001-08-28 2004-05-10 위니아만도 주식회사 Tube of defogging heater device for vehicle
KR100522668B1 (en) * 1998-11-14 2005-12-30 한라공조주식회사 Heat exchanger tube
JP2010038477A (en) * 2008-08-07 2010-02-18 Tokyo Radiator Mfg Co Ltd Porous tube for heat exchange
KR100954682B1 (en) 2008-03-14 2010-04-27 엘에스엠트론 주식회사 Intercooler for Vehicle
JP2012154495A (en) * 2011-01-21 2012-08-16 Daikin Industries Ltd Heat exchanger, and air conditioner
KR101207340B1 (en) 2010-08-27 2012-12-04 김진만 Heat exchanger with plate heat exchanger fin and zigzag curve tube and manufacturing method thereof
JP2013011401A (en) * 2011-06-29 2013-01-17 Mitsubishi Electric Corp Heat exchanger, refrigeration cycle circuit using the same, refrigerator and air conditioner using the refrigeration cycle circuit
KR20180077171A (en) * 2015-10-29 2018-07-06 가부시키가이샤 유에이씨제이 Aluminum extruded flat pore and heat exchanger
EP3239640A4 (en) * 2014-12-26 2018-09-26 Mitsubishi Electric Corporation Refrigeration cycle apparatus
WO2021095567A1 (en) * 2019-11-14 2021-05-20 ダイキン工業株式会社 Heat transfer pipe and heat exchanger

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62175588A (en) * 1985-10-02 1987-08-01 モダイン・マニユフアクチヤリング・カンパニ− Condenser with flow path having small fluid diameter
JPH06185885A (en) * 1992-07-24 1994-07-08 Furukawa Electric Co Ltd:The Flat multi-holed condensing and heat transfer pipe
JP2000018867A (en) * 1998-06-23 2000-01-18 Mitsubishi Heavy Ind Ltd Tube material for heat exchanger and heat exchanger
JP2000356488A (en) * 1999-06-11 2000-12-26 Showa Alum Corp Tube for heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62175588A (en) * 1985-10-02 1987-08-01 モダイン・マニユフアクチヤリング・カンパニ− Condenser with flow path having small fluid diameter
JPH06185885A (en) * 1992-07-24 1994-07-08 Furukawa Electric Co Ltd:The Flat multi-holed condensing and heat transfer pipe
JP2000018867A (en) * 1998-06-23 2000-01-18 Mitsubishi Heavy Ind Ltd Tube material for heat exchanger and heat exchanger
JP2000356488A (en) * 1999-06-11 2000-12-26 Showa Alum Corp Tube for heat exchanger

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100522668B1 (en) * 1998-11-14 2005-12-30 한라공조주식회사 Heat exchanger tube
KR100430502B1 (en) * 2001-08-28 2004-05-10 위니아만도 주식회사 Tube of defogging heater device for vehicle
KR100954682B1 (en) 2008-03-14 2010-04-27 엘에스엠트론 주식회사 Intercooler for Vehicle
JP2010038477A (en) * 2008-08-07 2010-02-18 Tokyo Radiator Mfg Co Ltd Porous tube for heat exchange
KR101207340B1 (en) 2010-08-27 2012-12-04 김진만 Heat exchanger with plate heat exchanger fin and zigzag curve tube and manufacturing method thereof
JP2012154495A (en) * 2011-01-21 2012-08-16 Daikin Industries Ltd Heat exchanger, and air conditioner
JP2013011401A (en) * 2011-06-29 2013-01-17 Mitsubishi Electric Corp Heat exchanger, refrigeration cycle circuit using the same, refrigerator and air conditioner using the refrigeration cycle circuit
EP3239640A4 (en) * 2014-12-26 2018-09-26 Mitsubishi Electric Corporation Refrigeration cycle apparatus
KR20180077171A (en) * 2015-10-29 2018-07-06 가부시키가이샤 유에이씨제이 Aluminum extruded flat pore and heat exchanger
US11009295B2 (en) * 2015-10-29 2021-05-18 Uacj Corporation Extruded aluminum flat multi-hole tube and heat exchanger
KR102634151B1 (en) * 2015-10-29 2024-02-06 가부시키가이샤 유에이씨제이 Aluminum extruded flat perforated tube and heat exchanger
WO2021095567A1 (en) * 2019-11-14 2021-05-20 ダイキン工業株式会社 Heat transfer pipe and heat exchanger
JP2021081081A (en) * 2019-11-14 2021-05-27 ダイキン工業株式会社 Heat transfer pipe and heat exchanger

Similar Documents

Publication Publication Date Title
JP4211998B2 (en) Heat exchanger plate
KR100265657B1 (en) Evaporator or condenser
US7055585B2 (en) Layered evaporator for use in motor vehicle air conditioners or the like, layered heat exchanger for providing the evaporator, and refrigeration cycle system comprising the evaporator
US20120103583A1 (en) Heat exchanger and fin for the same
US20090173480A1 (en) Louvered air center with vortex generating extensions for compact heat exchanger
US11009295B2 (en) Extruded aluminum flat multi-hole tube and heat exchanger
US11624565B2 (en) Header box and heat exchanger
JPH0198896A (en) Heat exchanger
KR101184208B1 (en) Heat exchanger
CN211855020U (en) Heat exchange tube and heat exchanger with same
JP2002318086A (en) Heat exchanger tube
JPH04177091A (en) Heat exchanger
JP2000018867A (en) Tube material for heat exchanger and heat exchanger
JP3661275B2 (en) Stacked evaporator
CN101782347A (en) Heat exchanger and fin thereof
CA2893104C (en) Tubing element for a heat exchanger means
KR100471593B1 (en) Heat exchanger
JPH05215482A (en) Heat exchanger
JPH0833287B2 (en) Aluminum condenser for air conditioner
JPH03117887A (en) Heat exchanger
JP2001133076A (en) Heat exchanger
JPH0459425A (en) Heat exchanger
JPH05340686A (en) Heat-exchanger
JPH02171591A (en) Laminated type heat exchanger
KR100606332B1 (en) Flat tube for heat exchanger for use in air conditioning or refrigeration systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110412