JPS62175588A - Condenser with flow path having small fluid diameter - Google Patents

Condenser with flow path having small fluid diameter

Info

Publication number
JPS62175588A
JPS62175588A JP61231359A JP23135986A JPS62175588A JP S62175588 A JPS62175588 A JP S62175588A JP 61231359 A JP61231359 A JP 61231359A JP 23135986 A JP23135986 A JP 23135986A JP S62175588 A JPS62175588 A JP S62175588A
Authority
JP
Japan
Prior art keywords
condenser
tube
headers
tubes
header
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61231359A
Other languages
Japanese (ja)
Other versions
JPH0587752B2 (en
Inventor
レオン・アーノルド・ガントリー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Modine Manufacturing Co
Original Assignee
Modine Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27120095&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPS62175588(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Modine Manufacturing Co filed Critical Modine Manufacturing Co
Publication of JPS62175588A publication Critical patent/JPS62175588A/en
Publication of JPH0587752B2 publication Critical patent/JPH0587752B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05383Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • F28D1/0478Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0243Header boxes having a circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0084Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2260/00Heat exchangers or heat exchange elements having special size, e.g. microstructures
    • F28F2260/02Heat exchangers or heat exchange elements having special size, e.g. microstructures having microchannels

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Power Steering Mechanism (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Switches With Compound Operations (AREA)
  • Catching Or Destruction (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

The condenser comprises a pair of flow headers (10,12), one of which has a vapour inlet whilst the other has a condensate outlet (26). Flattened distribution tubes (20) between the headers define discrete hydraulically parallel fluid pathways. Each fluid pathway has an hydraulic diameter between 0.015 to 0.040 inches. There are several condenser tubes each extending between and in fluid communication with the headers.

Description

【発明の詳細な説明】 (発明の分野) 本発明は凝縮装置に関し、詳しくは冷媒を凝縮する為の
空調或いは冷却(凍)システムに於いて使用される様な
凝縮器に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to condensing devices, and more particularly to condensers such as those used in air conditioning or refrigeration systems for condensing refrigerants.

(発明の背景) 現在、空調用あるいは冷却システムに於いて使用される
多くの凝縮器は、蒸気側に一つあるいはそれ以上の波形
導管、即ち凝縮器管を使用する。
BACKGROUND OF THE INVENTION Many condensers currently used in air conditioning or refrigeration systems use one or more corrugated conduits, or condenser tubes, on the vapor side.

そうした管内部の流通路は、システムのエネルギー要件
を必然的に増大させる過剰な圧力差を蒸気入り口から出
口にかけて存在させない様、蒸気の流れ及びあるいは凝
縮液に対する高い抵抗性を回避するべく比較的大型であ
る。
The flow passages within such tubes are relatively large to avoid high resistance to steam flow and/or condensate so that excessive pressure differentials do not exist from the steam inlet to the outlet, which would necessarily increase the energy requirements of the system. It is.

この事は結局、管の空気側が比較的大型となる事を意味
する。管の空気側が比較的大型である事によって、空気
側の前面面積の比較的大きな部分が管によって塞がれ、
それによって、熱伝達を増進する為に利用可能な空気側
フィンを配設し得る面積が少なくなる。
This ultimately means that the air side of the tube is relatively large. Because the air side of the tube is relatively large, a relatively large portion of the front surface area on the air side is blocked by the tube.
Thereby, there is less area available for arranging air side fins to enhance heat transfer.

結局、所望割合の熱伝達を維持する為の空気側の圧力降
下は所望されざる程に大きくなり、そしてそれに比例し
て、凝縮器の空気側を通して必要容量の空気を流通する
際のシステムエネルギー要件が所望されざる程に大きく
なる。本発明は前記問題を解決する為のものである。
Eventually, the pressure drop on the air side to maintain the desired rate of heat transfer becomes undesirably large, and the system energy requirements in passing the required volume of air through the air side of the condenser are proportionately large. becomes undesirably large. The present invention is intended to solve the above problem.

(発明の概要) 本発明の主要な目的は、空調用あるいは冷却システムに
於いて使用する為の新規且つ改良された凝縮器を提供す
る事にある。詳しくは、本発明の目的は、凝縮器管によ
って塞がれる空気側の前面面積がもつと少なく、空気側
圧力降下を増大させる事なく且つ蒸気及びあるいは凝縮
液側圧力降下を増大させる事なく、空気側熱伝達表面を
増大可能とする凝縮器を提供する事である。
SUMMARY OF THE INVENTION A primary object of the present invention is to provide a new and improved condenser for use in air conditioning or refrigeration systems. In particular, it is an object of the invention to have a small frontal area on the air side blocked by the condenser tubes, without increasing the air side pressure drop and without increasing the steam and/or condensate side pressure drop; It is an object of the present invention to provide a condenser that allows the air side heat transfer surface to be increased.

本発明は、一方が蒸気入口を有し他方が凝縮液出口を有
して成る一対の離間したヘッダから構成される凝縮器の
具体例に於いて前記目的を達成する。
The present invention achieves this object in an embodiment of a condenser consisting of a pair of spaced headers, one having a steam inlet and the other having a condensate outlet.

該凝縮器に於いては、凝縮器管はヘッダ対間を伸延し且
つそれらと連通状態にある。凝縮器管は、ヘッダ同志間
に実質的に独立した複数の流体平行流路を画成する。各
流路の流体直径は約α015から1040インチ(約C
L4〜1.0メリメートル)の範囲である。
In the condenser, condenser tubes extend between and are in communication with the pair of headers. The condenser tubes define a plurality of substantially independent parallel fluid flow paths between the headers. The fluid diameter of each channel is approximately α015 to 1040 inches (approximately C
L4 to 1.0 melimeters).

好ましい具体例に於いては、凝縮液及びあるいは蒸気流
れに対する高い抵抗力を回避するに十分な数の複数のそ
うした凝縮器管が、相互並列流れ状状態に於いてヘッダ
同志間を伸延する。
In a preferred embodiment, a sufficient number of such condenser tubes extend between the headers in mutually parallel flow conditions to avoid high resistance to condensate and/or vapor flow.

本発明に展いては凝縮器管には平形管の使用が意図され
る。
The present invention contemplates the use of flat tubes for the condenser tube.

特に好ましい具体例に於いては、凝縮器管内部に収納さ
れた波形スペーサによって各凝縮器管内に複数の流路が
画成される。
In a particularly preferred embodiment, a plurality of flow passages are defined within each condenser tube by corrugated spacers housed within the condenser tube.

凝縮器管の外側に、隣り合う凝縮器管同志間を伸延して
フィンを設は得る。
Fins are provided on the outside of the condenser tubes and extend between adjacent condenser tubes.

本発明のヘッダは、凝縮器管の各端を受ける為のスロッ
トの如き開口を対向状態で有する、全体に筒状の管によ
って画成される。
The header of the present invention is defined by a generally cylindrical tube having opposing openings, such as slots, for receiving each end of the condenser tube.

(好ましい実施例の説明) 第1図には本発明に従う凝縮器が例示され、両側に隔置
された全体的に平行なヘッダ1o及び12を具備してい
る。本発明に従えば、ヘッダ10及び12は好ましくは
全体的に筒状の管から作製される。それら管の対向する
側面には、凝縮器管20の対応する端16および18を
受容する為の、全体的に平行な一列のスロットあるいは
開口14が設けられる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A condenser according to the invention is illustrated in FIG. 1 and includes generally parallel headers 1o and 12 spaced on either side. In accordance with the present invention, headers 10 and 12 are preferably made from generally cylindrical tubing. Opposing sides of the tubes are provided with a generally parallel row of slots or openings 14 for receiving corresponding ends 16 and 18 of condenser tubes 20.

好ましくは、ヘッダ10及び12の各々のスロット同志
間の番号22で示される部分に於いて、。
Preferably, in the portion indicated by number 22 between the slots of each of the headers 10 and 12.

米国特許出願番号第722.653号に於いてもっと完
全に説明される様な、圧力に対する耐力企改良する為の
、やや球形のドームが設けられる。ヘッダ10の一端は
、そこにろう接あるいは溶凄された蓋24によって閉塞
される。反対側の端には導管28を結合し得る部品26
がろう接あるいは溶接される。
A slightly spherical dome is provided for improved pressure resistance, as more fully described in U.S. Patent Application No. 722.653. One end of the header 10 is closed by a lid 24 that is brazed or fused thereto. At the opposite end there is a part 26 to which a conduit 28 can be connected.
soldered or welded.

ヘッダ12の下端は蓋24と類似のろう接あるいは溶接
された蓋30によって開基され、一方、その上端には然
るべき位置に部品32が溶接あるいはろう接される。凝
縮器の配向状態に依存して、部品26及び32の一方が
蒸気入り口として作用し、他方が凝縮液出口として作用
する。第1図の配向状態に対しては部品26が凝縮液出
口として作用しよう。
The lower end of the header 12 is opened by a soldered or welded lid 30 similar to the lid 24, while a component 32 is welded or soldered in place to its upper end. Depending on the orientation of the condenser, one of the parts 26 and 32 acts as a vapor inlet and the other as a condensate outlet. For the orientation of FIG. 1, part 26 would act as a condensate outlet.

複数の凝縮器管20が相互連通状態でヘッダ10及び1
2間を伸延する。管20は、幾何学的にもそしてまた流
れ方向に於いても相互に平行である。隣り合う管20同
志間に波形フィン34が配設されるが、もし所望であれ
ば平形フィンを使用し得る。上方及び下方溝部材36及
び58がヘッダ10及び12間に伸−延され且つシステ
ムに剛性を提供する為に然るべき手段によってヘッダ1
0及び12に結合される。
A plurality of condenser tubes 20 are connected to the headers 10 and 1 in mutual communication.
Distract between the two. The tubes 20 are parallel to each other both geometrically and in the flow direction. Corrugated fins 34 are disposed between adjacent tubes 20, although flat fins could be used if desired. Upper and lower channel members 36 and 58 extend between headers 10 and 12 and are connected to header 1 by appropriate means to provide rigidity to the system.
0 and 12.

第1図に示される様に容管20は平形管であり、それら
の内部には波形スペーサ或いは挿入体40が含まれる。
As shown in FIG. 1, the vessels 20 are flat tubes with corrugated spacers or inserts 40 included therein.

スペーサ40は第2図の如き断面を呈し、そして、理解
されるように交互の波頂がその全長さに沿って管20の
内側壁42と接触し、且つ隅肉44によってそこに結合
される。その結果、実質的に独立した、平行流れ流路4
6.48.50.52.54.56.58、及び60が
各管20内部に設けられる。つまり、そうした流路の一
つから各側に隣り合う流路への流れは実質的に無い。
The spacer 40 has a cross-section as shown in FIG. 2 and, as can be seen, the alternating crests contact the inner wall 42 of the tube 20 along its entire length and are joined thereto by fillets 44. . As a result, substantially independent, parallel flow channels 4
6.48.50.52.54.56.58, and 60 are provided inside each tube 20. That is, there is substantially no flow from one such flow path to the adjacent flow path on each side.

このことは結局、隣り合う流路46.48.5o。This results in adjacent channels 46.48.5o.

52.54.56.58及び60を区分する6壁がそれ
らの全長に渡って平形管20の両側面に結合されること
を意味する。つまり、熱伝導性が一段と低い状態で流体
が充満する間隙が存在しない。
This means that the six walls dividing 52, 54, 56, 58 and 60 are connected to both sides of the flat tube 20 over their entire length. That is, there are no gaps filled with fluid with lower thermal conductivity.

その結果、先に述べた複数の流体流路を分割する壁を介
しての、流体から管外側への熱伝達は最大化される。加
うるに、記載した寸法の独立流路に於いては表面張力現
象に基づく熱伝達の所望の効果が活用されると考えられ
ている。
As a result, heat transfer from the fluid to the outside of the tube via the walls dividing the plurality of fluid flow paths mentioned above is maximized. Additionally, it is believed that in independent channels of the dimensions described, the desired effects of heat transfer based on surface tension phenomena are exploited.

第2の利益は、本発明の如き凝縮器が圧縮器の出口側で
使用され、従って極めて高い圧力を受けると言う事実の
下に存在する。従来、こうした高い圧力は管20の内側
に加えられる。その場合、図示された波形フィン34の
代りに所謂I+プレー) IIフィンが使用される。該
プレートフィンは管20を拘束し、それによって凝縮器
用途に於て使用される内側圧力に対し管20を支持する
傾向を有する。それとは逆に、番号54で示した如き波
形フィンは、実質的な内側圧力に対し管20を支持する
事が出来ない。然し乍ら、本発明に従えば、波形フィン
熱交換体における所望の支持作用は、挿入体40及びそ
の波頂が容管20の内側壁42の全長に沿って結合され
ると言う事実によって実現される。この結合により、挿
入体40における種々の部位は、管20の内側圧力によ
って生ずる、管20を拡張しようとする力を吸収する為
に管20が加圧された場合に引張状態となる。
A second advantage resides in the fact that condensers such as the present invention are used on the outlet side of the compressor and are therefore subjected to extremely high pressures. Conventionally, these high pressures are applied to the inside of tube 20. In that case, so-called I+play II fins are used instead of the corrugated fins 34 shown. The plate fins tend to constrain the tube 20 and thereby support it against internal pressures used in condenser applications. Conversely, corrugated fins, such as those shown at 54, are incapable of supporting tube 20 against substantial internal pressure. However, according to the invention, the desired support effect in the corrugated fin heat exchanger is achieved by the fact that the insert 40 and its corrugations are joined along the entire length of the inner wall 42 of the vessel 20. . This coupling causes various regions of the insert 40 to be placed in tension when the tube 20 is pressurized to absorb forces that tend to expand the tube 20 caused by pressure inside the tube 20.

挿入体40を含むg20を形成し得る一手段が米国特許
第740.000号に記載され、また特に好ましいそう
した手段が米国特許第88ス223号に記載される。
One means by which g20 including insert 40 may be formed is described in US Pat. No. 740.000, and a particularly preferred such means is described in US Pat. No. 88,223.

本発明に従えば、各流路48.50.52.54.56
及び58は、そして挿入体40の形状によっては流路4
6及び60さえも同様に、約1015からα040イン
チ(約CL4〜1.02ミリメートル)の範囲の流体直
径を有する。斯界に於て知られる現在一般に行われる組
立て技術によれば、約0.035インチ(約cL9ミリ
メートル)の流体直径が最大の熱伝達効率及び組立上の
容易性を最適化する。流体直径(hydraulic 
diameter )は従来から定義される通りのもの
である、即ち、各流路の断面積に4を乗じそして対応す
る流路の濡れ周囲長で除したものである。
According to the invention, each channel 48.50.52.54.56
and 58 and, depending on the shape of the insert 40, the flow path 4.
6 and even 60 similarly have fluid diameters ranging from about 1015 to α040 inches (about CL4-1.02 millimeters). According to current common assembly techniques known in the art, a fluid diameter of about 0.035 inches (about cL9 mm) optimizes maximum heat transfer efficiency and ease of assembly. fluid diameter
diameter ) is as conventionally defined, ie, the cross-sectional area of each channel multiplied by 4 and divided by the wetted perimeter of the corresponding channel.

与えられた水力直径の値はR−12システムの凝縮器の
為のものである。異る冷媒を使用するシステムに於ては
幾分異る値が予測されよう。
The hydraulic diameter values given are for the R-12 system condenser. Somewhat different values may be expected in systems using different refrigerants.

前記寸法範囲内に於ては、コアを貫く空気流れ方向を横
断する管寸法を、口f能な限り小さくするのが望ましい
。この事が結局、もつと良好な熱伝達率を得る為に空気
側圧力降下を不利に増大させる事無く、フィン34の如
きフィンをコアに配設し得るもつと大きな前面面積を提
供させる。幾つかの例に於ては、骨幅を最小限化する事
によって一つ或いはそれ以上の付加的な管列を配設させ
得る。
Within the above size range, it is desirable to make the tube dimension transverse to the direction of air flow through the core as small as possible. This ultimately provides a larger front area on which fins, such as fins 34, can be placed in the core without unfavorably increasing the air side pressure drop in order to obtain better heat transfer coefficients. In some instances, minimizing bone width may allow for the placement of one or more additional tube rows.

この点に関し・好ましい具体例では所定の流体直径の通
路を有する押出し管とは違って第2図に例示された如き
別体のスペーサを具備する管の使用が意図されている。
In this regard, the preferred embodiment contemplates the use of a tube provided with a separate spacer, as illustrated in FIG. 2, as opposed to an extruded tube having a passageway of a given fluid diameter.

現時点で凝縮器の大量生産を経済的に実行可能とする、
現行の押出技術によ゛  つては、管肉厚は、ここに記
載された様な管及びスペーサを使用して所定圧力を支持
する為に必要な肉厚よりも一般的にもつと厚くなる。結
局、所定の流体直径に対するそうした押出管の全幅は、
管及びスペーサ組合せ体を使用した場合よりも幾分大き
くなってしまい、これは上記理由の為に所望されざる事
である。それにもかかわらず、本発明では前述の寸法範
囲内の流体直径の流路を具備する押出管の使用をも意図
するものである。
making mass production of condensers economically viable at this time;
With current extrusion technology, the tube wall thickness is generally greater than that required to support a given pressure using tubes and spacers such as those described herein. Ultimately, the total width of such an extruded tube for a given fluid diameter is
It is somewhat larger than if a tube and spacer combination were used, which is undesirable for the reasons mentioned above. Nevertheless, the present invention also contemplates the use of extruded tubes with fluid diameter channels within the aforementioned size ranges.

管外周長対管内儒れ周囲長の比率を、流路を冷媒がそこ
を容易に流通出来ない程に十分小さくならない限りに於
て出来る限り小さくする事も又、望ましい。これは蒸気
及び或いは導管側における熱伝達に対する抵抗を低下さ
せる。
It is also desirable to make the ratio of the tube outer circumference to the inner tube collapse circumference as small as possible without making the flow path sufficiently small that refrigerant cannot readily flow therethrough. This reduces the resistance to heat transfer on the steam and/or conduit side.

本発明の多くの利益は、第3図から第6図に例示された
データ及び以下の議論によって明らかである。例えば、
第3図には先行技術としての凝縮器コア製品に対して、
毎分450から3200標準立方フイート迄変化する空
気流れにおけるインチ寸法におけるキャビティ或いは流
体直径に対する熱伝達率が右側にプロットされる。この
データノ左側ニは、本発明に従って作製されたコアに対
して、経験的に得られたデータを使用して作成された熱
伝達モデルに基くコンピュータ出力曲線が示される。′
A′で指示される曲線は、長さ約24インチ(約61セ
ンチメートル)、管肉厚1015インチ(約α4ミリメ
ートル)、管主要寸法[L532インチ(約1&5ミリ
メートル)の管を使用する、2平方インチ(約5.08
平方七ンチメートル)の前面面積を有する第1図に示す
如きコアの為の、既述の空気流れにおける熱伝達を表す
。ここでの入口空気温度は110”tl約43.3℃)
、入口温度は180″F(約82.2°C)、また、R
−12システムに対する圧力は255 psig %そ
して凝縮後の流出冷媒の過冷却温度は2′F(約−16
7℃)と仮定している。コアの管とフィンとの間には、
1インチ(約25センチメートル)当り18枚のフィン
が配設される。該フィンの寸法は、cL625インチX
α540インチXl1006インチ(約15.9ミリメ
ートルX117ミリメードルX 0.15ミリメートル
)である。
The many benefits of the present invention are apparent from the data illustrated in FIGS. 3-6 and the discussion below. for example,
Figure 3 shows the condenser core product as the prior art.
The heat transfer coefficient versus cavity or fluid diameter in inch dimensions for air flows varying from 450 to 3200 standard cubic feet per minute is plotted on the right. On the left side of this data is shown a computer output curve based on a heat transfer model created using empirically obtained data for a core made in accordance with the present invention. ′
The curve designated A' is approximately 24 inches long (approximately 61 centimeters), tube wall thickness 1015 inches (approximately α4 mm), and tube major dimensions [L 532 inches (approximately 1 & 5 mm); square inch (approximately 5.08
Figure 1 represents the heat transfer in the air flow described above for a core as shown in Figure 1 having a frontal area of 7 inches squared. The inlet air temperature here is 110"tl approximately 43.3℃)
, the inlet temperature is 180″F (approximately 82.2°C), and R
The pressure on the -12 system is 255 psig% and the subcooling temperature of the effluent refrigerant after condensation is 2'F (approximately -16
7℃). Between the core tube and the fin,
There are 18 fins per inch (approximately 25 centimeters). The dimensions of the fin are cL625 inches
α540 inches x 1006 inches (approximately 15.9 mm x 117 mm x 0.15 mm).

If B Ifで指示される曲線は、容管における流路
長が倍、即ち管機が半分とされ且つ管長が倍とされた点
を除いては、同一のコアに対する同一の関係を示す。第
3図から認識される様に、本発明の使用を通し熱伝達は
約0.015インチから約0、040インチ(約[14
ミリメートルから約t02ミlJメートル)の流体直径
1flI¥囲に於て1、空気流れに依存して幾分の変動
を伴うが、有益に且つ実質的に増大する。
The curve designated If B If shows the same relationship for the same core, except that the channel length in the vessel tube is doubled, ie the tube machine is halved and the tube length is doubled. As seen in FIG. 3, heat transfer through use of the present invention ranges from about 0.015 inches to about 0.040 inches (about
For a fluid diameter of 1 flI from 1 mm to about t02 milJ meters), it advantageously and substantially increases, with some variation depending on the airflow.

第4図に於ては、以下に示す表−1に記載された寸法を
有する、本発明に従うコアの為の実際の試験データが、
本発明と類似の従来がらの凝縮器コアの為の実際の試験
データと比較される。従来からのコアの為のデータは同
様に表−1に記載される。
In FIG. 4, actual test data for a core according to the invention having the dimensions listed in Table 1 below are shown.
A comparison is made with actual test data for a conventional condenser core similar to the present invention. Data for the conventional core is also listed in Table-1.

本発明に従って作製されたコア及び従来からのコアは、
第4図に示される様な毎分1800標準立方フイート(
毎分約540標準立方メートル)における熱伝達量が毎
時26,0OOBTUであると言う同一の設計ポイント
を共に有している。但し、2つのコアが実際に観察され
た均等点は28.0OOBTU及び毎分2.、ooo標
準立方フィート(約毎分600標準立方メートル)に於
て生じた。これらパラメータは比較目的の為に使用可能
である。
Cores made according to the present invention and conventional cores are
1800 standard cubic feet per minute (as shown in Figure 4)
Both have the same design point of a heat transfer rate of 26,0 OOBTU per hour (approximately 540 standard cubic meters per minute). However, the actual observed equivalence of two cores is 28.0 OOBTU and 2.0 OOBTU/min. , ooo standard cubic feet (approximately 600 standard cubic meters per minute). These parameters can be used for comparison purposes.

従来からの凝縮器及び本発明を夫々示すl D I+及
びN E 11曲線を参照するに、双方に対しての冷媒
流量は広範囲の空気流れ値に渡ってほぼ同等である事を
認識されよう。この試験及び第4因から6図に例示され
た池の試験に対しては、180°F(約82.2°C)
、235 psiHに於て凝縮器人口に1−12システ
ムが適用された。流出冷媒は2″F(約−16,7”C
)に過冷却された。凝縮器に対する入口空気温度は11
0下(約416℃)であった。
Referring to the l D I+ and N E 11 curves representing a conventional condenser and the present invention, respectively, it will be appreciated that the refrigerant flow rate for both is approximately the same over a wide range of air flow values. For this test and the pond test illustrated in Figures 4 through 6, 180°F (approximately 82.2°C)
A 1-12 system was applied to the condenser population at , 235 psiH. The outflow refrigerant is 2″F (approximately -16,7″C)
) was supercooled. The inlet air temperature to the condenser is 11
The temperature was below 0 (approximately 416°C).

従来からのコアを横断しての冷媒側圧力降下が本発明に
従うコアを横断してのそれよりも大きいと言う事は、従
来からのシステムにおける圧縮機によって消費されるエ
ネルギーが本発明に従うそれよりも大きい事をもまた示
唆する。
The fact that the refrigerant side pressure drop across the conventional core is greater than that across the core according to the present invention means that the energy consumed by the compressor in the conventional system is greater than that according to the present invention. It also suggests something big.

曲線II F 11及びllG11も又、夫々従来から
の凝縮器及び本発明の凝縮器に対するものであり、同一
の空気流れ範囲に渡り匹敵する熱伝達量が示される。
Curves II F 11 and 11 G11 are also for the conventional condenser and the inventive condenser, respectively, and show comparable heat transfer over the same air flow range.

曲t、I If HII及びII JIIは、夫々従来
からの凝縮器及び本発明の凝縮器の為のものであり、凝
縮器を横断しての冷媒の圧力降下における相当な差を例
示する。これらは本発明の一つの利益を実証する。本発
明に従う凝縮器を横断しての圧力降下がずっと小さい事
により、冷媒の平均温度はそれが凝縮物形態或いは蒸気
形態であるとを問わず、従来からの凝縮器の場合よりも
高くなる。その結果、同一の入口空気温度に対しては一
層大きな温度差が存在することになりこれはフーリエの
法則に従って熱伝達の割合を増進させる。
Tracks t, I If HII and II JII are for a conventional condenser and a condenser of the present invention, respectively, and illustrate the considerable difference in refrigerant pressure drop across the condenser. These demonstrate one benefit of the present invention. Due to the much lower pressure drop across the condenser according to the invention, the average temperature of the refrigerant, whether in condensate or vapor form, is higher than in conventional condensers. As a result, for the same inlet air temperature there will be a larger temperature difference, which enhances the rate of heat transfer according to Fourier's law.

本発明に従うコアに於ては、空気側圧力降下も又、従来
のコアよりも小さい。これは2つの要因に基く、即ちコ
アの奥行きがもっと小さい事及び管によって塞がれる自
由流れ面積がもつと大きい事である。そしてそうした事
が結局、コアを通して所望の空気流れを差向けるに要す
るファンエネルギーの節約になる。しかも、曲線If 
F If及び1IGI′によって示される様に、熱伝達
率は実質的に同一のままである。
In the core according to the invention, the air side pressure drop is also lower than in conventional cores. This is based on two factors: the core depth is smaller and the free flow area occupied by the tube is larger. This ultimately saves the fan energy required to direct the desired airflow through the core. Moreover, the curve If
The heat transfer coefficient remains substantially the same, as indicated by F If and 1IGI'.

本発明に従うコアは、従来からのコアと比較して保持す
る冷媒量が少ない。従って、本発明のコアは冷媒の為の
システム要件を低減する。同様に、本発明のコアは奥行
が小さい事から設置に要する空間が小さくて済む。
Cores according to the invention retain less refrigerant than conventional cores. Therefore, the core of the present invention reduces system requirements for refrigerant. Similarly, since the core of the present invention has a small depth, it requires less space for installation.

表及び第4図に示されるデータから、本発明に従うコア
が従来からのコアよりもかなり@址である事を理解され
よう。斯くして、第5図に於て従来からのコアの1ボン
ド(約n4s′5kl)当りの熱伝達量(曲線II K
H)と、本発明の凝縮器の1ボンド当りの熱伝達量(曲
線If L″)とが種々の空気速度に於て比較される。
It can be seen from the data shown in the table and FIG. 4 that the core according to the present invention is significantly more robust than the conventional core. Thus, in Fig. 5, the amount of heat transfer per one bond (about n4s'5kl) of the conventional core (curve II K
H) and the amount of heat transfer per bond (curve If L'') of the condenser of the present invention are compared at various air velocities.

従って第5図は本発明の凝縮器を使用する事によって、
熱伝達能力を犠牲にする事無くシステムにおけるかなり
の軽量化を為し得る事を実証するものである。
Therefore, FIG. 5 shows that by using the condenser of the present invention,
This demonstrates that significant weight savings can be made in the system without sacrificing heat transfer capabilities.

第6図に示される曲線” M ”は、種々の空気流れに
対する従来からのコアの空気側圧力降下を例示し、tj
Jt il II N Ifは本発明のコアの空気側圧
力降下を例示する。これにより、本発明に従うコアを使
用した場合に空気側圧力降下が、従ってファンエネルギ
ーが低減される事を認識されよう。
Curve "M" shown in FIG. 6 illustrates the conventional core air side pressure drop for various air flows, tj
Jt il II N If illustrates the air side pressure drop of the core of the present invention. It will be appreciated that this reduces the air side pressure drop and therefore the fan energy when using a core according to the invention.

晶トー以上、本発明を実施例に基き説明したが、本発明
の内で多くの変更を為し得る事を銘記されたい。
Although the present invention has been described above based on embodiments, it should be noted that many changes may be made within the present invention.

第1図は、本発明に従う凝縮器の分解斜視図である。FIG. 1 is an exploded perspective view of a condenser according to the present invention.

第2図は、本発明に使用し得る凝縮器導管の拡大断面図
である。
FIG. 2 is an enlarged cross-sectional view of a condenser conduit that may be used with the present invention.

第3図は、一方が従来技術設計によって作製さ゛れそし
て他方が本発明に従う同一+FJ而面面を有する凝縮器
の内0Jil(流体)直径に対する熱伝達量をプロット
して作成した予想性能グラフである。
FIG. 3 is an expected performance graph prepared by plotting heat transfer versus 0 Jil (fluid) diameter of a condenser having the same +FJ surface, one constructed by a prior art design and the other in accordance with the present invention. .

第4図は、各々(a):熱伝達量、(b):冷媒流世及
び(C):冷媒圧力降下に対する空気通過量に於て従来
製品及び本発明を比較したグラフである。
FIG. 4 is a graph comparing the conventional product and the present invention in (a): heat transfer amount, (b): refrigerant flow rate, and (C): air passage amount with respect to refrigerant pressure drop.

第5図は、空気速度対各コアの製造に於て使用された材
料1ボンド当りの熱伝達量に基づいて、従来製品と本発
明とを比較したグラフである。
FIG. 5 is a graph comparing the prior art product and the present invention based on air velocity versus heat transfer per bond of material used in the manufacture of each core.

第6図は、空気速度対凝縮器の空気側を横断しての圧力
降下をプロットする事により、従来製品と本発明とを比
較したグラフである。
FIG. 6 is a graph comparing the prior art product to the present invention by plotting air velocity versus pressure drop across the air side of the condenser.

尚、図中主な部分の名称は以下の通りである。The names of the main parts in the figure are as follows.

10.12:ヘッダ 20:凝縮器管 34:波形フィン 40:波形スペーサ 46.48.50.52.54.56.58.60:平
行流れ流路 図面の浄書(内容に変更なし) クア−ptと旬17大)六ッ中、  −5CFMF’/
G4 F’lG、5 補正の対象 手続補正帯(方式) %式% 事件の表示 昭和61年特願第231359 号発明の
名称  流体直径の小さい流路を具備する凝縮器補正を
する者 事件との関係           特許出願人名称 
 モダイン・マニュファクチャリング・カンパニー 〒103 住 所  東京都中央区日本橋3丁目13番11号油脂
工業会館電話273−6436番 、 − 氏 名  (6781)  弁理士 倉  内  基 
 弘、 1間 住所    同  」ユ 図面         1通 補正の内容  別紙の通り 図面の浄書(内容に変更なし)
10.12: Header 20: Condenser tube 34: Corrugated fin 40: Corrugated spacer 46.48.50.52.54.56.58.60: Engraving of parallel flow channel drawing (no change in content) Quarpt and Shun 17 University) Sixth Junior High School, -5CFMF'/
G4 F'lG, 5 Procedure correction band (method) to be corrected % formula % Display of case Patent application No. 231359 of 1985 Title of invention Case with a person who corrects a condenser equipped with a flow path with a small fluid diameter Related patent applicant name
Modine Manufacturing Company 103 Address: Oil and Fat Industry Hall, 3-13-11 Nihonbashi, Chuo-ku, Tokyo Telephone number: 273-6436 Name (6781) Patent attorney Motoi Kurauchi
Hiroshi, 1 ken address Same ``Yu drawing 1 copy Details of amendments Engraving of the drawing as attached (no change in content)

Claims (1)

【特許請求の範囲】 1、一方が蒸気入口を具備し、他方が凝縮液出口を具備
して成る一対の離間したヘッダと、該ヘッダ同志間を平
行に伸延し且つ前記各ヘッダと連通する管とを包含し、
前記管が、前記ヘッダ同志間に流体直径が約0.015
インチから0.040インチの範囲の複数の平行流路を
画成することを特徴とする凝縮器。 2、各管は複数の流路を画成して成る特許請求の範囲第
1項記載の凝縮器。 3、管は平形管であり、各平形管における複数の流路は
管に収蔵された波形スペーサによつて画成されて成る特
許請求の範囲第1項記載の凝縮器。 4、管は凝縮器管である特許請求の範囲第1項記載の凝
縮器。 5、凝縮器管は複数であり、各々ヘッダ対間を伸延し、
又、各凝縮器管及び夫々の流体流路は相互に平行流れ状
態にある特許請求の範囲第4項記載の凝縮器。 6、凝縮器管の外側にフインを具備して成る特許請求の
範囲第5項記載の凝縮器。 7、隣り合う凝縮器管の外側同志間を伸延するフインを
具備して成る特許請求の範囲第5項記載の凝縮器。 8、ヘッダは全体的に筒状の管によつて定義され且つ凝
縮器管の各端を受取る為の対向する開口を有して成る特
許請求の範囲第5項記載の凝縮器。 9、一方が蒸気入口を具備し他方が凝縮液出口を具備し
て成る離間した一対のヘッダと、該ヘッダ同志間を平行
流れ状態で伸延する両端を有し、前記両端が前記ヘッダ
と連通するべく対応する前記細長スロット内に配設され
て成る複数の平形管と、前記ヘッダ同志間の前記各平形
管内部に、流体直径が約0.015から0.040イン
チの範囲の複数の平行流路を画成する、前記各平形管内
の波形挿入体体と、隣り合う前記平形管の外側同志間を
伸延するフインと、によつて構成され、前記ヘッダは夫
々一列の細長スロットを有し、一方のヘッダの細長スロ
ットは他方のヘッダの細長スロットと対向して成る凝縮
器。
[Claims] 1. A pair of spaced apart headers, one having a steam inlet and the other having a condensate outlet, and a tube extending parallel to the headers and communicating with each of the headers. and,
The tube has a fluid diameter of about 0.015 between the headers.
A condenser defining a plurality of parallel flow passages ranging from 0.040 inches to 0.040 inches. 2. The condenser according to claim 1, wherein each tube defines a plurality of flow paths. 3. A condenser according to claim 1, wherein the tubes are flat tubes, and the plurality of flow paths in each flat tube are defined by corrugated spacers housed in the tubes. 4. The condenser according to claim 1, wherein the tube is a condenser tube. 5. The condenser tubes are plural, each extending between a pair of headers,
5. A condenser as claimed in claim 4, wherein each condenser tube and each fluid flow path are in parallel flow to each other. 6. The condenser according to claim 5, comprising fins on the outside of the condenser tube. 7. The condenser according to claim 5, comprising fins extending between the outer sides of adjacent condenser tubes. 8. The condenser of claim 5, wherein the header is defined by a generally cylindrical tube and has opposing openings for receiving each end of the condenser tube. 9. A pair of spaced apart headers, one having a steam inlet and the other having a condensate outlet, and having opposite ends extending in parallel flow between the headers, the ends communicating with the header. a plurality of flat tubes disposed within corresponding elongated slots, and a plurality of parallel fluid flows within each flat tube between the headers having fluid diameters ranging from about 0.015 to 0.040 inches. a corrugated insert in each flat tube defining a channel, and fins extending between the outer sides of adjacent flat tubes, each header having a row of elongated slots; A condenser comprising elongated slots in one header opposed to elongated slots in the other header.
JP61231359A 1985-10-02 1986-10-01 Condenser with flow path having small fluid diameter Granted JPS62175588A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US78308785A 1985-10-02 1985-10-02
US783087 1985-10-02
US90269786A 1986-09-05 1986-09-05
US902697 1986-09-05

Publications (2)

Publication Number Publication Date
JPS62175588A true JPS62175588A (en) 1987-08-01
JPH0587752B2 JPH0587752B2 (en) 1993-12-17

Family

ID=27120095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61231359A Granted JPS62175588A (en) 1985-10-02 1986-10-01 Condenser with flow path having small fluid diameter

Country Status (9)

Country Link
EP (2) EP0583851B1 (en)
JP (1) JPS62175588A (en)
KR (1) KR950007282B1 (en)
AT (2) ATE145051T1 (en)
BR (1) BR8604768A (en)
CA (1) CA1317772C (en)
DE (2) DE3650648T2 (en)
ES (1) ES2002789A6 (en)
MX (1) MX167593B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62207572A (en) * 1986-03-03 1987-09-11 モダイン・マニユフアクチヤリング・カンパニ− Production of heat exchanger
JPH0213953U (en) * 1988-07-12 1990-01-29
JPH0363497A (en) * 1989-07-28 1991-03-19 Matsushita Refrig Co Ltd Heat transmitting pipe
JPH0587752B2 (en) * 1985-10-02 1993-12-17 Modine Mfg Co
JP2002318086A (en) * 2001-04-16 2002-10-31 Japan Climate Systems Corp Heat exchanger tube

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5458190A (en) * 1986-07-29 1995-10-17 Showa Aluminum Corporation Condenser
US5190100B1 (en) * 1986-07-29 1994-08-30 Showa Aluminum Corp Condenser for use in a car cooling system
DE3752324T2 (en) * 1986-07-29 2001-03-29 Showa Aluminium Co Ltd capacitor
US5246064A (en) * 1986-07-29 1993-09-21 Showa Aluminum Corporation Condenser for use in a car cooling system
US4936379A (en) * 1986-07-29 1990-06-26 Showa Aluminum Kabushiki Kaisha Condenser for use in a car cooling system
US5482112A (en) * 1986-07-29 1996-01-09 Showa Aluminum Kabushiki Kaisha Condenser
DE3918312A1 (en) * 1988-12-22 1990-12-06 Thermal Waerme Kaelte Klima FLAT TUBE CONDENSER, MANUFACTURING PROCESS AND APPLICATION
DE3843305A1 (en) * 1988-12-22 1990-06-28 Thermal Waerme Kaelte Klima CONDENSER FOR A VEHICLE AIR CONDITIONING REFRIGERANT
DE3843306A1 (en) * 1988-12-22 1990-06-28 Thermal Waerme Kaelte Klima Flat pipe liquefier for a coolant of an air-conditioning system for a vehicle
DE3923936C2 (en) * 1989-07-19 1996-07-11 Laengerer & Reich Kuehler Heat exchangers, especially oil coolers
US5099576A (en) * 1989-08-29 1992-03-31 Sanden Corporation Heat exchanger and method for manufacturing the heat exchanger
US5197539A (en) * 1991-02-11 1993-03-30 Modine Manufacturing Company Heat exchanger with reduced core depth
WO1992015833A1 (en) * 1991-03-11 1992-09-17 Modine Manufacturing Company Condenser with small hydraulic diameter flow path
US6016864A (en) * 1996-04-19 2000-01-25 Heatcraft Inc. Heat exchanger with relatively flat fluid conduits
DE69733284T2 (en) * 1996-12-25 2005-10-06 Calsonic Kansei Corp. Capacitor body structure
DE19845336A1 (en) 1998-10-01 2000-04-06 Behr Gmbh & Co Multi-channel flat tube
GB2346680A (en) 1999-02-11 2000-08-16 Llanelli Radiators Ltd Condenser
EP1065454A1 (en) 1999-07-02 2001-01-03 Modine Manufacturing Company Air-cooled condenser
DE10025486A1 (en) 2000-05-23 2001-11-29 Behr Gmbh & Co Heat transfer block, e.g. for vehicle air conditioner, has several heat-conducting rods spaced out between outer walls and extending through all walls to link flow chambers
DE10054158A1 (en) 2000-11-02 2002-05-08 Behr Gmbh Multi-chamber pipe with circular flow channels
EP1253391B1 (en) 2001-04-28 2006-06-28 Behr GmbH & Co. KG Folded flat tube with multiple cavities
EP1265046B1 (en) 2001-06-07 2005-11-23 Behr GmbH & Co. KG Fin, tube and heat exchanger
DE10137907A1 (en) * 2001-08-02 2003-02-20 Modine Mfg Co Air cooled heat transfer arrangement
DE10212249A1 (en) * 2002-03-20 2003-10-02 Behr Gmbh & Co Heat exchanger and cooling system
DE20208337U1 (en) * 2002-05-28 2003-10-16 Thermo King Deutschland Gmbh Air conditioning system for large vehicles has an inner cooling circuit and a modular flat finned tube exterior condenser with two or more modules in parallel
DE10223712C1 (en) * 2002-05-28 2003-10-30 Thermo King Deutschland Gmbh Climate-control device for automobile with modular heat exchanger in heat exchanger fluid circuit adaptable for different automobile types
FR2846733B1 (en) 2002-10-31 2006-09-15 Valeo Thermique Moteur Sa CONDENSER, IN PARTICULAR FOR A CIRCUIT FOR CIMATING A MOTOR VEHICLE, AND CIRCUIT COMPRISING THE CONDENSER
EP1503164B1 (en) * 2003-07-28 2019-05-01 Mahle Behr France Rouffach S.A.S Heat exchanger
GB0326443D0 (en) 2003-11-13 2003-12-17 Calsonic Kansei Uk Ltd Condenser
KR101518205B1 (en) 2006-11-22 2015-05-08 존슨 컨트롤스 테크놀러지 컴퍼니 Multichannel heat exchanger with dissimilar multichannel tubes
WO2008064228A1 (en) 2006-11-22 2008-05-29 Johnson Controls Technology Company Multichannel evaporator with flow mixing microchannel tubes
DE102006062261A1 (en) * 2006-12-22 2008-06-26 Konvekta Ag Air conditioning system for vehicle, particularly for buses, has fluid circuit with condenser device, evaporator device and compressor unit
US20090025405A1 (en) 2007-07-27 2009-01-29 Johnson Controls Technology Company Economized Vapor Compression Circuit
US8166776B2 (en) 2007-07-27 2012-05-01 Johnson Controls Technology Company Multichannel heat exchanger
US8234881B2 (en) 2008-08-28 2012-08-07 Johnson Controls Technology Company Multichannel heat exchanger with dissimilar flow
US8439104B2 (en) 2009-10-16 2013-05-14 Johnson Controls Technology Company Multichannel heat exchanger with improved flow distribution
KR20130065174A (en) * 2011-12-09 2013-06-19 현대자동차주식회사 Heat exchanger for vehicle
DE102015210231A1 (en) * 2015-06-03 2016-12-08 Bayerische Motoren Werke Aktiengesellschaft Heat exchanger for a cooling system, cooling system and assembly
US11060801B2 (en) 2015-06-29 2021-07-13 Carrier Corporation Microtube heat exchanger
CN113091380A (en) * 2020-01-08 2021-07-09 青岛海尔电冰箱有限公司 Condensing system and refrigerator

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS432682Y1 (en) * 1964-12-28 1968-02-03
US3457990A (en) * 1967-07-26 1969-07-29 Union Carbide Corp Multiple passage heat exchanger utilizing nucleate boiling
JPS4849054A (en) * 1971-10-22 1973-07-11
JPS49114145A (en) * 1973-03-09 1974-10-31
JPS5149642U (en) * 1974-10-11 1976-04-14
JPS52147356A (en) * 1976-06-02 1977-12-07 Hitachi Cable Ltd Heat transfer pipe for condenser
JPS53139261A (en) * 1977-05-12 1978-12-05 Modine Mfg Co Heat exchanger of weld assembly type
JPS5485461A (en) * 1977-12-21 1979-07-07 Furukawa Metals Co Insideegrooved heat transfer tube
JPS564834A (en) * 1979-06-25 1981-01-19 Fujitsu Ltd Photo detection control system by light pen
JPS566790U (en) * 1979-06-27 1981-01-21
GB2058324A (en) * 1979-09-14 1981-04-08 Hisaka Works Ltd Surface condenser
JPS56149295U (en) * 1980-04-09 1981-11-10
JPS5766389U (en) * 1980-10-06 1982-04-20
JPS57198992A (en) * 1981-05-29 1982-12-06 Tsuchiya Mfg Co Ltd Manufacture of flat tube type heat exchanger
JPS5837465A (en) * 1981-08-31 1983-03-04 株式会社デンソー Refrigerant evaporator
JPS58169386U (en) * 1982-04-30 1983-11-11 三菱重工業株式会社 heat exchanger tube
JPS58221390A (en) * 1982-06-18 1983-12-23 Nippon Denso Co Ltd Heat exchanger
JPS5913877U (en) * 1982-07-13 1984-01-27 株式会社デンソー Heat exchanger
JPS5971084U (en) * 1982-10-29 1984-05-14 株式会社神戸製鋼所 Heat exchanger tube with inner groove
JPS59129392A (en) * 1983-01-10 1984-07-25 Nippon Denso Co Ltd Heat exchanger
JPS59129392U (en) * 1983-02-17 1984-08-30 シャープ株式会社 Servo motor control circuit
JPS6091977U (en) * 1983-11-28 1985-06-24 住友軽金属工業株式会社 Heat exchanger

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1768258A (en) * 1927-07-21 1930-06-24 Robert L King Condenser
US1958226A (en) * 1932-04-06 1934-05-08 Fedders Mfg Co Inc Condenser for refrigerating apparatus
US2136641A (en) * 1936-12-21 1938-11-15 Gen Motors Corp Refrigerating apparatus
CH221087A (en) * 1939-12-15 1942-05-15 Morris Motors Ltd Refrigerant for liquids.
US2373218A (en) * 1942-11-11 1945-04-10 Modine Mfg Co Oil cooler tube
US3486489A (en) * 1968-02-12 1969-12-30 Modine Mfg Co Oil cooler
US3907032A (en) * 1971-04-27 1975-09-23 United Aircraft Prod Tube and fin heat exchanger
US4190105A (en) * 1976-08-11 1980-02-26 Gerhard Dankowski Heat exchange tube
GB1559318A (en) * 1977-08-12 1980-01-16 Hammond J A Heat recovery
GB1601954A (en) * 1978-05-15 1981-11-04 Covrad Ltd Heat exchanger
GB2059562B (en) * 1979-09-21 1983-11-16 Berti P M Liquid-type evaporator
JPS5913877B2 (en) * 1980-06-03 1984-04-02 グンゼ株式会社 automatic sewing method
WO1984001208A1 (en) * 1982-09-24 1984-03-29 Bryce H Knowlton Improved radiator assembly
JPS59205591A (en) * 1983-05-09 1984-11-21 Nippon Denso Co Ltd Heat exchanger
CA1317772C (en) * 1985-10-02 1993-05-18 Leon A. Guntly Condenser with small hydraulic diameter flow path
US4688311A (en) * 1986-03-03 1987-08-25 Modine Manufacturing Company Method of making a heat exchanger

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS432682Y1 (en) * 1964-12-28 1968-02-03
US3457990A (en) * 1967-07-26 1969-07-29 Union Carbide Corp Multiple passage heat exchanger utilizing nucleate boiling
JPS4849054A (en) * 1971-10-22 1973-07-11
JPS49114145A (en) * 1973-03-09 1974-10-31
JPS5149642U (en) * 1974-10-11 1976-04-14
JPS52147356A (en) * 1976-06-02 1977-12-07 Hitachi Cable Ltd Heat transfer pipe for condenser
JPS53139261A (en) * 1977-05-12 1978-12-05 Modine Mfg Co Heat exchanger of weld assembly type
JPS5485461A (en) * 1977-12-21 1979-07-07 Furukawa Metals Co Insideegrooved heat transfer tube
JPS564834A (en) * 1979-06-25 1981-01-19 Fujitsu Ltd Photo detection control system by light pen
JPS566790U (en) * 1979-06-27 1981-01-21
GB2058324A (en) * 1979-09-14 1981-04-08 Hisaka Works Ltd Surface condenser
US4492268A (en) * 1979-09-14 1985-01-08 Hisaka Works, Ltd. Condenser
JPS56149295U (en) * 1980-04-09 1981-11-10
JPS5766389U (en) * 1980-10-06 1982-04-20
JPS57198992A (en) * 1981-05-29 1982-12-06 Tsuchiya Mfg Co Ltd Manufacture of flat tube type heat exchanger
JPS5837465A (en) * 1981-08-31 1983-03-04 株式会社デンソー Refrigerant evaporator
JPS58169386U (en) * 1982-04-30 1983-11-11 三菱重工業株式会社 heat exchanger tube
JPS58221390A (en) * 1982-06-18 1983-12-23 Nippon Denso Co Ltd Heat exchanger
JPS5913877U (en) * 1982-07-13 1984-01-27 株式会社デンソー Heat exchanger
JPS5971084U (en) * 1982-10-29 1984-05-14 株式会社神戸製鋼所 Heat exchanger tube with inner groove
JPS59129392A (en) * 1983-01-10 1984-07-25 Nippon Denso Co Ltd Heat exchanger
JPS59129392U (en) * 1983-02-17 1984-08-30 シャープ株式会社 Servo motor control circuit
JPS6091977U (en) * 1983-11-28 1985-06-24 住友軽金属工業株式会社 Heat exchanger

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0587752B2 (en) * 1985-10-02 1993-12-17 Modine Mfg Co
JPS62207572A (en) * 1986-03-03 1987-09-11 モダイン・マニユフアクチヤリング・カンパニ− Production of heat exchanger
JPH078430B2 (en) * 1986-03-03 1995-02-01 モダイン・マニユフアクチヤリング・カンパニ− How to make a heat exchanger
JPH0213953U (en) * 1988-07-12 1990-01-29
JPH0544679Y2 (en) * 1988-07-12 1993-11-12
JPH0363497A (en) * 1989-07-28 1991-03-19 Matsushita Refrig Co Ltd Heat transmitting pipe
JP2002318086A (en) * 2001-04-16 2002-10-31 Japan Climate Systems Corp Heat exchanger tube

Also Published As

Publication number Publication date
ES2002789A6 (en) 1988-10-01
ATE145051T1 (en) 1996-11-15
CA1317772C (en) 1993-05-18
ATE160441T1 (en) 1997-12-15
MX167593B (en) 1993-03-31
DE3650648T2 (en) 1999-04-15
EP0583851A3 (en) 1994-03-09
KR950007282B1 (en) 1995-07-07
EP0219974A2 (en) 1987-04-29
EP0583851A2 (en) 1994-02-23
BR8604768A (en) 1987-06-30
EP0219974A3 (en) 1989-08-02
JPH0587752B2 (en) 1993-12-17
DE3650648D1 (en) 1997-10-30
KR880004284A (en) 1988-06-03
EP0219974B1 (en) 1996-11-06
DE3650658T2 (en) 1998-05-14
DE3650658D1 (en) 1998-01-02
EP0583851B1 (en) 1997-11-19

Similar Documents

Publication Publication Date Title
JPS62175588A (en) Condenser with flow path having small fluid diameter
US5076354A (en) Multiflow type condenser for car air conditioner
US6179051B1 (en) Distributor for plate heat exchangers
US8122736B2 (en) Condenser for a motor vehicle air conditioning circuit, and circuit comprising same
US5036911A (en) Embossed plate oil cooler
US20120090354A1 (en) Plate Heat Exchanger with Exchanging Structure Forming Several Channels in a Passage
US20120160465A1 (en) Heat exchanger
US3223153A (en) Fin and tube type heat exchanger
KR20180077171A (en) Aluminum extruded flat pore and heat exchanger
KR20150030201A (en) Heat transfer pipe for fin-and-tube type heat exchanger, and fin-and-tube type heat exchanger
EP3362759A1 (en) Heat exchanger for residential hvac applications
AU2012200524A1 (en) Heat Exchanger
US20200049382A1 (en) Refrigerant evaporator and method for manufacturing same
JP2990947B2 (en) Refrigerant condenser
WO2017110474A1 (en) Heat exchanger
CN109855451B (en) Steam heat exchanger capable of uniformly distributing flow
WO1997014927A1 (en) Heat exchanger
JPH085197A (en) Refrigerant condenser
CN219319120U (en) Miniature concentric sleeve evaporator suitable for special equipment
JPS61295492A (en) Heat exchanger
JP2677420B2 (en) Heat exchanger for refrigerant condenser
JPS63131993A (en) Heat exchanger
EP4060275A1 (en) Microchannel heat exchanger
CN212747461U (en) Heat exchanger and air conditioner
JP2542253Y2 (en) Heat exchanger

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RVTR Cancellation due to determination of trial for invalidation