JPH085197A - Refrigerant condenser - Google Patents

Refrigerant condenser

Info

Publication number
JPH085197A
JPH085197A JP14280494A JP14280494A JPH085197A JP H085197 A JPH085197 A JP H085197A JP 14280494 A JP14280494 A JP 14280494A JP 14280494 A JP14280494 A JP 14280494A JP H085197 A JPH085197 A JP H085197A
Authority
JP
Japan
Prior art keywords
tube
refrigerant
refrigerant condenser
meandering
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP14280494A
Other languages
Japanese (ja)
Inventor
Ken Yamamoto
山本  憲
Ryoichi Sanada
良一 真田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP14280494A priority Critical patent/JPH085197A/en
Priority to US08/494,596 priority patent/US5682944A/en
Publication of JPH085197A publication Critical patent/JPH085197A/en
Priority to US08/774,616 priority patent/US5730212A/en
Priority to US08/874,723 priority patent/US6125922A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • F28D1/0478Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag the conduits having a non-circular cross-section

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To reduce the manufacturing cost and to design with high heat exchanging rate by improving the assembling properties. CONSTITUTION:A zigzag tube 14 is connected to a pair of headers 12, 13 to be refrigerant inlet and outlet to form a refrigerant condenser 11. The tube 14 is so folded in a zigzag state by the number N of the times of foldings at the flat tube 15 having an inner tube diameter de of 0.60<=de<=1.15. Corrugated fins 16 are attached to the lateral entirety between the tube 15. The number N (integer) of the times of foldings of the tube 14 and the effective heat exchanging width W (m) are so set as the following formula for the diameter de (mm) of the tube 15. (N+1)W=0.4+1.18de to 0.7+1.18de.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えばカーエアコンや
ルームエアコン等の冷凍サイクルにおける使用に好適す
る冷媒凝縮器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerant condenser suitable for use in a refrigerating cycle such as a car air conditioner or a room air conditioner.

【0002】[0002]

【従来の技術】近年、例えばカーエアコンに用いられる
冷媒凝縮器(コンデンサ)として、特公平5−8775
2号に示されるものが開発されてきている。図5に示す
ように、この冷媒凝縮器1は、左右に位置する円筒パイ
プ状のヘッダ2,2間に、左右方向に長い多数本の偏平
チューブ3を掛渡すように設けると共に、それら偏平チ
ューブ3同士間にコルゲートフィン4を設けて構成され
ている。また、図示はしないが、ヘッダ2,2内の適宜
の位置に、該ヘッダ2内を上下方向に仕切るセパレータ
が設けられることにより、ヘッダ2内で流れの向きを変
えながら蛇行状に冷媒が流れるようになっている。
2. Description of the Related Art In recent years, as a refrigerant condenser (condenser) used in, for example, a car air conditioner, Japanese Patent Publication No. 5-8775.
The one shown in No. 2 has been developed. As shown in FIG. 5, the refrigerant condenser 1 is provided so as to span a large number of flat tubes 3 which are long in the left-right direction between the cylindrical pipe-shaped headers 2 and 2 located on the left and right, and the flat tubes A corrugated fin 4 is provided between the three. Further, although not shown, a separator that partitions the inside of the header 2 in the vertical direction is provided at an appropriate position in the header 2 so that the refrigerant flows in a meandering manner while changing the flow direction in the header 2. It is like this.

【0003】ところで、このような冷媒凝縮器1を製造
するにあたっては、ヘッダ2の側面部に偏平チューブ3
の端部が接合される切込み2aを所定間隔で多数個形成
しておく一方、所定長さとされた偏平チューブ3及びコ
ルゲートフィン4を例えばろう付けにより交互に積層し
てコア5を形成する。そして、そのコア5を、各偏平チ
ューブ3の端部がヘッダ2の各切込み2aに嵌合するよ
うに接合することにより、冷媒凝縮器1を得ることがで
きるのである。
By the way, when manufacturing such a refrigerant condenser 1, a flat tube 3 is formed on a side surface of the header 2.
While a plurality of notches 2a to which the ends of are joined are formed at a predetermined interval, flat tubes 3 and corrugated fins 4 having a predetermined length are alternately laminated by, for example, brazing to form a core 5. Then, the core 5 is joined so that the end of each flat tube 3 fits into each notch 2a of the header 2, whereby the refrigerant condenser 1 can be obtained.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記し
た従来の冷媒凝縮器1にあっては、多数本の偏平チュー
ブ3を夫々ヘッダ2に接合しなければならず、接合箇所
が極めて多くなるため、組立作業が煩雑となって製造コ
ストが高くなる欠点があった。しかも、各偏平チューブ
3を、ヘッダ2に形成された各切込み2aに接合するた
めには、コア5の形成時において偏平チューブ3及びコ
ルゲートフィン4の積層に高い寸法精度が必要となり、
この点からも組立作業性に劣る不具合があった。
However, in the conventional refrigerant condenser 1 described above, a large number of flat tubes 3 have to be joined to the header 2, respectively, and the number of joints is extremely large. There is a drawback that the assembly work becomes complicated and the manufacturing cost becomes high. Moreover, in order to join the flat tubes 3 to the cuts 2a formed in the header 2, high dimensional accuracy is required for stacking the flat tubes 3 and the corrugated fins 4 when forming the core 5.
From this point as well, there was a problem that assembly workability was poor.

【0005】また、従来の冷媒凝縮器1においては、冷
媒通路のターン数を増加したり、あるいは通路断面積を
減少することが、熱交換率の向上に寄与することが知ら
れていたが、冷媒凝縮器にとって最適な冷媒通路のター
ン数言換えれば凝縮距離を特定するには至っていなかっ
た。このため、熱交換率を向上させることのできる凝縮
距離を明確化することが要望されるのである。
Further, in the conventional refrigerant condenser 1, it has been known that increasing the number of turns of the refrigerant passage or decreasing the passage cross-sectional area contributes to the improvement of the heat exchange rate. The optimum number of turns of the refrigerant passage for the refrigerant condenser has not been specified yet. Therefore, it is desired to clarify the condensation distance that can improve the heat exchange rate.

【0006】本発明は上記事情に鑑みてなされたもの
で、その目的は、組立性に優れて製造コストの低減を図
ることができ、しかも熱交換率を高く設計することがで
きる冷媒凝縮器を提供するにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a refrigerant condenser which is excellent in assembling ability, can reduce the manufacturing cost, and can be designed to have a high heat exchange rate. To provide.

【0007】[0007]

【課題を解決するための手段】本発明の冷媒凝縮器は、
冷媒の入口及び出口を構成する一対のヘッダと、偏平チ
ューブを有効熱交換幅Wの蛇行状に折返して構成されそ
の両端が前記一対のヘッダに夫々接続される1個以上の
蛇行状チューブ体とを具備し、前記各蛇行状チューブ体
の折返し回数N(整数)及び前記有効熱交換幅W(単位
m)を、前記偏平チューブの管路面積に相当する管内相
当直径de(単位mm:但しde≦1.15)に対して、 (N+1)W=0.4+1.18de〜0.7+1.1
8de のように設定したところに特徴を有する(請求項1の発
明)。また、この場合、前記偏平チューブの管内相当直
径de(単位mm)を、0.60≦de≦1.15とすれ
ば、より効果的である(請求項2の発明)。
The refrigerant condenser of the present invention comprises:
A pair of headers that form an inlet and an outlet of the refrigerant, and one or more meandering tube bodies that are formed by folding a flat tube into a meandering shape having an effective heat exchange width W and that both ends thereof are connected to the pair of headers, respectively. The number of turns N (integer) of each of the meandering tube bodies and the effective heat exchange width W (unit m) are equivalent to the pipe equivalent diameter de (unit mm: where de) ≦ 1.15), (N + 1) W = 0.4 + 1.18de to 0.7 + 1.1
It is characterized by being set as 8 de (the invention of claim 1). Further, in this case, it is more effective if the in-tube equivalent diameter de (unit: mm) of the flat tube is set to 0.60 ≦ de ≦ 1.15 (the invention of claim 2).

【0008】[0008]

【作用】本発明の請求項1の冷媒凝縮器によれば、一対
のヘッダには、偏平チューブを所定の折返し回数Nにて
蛇行状に折返して構成された蛇行状チューブ体の両端部
が接続されるのであるから、一対のヘッダ間に直線状の
チューブを多数本掛渡した状態からセパレータにより所
定のターン数を得る場合と比較して、偏平チューブの本
数つまり蛇行状チューブ体の個数自体は少なく済み、接
合箇所を大幅に少なく済ませることができる。尚、蛇行
状チューブ体の個数は、必要な冷媒の流量に基づいて適
宜設定され、一対のヘッダ間にいわば並列に接続すれば
良い。
According to the refrigerant condenser of claim 1 of the present invention, the pair of headers are connected to both ends of a meandering tube body which is formed by folding the flat tube in a meandering manner at a predetermined number of folding times N. Therefore, the number of flat tubes, that is, the number of meandering tube bodies per se, is greater than that in the case where a predetermined number of turns is obtained with a separator from a state where a large number of linear tubes are hung between a pair of headers. The number of joints can be greatly reduced by reducing the number of joints. Note that the number of meandering tube bodies is appropriately set based on the required flow rate of the refrigerant, and may be connected in parallel between a pair of headers.

【0009】ところで、冷媒凝縮器にあっては、冷媒通
路を長くして凝縮距離を大きくすることにより、冷媒の
流速を増加させて熱伝達率を高めることができる一方、
管内の圧力損失が大きくなって冷媒圧力が低下し、それ
に伴って凝縮温度が低下する事情がある。逆に、凝縮距
離を小さくすると、圧力損失が小さくなる反面、管内側
熱伝達率が小さくなり性能が低下することになる。従っ
て、冷媒凝縮器の性能は、熱伝達率の向上と圧力損失と
のバランスにより決定され、それら両者は互いに影響を
及ぼし合っている。
By the way, in the refrigerant condenser, it is possible to increase the flow rate of the refrigerant and increase the heat transfer coefficient by lengthening the refrigerant passage and increasing the condensation distance.
There is a circumstance in which the pressure loss in the pipe increases and the refrigerant pressure decreases, which causes the condensing temperature to decrease. On the contrary, when the condensation distance is reduced, the pressure loss is reduced, but the heat transfer coefficient inside the tube is reduced and the performance is reduced. Therefore, the performance of the refrigerant condenser is determined by the balance between the improvement of the heat transfer coefficient and the pressure loss, and the two influence each other.

【0010】そこで、本発明者らは、管路面積の微小な
偏平チューブを用いた冷媒凝縮器にあって、熱伝達率の
向上と圧力損失とのバランスを最適なものとして熱交換
率が最適となるような凝縮距離を明らかにすべく、実
験,研究を重ね、その結果、偏平チューブの管内相当直
径de(具体的にはde=4×[断面積]/[ぬれ縁長
さ])に対する凝縮距離Lの最適な範囲を見出だすに至
ったのである。
Therefore, the inventors of the present invention have proposed a refrigerant condenser using a flat tube having a small pipe area to optimize the heat exchange rate by optimizing the balance between the improvement of the heat transfer rate and the pressure loss. Experiments and researches have been repeated to clarify the condensation distance so that, for the flat tube equivalent diameter de (specifically de = 4 × [cross-sectional area] / [wet edge length]) The optimum range of the condensation distance L has been found.

【0011】即ち、断面を円形断面に換算した際の直径
に相当する管内相当直径deが1.15mm未満である管
路面積の微小な偏平チューブにあっては、その管内相当
直径de(単位mm)に対して凝縮距離L(単位m)を、 L=0.4+1.18de〜0.7+1.18de と設定したときに、熱交換率が最適となるのである。こ
の凝縮距離Lは、蛇行状チューブ体においては、有効熱
交換幅Wと折返し回数Nとを用いて、 L=(N+1)W と表すことができる。従って、 (N+1)W=0.4+1.18de〜0.7+1.1
8de のように設定することにより、冷媒凝縮器としての熱交
換率を最適とすることができるのである。
That is, in the case of a small flat tube having a pipe passage area having a pipe equivalent diameter de of less than 1.15 mm, which corresponds to the diameter when the cross section is converted into a circular cross section, the pipe equivalent diameter de (unit mm ), The heat exchange rate becomes optimum when the condensation distance L (unit m) is set to L = 0.4 + 1.18de to 0.7 + 1.18de. In the meandering tube body, this condensation distance L can be expressed as L = (N + 1) W using the effective heat exchange width W and the number of times of folding back N. Therefore, (N + 1) W = 0.4 + 1.18de to 0.7 + 1.1
By setting it as 8 de, the heat exchange rate as the refrigerant condenser can be optimized.

【0012】また、このとき、偏平チューブとしては、
その管内相当直径deが1.15mm以下のものを使用す
ることにより極めて有効となるのであるが、偏平チュー
ブの管内相当直径deを余りに小さくしても、今度は逆
に偏平チューブの製造の困難性が高くなるため、実使用
上は、管内相当直径deが0.06mm以上のものを使用
することが好ましい(請求項2の発明)。
At this time, as the flat tube,
It is extremely effective to use a pipe having an equivalent diameter de in the pipe of 1.15 mm or less. However, even if the equivalent pipe diameter de of the flat tube is too small, it is difficult to manufacture the flat tube. In practice, it is preferable to use a pipe having an equivalent diameter de of 0.06 mm or more (invention of claim 2).

【0013】[0013]

【実施例】以下、本発明をカーエアコン用の冷媒凝縮器
に適用した一実施例について、図1ないし図4を参照し
ながら説明する。まず、図示はしないが、カーエアコン
の冷凍サイクルは、周知のように、気体冷媒を圧縮する
圧縮機(コンプレッサ)、この圧縮機から吐出された高
温,高圧の冷媒を凝縮して液体冷媒とさせる冷媒凝縮器
11(コンデンサ)、冷媒の気液分離及び液体冷媒の一
時的な貯留を行うためのレシーバ、このレシーバからの
液体冷媒を急激に膨張させて低温,低圧の霧状とする膨
張弁、この膨張弁からの霧状の冷媒を外気と熱交換させ
て気化させる蒸発器(エバポレータ)などを、内部に所
要量の冷媒を封入した状態で、冷媒管路により順に閉ル
ープに接続して構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to a refrigerant condenser for a car air conditioner will be described below with reference to FIGS. First, although not shown, in a refrigeration cycle of a car air conditioner, as is well known, a compressor (compressor) that compresses a gas refrigerant, and a high-temperature, high-pressure refrigerant discharged from this compressor is condensed into a liquid refrigerant. Refrigerant condenser 11 (condenser), receiver for performing gas-liquid separation of refrigerant and temporary storage of liquid refrigerant, expansion valve for rapidly expanding liquid refrigerant from this receiver into a low-temperature, low-pressure mist state, An evaporator (evaporator) that heats and vaporizes the atomized refrigerant from the expansion valve with the outside air is connected to the closed loop in order by the refrigerant pipe line while the required amount of refrigerant is sealed inside. ing.

【0014】図1は本実施例に係る冷媒凝縮器11の全
体構成を概略的に示している。ここで、この冷媒凝縮器
11は、図で左右に位置する一対のヘッダ12,13
に、例えば2個の蛇行状チューブ体14,14を接合し
て構成されている。このうちヘッダ12,13は、共に
円筒状(軸方向が紙面に垂直)をなし、例えば一方のヘ
ッダ12が前記圧縮機からの高温,高圧の気体冷媒が流
入される入口を構成し、他方のヘッダ13が前記レシー
バに向けて液体冷媒を流出させる出口を構成するように
なっている。また、図示はしないが、これらヘッダ1
2,13の外周面部には、前記蛇行状チューブ体14の
端部が嵌合されて接続される軸方向に長い切込み部が形
成されている。
FIG. 1 schematically shows the overall configuration of the refrigerant condenser 11 according to this embodiment. Here, the refrigerant condenser 11 includes a pair of headers 12 and 13 located on the left and right in the figure.
In addition, for example, two meandering tube bodies 14, 14 are joined together. Of these, the headers 12 and 13 both have a cylindrical shape (the axial direction is perpendicular to the paper surface), and for example, one header 12 constitutes an inlet into which a high-temperature, high-pressure gas refrigerant from the compressor is introduced, and the other one. The header 13 constitutes an outlet for letting out the liquid refrigerant toward the receiver. Although not shown, these headers 1
On the outer peripheral surface portions of the reference numerals 2 and 13, there are formed notches which are long in the axial direction and which are fitted and connected to the end portions of the meandering tube body 14.

【0015】そして、前記蛇行状チューブ体14は、水
平方向に偏平な偏平チューブ15を縦方向に積層するよ
うにして、左右に所定幅で蛇行状に折返して構成されて
いる。この実施例では折返し回数Nは4とされており、
偏平チューブ15がいわば5段に積層された如き状態と
されている。さらに、いわば積層された偏平チューブ1
5同士間には、左右方向ほぼ全体に渡って、熱交換を促
進するための放熱フィン例えばコルゲートフィン16が
例えばろう付けにより添設されている。このコルゲート
フィン16が添設された部分が、熱交換に有効に作用
し、その左右方向幅寸法が有効熱交換幅Wとされてい
る。
The meandering tube body 14 is formed by folding flat tubes 15 which are flat in the horizontal direction in the vertical direction and are folded back to the left and right in a meandering shape. In this embodiment, the number of turns N is 4,
The flat tubes 15 are in a state of being laminated in five stages, so to speak. Furthermore, so-called laminated flat tubes 1
A radiating fin, for example, a corrugated fin 16 for promoting heat exchange is additionally provided between the five members by brazing, for example, over the entire lateral direction. The portion provided with the corrugated fins 16 effectively acts on heat exchange, and the width dimension in the left-right direction is the effective heat exchange width W.

【0016】この場合、本実施例では、前記偏平チュー
ブ15として、図2(a)に示すように、内部に冷媒の
流れ方向に延びて流路を区切る仕切り15aを有するも
のが採用されている。このような偏平チューブ15は押
出成形により比較的容易に得られるようになっている。
このとき、前記偏平チューブ15は、例えば高さ(厚
み)寸法が1.7mm、幅寸法が16mmのものを使用して
いる。尚、偏平チューブ15としては、高さ寸法が3〜
1mm、幅寸法が8〜20mmのものを用いることが望まし
く、また、前記コルゲートフィン16の高さ寸法は10
〜6mmとすることが望ましい。
In this case, in this embodiment, as the flat tube 15, as shown in FIG. 2 (a), a tube having a partition 15a extending in the flow direction of the refrigerant to divide the flow path is adopted. . Such a flat tube 15 is relatively easily obtained by extrusion molding.
At this time, the flat tube 15 has, for example, a height (thickness) dimension of 1.7 mm and a width dimension of 16 mm. In addition, the flat tube 15 has a height dimension of 3 to
It is desirable to use one having a width of 1 mm and a width of 8 to 20 mm, and the corrugated fin 16 has a height of 10 mm.
It is desirable to set it to ~ 6 mm.

【0017】これにて、偏平チューブ15の断面(管路
面積)を円形断面に換算した際の直径に相当する管内相
当直径de(単位mm)は、0.60≦de≦1.15に
設定されている。尚、管路面積deは、具体的にはde
=4×[断面積]/[ぬれ縁長さ]の式により求めるこ
とができる。
Thus, the equivalent pipe diameter de (unit: mm) corresponding to the diameter of the flat tube 15 when the cross section (pipe area) is converted into a circular cross section is set to 0.60≤de≤1.15. Has been done. The pipe line area de is specifically de
= 4 × [cross-sectional area] / [wet edge length].

【0018】尚、異なるタイプの偏平チューブ17とし
て、図2(b)に示すような、内部に仕切りの存在しな
い状態で形成されたチューブ17a内に、コルゲート状
のスペーサ17bを挿入することにより、前記偏平チュ
ーブ15と同様に、内部に冷媒の流れ方向に延びて流路
を区切る仕切りを形成するようにしたものも使用するこ
とができる。
As a flat tube 17 of a different type, a corrugated spacer 17b is inserted into a tube 17a which is formed in a state where no partition is present inside, as shown in FIG. 2 (b). Similar to the flat tube 15, it is also possible to use a tube which is formed inside to form a partition that extends in the flow direction of the refrigerant and divides the flow path.

【0019】さて、上記のように構成されたこの場合2
個の蛇行状チューブ体14,14は、上下に積重ねられ
た状態で、両端部が夫々前記ヘッダ12,13に接続さ
れるようになっている。このとき、ヘッダ12,13に
接続し得るように、各蛇行状チューブ体14の両端部分
は上下方向に折曲げられて構成され、その端部がヘッダ
12,13の外周面部に形成された切込み部に外周方向
から嵌合されて接合されるようになっている。これに
て、冷媒凝縮器11が構成されるのである。尚、下段の
蛇行状チューブ体14と上段の蛇行状チューブ体14と
の間の部分にも、コルゲートフィン16が設けられるよ
うになっている。さらに、上下両端部には、端板18が
設けられるようになっている。
Now, in this case configured as described above, 2
The individual meandering tube bodies 14 and 14 are connected to the headers 12 and 13, respectively, in the state where they are vertically stacked. At this time, both end portions of each meandering tube body 14 are bent in the vertical direction so that they can be connected to the headers 12 and 13, and the ends thereof are notches formed in the outer peripheral surface portions of the headers 12 and 13. It is adapted to be fitted and joined to the portion from the outer peripheral direction. This constitutes the refrigerant condenser 11. A corrugated fin 16 is also provided in a portion between the lower meandering tube body 14 and the upper meandering tube body 14. Further, end plates 18 are provided at both upper and lower ends.

【0020】そして、このように構成された冷媒凝縮器
11においては、各蛇行状チューブ体14の折返し回数
N(整数)及び有効熱交換幅W(単位m)は、前記偏平
チューブ15の管内相当直径de(単位mm)に対して、
次の(1)式を満足するように設定されている。 (N+1)W=0.4+1.18de〜0.7+1.18de …(1)
In the thus constructed refrigerant condenser 11, the number N of folding back of each meandering tube body 14 (integer) and the effective heat exchange width W (unit m) are equivalent to the inside of the flat tube 15. For diameter de (unit mm),
It is set so as to satisfy the following expression (1). (N + 1) W = 0.4 + 1.18de to 0.7 + 1.18de (1)

【0021】具体例をあげると、例えば折返し回数N=
4で、管内相当直径de=0.9mmとすると、有効熱交
換幅Wは、W=290〜350mm程度に設定される。勿
論、偏平チューブ15の管内相当直径deの値は、0.
60≦de≦1.15の範囲で適宜設定でき、それに応
じて折返し回数N及び有効熱交換幅Wも上記(1)式の
範囲内で種々の値をとることができる。
As a specific example, for example, the number of turns N =
4 and the equivalent pipe diameter de = 0.9 mm, the effective heat exchange width W is set to about W = 290 to 350 mm. Of course, the value of the equivalent diameter de in the flat tube 15 is 0.
It can be appropriately set within the range of 60 ≦ de ≦ 1.15, and accordingly, the number of folding back N and the effective heat exchange width W can take various values within the range of the above formula (1).

【0022】尚、カーエアコン用の冷媒凝縮器として
は、一般に、コア幅が300〜800mm程度で使用され
るので、有効熱交換幅Wも同等のW=300〜800mm
程度に設定されると共に、これに応じて、折返し回数N
も、N=1〜7回程度に設定される。また、冷媒凝縮器
11の蛇行状チューブ体14の個数は、必要な冷媒の流
量に基づいて適宜設定される。
Since a refrigerant condenser for a car air conditioner is generally used with a core width of about 300 to 800 mm, the effective heat exchange width W is equivalent to W = 300 to 800 mm.
It is set to a degree and the number of turns N is changed accordingly.
Also, N is set to about 1 to 7 times. Further, the number of the meandering tube bodies 14 of the refrigerant condenser 11 is appropriately set based on the required flow rate of the refrigerant.

【0023】上記のように構成された冷媒凝縮器11に
あっては、一対のヘッダ12,13には、偏平チューブ
15を所定の折返し回数Nにて蛇行状に折返して構成さ
れた蛇行状チューブ体14の両端部が接続されるのであ
るから、従来のような一対のヘッダ2,2間に直線状の
偏平チューブ3を多数本掛渡した状態からセパレータに
より所定のターン数を得るようにした冷媒凝縮器1と比
較して、偏平チューブ15の本数つまり蛇行状チューブ
体14の個数自体は少なく済み、ヘッダ12,13に対
する接合箇所を大幅に少なく済ませることができる。ま
た、従来ほどの寸法精度も必要としない。従って、組立
作業性に劣っていた従来の冷媒凝縮器1と異なり、組立
て作業を大幅に簡単化することができ、製造コストの大
幅な低減を図ることができるのである。
In the refrigerant condenser 11 configured as described above, the pair of headers 12 and 13 has a meandering tube formed by folding the flat tube 15 in a meandering manner at a predetermined number of folding times N. Since both ends of the body 14 are connected, a predetermined number of turns is obtained by the separator from a state in which a large number of linear flat tubes 3 are hung between a pair of headers 2 and 2 as in the conventional case. Compared with the refrigerant condenser 1, the number of the flat tubes 15, that is, the number of the meandering tube bodies 14 itself can be reduced, and the number of joints to the headers 12 and 13 can be significantly reduced. Further, the dimensional accuracy as in the past is not required. Therefore, unlike the conventional refrigerant condenser 1 which is inferior in assembling workability, the assembling work can be greatly simplified and the manufacturing cost can be greatly reduced.

【0024】ところで、この種の冷媒凝縮器11にあっ
ては、冷媒通路を長くして凝縮距離L(過熱ガス状態で
冷媒凝縮器11入口に入った冷媒が完全に液化するまで
の距離)を大きくすることにより、冷媒の流速を増加さ
せて熱伝達率を高めることができる一方、管内の圧力損
失が大きくなって冷媒圧力が低下し、それに伴って凝縮
温度が低下する事情がある。逆に、凝縮距離を小さくす
ると、圧力損失が小さくなる反面、管内側熱伝達率が小
さくなり性能が低下することになる。従って、冷媒凝縮
器の性能は、熱伝達率の向上と圧力損失とのバランスに
より決定され、それら両者は互いに影響を及ぼし合って
いる。
By the way, in the refrigerant condenser 11 of this type, the refrigerant passage is lengthened so that the condensation distance L (the distance until the refrigerant having entered the inlet of the refrigerant condenser 11 in a superheated gas state is completely liquefied). By increasing the flow rate, the flow rate of the refrigerant can be increased to increase the heat transfer coefficient, while the pressure loss in the pipe increases and the refrigerant pressure decreases, which causes the condensation temperature to decrease. On the contrary, when the condensation distance is reduced, the pressure loss is reduced, but the heat transfer coefficient inside the tube is reduced and the performance is reduced. Therefore, the performance of the refrigerant condenser is determined by the balance between the improvement of the heat transfer coefficient and the pressure loss, and the two influence each other.

【0025】そこで、本発明者らは、管路面積の微小な
偏平チューブ15を用いた冷媒凝縮器にあって、熱伝達
率の向上と圧力損失とのバランスを最適なものとして熱
交換率が最適となるような凝縮距離Lを明らかにすべ
く、実験,研究を重ね、その結果、偏平チューブ15の
管内相当直径deに対する凝縮距離Lの最適な範囲を見
出だすに至ったのである。
Therefore, in the refrigerant condenser using the flat tube 15 having a small conduit area, the present inventors have set the optimal balance between the improvement of the heat transfer rate and the pressure loss and the heat exchange rate. Experiments and studies have been conducted to clarify the optimum condensation distance L, and as a result, the optimum range of the condensation distance L with respect to the equivalent diameter de of the flat tube 15 has been found.

【0026】即ち、図3に示すように、管内相当直径d
eが1.15mm未満である管路面積の微小な偏平チュー
ブ15にあっては、その管内相当直径de(単位mm)に
対して凝縮距離L(単位m)を、 L=0.4+1.18de〜0.7+1.18de …(2) の範囲に設定したときに、熱交換率が最適となることが
実験的に明らかとなったのである。
That is, as shown in FIG. 3, the equivalent pipe diameter d
In the case of a small flat tube 15 having a conduit area of e less than 1.15 mm, the condensation distance L (unit m) is L = 0.4 + 1.18 de with respect to the equivalent pipe diameter de (unit mm). It has been experimentally clarified that the heat exchange rate becomes optimal when the range is set to 0.7 + 1.18de (2).

【0027】この凝縮距離Lは、上記のような蛇行状チ
ューブ体14においては、有効熱交換幅Wと折返し回数
Nとを用いて、 L=(N+1)W …(3) と表すことができる。図4には、蛇行状チューブ体14
における偏平チューブ15の折返し回数Nと、凝縮距離
Lとの関係を示している。尚、図4では折返し回数Nを
偶数としたもののみを図示しているが、一対のヘッダを
同じ側に位置させれば、折返し回数を奇数とすることが
できることは勿論である。
In the meandering tube body 14 as described above, the condensation distance L can be expressed as L = (N + 1) W (3) by using the effective heat exchange width W and the number of times of folding N. . In FIG. 4, the meandering tube body 14 is shown.
The relationship between the number N of times the flat tube 15 is folded back and the condensation distance L is shown. Although FIG. 4 shows only the case where the number N of folding back is an even number, it is a matter of course that the number of folding back can be an odd number by arranging a pair of headers on the same side.

【0028】従って、上記(2),(3)式から、上記
した(1)式が得られ、蛇行状チューブ体14における
折返し回数N,有効熱交換幅W及び管内相当直径de
を、上記(1)式のように設定することにより、冷媒凝
縮器11としての熱交換率を最適とすることができたの
である。
Therefore, from the above equations (2) and (3), the above equation (1) is obtained, and the number of turns N in the meandering tube body 14, the effective heat exchange width W and the equivalent pipe diameter de
The heat exchange rate of the refrigerant condenser 11 could be optimized by setting the above equation (1).

【0029】また、このとき、偏平チューブ15として
は、その管内相当直径deが1.15mm以下のものを使
用することにより極めて有効となるのであるが、偏平チ
ューブ15の管内相当直径deを余りに小さくしても、
今度は逆に偏平チューブ15の製造の困難性が高くなる
ため、実使用上は、管内相当直径deが0.06mm以上
のものを使用することが好ましいのである。
At this time, it is very effective to use the flat tube 15 having the equivalent diameter de in the tube of 1.15 mm or less, but the equivalent diameter de in the flat tube 15 is too small. Even if
On the contrary, since the difficulty of manufacturing the flat tube 15 is increased, it is preferable to use the tube having the equivalent diameter de in the tube of 0.06 mm or more in actual use.

【0030】このように本実施例の冷媒凝縮器11によ
れば、管内相当直径de(mm)が0.60≦de≦1.
15の偏平チューブ15を有効熱交換幅Wの蛇行状にN
回折返して構成された蛇行状チューブ体14を、一対の
ヘッダ12,13に接続して構成すると共に、それら折
返し回数N,有効熱交換幅W(m)及び管内相当直径d
eを、上記(1)式のように設定したので、組立性に優
れて製造コストの低減を図ることができ、しかも熱交換
率を高く設計することができるという優れた実用的効果
を得ることができるものである。
As described above, according to the refrigerant condenser 11 of the present embodiment, the equivalent pipe diameter de (mm) is 0.60 ≦ de ≦ 1.
15 flat tubes 15 in a meandering shape with an effective heat exchange width W
A meandering tube body 14 formed by being diffracted back is connected to a pair of headers 12 and 13, and the number of times of folding N, an effective heat exchange width W (m), and a pipe equivalent diameter d.
Since e is set according to the above formula (1), it is possible to obtain an excellent practical effect that the assembling property is excellent, the manufacturing cost can be reduced, and the heat exchange rate can be designed to be high. Is something that can be done.

【0031】[0031]

【発明の効果】以上の説明にて明らかなように、本発明
の請求項1の冷媒凝縮器によれば、冷媒の入口及び出口
を構成する一対のヘッダと、偏平チューブを有効熱交換
幅Wの蛇行状に折返して構成されその両端が前記一対の
ヘッダに夫々接続される1個以上の蛇行状チューブ体と
を具備し、前記各蛇行状チューブ体の折返し回数N(整
数)及び前記有効熱交換幅W(単位m)を、前記偏平チ
ューブの管路面積に相当する管内相当直径de(単位m
m:但しde≦1.15)に対して、 (N+1)W=0.4+1.18de〜0.7+1.1
8de のように設定したので、組立性に優れて製造コストの低
減を図ることができ、しかも熱交換率を高く設計するこ
とができるという優れた効果を奏する。また、この場
合、前記偏平チューブの管内相当直径de(単位mm)
を、0.60≦de≦1.15とすれば、より効果的と
なる(請求項2の冷媒凝縮器)。
As is clear from the above description, according to the refrigerant condenser of claim 1 of the present invention, the effective heat exchange width W is formed by the pair of headers forming the refrigerant inlet and outlet and the flat tube. And one or more meandering tube bodies whose both ends are connected to the pair of headers, respectively, and the number of folding times N (integer) of each of the meandering tube bodies and the effective heat The exchange width W (unit: m) is the equivalent pipe diameter de (unit: m) corresponding to the pipe area of the flat tube.
m: However, for de ≦ 1.15), (N + 1) W = 0.4 + 1.18de to 0.7 + 1.1
Since it is set to 8 de, it has an excellent effect that the assembling property is excellent, the manufacturing cost can be reduced, and the heat exchange rate can be designed high. Further, in this case, the inside diameter equivalent to the flat tube de (unit: mm)
Is more effective when 0.60 ≦ de ≦ 1.15 (refrigerant condenser of claim 2).

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すもので、冷媒凝縮器の
全体を概略的に示す正面図
FIG. 1 is a front view schematically showing the entire refrigerant condenser according to an embodiment of the present invention.

【図2】偏平チューブの断面形状を示す拡大縦断面図FIG. 2 is an enlarged vertical sectional view showing the sectional shape of a flat tube.

【図3】偏平チューブの管内相当直径に対する最適な凝
縮距離の関係を示す図
FIG. 3 is a diagram showing a relationship between an optimum condensation distance and an equivalent diameter of a flat tube in a tube.

【図4】蛇行状チューブ体の折返し回数と凝縮距離との
関係を例示する図
FIG. 4 is a diagram illustrating a relationship between the number of times the meandering tube body is folded back and the condensation distance.

【図5】従来例を示すもので、冷媒凝縮器の分解斜視図FIG. 5 shows a conventional example, and is an exploded perspective view of a refrigerant condenser.

【符号の説明】[Explanation of symbols]

図面中、11は冷媒凝縮器、12,13はヘッダ、14
は蛇行状チューブ体、15,17は偏平チューブ、16
はコルゲートフィンを示す。
In the drawing, 11 is a refrigerant condenser, 12 and 13 are headers, 14
Is a meandering tube body, 15 and 17 are flat tubes, 16
Indicates a corrugated fin.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 冷媒の入口及び出口を構成する一対のヘ
ッダと、偏平チューブを有効熱交換幅Wの蛇行状に折返
して構成されその両端が前記一対のヘッダに夫々接続さ
れる1個以上の蛇行状チューブ体とを具備し、 前記各蛇行状チューブ体の折返し回数N(整数)及び前
記有効熱交換幅W(単位m)を、前記偏平チューブの管
路面積に相当する管内相当直径de(単位mm:但しde
≦1.15)に対して、次式のように設定したことを特
徴とする冷媒凝縮器。 (N+1)W=0.4+1.18de〜0.7+1.1
8de
1. A pair of headers forming an inlet and an outlet of a refrigerant, and a flat tube folded back in a meandering shape having an effective heat exchange width W, and one or more ends of which are connected to the pair of headers, respectively. A meandering tube body, wherein the number of turns N (integer) of each of the meandering tube bodies and the effective heat exchange width W (unit: m) are equivalent to a pipe equivalent diameter de ( Unit mm: However, de
<1.15), the refrigerant condenser is characterized by the following equation. (N + 1) W = 0.4 + 1.18de to 0.7 + 1.1
8 de
【請求項2】 偏平チューブの管内相当直径de(単位
mm)が、0.60≦de≦1.15とされていることを
特徴とする請求項1記載の冷媒凝縮器。
2. The equivalent diameter de in the flat tube (unit:
mm) is 0.60 ≦ de ≦ 1.15. The refrigerant condenser according to claim 1, wherein
JP14280494A 1992-11-25 1994-06-24 Refrigerant condenser Withdrawn JPH085197A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP14280494A JPH085197A (en) 1994-06-24 1994-06-24 Refrigerant condenser
US08/494,596 US5682944A (en) 1992-11-25 1995-06-23 Refrigerant condenser
US08/774,616 US5730212A (en) 1992-11-25 1996-12-30 Refrigerant condenser
US08/874,723 US6125922A (en) 1992-11-25 1997-06-13 Refrigerant condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14280494A JPH085197A (en) 1994-06-24 1994-06-24 Refrigerant condenser

Publications (1)

Publication Number Publication Date
JPH085197A true JPH085197A (en) 1996-01-12

Family

ID=15324030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14280494A Withdrawn JPH085197A (en) 1992-11-25 1994-06-24 Refrigerant condenser

Country Status (1)

Country Link
JP (1) JPH085197A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012220137A (en) * 2011-04-12 2012-11-12 Fuji Electric Co Ltd Heat exchanger
JP2012241941A (en) * 2011-05-17 2012-12-10 Fuji Electric Co Ltd Heat exchanger
JP2013221694A (en) * 2012-04-17 2013-10-28 Fuji Electric Co Ltd Heat exchanger
WO2015111175A1 (en) * 2014-01-23 2015-07-30 三菱電機株式会社 Heat pump apparatus
CN107514841A (en) * 2016-06-17 2017-12-26 杭州三花家电热管理系统有限公司 Heat exchanger assembly

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012220137A (en) * 2011-04-12 2012-11-12 Fuji Electric Co Ltd Heat exchanger
JP2012241941A (en) * 2011-05-17 2012-12-10 Fuji Electric Co Ltd Heat exchanger
JP2013221694A (en) * 2012-04-17 2013-10-28 Fuji Electric Co Ltd Heat exchanger
WO2015111175A1 (en) * 2014-01-23 2015-07-30 三菱電機株式会社 Heat pump apparatus
CN105940276A (en) * 2014-01-23 2016-09-14 三菱电机株式会社 Heat pump apparatus
JPWO2015111175A1 (en) * 2014-01-23 2017-03-23 三菱電機株式会社 Heat pump equipment
US10605498B2 (en) 2014-01-23 2020-03-31 Mitsubishi Electric Corporation Heat pump apparatus
CN107514841A (en) * 2016-06-17 2017-12-26 杭州三花家电热管理系统有限公司 Heat exchanger assembly
CN107514841B (en) * 2016-06-17 2020-06-16 杭州三花微通道换热器有限公司 Heat exchanger assembly

Similar Documents

Publication Publication Date Title
US6062303A (en) Multiflow type condenser for an air conditioner
KR950007282B1 (en) Condenser with small hydraulic diameter flow path
AU2002365762B2 (en) Heat exchanger for providing supercritical cooling of a working fluid in a transcritical cooling cycle
US20030183378A1 (en) Heat exchanger and folded tube used therein
AU2012208123A1 (en) Heat exchanger and air conditioner
JP4751662B2 (en) Plate for manufacturing flat tube, method for manufacturing flat tube, and method for manufacturing heat exchanger
WO2018116929A1 (en) Heat exchanger and air conditioner
JPH04369388A (en) Heat exchanger
JPH0510633A (en) Condenser
US20080245518A1 (en) Flat Tube Making Platelike Body, Flat Tube, Heat Exchanger and Process for Fabricating Heat Exchanger
WO2002012816A1 (en) Heat exchanger
JPH085197A (en) Refrigerant condenser
JP2008267730A (en) Double row heat exchanger
JP2001027484A (en) Serpentine heat-exchanger
CN110651162B (en) Refrigerant evaporator and method for manufacturing same
JP2003042597A (en) Integrated heat exchanger
JP2891486B2 (en) Heat exchanger
JP3367235B2 (en) Refrigeration cycle of vehicle air conditioner
WO2006068262A1 (en) Heat exchanger
JPH03195872A (en) Heat exchanger
JPH0539969A (en) Condenser for refrigerant
JP3446260B2 (en) Refrigerant condenser
JPH10220919A (en) Condenser
JPH03117860A (en) Condenser
JPH04263716A (en) Heat exchanger

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20040728