JPH03117860A - Condenser - Google Patents

Condenser

Info

Publication number
JPH03117860A
JPH03117860A JP25193389A JP25193389A JPH03117860A JP H03117860 A JPH03117860 A JP H03117860A JP 25193389 A JP25193389 A JP 25193389A JP 25193389 A JP25193389 A JP 25193389A JP H03117860 A JPH03117860 A JP H03117860A
Authority
JP
Japan
Prior art keywords
refrigerant
passage
tube
refrigerant passage
sectional area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25193389A
Other languages
Japanese (ja)
Inventor
Tomomi Umeda
知巳 梅田
Toshihiko Fukushima
敏彦 福島
Mitsuo Kudo
工藤 光夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP25193389A priority Critical patent/JPH03117860A/en
Publication of JPH03117860A publication Critical patent/JPH03117860A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • F28D1/0478Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/025Tubular elements of cross-section which is non-circular with variable shape, e.g. with modified tube ends, with different geometrical features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0246Arrangements for connecting header boxes with flow lines

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To improve heat exchanging performance, to reduce the size and to save the refrigerant by connecting a refrigerant passage tube through a connector, and arranging the passage tube having small refrigerant passage sectional area from a refrigerant inlet side to an outlet side. CONSTITUTION:Refrigerant flowing from a refrigerant inlet tube 10 is heat exchanged in a refrigerant passage tube 1 of an inlet zigzag passage A, and fed into a connector 7. Refrigerant is fed into a refrigerant passage tube 2 of an intermediate zigzag passage B, heat exchanged, fed to a connector 8 and a refrigerant passage tube 3 of a zigzag passage C, thence fed through a refrigerant outlet tube 11 out of a condenser. The refrigerant in the passage A is in a gaseous state, the sectional area of a refrigerant passage 14 of the tube 1 is large, and the refrigerant is efficiently condensed. The passage B is in gas and liquid mixture state, the sectional area of the passage 14 is smaller than that of the tube 1, and the refrigerant is efficiently condensed. In the passage C, the refrigerant is completely liquefied, the sectional area of the passage 14 is smaller than that of the tube 2, no wasteful space exists in the passage of the liquid refrigerant, and a refrigerant flowing speed is accelerated. Accordingly, its condensing capacity is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は冷房、冷凍機に使用され、冷媒をガスから液に
凝縮する凝縮器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a condenser used in air conditioners and refrigerators to condense a refrigerant from gas to liquid.

〔従来の技術〕[Conventional technology]

凝縮器は、圧縮機により高温、高圧のガスとされた冷媒
を、冷媒の凝縮温度よりも低い温度の凝縮媒体と熱交換
させて冷却することにより凝縮液化させるものである。
A condenser condenses and liquefies a refrigerant that has been converted into a high-temperature, high-pressure gas by a compressor by cooling it by exchanging heat with a condensing medium whose temperature is lower than the condensing temperature of the refrigerant.

このとき、凝縮器内の冷媒通路は、入口付近のガス化部
分、中間の凝縮部の気液二相部分、出口付近の凝縮液部
とに大別される。このような凝縮器の熱交換効率を向上
させるためには、中間の凝縮部の効率が問題であり、こ
の部分の伝熱面積、すなわち、冷媒通路断面積を大きく
確保する必要がある。
At this time, the refrigerant passage within the condenser is roughly divided into a gasification section near the inlet, a gas-liquid two-phase section near the intermediate condensation section, and a condensed liquid section near the outlet. In order to improve the heat exchange efficiency of such a condenser, the efficiency of the intermediate condensing section is a problem, and it is necessary to ensure a large heat transfer area, that is, a large cross-sectional area of the refrigerant passage.

しかし、過冷却となる出口付近の凝縮液部では、冷媒通
路断面積が凝縮部と同様に大きいと、冷媒流速が低下し
冷媒流量が減少して、最終的に放熱量の低下を招く。従
って過冷却である出口付近の凝縮液部では、冷媒通路断
面積は入口付近のガス化部や中間の凝縮部程大きくする
必要はない。
However, in the condensate part near the outlet where supercooling occurs, if the cross-sectional area of the refrigerant passage is as large as in the condensing part, the refrigerant flow rate decreases, the refrigerant flow rate decreases, and the amount of heat dissipated ultimately decreases. Therefore, in the condensed liquid section near the outlet, which is supercooled, the cross-sectional area of the refrigerant passage does not need to be as large as the gasification section near the inlet or the intermediate condensation section.

従来の凝縮器では冷媒通路断面積は入口から出口まで一
定であり、上記の点については配慮されたものは少なか
った。この点を配慮した提案としては、特開昭63−3
4466号公報に記載された提案が知られている。この
提案による凝縮器は、左右の縦2本のヘッダの間に複数
本の冷媒通路管をへラダに垂直に、かつ相互に平行に接
続し、ヘッダ内に仕切板を設けて、同時に流れる冷媒通
路管の本数を減らすことにより、冷媒通路断面積を入口
側から出口側に向って減少させる構造となっていた6 〔発明が解決しようとする課題〕 しかしながら、上記公報に記載された従来技術は、左右
縦2本のヘッダ間に水平な冷媒通路管を複数本平行に接
続した構造の凝縮器に関するものであり、一般に用いら
れている構造の凝縮器には適用されない。
In conventional condensers, the cross-sectional area of the refrigerant passage is constant from the inlet to the outlet, and few have taken the above points into consideration. A proposal that takes this point into consideration is JP-A-63-3
A proposal described in Japanese Patent No. 4466 is known. The condenser proposed by this proposal has multiple refrigerant passage pipes connected perpendicularly to the header and parallel to each other between two vertical headers on the left and right, and a partition plate is provided in the header to allow the refrigerant to flow simultaneously. By reducing the number of passage pipes, the refrigerant passage cross-sectional area is reduced from the inlet side to the outlet side.6 [Problems to be Solved by the Invention] However, the prior art described in the above publication does not This invention relates to a condenser having a structure in which a plurality of horizontal refrigerant passage pipes are connected in parallel between two left and right vertical headers, and is not applicable to condensers having a generally used structure.

一方、蛇行して形成された1本の冷媒通路管からなる従
来の凝縮器では、冷媒通路管が偏平押出管により形成さ
れているため通路断面積は一定であり、この通路断面積
の大きさを凝縮部に合わせると、前述したように出口付
近の凝縮液部では大きすぎる結果となる。この結果、凝
縮能力の高い部分と低い部分とが存在することになり、
さらに凝縮器の大型化、冷媒封入量の増加を招くことに
なる。しかし、凝縮器の大きさにも限度があり、凝縮器
を大型化せずに凝縮性能を向上させることには限界があ
る。また、偏平押出冷媒通路管の通路断面積を徐々に変
化させることは、非常に回着であるという問題もあった
On the other hand, in a conventional condenser consisting of a single meandering refrigerant passage pipe, the passage cross-sectional area is constant because the refrigerant passage pipe is formed of a flat extruded tube, and the size of this passage cross-sectional area If it is adjusted to the condensing part, the result will be too large in the condensate part near the outlet, as described above. As a result, there will be areas with high condensation ability and areas with low condensation ability,
Furthermore, this results in an increase in the size of the condenser and an increase in the amount of refrigerant charged. However, there is a limit to the size of the condenser, and there is a limit to improving the condensing performance without increasing the size of the condenser. Further, there is also a problem in that gradually changing the passage cross-sectional area of the flat extruded refrigerant passage pipe is extremely complicated.

本発明は上記事情に鑑みてなされたものであり、蛇行形
の冷媒通路管を用いて、熱交換性能を向上させ、小型化
、省冷媒化を可能とする凝縮器を提供す・ることを目的
とする。
The present invention has been made in view of the above circumstances, and aims to provide a condenser that uses a meandering refrigerant passage pipe to improve heat exchange performance, downsize, and save refrigerant. purpose.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明は、蛇行して積層さ
れかつ隣り合う冷媒通路管のそれぞれの間にフィンを接
合してなる凝縮器において、少なくとも2種類の冷媒通
路断面積を有する冷媒通路管を、少なくとも1個のコネ
クタを介して接続するとともに、冷媒入口側から冷媒出
口側に向けて冷媒通路断面積の小さい冷媒通路管を配設
した構成である。
To achieve the above object, the present invention provides a refrigerant passage having at least two types of refrigerant passage cross-sectional areas in a condenser formed by meanderingly stacked refrigerant passage pipes and having fins joined between adjacent refrigerant passage pipes. The pipes are connected through at least one connector, and a refrigerant passage pipe with a small refrigerant passage cross-sectional area is arranged from the refrigerant inlet side to the refrigerant outlet side.

〔作用〕[Effect]

上記の構成によると、蛇行形の冷媒通路管を有する凝縮
器において、通路断面積を変化させることかできる。こ
の結果、冷媒入口付近のガス化部、中間の凝縮部及び出
口付近の凝縮液部のそれぞれにおいて、適正な伝熱面積
、すなわち冷媒通路断面積を選択することができるため
、凝縮器全体で熱交換性能を高く保つことができ、凝縮
能力が向上する。また、従来凝縮器に比べて無駄な部分
が減少するため、凝縮器の小型化、軽量化が可能となり
、さらに凝縮器内容積の減少のため省冷媒化も促進され
る。
According to the above configuration, in a condenser having a meandering refrigerant passage pipe, the passage cross-sectional area can be changed. As a result, the appropriate heat transfer area, that is, the cross-sectional area of the refrigerant passage, can be selected in each of the gasification section near the refrigerant inlet, the intermediate condensation section, and the condensate section near the outlet, so that the entire condenser can generate heat. It is possible to maintain high exchange performance and improve condensation capacity. Furthermore, since there are fewer wasteful parts compared to conventional condensers, the condenser can be made smaller and lighter, and furthermore, the reduction in the internal volume of the condenser facilitates the use of less refrigerant.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面を参照して説明する。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図乃至第3図に本発明の一実施例を示す。An embodiment of the present invention is shown in FIGS. 1 to 3.

図において、少なくとも2種類の冷媒通路断面を有する
3個の冷媒通路管1,2.3は、内部が複数個の通路に
区画された多孔偏平管により蛇行形に積層されている。
In the figure, three refrigerant passage pipes 1, 2.3 having at least two types of refrigerant passage cross-sections are stacked in a meandering manner by porous flat tubes whose interiors are partitioned into a plurality of passages.

これらの冷媒通路管1,2゜3の隣り合う平坦な側面間
には、それぞれコルゲートフィン4.5.6の両側の屈
曲部分が、ろう付けまたは半田付けなどにより接合され
ている。
Bent portions on both sides of corrugated fins 4, 5, 6 are joined between adjacent flat side surfaces of these refrigerant passage pipes 1, 2.degree. 3 by brazing, soldering, or the like.

また、冷媒通路管1,2.3は第2図に示すように高さ
が等しく奥行き長さが順次短かくなっている。
Further, as shown in FIG. 2, the refrigerant passage pipes 1, 2, and 3 have the same height and the depths become gradually shorter.

冷媒通路断面積の異なる冷媒通路管1,2は、第3図に
示すように両端が蓋9で閉塞された中空管状の少なくと
も1個のコネクタ7を介して連結されており、コネクタ
7の側面に形成された差込み口、L5,16に冷媒通路
管1,2の一端が挿入され、ろう付けにより強固に接合
されている。同様に、冷媒通路管2,3もコネクタ8に
連結されている。また冷媒通路管1,3のそれぞれコネ
クタ7.8に接続されていない端部には、冷媒入口管1
0及び冷媒出口管11がろう付けにより接合連結されて
いる。また、各冷媒通路管1,2.3の間に接合された
コルゲートフィン4,5.6は、第2図に示すようにそ
れぞれの冷媒通路管1,2゜3の伝熱面積の大きさに合
わせられている。
The refrigerant passage pipes 1 and 2 having different refrigerant passage cross-sectional areas are connected via at least one hollow tubular connector 7 whose both ends are closed with a lid 9, as shown in FIG. One ends of the refrigerant passage pipes 1 and 2 are inserted into the insertion ports L5 and 16 formed in the refrigerant passage pipes 1 and 2, and are firmly joined by brazing. Similarly, the refrigerant passage pipes 2 and 3 are also connected to the connector 8. Furthermore, a refrigerant inlet pipe 1 is provided at each end of the refrigerant passage pipes 1 and 3 that is not connected to the connector 7.8.
0 and a refrigerant outlet pipe 11 are joined and connected by brazing. In addition, the corrugated fins 4, 5.6 joined between the respective refrigerant passage pipes 1, 2.3 have the same size as the heat transfer area of each refrigerant passage pipe 1, 2.3, as shown in Fig. 2. It is adjusted to

なお、この実施例では第1図に示すように、全冷媒通路
は入口部蛇行通路A、出口部蛇行通路C及びそれらの中
間に存在する中間部蛇行通路Bの3群に分けられ、第2
図に示すように、中間部蛇行通路Bは入口部蛇行通路A
よりも冷媒通路断面積は小さく、また、出口部蛇行通路
Cは中間部蛇行通路Bの冷媒通路断面積よりも小さくな
っている。この結果、入口から出口にかけ冷媒通路断面
積が減少され、さらに、各冷媒通路間に介在するフィン
も、各々の冷媒通路管の伝熱面積に合わせられた凝縮器
が構成される。
In this embodiment, as shown in FIG. 1, all the refrigerant passages are divided into three groups: an inlet meandering passage A, an outlet meandering passage C, and an intermediate meandering passage B existing between them.
As shown in the figure, the middle part meandering passage B is the entrance part meandering passage A.
The refrigerant passage cross-sectional area is smaller than that of the outlet meandering passage C, and the refrigerant passage cross-sectional area of the intermediate meandering passage B is smaller. As a result, the cross-sectional area of the refrigerant passage is reduced from the inlet to the outlet, and the fins interposed between the refrigerant passages also form a condenser that is matched to the heat transfer area of each refrigerant passage pipe.

なお、第1図に示す符号12.13は凝縮器の上下に設
けられたサイドプレートであり、第2図に示す符号14
は冷媒通路である。
Note that reference numerals 12 and 13 shown in FIG. 1 are side plates provided above and below the condenser, and reference numerals 14 and 13 shown in FIG.
is the refrigerant passage.

次に本実施例の作用を説明する。凝縮器上部の冷媒入口
管10から流入した冷媒は、入口蛇行通路Aの冷媒通路
管1を熱交換しながら通過し、コネクタ7に流入する。
Next, the operation of this embodiment will be explained. The refrigerant flowing from the refrigerant inlet pipe 10 in the upper part of the condenser passes through the refrigerant passage pipe 1 of the entrance meandering passage A while exchanging heat, and flows into the connector 7.

コネクタ7に流入した冷媒は続いてコネクタ7に接合さ
れている中間部蛇行通路Bの冷媒通路管2に流入し、熱
交換しながら通過し、コネクタ8に流入する。その後同
様に出口部蛇行通路Cの冷媒通路管3に流入し、これを
通過後冷媒出口管11から凝縮器外へと流出される。
The refrigerant that has flowed into the connector 7 then flows into the refrigerant passage pipe 2 of the intermediate meandering passage B connected to the connector 7, passes therethrough while exchanging heat, and flows into the connector 8. Thereafter, the refrigerant similarly flows into the refrigerant passage pipe 3 of the outlet meandering passage C, passes through this, and then flows out of the refrigerant outlet pipe 11 to the outside of the condenser.

入口部蛇行通路Aにおける冷媒は、体積の大きいガス化
状態にある。しかし、冷媒通路管1の冷媒通路14の断
面積は大きく設定しであるため、伝熱面積も大きく、効
率の良い冷媒凝縮が行なわれる。次の中間部蛇行通路B
は、冷媒が凝縮されて液化された部分と、未凝縮のガス
の部分とが共存す・る気液二相状態である。従って伝熱
面積は入口部蛇行通路Aよりも小さくてよく、これに応
じて中間部蛇行通路Bの冷媒通路14の断面積は、冷媒
通路管1のそれよりも小さく設定されている。
The refrigerant in the inlet meandering passage A is in a gasified state with a large volume. However, since the cross-sectional area of the refrigerant passage 14 of the refrigerant passage pipe 1 is set large, the heat transfer area is also large, and efficient refrigerant condensation is performed. Next intermediate meandering passage B
is a gas-liquid two-phase state in which a condensed and liquefied part of the refrigerant and an uncondensed gas part coexist. Therefore, the heat transfer area may be smaller than that of the inlet meandering passage A, and accordingly, the cross-sectional area of the refrigerant passage 14 of the intermediate meandering passage B is set smaller than that of the refrigerant passage pipe 1.

従ってここでも効率よく凝縮が行なわれる。Therefore, condensation is efficiently carried out here as well.

さらに、出口部蛇行通路Cでは冷媒は完全に液化されて
いるため、体積も小さくなっており、通路断面積は小さ
くてもよい。ここでもこれに応じて出口部蛇行通路Cの
冷媒通路14の断面積は、冷媒通路管2のそれより小さ
く設定されているので、液冷媒の通過にむだなスペース
がなく、液冷媒の量が少なくてすむ。また、冷媒流速も
促進されるため凝縮能力も向上する。
Furthermore, since the refrigerant is completely liquefied in the outlet meandering passage C, the volume is small, and the cross-sectional area of the passage may be small. In accordance with this, the cross-sectional area of the refrigerant passage 14 of the outlet meandering passage C is set smaller than that of the refrigerant passage pipe 2, so there is no wasted space for the liquid refrigerant to pass through, and the amount of liquid refrigerant is reduced. Less is needed. Furthermore, since the refrigerant flow rate is also accelerated, the condensing ability is also improved.

本実施例によれば、ig縮部に相当する入口部蛇行通路
A、中間部蛇行通路B、過冷却部の出口部蛇行通路Cへ
と冷媒が流れるに従って、それぞれの冷媒状態に合わせ
て徐々に冷媒通路断面積を小さくした冷媒通路管1,2
.3を通るようにし、同時に冷媒管の伝熱面積に合わせ
たフィン4,5゜6を設けたので、最適な凝縮状態を得
ることができ、凝縮器全体の放熱性能が向上し、熱交換
性能を高く保つことができる。さらに、冷媒通路にむだ
なスペースがないので、省冷媒化が促進され、同時に凝
縮器の小型化、軽量化を図ることができる。
According to this embodiment, as the refrigerant flows into the inlet meandering passage A, the intermediate meandering passage B, and the outlet meandering passage C of the supercooling section, the refrigerant gradually adjusts to the respective refrigerant conditions. Refrigerant passage pipes 1 and 2 with reduced refrigerant passage cross-sectional area
.. At the same time, we installed fins 4,5°6 that match the heat transfer area of the refrigerant pipes, making it possible to obtain an optimal condensation state, improving the heat dissipation performance of the entire condenser, and improving heat exchange performance. can be kept high. Furthermore, since there is no wasted space in the refrigerant passage, the use of refrigerant is promoted, and at the same time, the condenser can be made smaller and lighter.

上記実施例では冷媒通路管1,2.3の高さが一定で奥
行き長さを順次短くした場合について説明したが、第4
図に示すように冷媒通路管17゜18.19の奥行き長
さを一定とし、高さを順次低くしてもよい。この場合は
フィン20,21゜22の奥行き長さも一定となる。さ
らに図示しないが冷媒通路管の高さ及び奥行き長さをと
もに変化させてもよい。なお符号23.24はサイドプ
レートである。
In the above embodiment, the height of the refrigerant passage pipes 1, 2.3 is constant and the depth length is gradually shortened.
As shown in the figure, the depth and length of the refrigerant passage pipes 17, 18, and 19 may be constant, and the heights may be gradually decreased. In this case, the depths of the fins 20, 21 and 22 are also constant. Furthermore, although not shown, both the height and depth of the refrigerant passage pipe may be changed. Note that numerals 23 and 24 are side plates.

また上記各実施例では、異なる2種類の冷媒通路断面積
を持つ冷媒通路管を接続するコネクタ7゜8を各蛇行通
路の端部に配置した場合について説明したが、第5図に
示すような冷媒通路25゜26.27の適当な位置にコ
ネクタ28.29を配置してもよい。この場合は通路管
内の冷媒の状態に適合した冷媒通路管長さを設定するこ
とができる。なお、符号30はフィンである。
Furthermore, in each of the above embodiments, a case has been described in which connectors 7.8 for connecting refrigerant passage pipes having two different cross-sectional areas of refrigerant passages are arranged at the ends of each meandering passage. Connectors 28, 29 may be placed at appropriate positions in the refrigerant passages 25° 26, 27. In this case, the length of the refrigerant passage pipe can be set to suit the state of the refrigerant within the passage pipe. In addition, the code|symbol 30 is a fin.

上記各実施例によっても第1の実施例と同様な効果を得
ることができる。
The same effects as in the first embodiment can also be obtained by each of the embodiments described above.

なお、上記各実施例では、3種類の冷媒通路管を使用し
た場合について説明したが、冷媒通路管の種類の数は3
種類に限定されるものではなく、目的に応じて複数種類
の冷媒通路管を用い、同時にそれに適合したフィンを組
み合わせることにより、最適な凝縮能力を持たせること
もできる。
In each of the above embodiments, three types of refrigerant passage pipes are used, but the number of types of refrigerant passage pipes is three.
The refrigerant passage pipes are not limited to the type, and an optimal condensing capacity can be achieved by using multiple types of refrigerant passage pipes depending on the purpose and combining them with fins that are compatible with the refrigerant passage pipes.

さらに、冷媒通路管は複数個の通路に区画された多孔偏
平管に限定されず、単管偏平管であってもよい。
Further, the refrigerant passage tube is not limited to a porous flat tube divided into a plurality of passages, but may be a single flat tube.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、凝縮器に設けら
れた蛇行形の冷媒通路管を、冷媒通路断面積が順次入口
側から出口側に向って減少するように複数種類で構成し
、順次コネクタを介して接続したので、最適な凝縮状態
を得ることができ、放射性能を向上して熱交換性能を高
く保つことができる。さらに、冷媒通路に無駄なスペー
スがないので、省冷媒化が促進され、同時に凝縮器の小
型化、軽量化が可能となる。
As explained above, according to the present invention, the meandering refrigerant passage pipes provided in the condenser are configured in a plurality of types so that the refrigerant passage cross-sectional area sequentially decreases from the inlet side to the outlet side, Since they are connected through sequential connectors, an optimal condensation state can be obtained, radiation performance can be improved, and heat exchange performance can be maintained at a high level. Furthermore, since there is no wasted space in the refrigerant passage, the use of refrigerant is promoted, and at the same time, the condenser can be made smaller and lighter.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す正面図、第2図は第1
図の1−1線断面図、第3図は第1図のコネクタと冷媒
通路管との分離状態を示す斜視図、第4図は本発明の他
の実施例を示す縦断面図、第5図は本発明のさらに他の
実施例を示す正面図である。 1.2,3,17,18,19,25,26゜27・・
・冷媒通路管、4,5,6,20,21゜22.30・
・・フィン、7,8,28,29・・・コネクタ。 菓 国 第 図 j 4 −玲拝孟f6a面躊 苓 3 図 図 3
FIG. 1 is a front view showing one embodiment of the present invention, and FIG. 2 is a front view showing one embodiment of the present invention.
3 is a perspective view showing a separated state of the connector and refrigerant passage pipe in FIG. 1, FIG. 4 is a longitudinal sectional view showing another embodiment of the present invention, and FIG. The figure is a front view showing still another embodiment of the present invention. 1.2,3,17,18,19,25,26゜27...
・Refrigerant passage pipe, 4, 5, 6, 20, 21゜22.30・
...Fin, 7, 8, 28, 29... Connector. Kaguo Diagram J 4 - Linghai Meng f6a Men Helian 3 Diagram 3

Claims (1)

【特許請求の範囲】[Claims] 1、蛇行して積層されかつ隣り合う冷媒通路管のそれぞ
れの間にフィンを接合してなる凝縮器において、少なく
とも2種類の冷媒通路断面積を有する冷媒通路管を、少
なくとも1個のコネクタを介して接続するとともに、冷
媒入口側から冷媒出口側に向けて前記冷媒通路断面積の
小さい前記冷媒通路管を配設したことを特徴とする凝縮
器。
1. In a condenser formed by meanderingly stacked refrigerant passage pipes with fins joined between adjacent refrigerant passage pipes, the refrigerant passage pipes having at least two types of refrigerant passage cross-sectional areas are connected via at least one connector. A condenser characterized in that the refrigerant passage pipe is connected to the refrigerant passage and has a small cross-sectional area from the refrigerant inlet side toward the refrigerant outlet side.
JP25193389A 1989-09-29 1989-09-29 Condenser Pending JPH03117860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25193389A JPH03117860A (en) 1989-09-29 1989-09-29 Condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25193389A JPH03117860A (en) 1989-09-29 1989-09-29 Condenser

Publications (1)

Publication Number Publication Date
JPH03117860A true JPH03117860A (en) 1991-05-20

Family

ID=17230132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25193389A Pending JPH03117860A (en) 1989-09-29 1989-09-29 Condenser

Country Status (1)

Country Link
JP (1) JPH03117860A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102313399A (en) * 2011-07-05 2012-01-11 广东美的电器股份有限公司 Parallel-flow heat exchanger
EP3309491A1 (en) * 2016-10-12 2018-04-18 Baltimore Aircoil Company, Inc. Indirect heat exchanger
US10571197B2 (en) 2016-10-12 2020-02-25 Baltimore Aircoil Company, Inc. Indirect heat exchanger
US10641554B2 (en) 2016-10-12 2020-05-05 Baltimore Aircoil Company, Inc. Indirect heat exchanger
CN112880432A (en) * 2021-02-02 2021-06-01 格力电器(武汉)有限公司 Heat exchange tube assembly, micro-channel heat exchanger, air conditioning system and heat exchanger design method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102313399A (en) * 2011-07-05 2012-01-11 广东美的电器股份有限公司 Parallel-flow heat exchanger
EP3309491A1 (en) * 2016-10-12 2018-04-18 Baltimore Aircoil Company, Inc. Indirect heat exchanger
CN107941044A (en) * 2016-10-12 2018-04-20 巴尔的摩汽圈公司 Indirect heat exchanger
US10571197B2 (en) 2016-10-12 2020-02-25 Baltimore Aircoil Company, Inc. Indirect heat exchanger
US10641554B2 (en) 2016-10-12 2020-05-05 Baltimore Aircoil Company, Inc. Indirect heat exchanger
CN107941044B (en) * 2016-10-12 2020-05-05 巴尔的摩汽圈公司 Indirect heat exchanger
US10655918B2 (en) 2016-10-12 2020-05-19 Baltimore Aircoil Company, Inc. Indirect heat exchanger having circuit tubes with varying dimensions
AU2017245328B2 (en) * 2016-10-12 2022-10-06 Baltimore Aircoil Company, Inc Indirect heat exchanger
US11644245B2 (en) 2016-10-12 2023-05-09 Baltimore Aircoil Company, Inc. Indirect heat exchanger having circuit tubes with varying dimensions
CN112880432A (en) * 2021-02-02 2021-06-01 格力电器(武汉)有限公司 Heat exchange tube assembly, micro-channel heat exchanger, air conditioning system and heat exchanger design method

Similar Documents

Publication Publication Date Title
US5076354A (en) Multiflow type condenser for car air conditioner
KR100216052B1 (en) Evaporator
USRE37040E1 (en) Evaporator with improved condensate collection
US6732789B2 (en) Heat exchanger for CO2 refrigerant
US4966230A (en) Serpentine fin, round tube heat exchanger
US5099913A (en) Tubular plate pass for heat exchanger with high volume gas expansion side
RU2319094C2 (en) Heat exchanger for supercritical cooling of working medium in transcritical cooling cycle
US20060054312A1 (en) Evaporator using micro-channel tubes
US20110056667A1 (en) Integrated multi-circuit microchannel heat exchanger
US20070131393A1 (en) Heat exchanger
US20080184734A1 (en) Flat Tube Single Serpentine Co2 Heat Exchanger
JP3911604B2 (en) Heat exchanger and refrigeration cycle
WO2024001737A1 (en) Heat exchanger
JPH03117860A (en) Condenser
JP2005127529A (en) Heat exchanger
US6446715B2 (en) Flat heat exchange tubes
KR20040075717A (en) Heat exchanger
KR100638488B1 (en) Heat exchanger for using CO2 as a refrigerant
WO2019219076A1 (en) Heat exchanger
JPH03117887A (en) Heat exchanger
JP2574488B2 (en) Heat exchanger
EP0442646A2 (en) Multipass evaporator
JPH0539969A (en) Condenser for refrigerant
JP2687593B2 (en) Refrigerant condenser
JP2001141382A (en) Air heat exchanger