JPH0539969A - Condenser for refrigerant - Google Patents
Condenser for refrigerantInfo
- Publication number
- JPH0539969A JPH0539969A JP19684191A JP19684191A JPH0539969A JP H0539969 A JPH0539969 A JP H0539969A JP 19684191 A JP19684191 A JP 19684191A JP 19684191 A JP19684191 A JP 19684191A JP H0539969 A JPH0539969 A JP H0539969A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- tube
- condenser
- receiver
- receiving tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
- F25B39/04—Condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2339/00—Details of evaporators; Details of condensers
- F25B2339/04—Details of condensers
- F25B2339/044—Condensers with an integrated receiver
- F25B2339/0443—Condensers with an integrated receiver the receiver being positioned horizontally
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/19—Refrigerant outlet condenser temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B40/00—Subcoolers, desuperheaters or superheaters
- F25B40/02—Subcoolers
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、車両用空気調和装置の
冷凍サイクルに使用される冷媒凝縮器に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerant condenser used in a refrigeration cycle of a vehicle air conditioner.
【0002】[0002]
【従来の技術】乗用車の空気調和装置に用いられる冷凍
サイクルでは、冷媒凝縮器の下流にレシーバを設置して
サブクール(過冷度)を0℃に保っている。しかし、冷
凍サイクルの効率(COP)は、過冷度をとった方が良
いことから、バス用空気調和装置では、レシーバの下流
にスーパクーラ(過冷却用の熱交換器)を設置して過冷
度を持たせている。2. Description of the Related Art In a refrigeration cycle used in an air conditioner for passenger cars, a receiver is installed downstream of a refrigerant condenser to maintain a subcool (supercooling degree) at 0 ° C. However, since the efficiency (COP) of the refrigeration cycle is better to be subcooled, in a bus air conditioner, a supercooler (heat exchanger for subcooling) is installed downstream of the receiver. Have a degree.
【0003】[0003]
【発明が解決しようとする課題】上記のレシーバサイク
ルに対して、レシーバのないサイクルでは、同じ負荷を
与えた場合に、冷媒封入量の増加に伴って、モリエル線
図上のサイクルバランスが、図4の実線で示す位置か
ら、破線で示す位置、一点鎖線で示す位置へと変化し、
過冷度も増加する。In contrast to the receiver cycle described above, in a cycle without a receiver, when the same load is applied, the cycle balance on the Mollier diagram becomes larger as the refrigerant charge amount increases. 4 changes from the position indicated by the solid line to the position indicated by the broken line and the position indicated by the alternate long and short dash line,
Supercooling also increases.
【0004】そのときサイクル効率は、図5に示すよう
に、ある過冷度で極大値(最適過冷度と呼ぶ)を示すこ
とが分かる。これを負荷を変えて実験してみると、図6
のように負荷が高い(流量が多い)ほど、最適過冷度が
大きくなることが分かった。つまり、負荷が高い程、冷
媒封入量を多くしてやれば良い。ところが、従来のバス
用空気調和装置に使用される冷凍サイクルでは、スーパ
クーラの大きさが一定であることから、負荷の変動に対
する過冷度の変化が小さく、あまり効率的であるとは言
えない。At that time, as shown in FIG. 5, it can be seen that the cycle efficiency shows a maximum value (called optimum degree of supercooling) at a certain degree of supercooling. When this is changed and the experiment is carried out,
It was found that the higher the load (the higher the flow rate), the greater the optimum degree of subcooling. That is, the higher the load, the larger the amount of refrigerant to be charged. However, in the conventional refrigeration cycle used for the air conditioner for a bath, since the size of the supercooler is constant, the change in the supercooling degree with respect to the load change is small, and it cannot be said to be very efficient.
【0005】本発明は、上記事情に基づいて成されたも
ので、その目的は、負荷に対して最もサイクル効率の高
くなる過冷度を実現することのできる冷媒凝縮器を提供
することにある。The present invention has been made in view of the above circumstances, and an object thereof is to provide a refrigerant condenser capable of realizing a degree of supercooling having the highest cycle efficiency with respect to a load. ..
【0006】[0006]
【課題を解決するための手段】本発明は、上記目的を達
成するために、冷媒通路を流れる高温、高圧の気相冷媒
を空気との熱交換によって凝縮液化する冷媒凝縮器にお
いて、前記冷媒通路の途中に内容積の大きなチューブを
介在させたことを技術的手段とする。In order to achieve the above object, the present invention provides a refrigerant condenser for condensing and liquefying a high-temperature, high-pressure gas-phase refrigerant flowing in the refrigerant passage by heat exchange with air. The technical means is to insert a tube with a large internal volume in the middle of the process.
【0007】[0007]
【作用】上記構成より成る本発明の冷媒凝縮器は、空気
との熱交換によってある乾き度まで液化した気液二相状
態の冷媒が、冷媒通路の途中で内容積の大きなチューブ
へ流入する。チューブ内を通過する冷媒は、チューブの
内容積が大きいことからほとんど凝縮することなく、チ
ューブ入口とほぼ同じ乾き度の状態でチューブより流出
する。そして、チューブより流出した冷媒は、チューブ
より下流の冷媒通路を通過する際に完全に液化され、さ
らに過冷却されて冷媒凝縮器より流出する。In the refrigerant condenser of the present invention having the above-described structure, the gas-liquid two-phase refrigerant liquefied to a certain degree of dryness by heat exchange with air flows into the tube having a large internal volume in the middle of the refrigerant passage. The refrigerant passing through the tube has a large internal volume of the tube and therefore hardly condenses, and flows out of the tube in a state of almost the same dryness as the tube inlet. Then, the refrigerant flowing out of the tube is completely liquefied when passing through the refrigerant passage downstream of the tube, is further supercooled and flows out of the refrigerant condenser.
【0008】[0008]
【実施例】次に、本発明の冷媒凝縮器の一実施例を図1
および図2を基に説明する。図1は冷媒凝縮器の全体図
である。本実施例の冷媒凝縮器1は、レシーバを有しな
い冷凍サイクルに適用されるもので、複数の偏平チュー
ブ2とコルゲートフィン3とを上下方向に積層して成る
コア部と、このコア部の上段側に介在されたレシーバチ
ューブ4(本発明のチューブ)と、各偏平チューブ2お
よびレシーバチューブ4の両端部に接続されたヘッダ
5、6とから構成されている。偏平チューブ2は、内部
に冷媒通路が形成されて、両端部のヘッダ5、6と連通
されている。DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, one embodiment of the refrigerant condenser of the present invention is shown in FIG.
Also, description will be made with reference to FIG. FIG. 1 is an overall view of a refrigerant condenser. The refrigerant condenser 1 of the present embodiment is applied to a refrigeration cycle having no receiver, and includes a core portion formed by vertically stacking a plurality of flat tubes 2 and corrugated fins 3, and an upper stage of the core portion. It is composed of a receiver tube 4 (tube of the present invention) interposed on the side, and headers 5 and 6 connected to both ends of each flat tube 2 and the receiver tube 4. The flat tube 2 has a refrigerant passage formed therein and communicates with the headers 5 and 6 at both ends.
【0009】ヘッダ5、6の内部には、コア部を流れる
冷媒をUターンさせるための仕切壁7、8、9が設けら
れている。一方のヘッダ5(図1の左側)に設けられた
仕切壁7は、レシーバチューブ4とその下側に位置する
偏平チューブ2との間を仕切るように配置されている。
他方のヘッダ6に設けられた仕切壁8、9は、レシーバ
チューブ4とその上側に位置する偏平チューブ2との
間、およびヘッダ6のほぼ中間部に配置されている。ま
た、他方のヘッダ6には、その下部および上部に冷媒の
流入口10および流出口11が設けられている。Inside the headers 5 and 6, partition walls 7, 8 and 9 for making a U-turn of the refrigerant flowing through the core portion are provided. A partition wall 7 provided on one header 5 (on the left side in FIG. 1) is arranged so as to partition between the receiver tube 4 and the flat tube 2 located below the receiver tube 4.
The partition walls 8 and 9 provided on the other header 6 are arranged between the receiver tube 4 and the flat tube 2 located above the receiver tube 4, and at a substantially middle portion of the header 6. Further, the other header 6 is provided with a coolant inlet 10 and a coolant outlet 11 at its lower and upper portions.
【0010】従って、流入口10から流入した冷媒は、
図1の実線矢印で示すように、各ヘッダでUターンしな
がらコア部を流れた後、流出口11より流出する。Therefore, the refrigerant flowing from the inlet 10 is
As shown by the solid line arrow in FIG. 1, after flowing through the core portion while making a U-turn in each header, it flows out from the outlet 11.
【0011】レシーバチューブ4は、全長が偏平チュー
ブ2と同じに設けられ、その断面積が、偏平チューブ2
の通路断面積と比較してはるかに大きく設定されてい
る。なお、レシーバチューブ4は、コア部への組付け性
やろう付け性等を考慮して、断面矩形状を呈する。The receiver tube 4 is provided in the same length as the flat tube 2, and its cross-sectional area is equal to that of the flat tube 2.
It is set much larger than the cross-sectional area of the passage. The receiver tube 4 has a rectangular cross section in consideration of the assembling property to the core part, the brazing property, and the like.
【0012】次に、本実施例の作動を説明する。図示し
ない冷媒圧縮機で圧縮された高温、高圧のガス冷媒は、
流入口10より他方のヘッダ6に流入し、仕切壁9より
下側の各偏平チューブ2を通って一方のヘッダ5側へ流
れる。そして、一方のヘッダ5でUターンした後、仕切
壁7と仕切壁9との間の各偏平チューブ2を通って再び
他方のヘッダ6へ流入する。Next, the operation of this embodiment will be described. The high-temperature, high-pressure gas refrigerant compressed by the refrigerant compressor (not shown) is
It flows into the other header 6 from the inflow port 10 and flows to the one header 5 side through each flat tube 2 below the partition wall 9. Then, after making a U-turn at one of the headers 5, it flows into each of the other headers 6 again through each flat tube 2 between the partition wall 7 and the partition wall 9.
【0013】この時点では、各偏平チューブ2を通過す
る際に、クーリングファン(図示しない)の送風を受け
て外気と熱交換された冷媒が、ある乾き度まで凝縮液化
されて気液二相状態となっている。この気液二相の冷媒
は、レシーバチューブ4を流れて一方のヘッダ5に流入
するが、内容積の大きなレシーバチューブ4内ではほと
んど凝縮されず、レシーバチューブ4に流入する時とほ
ぼ同じ乾き度の状態でレシーバチューブ4を流出する。At this point in time, when passing through each flat tube 2, the refrigerant that has exchanged heat with the outside air due to the blowing of a cooling fan (not shown) is condensed and liquefied to a certain degree of dryness to form a gas-liquid two-phase state. Has become. The gas-liquid two-phase refrigerant flows through the receiver tube 4 and flows into the one header 5, but is hardly condensed in the receiver tube 4 having a large internal volume, and the dryness is almost the same as when flowing into the receiver tube 4. In this state, the receiver tube 4 flows out.
【0014】その後、一方のヘッダ5でUターンし、仕
切壁8より上側の各偏平チューブ2を通過して他方のヘ
ッダ6へ流入した後、流出口11より流出する。ここ
で、各偏平チューブ2を通過する冷媒が完全に液化さ
れ、さらに過冷却されて、過冷度を有した状態で冷媒凝
縮器1を流出する。Thereafter, one header 5 makes a U-turn, passes through each flat tube 2 above the partition wall 8, flows into the other header 6, and then flows out from the outlet 11. Here, the refrigerant passing through each flat tube 2 is completely liquefied, further subcooled, and flows out of the refrigerant condenser 1 in a state having a degree of subcooling.
【0015】上記の作動において、レシーバチューブ4
に流入する気液二相の冷媒は、その冷媒流量が少ない時
には、重力の作用によってレシーバチューブ4の入口か
らすぐに上下方向に完全分離してレシーバチューブ4内
を流れることになる。このとき、気相冷媒の方が液相冷
媒より速く流れるため、レシーバチューブ4内には、液
冷媒が溜まりやすくなる。In the above operation, the receiver tube 4
When the flow rate of the refrigerant is small, the gas-liquid two-phase refrigerant flowing into the flow path completely separates vertically from the inlet of the receiver tube 4 by the action of gravity and flows in the receiver tube 4. At this time, since the gas-phase refrigerant flows faster than the liquid-phase refrigerant, the liquid refrigerant is likely to accumulate in the receiver tube 4.
【0016】また、冷媒流量が多い時には、レシーバチ
ューブ4の入口からすぐに気液分離することなく、しば
らくは気相と液相とが混合した二相状態で流れる。この
ため、気相冷媒と液相冷媒とが等速で流れることから、
レシーバチューブ4内には、あまり液冷媒が溜まらな
い。Further, when the flow rate of the refrigerant is large, the gas and liquid are not immediately separated from the inlet of the receiver tube 4 but flow in a two-phase state in which the gas phase and the liquid phase are mixed for a while. Therefore, since the gas-phase refrigerant and the liquid-phase refrigerant flow at a constant speed,
The liquid refrigerant does not collect much in the receiver tube 4.
【0017】このレシーバチューブ4の作用により、他
のサイクル部品内の冷媒量は、高流量の時に多く、低流
量の時に少なくなる。つまり、負荷の高い時には、図2
に示すように、レシーバチューブ4内に液冷媒が少ない
分だけ、レシーバチューブ4より上流の凝縮域(図2の
Aで示す)および下流の過冷却域(図2のBで示す)を
流れる冷媒量が増えて、過冷度が増加する。また、負荷
が低い時には、レシーバチューブ4内に液冷媒が多い分
だけ、逆に過冷度は減少する。なお、図2において、高
負荷の状態を実線で示し、低負荷の状態を破線で示す。Due to the action of the receiver tube 4, the amount of refrigerant in the other cycle parts is large at high flow rates and small at low flow rates. In other words, when the load is high,
As shown in FIG. 3, the refrigerant flowing in the condensation zone (shown by A in FIG. 2) and the subcooling zone (shown by B in FIG. 2) upstream from the receiver tube 4 by the amount of the liquid refrigerant in the receiver tube 4. The amount increases and the degree of supercooling increases. On the other hand, when the load is low, the supercooling degree is decreased by the amount of the liquid refrigerant in the receiver tube 4. In FIG. 2, a high load state is shown by a solid line, and a low load state is shown by a broken line.
【0018】このように、本実施例の冷媒凝縮器1で
は、負荷の変動に応じてレシーバチューブ4より下流の
過冷却域を流れる冷媒量が変化することにより、負荷に
対して最もサイクル効率の高くなる過冷度を実現するこ
とが可能となる。As described above, in the refrigerant condenser 1 of this embodiment, the amount of the refrigerant flowing in the supercooling region downstream of the receiver tube 4 changes in accordance with the fluctuation of the load, so that the cycle efficiency of the load is maximized. It becomes possible to realize a higher degree of supercooling.
【0019】次に、本発明の第2実施例を説明する。図
3は、レシーバチューブ4を別体とした冷媒凝縮器1の
全体図である。この実施例では、レシーバチューブ4を
凝縮器本体1aと別体に設けたものである。従って、凝
縮器本体1aとレシーバチューブ4とを図示しない配管
で接続するために、レシーバチューブ4の両端部と、一
方のヘッダ5の仕切壁7より上部位置および他方のヘッ
ダ6の仕切壁8と仕切壁9との間には、それぞれ配管接
続口12、13、14、15が設けられている。なお、
図3中に冷媒の流れを実線矢印で示す。本実施例の場合
には、レシーバチューブ4が別体であることから、第1
実施例のように組付け性やろう付け性を考慮する必要が
なく、従って、その形状の制約はない。Next, a second embodiment of the present invention will be described. FIG. 3 is an overall view of the refrigerant condenser 1 in which the receiver tube 4 is separate. In this embodiment, the receiver tube 4 is provided separately from the condenser body 1a. Therefore, in order to connect the condenser main body 1a and the receiver tube 4 with a pipe (not shown), both ends of the receiver tube 4, a position above the partition wall 7 of the header 5 and a partition wall 8 of the other header 6 are connected. Pipe connection ports 12, 13, 14, and 15 are provided between the partition wall 9 and the partition wall 9, respectively. In addition,
The flow of the refrigerant is shown by solid arrows in FIG. In the case of this embodiment, since the receiver tube 4 is a separate body,
It is not necessary to consider the assembling property and the brazing property as in the embodiment, and therefore, the shape is not restricted.
【0020】[0020]
【発明の効果】本発明では、冷媒通路の途中に内容積の
大きなチューブを設置したことにより、負荷の変動に応
じて過冷度をとるために費やされる冷媒凝縮器の面積を
可変することができる。その結果、負荷に対して最もサ
イクル効率の高くなる過冷度を実現することができる。According to the present invention, by installing a tube having a large internal volume in the middle of the refrigerant passage, it is possible to change the area of the refrigerant condenser which is spent for supercooling depending on the fluctuation of the load. it can. As a result, it is possible to realize the degree of supercooling that maximizes the cycle efficiency with respect to the load.
【図1】冷媒凝縮器の全体図である。FIG. 1 is an overall view of a refrigerant condenser.
【図2】冷媒凝縮器内の冷媒量の変化を示す図である。FIG. 2 is a diagram showing changes in the amount of refrigerant in a refrigerant condenser.
【図3】本発明の第2実施例を示す冷媒凝縮器の全体図
である。FIG. 3 is an overall view of a refrigerant condenser showing a second embodiment of the present invention.
【図4】冷媒封入量が変化した時のサイクルバランスを
モリエル線図上に示した図である。FIG. 4 is a diagram showing the cycle balance on the Mollier diagram when the amount of refrigerant enclosed changes.
【図5】過冷度とサイクル効率との関係を示すグラフで
ある。FIG. 5 is a graph showing the relationship between supercooling degree and cycle efficiency.
【図6】冷媒流量と最適過冷度との関係を示すグラフで
ある。FIG. 6 is a graph showing the relationship between the refrigerant flow rate and the optimum degree of subcooling.
1 冷媒凝縮器 2 偏平チューブ(冷媒通路) 4 レシーバチューブ(チューブ) 1 Refrigerant condenser 2 Flat tube (refrigerant passage) 4 Receiver tube (tube)
───────────────────────────────────────────────────── フロントページの続き (72)発明者 大原 敏夫 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshio Ohara 1-1, Showa-cho, Kariya city, Aichi Prefecture Nihondenso Co., Ltd.
Claims (1)
空気との熱交換によって凝縮液化する冷媒凝縮器におい
て、 前記冷媒通路の途中に内容積の大きなチューブを介在さ
せたことを特徴とする冷媒凝縮器。1. A refrigerant condenser for condensing and liquefying a high-temperature, high-pressure gas-phase refrigerant flowing through a refrigerant passage by heat exchange with air, characterized in that a tube having a large internal volume is interposed in the middle of the refrigerant passage. Refrigerant condenser.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19684191A JP3158509B2 (en) | 1991-08-06 | 1991-08-06 | Refrigerant condenser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19684191A JP3158509B2 (en) | 1991-08-06 | 1991-08-06 | Refrigerant condenser |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0539969A true JPH0539969A (en) | 1993-02-19 |
JP3158509B2 JP3158509B2 (en) | 2001-04-23 |
Family
ID=16364555
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19684191A Expired - Lifetime JP3158509B2 (en) | 1991-08-06 | 1991-08-06 | Refrigerant condenser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3158509B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2765956A1 (en) * | 1997-07-10 | 1999-01-15 | Denso Corp | REFRIGERANT CONDENSER INCLUDING A SUPER-COOLING PART |
JP2001349642A (en) * | 2000-04-14 | 2001-12-21 | Behr Gmbh & Co | Condenser for air conditioner, in particular for air conditioner for motor vehicle |
US6470703B2 (en) * | 2000-05-09 | 2002-10-29 | Sanden Corporation | Subcooling-type condenser |
KR20120031638A (en) * | 2010-09-27 | 2012-04-04 | 한라공조주식회사 | Condenser |
JP2012067939A (en) * | 2010-09-21 | 2012-04-05 | Denso Corp | Condenser |
JP2014085047A (en) * | 2012-10-23 | 2014-05-12 | Sharp Corp | Parallel flow type heat exchanger |
-
1991
- 1991-08-06 JP JP19684191A patent/JP3158509B2/en not_active Expired - Lifetime
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2765956A1 (en) * | 1997-07-10 | 1999-01-15 | Denso Corp | REFRIGERANT CONDENSER INCLUDING A SUPER-COOLING PART |
JP2001349642A (en) * | 2000-04-14 | 2001-12-21 | Behr Gmbh & Co | Condenser for air conditioner, in particular for air conditioner for motor vehicle |
US6470703B2 (en) * | 2000-05-09 | 2002-10-29 | Sanden Corporation | Subcooling-type condenser |
JP2012067939A (en) * | 2010-09-21 | 2012-04-05 | Denso Corp | Condenser |
KR20120031638A (en) * | 2010-09-27 | 2012-04-04 | 한라공조주식회사 | Condenser |
JP2014085047A (en) * | 2012-10-23 | 2014-05-12 | Sharp Corp | Parallel flow type heat exchanger |
Also Published As
Publication number | Publication date |
---|---|
JP3158509B2 (en) | 2001-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5592830A (en) | Refrigerant condenser with integral receiver | |
US6330810B1 (en) | Condensing apparatus for use in a refrigeration cycle receiver-dryer used for said condensing apparatus | |
JP3627382B2 (en) | Refrigerant condensing device and refrigerant condenser | |
EP1043552B1 (en) | Condenser with a decompressing means | |
JP4358981B2 (en) | Air conditioning condenser | |
JPH06191262A (en) | Refrigerating device | |
JPH0510633A (en) | Condenser | |
JP3158509B2 (en) | Refrigerant condenser | |
JP2001012823A (en) | Refrigerant condenser | |
JPS6214751B2 (en) | ||
KR20040075717A (en) | Heat exchanger | |
AU2017444848B2 (en) | Heat exchanger and refrigeration cycle device | |
JP3367235B2 (en) | Refrigeration cycle of vehicle air conditioner | |
JP2001221535A (en) | Refrigerant evaporator | |
JPH06341736A (en) | Refrigerant condenser | |
JP2644900B2 (en) | Heat exchanger | |
JP2002350002A (en) | Condenser | |
JP2004232924A (en) | Refrigeration cycle device | |
JP3129721B2 (en) | Refrigerant condenser and method of setting the number of tubes of refrigerant condenser | |
JPH06129732A (en) | Refrigerant condenser | |
JPH0395368A (en) | Condenser | |
JPH0642885Y2 (en) | Refrigerator Evaporator | |
JPH085198A (en) | Air conditioning heat exchanger | |
JP3446260B2 (en) | Refrigerant condenser | |
JPH07103609A (en) | Heat exchanger for freezing cycle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 11 Free format text: PAYMENT UNTIL: 20120216 |