JPH0539969A - Condenser for refrigerant - Google Patents

Condenser for refrigerant

Info

Publication number
JPH0539969A
JPH0539969A JP19684191A JP19684191A JPH0539969A JP H0539969 A JPH0539969 A JP H0539969A JP 19684191 A JP19684191 A JP 19684191A JP 19684191 A JP19684191 A JP 19684191A JP H0539969 A JPH0539969 A JP H0539969A
Authority
JP
Japan
Prior art keywords
refrigerant
tube
condenser
receiver
receiving tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19684191A
Other languages
Japanese (ja)
Other versions
JP3158509B2 (en
Inventor
Hideaki Sato
英明 佐藤
Hisao Nagashima
久夫 永島
Shin Honda
伸 本田
Toshio Ohara
敏夫 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP19684191A priority Critical patent/JP3158509B2/en
Publication of JPH0539969A publication Critical patent/JPH0539969A/en
Application granted granted Critical
Publication of JP3158509B2 publication Critical patent/JP3158509B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver
    • F25B2339/0443Condensers with an integrated receiver the receiver being positioned horizontally
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/19Refrigerant outlet condenser temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To obtain the title condenser whereby against a load, the degree of subcooling most suitable for the efficiency of a refrigeration cycle can be realized. CONSTITUTION:On the upper side of core parts, at which a plurality of flat tubes 2 forming pathways for a refrigerant and corrugated fins 3 are alternately stacked in vertical direction, a receiving tube 4 with a large content volume is placed between the core parts. Headers 5, 6 are respectively joined to both end parts of each of the flat tubes 2 and the receiving tube 4, and the flat tubes 2 and the receiving tube 4 communicate with each other through the headers 5, 6. The receiving tube 4 acts as a receiver and the flat tubes 2 on the downstream side of the receiving tube 4 act as a cooler for subcooling.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、車両用空気調和装置の
冷凍サイクルに使用される冷媒凝縮器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerant condenser used in a refrigeration cycle of a vehicle air conditioner.

【0002】[0002]

【従来の技術】乗用車の空気調和装置に用いられる冷凍
サイクルでは、冷媒凝縮器の下流にレシーバを設置して
サブクール(過冷度)を0℃に保っている。しかし、冷
凍サイクルの効率(COP)は、過冷度をとった方が良
いことから、バス用空気調和装置では、レシーバの下流
にスーパクーラ(過冷却用の熱交換器)を設置して過冷
度を持たせている。
2. Description of the Related Art In a refrigeration cycle used in an air conditioner for passenger cars, a receiver is installed downstream of a refrigerant condenser to maintain a subcool (supercooling degree) at 0 ° C. However, since the efficiency (COP) of the refrigeration cycle is better to be subcooled, in a bus air conditioner, a supercooler (heat exchanger for subcooling) is installed downstream of the receiver. Have a degree.

【0003】[0003]

【発明が解決しようとする課題】上記のレシーバサイク
ルに対して、レシーバのないサイクルでは、同じ負荷を
与えた場合に、冷媒封入量の増加に伴って、モリエル線
図上のサイクルバランスが、図4の実線で示す位置か
ら、破線で示す位置、一点鎖線で示す位置へと変化し、
過冷度も増加する。
In contrast to the receiver cycle described above, in a cycle without a receiver, when the same load is applied, the cycle balance on the Mollier diagram becomes larger as the refrigerant charge amount increases. 4 changes from the position indicated by the solid line to the position indicated by the broken line and the position indicated by the alternate long and short dash line,
Supercooling also increases.

【0004】そのときサイクル効率は、図5に示すよう
に、ある過冷度で極大値(最適過冷度と呼ぶ)を示すこ
とが分かる。これを負荷を変えて実験してみると、図6
のように負荷が高い(流量が多い)ほど、最適過冷度が
大きくなることが分かった。つまり、負荷が高い程、冷
媒封入量を多くしてやれば良い。ところが、従来のバス
用空気調和装置に使用される冷凍サイクルでは、スーパ
クーラの大きさが一定であることから、負荷の変動に対
する過冷度の変化が小さく、あまり効率的であるとは言
えない。
At that time, as shown in FIG. 5, it can be seen that the cycle efficiency shows a maximum value (called optimum degree of supercooling) at a certain degree of supercooling. When this is changed and the experiment is carried out,
It was found that the higher the load (the higher the flow rate), the greater the optimum degree of subcooling. That is, the higher the load, the larger the amount of refrigerant to be charged. However, in the conventional refrigeration cycle used for the air conditioner for a bath, since the size of the supercooler is constant, the change in the supercooling degree with respect to the load change is small, and it cannot be said to be very efficient.

【0005】本発明は、上記事情に基づいて成されたも
ので、その目的は、負荷に対して最もサイクル効率の高
くなる過冷度を実現することのできる冷媒凝縮器を提供
することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a refrigerant condenser capable of realizing a degree of supercooling having the highest cycle efficiency with respect to a load. ..

【0006】[0006]

【課題を解決するための手段】本発明は、上記目的を達
成するために、冷媒通路を流れる高温、高圧の気相冷媒
を空気との熱交換によって凝縮液化する冷媒凝縮器にお
いて、前記冷媒通路の途中に内容積の大きなチューブを
介在させたことを技術的手段とする。
In order to achieve the above object, the present invention provides a refrigerant condenser for condensing and liquefying a high-temperature, high-pressure gas-phase refrigerant flowing in the refrigerant passage by heat exchange with air. The technical means is to insert a tube with a large internal volume in the middle of the process.

【0007】[0007]

【作用】上記構成より成る本発明の冷媒凝縮器は、空気
との熱交換によってある乾き度まで液化した気液二相状
態の冷媒が、冷媒通路の途中で内容積の大きなチューブ
へ流入する。チューブ内を通過する冷媒は、チューブの
内容積が大きいことからほとんど凝縮することなく、チ
ューブ入口とほぼ同じ乾き度の状態でチューブより流出
する。そして、チューブより流出した冷媒は、チューブ
より下流の冷媒通路を通過する際に完全に液化され、さ
らに過冷却されて冷媒凝縮器より流出する。
In the refrigerant condenser of the present invention having the above-described structure, the gas-liquid two-phase refrigerant liquefied to a certain degree of dryness by heat exchange with air flows into the tube having a large internal volume in the middle of the refrigerant passage. The refrigerant passing through the tube has a large internal volume of the tube and therefore hardly condenses, and flows out of the tube in a state of almost the same dryness as the tube inlet. Then, the refrigerant flowing out of the tube is completely liquefied when passing through the refrigerant passage downstream of the tube, is further supercooled and flows out of the refrigerant condenser.

【0008】[0008]

【実施例】次に、本発明の冷媒凝縮器の一実施例を図1
および図2を基に説明する。図1は冷媒凝縮器の全体図
である。本実施例の冷媒凝縮器1は、レシーバを有しな
い冷凍サイクルに適用されるもので、複数の偏平チュー
ブ2とコルゲートフィン3とを上下方向に積層して成る
コア部と、このコア部の上段側に介在されたレシーバチ
ューブ4(本発明のチューブ)と、各偏平チューブ2お
よびレシーバチューブ4の両端部に接続されたヘッダ
5、6とから構成されている。偏平チューブ2は、内部
に冷媒通路が形成されて、両端部のヘッダ5、6と連通
されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, one embodiment of the refrigerant condenser of the present invention is shown in FIG.
Also, description will be made with reference to FIG. FIG. 1 is an overall view of a refrigerant condenser. The refrigerant condenser 1 of the present embodiment is applied to a refrigeration cycle having no receiver, and includes a core portion formed by vertically stacking a plurality of flat tubes 2 and corrugated fins 3, and an upper stage of the core portion. It is composed of a receiver tube 4 (tube of the present invention) interposed on the side, and headers 5 and 6 connected to both ends of each flat tube 2 and the receiver tube 4. The flat tube 2 has a refrigerant passage formed therein and communicates with the headers 5 and 6 at both ends.

【0009】ヘッダ5、6の内部には、コア部を流れる
冷媒をUターンさせるための仕切壁7、8、9が設けら
れている。一方のヘッダ5(図1の左側)に設けられた
仕切壁7は、レシーバチューブ4とその下側に位置する
偏平チューブ2との間を仕切るように配置されている。
他方のヘッダ6に設けられた仕切壁8、9は、レシーバ
チューブ4とその上側に位置する偏平チューブ2との
間、およびヘッダ6のほぼ中間部に配置されている。ま
た、他方のヘッダ6には、その下部および上部に冷媒の
流入口10および流出口11が設けられている。
Inside the headers 5 and 6, partition walls 7, 8 and 9 for making a U-turn of the refrigerant flowing through the core portion are provided. A partition wall 7 provided on one header 5 (on the left side in FIG. 1) is arranged so as to partition between the receiver tube 4 and the flat tube 2 located below the receiver tube 4.
The partition walls 8 and 9 provided on the other header 6 are arranged between the receiver tube 4 and the flat tube 2 located above the receiver tube 4, and at a substantially middle portion of the header 6. Further, the other header 6 is provided with a coolant inlet 10 and a coolant outlet 11 at its lower and upper portions.

【0010】従って、流入口10から流入した冷媒は、
図1の実線矢印で示すように、各ヘッダでUターンしな
がらコア部を流れた後、流出口11より流出する。
Therefore, the refrigerant flowing from the inlet 10 is
As shown by the solid line arrow in FIG. 1, after flowing through the core portion while making a U-turn in each header, it flows out from the outlet 11.

【0011】レシーバチューブ4は、全長が偏平チュー
ブ2と同じに設けられ、その断面積が、偏平チューブ2
の通路断面積と比較してはるかに大きく設定されてい
る。なお、レシーバチューブ4は、コア部への組付け性
やろう付け性等を考慮して、断面矩形状を呈する。
The receiver tube 4 is provided in the same length as the flat tube 2, and its cross-sectional area is equal to that of the flat tube 2.
It is set much larger than the cross-sectional area of the passage. The receiver tube 4 has a rectangular cross section in consideration of the assembling property to the core part, the brazing property, and the like.

【0012】次に、本実施例の作動を説明する。図示し
ない冷媒圧縮機で圧縮された高温、高圧のガス冷媒は、
流入口10より他方のヘッダ6に流入し、仕切壁9より
下側の各偏平チューブ2を通って一方のヘッダ5側へ流
れる。そして、一方のヘッダ5でUターンした後、仕切
壁7と仕切壁9との間の各偏平チューブ2を通って再び
他方のヘッダ6へ流入する。
Next, the operation of this embodiment will be described. The high-temperature, high-pressure gas refrigerant compressed by the refrigerant compressor (not shown) is
It flows into the other header 6 from the inflow port 10 and flows to the one header 5 side through each flat tube 2 below the partition wall 9. Then, after making a U-turn at one of the headers 5, it flows into each of the other headers 6 again through each flat tube 2 between the partition wall 7 and the partition wall 9.

【0013】この時点では、各偏平チューブ2を通過す
る際に、クーリングファン(図示しない)の送風を受け
て外気と熱交換された冷媒が、ある乾き度まで凝縮液化
されて気液二相状態となっている。この気液二相の冷媒
は、レシーバチューブ4を流れて一方のヘッダ5に流入
するが、内容積の大きなレシーバチューブ4内ではほと
んど凝縮されず、レシーバチューブ4に流入する時とほ
ぼ同じ乾き度の状態でレシーバチューブ4を流出する。
At this point in time, when passing through each flat tube 2, the refrigerant that has exchanged heat with the outside air due to the blowing of a cooling fan (not shown) is condensed and liquefied to a certain degree of dryness to form a gas-liquid two-phase state. Has become. The gas-liquid two-phase refrigerant flows through the receiver tube 4 and flows into the one header 5, but is hardly condensed in the receiver tube 4 having a large internal volume, and the dryness is almost the same as when flowing into the receiver tube 4. In this state, the receiver tube 4 flows out.

【0014】その後、一方のヘッダ5でUターンし、仕
切壁8より上側の各偏平チューブ2を通過して他方のヘ
ッダ6へ流入した後、流出口11より流出する。ここ
で、各偏平チューブ2を通過する冷媒が完全に液化さ
れ、さらに過冷却されて、過冷度を有した状態で冷媒凝
縮器1を流出する。
Thereafter, one header 5 makes a U-turn, passes through each flat tube 2 above the partition wall 8, flows into the other header 6, and then flows out from the outlet 11. Here, the refrigerant passing through each flat tube 2 is completely liquefied, further subcooled, and flows out of the refrigerant condenser 1 in a state having a degree of subcooling.

【0015】上記の作動において、レシーバチューブ4
に流入する気液二相の冷媒は、その冷媒流量が少ない時
には、重力の作用によってレシーバチューブ4の入口か
らすぐに上下方向に完全分離してレシーバチューブ4内
を流れることになる。このとき、気相冷媒の方が液相冷
媒より速く流れるため、レシーバチューブ4内には、液
冷媒が溜まりやすくなる。
In the above operation, the receiver tube 4
When the flow rate of the refrigerant is small, the gas-liquid two-phase refrigerant flowing into the flow path completely separates vertically from the inlet of the receiver tube 4 by the action of gravity and flows in the receiver tube 4. At this time, since the gas-phase refrigerant flows faster than the liquid-phase refrigerant, the liquid refrigerant is likely to accumulate in the receiver tube 4.

【0016】また、冷媒流量が多い時には、レシーバチ
ューブ4の入口からすぐに気液分離することなく、しば
らくは気相と液相とが混合した二相状態で流れる。この
ため、気相冷媒と液相冷媒とが等速で流れることから、
レシーバチューブ4内には、あまり液冷媒が溜まらな
い。
Further, when the flow rate of the refrigerant is large, the gas and liquid are not immediately separated from the inlet of the receiver tube 4 but flow in a two-phase state in which the gas phase and the liquid phase are mixed for a while. Therefore, since the gas-phase refrigerant and the liquid-phase refrigerant flow at a constant speed,
The liquid refrigerant does not collect much in the receiver tube 4.

【0017】このレシーバチューブ4の作用により、他
のサイクル部品内の冷媒量は、高流量の時に多く、低流
量の時に少なくなる。つまり、負荷の高い時には、図2
に示すように、レシーバチューブ4内に液冷媒が少ない
分だけ、レシーバチューブ4より上流の凝縮域(図2の
Aで示す)および下流の過冷却域(図2のBで示す)を
流れる冷媒量が増えて、過冷度が増加する。また、負荷
が低い時には、レシーバチューブ4内に液冷媒が多い分
だけ、逆に過冷度は減少する。なお、図2において、高
負荷の状態を実線で示し、低負荷の状態を破線で示す。
Due to the action of the receiver tube 4, the amount of refrigerant in the other cycle parts is large at high flow rates and small at low flow rates. In other words, when the load is high,
As shown in FIG. 3, the refrigerant flowing in the condensation zone (shown by A in FIG. 2) and the subcooling zone (shown by B in FIG. 2) upstream from the receiver tube 4 by the amount of the liquid refrigerant in the receiver tube 4. The amount increases and the degree of supercooling increases. On the other hand, when the load is low, the supercooling degree is decreased by the amount of the liquid refrigerant in the receiver tube 4. In FIG. 2, a high load state is shown by a solid line, and a low load state is shown by a broken line.

【0018】このように、本実施例の冷媒凝縮器1で
は、負荷の変動に応じてレシーバチューブ4より下流の
過冷却域を流れる冷媒量が変化することにより、負荷に
対して最もサイクル効率の高くなる過冷度を実現するこ
とが可能となる。
As described above, in the refrigerant condenser 1 of this embodiment, the amount of the refrigerant flowing in the supercooling region downstream of the receiver tube 4 changes in accordance with the fluctuation of the load, so that the cycle efficiency of the load is maximized. It becomes possible to realize a higher degree of supercooling.

【0019】次に、本発明の第2実施例を説明する。図
3は、レシーバチューブ4を別体とした冷媒凝縮器1の
全体図である。この実施例では、レシーバチューブ4を
凝縮器本体1aと別体に設けたものである。従って、凝
縮器本体1aとレシーバチューブ4とを図示しない配管
で接続するために、レシーバチューブ4の両端部と、一
方のヘッダ5の仕切壁7より上部位置および他方のヘッ
ダ6の仕切壁8と仕切壁9との間には、それぞれ配管接
続口12、13、14、15が設けられている。なお、
図3中に冷媒の流れを実線矢印で示す。本実施例の場合
には、レシーバチューブ4が別体であることから、第1
実施例のように組付け性やろう付け性を考慮する必要が
なく、従って、その形状の制約はない。
Next, a second embodiment of the present invention will be described. FIG. 3 is an overall view of the refrigerant condenser 1 in which the receiver tube 4 is separate. In this embodiment, the receiver tube 4 is provided separately from the condenser body 1a. Therefore, in order to connect the condenser main body 1a and the receiver tube 4 with a pipe (not shown), both ends of the receiver tube 4, a position above the partition wall 7 of the header 5 and a partition wall 8 of the other header 6 are connected. Pipe connection ports 12, 13, 14, and 15 are provided between the partition wall 9 and the partition wall 9, respectively. In addition,
The flow of the refrigerant is shown by solid arrows in FIG. In the case of this embodiment, since the receiver tube 4 is a separate body,
It is not necessary to consider the assembling property and the brazing property as in the embodiment, and therefore, the shape is not restricted.

【0020】[0020]

【発明の効果】本発明では、冷媒通路の途中に内容積の
大きなチューブを設置したことにより、負荷の変動に応
じて過冷度をとるために費やされる冷媒凝縮器の面積を
可変することができる。その結果、負荷に対して最もサ
イクル効率の高くなる過冷度を実現することができる。
According to the present invention, by installing a tube having a large internal volume in the middle of the refrigerant passage, it is possible to change the area of the refrigerant condenser which is spent for supercooling depending on the fluctuation of the load. it can. As a result, it is possible to realize the degree of supercooling that maximizes the cycle efficiency with respect to the load.

【図面の簡単な説明】[Brief description of drawings]

【図1】冷媒凝縮器の全体図である。FIG. 1 is an overall view of a refrigerant condenser.

【図2】冷媒凝縮器内の冷媒量の変化を示す図である。FIG. 2 is a diagram showing changes in the amount of refrigerant in a refrigerant condenser.

【図3】本発明の第2実施例を示す冷媒凝縮器の全体図
である。
FIG. 3 is an overall view of a refrigerant condenser showing a second embodiment of the present invention.

【図4】冷媒封入量が変化した時のサイクルバランスを
モリエル線図上に示した図である。
FIG. 4 is a diagram showing the cycle balance on the Mollier diagram when the amount of refrigerant enclosed changes.

【図5】過冷度とサイクル効率との関係を示すグラフで
ある。
FIG. 5 is a graph showing the relationship between supercooling degree and cycle efficiency.

【図6】冷媒流量と最適過冷度との関係を示すグラフで
ある。
FIG. 6 is a graph showing the relationship between the refrigerant flow rate and the optimum degree of subcooling.

【符号の説明】[Explanation of symbols]

1 冷媒凝縮器 2 偏平チューブ(冷媒通路) 4 レシーバチューブ(チューブ) 1 Refrigerant condenser 2 Flat tube (refrigerant passage) 4 Receiver tube (tube)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大原 敏夫 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshio Ohara 1-1, Showa-cho, Kariya city, Aichi Prefecture Nihondenso Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】冷媒通路を流れる高温、高圧の気相冷媒を
空気との熱交換によって凝縮液化する冷媒凝縮器におい
て、 前記冷媒通路の途中に内容積の大きなチューブを介在さ
せたことを特徴とする冷媒凝縮器。
1. A refrigerant condenser for condensing and liquefying a high-temperature, high-pressure gas-phase refrigerant flowing through a refrigerant passage by heat exchange with air, characterized in that a tube having a large internal volume is interposed in the middle of the refrigerant passage. Refrigerant condenser.
JP19684191A 1991-08-06 1991-08-06 Refrigerant condenser Expired - Lifetime JP3158509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19684191A JP3158509B2 (en) 1991-08-06 1991-08-06 Refrigerant condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19684191A JP3158509B2 (en) 1991-08-06 1991-08-06 Refrigerant condenser

Publications (2)

Publication Number Publication Date
JPH0539969A true JPH0539969A (en) 1993-02-19
JP3158509B2 JP3158509B2 (en) 2001-04-23

Family

ID=16364555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19684191A Expired - Lifetime JP3158509B2 (en) 1991-08-06 1991-08-06 Refrigerant condenser

Country Status (1)

Country Link
JP (1) JP3158509B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2765956A1 (en) * 1997-07-10 1999-01-15 Denso Corp REFRIGERANT CONDENSER INCLUDING A SUPER-COOLING PART
JP2001349642A (en) * 2000-04-14 2001-12-21 Behr Gmbh & Co Condenser for air conditioner, in particular for air conditioner for motor vehicle
US6470703B2 (en) * 2000-05-09 2002-10-29 Sanden Corporation Subcooling-type condenser
KR20120031638A (en) * 2010-09-27 2012-04-04 한라공조주식회사 Condenser
JP2012067939A (en) * 2010-09-21 2012-04-05 Denso Corp Condenser
JP2014085047A (en) * 2012-10-23 2014-05-12 Sharp Corp Parallel flow type heat exchanger

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2765956A1 (en) * 1997-07-10 1999-01-15 Denso Corp REFRIGERANT CONDENSER INCLUDING A SUPER-COOLING PART
JP2001349642A (en) * 2000-04-14 2001-12-21 Behr Gmbh & Co Condenser for air conditioner, in particular for air conditioner for motor vehicle
US6470703B2 (en) * 2000-05-09 2002-10-29 Sanden Corporation Subcooling-type condenser
JP2012067939A (en) * 2010-09-21 2012-04-05 Denso Corp Condenser
KR20120031638A (en) * 2010-09-27 2012-04-04 한라공조주식회사 Condenser
JP2014085047A (en) * 2012-10-23 2014-05-12 Sharp Corp Parallel flow type heat exchanger

Also Published As

Publication number Publication date
JP3158509B2 (en) 2001-04-23

Similar Documents

Publication Publication Date Title
US5592830A (en) Refrigerant condenser with integral receiver
US6330810B1 (en) Condensing apparatus for use in a refrigeration cycle receiver-dryer used for said condensing apparatus
JP3627382B2 (en) Refrigerant condensing device and refrigerant condenser
EP1043552B1 (en) Condenser with a decompressing means
JP4358981B2 (en) Air conditioning condenser
JPH06191262A (en) Refrigerating device
JPH0510633A (en) Condenser
JP3158509B2 (en) Refrigerant condenser
JP2001012823A (en) Refrigerant condenser
JPS6214751B2 (en)
KR20040075717A (en) Heat exchanger
AU2017444848B2 (en) Heat exchanger and refrigeration cycle device
JP3367235B2 (en) Refrigeration cycle of vehicle air conditioner
JP2001221535A (en) Refrigerant evaporator
JPH06341736A (en) Refrigerant condenser
JP2644900B2 (en) Heat exchanger
JP2002350002A (en) Condenser
JP2004232924A (en) Refrigeration cycle device
JP3129721B2 (en) Refrigerant condenser and method of setting the number of tubes of refrigerant condenser
JPH06129732A (en) Refrigerant condenser
JPH0395368A (en) Condenser
JPH0642885Y2 (en) Refrigerator Evaporator
JPH085198A (en) Air conditioning heat exchanger
JP3446260B2 (en) Refrigerant condenser
JPH07103609A (en) Heat exchanger for freezing cycle

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20120216