JPH0395368A - Condenser - Google Patents

Condenser

Info

Publication number
JPH0395368A
JPH0395368A JP23124589A JP23124589A JPH0395368A JP H0395368 A JPH0395368 A JP H0395368A JP 23124589 A JP23124589 A JP 23124589A JP 23124589 A JP23124589 A JP 23124589A JP H0395368 A JPH0395368 A JP H0395368A
Authority
JP
Japan
Prior art keywords
refrigerant
gas
liquid
condenser
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23124589A
Other languages
Japanese (ja)
Inventor
Hideaki Sato
英明 佐藤
Hisao Nagashima
久夫 永島
Kenichi Fujiwara
健一 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP23124589A priority Critical patent/JPH0395368A/en
Publication of JPH0395368A publication Critical patent/JPH0395368A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver
    • F25B2339/0443Condensers with an integrated receiver the receiver being positioned horizontally
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers

Abstract

PURPOSE:To enable the condition of a refrigerant at an outlet of a condenser to be controlled without providing a receiver in a refrigeration cycle, by enlarging the flow passage area at an intermediate position of a refrigerant passage, and controlling the condition of gas-liquid separation by a gas-liquid separating part deprived of fins. CONSTITUTION:A gaseous refrigerant releases heat in heat exchange with the outside air through fins 6a, is then brought into a condensate-gas two-phase state at a main condenser part, and is introduced into a receiver tube 7 of a gas-liquid separating part 2. The refrigerant in the tube 7 does not release heat, although it is in the two- phase state and has a flow velocity ratio between the gaseous phase and the liquid phase thereof. Therefore, the refrigerant is fed out to an auxiliary condenser part 3 with no variations in the proportions of the gaseous and liquid phases. The refrigerant is condensed by cooling in the condenser part 3, and the resultant liquid refrigerant is discharged through a refrigerant outlet at a lower end. The condition of the refrigerant at this moment, namely, the presence or absence of bubbles is verified through a sight glass 11, whereby the amount of charge of the refrigerant is inspected. Before defoaming, the auxiliary condenser part 3 functions to condense the refrigerant, similarly to the main condenser part 1. After deforming, the auxiliary condenser part 3 functions for both condensation and supercooling.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、カーエアコン用等に用いられる凝縮器に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a condenser used for car air conditioners and the like.

〔従来の技術] 近年、カーエアコン用等の凝縮器として、例えば特開昭
63−34466号公報に示されるもののように、冷媒
チューブと放熱用フィンを交互に積層し、内部に仕切板
を設けたヘッダが上記冷媒チューブの両端に連結されて
なる、いわゆるヘノダ型のものが提案されているが、こ
のものは、冷媒チューブを蛇行状に曲げて構戒する、い
わゆるサーペンタイン型のものに比べ、製造が容易で熱
交換率が良く、さらにサーベンタイン型のように冷媒チ
ューブの曲げ加工による寸法上の制約も受けないために
、小型化が可能であり、特にカーエアコン用として注目
されている。
[Prior Art] In recent years, condensers for car air conditioners, etc., have been constructed by alternately stacking refrigerant tubes and heat dissipation fins, and providing partition plates inside, as shown in Japanese Patent Laid-Open Publication No. 63-34466, for example. A so-called serpentine type header has been proposed in which a header is connected to both ends of the refrigerant tube, but compared to a so-called serpentine type header in which the refrigerant tube is bent in a serpentine shape, It is easy to manufacture, has a good heat exchange rate, and is not subject to dimensional restrictions due to bending of the refrigerant tube like the surventine type, so it can be made smaller and is attracting attention, especially for use in car air conditioners.

また、従来よりカーエアコンのように凝縮器の冷媒出口
側の条件が変動しやすい冷凍サイクルにおいては、凝縮
器の出口配管に気液分離のためのレシーバを設けて一時
的に冷媒をたくわえるようにして、凝縮器出口の冷媒状
態を制御している。
In addition, in conventional refrigeration cycles such as car air conditioners where the conditions on the refrigerant outlet side of the condenser tend to fluctuate, a receiver for gas-liquid separation is installed in the condenser outlet piping to temporarily store refrigerant. This controls the refrigerant condition at the condenser outlet.

このことは、冷凍サイクルを構成する部品点数が増加す
ることになり、部品コスト、車両等への組付コスト等、
結果的にコスト増大を招くことになる。
This means that the number of parts that make up the refrigeration cycle will increase, resulting in lower parts costs, assembly costs for vehicles, etc.
As a result, costs will increase.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、上記実情に鑑みてなされたもので、凝縮器を
新規な構成として、従来の凝縮作用の他に気液分離とし
ての機能を持たせることにより、冷凍サイクル中にレシ
ーバを設けなくても凝縮器出口での冷媒状態を制御する
ことができ、特にカーエアコン用に用いて好適な凝縮器
を提供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and by providing a condenser with a new configuration and providing a gas-liquid separation function in addition to the conventional condensation function, there is no need to provide a receiver in the refrigeration cycle. The present invention also aims to provide a condenser that can control the refrigerant state at the outlet of the condenser and is particularly suitable for use in car air conditioners.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上記目的を達成するために、全体として蛇行
形の冷媒通路を構成する冷媒通路管と、この冷媒通路管
に接合されたフィンとを備え、該冷媒通路管内を流通す
る冷媒流を前記フィンを介して放熱させることにより凝
縮する凝縮器であって、 前記冷媒通路の途中において、前記冷媒通路管の流通面
積を広くするとともに、前記フィンを取り除いた気液分
離部を設け、この気液分離部により前記冷媒流の気液分
離状態を制御して流通するようにしたことを特徴とする
In order to achieve the above object, the present invention includes a refrigerant passage pipe that constitutes a meandering refrigerant passage as a whole, and fins joined to the refrigerant passage pipe, and the present invention includes a refrigerant passage pipe that forms a meandering refrigerant passage as a whole, and fins that are joined to the refrigerant passage pipe, so that the refrigerant flow flowing through the refrigerant passage pipe is controlled. A condenser that condenses by dissipating heat through the fins, in which the flow area of the refrigerant passage pipe is widened and a gas-liquid separation section is provided in which the fins are removed, in the middle of the refrigerant passage. The refrigerant flow is characterized by controlling the gas-liquid separation state of the refrigerant flow by a liquid separation section.

(作用、効果) したがって、前記気液分離部により、従来I/シーバが
受け持っていた気液分離の機能を凝縮器が持つことにな
り、冷凍サイクル中にレシーパを設けなくても′a縮器
出口での冷媒状態を制御することができる。
(Function, Effect) Therefore, with the gas-liquid separation section, the condenser has the function of gas-liquid separation, which was previously handled by the I/seiver, and the 'a condenser Refrigerant conditions at the outlet can be controlled.

〔実施例〕〔Example〕

以下、本発明を図に示す実施例に基づいて説明する。 Hereinafter, the present invention will be explained based on embodiments shown in the drawings.

本発明第1実施例の概略構造図を第1図に示す.第1図
において、1は主コンデンサ部、2は気液分離部、3は
補コンデンサ部である。
A schematic structural diagram of the first embodiment of the present invention is shown in Fig. 1. In FIG. 1, 1 is a main condenser section, 2 is a gas-liquid separation section, and 3 is an auxiliary condenser section.

主コンデンサ部1は前述のヘッダ型に構威されており、
冷媒チューブ5a・・・・・・と放熱用フィン6a・・
・・・・を交互に積層したコア部4と、このコア部4の
左右両側に連結されるヘッダ部8A,9Aとからなる.
なお、冷媒チューブ5a・・・・・・は例えば単管偏平
チェーブまたは内部を複数個の通路に区画した多孔偏平
チューブにより形成されており、一方、放熱用フィン6
a・・・・・・はプレートフィンあるいはコルゲートフ
ィンにて形威されている。なお、フィン6aは・・・・
・・冷媒チューブ5a・・・・・・の側面にろう付けあ
るいは半田付け等により接合されている。また、ヘッダ
8Aの内部は中央よりやや下方位置に設けられた仕切壁
10Aにより上下に区画され、上部の冷媒を導入する入
口側室1aと主コンデンサ部1で凝縮した冷媒を気液分
離部2へ送出する下部の冷媒を送出する出口側室1bと
を構成している。
The main capacitor section 1 is structured in the above-mentioned header type,
Refrigerant tube 5a... and heat radiation fin 6a...
It consists of a core part 4 in which... are laminated alternately, and header parts 8A and 9A connected to both left and right sides of this core part 4.
The refrigerant tubes 5a are formed of, for example, single flat tubes or porous flat tubes whose interior is divided into a plurality of passages, while the heat dissipation fins 6
a... is made of plate fins or corrugated fins. In addition, the fin 6a is...
The refrigerant tube 5a is joined to the side surface of the refrigerant tube 5a by brazing or soldering. The inside of the header 8A is divided into upper and lower sections by a partition wall 10A provided at a position slightly below the center; The outlet side chamber 1b is configured to send out the lower refrigerant to be sent out.

気液分離部2は主コンデンサ部1の冷媒チューブ5a・
・・・・・よりも径の大きい単管チューブを蛇行させた
形のレシーバチューブ7より構戒され、主コンデンサ部
1からの冷媒を補コンデンナ部3へ送出する。なお、内
径をあまり大きくすると気体冷媒のみが流れるようにな
ってしまうため、液冷媒も流れるように設定されている
The gas-liquid separation section 2 includes refrigerant tubes 5a and 5a of the main condenser section 1.
The refrigerant from the main condenser section 1 is sent to the auxiliary condenser section 3 through a receiver tube 7, which is a meandering single tube with a larger diameter than the receiver tube 7. Note that if the inner diameter is made too large, only gas refrigerant will flow, so it is set so that liquid refrigerant also flows.

補コンデンサ部3は上記主コンデンサ部1と同様にヘッ
ダ型に構威されており、冷媒チューブ5C・・・・・・
と放熱用フィン6C・・・・・・とを交互に積層したコ
ア部4と左右のへ冫ダ部8C,9Cとからなる。なお、
補コンデンサ部3は後述するように気液分離部2からの
冷媒流が凝縮化された液冷媒であるために、主コンデン
サ部1の如く多層構造とする必要はなく、図に示すよう
にヘッダ内に設ける仕切壁10Cにより単なる蛇行状と
してもよい。
The auxiliary capacitor section 3 is structured in a header type like the main capacitor section 1 described above, and includes refrigerant tubes 5C...
It consists of a core part 4 in which heat dissipation fins 6C, . In addition,
As will be described later, since the auxiliary condenser section 3 is a liquid refrigerant obtained by condensing the refrigerant flow from the gas-liquid separation section 2, it does not need to have a multilayer structure like the main condenser section 1, and has a header as shown in the figure. A simple meandering shape may be provided by the partition wall 10C provided therein.

あるいは、単なるサーベンタイン型としてもよい。Alternatively, it may be a simple surventine type.

また、図において11は冷媒充填量点検用のサイトグラ
スである。
Further, in the figure, 11 is a sight glass for checking the amount of refrigerant charged.

次に、上記構威において、冷媒の4″mされる様子を順
に説明する。
Next, how the refrigerant is reduced by 4'' in the above structure will be explained in order.

主コンデンサ部1のヘッダ8Aの内部は、前述のように
仕切壁10により上下に仕切られており、人口側室1a
には上端に設けた冷媒入口より気体冷媒が供給される。
The inside of the header 8A of the main capacitor part 1 is divided into upper and lower parts by the partition wall 10 as described above, and the artificial side chamber 1a
A gas refrigerant is supplied to the refrigerant from a refrigerant inlet provided at the upper end.

供給された気体冷媒は入口側室1aとへッダ9Aを結ぶ
チューブ5a内を流通し、この間に冷却されてヘッダ9
Aに至る。気体冷媒はヘッダ9A内を下方へ流れ、他の
チューブ5aを経てヘッダ8Aの出口側室1bへ至る。
The supplied gaseous refrigerant flows through the tube 5a connecting the inlet side chamber 1a and the header 9A, and is cooled during this time and passes through the header 9A.
Leading to A. The gas refrigerant flows downward within the header 9A, passes through another tube 5a, and reaches the outlet side chamber 1b of the header 8A.

すなわち、圧縮機から圧送されてきた気体冷媒は、主コ
ンデンサ部lのチューブ5aを通過する間にフィン6a
・・・・・・を介して外気と熱交換して放熱し、凝縮さ
れて凝縮液と気体との二相の状態となる。
That is, the gaseous refrigerant fed under pressure from the compressor passes through the fins 6a while passing through the tube 5a of the main condenser section l.
It exchanges heat with the outside air via... and radiates heat, and is condensed into a two-phase state of condensed liquid and gas.

そして、凝縮液の占める割合が多くなって、気液分離部
2へと送出される。
Then, the proportion occupied by the condensed liquid increases and is sent to the gas-liquid separation section 2.

主コンデンサ部で凝縮液と気体の二相状態となった冷媒
流は、次の気液分離部2の冷媒通路、すなわちレシーバ
チューブ7に導入される。このレシーバチューブ7内の
冷媒は、気液二相で気液の流速比があるものの、放熱し
ないためには#k縮は起こらず、すなわち、気液の割合
は変化することなしで冷媒流は補コンデンサ部3へと送
出される。
The refrigerant flow in a two-phase state of condensed liquid and gas in the main condenser section is introduced into the next refrigerant passage of the gas-liquid separation section 2, that is, the receiver tube 7. Although the refrigerant in this receiver tube 7 has a gas-liquid two-phase flow velocity ratio, #k compression does not occur because heat is not released, that is, the refrigerant flow does not change without changing the gas-liquid ratio. It is sent to the auxiliary capacitor section 3.

補コンデンサ部3では、上述の主コンデンサ部1と同様
にして冷媒流が冷却凝縮されて液体冷媒となり、下端の
冷媒出口より送出される。その際の冷媒状態、すなわち
気泡の有無をサイトグラスl1にて確認することにより
、冷媒充填量が点検される。
In the auxiliary condenser section 3, the refrigerant flow is cooled and condensed into liquid refrigerant in the same manner as in the main condenser section 1 described above, and the liquid refrigerant is sent out from the refrigerant outlet at the lower end. The refrigerant charging amount is checked by checking the state of the refrigerant at that time, that is, the presence or absence of bubbles through the sight glass l1.

次に、本実施例作用を具体例を挙げて説明する。Next, the operation of this embodiment will be explained by giving a specific example.

例えば、第1図において主コンデンサ部1と補コンデン
サ部3の大きさを9=1に構成すると、冷媒充填時のサ
イトグラス1lでの泡消えは主コンデンサ部工出口での
冷媒状態が乾き度0. 1であることに対応している。
For example, in Fig. 1, if the sizes of the main condenser section 1 and the auxiliary condenser section 3 are configured to 9 = 1, the disappearance of bubbles in the sight glass 1l during refrigerant filling will be caused by the dryness of the refrigerant at the outlet of the main condenser section. 0. It corresponds to being 1.

前述のように気液分離部2では放熱しないため、レシー
バチューブ7では凝縮は起こらず、このレシーバチュー
ブ7内はどこでも乾き度O。1である。すなわち、主コ
ンデンサ部1と補コンデンサ部3との凝縮能力の比によ
り、その中間部に構威した気液分離部2での乾き度が決
定される。なお、気液分離部2での乾き度が0. 1の
とき、例えば冷媒としてR12を使用した場合、圧力1
5kg/cn!Gでは気:液の体積比は約10:7であ
る。
As mentioned above, since heat is not radiated in the gas-liquid separation section 2, no condensation occurs in the receiver tube 7, and the dryness level is O everywhere inside the receiver tube 7. It is 1. That is, the ratio of the condensing capacities of the main condenser section 1 and the auxiliary condenser section 3 determines the degree of dryness in the gas-liquid separation section 2 located in the middle thereof. Note that the degree of dryness in the gas-liquid separation section 2 is 0. 1, for example, when R12 is used as the refrigerant, the pressure is 1
5kg/cn! In G, the gas:liquid volume ratio is about 10:7.

次に、上記構成のまま、さらに冷媒を充填すると、主コ
ンデンサ部1出口の冷媒乾き度、すなわち気液分離部2
での乾き度は減少し、レシーバチューブ7内の液冷媒量
は急激に増大する。気液分離部2での乾き度が0.1の
時、補コンデンサ部3でのWi縮により凝縮器冷媒出口
での冷媒は飽和液冷媒とされていたが、冷媒充填量増加
に伴う気液分離器2での乾き度減少によって、凝縮器冷
媒出口からの冷媒は補コンデンサ部3での熱交換作用に
より、ある程度過冷却度をもって送出されることになる
,凝縮器出口において、冷媒が過冷却度をもっことは、
第2図のP−i特性図に示すように凝縮器での冷媒のエ
ンタルビ差が大きくとれ、熱交換能力が向上することを
示しており、ひいては、冷凍サイクルにおいて蒸発器で
のエンタルビ差が大きくとれることから冷凍能力を向上
することができる。例えば、冷媒充填量を増加して主コ
ンデンサ部1出口の冷媒乾き度が0. 1から0.05
となったとすると、気液分離部2のレシーパチューブ7
内の気:液の体積比は、冷媒がR12の場合、約2=3
となる。すなわち、レシーバチェーブ体積が例えば3 
0 0 ccであるとすると、乾き度が0. 1から0
.05と変化することにより、レシーバチューブ7内を
占める液冷媒体積は123ccから180ccと増加す
ることとになる。そして、補コンデンサ部3へ流入する
液冷媒量が増加することにより、補コンデンサ部3の出
口、すなわち凝縮器冷媒出口における冷媒は過冷却度を
もつことになる。なお、レシーバチューブ内の液体積増
加に伴う冷凍サイクル高圧側の圧力上昇は、0. 1 
kg/CIi1以下であり、問題はない。
Next, when refrigerant is further charged with the above configuration, the dryness of the refrigerant at the outlet of main condenser section 1, that is, the dryness of the refrigerant at the outlet of main condenser section 1
The degree of dryness in the receiver tube 7 decreases, and the amount of liquid refrigerant in the receiver tube 7 increases rapidly. When the degree of dryness in the gas-liquid separation section 2 was 0.1, the refrigerant at the condenser refrigerant outlet was a saturated liquid refrigerant due to Wi condensation in the auxiliary condenser section 3, but as the refrigerant filling amount increased, the refrigerant became a saturated liquid refrigerant. Due to the decrease in dryness in the separator 2, the refrigerant from the condenser refrigerant outlet is sent out with a certain degree of supercooling due to the heat exchange effect in the auxiliary condenser section 3.At the condenser outlet, the refrigerant is supercooled. To be careful,
As shown in the P-i characteristic diagram in Figure 2, the enthalpy difference of the refrigerant in the condenser is large, indicating that the heat exchange capacity is improved, and in turn, the enthalpy difference in the evaporator in the refrigeration cycle is large. Refrigeration capacity can be improved because it can be removed. For example, by increasing the amount of refrigerant charged, the dryness of the refrigerant at the outlet of main condenser section 1 can be reduced to 0. 1 to 0.05
Assuming that, the receiver tube 7 of the gas-liquid separation section 2
When the refrigerant is R12, the air:liquid volume ratio is approximately 2=3.
becomes. That is, if the receiver channel volume is, for example, 3
If it is 0 0 cc, then the dryness is 0. 1 to 0
.. 05, the volume of liquid cooling medium occupying the inside of the receiver tube 7 increases from 123cc to 180cc. As the amount of liquid refrigerant flowing into the auxiliary condenser section 3 increases, the refrigerant at the outlet of the auxiliary condenser section 3, that is, at the condenser refrigerant outlet, has a degree of subcooling. Note that the pressure increase on the high pressure side of the refrigeration cycle due to the increase in liquid volume in the receiver tube is 0. 1
kg/CIi1 or less, and there is no problem.

以上述べたように、サイトグラス11での冷媒状態によ
り、補コンデンサ部3のもつ役割が異なってくる。すな
わち、泡消え前は主コンデンサ部1同様、冷媒凝縮に作
用し、一方、泡消え後は凝縮および過冷却の2つの機能
をもつことになる。
As described above, the role of the auxiliary condenser section 3 differs depending on the state of the refrigerant in the sight glass 11. That is, before the bubbles disappear, like the main condenser section 1, it acts on refrigerant condensation, while after the bubbles disappear, it has two functions: condensation and supercooling.

その際の冷凍サイクルの冷凍能力は、第3図に示すよう
に泡消え後に過冷却度の影響で増大している。なお、第
3図において、曲線Xは本実施例の凝縮器を用いた冷凍
サイクルの冷凍能力特性、曲線Yは従来の冷凍サイクル
の冷凍能力特性である。
The refrigerating capacity of the refrigerating cycle at that time increases due to the influence of the degree of supercooling after the bubbles disappear, as shown in FIG. In addition, in FIG. 3, curve X is the refrigeration capacity characteristic of the refrigeration cycle using the condenser of this embodiment, and curve Y is the refrigeration capacity characteristic of the conventional refrigeration cycle.

なお、冷媒充填量をさらに増加して、主コンデンサ部1
出口での冷媒乾き度を0とすると、気液分離部2のレシ
ーバチューブ7内は飽和液冷媒で満たされることになる
。なお、それ以上の充填量増加は冷媒過充填となる。
In addition, by further increasing the amount of refrigerant charged, the main condenser section 1
If the refrigerant dryness at the outlet is 0, the receiver tube 7 of the gas-liquid separation section 2 will be filled with saturated liquid refrigerant. In addition, an increase in the filling amount beyond that will result in refrigerant overfilling.

上記第1実施例では、気液分離部2は単管チューブを蛇
行状に曲げて形戒するものであったが、第4図に示すよ
うに、主コンデンサ部1、補コンデンサ部3同様、ヘッ
ダ型とし、仕切壁により冷媒通路を蛇行させるようした
ものでもよい(第2実施例)。第4図において、8B,
9Bは気液分離部2の左右ヘッダ部、IOBは仕切壁で
あり、他の構成は第1図に示すものと同じであり同一符
号が付してある。このものは、主コンデンサ部1、気液
分離部2および補コンデンサ部3を全て積層、すなわち
ヘッダ型で一体化構威することにより、さらに製造が容
易であり、また、このものは、上述の如く特にカーエア
コン用に用いて好適である。
In the first embodiment, the gas-liquid separation section 2 is formed by bending a single tube into a meandering shape, but as shown in FIG. The refrigerant passage may be of a header type and have a meandering refrigerant passage provided by a partition wall (second embodiment). In Figure 4, 8B,
Reference numeral 9B indicates left and right headers of the gas-liquid separation section 2, IOB indicates a partition wall, and the other configurations are the same as those shown in FIG. 1 and are given the same reference numerals. This product is easier to manufacture because the main capacitor section 1, gas-liquid separation section 2, and auxiliary capacitor section 3 are all laminated, that is, integrated into a header type structure. It is particularly suitable for use in car air conditioners.

なお、上記第1、第2実施例においてはヘッダ部を装置
の左右に設ける横型のものであったが、第5図の第3実
施例に示すように、装置の上下に設ける縦型のものであ
ってもよい。なお、第5図において、第1図および第4
図と同じ構威には同一符号が付してある。このものは、
気液分離部2において、第4図に示すもののように仕切
壁10Bを設けて蛇行状の冷媒通路を形威する必要はな
く、第5図に示すように、レシーハチューブ7として複
数の太い単管チューブを並列状に並べて形或するように
すればよい。また、補コンデンサ部3へ導入するための
気液分離部2の送出口は下側ヘッダ部9に設けられてお
り、補コンデンサ部3へ導入される冷媒は飽和液冷媒の
みとすることができ、補コンデンサ部3は冷媒と過冷却
するために機能する。なお、サイトグラス11は気液分
離部2直後の上側ヘッダ部8に構威され、補コンデンサ
部3へ導入する冷媒の状態を監視するにより冷媒充填量
が点検される。
In addition, in the first and second embodiments described above, the headers were of a horizontal type with headers placed on the left and right sides of the device, but as shown in the third embodiment of FIG. It may be. In addition, in Figure 5, Figures 1 and 4
Components that are the same as those in the figure are given the same reference numerals. This thing is
In the gas-liquid separation section 2, it is not necessary to provide a partition wall 10B to form a meandering refrigerant passage as shown in FIG. 4, and instead, as shown in FIG. The shape may be formed by arranging tubes in parallel. Furthermore, the outlet of the gas-liquid separation section 2 for introducing into the auxiliary condenser section 3 is provided in the lower header section 9, and the refrigerant introduced into the auxiliary condenser section 3 can be only saturated liquid refrigerant. , the auxiliary capacitor section 3 functions to subcool the refrigerant. Note that the sight glass 11 is installed in the upper header section 8 immediately after the gas-liquid separation section 2, and the state of the refrigerant introduced into the auxiliary condenser section 3 is monitored to check the amount of refrigerant charged.

なお、上記種々の実施例では主コンデンサ部1のヘッダ
8Aを仕切壁10Aによって入口側室1a、出口側室1
bに区画して冷媒の流れをヘッダ9Aを介して1回蛇行
するようにしたものであったが、ヘッダ9Aも仕切壁に
より区画し、冷媒の流れを複数回蛇行させるようにした
ものでもよい。
In the various embodiments described above, the header 8A of the main condenser section 1 is divided into the inlet side chamber 1a and the outlet side chamber 1 by the partition wall 10A.
Although the header 9A can also be divided by a partition wall and the refrigerant flow can meander multiple times through the header 9A. .

また、上記種々の実施例においては、主コンデンサ部1
あるいは補コンデンサ部3をヘッダ型に構戒するように
したものであったが、従来のサーベンタイン型のもの、
あるいは冷媒の圧力損失を低減するために冷媒通路をパ
ラレルにした多バスタイブのサーベンタイン型のもので
も通用可能である。
In addition, in the various embodiments described above, the main capacitor section 1
Alternatively, the auxiliary capacitor section 3 was arranged in a header type, but the conventional serventine type,
Alternatively, a multi-bath type surventine type with parallel refrigerant passages to reduce refrigerant pressure loss may also be used.

【図面の簡単な説明】[Brief explanation of drawings]

第l図は本発明第1実施例の概略構造図、第2図は冷渫
サイクルのP−i特性図、第3図は冷(東能力と冷媒充
填量の関係を示す特性図、第4図は本発明第2実施例の
概略構造図、第5図は本発明第3実施例の概略構造図で
ある。 1・・・主コンデンサ部,la・・・入口側室,lb・
・・出口側室.2・・・気液分離部,3・・・捕コンデ
ンサ部4・・・コア部,5a,5c・・・冷媒チューブ
,6a,6c・・・放熱フィン.7・・・レシーバチュ
ーブ.88八〜8C,9.9A〜9C・・・ヘッダ部,
10A〜1.OC・・・仕切壁,11・・・サイトグラ
ス。
Fig. 1 is a schematic structural diagram of the first embodiment of the present invention, Fig. 2 is a P-i characteristic diagram of a refrigeration cycle, Fig. 3 is a characteristic diagram showing the relationship between cooling capacity and refrigerant charging amount, and Fig. The figure is a schematic structural diagram of the second embodiment of the present invention, and Fig. 5 is a schematic structural diagram of the third embodiment of the present invention.1... Main condenser section, la... Inlet side chamber, lb.
...Exit side room. 2... Gas-liquid separation section, 3... Capacitor section 4... Core section, 5a, 5c... Refrigerant tube, 6a, 6c... Radiation fin. 7...Receiver tube. 888~8C, 9.9A~9C...Header part,
10A~1. OC...Partition wall, 11...Sight glass.

Claims (2)

【特許請求の範囲】[Claims] (1)全体として蛇行形の冷媒通路を構成する冷媒通路
管と、この冷媒通路管に接合されたフィンとを備え、該
冷媒通路管内を流通する冷媒流を前記フィンを介して放
熱させることにより凝縮する凝縮器であって、 前記冷媒通路の途中において、前記冷媒通路管の流通面
積を広くするとともに、前記フィンを取り除いた気液分
離部を設け、この気液分離部により前記冷媒流の気液分
離状態を制御して流通するようにしたことを特徴とする
凝縮器。
(1) By providing a refrigerant passage pipe that constitutes a meandering refrigerant passage as a whole and fins joined to the refrigerant passage pipe, heat is radiated from the refrigerant flow flowing through the refrigerant passage pipe through the fins. A condenser for condensing, in which a gas-liquid separation part is provided in the middle of the refrigerant passage, in which the flow area of the refrigerant passage pipe is widened and the fins are removed, and the gas-liquid separation part separates the air from the refrigerant flow. A condenser characterized by controlling the state of liquid separation and allowing the liquid to flow.
(2)前記気液分離部からの冷媒流をさらに凝縮あるい
は過冷却すべく、全体として蛇行形の冷媒通路を構成す
る冷媒通路管と、この冷媒通路管に接合されたフィンと
からなる補コンデンサ部を配設し、 この補コンデンサ部と前記気液分離部の下流側に一体に
構成したことを特徴とする請求項1記載の凝縮器。
(2) In order to further condense or supercool the refrigerant flow from the gas-liquid separation section, the auxiliary condenser consists of a refrigerant passage pipe that constitutes a meandering refrigerant passage as a whole, and fins joined to this refrigerant passage pipe. The condenser according to claim 1, further comprising a auxiliary condenser section and a downstream side of the gas-liquid separation section.
JP23124589A 1989-09-06 1989-09-06 Condenser Pending JPH0395368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23124589A JPH0395368A (en) 1989-09-06 1989-09-06 Condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23124589A JPH0395368A (en) 1989-09-06 1989-09-06 Condenser

Publications (1)

Publication Number Publication Date
JPH0395368A true JPH0395368A (en) 1991-04-19

Family

ID=16920600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23124589A Pending JPH0395368A (en) 1989-09-06 1989-09-06 Condenser

Country Status (1)

Country Link
JP (1) JPH0395368A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2807824A1 (en) * 2000-04-14 2001-10-19 Behr Gmbh & Co CONDENSER FOR AN AIR CONDITIONING SYSTEM, PARTICULARLY FOR AN AIR CONDITIONING SYSTEM OF A MOTOR VEHICLE
JP2013242126A (en) * 2012-05-18 2013-12-05 Modine Manufacturing Co Heat exchanger, and method for transferring heat
JP2014085047A (en) * 2012-10-23 2014-05-12 Sharp Corp Parallel flow type heat exchanger
JP2014169810A (en) * 2013-03-01 2014-09-18 Hibiya Eng Ltd Ejector type refrigerator
JP2016133268A (en) * 2015-01-20 2016-07-25 株式会社デンソー Condenser
CN112833589A (en) * 2019-11-25 2021-05-25 青岛海尔空调电子有限公司 Condenser and air conditioner comprising same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5318668B2 (en) * 1972-07-04 1978-06-16
JPS5341764B2 (en) * 1973-06-08 1978-11-07
JPS55134253A (en) * 1979-04-04 1980-10-18 Nippon Denso Co Refrigerating system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5318668B2 (en) * 1972-07-04 1978-06-16
JPS5341764B2 (en) * 1973-06-08 1978-11-07
JPS55134253A (en) * 1979-04-04 1980-10-18 Nippon Denso Co Refrigerating system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2807824A1 (en) * 2000-04-14 2001-10-19 Behr Gmbh & Co CONDENSER FOR AN AIR CONDITIONING SYSTEM, PARTICULARLY FOR AN AIR CONDITIONING SYSTEM OF A MOTOR VEHICLE
JP2013242126A (en) * 2012-05-18 2013-12-05 Modine Manufacturing Co Heat exchanger, and method for transferring heat
US9671176B2 (en) 2012-05-18 2017-06-06 Modine Manufacturing Company Heat exchanger, and method for transferring heat
JP2014085047A (en) * 2012-10-23 2014-05-12 Sharp Corp Parallel flow type heat exchanger
JP2014169810A (en) * 2013-03-01 2014-09-18 Hibiya Eng Ltd Ejector type refrigerator
JP2016133268A (en) * 2015-01-20 2016-07-25 株式会社デンソー Condenser
CN112833589A (en) * 2019-11-25 2021-05-25 青岛海尔空调电子有限公司 Condenser and air conditioner comprising same

Similar Documents

Publication Publication Date Title
US6536231B2 (en) Tube and shell heat exchanger for multiple circuit refrigerant system
US6155075A (en) Evaporator with enhanced refrigerant distribution
US5592830A (en) Refrigerant condenser with integral receiver
US5875650A (en) Refrigerant condenser including super-cooling portion
US6330810B1 (en) Condensing apparatus for use in a refrigeration cycle receiver-dryer used for said condensing apparatus
JP3627382B2 (en) Refrigerant condensing device and refrigerant condenser
US6250103B1 (en) Condenser and air conditioning refrigeration system and using same
JP4091416B2 (en) Receiver tank for refrigeration cycle, heat exchanger with receiver tank, and condensing device for refrigeration cycle
JP2827404B2 (en) Refrigerant condenser
JP3557628B2 (en) Recipient integrated refrigerant condenser
EP1426714A1 (en) Refrigerating system and condenser for decompression tube system
JPH0510633A (en) Condenser
JP2000227265A (en) Refrigerant condenser integrated with liquid receiver
JPH0395368A (en) Condenser
JP2806379B2 (en) Refrigerant condenser
CN111947353A (en) Divide liquid structure and microchannel heat exchanger that liquid efficiency is high
JP2001235255A (en) Condenser
JPH06341736A (en) Refrigerant condenser
JP3158509B2 (en) Refrigerant condenser
US6684662B2 (en) Refrigeration system, and condenser for use in decompressing-tube system
JPH0650615A (en) Freezing cycle
JP3129721B2 (en) Refrigerant condenser and method of setting the number of tubes of refrigerant condenser
JP4238434B2 (en) Refrigeration cycle equipment
JPH03195872A (en) Heat exchanger
CN212362525U (en) Divide liquid structure and microchannel heat exchanger that liquid efficiency is high