JP3557628B2 - Recipient integrated refrigerant condenser - Google Patents

Recipient integrated refrigerant condenser Download PDF

Info

Publication number
JP3557628B2
JP3557628B2 JP25453793A JP25453793A JP3557628B2 JP 3557628 B2 JP3557628 B2 JP 3557628B2 JP 25453793 A JP25453793 A JP 25453793A JP 25453793 A JP25453793 A JP 25453793A JP 3557628 B2 JP3557628 B2 JP 3557628B2
Authority
JP
Japan
Prior art keywords
refrigerant
gas
condensing
liquid
supercooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25453793A
Other languages
Japanese (ja)
Other versions
JPH07103612A (en
Inventor
弘樹 松尾
康司 山中
健一 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP25453793A priority Critical patent/JP3557628B2/en
Publication of JPH07103612A publication Critical patent/JPH07103612A/en
Application granted granted Critical
Publication of JP3557628B2 publication Critical patent/JP3557628B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver
    • F25B2339/0442Condensers with an integrated receiver characterised by the mechanical fixation of the receiver to the header
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、例えば冷媒循環量が変動可能な車両用空気調和装置に用いられる受液器一体型冷媒凝縮器に関するものである。
【0002】
【従来の技術】
従来より、車両用空気調和装置の冷凍サイクルの受液器と凝縮器とは別個独立して配置されている。そのため、部品点数の低減即ちコスト低減が困難であり、また受液器と凝縮器とで互いに取付スペースを占めるため、省スペースの要望に応えることができないという不具合があった。そこで、その不具合を解消する目的で、米国特許第4972683号公報に開示された技術や実開平2−103667号公報に開示された技術が提案されている。
【0003】
先ず、米国特許第4972683号公報に開示された技術は、冷媒凝縮器の片側ヘッダ内の気液分離室の断面積を大きくして冷媒の流速を落とすことにより気相冷媒の浮力を利用して気液分離させるものであった。次に、実開平2−103667号公報に開示された技術は、冷媒凝縮器の出口側ヘッダの内部を2部屋に区画する仕切り部材に2部屋を連通するための貫通路を設け、出口側ヘッダの片側の部屋を気液分離室として用いるものであった。
【0004】
【発明が解決しようとする課題】
ところが、米国特許第4972683号公報に開示された技術においては、凝縮用チューブの流路径が微細で、しかも数多く気液二相状態の冷媒を吹き出す。このために、凝縮用チューブから出る気泡状の気相冷媒が小さいので、浮力の効果が期待できず、容易に気相冷媒を気液分離室より下流へ送り出してしまう。したがって、冷媒凝縮器より下流側に接続された温度作動式膨張弁で流動音が発生する等の問題が発生してしまう。
【0005】
そこで、温度作動式膨張弁に気相冷媒が送り込まれないようにするために、凝縮部と過冷却部を上下に配した冷媒凝縮器も考えられるが、この冷媒凝縮器の場合でも気液分離室へ冷媒を導く凝縮用チューブのうちの最下部の凝縮用チューブと気液分離室から液相冷媒のみを送り出すための過冷却用チューブのうちの最上部の過冷却用チューブとの距離が接近する。よって、容易に気相冷媒を気液分離室より下流側の過冷却部へ送り出してしまう。このため、とくに冷媒圧縮機の高速運転時のように冷媒の流速が大きい場合には、気液分離室から過冷却部へ気相冷媒の流入が多くなり、過冷却部内での過冷却域が減少してしまい、所望の過冷却度が得られないという問題が発生してしまう。
【0006】
また、実開平2−103667号公報に開示された技術においては、気液分離室内への冷媒流入口が気液分離室の下部(但し気液分離室内からの冷媒流出口よりも上方)に設けられているので、気液分離室の冷媒流入口と冷媒流出口の距離が接近することになる。このため、気液分離室の下流側へ容易に気相冷媒を送り出してしまうため、前述の問題が発生する。
【0007】
気液分離室内への冷媒流入口が気液分離室の下部に設けられていると、気液分離室の冷媒流入口より上方には流入してきた冷媒の一部しか回り込まないので、急激な冷凍サイクルの負荷変動に対して応答性が悪く、一時的にガス不足状態や高圧(凝縮圧力)が上昇するという問題が生じてしまう。
【0008】
この発明は、気液分離室内での冷媒の気液分離性を維持でき、気液分離室より下流の過冷却部への気相冷媒の流出を防止して所望の過冷却度を得ることができ、且つ急激な冷凍サイクルの負荷変動に対して応答性を向上することが可能な受液器一体型冷媒凝縮器の提供を目的とする。
【0009】
【課題を解決するための手段】
請求項1に記載の発明は、内部を流れる冷媒を凝縮する凝縮部、およびこの凝縮部で凝縮された冷媒を過冷却する過冷却部を上下に配設したコアと、このコアの水平方向の一端側において上下方向に延ばされ、上側部に前記凝縮部の上流端が接続され、下側部に前記過冷却部の下流端が接続された第1ヘッダと、前記コアの水平方向の他端側において上下方向に延ばされ、上側部に前記凝縮部の下流端が接続され、下側部に前記過冷却部の上流端が接続された第2ヘッダと、この第2ヘッダの内部を、前記凝縮部の下流端のみに連通する上流側連通室、前記過冷却部の上流端のみに連通する下流側連通室、および流入した冷媒を気液分離する気液分離室の3室のみに3分割する仕切り部とを備えた受液器一体型冷媒凝縮器であって、記仕切り部は、前記気液分離室の上端部で開口し、前記上流側連通室より前記気液分離室内へ冷媒を流入させる冷媒流入口、および前記気液分離室の下端部で開口し、前記気液分離室より前記下流側連通室内へ冷媒を流出させる冷媒流出口を有する技術手段を採用した。
請求項2に記載の発明は、過冷却部よりも下流に、冷媒の状態を観察するためのサイトグラスを接続しても良い。
請求項3に記載の発明は、前記第1ヘッダの内部を、前記凝縮部の上流端のみに連通する入口側連通室、および前記過冷却部の下流端のみに連通する出口側連通室に分割するセパレータを備え、前記第1ヘッダには、冷媒圧縮機より吐出された冷媒を前記入口側連通室内に流入させるための冷媒吸入口が設けられており、前記仕切り部は、前記凝縮部の下流端と前記過冷却部の上流端との境界の位置に第2セパレータを有し、前記凝縮部は、前記入口側連通室から前記上流側連通室へ冷媒を流す複数の凝縮用チューブを有し、前記過冷却部は、前記下流側連通室から前記出口側連通室へ冷媒を流す複数の過冷却用チューブを有することを特徴としている。
【0010】
【作用】
請求項1に記載の発明によれば、第1ヘッダより凝縮部に流入した冷媒は、凝縮部内部で凝縮される。そして、凝縮部より流出した気液二相状態の冷媒を第2ヘッダの上流側連通室内に一旦集め、その後に気液分離室の上端部で開口した冷媒流入口を介して気液分離室内へ全ての冷媒を導くようにしている。これにより、急激な冷凍サイクルの負荷変動に対して気液分離室内の冷媒の液面変化が追従するため、一時的なガス不足状態や高圧上昇を防げる。
請求項3に記載の発明によれば、凝縮部の下流端と過冷却部の上流端との境界の位置に設置した第2セパレータの存在により、また、気液分離室(受液部、受液器)の上端部で開口した冷媒流入口により、複数の凝縮用チューブの下流端から複数の過冷却用チューブの上流端までの流路長さが極めて長くなっている。これにより、冷媒流入口より受液部内へ流入した際に気液分離がし易くなり、受液部内において気相冷媒が上方に液相冷媒が下方に滞留するようになる。
【0011】
そして、気液分離室の冷媒流入口が気液分離室の上端部で開口し、冷媒流出口が気液分離室の下端部で開口し、冷媒流入口が上流側連通室を介して凝縮部の下流端に連通し、冷媒流出口が下流側連通室を介して過冷却部の上流端に連通しているので、凝縮部の下流端から過冷却部の上流端までの流路長さが極めて長くなり、気液分離室から過冷却部へ分離できていない気泡状の気相冷媒を送り出すことはない。
【0012】
そして、気液分離室の下流側に過冷却部が設けられているため、気液分離室での気液分離が完全でなくても、過冷却部にて気泡状の気相冷媒は消滅するので、気液分離室の容積、つまり気液分離室の断面積を小さくすることが可能となり、凝縮部と過冷却部の有効放熱面積が小さくならない。
【0013】
【実施例】
次に、この発明の受液器一体型冷媒凝縮器を自動車用空気調和装置に適用した実施例に基づいて説明する。
【0014】
〔第1実施例の構成〕
図1ないし図4はこの発明の第1実施例を示したもので、図1は自動車用空気調和装置の冷凍サイクルを示した図である。この自動車用空気調和装置の冷凍サイクル1は、冷媒圧縮機2、受液器一体型冷媒凝縮器3、サイトグラス4、膨張弁5および冷媒蒸発器6を、金属製パイプまたはゴム製パイプよりなる冷媒配管7によって順次接続されている。
【0015】
冷媒圧縮機2は、自動車のエンジンルーム(図示せず)内に設置されたエンジンEにベルト(図示せず)と電磁クラッチ(図示せず)を介して連結されている。この冷媒圧縮機2は、エンジンEの回転動力が伝達されると、冷媒蒸発器6より内部に吸入した気相冷媒を圧縮して、高温高圧の気相冷媒を受液器一体型冷媒凝縮器3へ吐出する。
【0016】
受液器一体型冷媒凝縮器3は、凝縮部8、受液部9および過冷却部10を一体的に設けている。凝縮部8は、冷媒圧縮機2の吐出側に接続され、冷媒圧縮機2より内部に流入した気相冷媒をクーリングファン(図示せず)等により送られてくる室外空気と熱交換させて冷媒を凝縮液化させる凝縮器として働く。
【0017】
受液部9は、凝縮部8より内部に流入した気液二相状態の冷媒を気相冷媒と液相冷媒とに気液分離して、液相冷媒のみ過冷却部10に供給する受液器として働く。過冷却部10は、凝縮部8より下方に隣接して設けられ、受液部9より内部に流入した液相冷媒をクーリングファン等により送られてくる室外空気と熱交換させて液相冷媒を過冷却する過冷却器として働く。
【0018】
サイトグラス4は、受液器一体型冷媒凝縮器3の過冷却部10より下流側に接続され、冷凍サイクル1内を循環する冷媒の状態を観察するものである。このサイトグラス4は、自動車のエンジンルーム内において点検者が視認し易い場所、例えば受液器一体型冷媒凝縮器3に隣設した冷媒配管7の途中に単独で架装されている。
【0019】
そして、サイトグラス4は、図1に示したように、両端部が冷媒配管7に溶接や締結等の手段で接続される管状の金属ボディ11、およびこの金属ボディ11の上面に形成された覗き窓12に嵌め込まれた溶着ガラス13等より構成されている。一般に覗き窓12から気泡が見られるときは冷媒不足であり、気泡が見られないときは冷媒量が適正量である。
【0020】
膨張弁5は、冷媒蒸発器6の冷媒入口部側に接続され、サイトグラス4より流入した高温高圧の液相冷媒を断熱膨張して低温低圧の霧状冷媒にするもので、本例では冷媒蒸発器6の冷媒出口部の冷媒過熱度を所定値に維持するよう弁開度を自動調整する温度作動式膨張弁が用いられている。
【0021】
冷媒蒸発器6は、冷媒圧縮機2の吸入側と膨張弁5の下流側との間に接続され、膨張弁5より内部に流入した気液二相状態の冷媒をブロワ(図示せず)により吹き付けられる室外空気または室内空気と熱交換させて冷媒を蒸発気化させる熱交換器として働く。
【0022】
次に、この実施例の受液器一体型冷媒凝縮器3を図2ないし図4に基づいて詳細に説明する。この受液器一体型冷媒凝縮器3は、例えば高さが300mm〜400mm、幅が300mm〜600mmで、自動車のエンジンルーム内の走行風を受け易い場所に取付ブラケット(図示せず)を介して一体的に取り付けられている。そして、受液器一体型冷媒凝縮器3は、熱交換を行うコア14、このコア14の水平方向の一端側に配された第1ヘッダ15、およびコア14の水平方向の他端側に配された第2ヘッダ16等から構成され、炉中にて一体ろう付けして製造される。
【0023】
コア14は、凝縮部8および過冷却部10よりなり、上端部および下端部に受液器一体型冷媒凝縮器3を自動車に取り付けるための取付用ブラケットを固定するサイドプレート17、18がろう付け等の手段により接合されている。凝縮部8は、複数の凝縮用チューブ19およびコルゲートフィン20よりなり、これらはろう付け等の手段により接合されている。過冷却部10は、複数の過冷却用チューブ21およびコルゲートフィン22よりなり、これらはろう付け等の手段により接合されている。
【0024】
なお、サイドプレート17、18は、アルミニウムまたはアルミニウム合金でろう材でクラッド処理した金属プレートをプレス加工することによって形状が得られ、水平方向の両端部にそれぞれ第1ヘッダ15および第2ヘッダ16に差し込まれる挿入片171、172、181、182が形成されている。
【0025】
複数の凝縮用チューブ19および過冷却用チューブ21は耐腐食性、熱伝導性に優れたアルミニウムまたはアルミニウム合金等で押出し加工することによって断面形状が偏平な長円形状に形成され、内部に複数の冷媒流路を有している。また、コルゲートフィン20、21は、冷媒の放熱効率を向上させるための放熱フィンで、両側面をろう材でクラッド処理したアルミニウムまたはアルミニウム合金等の金属プレートをコルゲート状にプレス加工したものである。
【0026】
なお、複数の凝縮用チューブ19および複数の過冷却用チューブ21は水平方向に配されている。そして、複数の凝縮用チューブ19内を流れる冷媒は第1ヘッダ15から第2ヘッダ16へ流れ、複数の過冷却用チューブ21内を流れる冷媒は逆に第2ヘッダ16から第1ヘッダ15へ流れる。また、この実施例では、凝縮用チューブ19の本数を、過冷却用チューブ21の本数より多くしてあり、実験的経験によれば、過冷却用チューブ21の本数はコア14の全体の15%〜20%程度が好ましい。
【0027】
第1ヘッダ15は、断面形状が略U字状のヘッダプレート23および断面形状が半円弧状のタンクプレート24よりなり、上下方向に延びる円筒形状を呈する。この第1ヘッダ15は、それぞれ耐腐食性および熱伝導性に優れたアルミニウムまたはアルミニウム合金で両側面をろう材でクラッド処理した金属プレートをプレス加工することによって所定の形状を得ている。
【0028】
また、第1ヘッダ15の上側部は凝縮部8を構成する複数の凝縮用チューブ19の上流端が接続され、下側部は過冷却部10を構成する複数の過冷却用チューブ21の下流端が接続されている。そして、第1ヘッダ15の上下方向(板長さ方向)の上下端部の開口部には、キャップ25が嵌め込まれている。
【0029】
なお、キャップ25は、アルミニウムまたはアルミニウム合金でろう材でクラッド処理した金属プレートをプレス加工することによって形状が得られ、第1ヘッダ15の上下端部にろう付け等の手段により接合される略円環状の接合片251と、この接合片251より窪んでおり、上下端部の開口部を塞ぐ略円板状の閉塞部252とを有している。
【0030】
ヘッダプレート23には、プレス加工によって、長円形状の抜き穴26が多数形成され、上下端部に貫通穴27がそれぞれ形成されている。その多数の抜き穴26には、複数の凝縮用チューブ19の上流端および複数の過冷却用チューブ21の下流端が差し込まれた状態でろう付け等の手段により接合されている。また、2個の貫通穴27には、サイドプレート17、18の挿入片171、181が差し込まれた状態でろう付け等の手段により接合されている。
【0031】
タンクプレート24には、プレス加工によって、内部を上下に仕切るセパレータ28を固定する穴部29、入口配管30を固定する円形状の冷媒吸入口31および出口配管32を固定する円形状の冷媒吐出口33が形成されている。そのセパレータ28は、略円板形状に形成され、第1ヘッダ15の内部を、凝縮部8の上流端のみに連通する入口側連通室34と過冷却部10の下流端のみに連通する出口側連通室35とに分割するものである。
【0032】
入口配管30は、円管形状を呈し、冷媒圧縮機2より吐出された高温高圧の気相冷媒を入口側連通室34内に流入させるための配管で、ろう付け等の手段により冷媒吸入口31に接合されている。また、出口配管32は、円管形状を呈し、出口側連通室35内の液相冷媒をサイトグラス4へ送り出す配管で、ろう付け等の手段により冷媒吐出口33に接合されている。
【0033】
第2ヘッダ16は、図4にも示したように、断面形状が略U字状のヘッダプレート36および断面形状が略R形状の筒状体37よりなり、上下方向に延びる二重筒状を呈する。この第2ヘッダ16は、それぞれ耐腐食性および熱伝導性に優れたアルミニウムまたはアルミニウム合金である。
【0034】
また、第2ヘッダ16の上側部は凝縮部8を構成する複数の凝縮用チューブ19の下流端が接続され、下側部は過冷却部10を構成する複数の過冷却用チューブ21の上流端が接続されている。そして、第2ヘッダ16の上下方向(板長さ方向)の上下端部の開口部には、キャップ38が嵌め込まれている。
【0035】
なお、キャップ38は、第2ヘッダ16の上下端部にろう付け等の手段により接合される略円環状の接合片381と、この接合片381より窪んでおり、第2ヘッダ16の上下端部の内側の開口部を塞ぐ略円板状の閉塞部382と、第2ヘッダ16の上下端部の外側の開口部を塞ぐ偏平な楕円形状の閉塞部383とを有している。
【0036】
ヘッダプレート36には、両側面をろう材でクラッド処理した金属プレートをプレス加工することによって、長円形状の抜き穴39が多数形成され、上下端部に貫通穴40がそれぞれ形成されている。その多数の抜き穴39には、複数の凝縮用チューブ19の下流端および複数の過冷却用チューブ21の上流端が差し込まれた状態でろう付け等の手段により接合されている。また、2個の貫通穴40には、サイドプレート17、18の挿入片172、182が差し込まれた状態でろう付け等の手段により接合されている。
【0037】
筒状体37は、押出し加工にて所定の形状に形成され、内側部に第2ヘッダ16内を第1の部屋と第2の部屋とに分割する第1セパレータ41を有している。この第1セパレータ41には、プレス加工による追加工によって、第1の部屋の内部を上側の部屋と下側の部屋とに分割する第2セパレータ42を固定する穴部43、第1の部屋と第2の部屋とを連通する円形状の冷媒流入口44および円形状の冷媒流出口45が形成されている。
【0038】
第1セパレータ41および第2セパレータ42は、凝縮部8の下流端のみに連通する上流側連通室46と過冷却部10の上流端のみに連通する下流側連通室47と外側に形成される受液部9を構成する気液分離室48とに、第2ヘッダ16の内部を3分割するものである。
【0039】
なお、気液分離室48は、上流側連通室46より内部に流入した冷媒を気相冷媒と液相冷媒とに分離して液相冷媒のみを下流側連通室47へ送り出す受液器として働く。そして、冷媒流入口44は上流側連通室46の上端部および気液分離室48の上端部で開口し、上流側連通室46内の冷媒を気液分離室48内に流入させる連通口である。また、冷媒流出口45は下流側連通室47の下端部および気液分離室48の下端部で開口し、気液分離室48内の冷媒を下流側連通室47内に流出させる連通口である。
【0040】
〔第1実施例の作用〕
次に、この実施例の自動車用空気調和装置の冷凍サイクル1の作用を図1および図2に基づいて簡単に説明する。自動車用空気調和装置の運転が開始されると、電磁クラッチが通電され、冷媒圧縮機がベルトと電磁クラッチを介してエンジンEによって回転駆動される。
【0041】
このため、冷媒圧縮機2内で圧縮されて吐出された高温高圧の気相冷媒は、入口配管30を通って第1ヘッダ15の入口側連通室34内に流入する。入口側連通室34内に流入した気相冷媒は、入口側連通室34内で凝縮部8を構成する複数の凝縮用チューブ19に分配される。
【0042】
そして、複数の凝縮用チューブ19に分配された気相冷媒は、これらの凝縮用チューブ19を通過する際にコルゲートフィン20を介して室外空気と熱交換して凝縮液化され、一部の気相冷媒を残してほとんど液相冷媒となる。このような気液二相状態の冷媒は、複数の凝縮用チューブ19より第2ヘッダ16の上側連通室46内に流入する。上側連通室46内に流入した気液二相状態の冷媒は、一旦集められて、多数の小さな径の気泡状の気相冷媒が集められて大きな径気泡状の気相冷媒となった後に、冷媒流入口44を通って受液部9(気液分離室48)内へ流入する。
【0043】
なお、受液部9(気液分離室48)では、その断面積をある程度大きく(例えば500mm)とることで受液部9内を流れる冷媒の速度を低減している。また、受液部9の冷媒流入口44が受液部9の上端部で開口し、冷媒流出口45が受液部9の下端部で開口しており、さらに冷媒流入口44が上流側連通室46を介して複数の凝縮用チューブ19の下流端に連通し、冷媒流出口45が下流側連通室47を介して複数の過冷却用チューブ21の上流端に連通している。このため、複数の凝縮用チューブ19のうちの最下部の凝縮用チューブ19の下流端から複数の過冷却用チューブ21のうちの最下部の過冷却用チューブ21の上流端までの流路長さが極めて長くなっている。
【0044】
したがって、受液部9内で気液二相状態の冷媒が効率良く気液分離するため、受液部9の上部に気相冷媒が、下部に液相冷媒が溜まることになる。よって、受液部9内において気液界面ができるだけの十分な冷媒が冷凍サイクル1内に充填されているならば、受液部9の下部にある冷媒流出口45からは過冷却度を持たない液相冷媒のみが下流側連通室47内に流入する。下流側連通室47内に流入した液相冷媒は、下流側連通室47内で過冷却部10を構成する複数の過冷却用チューブ21に分配される。
【0045】
そして、複数の過冷却用チューブ21に分配された液相冷媒は、これらの過冷却用チューブ21を通過する際にコルゲートフィン22を介して室外空気と熱交換して過冷却され、過冷却度を持つ液相冷媒となり、第1ヘッダ15の出口側連通室35内に流入する。
【0046】
出口側連通室35内に流入した液相冷媒は、出口配管32、サイトグラス4を通って膨張弁5内へ流入する。なお、膨張弁5内には気相冷媒を含まない単相の液相冷媒が供給されるため、膨張弁5内に流入する液相冷媒の冷媒循環量が低下することはなく、十分な量の霧状冷媒が冷媒蒸発器6内へ供給されるので、自動車用空気調和装置の冷凍能力低下を防止することができる。
【0047】
〔第1実施例の効果〕
以上のように、自動車用空気調和装置の冷凍サイクル1は、複数の凝縮用チューブ19の下流端より流出した気液二相状態の冷媒を第2ヘッダ16の上流側連通室46内にて一旦集め、その後に受液部9の上端部で開口する冷媒流入口44より受液部9内へ全ての冷媒を導くようにしている。これにより、急激な冷凍サイクル1の負荷変動に対して受液部9内の冷媒の液面変化の応答性が向上するため、一時的なガス不足状態や高圧(凝縮圧力)の上昇を防止することができる。
【0048】
そして、凝縮部8の下流端と過冷却部10の上流端との境界の位置に設置した第2セパレータ42の存在により、また受液部9の上流端で開口した冷媒流入口44により、複数の凝縮用チューブ19の下流端から複数の過冷却用チューブ21の上流端までの流路長さが極めて長くなっている。これにより、冷媒流入口44より受液部9内へ流入した際に気液分離し易くなり、受液部9内において気相冷媒が上方に液相冷媒が下方に滞留するようになる。
【0049】
したがって、冷媒圧縮機2の高速運転時のように冷媒の流速が速い場合でも、受液部9から複数の過冷却用チューブ21、サイトグラス4および膨張弁5へ分離できていない気泡状の気相冷媒を流出させることがなくなり、過冷却部10内で過冷却域が減少することはなく、過冷却部10で所望の過冷却度を得ることができる。また、膨張弁5内へ気相冷媒が流入することはないので膨張弁5での流動音の発生を防止することができる。
【0050】
そして、受液部9の下流側に過冷却部10が設けられているため、受液部9での気液分離が完全でなくても、過冷却部10にて気泡状の気相冷媒は完全に消滅するので、受液部9の容積、つまり受液部9の断面積を小さくすることができ、コア14の凝縮部8と過冷却部10の有効放熱面積が縮小化することを防止することができる。
【0051】
また、この実施例では、受液器一体型冷媒凝縮器3を冷媒圧縮機2とサイトグラス4との間に接続しているので、部品点数の低減即ちコスト低減が図られるため、生産性を向上することができる。また、自動車のエンジンルーム内にコンパクトに収めることができるため、省スペースとなる。
【0052】
なお、この実施例では、サイトグラス4を過冷却部10より下流側に接続しているため、受液部9での気液分離性を確実にする必要はなく、受液部9の容積、つまり受液部9の断面積は冷凍サイクル1の負荷変動による冷媒変動量と冷媒漏れに対する余裕量の分だけ見込んでおけば良い。
【0053】
〔第1比較例〕
図5はこの発明の第1比較例を示したもので、受液器一体型冷媒凝縮器を示した図である。この比較例では、第1ヘッダ15および第2ヘッダ16内に、凝縮部8を構成する複数の凝縮用チューブ19と連通している部屋を第2セパレータ51、52により2分割して中間連通室53および上流側連通室54を追加し、凝縮部8内での冷媒の流し方をSターンとしている。
なお、凝縮部8内での冷媒の流し方はセパレータをさらに増やすことでターン数を増やしても良い。但し、凝縮部8内への冷媒吸入口31と受液部9内への冷媒流入口44とは相反する位置に設ける必要がある。
【0054】
〔変形例〕
この実施例では、本発明を自動車用空気調和装置に適用したが、本発明を鉄道車両、船舶や航空機等のように冷媒循環量が変動するあらゆる空気調和装置に適用しても良い。
この実施例では、第2ヘッダ16をヘッダプレート36と筒状体37で構成したが、第2ヘッダ16を押出し成形により一部品で構成しても良い。同様に、第1ヘッダ15も押出し成形により一部品で構成しても良い。
また、第2ヘッダ16を複数の筒状体を上下方向に張り合わせて構成しても良く、さらに第2ヘッダ16を1個の筒状体で形成して、その筒状体内に別途設けた第1セパレータ41を嵌め込んでも良い。
【0055】
【発明の効果】
請求項1に記載の発明は、第2ヘッダの内部を、上流側連通室、下流側連通室および気液分離室の3室のみに3分割する仕切り部を備えた受液器一体型冷媒凝縮器において、気液分離室内での冷媒の気液分離性を向上させることができ、且つ気液分離室より下流の過冷却部へ気相冷媒が流出し難くなるため、過冷却部内で過冷却域の減少量を抑えることができるので、過冷却部で所望の過冷却度を得ることができ、さらに膨張弁での作動音の発生を防止することできる。また、気液分離室内へ全ての冷媒を導くことができるため、急激な冷凍サイクルの負荷変動に対して応答性を向上することができるので、ガス不足状態や高圧上昇を防止することができる。
また、上流側連通室より内部に流入した冷媒を気液分離して液相冷媒のみを下流側連通室へ送り出す気液分離室(受液器、受液部)の下流側に過冷却部を設けているため、受液部での気液分離が完全でなくても、過冷却部にて気泡状の気相冷媒は完全に消滅するので、受液部の容積、つまり受液部の断面積を小さくすることができ、コアの凝縮部と過冷却部の有効放熱面積が縮小化することを防止できる。
請求項2に記載の発明は、冷媒の状態を観察するためのサイトグラスを過冷却部よりも下流側に接続しているため、気液分離室(受液器、受液部)での気液分離性を確実にする必要はなく、受液部の容積、つまり受液部の断面積は冷凍サイクルの負荷変動による冷媒変動量と冷媒漏れに対する余裕量の分だけ見込んでおけば良い。また、受液器一体型冷媒凝縮器を冷媒圧縮機とサイトグラスとの間に接続しているので、部品点数の低減、コスト低減が図られるため、生産性を向上することができる。また、自動車のエンジンルーム内にコンパクトに収めることができるので、省スペースとなる。
また、冷媒圧縮機、受液器一体型冷媒凝縮器、サイトグラス、膨張弁および冷媒蒸発器を冷媒配管によって順次接続して自動車用空気調和装置の冷凍サイクルを構成した場合には、膨張弁内には気相冷媒を含まない単相の液相冷媒が供給されるため、膨張弁内に流入する液相冷媒の冷媒循環量が低下することなく、十分な量の霧状冷媒が冷媒蒸発器内へ供給されるので、自動車用空気調和装置の冷凍能力の低下を防止することができる。
請求項3に記載の発明は、冷媒圧縮機の高速運転時のように冷媒の流速が速い場合でも、気液分離室(受液器、受液部)から複数の過冷却用チューブへ分離できていない気泡状の気相冷媒を流出させることがなくなり、過冷却部内で過冷却域が減少することはなく、過冷却部で所望の過冷却度を得ることができる。また、受液器一体型冷媒凝縮器よりも下流側に膨張弁を接続した場合には、膨張弁内へ気相冷媒が流入することはないので、膨張弁での流動音の発生を防止することができる。
【図面の簡単な説明】
【図1】この発明の第1実施例に用いた自動車用空気調和装置の冷凍サイクルを示した構成図である。
【図2】この発明の第1実施例に用いた受液器一体型冷媒凝縮器を示した断面図である。
【図3】図2の受液器一体型冷媒凝縮器の分解図である。
【図4】図2の第2ヘッダを示した断面図である。
【図5】この発明の第1比較例に用いた受液器一体型冷媒凝縮器を示した断面図である。
【符号の説明】
1 冷凍サイクル
3 受液器一体型冷媒凝縮器
4 サイトグラス
8 凝縮部
9 受液部
10 過冷却部
14 コア
15 第1ヘッダ
16 第2ヘッダ
19 凝縮用チューブ
21 過冷却用チューブ
31 冷媒吸入口
33 冷媒吐出口
41 第1セパレータ(仕切り部)
42 第2セパレータ(仕切り部)
44 冷媒流入口
45 冷媒流出口
46 上流側連通室
47 下流側連通室
48 気液分離室
[0001]
[Industrial applications]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerant condenser integrated with a liquid receiver used for a vehicle air conditioner in which the amount of circulating refrigerant is variable.
[0002]
[Prior art]
BACKGROUND ART Conventionally, a receiver and a condenser of a refrigeration cycle of an air conditioner for a vehicle have been separately and independently arranged. Therefore, it is difficult to reduce the number of parts, that is, to reduce the cost. Further, since the receiver and the condenser occupy an installation space for each other, there is a problem that it is not possible to meet a demand for space saving. Therefore, for the purpose of solving the problem, a technique disclosed in U.S. Pat. No. 4,972,683 and a technique disclosed in Japanese Utility Model Laid-Open No. 2-103667 have been proposed.
[0003]
First, the technology disclosed in U.S. Pat. No. 4,972,683 utilizes the buoyancy of a gas-phase refrigerant by increasing the cross-sectional area of a gas-liquid separation chamber in a header on one side of a refrigerant condenser to reduce the flow velocity of the refrigerant. Gas-liquid separation was performed. Next, the technology disclosed in Japanese Utility Model Laid-Open Publication No. 2-103667 is to provide a through-passage for communicating the two chambers with a partition member that divides the interior of the outlet header of the refrigerant condenser into two chambers. Was used as a gas-liquid separation chamber.
[0004]
[Problems to be solved by the invention]
However, in the technique disclosed in U.S. Pat. No. 4,972,683, the flow path diameter of the condensing tube is fine, and many refrigerants in a gas-liquid two-phase state are blown out. For this reason, since the gaseous gaseous refrigerant flowing out of the condensing tube is small, the effect of buoyancy cannot be expected, and the gaseous refrigerant is easily sent downstream from the gas-liquid separation chamber. Therefore, a problem such as generation of a flow noise at the temperature-operated expansion valve connected downstream of the refrigerant condenser occurs.
[0005]
Therefore, in order to prevent the gas-phase refrigerant from being sent to the temperature-operated expansion valve, a refrigerant condenser in which a condensing part and a supercooling part are arranged vertically can be considered. The distance between the lowermost condensing tube of the condensing tubes that guide the refrigerant to the chamber and the uppermost subcooling tube of the subcooling tubes for sending only the liquid-phase refrigerant from the gas-liquid separation chamber is close I do. Therefore, the gas-phase refrigerant is easily sent out to the supercooling section on the downstream side of the gas-liquid separation chamber. For this reason, especially when the flow velocity of the refrigerant is high, such as during high-speed operation of the refrigerant compressor, the flow of the gas-phase refrigerant from the gas-liquid separation chamber to the subcooling unit increases, and the subcooling region in the subcooling unit This causes a problem that the desired degree of supercooling cannot be obtained.
[0006]
Further, in the technology disclosed in Japanese Utility Model Laid-Open No. 2-103667, the refrigerant inlet into the gas-liquid separation chamber is provided at a lower portion of the gas-liquid separation chamber (but above the refrigerant outlet from the gas-liquid separation chamber). Therefore, the distance between the refrigerant inlet and the refrigerant outlet of the gas-liquid separation chamber is reduced. Therefore, the above-described problem occurs because the gas-phase refrigerant is easily sent to the downstream side of the gas-liquid separation chamber.
[0007]
If the refrigerant inlet to the gas-liquid separation chamber is provided at the lower part of the gas-liquid separation chamber, only a part of the refrigerant that has flowed in from above the refrigerant inlet of the gas-liquid separation chamber will be circulated. Responsiveness to cycle load fluctuations is poor, and there is a problem that a gas shortage state and a high pressure (condensing pressure) temporarily increase.
[0008]
The present invention can maintain the gas-liquid separation property of the refrigerant in the gas-liquid separation chamber, and can prevent the gas-phase refrigerant from flowing out to the supercooling section downstream from the gas-liquid separation chamber to obtain a desired degree of subcooling. It is an object of the present invention to provide a receiver-integrated refrigerant condenser capable of improving the response to a sudden change in load of a refrigeration cycle.
[0009]
[Means for Solving the Problems]
The invention according to claim 1 isA condensing part for condensing the refrigerant flowing inside, and a core in which a supercooling part for supercooling the refrigerant condensed in the condensing part is vertically arranged;Horizontalone endA first header having an upper end connected to an upstream end of the condensing section, and a lower end connected to a downstream end of the supercooling section; and a horizontal other end of the core. ~ sideThe upper end is connected to the downstream end of the condensation unit, and the lower end is connected to the upstream end of the supercooling unit.A second header;thisSecondInside the header,PreviousAn upstream communication chamber that communicates only with the downstream end of the condensing section, a downstream communication chamber that communicates only with the upstream end of the subcooling section, and a gas-liquid separation chamber that separates the inflowing refrigerant into gas and liquid.Only 3 roomsAnd a partition part divided into three parts, a receiver integrated refrigerant condenser,PreviousThe partitioning section opens at an upper end of the gas-liquid separation chamber, a refrigerant inlet for allowing a refrigerant to flow into the gas-liquid separation chamber from the upstream communication chamber, and an opening at a lower end of the gas-liquid separation chamber, Technical means having a refrigerant outlet for allowing the refrigerant to flow from the gas-liquid separation chamber to the downstream communication chamber is employed.
The invention described in claim 2 isA sight glass for observing the state of the refrigerant may be connected downstream of the supercooling section.
The invention according to claim 3 divides the inside of the first header into an inlet-side communication chamber that communicates only with the upstream end of the condensing section and an outlet-side communication chamber that communicates only with the downstream end of the supercooling section. The first header is provided with a refrigerant suction port for allowing the refrigerant discharged from the refrigerant compressor to flow into the inlet-side communication chamber, and the partition section is located downstream of the condensing section. A second separator is provided at a boundary between an end and an upstream end of the supercooling section, and the condenser has a plurality of condensing tubes for flowing a refrigerant from the inlet communication chamber to the upstream communication chamber. The supercooling unit is characterized in that it has a plurality of subcooling tubes for flowing a refrigerant from the downstream communication chamber to the outlet communication chamber.
[0010]
[Action]
The invention according to claim 1According toThe refrigerant flowing from the first header into the condensing section is condensed inside the condensing section. AndThe gas-liquid two-phase refrigerant flowing out of the condenserSecondThe refrigerant is once collected in the communication chamber on the upstream side of the header, and then all the refrigerant is introduced into the gas-liquid separation chamber through the refrigerant inlet opening at the upper end of the gas-liquid separation chamber. Thus, a change in the liquid level of the refrigerant in the gas-liquid separation chamber follows a sudden change in the load of the refrigeration cycle, thereby preventing a gas shortage state or a high pressure rise.
According to the third aspect of the present invention, the presence of the second separator provided at the boundary between the downstream end of the condensing section and the upstream end of the supercooling section also allows the gas-liquid separation chamber (liquid receiving section, receiving section) to be provided. Due to the refrigerant inlet opening at the upper end of the liquid container, the flow path length from the downstream ends of the plurality of condensing tubes to the upstream ends of the plurality of subcooling tubes is extremely long. This facilitates gas-liquid separation when flowing into the liquid receiving part from the refrigerant inflow port, so that the gas-phase refrigerant stays upward and the liquid-phase refrigerant stays downward in the liquid receiving part.
[0011]
The refrigerant inlet of the gas-liquid separation chamber is opened at the upper end of the gas-liquid separation chamber, the refrigerant outlet is opened at the lower end of the gas-liquid separation chamber, and the refrigerant inlet is connected to the condenser through the upstream communication chamber. Since the refrigerant outlet communicates with the upstream end of the subcooling section through the downstream communication chamber, the flow path length from the downstream end of the condensation section to the upstream end of the subcooling section is small. It is extremely long, and the gaseous refrigerant in the form of bubbles that cannot be separated from the gas-liquid separation chamber to the supercooling section is not sent out.
[0012]
Since the supercooling section is provided on the downstream side of the gas-liquid separation chamber, even if the gas-liquid separation in the gas-liquid separation chamber is not complete, the gaseous refrigerant in a bubble state disappears in the supercooling section. Therefore, the volume of the gas-liquid separation chamber, that is, the cross-sectional area of the gas-liquid separation chamber can be reduced, and the effective heat radiation area of the condensing section and the supercooling section does not decrease.
[0013]
【Example】
Next, a description will be given based on an embodiment in which the liquid receiver-integrated refrigerant condenser of the present invention is applied to an air conditioner for a vehicle.
[0014]
[Configuration of First Embodiment]
1 to 4 show a first embodiment of the present invention, and FIG. 1 is a view showing a refrigeration cycle of an air conditioner for a vehicle. In the refrigeration cycle 1 of this automotive air conditioner, the refrigerant compressor 2, the receiver-integrated refrigerant condenser 3, the sight glass 4, the expansion valve 5, and the refrigerant evaporator 6 are made of a metal pipe or a rubber pipe. They are sequentially connected by a refrigerant pipe 7.
[0015]
The refrigerant compressor 2 is connected to an engine E installed in an engine room (not shown) of an automobile via a belt (not shown) and an electromagnetic clutch (not shown). When the rotational power of the engine E is transmitted, the refrigerant compressor 2 compresses the gas-phase refrigerant sucked into the refrigerant evaporator 6 to receive the high-temperature and high-pressure gas-phase refrigerant. Discharge to 3.
[0016]
The receiver-integrated refrigerant condenser 3 is integrally provided with a condensing unit 8, a liquid receiving unit 9, and a supercooling unit 10. The condensing section 8 is connected to the discharge side of the refrigerant compressor 2 and exchanges heat with the outdoor air sent from a cooling fan (not shown) or the like for the gas-phase refrigerant flowing into the refrigerant compressor 2 from the inside. Works as a condenser to condense and liquefy.
[0017]
The liquid receiving portion 9 separates the gas-liquid two-phase refrigerant flowing into the inside from the condenser portion 8 into a gas-phase refrigerant and a liquid-phase refrigerant, and supplies only the liquid-phase refrigerant to the supercooling portion 10. Work as a vessel. The supercooling unit 10 is provided below and adjacent to the condensing unit 8, and exchanges heat between the liquid-phase refrigerant flowing into the inside from the liquid-receiving unit 9 and the outdoor air sent by a cooling fan or the like to convert the liquid-phase refrigerant. Works as a subcooler to supercool.
[0018]
The sight glass 4 is connected to the downstream side of the supercooling unit 10 of the receiver-integrated refrigerant condenser 3 and observes the state of the refrigerant circulating in the refrigeration cycle 1. The sight glass 4 is independently mounted in a place easily visible to an inspector in an engine room of an automobile, for example, in the middle of a refrigerant pipe 7 provided adjacent to the refrigerant condenser 3 integrated with the receiver.
[0019]
As shown in FIG. 1, the sight glass 4 has a tubular metal body 11 whose both ends are connected to the refrigerant pipe 7 by means such as welding or fastening, and a peep formed on the upper surface of the metal body 11. It is composed of a welded glass 13 fitted into the window 12 and the like. Generally, when air bubbles are seen through the viewing window 12, the refrigerant is insufficient, and when air bubbles are not seen, the refrigerant amount is an appropriate amount.
[0020]
The expansion valve 5 is connected to the refrigerant inlet side of the refrigerant evaporator 6 and adiabatically expands the high-temperature and high-pressure liquid-phase refrigerant flowing from the sight glass 4 into a low-temperature and low-pressure mist-like refrigerant. A temperature-operated expansion valve that automatically adjusts the valve opening so as to maintain the refrigerant superheat at the refrigerant outlet of the evaporator 6 at a predetermined value is used.
[0021]
The refrigerant evaporator 6 is connected between the suction side of the refrigerant compressor 2 and the downstream side of the expansion valve 5, and a gas-liquid two-phase refrigerant flowing into the inside from the expansion valve 5 is blown by a blower (not shown). It acts as a heat exchanger for evaporating and evaporating the refrigerant by exchanging heat with the blown outdoor air or indoor air.
[0022]
Next, the receiver-integrated refrigerant condenser 3 of this embodiment will be described in detail with reference to FIGS. The receiver-integrated refrigerant condenser 3 has a height of, for example, 300 mm to 400 mm and a width of 300 mm to 600 mm, and is attached to a place in the engine room of an automobile that is likely to receive traveling wind via a mounting bracket (not shown). It is attached integrally. The receiver-integrated refrigerant condenser 3 includes a core 14 for performing heat exchange, a first header 15 disposed at one end of the core 14 in the horizontal direction, and a second header 15 disposed at the other end of the core 14 in the horizontal direction. And is manufactured by brazing integrally in a furnace.
[0023]
The core 14 includes a condensing section 8 and a supercooling section 10, and side plates 17, 18 for fixing mounting brackets for mounting the receiver-integrated refrigerant condenser 3 to an automobile at upper and lower ends thereof are brazed. And the like. The condensing section 8 includes a plurality of condensing tubes 19 and corrugated fins 20, which are joined by means such as brazing. The supercooling unit 10 includes a plurality of supercooling tubes 21 and corrugated fins 22, which are joined by means such as brazing.
[0024]
The side plates 17 and 18 are formed by pressing a metal plate clad with brazing material of aluminum or aluminum alloy, and the shape thereof is obtained. The first and second headers 15 and 16 are provided at both ends in the horizontal direction, respectively. Insertion pieces 171, 172, 181, 182 to be inserted are formed.
[0025]
The plurality of condensing tubes 19 and the supercooling tubes 21 are formed into an oblong shape having a flat cross section by extruding aluminum or an aluminum alloy or the like having excellent corrosion resistance and heat conductivity. It has a coolant channel. The corrugated fins 20 and 21 are radiating fins for improving the heat radiation efficiency of the refrigerant, and are formed by pressing a metal plate such as aluminum or an aluminum alloy having both sides clad with a brazing material into a corrugated shape.
[0026]
The plurality of condensing tubes 19 and the plurality of subcooling tubes 21 are arranged in a horizontal direction. The refrigerant flowing through the plurality of condensing tubes 19 flows from the first header 15 to the second header 16, and the refrigerant flowing through the plurality of subcooling tubes 21 flows from the second header 16 to the first header 15 on the contrary. . In this embodiment, the number of the condensing tubes 19 is larger than the number of the supercooling tubes 21. According to experimental experience, the number of the supercooling tubes 21 is 15% of the entire core 14. About 20% is preferable.
[0027]
The first header 15 includes a header plate 23 having a substantially U-shaped cross section and a tank plate 24 having a semicircular cross section, and has a cylindrical shape extending vertically. The first header 15 has a predetermined shape by pressing a metal plate having both sides clad with a brazing material made of aluminum or aluminum alloy having excellent corrosion resistance and thermal conductivity.
[0028]
The upper end of the first header 15 is connected to the upstream ends of the plurality of condensing tubes 19 constituting the condensing section 8, and the lower side is the downstream end of the plurality of subcooling tubes 21 constituting the subcooling section 10. Is connected. A cap 25 is fitted in the opening at the upper and lower ends of the first header 15 in the up-down direction (plate length direction).
[0029]
The cap 25 is formed by pressing a metal plate clad with a brazing material of aluminum or aluminum alloy to obtain a shape, and is joined to the upper and lower ends of the first header 15 by brazing or the like. It has an annular joining piece 251 and a substantially disk-shaped closing portion 252 that is recessed from the joining piece 251 and closes the opening at the upper and lower ends.
[0030]
In the header plate 23, a large number of oval-shaped holes 26 are formed by press working, and through holes 27 are respectively formed in the upper and lower ends. The upstream ends of the plurality of condensing tubes 19 and the downstream ends of the plurality of subcooling tubes 21 are inserted into the numerous holes 26 by means such as brazing. Further, the insertion pieces 171 and 181 of the side plates 17 and 18 are joined to the two through holes 27 by means such as brazing while being inserted.
[0031]
The tank plate 24 has a hole 29 for fixing a separator 28 partitioning the inside of the tank up and down by press working, a circular refrigerant inlet 31 for fixing an inlet pipe 30 and a circular refrigerant outlet for fixing an outlet pipe 32. 33 are formed. The separator 28 is formed in a substantially disc shape, and connects the inside of the first header 15 with the inlet communication chamber 34 that communicates only with the upstream end of the condenser 8 and the outlet side that communicates only with the downstream end of the supercooler 10. It is divided into a communication chamber 35.
[0032]
The inlet pipe 30 has a circular pipe shape and is a pipe for allowing the high-temperature and high-pressure gas-phase refrigerant discharged from the refrigerant compressor 2 to flow into the inlet-side communication chamber 34. The refrigerant inlet 31 is formed by brazing or the like. Is joined to. The outlet pipe 32 has a circular pipe shape, and is a pipe for sending the liquid-phase refrigerant in the outlet-side communication chamber 35 to the sight glass 4, and is joined to the refrigerant discharge port 33 by brazing or the like.
[0033]
As shown in FIG. 4, the second header 16 includes a header plate 36 having a substantially U-shaped cross section and a cylindrical body 37 having a substantially R-shaped cross section. Present. The second header 16 is made of aluminum or aluminum alloy having excellent corrosion resistance and heat conductivity.
[0034]
The upper end of the second header 16 is connected to the downstream ends of a plurality of condensing tubes 19 forming the condensing section 8, and the lower side is the upstream end of the plurality of subcooling tubes 21 forming the subcooling section 10. Is connected. A cap 38 is fitted into the opening at the upper and lower ends of the second header 16 in the vertical direction (plate length direction).
[0035]
The cap 38 has a substantially annular joining piece 381 joined to the upper and lower ends of the second header 16 by brazing or the like, and is recessed from the joining piece 381. And a substantially elliptical closing portion 383 for closing the opening outside the upper and lower ends of the second header 16.
[0036]
The header plate 36 is formed by pressing a metal plate clad on both sides with a brazing material to form a large number of oblong holes 39, and through holes 40 at upper and lower ends. The downstream ends of the plurality of condensing tubes 19 and the upstream ends of the plurality of subcooling tubes 21 are inserted into the numerous holes 39 by means such as brazing. Further, the insertion pieces 172, 182 of the side plates 17, 18 are inserted into the two through holes 40 by means of brazing or the like.
[0037]
The cylindrical body 37 is formed into a predetermined shape by extrusion, and has a first separator 41 that divides the inside of the second header 16 into a first room and a second room on the inner side. In the first separator 41, a hole 43 for fixing a second separator 42 that divides the inside of the first room into an upper room and a lower room by additional processing by press working, A circular refrigerant inlet 44 and a circular refrigerant outlet 45 communicating with the second room are formed.
[0038]
The first separator 41 and the second separator 42 have an upstream communication chamber 46 communicating only with the downstream end of the condensing section 8 and a downstream communication chamber 47 communicating only with the upstream end of the supercooling section 10. The inside of the second header 16 is divided into three parts into a gas-liquid separation chamber 48 constituting the liquid part 9.
[0039]
The gas-liquid separation chamber 48 functions as a liquid receiver that separates the refrigerant flowing into the inside from the upstream communication chamber 46 into a gaseous refrigerant and a liquid refrigerant, and sends out only the liquid refrigerant to the downstream communication chamber 47. . The refrigerant inlet 44 opens at the upper end of the upstream communication chamber 46 and the upper end of the gas-liquid separation chamber 48, and is a communication port through which the refrigerant in the upstream communication chamber 46 flows into the gas-liquid separation chamber 48. . The refrigerant outlet 45 is a communication port that opens at the lower end of the downstream communication chamber 47 and the lower end of the gas-liquid separation chamber 48 and allows the refrigerant in the gas-liquid separation chamber 48 to flow into the downstream communication chamber 47. .
[0040]
[Operation of the first embodiment]
Next, the operation of the refrigeration cycle 1 of the vehicle air conditioner of this embodiment will be briefly described with reference to FIGS. When the operation of the air conditioner for a vehicle is started, the electromagnetic clutch is energized, and the refrigerant compressor is rotationally driven by the engine E via the belt and the electromagnetic clutch.
[0041]
For this reason, the high-temperature and high-pressure gas-phase refrigerant compressed and discharged in the refrigerant compressor 2 flows into the inlet-side communication chamber 34 of the first header 15 through the inlet pipe 30. The gas-phase refrigerant that has flowed into the inlet-side communication chamber 34 is distributed to the plurality of condensing tubes 19 forming the condensing unit 8 in the inlet-side communication chamber 34.
[0042]
The gas-phase refrigerant distributed to the plurality of condensing tubes 19 is condensed and liquefied by exchanging heat with outdoor air via corrugated fins 20 when passing through these condensing tubes 19. Almost all liquid-phase refrigerant remains except the refrigerant. The refrigerant in the gas-liquid two-phase state flows into the upper communication chamber 46 of the second header 16 from the plurality of condensing tubes 19. The refrigerant in the gas-liquid two-phase state that has flowed into the upper communication chamber 46 is once collected, and after a large number of small-diameter bubble-like gas-phase refrigerants are collected and turned into a large-diameter bubble-like gas-phase refrigerant, The refrigerant flows into the liquid receiving section 9 (gas-liquid separation chamber 48) through the refrigerant inlet 44.
[0043]
In the liquid receiving section 9 (gas-liquid separation chamber 48), the cross-sectional area is somewhat large (for example, 500 mm).2), The speed of the refrigerant flowing in the liquid receiving section 9 is reduced. The refrigerant inlet 44 of the liquid receiving part 9 opens at the upper end of the liquid receiving part 9, the refrigerant outlet 45 opens at the lower end of the liquid receiving part 9, and the refrigerant inlet 44 communicates with the upstream side. The plurality of condensing tubes 19 communicate with the downstream ends of the plurality of condensing tubes 19 via the chamber 46, and the refrigerant outlet 45 communicates with the upstream ends of the plurality of subcooling tubes 21 via the downstream communication chamber 47. Therefore, the flow path length from the downstream end of the lowermost condensing tube 19 of the plurality of condensing tubes 19 to the upstream end of the lowermost subcooling tube 21 of the plurality of subcooling tubes 21. Is extremely long.
[0044]
Therefore, the refrigerant in the gas-liquid two-phase state is efficiently separated into gas and liquid in the liquid receiving part 9, so that the gaseous phase refrigerant is stored in the upper part of the liquid receiving part 9 and the liquid phase refrigerant is stored in the lower part. Therefore, if the refrigeration cycle 1 is filled with sufficient refrigerant for the gas-liquid interface in the liquid receiving section 9, the refrigerant does not have a degree of supercooling from the refrigerant outlet 45 below the liquid receiving section 9. Only the liquid-phase refrigerant flows into the downstream communication chamber 47. The liquid-phase refrigerant that has flowed into the downstream communication chamber 47 is distributed to the plurality of subcooling tubes 21 that constitute the subcooling unit 10 in the downstream communication chamber 47.
[0045]
The liquid-phase refrigerant distributed to the plurality of subcooling tubes 21 exchanges heat with outdoor air via the corrugated fins 22 when passing through the subcooling tubes 21, and is supercooled. And flows into the outlet side communication chamber 35 of the first header 15.
[0046]
The liquid-phase refrigerant flowing into the outlet-side communication chamber 35 flows into the expansion valve 5 through the outlet pipe 32 and the sight glass 4. Since a single-phase liquid-phase refrigerant containing no gas-phase refrigerant is supplied into the expansion valve 5, the refrigerant circulation amount of the liquid-phase refrigerant flowing into the expansion valve 5 does not decrease, and is sufficient. Is supplied to the refrigerant evaporator 6, so that the refrigeration capacity of the air conditioner for a vehicle is improved.ofThe drop can be prevented.
[0047]
[Effect of the first embodiment]
As described above, the refrigeration cycle 1 of the air conditioner for an automobile temporarily cools the refrigerant in the gas-liquid two-phase state flowing out from the downstream ends of the plurality of condensing tubes 19 in the upstream communication chamber 46 of the second header 16. The refrigerant is collected, and thereafter, all the refrigerant is introduced into the liquid receiving portion 9 through the refrigerant inlet 44 that opens at the upper end of the liquid receiving portion 9. This improves the responsiveness of a change in the liquid level of the refrigerant in the liquid receiving section 9 to a sudden load change of the refrigeration cycle 1, thereby preventing a temporary gas shortage state and an increase in high pressure (condensing pressure). be able to.
[0048]
The presence of the second separator 42 installed at the boundary between the downstream end of the condensing section 8 and the upstream end of the supercooling section 10, and the presence of the refrigerant inlet 44 opened at the upstream end of the liquid receiving section 9, The flow path length from the downstream end of the condensation tube 19 to the upstream end of the plurality of subcooling tubes 21 is extremely long. This facilitates gas-liquid separation when flowing into the liquid receiving portion 9 from the refrigerant inlet 44, so that the gas-phase refrigerant stays upward and the liquid-phase refrigerant stays downward in the liquid receiving portion 9.
[0049]
Therefore, even when the flow rate of the refrigerant is high, such as during high-speed operation of the refrigerant compressor 2, a bubble-like gas that cannot be separated from the liquid receiving section 9 to the plurality of supercooling tubes 21, the sight glass 4, and the expansion valve 5. The phase refrigerant does not flow out, and the subcooling region does not decrease in the subcooling unit 10, so that the subcooling unit 10 can obtain a desired degree of subcooling. Further, since the gas-phase refrigerant does not flow into the expansion valve 5, the generation of the flow noise in the expansion valve 5 can be prevented.
[0050]
Since the supercooling section 10 is provided downstream of the liquid receiving section 9, even if the gas-liquid separation in the liquid receiving section 9 is not complete, the gaseous refrigerant in the form of a bubble is supercooled in the supercooling section 10. Since it completely disappears, the volume of the liquid receiving part 9, that is, the sectional area of the liquid receiving part 9 can be reduced, and the effective heat radiation area of the condensing part 8 and the supercooling part 10 of the core 14 is prevented from being reduced. can do.
[0051]
Further, in this embodiment, since the receiver-integrated refrigerant condenser 3 is connected between the refrigerant compressor 2 and the sight glass 4, the number of parts, that is, the cost, can be reduced. Can be improved. Further, since it can be compactly stored in the engine room of a car, the space is saved.
[0052]
In this embodiment, since the sight glass 4 is connected to the downstream side of the supercooling unit 10, it is not necessary to ensure gas-liquid separation at the liquid receiving unit 9. In other words, the cross-sectional area of the liquid receiving section 9 may be considered by the amount of the refrigerant fluctuation due to the load fluctuation of the refrigeration cycle 1 and the margin for the refrigerant leakage.
[0053]
[No.1 comparisonExample)
FIG. 5 shows a second embodiment of the present invention.1 comparisonFIG. 2 is a view showing an example, and is a diagram showing a liquid receiver-integrated refrigerant condenser. thisComparisonIn the example, in the first header 15 and the second header 16, the room communicating with the plurality of condensing tubes 19 constituting the condensing unit 8 is divided into two by the second separators 51 and 52, and the intermediate communication chamber 53 and the An upstream communication chamber 54 is added, and the flow of the refrigerant in the condensing section 8 is set as an S-turn.
The number of turns may be increased by further increasing the number of separators in the flow of the refrigerant in the condenser 8. However, the refrigerant inlet 31 into the condenser 8 and the refrigerant inlet 44 into the liquid receiver 9 need to be provided at positions opposite to each other.
[0054]
(Modification)
In this embodiment, the present invention is applied to an air conditioner for a vehicle, but the present invention may be applied to any air conditioner in which the amount of circulating refrigerant varies, such as a railway vehicle, a ship, an aircraft, and the like.
In this embodiment, the second header 16 is constituted by the header plate 36 and the cylindrical body 37. However, the second header 16 may be constituted by one part by extrusion. Similarly, the first header 15 may be formed as one piece by extrusion.
Further, the second header 16 may be configured by laminating a plurality of cylindrical bodies in the vertical direction. Further, the second header 16 may be formed of one cylindrical body, and the second header 16 may be separately provided in the cylindrical body. One separator 41 may be fitted.
[0055]
【The invention's effect】
Claim 1The invention ofIn a receiver-integrated refrigerant condenser including a partition portion that divides the inside of the second header into only three chambers of an upstream communication chamber, a downstream communication chamber, and a gas-liquid separation chamber,Since the gas-liquid separation of the refrigerant in the gas-liquid separation chamber can be improved, and the gas-phase refrigerant hardly flows to the supercooling section downstream of the gas-liquid separation chamber, the subcooling area is reduced in the subcooling section. Since the amount can be suppressed, a desired degree of subcooling can be obtained in the subcooling section, and furthermore, generation of operation noise in the expansion valve can be prevented.Butit can. In addition, since all the refrigerant can be introduced into the gas-liquid separation chamber, the responsiveness to a sudden change in the load of the refrigeration cycle can be improved, so that a gas shortage state and a high pressure rise can be prevented.
In addition, a subcooling unit is provided downstream of a gas-liquid separation chamber (liquid receiver, liquid receiver) that separates the refrigerant flowing into the inside from the upstream communication chamber into gas and liquid and sends only the liquid-phase refrigerant to the downstream communication chamber. Even if the gas-liquid separation at the liquid receiving part is not complete, the gaseous refrigerant in the form of bubbles will completely disappear at the supercooling part, so the volume of the liquid receiving part, that is, the disconnection of the liquid receiving part The area can be reduced, and the effective heat radiation area of the condensing part and the supercooling part of the core can be prevented from being reduced.
According to the second aspect of the present invention, since the sight glass for observing the state of the refrigerant is connected to the downstream side of the supercooling section, the gas in the gas-liquid separation chamber (liquid receiver, liquid receiving section) is connected. It is not necessary to ensure liquid separation properties, and the volume of the liquid receiving part, that is, the cross-sectional area of the liquid receiving part, may be taken into account by the amount of refrigerant fluctuation due to load fluctuation of the refrigeration cycle and the amount of margin for refrigerant leakage. Further, since the receiver-integrated refrigerant condenser is connected between the refrigerant compressor and the sight glass, the number of parts can be reduced and the cost can be reduced, so that productivity can be improved. In addition, since it can be compactly stored in the engine room of a car, space can be saved.
Further, when a refrigeration cycle of an automobile air conditioner is configured by sequentially connecting a refrigerant compressor, a receiver-integrated refrigerant condenser, a sight glass, an expansion valve, and a refrigerant evaporator by a refrigerant pipe, the inside of the expansion valve Is supplied with a single-phase liquid-phase refrigerant that does not contain a gas-phase refrigerant, so that a sufficient amount of atomized refrigerant is supplied to the refrigerant evaporator without reducing the refrigerant circulation amount of the liquid-phase refrigerant flowing into the expansion valve. Since it is supplied to the inside, it is possible to prevent a decrease in the refrigeration capacity of the vehicle air conditioner.
According to the third aspect of the present invention, even when the flow rate of the refrigerant is high, such as during high-speed operation of the refrigerant compressor, the refrigerant can be separated from the gas-liquid separation chamber (liquid receiver, liquid receiver) into a plurality of subcooling tubes. The uncooled bubble-shaped gas-phase refrigerant does not flow out, and the subcooling region does not decrease in the subcooling unit, and a desired degree of subcooling can be obtained in the subcooling unit. Further, when the expansion valve is connected to the downstream side of the receiver-integrated refrigerant condenser, the gas-phase refrigerant does not flow into the expansion valve, thereby preventing the generation of flow noise at the expansion valve. be able to.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a refrigeration cycle of an automotive air conditioner used in a first embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a receiver-integrated refrigerant condenser used in the first embodiment of the present invention.
3 is an exploded view of the receiver-integrated refrigerant condenser of FIG. 2;
FIG. 4 is a sectional view showing a second header of FIG. 2;
FIG. 5 of the present invention;1 comparisonIt is sectional drawing which showed the liquid receiver integrated type | mold refrigerant condenser used for the example.
[Explanation of symbols]
1 Refrigeration cycle
3 Receptor-integrated refrigerant condenser
4 Sight glass
8 Condenser
9 Liquid receiving part
10 Supercooling section
14 core
15 First header
16 Second header
19 Condensing tube
21 Subcooling tube
31  Refrigerant inlet
33  Refrigerant outlet
41 1st separator (partition part)
42 Second separator (partition part)
44 Refrigerant inlet
45 Refrigerant outlet
46 Upstream communication room
47 Downstream communication room
48 gas-liquid separation chamber

Claims (3)

(a)内部を流れる冷媒を凝縮する凝縮部、およびこの凝縮部で凝縮された冷媒を過冷却する過冷却部を上下に配設したコアと、
(b)このコアの水平方向の一端側において上下方向に延ばされ、上側部に前記凝縮部の上流端が接続され、下側部に前記過冷却部の下流端が接続された第1ヘッダと、
(c)前記コアの水平方向の他端側において上下方向に延ばされ、上側部に前記凝縮部の下流端が接続され、下側部に前記過冷却部の上流端が接続された第2ヘッダと、
(d)この第2ヘッダの内部を、前記凝縮部の下流端のみに連通する上流側連通室、前記過冷却部の上流端のみに連通する下流側連通室、および流入した冷媒を気液分離する気液分離室の3室のみに3分割する仕切り部と
を備えた受液器一体型冷媒凝縮器であって、
記仕切り部は、前記気液分離室の上端部で開口し、前記上流側連通室より前記気液分離室内へ冷媒を流入させる冷媒流入口、および前記気液分離室の下端部で開口し、前記気液分離室より前記下流側連通室内へ冷媒を流出させる冷媒流出口を有することを特徴とする受液器一体型冷媒凝縮器。
(A) a condensing part for condensing the refrigerant flowing inside, and a core having a vertically arranged supercooling part for supercooling the refrigerant condensed in the condensing part,
(B) a first header extending vertically in one end of the core in the horizontal direction, an upper end connected to an upstream end of the condensing part, and a lower part connected to a downstream end of the supercooling part; When,
(C) a second end in which the core extends vertically at the other end in the horizontal direction , the upper end is connected to the downstream end of the condensing unit, and the lower end is connected to the upstream end of the supercooling unit . Header and
(D) the gas-liquid inside the second header, before Symbol upstream side communicating chamber communicating with only the downstream end of the condensing portion, the downstream communication chamber which communicates only the upstream end of the supercooling part, and the refrigerant flowing into A liquid receiver-integrated refrigerant condenser comprising: a partition part that divides into three chambers of only a gas-liquid separation chamber to be separated;
Before Symbol partition portion is open at the upper end of the gas-liquid separation chamber, open at the lower end of the coolant inlet port from the upstream side communicating chamber flowing the refrigerant into the gas-liquid separation chamber, and the gas-liquid separation chamber And a refrigerant outlet integrated with a receiver, which has a refrigerant outlet for allowing the refrigerant to flow from the gas-liquid separation chamber to the downstream communication chamber.
請求項1に記載の受液器一体型冷媒凝縮器において、
前記過冷却部よりも下流に、冷媒の状態を観察するためのサイトグラスを接続したことを特徴とする受液器一体型冷媒凝縮器。
The liquid receiver-integrated refrigerant condenser according to claim 1,
A refrigerant condenser integrated with a liquid receiver, wherein a sight glass for observing the state of the refrigerant is connected downstream of the supercooling section.
請求項1または請求項2に記載の受液器一体型冷媒凝縮器において、The liquid receiver-integrated refrigerant condenser according to claim 1 or 2,
前記第1ヘッダの内部を、前記凝縮部の上流端のみに連通する入口側連通室、および前記過冷却部の下流端のみに連通する出口側連通室に分割するセパレータを備え、A separator that divides the inside of the first header into an inlet communication chamber that communicates only with the upstream end of the condensing section and an outlet communication chamber that communicates only with the downstream end of the supercooling section,
前記第1ヘッダには、冷媒圧縮機より吐出された冷媒を前記入口側連通室内に流入させるための冷媒吸入口が設けられており、The first header is provided with a refrigerant suction port for allowing the refrigerant discharged from the refrigerant compressor to flow into the inlet-side communication chamber,
前記仕切り部は、前記凝縮部の下流端と前記過冷却部の上流端との境界の位置に第2セパレータを有し、The partition section has a second separator at a boundary between a downstream end of the condensation section and an upstream end of the supercooling section,
前記凝縮部は、前記入口側連通室から前記上流側連通室へ冷媒を流す複数の凝縮用チューブを有し、The condensing section has a plurality of condensing tubes for flowing a refrigerant from the inlet communication chamber to the upstream communication chamber,
前記過冷却部は、前記下流側連通室から前記出口側連通室へ冷媒を流す複数の過冷却用チューブを有することを特徴とする受液器一体型冷媒凝縮器。The subcooling unit includes a plurality of subcooling tubes for flowing a refrigerant from the downstream communication chamber to the outlet communication chamber.
JP25453793A 1993-10-12 1993-10-12 Recipient integrated refrigerant condenser Expired - Lifetime JP3557628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25453793A JP3557628B2 (en) 1993-10-12 1993-10-12 Recipient integrated refrigerant condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25453793A JP3557628B2 (en) 1993-10-12 1993-10-12 Recipient integrated refrigerant condenser

Publications (2)

Publication Number Publication Date
JPH07103612A JPH07103612A (en) 1995-04-18
JP3557628B2 true JP3557628B2 (en) 2004-08-25

Family

ID=17266427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25453793A Expired - Lifetime JP3557628B2 (en) 1993-10-12 1993-10-12 Recipient integrated refrigerant condenser

Country Status (1)

Country Link
JP (1) JP3557628B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101318643B1 (en) 2011-07-27 2013-10-17 한라비스테온공조 주식회사 Cooling module and control method thereof

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2753782B1 (en) * 1996-09-23 1998-11-27 CONDENSER WITH INTEGRATED TANK FOR A REFRIGERATION CIRCUIT, ESPECIALLY A MOTOR VEHICLE
FR2757612B1 (en) * 1996-12-23 1999-03-05 Valeo Thermique Moteur Sa CONDENSER WITH IMPROVED INTEGRATED TANK, ESPECIALLY FOR A MOTOR VEHICLE AIR CONDITIONING CIRCUIT
KR100264815B1 (en) * 1997-06-16 2000-09-01 신영주 Multi-stage air and liquid separable type condenser
FR2766559B1 (en) * 1997-07-24 1999-10-22 Valeo Thermique Moteur Sa CONDENSER WITH INTEGRATED DOUBLE TANK, ESPECIALLY FOR A MOTOR VEHICLE AIR CONDITIONING CIRCUIT
JP2000227265A (en) 1999-02-03 2000-08-15 Denso Corp Refrigerant condenser integrated with liquid receiver
DE50213792D1 (en) * 2001-11-08 2009-10-08 Behr Gmbh & Co Kg heat exchangers
KR20030048910A (en) * 2001-12-13 2003-06-25 한라공조주식회사 Condenser having integrated receiver drier
KR100872468B1 (en) 2002-05-24 2008-12-08 한라공조주식회사 Multistage gas and liquid phase separation type condenser
BR0306209A (en) 2002-08-31 2004-08-24 Behr Gmbh & Co Coolant condenser, especially for automobile air conditioning installations
EP1524477A1 (en) * 2003-10-14 2005-04-20 Behr Lorraine S.A.R.L. Condenser for an air-conditioning system, in particular of vehicles
JP2005241237A (en) * 2004-01-27 2005-09-08 Showa Denko Kk Condenser and heat exchanger
JP5775715B2 (en) * 2010-04-20 2015-09-09 株式会社ケーヒン・サーマル・テクノロジー Capacitor
JP6259703B2 (en) * 2014-04-10 2018-01-10 株式会社ケーヒン・サーマル・テクノロジー Capacitor
CN104501480B (en) * 2014-12-26 2017-03-15 长城汽车股份有限公司 Vehicle and its condenser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101318643B1 (en) 2011-07-27 2013-10-17 한라비스테온공조 주식회사 Cooling module and control method thereof

Also Published As

Publication number Publication date
JPH07103612A (en) 1995-04-18

Similar Documents

Publication Publication Date Title
JP3561957B2 (en) Recipient integrated refrigerant condenser
JP3557628B2 (en) Recipient integrated refrigerant condenser
US7654108B2 (en) Unit for refrigerant cycle device
JP3301169B2 (en) Refrigeration equipment
JPH11304293A (en) Refrigerant condenser
JP3617083B2 (en) Receiver integrated refrigerant condenser
JP2009085569A (en) Evaporator unit
JP4091416B2 (en) Receiver tank for refrigeration cycle, heat exchanger with receiver tank, and condensing device for refrigeration cycle
JP3627382B2 (en) Refrigerant condensing device and refrigerant condenser
JPH0933139A (en) Refrigeration cycle
JP4069804B2 (en) Condenser with integrated heat exchanger and receiver
TWI280340B (en) Heat exchanger with receiver tank, receiver tank connecting member, receiver tank mounting structure of heat exchanger and refrigeration system
JP3355844B2 (en) Recipient integrated refrigerant condenser
JPH07159000A (en) Refrigerant condenser
JP2001174103A (en) Refrigerant condenser
CN212006013U (en) Multi-split air conditioning system
JP6458432B2 (en) Heat exchanger
AU2017444848B2 (en) Heat exchanger and refrigeration cycle device
JP2004239598A (en) Heat exchanger
JP2004232924A (en) Refrigeration cycle device
JPH07243720A (en) Refrigerating apparatus
JP4238434B2 (en) Refrigeration cycle equipment
JP3804166B2 (en) Mounting structure of receiver-integrated refrigerant condenser
JP2003170734A (en) Refrigeration cycle device and condenser
JP3855385B2 (en) Refrigerating cycle receiver

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040510

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term