JPH085198A - Air conditioning heat exchanger - Google Patents

Air conditioning heat exchanger

Info

Publication number
JPH085198A
JPH085198A JP13219094A JP13219094A JPH085198A JP H085198 A JPH085198 A JP H085198A JP 13219094 A JP13219094 A JP 13219094A JP 13219094 A JP13219094 A JP 13219094A JP H085198 A JPH085198 A JP H085198A
Authority
JP
Japan
Prior art keywords
refrigerant
header
heat transfer
intermediate header
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13219094A
Other languages
Japanese (ja)
Inventor
Yasuhiro Kanai
保博 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Diesel Engine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Diesel Engine Co Ltd filed Critical Yanmar Diesel Engine Co Ltd
Priority to JP13219094A priority Critical patent/JPH085198A/en
Publication of JPH085198A publication Critical patent/JPH085198A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag

Abstract

PURPOSE:To improve the condensing heat transfer due to the separation and the removal of condensing liquid refrigerant and to improve the condensing performance by branching refrigerant fed to an inlet side header to many heat transfer tubes, partly condensing it, then separating it to gas refrigerant and liquid refrigerant by a first intermediate header, and heat exchanging in this state. CONSTITUTION:Superheated vapor refrigerant fed to an inlet header 1 is gradually liquefied while passing heat transfer tubes 21 from its outlet hole 10, and fed to a first intermediate header 2. The gas refrigerant having low density is passed through a connecting pipe 13 from the outlet hole, and fed from the inlet hole of a second intermediate header 3. The refrigerant separated to liquid and vapor in the header 2, the liquefied refrigerant is not supplied to the part between the intermediate headers 3 and 4. Accordingly, since it is again cooled in the state of liquefied superheated vapor refrigerant less cooled n heat transfer tubes 22, 23, its cooling efficiency can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はガスヒートポンプの空調
用熱交換器において、冷媒の凝縮性能を向上することに
より、空調用熱交換器のコンパクト化を図り、また低コ
スト化を実現するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is intended to reduce the cost of an air conditioner heat exchanger for a gas heat pump by improving the condensing performance of the refrigerant so as to make the air conditioner heat exchanger compact. is there.

【0002】[0002]

【従来の技術】従来から、カークーラー用のアルミニウ
ム製冷媒凝縮器に関する技術は公知とされているのであ
る。例えば、特公平3−45300号公報に記載の技術
の如くである。
2. Description of the Related Art Conventionally, a technology relating to an aluminum refrigerant condenser for a car cooler has been publicly known. For example, it is like the technique described in Japanese Patent Publication No. 3-45300.

【0003】[0003]

【発明が解決しようとする課題】本発明は、ガスヒート
ポンプの空調用熱交換器において、凝縮液冷媒の分離・
除去による凝縮熱伝達の向上を図ることにより、凝縮性
能を向上させ、空調用熱交換器のコンパクト化と低コス
ト化を図るものである。また、ガスヒートポンプの熱交
換器において、過熱ガス冷媒による伝熱管及びフィンの
温度上昇が、他列へ移行することを防ぎ、空気との温度
差を大きくとることにより、熱交換器の効率を向上し、
空調用熱交換器のコンパクト化と低コスト化を実現せん
とするものである。
DISCLOSURE OF THE INVENTION The present invention relates to a heat exchanger for air conditioning of a gas heat pump for separating and condensing condensed liquid refrigerant.
By improving the condensing heat transfer through removal, the condensing performance is improved, and the air conditioning heat exchanger is made compact and the cost is reduced. In addition, in the heat exchanger of the gas heat pump, the temperature rise of the heat transfer pipes and fins due to the overheated gas refrigerant is prevented from shifting to another row, and the temperature difference with the air is increased to improve the efficiency of the heat exchanger. Then
The aim is to realize a compact and low-cost air conditioning heat exchanger.

【0004】[0004]

【課題を解決するための手段】本発明が解決しようとす
る課題は以上の如くであり、次に該課題を解決するため
の手段を説明する。請求項1においては、冷媒の流入す
る入口ヘッダと、同じく冷媒の流出する出口部との間
に、複数個の中間ヘッダを設け、これらの各ヘッダ間
に、フィン群を通過させるようにして、多数の伝熱管を
連結した空調用熱交換器において、入口側ヘッダに流入
した冷媒を、多数の伝熱管に分岐して一部凝縮させた
後、第1の中間ヘッダにて、気体冷媒と液冷媒に分離
し、気体冷媒と液冷媒とを分離状態で熱交換させるので
ある。
The problems to be solved by the present invention are as described above. Next, the means for solving the problems will be described. In claim 1, a plurality of intermediate headers are provided between the inlet header into which the refrigerant flows and the outlet portion from which the refrigerant flows out, and the fin group is passed between these headers. In an air-conditioning heat exchanger in which a large number of heat transfer tubes are connected, the refrigerant that has flowed into the inlet header is branched into a large number of heat transfer tubes and partially condensed, and then the first intermediate header is used to cool the gas refrigerant and liquid. It is separated into a refrigerant, and the gas refrigerant and the liquid refrigerant are heat-exchanged in a separated state.

【0005】請求項2においては、空調用熱交換器にお
いて、凝縮時の入口側の列と、他の列とのフィン間に間
隙を設けたものである。
According to a second aspect of the present invention, in the heat exchanger for air conditioning, a gap is provided between the fins on the inlet side at the time of condensation and other fins.

【0006】[0006]

【作用】次に作用を説明する。請求項1によれば、冷媒
の流入する入口ヘッダと、同じく冷媒の流出する出口部
との間に、複数個の中間ヘッダを設け、これらの各ヘッ
ダ間に、フィン群を通過させるようにして、多数の伝熱
管を連結した空調用熱交換器において、入口側ヘッダに
流入した冷媒を、多数の伝熱管に分岐して一部凝縮させ
た後、第1の中間ヘッダにて、気体冷媒と液冷媒に分離
し、気体冷媒と液冷媒とを分離状態で熱交換させる構成
としたので、液化した冷媒の一部が、伝熱管の内部の周
囲に付着し、伝熱管内における過熱蒸気冷媒の冷却を邪
魔するということがなくなり、最低の本数の伝熱管によ
り、最高効率の冷媒冷却を行うことが可能となった。
Next, the operation will be described. According to claim 1, a plurality of intermediate headers are provided between the inlet header into which the refrigerant flows and the outlet portion from which the refrigerant flows out, and the fin group is passed between these headers. In a heat exchanger for air conditioning in which a large number of heat transfer tubes are connected, the refrigerant that has flowed into the inlet-side header is branched into a large number of heat transfer tubes and partially condensed, and then, in the first intermediate header, as a gaseous refrigerant. Separated into liquid refrigerant, because it was configured to heat exchange the gas refrigerant and liquid refrigerant in a separated state, part of the liquefied refrigerant adheres to the inside of the heat transfer tube, the superheated vapor refrigerant in the heat transfer tube. There is no obstruction to cooling, and it has become possible to perform the most efficient cooling of refrigerant with the minimum number of heat transfer tubes.

【0007】請求項2によれば、空調用熱交換器におい
て、凝縮時の入口側の列と、他の列とのフィン間に間隙
を設けたので、フィン群27とフィン群26との間に
は、空隙を設けることによって、フィン群26の温度は
フィン群27より高くなる。即ち、空気との温度差は大
きくなる。これによって、空調用熱交換器の効率を向上
させることが出来た。
According to the second aspect of the present invention, in the air-conditioning heat exchanger, a gap is provided between the fins on the inlet side at the time of condensation and the fins on the other side. The temperature of the fin group 26 becomes higher than that of the fin group 27 by providing the space. That is, the temperature difference from the air becomes large. As a result, the efficiency of the heat exchanger for air conditioning could be improved.

【0008】[0008]

【実施例】次に実施例を説明する。図1は本発明の空調
用熱交換器の全体を示す俯瞰図、図2は同じく本発明の
空調用熱交換器を示す正面図、図3は伝熱管21の部分
を取り外した状態の正面図、図4は空調用熱交換器の全
体平面図、図5は本発明の空調用熱交換器の入口ヘッダ
1と中間ヘッダ2の部分の正面図、図6は中間ヘッダ3
・5・7・9の部分の正面図、図7は中間ヘッダ4・6
・8の部分の正面図、図8は入口ヘッダ1と中間ヘッダ
2と中間ヘッダ3・5・7・9と中間ヘッダ4・6・8
の部分の側面図、図9はU字型接続管24・25の部分
の側面図、図10は伝熱管の部分の断面図、図11は、
U字型接続管24・25と入口ヘッダ1と中間ヘッダ4
・6・8と接続パイプ13の部分の平面図、図12は、
凝縮時の入口側の列と、他の列とのフィン間に間隙を設
けた実施例を示す平面図である。
EXAMPLES Next, examples will be described. 1 is a bird's-eye view showing the entire heat exchanger for air conditioning of the present invention, FIG. 2 is a front view showing the heat exchanger for air conditioning of the present invention, and FIG. 3 is a front view showing a state in which a heat transfer tube 21 is removed. 4, FIG. 4 is an overall plan view of the air conditioning heat exchanger, FIG. 5 is a front view of an inlet header 1 and an intermediate header 2 of the air conditioning heat exchanger of the present invention, and FIG. 6 is an intermediate header 3.
・ Front view of 5 ・ 7 ・ 9 part, Fig. 7 shows intermediate headers 4 ・ 6
8 is a front view of the portion 8 and FIG. 8 shows an inlet header 1, an intermediate header 2, an intermediate header 3, 5, 7, 9 and an intermediate header 4, 6, 8.
9 is a side view of the U-shaped connecting pipes 24 and 25, FIG. 10 is a cross-sectional view of the heat transfer pipe portion, and FIG.
U-shaped connecting pipes 24 and 25, inlet header 1 and intermediate header 4
・ A plan view of 6.8 and the portion of the connecting pipe 13, FIG.
It is a plan view showing an embodiment in which a gap is provided between the fins on the inlet side and the other rows at the time of condensation.

【0009】図1・図2・図3・図4において、ガスヒ
ートポンプの空調用熱交換器部分において、フィン群A
と、伝熱管とヘッダが開示されている。冷房機として使
用する場合には、入口ヘッダ1から過熱蒸気冷媒が供給
されて、該過熱蒸気冷却がフィン群A内の伝熱管を通過
する間に、冷却されて、出口孔20cから出て行くので
ある。この場合において、冷却ファンFの吸引による冷
却風が、フィン群Aを通過する間に、伝熱管を冷却し
て、伝熱管の内部を通過する過熱蒸気冷媒を液化するの
である。
1, FIG. 2, FIG. 3, and FIG. 4, in the heat exchanger portion for air conditioning of the gas heat pump, the fin group A
, A heat transfer tube and a header are disclosed. When used as an air conditioner, the superheated steam refrigerant is supplied from the inlet header 1 and is cooled while the superheated steam cooling passes through the heat transfer tubes in the fin group A and goes out from the outlet hole 20c. Of. In this case, the cooling air drawn by the cooling fan F cools the heat transfer tube while passing through the fin group A, and liquefies the superheated vapor refrigerant passing inside the heat transfer tube.

【0010】しかし、その伝熱管の外面が冷却される
と、伝熱管の内壁周面前端に露化した液滴が付着するの
で、該液滴の付着した管の周縁は、冷却効率が低下する
のである。故に、露化した液滴と、過熱蒸気冷媒は別に
分離する方が、凝縮熱伝達効率を向上することができ、
また凝縮器をコンパクトに構成することが出来るのであ
る。
However, when the outer surface of the heat transfer tube is cooled, the exposed droplets adhere to the front end of the peripheral surface of the inner wall of the heat transfer tube, so that the cooling efficiency of the peripheral edge of the tube to which the droplets adhere is reduced. Of. Therefore, it is possible to improve the condensation heat transfer efficiency by separating the exposed droplets and the superheated vapor refrigerant separately,
Also, the condenser can be made compact.

【0011】この為に本発明は、冷房機として使用する
凝縮時において、入口ヘッダ1に流入した冷媒を、入口
ヘッダ1から多数本の伝熱管21に分岐し、一部を凝縮
させた後に、液冷媒・ガス冷媒を中間ヘッダ2で分離
し、ガス冷媒は2列目前段のヘッダーに流入し、液冷媒
は2列目前段ヘッダーもしくは、前段以降のヘッダーに
流入する。しかも2列目前段から後段へ行くにつれて、
ヘッダー間に連結される伝熱管の本数を順次少なくして
いる。
Therefore, according to the present invention, at the time of condensation used as an air conditioner, the refrigerant flowing into the inlet header 1 is branched from the inlet header 1 into a large number of heat transfer tubes 21 and a part thereof is condensed, The liquid refrigerant and the gas refrigerant are separated by the intermediate header 2, the gas refrigerant flows into the header in the second row front stage, and the liquid refrigerant flows into the second row header or the headers after the second row. Moreover, as you go from the first row to the second row of the second row,
The number of heat transfer tubes connected between the headers is gradually decreasing.

【0012】図面において、1は凝縮時に過熱蒸気冷媒
が流入する入口ヘッダ、2〜9は凝縮過程の各段階毎に
配置される多数の中間ヘッダを示している。入口ヘッダ
1には流入した冷媒を14方向に分岐させる為の14ヶ
の出口孔10が穿設されている。第1の中間ヘッダ2
は、入口ヘッダ1の側方において平行に配置され、入口
ヘッダ1の出口孔10に対応して14ヶの入口孔10a
及びヘッダの上端及び下端に出口孔11及び出口孔12
を形成している。
In the drawings, reference numeral 1 denotes an inlet header into which superheated vapor refrigerant flows at the time of condensation, and 2 to 9 denote a plurality of intermediate headers arranged at each stage of the condensation process. The inlet header 1 is provided with 14 outlet holes 10 for branching the inflowing refrigerant in 14 directions. First intermediate header 2
Are arranged parallel to each other on the side of the inlet header 1, and 14 inlet holes 10a corresponding to the outlet holes 10 of the inlet header 1 are provided.
And outlet holes 11 and 12 at the upper and lower ends of the header
Is formed.

【0013】第2の中間ヘッダ3は中間ヘッダ2の側方
に平行に配置され、中間ヘッダ2からの接続パイプ13
の出口孔11に対応する入口孔11aが開口されてい
る。また、7ヶの出口孔15が形成されている。また中
間ヘッダ2の出口孔11と、中間ヘッダ3の入口孔11
aとは、接続パイプ13で連結されている。第3の中間
ヘッダ4は中間ヘッダ3の側方に平行に配置され、第2
の中間ヘッダ3の出口孔15に対応して、7ヶの入口孔
15aと、それより一つ少ない6ヶの出口孔16を形成
し、さらにヘッダ下部側面に入口孔12aを形成してい
る。この入口孔12aと、第1の中間ヘッダ2の出口孔
12とは、接続パイプ14で連結されている。
The second intermediate header 3 is arranged parallel to the side of the intermediate header 2 and has a connecting pipe 13 extending from the intermediate header 2.
An inlet hole 11a corresponding to the outlet hole 11 is opened. Further, seven outlet holes 15 are formed. Further, the outlet hole 11 of the intermediate header 2 and the inlet hole 11 of the intermediate header 3
It is connected to a by a connection pipe 13. The third intermediate header 4 is arranged parallel to the side of the intermediate header 3 and
Corresponding to the exit holes 15 of the intermediate header 3, seven entrance holes 15a and six exit holes 16 which are one fewer than the entrance holes 15a are formed, and further an entrance hole 12a is formed on the lower side surface of the header. The inlet hole 12 a and the outlet hole 12 of the first intermediate header 2 are connected by a connection pipe 14.

【0014】第4の中間ヘッダ5は、中間ヘッダ3の直
下に配置され、中間ヘッダ4の出口孔16に対応する6
ヶの入口孔16aと、それより、1つ少ない5ヶの出口
孔17から形成されている。第5の中間ヘッダ6は、中
間ヘッダ4の直下に配置され、中間ヘッダ5の出口孔1
7に対応する5ヶの入口孔17aとそれより、一つ少な
い4ヶの出口孔18から形成されている。第6の中間ヘ
ッダ7は、中間ヘッダ5の直下に配置され、中間ヘッダ
6の出口孔18に対応する4ヶの入口孔18aと、それ
より1つ少ない3ヶの出口孔19から形成されている。
The fourth intermediate header 5 is arranged immediately below the intermediate header 3 and corresponds to the outlet hole 16 of the intermediate header 6.
It is formed of five inlet holes 16a and five outlet holes 17 which are one less than that. The fifth intermediate header 6 is arranged immediately below the intermediate header 4, and the outlet hole 1 of the intermediate header 5 is provided.
It is formed from five inlet holes 17a corresponding to No. 7 and four outlet holes 18 which are one less than that. The sixth intermediate header 7 is arranged immediately below the intermediate header 5 and is formed of four inlet holes 18a corresponding to the outlet holes 18 of the intermediate header 6 and three outlet holes 19 that are one less than that. There is.

【0015】第7の中間ヘッダ8は中間ヘッダ6の直下
に配置され、中間ヘッダ7の出口孔19に対応する3ヶ
の入口孔19aを形成し、同じく3ヶの出口孔20を形
成している。第8の中間ヘッダ9は中間ヘッダ7の直下
に配置され、中間ヘッダ8の出口孔20に対応する3ヶ
の入口孔20aを形成すると共に、中間ヘッダ9のヘッ
ダ下端に1ヶの出口孔20cを形成する。
The seventh intermediate header 8 is arranged immediately below the intermediate header 6 and has three inlet holes 19a corresponding to the outlet holes 19 of the intermediate header 7 and also three outlet holes 20. There is. The eighth intermediate header 9 is arranged immediately below the intermediate header 7 and has three inlet holes 20a corresponding to the outlet holes 20 of the intermediate header 8 and one outlet hole 20c at the lower end of the header of the intermediate header 9. To form.

【0016】図示する如く、伝熱管21は互いに縦方向
に平行な2本の直線部の一端側をU字型接続管24で接
続して、第1の中間ヘッダ2に接続されている。伝熱管
22の残りの端部は中間ヘッダ3・5・7・9に、また
伝熱管23の残りの端部は中間ヘッダ4・6・8に接続
している。これら伝熱管21・22・23の直線部間
に、多数のフィン群が配置されている。
As shown in the figure, the heat transfer tube 21 is connected to the first intermediate header 2 by connecting one end sides of two linear portions parallel to each other in the longitudinal direction with a U-shaped connecting tube 24. The remaining ends of the heat transfer tubes 22 are connected to the intermediate headers 3, 5, 7, and 9, and the remaining ends of the heat transfer tubes 23 are connected to the intermediate headers 4, 6, and 8. A large number of fin groups are arranged between the straight portions of the heat transfer tubes 21, 22, 23.

【0017】上記構成において、入口ヘッダ1に流入し
た過熱蒸気冷媒は、その14ヶの出口孔10から、それ
ぞれ14本の伝熱管21を通過しながら、徐々に液化さ
れる。これと共に、伝熱管21の出口側より、第1の中
間ヘッダ2に入る。ここで密度の低い気体冷媒は、ヘッ
ダ上端部の出口孔11より、接続パイプ13を通過し、
第2の中間ヘッダ3の入口孔11aより流入する。
In the above structure, the superheated steam refrigerant flowing into the inlet header 1 is gradually liquefied from the 14 outlet holes 10 thereof while passing through the 14 heat transfer tubes 21. Together with this, the first intermediate header 2 enters from the outlet side of the heat transfer tube 21. Here, the low-density gas refrigerant passes through the connection pipe 13 from the outlet hole 11 at the upper end of the header,
It flows in through the inlet hole 11a of the second intermediate header 3.

【0018】7ヶの出口孔15から出た冷媒は、それぞ
れ7本の伝熱管22、U字型接続管25、伝熱管23を
通過し、第3の中間ヘッダ4に流入する。また第1の中
間ヘッダ2の密度の高い液化した冷媒は、出口孔12か
ら出て、接続パイプ14を通過して、中間ヘッダ4の下
部側面入口孔12aより流入する。これらの冷媒は、6
ヶの出口孔16から、伝熱管23、U字型接続管25、
伝熱管22を通過し、第4の中間ヘッダ5に入口孔16
aから流入する。以下中間ヘッダ5から、出口孔17を
へて、伝熱管22とU字型接続管25と伝熱管23をへ
て、入口孔17aから中間ヘッダ6にはいる。次に中間
ヘッダ6の出口孔18から、伝熱管23とU字型接続管
25と伝熱管22を経て、中間ヘッダ7の入口孔18a
より、中間ヘッダ7に入る。該中間ヘッダ7から出口孔
19を経て、伝熱管22とU字型接続管25と伝熱管2
3より、入口孔19aより、中間ヘッダ8にはいる。該
中間ヘッダ8から出口孔20を経て伝熱管23とU字型
接続管25と伝熱管22から、中間ヘッダ9の入口孔2
0aに入り、最後に中間ヘッダ9の下方の出口孔20c
から出て行く。
The refrigerant discharged from the seven outlet holes 15 passes through the seven heat transfer tubes 22, the U-shaped connecting tube 25, and the heat transfer tube 23, respectively, and flows into the third intermediate header 4. Further, the highly dense liquefied refrigerant of the first intermediate header 2 exits from the outlet hole 12, passes through the connection pipe 14, and flows in from the lower side surface inlet hole 12 a of the intermediate header 4. These refrigerants are 6
From the outlet holes 16 of the heat transfer pipe 23, the U-shaped connecting pipe 25,
After passing through the heat transfer tube 22, the inlet hole 16 is formed in the fourth intermediate header 5.
Inflow from a. From the intermediate header 5 to the outlet hole 17, the heat transfer pipe 22, the U-shaped connecting pipe 25, and the heat transfer pipe 23 are introduced, and the inlet hole 17a enters the intermediate header 6. Next, from the outlet hole 18 of the intermediate header 6, through the heat transfer pipe 23, the U-shaped connecting pipe 25, and the heat transfer pipe 22, the inlet hole 18a of the intermediate header 7
Then, the intermediate header 7 is entered. From the intermediate header 7 through the outlet hole 19, the heat transfer tube 22, the U-shaped connecting tube 25, and the heat transfer tube 2
3 enters the intermediate header 8 through the inlet hole 19a. The heat transfer pipe 23, the U-shaped connecting pipe 25, and the heat transfer pipe 22 from the intermediate header 8 through the outlet hole 20 to the inlet hole 2 of the intermediate header 9.
0a, and finally the outlet hole 20c below the intermediate header 9
Get out of.

【0019】このように、入口ヘッダ1から伝熱管21
の中を通過する間に、過熱蒸気冷媒が最初に液化した部
分は、中間ヘッダ2の部分において、液と蒸気に分離さ
れるのである。これにより、液化した冷媒が中間ヘッダ
3と中間ヘッダ4の部分には供給されないこととなり、
該部分に伝熱管22・23においては、液化した冷却の
少ない過熱蒸気冷媒の状態で再度冷却することが出来る
ので、冷却効率を向上することが出来るのである。
As described above, the heat transfer tube 21 is introduced from the inlet header 1.
In the portion of the intermediate header 2, the portion where the superheated vapor refrigerant is liquefied first while passing through the inside is separated into liquid and vapor. As a result, the liquefied refrigerant is not supplied to the intermediate header 3 and the intermediate header 4,
Since the heat transfer tubes 22 and 23 can be cooled again in the state of the liquefied superheated vapor refrigerant with less cooling, the cooling efficiency can be improved.

【0020】また、最初の入口ヘッダ1から中間ヘッダ
2までの間に、過熱蒸気冷媒の一部は液化して、過熱蒸
気冷媒は体積を減少するのである。また、中間ヘッダ2
から中間ヘッダ3に至る間においても、過熱蒸気冷媒が
液化した体積を減少し、中間ヘッダ3から中間ヘッダ
4、中間ヘッダ4から中間ヘッダ5、中間ヘッダ5から
中間ヘッダ6、中間ヘッダ6から中間ヘッダ7、中間ヘ
ッダ7から中間ヘッダ8、中間ヘッダ8から最終ヘッダ
9においても、徐々に体積を減少するので、本発明にお
いては、出口孔と入口孔を徐々に減少し、使用する伝熱
管を1本ずつ減少させているのである。
Further, between the first inlet header 1 and the intermediate header 2, part of the superheated vapor refrigerant is liquefied, and the volume of the superheated vapor refrigerant is reduced. Also, the intermediate header 2
From the intermediate header 3 to the intermediate header 3, the volume of the liquefied superheated vapor refrigerant is reduced, and the intermediate header 3 to the intermediate header 4, the intermediate header 4 to the intermediate header 5, the intermediate header 5 to the intermediate header 6, and the intermediate header 6 to the intermediate header 3. Since the volumes of the header 7, the intermediate header 7 to the intermediate header 8 and the intermediate header 8 to the final header 9 are gradually reduced, the outlet holes and the inlet holes are gradually reduced in the present invention, and the heat transfer tube to be used is It is decreasing one by one.

【0021】以上の如く構成したことにより、過熱蒸気
冷媒が減少した下流において、必要以上の伝熱管を使用
することなく、最低限度の伝熱管を使用して、過熱蒸気
冷媒の通過距離を短く構成することが出来るので、フィ
ン群Aと伝熱管を効率の最高の状態で使用することが出
来るのである。これにより、空調用熱交換器をコンパク
トにして、低コストに抑えることが出来るのである。
With the above configuration, the minimum distance of heat transfer pipes is used in the downstream side where the amount of superheated steam refrigerant is reduced, and unnecessary heat transfer pipes are not used. Therefore, the fin group A and the heat transfer tube can be used in the state of the highest efficiency. As a result, the heat exchanger for air conditioning can be made compact and the cost can be kept low.

【0022】次に図12に示す技術について説明する。
凝縮時の冷媒の流れ方向に対して、その流れ方向の前段
から後段に行くにつれて、ヘッダ間に連結される伝熱管
の本数を順次少なくしてある空調用熱交換器において、
その1列目即ち凝縮時の入口側と、他の列とのフィン間
に空隙を設けている。そしてこの際において、空気は3
列目から1列目に向かって流れなければいけない。
Next, the technique shown in FIG. 12 will be described.
With respect to the flow direction of the refrigerant at the time of condensation, in the air conditioner heat exchanger in which the number of heat transfer tubes connected between the headers is gradually reduced from the front stage to the rear stage of the flow direction,
A gap is provided between the fins of the first row, that is, the inlet side at the time of condensation and the other rows. And at this time, the air is 3
You must flow from the first row to the first row.

【0023】従来は、上記の如く、1列目と他列とのフ
ィン間には空隙が設けられていないのである。故に従来
は、熱交換器の後列に直交して流入する空気は、列を経
る毎に、それ自体の温度が上昇し、冷媒との温度差が小
さくなり、効率が低下するのである。本発明において
は、過熱ガス冷媒による伝熱管及びフィンの温度上昇が
他列へ移行することを防ぎ、空気との温度差を大きくと
ることによって、熱交換器の効率を向上させ、この凝縮
性能の向上により、空調用熱交換器のコンパクト化と低
コスト化を実現することが出来るのである。
Conventionally, as described above, no gap is provided between the fins in the first row and the fins in the other row. Therefore, conventionally, the temperature of the air flowing in orthogonal to the rear row of the heat exchanger rises every time it passes through the row, the temperature difference between the air and the refrigerant becomes small, and the efficiency decreases. In the present invention, the temperature rise of the heat transfer tubes and fins due to the superheated gas refrigerant is prevented from shifting to another row, and the temperature difference from the air is increased to improve the efficiency of the heat exchanger and to improve the condensation performance. By making improvements, it is possible to make the heat exchanger for air conditioning compact and reduce its cost.

【0024】冷媒の流れは、伝熱管21の直線部間に配
置されているフィン群26と、伝熱管22・23の直線
部間に配置されているフィン群27との間に、空隙Kが
設けられている。外気は伝熱管23に対して垂直に、フ
ィン群27入口部から流入する。伝熱管23及び22の
内部を流れる冷媒から出る熱は、伝熱管23あるいは2
2を通り、フィン群27に移動する。フィン群27に流
入した空気は、フィン群27より熱を奪い、徐々にそれ
自体の温度が上昇する。
The flow of the refrigerant has a gap K between the fin group 26 disposed between the straight portions of the heat transfer tube 21 and the fin group 27 disposed between the straight portions of the heat transfer tubes 22 and 23. It is provided. The outside air flows in perpendicularly to the heat transfer tube 23 from the inlet of the fin group 27. The heat emitted from the refrigerant flowing inside the heat transfer tubes 23 and 22 is
It passes through 2 and moves to the fin group 27. The air flowing into the fin group 27 takes heat from the fin group 27, and the temperature of itself gradually rises.

【0025】フィン群27を出た空気は、直ぐに、フィ
ン群26に流入する。フィン群26に配置されている伝
熱管21の内部には、伝熱管22・23より、高温の冷
媒が流れている。従ってフィン群27とフィン群26と
の間には、空隙を設けることによって、フィン群26の
温度はフィン群27より高くなる。即ち、空気との温度
差は大きくなる。これによって、空調用熱交換器の効率
が向上する。
The air exiting the fin group 27 immediately flows into the fin group 26. High-temperature refrigerant flows from the heat transfer tubes 22 and 23 inside the heat transfer tube 21 arranged in the fin group 26. Therefore, by providing a gap between the fin group 27 and the fin group 26, the temperature of the fin group 26 becomes higher than that of the fin group 27. That is, the temperature difference from the air becomes large. This improves the efficiency of the air conditioning heat exchanger.

【0026】[0026]

【発明の効果】本発明は以上の如く構成したので、次の
ような効果を奏するのである。請求項1の如く、冷媒の
流入する入口ヘッダと、同じく冷媒の流出する出口部と
の間に、複数個の中間ヘッダを設け、これらの各ヘッダ
間に、フィン群を通過させるようにして、多数の伝熱管
を連結した空調用熱交換器において、入口側ヘッダに流
入した冷媒を、多数の伝熱管に分岐して一部凝縮させた
後、第1の中間ヘッダにて、気体冷媒と液冷媒に分離
し、気体冷媒と液冷媒とを分離状態で熱交換させる構成
としたので、液化した冷媒の一部が、伝熱管の内部の周
囲に付着し、過熱蒸気冷媒の冷却を邪魔するということ
がなくなり、最低の本数の伝熱管により、最高効率の冷
媒冷却を行うことが可能となったのである。
Since the present invention is constructed as described above, it has the following effects. As in claim 1, a plurality of intermediate headers are provided between the inlet header into which the refrigerant flows and the outlet portion from which the refrigerant flows out, and the fin group is passed between these headers. In an air-conditioning heat exchanger in which a large number of heat transfer tubes are connected, the refrigerant that has flowed into the inlet header is branched into a large number of heat transfer tubes and partially condensed, and then the first intermediate header is used to cool the gas refrigerant and liquid. Since it is configured to separate into a refrigerant and exchange heat between the gas refrigerant and the liquid refrigerant in a separated state, a part of the liquefied refrigerant adheres to the inside of the heat transfer tube and hinders the cooling of the superheated vapor refrigerant. It became possible to cool the refrigerant with the highest efficiency by using the minimum number of heat transfer tubes.

【0027】請求項2の如く、空調用熱交換器におい
て、凝縮時の入口側の列と、他の列とのフィン間に間隙
を設けたので、フィン群27とフィン群26との間に
は、空隙を設けることによって、フィン群26の温度は
フィン群27より高くなる。即ち、空気との温度差は大
きくなる。これによって、空調用熱交換器の効率を向上
させることが出来たのである。
In the heat exchanger for air conditioning according to the second aspect, since a gap is provided between the fins on the inlet side at the time of condensation and the other lines, the fin group 27 and the fin group 26 are provided. The temperature of the fin group 26 becomes higher than that of the fin group 27 by providing the voids. That is, the temperature difference from the air becomes large. As a result, the efficiency of the heat exchanger for air conditioning could be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の空調用熱交換器の全体を示す俯瞰図。FIG. 1 is an overhead view showing the entire heat exchanger for air conditioning of the present invention.

【図2】同じく本発明の空調用熱交換器を示す正面図。FIG. 2 is a front view showing an air conditioning heat exchanger of the present invention.

【図3】伝熱管21の部分を取り外した状態の正面図。FIG. 3 is a front view of a state in which a heat transfer tube 21 is removed.

【図4】空調用熱交換器の全体平面図。FIG. 4 is an overall plan view of a heat exchanger for air conditioning.

【図5】本発明の空調用熱交換器の入口ヘッダ1と中間
ヘッダ2の部分の正面図。
FIG. 5 is a front view of the inlet header 1 and the intermediate header 2 of the air conditioning heat exchanger of the present invention.

【図6】中間ヘッダ3・5・7・9の部分の正面図。FIG. 6 is a front view of a portion of intermediate headers 3, 5, 7, and 9.

【図7】中間ヘッダ4・6・8の部分の正面図。FIG. 7 is a front view of a portion of an intermediate header 4.6.8.

【図8】入口ヘッダ1と中間ヘッダ2と中間ヘッダ3・
5・7・9と中間ヘッダ4・6・8の部分の側面図。
FIG. 8: Entrance header 1, intermediate header 2, intermediate header 3
The side view of the part of 5.7.9 and the intermediate header 4.6.8.

【図9】U字型接続管24・25の部分の側面図。FIG. 9 is a side view of a portion of U-shaped connecting pipes 24 and 25.

【図10】伝熱管の部分の断面図。FIG. 10 is a sectional view of a portion of the heat transfer tube.

【図11】U字型接続管24・25と入口ヘッダ1と中
間ヘッダ4・6・8と接続パイプ13の部分の平面図。
FIG. 11 is a plan view of U-shaped connecting pipes 24 and 25, an inlet header 1, an intermediate header 4.6.8 and a connecting pipe 13.

【図12】凝縮時の入口側の列と、他の列とのフィン間
に間隙を設けた実施例を示す平面図。
FIG. 12 is a plan view showing an example in which a gap is provided between the fins on the inlet side at the time of condensation and the other lines.

【符号の説明】[Explanation of symbols]

A フィン群 1 入口ヘッダ 2 第1の中間ヘッダ 3 第2の中間ヘッダ 13 接続パイプ 14 接続パイプ 24 U字型接続管 26,27 フィン群 A fin group 1 inlet header 2 first intermediate header 3 second intermediate header 13 connection pipe 14 connection pipe 24 U-shaped connection pipe 26, 27 fin group

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 冷媒の流入する入口ヘッダと、同じく冷
媒の流出する出口部との間に、複数個の中間ヘッダを設
け、これらの各ヘッダ間に、フィン群を通過させるよう
にして、多数の伝熱管を連結した空調用熱交換器におい
て、入口側ヘッダに流入した冷媒を、多数の伝熱管に分
岐して一部凝縮させた後、第1の中間ヘッダにて、気体
冷媒と液冷媒に分離し、気体冷媒と液冷媒とを分離状態
で熱交換させることを特徴とする空調用熱交換器。
1. A plurality of intermediate headers are provided between an inlet header into which a refrigerant flows and an outlet portion from which a refrigerant also flows, and a plurality of fins are passed between these headers so that a large number of fin headers are provided. In the air conditioning heat exchanger in which the heat transfer tubes are connected, the refrigerant flowing into the inlet side header is branched into a large number of heat transfer tubes and partially condensed, and then the first intermediate header is used to cool the gas refrigerant and the liquid refrigerant. A heat exchanger for air-conditioning, characterized in that heat is exchanged between the gas refrigerant and the liquid refrigerant in a separated state.
【請求項2】 請求項1記載の空調用熱交換器におい
て、凝縮時の入口側の列と、他の列とのフィン間に間隙
を設けたことを特徴とする空調用熱交換器。
2. The heat exchanger for air conditioning according to claim 1, wherein a gap is provided between the fins on the inlet side at the time of condensation and the other rows.
JP13219094A 1994-06-14 1994-06-14 Air conditioning heat exchanger Pending JPH085198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13219094A JPH085198A (en) 1994-06-14 1994-06-14 Air conditioning heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13219094A JPH085198A (en) 1994-06-14 1994-06-14 Air conditioning heat exchanger

Publications (1)

Publication Number Publication Date
JPH085198A true JPH085198A (en) 1996-01-12

Family

ID=15075508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13219094A Pending JPH085198A (en) 1994-06-14 1994-06-14 Air conditioning heat exchanger

Country Status (1)

Country Link
JP (1) JPH085198A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001082833A (en) * 1999-09-10 2001-03-30 Denso Corp Heat exchanger
WO2016098204A1 (en) * 2014-12-17 2016-06-23 三菱電機株式会社 Heat exchanger and refrigeration cycle device provided with heat exchanger
JP6017047B2 (en) * 2013-08-20 2016-10-26 三菱電機株式会社 Heat exchanger, air conditioner, refrigeration cycle apparatus, and heat exchanger manufacturing method
WO2020095621A1 (en) * 2018-11-07 2020-05-14 ダイキン工業株式会社 Heat exchanger and air conditioner
WO2022145003A1 (en) * 2020-12-28 2022-07-07 三菱電機株式会社 Dehumidifying device
WO2022224416A1 (en) * 2021-04-22 2022-10-27 三菱電機株式会社 Dehumidifying device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001082833A (en) * 1999-09-10 2001-03-30 Denso Corp Heat exchanger
JP6017047B2 (en) * 2013-08-20 2016-10-26 三菱電機株式会社 Heat exchanger, air conditioner, refrigeration cycle apparatus, and heat exchanger manufacturing method
WO2016098204A1 (en) * 2014-12-17 2016-06-23 三菱電機株式会社 Heat exchanger and refrigeration cycle device provided with heat exchanger
WO2020095621A1 (en) * 2018-11-07 2020-05-14 ダイキン工業株式会社 Heat exchanger and air conditioner
JP2020076538A (en) * 2018-11-07 2020-05-21 ダイキン工業株式会社 Heat exchanger and air conditioner
CN112888911A (en) * 2018-11-07 2021-06-01 大金工业株式会社 Heat exchanger and air conditioner
CN112888911B (en) * 2018-11-07 2023-04-28 大金工业株式会社 Heat exchanger and air conditioner
WO2022145003A1 (en) * 2020-12-28 2022-07-07 三菱電機株式会社 Dehumidifying device
WO2022224416A1 (en) * 2021-04-22 2022-10-27 三菱電機株式会社 Dehumidifying device

Similar Documents

Publication Publication Date Title
KR100765557B1 (en) Heat exchanger
US20060054312A1 (en) Evaporator using micro-channel tubes
EP1167910B1 (en) Condenser
JP2000346568A (en) Heat exchanger
JP4178472B2 (en) Heat exchanger and air conditioner
US6431264B2 (en) Heat exchanger with fluid-phase change
JP2001521132A (en) Air-cooled condenser
US20180299205A1 (en) Heat exchanger for residential hvac applications
JP2002139295A (en) Heat exchanger for air conditioning
JPH085198A (en) Air conditioning heat exchanger
JPS6214751B2 (en)
JP4300502B2 (en) Parallel flow type heat exchanger for air conditioning
JP3367235B2 (en) Refrigeration cycle of vehicle air conditioner
JP2002350002A (en) Condenser
KR100243246B1 (en) Heat exchanger of air-conditioner in car
US7650934B2 (en) Heat exchanger
JP5238408B2 (en) Heat exchanger
JPS62131195A (en) Heat exchanger
JPS61191889A (en) Heat exchanger
JP2003222436A (en) Heat exchanger for heat pump type air conditioner
JP2001304720A (en) Heat exchanger
JPH10185359A (en) Finned heat exchanger
JPH0539969A (en) Condenser for refrigerant
EP0442646A2 (en) Multipass evaporator
KR100393564B1 (en) Condenser for air-conditioner