JPH10185359A - Finned heat exchanger - Google Patents

Finned heat exchanger

Info

Publication number
JPH10185359A
JPH10185359A JP9269674A JP26967497A JPH10185359A JP H10185359 A JPH10185359 A JP H10185359A JP 9269674 A JP9269674 A JP 9269674A JP 26967497 A JP26967497 A JP 26967497A JP H10185359 A JPH10185359 A JP H10185359A
Authority
JP
Japan
Prior art keywords
heat transfer
cut
heat exchanger
fin
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9269674A
Other languages
Japanese (ja)
Inventor
Hitoshi Mogi
仁 茂木
Shoichi Yokoyama
昭一 横山
Osamu Aoyanagi
治 青柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9269674A priority Critical patent/JPH10185359A/en
Publication of JPH10185359A publication Critical patent/JPH10185359A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the flow passage area of refrigerant and increase a flow rate to improve heat transfer rate remarkably by a method wherein the path of a heat transfer tube is designed so as to be two paths at the inlet port unit of refrigerant while the specified part of whole of the heat transfer tube is designed so as to be one path near the outlet port of the refrigerant upon condensing operation. SOLUTION: Upon condensing operation in a finned heat exchanger, refrigerant flows into the heat exchanger through two paths of inlet tubes 1, 2, then, is joined near a point 10 after passing through heat transfer tubes 3, 4 while the refrigerant flows through one path at the downstream of a heat transfer tube 5 and flows out through an outlet tube 6. In this case, the part of one path from the heat transfer tube 5 to the outlet tube 6 is provided at the upstream side with respect to the inflow direction A of air while the heat transfer tube of one path near an outlet port is designed so as to occupy 5-30% of total heat transfer tube. On the other hand, the inlet tubes 1, 2 are provided at the downstream side with respect to the inflow direction A of air while the part of one path from the heat transfer tube 5 to the outlet tube 6 is provided at upstream side with respect to the inflow direction A of the air. Further, fins 7 are divided at a dividing place B into fin units 7a, 7b in the direction of upper and lower stages while the outlet tube 6 is provided at the end of the dividing place B.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、空調機あるいは冷
凍機分野に広く用いられるフィン付き熱交換器に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a finned heat exchanger widely used in an air conditioner or a refrigerator.

【0002】[0002]

【従来の技術】従来のフィン付き熱交換器は、図11に
示すように凝縮運転時は入り口管1,2から冷媒は2パ
スで流入し、出口管8,9からそれぞれ2パスで流出さ
せることにより、冷媒の流路面積を大きくし冷媒側の圧
力損失を低減させ、高性能化を図っていた。即ち、冷媒
流通抵抗の増大による熱交換能力の低下を抑制するた
め、冷媒は、実線矢印で示すように伝熱管の内部を入口
から出口まで一貫して2経路で流れながら空気と熱交換
する。
2. Description of the Prior Art In a conventional finned heat exchanger, as shown in FIG. 11, during a condensing operation, refrigerant flows in two passes from inlet pipes 1 and 2 and flows out of outlet pipes 8 and 9 in two passes. Thereby, the flow path area of the refrigerant is increased, the pressure loss on the refrigerant side is reduced, and the performance is improved. That is, in order to suppress a decrease in the heat exchange capacity due to an increase in the refrigerant flow resistance, the refrigerant exchanges heat with the air while flowing through the inside of the heat transfer tube from the inlet to the outlet in two paths as shown by solid arrows.

【0003】[0003]

【発明が解決しようとする課題】熱交換器内部の冷媒の
状態は、凝縮運転時、過熱域,気液二相域,過冷却域の
3つに分類されるが、このうち熱交換に最も寄与するの
は冷媒が凝縮潜熱を有する気液二相域である。また、過
冷却も冷凍サイクルの安定性や冷凍効果の増加という観
点から必要不可欠なものであった。
The state of the refrigerant in the heat exchanger is classified into three during the condensing operation: a superheated region, a gas-liquid two-phase region, and a supercooled region. Contributing is the gas-liquid two-phase region in which the refrigerant has latent heat of condensation. Further, supercooling is also indispensable from the viewpoint of increasing the stability of the refrigeration cycle and the refrigeration effect.

【0004】しかしながら、上記のような図11に示す
2パスの熱交換器では、近年の省エネ推進により熱交換
器内の冷媒の凝縮温度が低下し、熱交換すべき空気との
温度差が非常に小さくなってきたために、過冷却を大き
くとると、熱交換にはほとんど寄与しない過冷却域が熱
交換器内部で大幅に増加し、熱交換器能力が低下すると
いう課題を有していた。
However, in the above-described two-pass heat exchanger shown in FIG. 11, the condensing temperature of the refrigerant in the heat exchanger is reduced due to the recent promotion of energy saving, and the temperature difference with the air to be heat-exchanged is very small. Therefore, when supercooling is increased, the subcooling region that hardly contributes to heat exchange increases significantly inside the heat exchanger, and the heat exchanger capacity is reduced.

【0005】更に、上記従来の図11に示すような冷媒
流路を有するフィン付き熱交換器を凝縮器として用いた
とき、特に空調機あるいは冷凍機の成績係数を向上させ
るため、凝縮温度を低めにし、過冷却度を大きくしよう
とすると、冷媒の過冷却域は熱伝達率が二相域より1桁
程低く、空気との温度差も少ないため、伝熱性能が低
く、伝熱管の内部を冷媒が過冷却状態で流れる長さが大
幅に長くなり、フィン付き熱交換器全体の熱交換能力が
大幅に低下するという課題を有していた。
Further, when the above-mentioned conventional finned heat exchanger having a refrigerant flow path as shown in FIG. 11 is used as a condenser, the condensing temperature is lowered to improve the coefficient of performance of an air conditioner or a refrigerator in particular. In order to increase the degree of supercooling, the supercooling region of the refrigerant has a heat transfer coefficient lower by about an order of magnitude than the two-phase region and has a small temperature difference with air. There has been a problem that the length of the refrigerant flowing in the supercooled state is significantly increased, and the heat exchange capacity of the entire finned heat exchanger is significantly reduced.

【0006】又、従来のフィン付き熱交換器は熱交換能
力を改善するため、図12に示す特開昭63−1833
91号公報のように、フィン面の表裏両側に複数の切り
起こしを設けたものが用いられていた。しかし、その通
風抵抗が大きいため、熱交換能力をあまり低下させず、
通風抵抗を大幅に低減させて、同一空気動力に対して熱
交換能力を向上させた図13に示す特開平2−2177
92号公報のような、フィン面の片側に複数の切り起こ
しをその幅を列方向に隣接する切り起こしの間の距離の
略1/3としたフィン付き熱交換器も用いられている。
A conventional finned heat exchanger is disclosed in Japanese Patent Application Laid-Open No. 63-1833 shown in FIG.
As disclosed in Japanese Patent Publication No. 91, there is used a fin provided with a plurality of cutouts on both sides of the fin surface. However, because of its large ventilation resistance, the heat exchange capacity does not decrease much,
JP-A-2-2177 shown in FIG. 13 in which the ventilation resistance is greatly reduced and the heat exchange capacity for the same pneumatic power is improved.
No. 92, a finned heat exchanger having a plurality of cut-and-raised portions on one side of the fin surface, the width of which is approximately 1/3 of the distance between adjacent cut-and-raised portions in the column direction, is also used.

【0007】すなわち、図13に示すように、フィン1
1に一定間隔でバーリングされたフィンカラー12に伝
熱管13が挿入されており、矢印A方向に空気が流入す
る。
That is, as shown in FIG.
The heat transfer tubes 13 are inserted into the fin collars 12 burred at regular intervals, and air flows in the direction of arrow A.

【0008】フィン11は、段方向に隣接する2つの伝
熱管13の間にフィン面の片側に3列の切り起こし片1
つの14a、2つの14b、3つの14cからなる切り
起こし群を有する。3列の切り起こし片の列方向の幅W
fは、フィンベース部の列方向の幅Wbの略1/3にな
るよう形成されている。
The fins 11 are arranged in three rows between two adjacent heat transfer tubes 13 on one side of the fin surface.
14a, two 14b, and three 14c. The width W in the column direction of the cut-and-raised pieces in three rows
f is formed to be approximately 1/3 of the width Wb of the fin base in the column direction.

【0009】また、上記従来の図13に示すようなフィ
ンを有するフィン付き熱交換器では、伝熱管を複数列用
い、さらに列方向に隣接するそれぞれの伝熱管の内部を
流れる冷媒の温度差があるとき、例えば少なくともどち
らか一方の伝熱管の内部を流れる冷媒が過冷却液あるい
は過熱ガスの状態であるとき、それぞれの伝熱管の内部
を流れる冷媒間で、広い平面積を有しているフィンベー
スを通して熱伝導により熱交換する。このため、図13
のフィンを2列で用いても、熱交換能力の効果的な向上
はあまりないという課題を有していた。
In the conventional finned heat exchanger having fins as shown in FIG. 13, a plurality of rows of heat transfer tubes are used, and the temperature difference between the refrigerant flowing inside each adjacent heat transfer tube in the row direction is reduced. At one time, for example, when the refrigerant flowing inside at least one of the heat transfer tubes is in a supercooled liquid or superheated gas state, a fin having a large flat area between the refrigerant flowing inside each heat transfer tube is provided. Heat is exchanged by heat conduction through the base. Therefore, FIG.
There is a problem that even if the fins are used in two rows, the heat exchange capacity is not effectively improved.

【0010】そこで、本発明は、上記の従来の課題を解
決するために、過冷却を大きくとりながらも、熱交換能
力にほとんど寄与しない過冷却域を減少させ、熱交換能
力に寄与する気液二相域を増加させることにより、熱交
換能力を大きく向上させたフィン付き熱交換器を提供す
ることを目的とするものである。本発明は、又、凝縮温
度を低くし、過冷却度を大きくしても熱交換能力を下げ
ず、また複数列で用いても列方向に隣接するそれぞれの
伝熱管の内部を流れる冷媒間で、フィンベースを通して
熱伝導するのを抑制し、複数列での熱交換能力を効果的
に向上させるフィン付き熱交換器を提供することを目的
とする。
[0010] In order to solve the above-mentioned conventional problems, the present invention reduces the supercooling region which hardly contributes to the heat exchange capacity while taking a large amount of supercooling, so that the gas-liquid contributing to the heat exchange capacity is reduced. It is an object of the present invention to provide a finned heat exchanger in which the heat exchange capacity is greatly improved by increasing the two-phase region. The present invention also reduces the condensation temperature, does not reduce the heat exchange capacity even if the degree of subcooling is increased, and also allows the refrigerant flowing between the adjacent heat transfer tubes in the row direction to be used in a plurality of rows. It is an object of the present invention to provide a finned heat exchanger that suppresses heat conduction through a fin base and effectively improves heat exchange capacity in a plurality of rows.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に本発明のフィン付き熱交換器は、伝熱管のパスが凝縮
運転時の冷媒入り口部分が2パスで、出口近傍を1パス
としたものである。
In order to solve the above-mentioned problems, in the heat exchanger with fins of the present invention, the path of the heat transfer tube has two paths at the inlet of the refrigerant during the condensation operation and one path near the outlet. Things.

【0012】伝熱管のパスが凝縮運転時の冷媒入り口部
分が2パスで、出口近傍で1パスとすることにより、空
気により冷却されて過冷却状態となった液冷媒が、2パ
スから1パスになることにより、冷媒の流路面積が減少
し、そのため増速され熱伝達率が大きく向上する。その
結果、同一過冷却度において、熱交換にほとんど寄与し
ない過冷却域が減少し、熱交換能力に寄与する気液二相
域を増加させることができる。
When the path of the heat transfer tube is two paths at the inlet of the refrigerant during the condensing operation and one path near the outlet, the supercooled liquid refrigerant cooled by air can be changed from two paths to one path. As a result, the flow path area of the refrigerant is reduced, so that the speed is increased and the heat transfer coefficient is greatly improved. As a result, at the same degree of subcooling, the subcooling region that hardly contributes to heat exchange decreases, and the gas-liquid two-phase region that contributes to heat exchange capability can be increased.

【0013】また本発明は、1パスの部分を空気の流入
方向に対し、上流側に設けることにより、凝縮運転時過
冷却がとれて最も低温となった部分が、空気の流入方向
に対し上流側に配置されることになり、パスを対向流的
に構成したことで、冷媒の温度勾配が大きくなり、その
効果が大きく向上する。
Further, according to the present invention, by providing the one-pass portion on the upstream side with respect to the air inflow direction, the portion having the lowest temperature due to the supercooling during the condensing operation is located upstream in the air inflow direction. As a result, the temperature gradient of the refrigerant increases, and the effect is greatly improved.

【0014】また本発明は、凝縮運転時、冷媒の熱交換
器入り口となる2本の伝熱管を空気の流入方向に対し下
流側に設けることにより、凝縮運転時最も高温となる過
熱状態の冷媒を、空気の流入方向に対し下流側に配置す
ることになり、パスを対向流的に構成したことで、冷媒
の温度勾配が大きくなりその効果が大きく向上する。
The present invention also provides a superheated refrigerant which has the highest temperature during the condensing operation by providing two heat transfer tubes which are inlets of the refrigerant heat exchanger in the condensing operation on the downstream side in the air inflow direction. Is arranged downstream with respect to the air inflow direction, and the path is configured to be counter-current, so that the temperature gradient of the refrigerant is increased and the effect is greatly improved.

【0015】また本発明は、凝縮運転時、冷媒の熱交換
器入り口となる2本の伝熱管を空気の流入方向に対し下
流側に設け、出口1パス部分を入り口部分と隣接してそ
の上流側に設けることにより、冷媒の温度の最も高い所
と低い所を隣接して配置することにより、パスを対向流
的に構成したことで、冷媒の温度勾配が大きくなりその
効果が大きく向上する。
Further, according to the present invention, in the condensing operation, two heat transfer tubes serving as the inlet of the heat exchanger for the refrigerant are provided on the downstream side in the inflow direction of the air, and the outlet 1 path portion is adjacent to the inlet portion and upstream thereof. By providing the path on the side, the place where the temperature of the refrigerant is the highest and the place where the temperature of the refrigerant is low are disposed adjacent to each other.

【0016】また本発明は、フィンが上下段方向に略2
分割以上され、出口1パス部の最終出口の伝熱管を、前
記フィンの分割部の端部に設けることにより、熱交換器
内部で最も温度の低い出口管と、段方向に隣接する高温
の伝熱管をフィンを分割して分離することにより、両伝
熱管のフィンを通した熱伝導による熱交換を防止し、熱
交換器内部での損失を低減できる。
Further, according to the present invention, the fins are substantially
By providing a heat transfer tube at the end of the split portion of the fin at the end of the divided portion of the fin, a heat transfer tube at the lowest temperature inside the heat exchanger and a hot transfer tube adjacent in the step direction are provided. By dividing the heat tubes by dividing the fins, heat exchange due to heat conduction through the fins of both heat transfer tubes can be prevented, and loss inside the heat exchanger can be reduced.

【0017】更に、段方向に隣接する伝熱管の間のフィ
ンの表面の片側に主たる複数の切り起こしを設け、切り
起こしの列方向の幅を列方向に隣接する互いの切り起こ
しの間の距離の略1/3〜1/2にし、フィンを段の間
で少なくとも一箇所で分割し、伝熱管を連通して内部に
冷媒が通過する構成にし、凝縮器として使用するとき、
伝熱管の全本数の5%〜30%の割合の冷媒の最終出口
を含む出口寄りの伝熱管を冷媒流路数1で構成し、他の
伝熱管の冷媒流路数を2で構成し、冷媒流路数を1で構
成した冷媒の最終出口を含む出口寄りの伝熱管を空気の
最も風上の列に配置し、冷媒の最終出口の伝熱管をフィ
ンのいずれかの段間分割個所の端部の段に配置し、冷媒
の入口の2本の伝熱管を、冷媒流路数を1で構成した冷
媒の最終出口を含む出口寄りの伝熱管の空気の風下ある
いは風下近傍の段の最も風下の列に配置し、少なくとも
冷媒が過冷却液あるいは過熱ガスの状態で内部を通過す
る伝熱管及びその伝熱管と列方向に隣接する伝熱管の間
の中央部近傍のフィンの表面に断熱手段を設けたもの
で、この構成によれば、過冷却液状態の冷媒が内部を流
れる伝熱管の冷媒流路数を1とするので、凝縮温度を低
くし、過冷却度を大きくしても、冷媒流通抵抗をあまり
上げずに、熱伝達率を大幅に向上させることができ、段
間分割個所の端部の段に配置した冷媒の最終出口の伝熱
管から段方向に隣接する伝熱管へのフィンを通した熱伝
導による熱交換を半減させることができ、内部を過冷却
液状態の冷媒が流れる冷媒流路数を1とした伝熱管を最
も風上に配置し、その風下あるいは風下近傍の段の最も
下流の列に、内部を過熱ガス状態の冷媒が流れる冷媒入
口の2本の伝熱管を配置したので、対向流的な効果によ
り熱交換能力を向上させることができ、列方向に隣接す
る伝熱管の間の中央部近傍のフィン部に設けた断熱手段
により、それぞれの伝熱管の内部を流れる冷媒間で、フ
ィンベースを通して熱伝導するのを抑制し、複数列での
熱交換能力を向上させることができる。
Further, a plurality of main cut-and-raised portions are provided on one side of the surface of the fin between the heat transfer tubes adjacent in the stepwise direction, and the width of the cut-and-raised columns in the column direction is set to the distance between the adjacent cut-and-raised portions in the column direction. When the fin is divided at least at one position between the stages, the heat transfer tubes are connected to allow the refrigerant to pass therethrough, and when used as a condenser,
The heat transfer tubes near the outlet including the final outlet of the refrigerant having a ratio of 5% to 30% of the total number of the heat transfer tubes are configured with one refrigerant flow channel, and the refrigerant flow channels of the other heat transfer tubes are configured with two, The heat transfer tubes near the outlet including the final outlet of the refrigerant having the refrigerant flow path number of 1 are arranged in the most upwind row of the air, and the heat transfer tubes at the final outlet of the refrigerant are arranged at any of the fins at the inter-stage division points. The two heat transfer tubes at the inlet of the refrigerant are arranged at the end stages, and the two heat transfer tubes at the inlet and downstream of the heat transfer tubes near the outlet including the final outlet of the refrigerant having the number of refrigerant flow paths of one are the most downstream. Insulation means are provided on the fin surface near the center between the heat transfer tubes and the heat transfer tubes adjacent to the heat transfer tubes arranged in the row in the leeward direction, at least in the state of supercooled liquid or superheated gas. According to this configuration, the refrigerant in the super-cooled liquid state flows through the heat transfer tube through the refrigerant passage. Since the number is set to 1, even if the condensing temperature is lowered and the degree of supercooling is increased, the heat transfer coefficient can be greatly improved without increasing the flow resistance of the refrigerant so much. The heat exchange by heat conduction through the fins from the heat transfer tube at the final exit of the refrigerant arranged in the stage to the heat transfer tube adjacent in the stage direction can be halved, and the refrigerant flow in which the refrigerant in the supercooled liquid state flows inside A heat transfer tube with the number of paths being 1 is arranged at the most upwind side, and two heat transfer tubes at a refrigerant inlet through which a refrigerant in a superheated gas state flows are arranged in the most downstream row of the leeward or downstream stage. Therefore, the heat exchange capacity can be improved by the counterflow effect, and the refrigerant flowing inside each heat transfer tube is provided by the heat insulating means provided at the fin portion near the center between the heat transfer tubes adjacent in the row direction. Between the fin bases And, it is possible to improve the heat exchange capacity in a plurality of rows.

【0018】又、少なくとも冷媒が過冷却液あるいは過
熱ガスの状態で内部を通過する伝熱管及びその伝熱管と
列方向に隣接する伝熱管の間の中央部近傍のフィンの表
面に設ける断熱手段として、段方向に長い切断部を設け
たもので、この構成によれば、列方向に隣接する伝熱管
の内部を流れる冷媒間で、フィンベースを通して熱伝導
するのを抑制することができると共に、切断部の温度境
界層前縁効果により伝熱性能を向上させることができ
る。
Further, as heat insulating means provided at least on the surface of the fin near the center between the heat transfer tube and the heat transfer tube adjacent to the heat transfer tube in the row direction, the heat transfer tube passing at least in the state where the refrigerant is a supercooled liquid or a superheated gas. According to this configuration, it is possible to suppress heat conduction through the fin base between the refrigerant flowing inside the heat transfer tubes adjacent to each other in the row direction, and to perform cutting. The heat transfer performance can be improved by the temperature boundary layer leading edge effect of the portion.

【0019】更に、その切断部の段方向の長さを、伝熱
管の直径以上で段ピッチの略6倍以下としたもので、こ
の構成によれば、列方向に隣接する伝熱管の内部を流れ
る冷媒間で、フィンベースを通して熱伝導するのを有効
に抑制することができる。
Further, the length of the cut portion in the step direction is set to be not less than the diameter of the heat transfer tube and not more than about six times the step pitch. According to this configuration, the inside of the heat transfer tube adjacent in the row direction is formed. Heat conduction through the fin base between the flowing refrigerants can be effectively suppressed.

【0020】又、その切断部の端部を、冷媒の最終出口
の伝熱管を配置したフィンのいずれかの段間分割個所の
端部近傍に設けたもので、この構成によれば、最も温度
の低い冷媒の最終出口の伝熱管及びそれに列方向に隣接
する伝熱管の間に切断部が必ず存在するので、フィンベ
ースを通した熱伝導を最も有効に抑制することができ
る。
Further, the end of the cut portion is provided in the vicinity of the end of one of the fins on which the heat transfer tubes at the final outlet of the refrigerant are disposed, and the heat transfer tubes are arranged at the most temperature. Since there is always a cut portion between the heat transfer tube at the final outlet of the refrigerant having a low temperature and the heat transfer tube adjacent to the heat transfer tube in the row direction, heat conduction through the fin base can be suppressed most effectively.

【0021】切断部を、非切断部を経て段方向に複数連
続させた構成によれば、切断部の温度境界層前縁効果に
より伝熱性能をさらに向上させることができる。
According to the configuration in which a plurality of cut portions are continuously formed in the stepwise direction via the non-cut portions, the heat transfer performance can be further improved by the temperature boundary layer leading edge effect of the cut portions.

【0022】切断部を、非切断部を経て段方向に全段連
続させた構成によれば、切断部の温度境界層前縁効果に
より伝熱性能をさらに向上させることができる。
According to the configuration in which the cut portions are continuously connected in the step direction through the non-cut portions, the heat transfer performance can be further improved by the temperature boundary layer leading edge effect of the cut portions.

【0023】その非切断部の長さを伝熱管の直径の略1
/2以下とした構成によれば、非切断部を通して列方向
に隣接する伝熱管の内部を流れる冷媒間で熱伝導し、熱
交換能力が低下するのを抑制することができる。
The length of the non-cut portion is set to about 1 of the diameter of the heat transfer tube.
According to the configuration of / 2 or less, heat is conducted between the refrigerant flowing inside the heat transfer tubes adjacent to each other in the row direction through the non-cut portions, and it is possible to suppress a decrease in heat exchange capacity.

【0024】切断部の段方向の長さ及び非切断部の長さ
をそれぞれ主として一定にし、フィン付き熱交換器の段
方向の全長を切断部の段方向の長さ及び非切断部の長さ
の和で除したとき、整数で割り切れず余数が生じる場合
には、その余数に相当する長さだけ一箇所の切断部の段
方向の長さを長くした構成によれば、一定長さの切断部
の金型を繰り返し使ってフィンを加工する場合も、一箇
所だけ段方向に余数に相当する長さだけずらして2度打
ちして非切断部をなくし他より長い切断部を形成するこ
とにより、切断部を、非切断部を経て段方向に全段連続
させたフィン付き熱交換器を容易に得ることができる。
The stepwise length of the cut portion and the length of the non-cut portion are mainly constant, and the total length of the finned heat exchanger in the step direction is determined by the stepwise length of the cut portion and the length of the noncut portion. When a remainder is generated that is not divisible by an integer when divided by the sum of, according to the configuration in which the length in the step direction of one cut portion is increased by a length corresponding to the remainder, cutting of a fixed length is performed. When processing fins by repeatedly using the mold of the part, it is possible to eliminate the non-cut part and form a cut part longer than the other part by shifting the fin only one place in the step direction by the length equivalent to the remainder and hitting twice. In addition, it is possible to easily obtain a finned heat exchanger in which the cutting section is continuously connected in all stages in the step direction through the non-cutting section.

【0025】段方向の長さを長くした切断部を、冷媒流
路数を1で構成した冷媒の最終出口を含む出口寄りの伝
熱管の近傍の空気の風下に設けた構成によれば、過冷却
液状態の冷媒が内部を流れる伝熱管及び列方向に隣接す
る伝熱管を有効に断熱することができる。
According to the configuration in which the cut portion having a longer stepwise length is provided downwind of the air near the heat transfer pipe near the outlet including the final outlet of the refrigerant having one refrigerant flow path, It is possible to effectively insulate the heat transfer tubes in which the coolant in the coolant state flows inside and the heat transfer tubes adjacent in the row direction.

【0026】断熱手段として、フィンを段方向に全長に
わたって列間分断した構成によれば、列方向に隣接する
伝熱管の内部を流れる冷媒間で、フィンベースを通して
熱伝導するのを抑制することができると共に、温度境界
層前縁効果により伝熱性能を向上させることができる。
According to the structure in which the fins are divided in rows in the step direction as the heat insulating means, it is possible to suppress the heat conduction through the fin base between the refrigerant flowing inside the heat transfer tubes adjacent in the row direction. In addition, the heat transfer performance can be improved by the temperature boundary layer leading edge effect.

【0027】断熱手段として、主たる複数の切り起こし
が切り起こされている面と同じ側に、主たる複数の切り
起こしと同じ幅の切り起こしを設けた構成によれば、列
方向に隣接する伝熱管の内部を流れる冷媒間で、フィン
ベースを通して熱伝導するのを抑制することができると
共に、切り起こしの温度境界層前縁効果により伝熱性能
を向上させることができ、すべての切り起こしを同じ側
に設けるので、金型の保守管理が容易である。
According to the structure in which the cut-and-raised portion having the same width as the main cut-and-raised portions is provided on the same side as the surface where the cut-and-raised portions are cut and raised as the heat insulating means, the heat transfer tubes adjacent in the row direction are provided. In addition to suppressing the heat transfer through the fin base between the refrigerant flowing inside the fin base, the heat transfer performance can be improved by the temperature boundary layer leading edge effect of the cut and raised, and all the cut and raised can be on the same side The maintenance of the mold is easy.

【0028】断熱手段として、主たる複数の切り起こし
が切り起こされている面と反対側に、主たる複数の切り
起こしと同じ幅の切り起こしを設けた構成によれば、列
方向に隣接する伝熱管の内部を流れる冷媒間で、フィン
ベースを通して熱伝導するのを抑制することができると
共に、切り起こしの温度境界層前縁効果により伝熱性能
を向上させることができ、またその金型は、複数の切り
起こしを表裏交互に設けたものを容易に改造することに
より得ることができる。
According to the structure in which the cut-and-raised portion having the same width as the main cut-and-raised portions is provided on the side opposite to the surface where the main cut-and-raised portions are cut and raised, the heat transfer tubes adjacent in the row direction are provided. Between the refrigerant flowing inside the fin base, it is possible to suppress the heat conduction, and the heat transfer performance can be improved by the cut-and-raised temperature boundary layer leading edge effect. Can be obtained by easily remodeling one in which the front and back are alternately provided.

【0029】断熱手段として、主たる複数の切り起こし
が切り起こされているのと反対側に、主たる複数の切り
起こしと同じ幅の切り起こしを設けると共に、列方向に
隣接する主たる複数の切り起こしの間の中央に、主たる
複数の切り起こしが切り起こされている面と反対側に、
すなわち表裏交互に主たる複数の切り起こしと同じ幅の
複数の切り起こしを設けた構成によれば、列方向に隣接
する伝熱管の内部を流れる冷媒間で、フィンベースを通
して熱伝導するのを抑制することができると共に、表裏
交互に設けた複数の切り起こしの温度境界層前縁効果に
より伝熱性能を向上させることができる。
As a heat insulating means, a cut-and-raised portion having the same width as that of the main and plural cut-and-raised portions is provided on the side opposite to the main and multiple cut-and-raised portions. In the middle between, on the side opposite to the side where the main cuts are cut,
That is, according to the configuration in which a plurality of cut-and-raised portions having the same width as the main plurality of cut-and-raised portions are provided alternately, heat conduction through the fin base is suppressed between the refrigerant flowing inside the heat transfer tubes adjacent in the row direction. The heat transfer performance can be improved by the temperature boundary layer leading edge effect of the plurality of cut-and-raised portions provided alternately on the front and back sides.

【0030】切り起こしの高さをフィンピッチの略1/
2〜略2/3とした構成によれば、フィン間での空気の
速度分布が均質で、通風抵抗の上昇を少なくすることが
できる。
The height of the cut-and-raised portion is set to approximately 1 / fin of the fin pitch.
According to the configuration of 2 to 2/3, the velocity distribution of the air between the fins is uniform, and the rise in ventilation resistance can be reduced.

【0031】各切り起こしの数を、段方向に隣接する伝
熱管の中心を結ぶ直線からの距離の近いものから順にn
1、n2、n3、・・・としたとき、n1≦n2≦n3
≦・・・となるようにした構成によれば、風下での局所
的な速度分布が生じにくくなり、送風騒音の上昇を少な
くできる。
The number of cut-and-raised portions is determined by n in the order of distance from a straight line connecting the centers of heat transfer tubes adjacent in the step direction.
, N1, n2, n3,..., N1 ≦ n2 ≦ n3
According to the configuration that satisfies ≤ ..., local velocity distribution is hardly generated on the leeward side, and rise in blowing noise can be reduced.

【0032】切り起こしの伝熱管近傍側の立ち上がり部
を概略伝熱管の外周に沿う方向と位置に形成した構成に
よれば、伝熱管後流に発生する止水域を減少させ、有効
伝熱面積を大きくすることができると共に、伝熱管から
切り起こしの立ち上がりまでの距離が短いのでフィン効
率が高く、各切り起こしの長さの合計が長いので温度境
界層前縁効果の大きい部分をより多く確保でき、伝熱性
能を大きくすることができる。
According to the configuration in which the raised portion near the heat transfer tube is formed substantially in the direction and position along the outer periphery of the heat transfer tube, the water stop area generated in the downstream of the heat transfer tube is reduced, and the effective heat transfer area is reduced. The fin efficiency is high because the distance from the heat transfer tube to the rise of the cut-out is short, and the sum of the lengths of each cut-out is long, so it is possible to secure a larger portion of the temperature boundary layer leading edge effect. , Heat transfer performance can be increased.

【0033】切り起こしの伝熱管近傍でない側の立ち上
がり部をフィン間を流れる空気の主流方向に概略沿う方
法に形成した構成によれば、気流の整流効果を有し、通
風抵抗をあまり増大させず、送風騒音の上昇を少なくす
ることができる。
According to the structure in which the rising portion of the cut-and-raised portion which is not near the heat transfer tube is formed so as to substantially follow the main flow direction of the air flowing between the fins, it has an effect of rectifying the air flow and does not increase the ventilation resistance so much. In addition, it is possible to reduce an increase in blowing noise.

【0034】[0034]

【発明の実施の形態】以下に、本発明の各実施形態にか
かるフィン付き熱交換器について図面を参照して説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A finned heat exchanger according to each embodiment of the present invention will be described below with reference to the drawings.

【0035】図1は、本発明の第1実施形態にかかるフ
ィン付き熱交換器の構成を示す。凝縮運転時、冷媒は入
り口管1,2からそれぞれ2パスで流入し、実線矢印に
示す如く流れ、伝熱管3,4を通過した地点10の近傍
で合流し伝熱管5から下流は1パスで流れ、最終的には
出口管6から流出する。
FIG. 1 shows a configuration of a finned heat exchanger according to a first embodiment of the present invention. During the condensing operation, the refrigerant flows in two passes from the inlet pipes 1 and 2 respectively, flows as indicated by solid arrows, merges near the point 10 passing through the heat transfer pipes 3 and 4, and flows downstream from the heat transfer pipe 5 in one pass. And finally exits the outlet tube 6.

【0036】また、伝熱管5から出口管6に至るまでの
1パスの部分は、空気の流入方向Aに対し上流側に設け
てある。出口近傍の1パスの伝熱管は全伝熱管の5〜3
0を占めるのが望ましい。
A portion of one path from the heat transfer tube 5 to the outlet tube 6 is provided on the upstream side with respect to the air inflow direction A. One pass heat transfer tube near the outlet is 5 to 3 of all heat transfer tubes.
Desirably, it occupies zero.

【0037】また、凝縮運転時の入り口である入り口管
1,2を空気の流入方向Aに対し、下流側に設けてあ
る。
The inlet pipes 1 and 2, which are the inlets during the condensation operation, are provided on the downstream side with respect to the air inflow direction A.

【0038】また、凝縮運転時の入り口である入り口管
1,2を空気の流入方向Aに対し下流側に設け、伝熱管
5から出口管6に至るまでの1パスの部分を熱交換器の
列方向に隣接して空気の流入方向Aに対して上流側に設
けてある。
In addition, the inlet pipes 1 and 2, which are the inlets during the condensation operation, are provided on the downstream side with respect to the air inflow direction A, and one path from the heat transfer pipe 5 to the outlet pipe 6 is connected to the heat exchanger. It is provided adjacent to the row direction and upstream with respect to the air inflow direction A.

【0039】また、フィン7が分割個所Bで上下段方向
にフィン部分7aと7bに分割されており、1パス部分
の最終出口である出口管6がフィン7の分割個所Bの端
部に設けられている。
Further, the fin 7 is divided into fin portions 7a and 7b in a vertical direction at a dividing point B, and an outlet pipe 6 which is a final exit of one pass portion is provided at an end of the dividing point B of the fin 7. Have been.

【0040】上記構成によれば、 (1)凝縮運転時、冷媒を入り口1,2よりそれぞれ2
パスで流入させ、伝熱管3,4を通過した地点10の近
傍で合流し、伝熱管5から下流は1パスで流れ最終的に
出口管6から流出する。このように凝縮運転時の冷媒出
口近傍で1パスとすることにより、空気により冷却され
て過冷却状態となった液冷媒が、2パスから1パスにな
るために冷媒の流路面積が減少し、その結果冷媒の速度
が増速されて熱伝達率が大きく向上し、同一過冷却度に
おいて、熱交換にほとんど寄与しない過冷却域が減少す
る。これにより熱交換能力に寄与する気液二相域を増や
すことが可能となり、熱交換能力を大きく向上させるこ
とができる。
According to the above configuration, (1) During the condensation operation, the refrigerant is supplied from the inlets 1 and 2 through the inlets 1 and 2 respectively.
The heat flows through the heat transfer pipes 3 and 4 and merges in the vicinity of the point 10, flows downstream from the heat transfer pipe 5 in one pass, and finally flows out from the outlet pipe 6. As described above, by making one pass near the refrigerant outlet during the condensing operation, the liquid refrigerant which has been cooled by air and is in a supercooled state changes from two passes to one pass, so that the flow path area of the refrigerant is reduced. As a result, the speed of the refrigerant is increased and the heat transfer coefficient is greatly improved, and the subcooling region that hardly contributes to the heat exchange at the same degree of subcooling decreases. This makes it possible to increase the gas-liquid two-phase region that contributes to the heat exchange capacity, and can greatly improve the heat exchange capacity.

【0041】(2)伝熱管5から出口管6までの1パス
の部分を空気の流入方向Aに対し、上流側に設けること
により、凝縮運転時過冷却によって低温となった部分が
空気の流入方向Aに対し、上流側に配置されることにな
り、パスを対向流的に構成した場合、冷媒の温度勾配が
大きくなりその効果が大きく向上する。
(2) By providing a portion of one path from the heat transfer tube 5 to the outlet tube 6 on the upstream side with respect to the air inflow direction A, the portion which has become low in temperature due to supercooling during the condensing operation is inflow of air. If the path is arranged in the counterflow direction with respect to the direction A, the temperature gradient of the refrigerant is increased and the effect is greatly improved.

【0042】(3)凝縮運転時、冷媒の熱交換器入り口
となる2本の伝熱管を空気の流入方向に対し下流側に設
けることにより、凝縮運転時最も高温となる過熱状態の
冷媒を空気の流入方向に対し、下流側に配置することに
なり、パスを対向流的に構成した場合、冷媒の温度勾配
が大きくなってその効果が大きく向上する。
(3) By providing two heat transfer tubes, which are the inlets of the refrigerant heat exchangers in the condensing operation, on the downstream side with respect to the inflow direction of the air, the superheated refrigerant having the highest temperature in the condensing operation can be removed from the air. In the case where the path is formed in the counterflow direction with respect to the inflow direction, the temperature gradient of the refrigerant is increased, and the effect is greatly improved.

【0043】(4)凝縮運転時、冷媒の熱交換器入り口
である入り口管1,2を空気の流入方向Aに対し下流側
に設け、出口1パス部分すなわち伝熱管5から出口管6
を入り口管1,2と隣接してその上流側に設けることに
より、冷媒の温度の最も高い所と低い所を隣接させて配
置することにより、パスを対向流的に構成した場合、冷
媒の温度勾配が大きくなり、その効果が大きく向上す
る。
(4) At the time of the condensation operation, the inlet pipes 1 and 2 which are the inlets of the heat exchanger of the refrigerant are provided on the downstream side with respect to the inflow direction A of the air.
Is provided adjacent to and upstream of the inlet pipes 1 and 2 so that the highest temperature and the lowest temperature of the refrigerant are disposed adjacent to each other. The gradient increases and the effect is greatly improved.

【0044】(5)フィン7が分割個所Bで上下段方向
に2分割され、出口1パス部の最終出口である出口管6
を、前記フィンの分割部Bの端部に設けることにより、
熱交換器内部で最も温度の低い出口管6と、段方向に隣
接する高温の伝熱管3をフィン7を分割して分離するこ
とにより、両伝熱管の熱伝導による熱交換を防止するこ
とにより、熱交換器内部での損失を低減し伝熱性能が大
きく向上する。
(5) The fin 7 is divided into two parts in the vertical direction at the dividing point B, and the exit pipe 6 which is the final exit of the exit 1 pass portion
Is provided at the end of the divided portion B of the fin,
By separating the fin 7 from the outlet pipe 6 having the lowest temperature inside the heat exchanger and the high-temperature heat transfer pipe 3 adjacent in the stepwise direction, heat exchange due to heat conduction of both heat transfer pipes is prevented. In addition, the loss inside the heat exchanger is reduced, and the heat transfer performance is greatly improved.

【0045】以下に、本発明の第2乃至第6実施形態に
かかるフィン付き熱交換器について図面を参照して説明
する。
Hereinafter, finned heat exchangers according to second to sixth embodiments of the present invention will be described with reference to the drawings.

【0046】まず、本発明の第2乃至第6実施形態に共
通の構成を図9及び図10を用いて説明する。図9
(A)は、本発明の第2乃至第6実施形態にかかるフィ
ン付き熱交換器に共通のフィンの構成を示す平面図、
(B)は図9(A)のIXB−IXB線に沿う詳細断面図で
ある。
First, a configuration common to the second to sixth embodiments of the present invention will be described with reference to FIGS. FIG.
(A) is a top view which shows the structure of the fin common to the finned heat exchanger concerning 2nd thru | or 6th embodiment of this invention,
(B) is a detailed sectional view along line IXB-IXB of FIG. 9 (A).

【0047】図9に示すように、フィン11に一定間隔
でバーリングされたフィンカラー12に伝熱管13が挿
入され、矢印A方向に空気が流入する。フィン11は、
段方向に隣接する2つの伝熱管13の間に、フィン11
の表面に対してどれも同じ側に、例えばフィンカラー1
2と反対側に3列の切り起こしすなわち、1つの切り起
こし24a、1つの切り起こし24b、2つの切り起こ
し24cからなる切り起こし群を有する。3列の切り起
こしの列方向の幅Wfは、フィンベース部の列方向の幅
Wbの略1/3〜1/2になるよう形成されている。切
り起こし24a、24b、24cの高さhはフィンピッ
チPfの略1/2〜略2/3に形成されている。切り起
こし24a、24b、24cの伝熱管13近傍の立ち上
がり部25a、25b、25cは、伝熱管13の外周に
概略沿う方向と位置に配置されている。切り起こし24
cの伝熱管13近傍側でない側の立ち上がり部25d
は、空気の主流方向に概略沿う方向に形成されている。
As shown in FIG. 9, a heat transfer tube 13 is inserted into a fin collar 12 burred at regular intervals to a fin 11, and air flows in the direction of arrow A. Fins 11
Fins 11 are provided between two heat transfer tubes 13 adjacent in the step direction.
All on the same side with respect to the surface of, for example, fin collar 1
On the side opposite to 2, there is a cut-and-raised group consisting of three rows of cut-and-raised, one cut-and-raised 24a, one cut-and-raised 24b and two cut-and-raised 24c. The width Wf of the cut-and-raised three rows in the column direction is formed to be approximately 1 / to の of the width Wb of the fin base portion in the column direction. The height h of the cut-and-raised portions 24a, 24b, 24c is formed to be approximately 1/2 to approximately 2/3 of the fin pitch Pf. The rising portions 25a, 25b, 25c of the cut-and-raised portions 24a, 24b, 24c near the heat transfer tube 13 are arranged in directions and positions substantially along the outer periphery of the heat transfer tube 13. 24
The rising portion 25d of the side c not on the side near the heat transfer tube 13
Are formed in a direction substantially along the main flow direction of the air.

【0048】図10は、本発明の第2乃至第6実施形態
にかかるフィン付き熱交換器に共通の冷媒流路の構成を
示す正面図である。
FIG. 10 is a front view showing the configuration of a refrigerant passage common to the finned heat exchangers according to the second to sixth embodiments of the present invention.

【0049】図10に示すように、フィン11が分割個
所Bでフィン部分11aと11bに分割された2列15
段フィン付き熱交換器を凝縮器として使用するとき、過
熱ガス状態の冷媒は入口の風下の列の伝熱管17a、1
8aの2つの流路から流入し、実線矢印に示すように熱
交換しながら流れ、ほぼ過冷却がとれ始める伝熱管17
b、18bを通過したところで合流し1つの冷媒流路と
なり、風上の列の伝熱管19aから19b、19cとさ
らに冷却されながら流れ、最終出口の伝熱管19dから
流出する。
As shown in FIG. 10, the fins 11 are divided into two fins 11a and 11b at a dividing point B.
When the heat exchanger with step fins is used as a condenser, the refrigerant in the superheated gas state is supplied to the heat transfer tubes 17a, 1
8a, flows while exchanging heat as indicated by the solid arrows, and begins to be almost supercooled.
After passing through b and 18b, they merge into one refrigerant flow path, flow while being further cooled from the heat transfer tubes 19a to 19b and 19c in the windward row, and flow out from the heat transfer tube 19d at the final outlet.

【0050】すなわち全伝熱管30本のうち、冷媒の最
終出口を含む出口寄りの伝熱管19a〜19dの4本の
伝熱管は冷媒流路数1で構成され、他の伝熱管の冷媒流
路数は2で構成されている。
That is, of the 30 heat transfer tubes, the four heat transfer tubes 19a to 19d near the outlet including the final outlet of the refrigerant are constituted by one refrigerant flow passage, and the refrigerant flow passages of the other heat transfer tubes are provided. The number consists of two.

【0051】冷媒の最終出口を含む出口寄りの伝熱管1
9a〜19dは風上の列に配置され、冷媒の最終出口の
伝熱管19dはフィンの段間分割個所Bの端部の段に配
置されている。
Heat transfer tube 1 near the outlet including the final outlet of the refrigerant
9a to 19d are arranged in a row on the windward side, and the heat transfer tube 19d at the final outlet of the refrigerant is arranged in a stage at the end of the interstage division point B of the fin.

【0052】冷媒の入口の2本の伝熱管17a、18a
は伝熱管19a〜19dの風下の段、列に配置されてい
る。
Two heat transfer tubes 17a, 18a at the inlet of the refrigerant
Are arranged in the leeward stages and rows of the heat transfer tubes 19a to 19d.

【0053】本発明の第2実施形態にかかるフィン付き
熱交換器を図2を用いて説明する。
A finned heat exchanger according to a second embodiment of the present invention will be described with reference to FIG.

【0054】図2は、本発明の第2実施形態にかかるフ
ィン付き熱交換器のフィンの平面図である。
FIG. 2 is a plan view of the fins of the finned heat exchanger according to the second embodiment of the present invention.

【0055】幅のほとんどない切り込みあるいは幅が若
干ある切り抜き31、33は、列方向に隣接する伝熱管
13の間の中央部近傍のフィン表面に段方向に長く設け
られたもので、その長さは伝熱管の直径以上で段ピッチ
の略5倍乃至6倍以下に形成されている。切断部31、
33は非切断部32を経て段方向に複数連続して、本実
施形態では全段連続して設けられている。
The cutouts 31 and 33 having almost no width or cutouts are provided in the fin surface near the central portion between the heat transfer tubes 13 adjacent in the row direction, and are long in the stepwise direction. Are formed at a diameter not less than the diameter of the heat transfer tube and at most about 5 to 6 times the step pitch. Cutting section 31,
A plurality 33 are continuously provided in the step direction through the non-cutting portion 32, and are provided continuously in all steps in the present embodiment.

【0056】具体的には本実施形態ではその長さと非切
断部32の長さの和が段ピッチの2倍の切断部31が、
主として形成され、15段を2で割った余数1段に相当
する長さだけ切断部31より長くした切断部33が一箇
所だけ形成されている。すなわち切断部33の長さと非
切断部32の長さの和は段ピッチの3倍である。
Specifically, in the present embodiment, the cutting portion 31 whose sum of the length and the length of the non-cut portion 32 is twice the step pitch,
Only one cut portion 33 is formed, which is mainly formed, and is longer than the cut portion 31 by a length corresponding to the remainder of one step obtained by dividing 15 steps by two. That is, the sum of the length of the cutting portion 33 and the length of the non-cutting portion 32 is three times the step pitch.

【0057】切断部33の端部34は、冷媒の最終出口
の伝熱管19dを配置したフィンの段間分割個所の端部
Bの近傍に設けられている。
The end portion 34 of the cutting portion 33 is provided near the end portion B of the fin where the heat transfer tube 19d at the final outlet of the refrigerant is disposed.

【0058】切断部31より長い切断部33は、冷媒流
路数を1で構成した冷媒の最終出口を含む出口よりの伝
熱管19a〜19dの風下に設けられている。
The cutting portion 33 longer than the cutting portion 31 is provided downstream of the heat transfer tubes 19a to 19d from the outlet including the final outlet of the refrigerant having one refrigerant flow path.

【0059】本発明の第3実施形態にかかるフィン付き
熱交換器を図3を用いて説明する。
A finned heat exchanger according to a third embodiment of the present invention will be described with reference to FIG.

【0060】図3は、本発明の第3実施形態にかかるフ
ィン付き熱交換器のフィンの平面図である。
FIG. 3 is a plan view of the fins of the finned heat exchanger according to the third embodiment of the present invention.

【0061】フィンは段方向に全長にわたって列間35
で分断されている。
The fins are arranged between the rows 35 over the entire length in the step direction.
Is divided.

【0062】本発明の第4及び第5実施形態にかかるフ
ィン付き熱交換器を図4乃至図6を用いて説明する。
A finned heat exchanger according to the fourth and fifth embodiments of the present invention will be described with reference to FIGS.

【0063】図4は、本発明の第4及び第5実施形態に
かかるフィン付き熱交換器のフィンの平面図、図5
(A)は本発明の第4実施形態にかかるフィン付き熱交
換器のフィンの詳細平面図、図5(B)は図5(A)の
VB−VB線に沿う断面図、図6(A)は本発明の第5実
施形態にかかるフィン付き熱交換器のフィンの詳細平面
図、図6(B)は図6(A)のVIB−VIB線に沿う断面
図である。
FIG. 4 is a plan view of the fins of the finned heat exchanger according to the fourth and fifth embodiments of the present invention.
FIG. 5A is a detailed plan view of the fins of the finned heat exchanger according to the fourth embodiment of the present invention, and FIG. 5B is a plan view of FIG.
6A is a cross-sectional view taken along line VB-VB, FIG. 6A is a detailed plan view of a fin of the heat exchanger with fins according to the fifth embodiment of the present invention, and FIG. It is sectional drawing which follows a VIB line.

【0064】まず第4実施形態にかかるフィン付き熱交
換器について説明する。その高さhがフィンピッチの略
1/2〜略2/3の2つの切り起こし36は、冷媒が過
冷却液あるいは過熱ガスの状態で内部を通過する伝熱管
13と列方向に隣接する伝熱管13の間の中央部近傍の
フィン11の表面に、主たる複数の切り起こし24a、
24b、24cが切り起こされているのと同じ側に、切
り起こし24a、24b、24cと同じ幅Wfで設けら
れたものである。切り起こし36の伝熱管13近傍側の
立ち上がり部37cは、伝熱管13の外周に概略沿う方
向と位置に配置されている。切り起こし36の伝熱管1
3近傍側でない側の立ち上がり部37dは、空気の主流
方向に概略沿う方向に形成されている。
First, a finned heat exchanger according to a fourth embodiment will be described. The two cut-and-raised portions 36 whose height h is approximately 1/2 to approximately 2/3 of the fin pitch are formed in a row adjacent to the heat transfer tube 13 in which the refrigerant passes through in the state of a supercooled liquid or a superheated gas. On the surface of the fin 11 near the center between the heat tubes 13, a plurality of main cut-and-raised portions 24 a,
The same width Wf as the cut and raised portions 24a, 24b and 24c is provided on the same side where the cut and raised portions 24b and 24c are formed. The rising portion 37 c of the cut-and-raised portion 36 on the side near the heat transfer tube 13 is arranged in a direction and position substantially along the outer periphery of the heat transfer tube 13. 36 heat transfer tubes 1
The rising portion 37d on the side other than the vicinity of 3 is formed in a direction substantially along the main flow direction of air.

【0065】次に第5実施形態にかかるフィン付き熱交
換器について説明する。その高さhがフィンピッチの略
1/2〜略2/3の2つの切り起こし38は、冷媒が過
冷却液あるいは過熱ガスの状態で内部を通過する伝熱管
13と列方向に隣接する伝熱管13の間の中央部近傍の
フィン11の表面に、主たる複数の切り起こし24a、
24b、24cが切り起こされているのと反対側に、切
り起こし24a、24b、24cと同じ幅Wfで設けら
れたものである。切り起こし38の伝熱管13近傍側の
立ち上がり部39cは、伝熱管13の外周に概略沿う方
向と位置に配置されている。切り起こし38の伝熱管1
3近傍側でない側の立ち上がり部39dは、空気の主流
方向に概略沿う方向に形成されている。
Next, a finned heat exchanger according to a fifth embodiment will be described. The two cut-and-raised portions 38 whose height h is approximately 1 / to approximately / of the fin pitch are formed in a row adjacent to the heat transfer tube 13 in which the refrigerant passes through in the state of a supercooled liquid or a superheated gas. On the surface of the fin 11 near the center between the heat tubes 13, a plurality of main cut-and-raised portions 24 a,
On the side opposite to where the cuts 24b and 24c are cut and raised, they are provided with the same width Wf as the cut and raised 24a, 24b and 24c. The rising portion 39 c of the cut-and-raised portion 38 on the side near the heat transfer tube 13 is arranged in a direction and position substantially along the outer periphery of the heat transfer tube 13. 38 heat transfer tubes 1
The rising portion 39d on the side other than the side near 3 is formed in a direction substantially along the main flow direction of the air.

【0066】本発明の第6実施形態にかかるフィン付き
熱交換器を図7及び図8を用いて説明する。
A finned heat exchanger according to a sixth embodiment of the present invention will be described with reference to FIGS.

【0067】図7は、本発明の第6実施形態にかかるフ
ィン付き熱交換器のフィンの平面図、図8(A)は本発
明の第6実施形態にかかるフィン付き熱交換器のフィン
の詳細平面図、図8(B)は図8(A)のVIIIB−VIII
B線に沿う断面図である。
FIG. 7 is a plan view of the fins of the finned heat exchanger according to the sixth embodiment of the present invention. FIG. 8A is a plan view of the fins of the finned heat exchanger according to the sixth embodiment of the present invention. FIG. 8 (B) is a detailed plan view, and FIG.
It is sectional drawing which follows the B line.

【0068】その高さhがフィンピッチの略1/2〜略
2/3の1つの切り起こし44a、1つの切り起こし4
4b、2つの切り起こし44cは、冷媒が過冷却液ある
いは過熱ガスの状態で内部を通過する伝熱管13の近傍
のフィン11の表面に、主たる複数の切り起こし24
a、24b、24cが切り起こされているのと反対側
に、切り起こし24a、24b、24cの中央に、すな
わち表裏交互に、切り起こし24a、24b、24cと
同じ幅Wfで設けられたものである。切り起こし44
a、44b、44cの伝熱管13近傍側の立ち上がり部
45a、45b、45cは、伝熱管13の外周に概略沿
う方向と位置に配置されている。切り起こし44cの伝
熱管13近傍側でない側の立ち上がり部45dは、空気
の主流方向に概略沿う方向に形成されている。
The height h is approximately 1/2 to approximately 2/3 of the fin pitch.
4b, two cut-and-raised portions 44c are provided on the surface of the fin 11 near the heat transfer tube 13 through which the refrigerant passes through in a state of supercooled liquid or superheated gas.
a, 24b, and 24c are provided on the opposite side of the cut and raised portions, in the centers of the cut and raised portions 24a, 24b, and 24c, that is, alternately on the front and back sides, with the same width Wf as the cut and raised portions 24a, 24b, and 24c. is there. Cut and raise 44
The rising portions 45a, 45b, 45c of the a, 44b, 44c near the heat transfer tube 13 are arranged in directions and positions substantially along the outer periphery of the heat transfer tube 13. The rising portion 45d of the cut-and-raised portion 44c on the side other than the side near the heat transfer tube 13 is formed in a direction substantially along the main flow direction of air.

【0069】なお、第4乃至第6実施形態にかかるフィ
ン付き熱交換器のフィン11の表面の切り起こし36、
38、44a、44b、44cは、冷媒が過冷却液ある
いは過熱ガスの状態で内部を通過する伝熱管13の近傍
だけでなくすべての領域で使用することも可能である。
The surface of the fin 11 of the heat exchanger with fins according to the fourth to sixth embodiments is cut and raised 36,
The coolants 38, 44a, 44b, and 44c can be used not only in the vicinity of the heat transfer tube 13 through which the refrigerant passes through in a state of supercooled liquid or superheated gas, but also in all areas.

【0070】上記構成によれば、 (1)段方向に隣接する伝熱管13の間のフィン11の
表面の片側にのみ主たる複数の切り起こし24a、24
b、24cを設け、切り起こし24a、24b、24c
の列方向の幅Wfを列方向に隣接する2つの切り起こし
の間の距離Wbの略1/3〜1/2にし、フィンを段の
間Bで少なくとも一箇所で分割し、伝熱管13を連通し
て内部に冷媒が通過する構成にし、凝縮器として使用す
るとき、伝熱管の全本数の5%〜30%の割合の冷媒の
最終出口を含む出口寄りの伝熱管19a〜19dを冷媒
流路数1で構成し、他の伝熱管の冷媒流路数を2で構成
し、冷媒流路数を1で構成した冷媒の最終出口を含む出
口寄りの伝熱管19a〜19dを空気の最も風上の列に
配置し、冷媒の最終出口の伝熱管19dをフィンのいず
れかの段間分割個所の端部の段に配置し、冷媒の入口の
2本の伝熱管17a、18aを、冷媒流路数を1で構成
した冷媒の最終出口を含む出口寄りの伝熱管19a〜1
9dの空気の風下あるいは風下近傍の段の最も風下の列
に配置し、少なくとも冷媒が過冷却液あるいは過熱ガス
の状態で内部を通過する伝熱管13及びその伝熱管13
と列方向に隣接する伝熱管13の間の中央部近傍のフィ
ン11の表面に断熱手段を設けたもので、この構成によ
れば、過冷却液状態の冷媒が内部を流れる伝熱管の冷媒
流路数を1とするので、凝縮温度を低くし、過冷却度を
大きくしても、冷媒流通抵抗をあまり上げずに、熱伝達
率を大幅に向上させることができ、段間分割個所の端部
Bの段に配置した冷媒の最終出口の伝熱管19dから段
方向に隣接する伝熱管へのフィンを通した熱伝導による
熱交換を半減させることができ、内部を過冷却液状態の
冷媒が流れる冷媒流路数を1とした伝熱管19a〜19
dを最も風上に配置し、その風下あるいは風下近傍の段
の最も下流の列に、内部を過熱ガス状態の冷媒が流れる
冷媒入口の2本の伝熱管17a、18aを配置したの
で、対向流的な効果により熱交換能力を向上させること
ができ、列方向に隣接する伝熱管13の間の中央部近傍
のフィン11部に設けた断熱手段により、それぞれの伝
熱管13の内部を流れる冷媒間で、フィンベースを通し
て熱伝導するのを抑制し、複数列での熱交換能力を向上
させることができる。
According to the above configuration, (1) a plurality of cut-and-raised portions 24a, 24 on only one side of the surface of the fin 11 between the heat transfer tubes 13 adjacent in the step direction.
b, 24c, and cut and raised 24a, 24b, 24c
The width Wf in the column direction is set to approximately 1/3 to 1/2 of the distance Wb between two cut-and-raised portions adjacent in the column direction, and the fins are divided at least at one portion between the stages B, and the heat transfer tubes 13 are formed. When used as a condenser and configured to allow the refrigerant to pass through and communicate with the interior, the refrigerant flows through the heat transfer tubes 19a to 19d near the outlets including the final outlet of the refrigerant at a ratio of 5% to 30% of the total number of heat transfer tubes. The number of paths is one, the number of refrigerant flow paths of the other heat transfer tubes is two, and the heat transfer tubes 19a to 19d near the outlet including the final outlet of the refrigerant having the number of refrigerant flow paths of one are the most airflow. The heat transfer tubes 19d at the final outlet of the refrigerant are arranged in the upper row, and the heat transfer tubes 19d at the end of one of the inter-stage division portions of the fins are arranged at the ends of the heat transfer tubes 17a, 18a at the inlet of the refrigerant. Heat transfer tubes 19a to 1 near the outlet including the final outlet of the refrigerant having one path
A heat transfer tube 13 and a heat transfer tube 13 that are arranged in the most leeward row of a leeward or near leeward stage of 9d air, and in which at least a refrigerant passes through the inside in a supercooled liquid or superheated gas state.
Insulation means is provided on the surface of the fin 11 near the center between the heat transfer tubes 13 adjacent to each other in the row direction. Since the number of paths is 1, even if the condensing temperature is lowered and the degree of subcooling is increased, the heat transfer coefficient can be greatly improved without increasing the flow resistance of the refrigerant so much. The heat exchange by heat conduction through the fins from the heat transfer tube 19d at the final outlet of the refrigerant disposed in the stage of the part B to the adjacent heat transfer tube in the stage direction can be halved, and the refrigerant in a supercooled liquid state is formed inside. Heat transfer tubes 19a to 19 with the number of flowing refrigerant channels as one
d is arranged at the most leeward side, and two heat transfer tubes 17a, 18a at the refrigerant inlet through which the refrigerant in the superheated gas state flows are arranged in the most downstream row of the leeward or the stage near the leeward. The heat exchange capacity can be improved by a natural effect, and a heat insulating means provided in the fin 11 near the center between the heat transfer tubes 13 adjacent in the row direction allows heat exchange between the refrigerant flowing inside each heat transfer tube 13. Thus, heat conduction through the fin base can be suppressed, and the heat exchange capacity in a plurality of rows can be improved.

【0071】(2)断熱手段として、段方向に長い切断
部31、33を設けたもので、この構成によれば、列方
向に隣接する伝熱管の内部13を流れる冷媒間で、フィ
ンベースを通して熱伝導するのを抑制すると共に、切断
部31、33の温度境界層前縁効果により伝熱性能を向
上させることができる。
(2) As the heat insulating means, the cut portions 31 and 33 long in the step direction are provided. According to this configuration, the refrigerant flowing through the inside 13 of the heat transfer tube adjacent in the column direction passes through the fin base. In addition to suppressing heat conduction, the heat transfer performance can be improved by the temperature boundary layer leading edge effect of the cut portions 31 and 33.

【0072】(3)切断部31、33の段方向の長さ
を、伝熱管の直径以上で段ピッチの略5倍乃至6倍以下
としたもので、この構成によれば、列方向に隣接する伝
熱管13の内部を流れる冷媒間で、フィンベースを通し
て熱伝導するのを有効に抑制することができる。
(3) The length of the cut portions 31 and 33 in the step direction is not less than the diameter of the heat transfer tube and not more than 5 to 6 times the step pitch. Heat conduction through the fin base between the refrigerant flowing inside the heat transfer tube 13 can be effectively suppressed.

【0073】(4)切断部33の端部34を、冷媒の最
終出口の伝熱管19dを配置したフィン11のいずれか
の段間分割個所Bの近傍に設けたもので、この構成によ
れば、最も温度の低い冷媒の最終出口の伝熱管19d及
びそれに列方向に隣接する伝熱管13の間に切断部3
1、33が必ず存在するので、フィンベースを通した熱
伝導を最も有効に抑制することができる。
(4) The end portion 34 of the cutting portion 33 is provided in the vicinity of any interstage division B of the fin 11 in which the heat transfer tube 19d at the final outlet of the refrigerant is arranged. Between the heat transfer tube 19d at the final outlet of the refrigerant having the lowest temperature and the heat transfer tube 13 adjacent thereto in the row direction.
Since there is always 1, 33, heat conduction through the fin base can be suppressed most effectively.

【0074】(5)切断部31、33を、非切断部32
を経て段方向に複数連続させたもので、この構成によれ
ば、切断部31、33の温度境界層前縁効果により伝熱
性能をさらに向上させることができる。
(5) The cutting sections 31 and 33 are
According to this configuration, the heat transfer performance can be further improved due to the temperature boundary layer leading edge effect of the cut portions 31 and 33.

【0075】(6)切断部31、33を、非切断部32
を経て段方向に全段連続させたもので、この構成によれ
ば、切断部31、33の温度境界層前縁効果により伝熱
性能をさらに向上させることができる。
(6) The cutting sections 31 and 33 are
According to this configuration, the heat transfer performance can be further improved due to the temperature boundary layer leading edge effect of the cut portions 31 and 33.

【0076】(7)非切断部32の長さを伝熱管13の
直径の略1/2以下としたもので、この構成によれば、
非切断部32を通して列方向に隣接する伝熱管13の内
部を流れる冷媒間で熱伝導し、熱交換能力が低下するの
を抑制することができる。
(7) The length of the non-cut portion 32 is set to be approximately 1 / or less of the diameter of the heat transfer tube 13.
Heat is conducted between the refrigerant flowing inside the heat transfer tubes 13 adjacent to each other in the column direction through the non-cut portions 32, so that a decrease in heat exchange capacity can be suppressed.

【0077】(8)切断部31の段方向の長さ及び非切
断部32の長さをそれぞれ主として一定にし、フィン付
き熱交換器の段方向の全長を切断部の段方向の長さ及び
非切断部の長さの和で除したとき、整数で割り切れず余
数が生じる場合には、その余数に相当する長さだけ一箇
所の切断部33の段方向の長さを長くしたもので、この
構成によれば、一定長さの切断部31の金型を繰り返し
使ってフィンを加工する場合も、一箇所だけ段方向に余
数に相当する長さだけずらして2度打ちして非切断部を
なくし他より長い切断部33を形成することにより、切
断部31、33を、非切断部32を経て段方向に全段連
続させたフィン付き熱交換器を容易に得ることができ
る。
(8) The stepwise length of the cut portion 31 and the length of the non-cut portion 32 are mainly constant, and the total length of the finned heat exchanger in the stepwise direction is equal to the stepwise length of the cut portion. When a remainder is generated that is not divisible by an integer when divided by the sum of the lengths of the cut portions, the length of one cut portion 33 in the step direction is increased by a length corresponding to the remainder. According to the configuration, even when the fin is machined by repeatedly using the mold of the cut portion 31 having a fixed length, the non-cut portion is hit twice by shifting the fin by one position in the step direction by a length corresponding to the remainder. By forming the cut portion 33 longer than the other cut portion, it is possible to easily obtain a finned heat exchanger in which the cut portions 31 and 33 are continuously connected in the step direction through the non-cut portion 32 in all stages.

【0078】(9)他より長い切断部33を、冷媒流路
数を1で構成した冷媒の最終出口を含む出口寄りの伝熱
管19a〜19dの近傍の空気の風下に設けたもので、
この構成によれば、過冷却液状態の冷媒が内部を流れる
伝熱管19a〜19d及び列方向に隣接する伝熱管13
を有効に断熱することができる。
(9) The longer cut portion 33 is provided downstream of the air near the heat transfer tubes 19a to 19d near the outlet including the final outlet of the refrigerant having one refrigerant flow path.
According to this configuration, the heat transfer tubes 19a to 19d through which the refrigerant in the supercooled liquid state flows inside and the heat transfer tubes 13 adjacent in the row direction
Can be effectively insulated.

【0079】(10)断熱手段として、フィンを段方向
に全長にわたって列間35で分断したもので、この構成
によれば、列方向に隣接する伝熱管13の内部を流れる
冷媒間で、フィンベースを通して熱伝導するのを抑制す
ることができると共に、温度境界層前縁効果により伝熱
性能を向上させることができる。
(10) As the heat insulating means, the fins are divided along the entire length in the stepwise direction at intervals between the rows 35. According to this configuration, the fin base is interposed between the refrigerant flowing inside the heat transfer tubes 13 adjacent in the row direction. And the heat transfer performance can be improved by the temperature boundary layer leading edge effect.

【0080】(11)断熱手段として、主たる複数の切
り起こし24a、24b、24cが切り起こされている
面と同じ側に、主たる複数の切り起こし24a、24
b、24cと同じ幅Wfの切り起こし36を設けたもの
で、この構成によれば、列方向に隣接する伝熱管13の
内部を流れる冷媒間で、フィンベースを通して熱伝導す
るのを抑制することができると共に、切り起こし36の
温度境界層前縁効果により伝熱性能を向上させることが
でき、すべての切り起こし24a、24b、24c、3
6を同じ側に設けるので、金型の保守管理が容易であ
る。
(11) As the heat insulating means, the main pluralities of the cut-and-raised parts 24a, 24b, and 24c are provided on the same side as the plane on which the plural plural cut-and-raised parts 24a, 24b, and 24c are formed.
The cut-and-raised portion 36 having the same width Wf as that of the b and 24c is provided. According to this configuration, heat conduction through the fin base is suppressed between the refrigerant flowing inside the heat transfer tubes 13 adjacent in the row direction. And the heat transfer performance can be improved by the temperature boundary layer leading edge effect of the cut-and-raised portions 36, and all the cut-and-raised portions 24a, 24b, 24c, and 3
Since 6 is provided on the same side, maintenance of the mold is easy.

【0081】(12)断熱手段として、主たる複数の切
り起こし24a、24b、24cが切り起こされている
面と反対側に、主たる複数の切り起こし24a、24
b、24cと同じ幅Wfの切り起こし38を設けたもの
で、この構成によれば、列方向に隣接する伝熱管13の
内部を流れる冷媒間で、フィンベースを通して熱伝導す
るのを抑制することができると共に、切り起こし38の
温度境界層前縁効果により伝熱性能を向上させることが
でき、またその金型は、複数の切り起こしを表裏交互に
設けたものを容易に改造することにより得ることができ
る。
(12) As a heat insulating means, a plurality of main cut-and-raised portions 24a, 24a, 24c are provided on the side opposite to a surface where the main plurality of cut-and-raised portions 24a, 24b, 24c are cut and raised.
The cut-and-raised portion 38 having the same width Wf as that of the b and 24c is provided. According to this configuration, it is possible to suppress heat conduction through the fin base between the refrigerant flowing inside the heat transfer tubes 13 adjacent in the row direction. The heat transfer performance can be improved by the temperature boundary layer leading edge effect of the cut-and-raised portion 38, and the mold can be obtained by easily remodeling a die having a plurality of cut-and-raised portions alternately provided on both sides. be able to.

【0082】(13)断熱手段として、主たる複数の切
り起こし24a、24b、24cが切り起こされている
のと反対側に、主たる複数の切り起こし24a、24
b、24cと同じ幅Wfの切り起こし44cを設けると
共に、列方向に隣接する主たる複数の切り起こし24
a、24b、24cの間の中央に、主たる複数の切り起
こし24a、24b、24cが切り起こされている面と
反対側に、すなわち表裏交互に主たる複数の切り起こし
24a、24b、24cと同じ幅Wfの複数の切り起こ
し44a、44bを設けたもので、この構成によれば、
列方向に隣接する伝熱管13の内部を流れる冷媒間で、
フィンベースを通して熱伝導するのを抑制することがで
きると共に、表裏交互に設けた複数の切り起こし24
a、24b、24c、44a、44b、44cの温度境
界層前縁効果により伝熱性能を向上させることができ
る。
(13) As a heat insulating means, the main pluralities of the cut-and-raised parts 24a, 24b and 24c are provided on the side opposite to the side where the plural plural cut-and-raised parts are cut and raised.
b, 24c are provided with cut-and-raised portions 44c having the same width Wf, and a plurality of cut-and-raised portions 24c adjacent in the column direction are provided.
a, 24b, 24c, the same width as the main plurality of cut-and-raised parts 24a, 24b, 24c, on the opposite side to the surface where the main cut-and-raised parts 24a, 24b, 24c are cut, ie, alternately front and back. A plurality of cut-and-raised portions 44a and 44b of Wf are provided. According to this configuration,
Between the refrigerant flowing inside the heat transfer tubes 13 adjacent in the row direction,
Heat conduction through the fin base can be suppressed, and a plurality of cut-and-raised portions 24 provided alternately on the front and back sides
The heat transfer performance can be improved by the temperature boundary layer leading edge effect of a, 24b, 24c, 44a, 44b, 44c.

【0083】(14)切り起こし24a、24b、24
c、36、38、44a、44b、44cの高さhをフ
ィンピッチPfの略1/2〜略2/3としたもので、こ
の構成によれば、フィン間での空気の速度分布が均質
で、通風抵抗の上昇を少なくすることができる。
(14) Cutting and raising 24a, 24b, 24
The height h of c, 36, 38, 44a, 44b, 44c is approximately 1/2 to approximately 2/3 of the fin pitch Pf. According to this configuration, the velocity distribution of air between the fins is uniform. Thus, an increase in ventilation resistance can be reduced.

【0084】(15)各切り起こし24a、24b、2
4c、36、38、44a、44b、44cの数を、段
方向に隣接する伝熱管の中心を結ぶ直線からの距離の近
いものから順にn1、n2、n3、・・・としたとき、
n1≦n2≦n3≦・・・となるようにしたもので、こ
の構成によれば、風下での局所的な速度分布が生じにく
くなり、送風騒音の上昇を少なくすることができる。
(15) Each cutting and raising 24a, 24b, 2
When the numbers of 4c, 36, 38, 44a, 44b, 44c are n1, n2, n3,... In ascending order from a straight line connecting the centers of the heat transfer tubes adjacent in the step direction,
n1 ≦ n2 ≦ n3 ≦... According to this configuration, a local velocity distribution is hardly generated on the leeward side, and an increase in blowing noise can be reduced.

【0085】(16)切り起こし24a、24b、24
c、36、38、44a、44b、44cの伝熱管13
の近傍側の立ち上がり部25a、25b、25c、37
c、39c、45a、45b、45cを概略伝熱管13
の外周に沿う方向と位置に形成したもので、この構成に
よれば、伝熱管13の後流に発生する止水域を減少さ
せ、有効伝熱面積を大きくすることができると共に、伝
熱管13から切り起こしの立ち上がりまでの距離が短い
のでフィン効率が高く、各切り起こし24a、24b、
24c、36、38、44a、44b、44cの長さの
合計が長いので温度境界層前縁効果の大きい部分をより
多く確保でき、伝熱性能を大きくすることができる。
(16) Cutting and raising 24a, 24b, 24
c, 36, 38, 44a, 44b, 44c
Rising portions 25a, 25b, 25c, 37 near
c, 39c, 45a, 45b, and 45c are substantially
According to this configuration, the water stop area generated in the downstream of the heat transfer tube 13 can be reduced, and the effective heat transfer area can be increased. The fin efficiency is high because the distance to the rise of the cut and raised is short, and each cut and raised 24a, 24b,
Since the sum of the lengths of 24c, 36, 38, 44a, 44b, and 44c is long, a larger portion of the temperature boundary layer leading edge effect can be secured more, and the heat transfer performance can be increased.

【0086】(17)切り起こし24c、36、38、
44cの伝熱管13の近傍でない側の立ち上がり部25
d、37d、39d、45dをフィン間を流れる空気の
主流方向Aに概略沿う方向に形成したもので、この構成
によれば、気流の整流効果を有し、通風抵抗をあまり増
大させず、送風騒音の上昇を少なくすることができる。
(17) Cutting and raising 24c, 36, 38,
The rising portion 25 of the side 44c which is not near the heat transfer tube 13
d, 37d, 39d, and 45d are formed in a direction substantially along the main flow direction A of the air flowing between the fins. According to this configuration, the air flow rectification effect is provided, and the ventilation resistance is not increased so much. Noise rise can be reduced.

【0087】[0087]

【発明の効果】本発明の第1実施形態にかかるフィン付
き熱交換器は、上記説明から明らかなように、 (1)伝熱管のパスが凝縮運転時の冷媒入り口部分が2
パスで、出口近傍で1パスとすることにより、空気によ
り冷却されて過冷却状態となった液冷媒が、2パスから
1パスになることにより冷媒の流路面積が減少する。こ
のため冷媒は増速されて熱伝達率が大きく向上し、同一
過冷却度において熱交換にほとんど寄与しない過冷却域
が減少し、その結果熱交換に寄与する気液二相域を増加
することが可能となり熱交換能力を大きく向上させるこ
とができる。
As is apparent from the above description, the heat exchanger with fins according to the first embodiment of the present invention has the following advantages.
By making one pass near the outlet in the pass, the supercooled liquid refrigerant cooled by the air is changed from two passes to one pass, thereby reducing the flow passage area of the refrigerant. For this reason, the refrigerant is accelerated, the heat transfer coefficient is greatly improved, the subcooling region that hardly contributes to heat exchange at the same degree of subcooling decreases, and as a result, the gas-liquid two-phase region that contributes to heat exchange increases. And the heat exchange capacity can be greatly improved.

【0088】(2)1パスの部分を、空気の流入方向に
対し上流側に設けることにより、凝縮運転時過冷却がと
れて低温となった部分が、空気の流入方向に対し上流側
に配置されることになり、パスを対向流的に構成した場
合、冷媒の温度勾配が大きくなってその効果が増加し、
熱交換能力が向上する。
(2) By providing the one-pass portion upstream with respect to the air inflow direction, the portion that has been cooled down due to supercooling during the condensation operation is arranged upstream with respect to the air inflow direction. In the case where the path is configured in a counter-current flow, the temperature gradient of the refrigerant is increased and the effect is increased,
Heat exchange capacity is improved.

【0089】(3)凝縮運転時、冷媒の熱交換器入り口
となる2本の伝熱管を空気の流入方向に対し下流側に設
けることにより、凝縮運転時最も高温となる過熱状態の
冷媒を空気の流入方向に対し、下流側に配置することに
なり、パスを対向流的に構成した場合、冷媒の温度勾配
が大きくなってその効果が増加し、熱交換能力が向上す
る。
(3) By providing two heat transfer tubes, which are the inlets of the refrigerant heat exchangers in the condensing operation, on the downstream side in the air inflow direction, the superheated refrigerant having the highest temperature in the condensing operation can be removed from the air. If the path is arranged in a counter-current direction with respect to the inflow direction of the refrigerant, the temperature gradient of the refrigerant is increased, the effect is increased, and the heat exchange capacity is improved.

【0090】(4)凝縮運転時、冷媒の熱交換器入り口
となる2本の伝熱管を空気の流入方向に対し下流側に設
け、出口1パス部分を入り口部分と隣接してその上流側
に設けることにより、冷媒の温度の最も高い所と低い所
を隣接させて配置することにより、パスを対向流的に構
成した場合、冷媒の温度勾配が大きくなってその効果が
増加し、熱交換能力が向上する。
(4) At the time of the condensation operation, two heat transfer tubes serving as inlets of the heat exchanger of the refrigerant are provided on the downstream side with respect to the inflow direction of the air, and one outlet portion is provided adjacent to the inlet portion and on the upstream side thereof. By providing the highest temperature and the lowest temperature of the refrigerant adjacent to each other, when the path is configured to be counter-current, the temperature gradient of the refrigerant increases and the effect increases, and the heat exchange capacity increases. Is improved.

【0091】(5)フィンが上下段方向に2分割以上さ
れ、出口1パス部の最終出口の伝熱管が、前記フィンの
分割部の端部に設けることにより、熱交換器内部で最も
温度の低い出口管と、段方向に隣接する高温の伝熱管を
フィンを分割して分離することにより、両伝熱管の熱伝
導による熱交換を防止することにより、熱交換器内部で
の損失を低減させることにより、熱交換能力が大きく向
上する。
(5) The fin is divided into two or more in the vertical direction, and the heat transfer tube at the final outlet of the one-pass portion of the outlet is provided at the end of the split portion of the fin so that the highest temperature inside the heat exchanger can be obtained. By dividing the fin into a lower outlet pipe and a high-temperature heat transfer pipe adjacent in the stepwise direction, the heat exchange due to heat conduction of both heat transfer pipes is prevented, thereby reducing loss inside the heat exchanger. This greatly improves the heat exchange capacity.

【0092】一方、本発明の第2乃至第6実施形態にか
かるフィン付き熱交換器では、上記説明から明らかなよ
うに、以下の効果が得られる。先ず、段方向に隣接する
伝熱管の間のフィンの表面の片側に主たる複数の切り起
こしを設け、切り起こしの列方向の幅を列方向に隣接す
る互いの切り起こしの間の距離の略1/3〜1/2に
し、フィンを段の間で少なくとも一箇所で分割し、伝熱
管を連通して内部に冷媒が通過する構成にし、凝縮器と
して使用するとき、伝熱管の全本数の5%〜30%の割
合の冷媒の最終出口を含む出口寄りの伝熱管を冷媒流路
数1で構成し、他の伝熱管の冷媒流路数を2で構成し、
冷媒流路数を1で構成した冷媒の最終出口を含む出口寄
りの伝熱管を空気の最も風上の列に配置し、冷媒の最終
出口の伝熱管をフィンのいずれかの段間分割個所の端部
の段に配置し、冷媒の入口の2本の伝熱管を、冷媒流路
数を1で構成した冷媒の最終出口を含む出口寄りの伝熱
管の空気の風下あるいは風下近傍の段の最も風下の列に
配置し、少なくとも冷媒が過冷却液あるいは過熱ガスの
状態で内部を通過する伝熱管及びその伝熱管と列方向に
隣接する伝熱管の間の中央部近傍のフィンの表面に断熱
手段を設けたもので、この構成によれば、過冷却液状態
の冷媒が内部を流れる伝熱管の冷媒流路数を1とするの
で、凝縮温度を低くし、過冷却度を大きくしても、冷媒
流通抵抗をあまり上げずに、熱伝達率を大幅に向上させ
ることができ、段間分割個所の端部の段に配置した冷媒
の最終出口の伝熱管から段方向に隣接する伝熱管へのフ
ィンを通した熱伝導による熱交換を半減させることがで
き、内部を過冷却液状態の冷媒が流れる冷媒流路数を1
とした伝熱管を最も風上に配置し、その風下あるいは風
下近傍の段の最も下流の列に、内部を過熱ガス状態の冷
媒が流れる冷媒入口の2本の伝熱管を配置したので、対
向流的な効果により熱交換能力を向上させることがで
き、列方向に隣接する伝熱管の間の中央部近傍のフィン
部に設けた断熱手段により、それぞれの伝熱管の内部を
流れる冷媒間で、フィンベースを通して熱伝導するのを
抑制し、複数列での熱交換能力を向上させることができ
る。
On the other hand, in the heat exchanger with fins according to the second to sixth embodiments of the present invention, the following effects can be obtained as is apparent from the above description. First, a plurality of main cut-and-raised portions are provided on one side of the surface of the fin between the heat transfer tubes adjacent to each other in the stepwise direction, and the width of the cut-and-raised portions in the column direction is set to approximately one of the distance between the adjacent cut-and-raised portions in the column direction. 3 to 、, the fins are divided at least at one position between the stages, and the heat transfer tubes communicate with each other to allow the refrigerant to pass therethrough. When used as a condenser, the total number of heat transfer tubes is 5 % Of the heat transfer tubes including the final outlet of the refrigerant having a percentage of 30% to 30%, the number of the refrigerant channels is 1; the number of the refrigerant channels of the other heat transfer tubes is 2.
The heat transfer tubes near the outlet including the final outlet of the refrigerant having the refrigerant flow path number of 1 are arranged in the most upwind row of the air, and the heat transfer tubes at the final outlet of the refrigerant are arranged at any of the fins at the inter-stage division points. The two heat transfer tubes at the inlet of the refrigerant are arranged at the end stages, and the two heat transfer tubes at the inlet and downstream of the heat transfer tubes near the outlet including the final outlet of the refrigerant having the number of refrigerant flow paths of one are the most downstream. Insulation means are provided on the fin surface near the center between the heat transfer tubes and the heat transfer tubes adjacent to the heat transfer tubes arranged in the row in the leeward direction, at least in the state of supercooled liquid or superheated gas. According to this configuration, the number of refrigerant passages in the heat transfer tube through which the refrigerant in the supercooled liquid state flows is set to 1, so that the condensing temperature is lowered and the degree of subcooling is increased. The heat transfer coefficient can be greatly improved without significantly increasing the refrigerant flow resistance. The heat exchange by heat conduction through the fins from the heat transfer tube at the final outlet of the refrigerant arranged at the end of the division point to the heat transfer tube adjacent in the step direction can be halved, and the inside of the supercooled liquid state The number of refrigerant flow paths through which the refrigerant flows is 1
The heat transfer tubes are arranged at the most upwind side, and the two heat transfer tubes at the refrigerant inlet through which the refrigerant in the superheated gas state flows are arranged in the most downstream row of the leeward or downstream stage. The heat exchange capacity can be improved by the effective effect, and heat insulation means provided in the fin portion near the central portion between the heat transfer tubes adjacent in the row direction allows fins between the refrigerant flowing inside each heat transfer tube to be finned. Heat conduction through the base can be suppressed, and the heat exchange capacity in a plurality of rows can be improved.

【0093】又、少なくとも冷媒が過冷却液あるいは過
熱ガスの状態で内部を通過する伝熱管及びその伝熱管と
列方向に隣接する伝熱管の間の中央部近傍のフィンの表
面に設ける断熱手段として、段方向に長い切断部を設け
たもので、この構成によれば、列方向に隣接する伝熱管
の内部を流れる冷媒間で、フィンベースを通して熱伝導
するのを抑制することができると共に、切断部の温度境
界層前縁効果により伝熱性能を向上させることができ
る。
Further, as heat insulating means provided at least on the surface of the fin near the center between the heat transfer tube and the heat transfer tube adjacent to the heat transfer tube in the row direction, the heat transfer tube passing through at least the refrigerant in a supercooled liquid or superheated gas state. According to this configuration, it is possible to suppress heat conduction through the fin base between the refrigerant flowing inside the heat transfer tubes adjacent to each other in the row direction, and to perform cutting. The heat transfer performance can be improved by the temperature boundary layer leading edge effect of the portion.

【0094】更に、その切断部の段方向の長さを、伝熱
管の直径以上で段ピッチの略6倍以下としたもので、こ
の構成によれば、列方向に隣接する伝熱管の内部を流れ
る冷媒間で、フィンベースを通して熱伝導するのを有効
に抑制することができる。
Further, the length of the cut portion in the step direction is set to be not less than the diameter of the heat transfer tube and not more than about six times the step pitch. According to this configuration, the inside of the heat transfer tube adjacent in the row direction is formed. Heat conduction through the fin base between the flowing refrigerants can be effectively suppressed.

【0095】その切断部の端部を、冷媒の最終出口の伝
熱管を配置したフィンのいずれかの段間分割個所の端部
近傍に設けた構成によれば、最も温度の低い冷媒の最終
出口の伝熱管及びそれに列方向に隣接する伝熱管の間に
切断部が必ず存在するので、フィンベースを通した熱伝
導を最も有効に抑制することができる。
According to the configuration in which the end of the cut portion is provided near the end of one of the inter-stage division points of the fin in which the heat transfer tube of the final outlet of the refrigerant is disposed, the final outlet of the refrigerant having the lowest temperature is provided. Since the cut portion always exists between the heat transfer tube and the heat transfer tube adjacent to the heat transfer tube in the row direction, heat conduction through the fin base can be suppressed most effectively.

【0096】切断部を、非切断部を経て段方向に複数連
続させた構成によれば、切断部の温度境界層前縁効果に
より伝熱性能をさらに向上させることができる。
According to the structure in which a plurality of cut portions are continuously formed in the stepwise direction via the non-cut portions, the heat transfer performance can be further improved by the temperature boundary layer leading edge effect of the cut portions.

【0097】切断部を、非切断部を経て段方向に全段連
続させた構成によれば、切断部の温度境界層前縁効果に
より伝熱性能をさらに向上させることができる。
According to the configuration in which the cut portions are continuously connected in the stepwise direction via the non-cut portions, the heat transfer performance can be further improved by the temperature boundary layer leading edge effect of the cut portions.

【0098】その非切断部の長さを伝熱管の直径の略1
/2以下とした構成によれば、非切断部を通して列方向
に隣接する伝熱管の内部を流れる冷媒間で熱伝導し、熱
交換能力が低下するのを抑制することができる。
[0098] The length of the non-cut portion is set to about 1 of the diameter of the heat transfer tube.
According to the configuration of / 2 or less, heat is conducted between the refrigerant flowing inside the heat transfer tubes adjacent to each other in the row direction through the non-cut portions, and it is possible to suppress a decrease in heat exchange capacity.

【0099】切断部の段方向の長さ及び非切断部の長さ
をそれぞれ主として一定にし、フィン付き熱交換器の段
方向の全長を切断部の段方向の長さ及び非切断部の長さ
の和で除したとき、整数で割り切れず余数が生じる場合
には、その余数に相当する長さだけ一箇所の切断部の段
方向の長さを長くした構成によれば、一定長さの切断部
の金型を繰り返し使ってフィンを加工する場合も、一箇
所だけ段方向に余数に相当する長さだけずらして2度打
ちして非切断部をなくし他より長い切断部を形成するこ
とにより、切断部を、非切断部を経て段方向に全段連続
させたフィン付き熱交換器を容易に得ることができる。
The length of the cut portion in the step direction and the length of the non-cut portion are mainly constant, and the total length of the finned heat exchanger in the step direction is determined by the length of the cut portion in the step direction and the length of the non-cut portion. When a remainder is generated that is not divisible by an integer when divided by the sum of, according to the configuration in which the length in the step direction of one cut portion is increased by a length corresponding to the remainder, cutting of a fixed length is performed. When processing fins by repeatedly using the mold of the part, it is possible to eliminate the non-cut part and form a cut part longer than the other part by shifting the fin only one place in the step direction by the length equivalent to the remainder and hitting twice. In addition, it is possible to easily obtain a finned heat exchanger in which the cutting section is continuously connected in all stages in the step direction through the non-cutting section.

【0100】段方向の長さを長くした切断部を、冷媒流
路数を1で構成した冷媒の最終出口を含む出口寄りの伝
熱管の近傍の空気の風下に設けた構成によれば、過冷却
液状態の冷媒が内部を流れる伝熱管及び列方向に隣接す
る伝熱管を有効に断熱することができる。
According to the configuration in which the cut portion having a longer stepwise length is provided downwind of the air near the heat transfer tube near the outlet including the final outlet of the refrigerant having one refrigerant flow path, It is possible to effectively insulate the heat transfer tubes in which the coolant in the coolant state flows inside and the heat transfer tubes adjacent in the row direction.

【0101】断熱手段として、フィンを段方向に全長に
わたって列間分断した構成によれば、列方向に隣接する
伝熱管の内部を流れる冷媒間で、フィンベースを通して
熱伝導するのを抑制することができると共に、温度境界
層前縁効果により伝熱性能を向上させることができる。
According to the configuration in which the fins are divided into rows as the heat insulating means over the entire length in the step direction, it is possible to suppress the heat conduction through the fin base between the refrigerant flowing inside the heat transfer tubes adjacent in the row direction. In addition, the heat transfer performance can be improved by the temperature boundary layer leading edge effect.

【0102】断熱手段として、主たる複数の切り起こし
が切り起こされている面と同じ側に、主たる複数の切り
起こしと同じ幅の切り起こしを設けた構成によれば、列
方向に隣接する伝熱管の内部を流れる冷媒間で、フィン
ベースを通して熱伝導するのを抑制することができると
共に、切り起こしの温度境界層前縁効果により伝熱性能
を向上させることができ、すべての切り起こしを同じ側
に設けるので、金型の保守管理が容易である。
According to a configuration in which cutouts having the same width as the plurality of main cutouts are provided on the same side as the surface on which the main cutouts are cutout as heat insulating means, heat transfer tubes adjacent in the row direction are provided. In addition to suppressing the heat transfer through the fin base between the refrigerant flowing inside the fin base, the heat transfer performance can be improved by the temperature boundary layer leading edge effect of the cut and raised, and all the cut and raised can be on the same side The maintenance of the mold is easy.

【0103】断熱手段として、主たる複数の切り起こし
が切り起こされている面と反対側に、主たる複数の切り
起こしと同じ幅の切り起こしを設けた構成によれば、列
方向に隣接する伝熱管の内部を流れる冷媒間で、フィン
ベースを通して熱伝導するのを抑制することができると
共に、切り起こしの温度境界層前縁効果により伝熱性能
を向上させることができ、またその金型は、複数の切り
起こしを表裏交互に設けたものを容易に改造することに
より得ることができる。
According to the structure in which the cut-and-raised portion having the same width as the main cut-and-raised portions is provided on the side opposite to the surface on which the cut-and-lead portions are raised, the heat transfer tubes adjacent in the row direction are provided. Between the refrigerant flowing inside the fin base, it is possible to suppress the heat conduction, and the heat transfer performance can be improved by the cut-and-raised temperature boundary layer leading edge effect. Can be obtained by easily remodeling one in which the front and back are alternately provided.

【0104】断熱手段として、主たる複数の切り起こし
が切り起こされているのと反対側に、主たる複数の切り
起こしと同じ幅の切り起こしを設けると共に、列方向に
隣接する主たる複数の切り起こしの間の中央に、主たる
複数の切り起こしが切り起こされている面と反対側に、
すなわち表裏交互に主たる複数の切り起こしと同じ幅の
複数の切り起こしを設けた構成によれば、列方向に隣接
する伝熱管の内部を流れる冷媒間で、フィンベースを通
して熱伝導するのを抑制することができると共に、表裏
交互に設けた複数の切り起こしの温度境界層前縁効果に
より伝熱性能を向上させることができる。
As a heat insulating means, a cut-and-raised portion having the same width as the main and plural cut-and-raised portions is provided on the side opposite to the main and multiple cut-and-raised portions. In the middle between, on the side opposite to the side where the main cuts are cut,
That is, according to the configuration in which a plurality of cut-and-raised portions having the same width as the main plurality of cut-and-raised portions are provided alternately, heat conduction through the fin base is suppressed between the refrigerant flowing inside the heat transfer tubes adjacent in the row direction. The heat transfer performance can be improved by the temperature boundary layer leading edge effect of the plurality of cut-and-raised portions provided alternately on the front and back sides.

【0105】切り起こしの高さをフィンピッチの略1/
2〜略2/3とした構成によれば、フィン間での空気の
速度分布が均質で、通風抵抗の上昇を少なくすることが
できる。
The height of the cut-and-raised portion is set to approximately 1 / fin of the fin pitch.
According to the configuration of 2 to 2/3, the velocity distribution of the air between the fins is uniform, and the rise in ventilation resistance can be reduced.

【0106】各切り起こしの数を、段方向に隣接する伝
熱管の中心を結ぶ直線からの距離の近いものから順にn
1、n2、n3、・・・としたとき、n1≦n2≦n3
≦・・・となるようにしたもので、この構成によれば、
風下での局所的な速度分布が生じにくくなり、送風騒音
の上昇を少なくできる。
The number of cut-and-raised portions is determined by n in order from the closest to the straight line connecting the centers of the heat transfer tubes adjacent in the step direction.
, N1, n2, n3,..., N1 ≦ n2 ≦ n3
≤ ... According to this configuration,
Local velocity distribution on the leeward side is less likely to occur, and the rise of blowing noise can be reduced.

【0107】切り起こしの伝熱管近傍側の立ち上がり部
を概略伝熱管の外周に沿う方向と位置に形成した構成に
よれば、伝熱管後流に発生する止水域を減少させ、有効
伝熱面積を大きくすることができると共に、伝熱管から
切り起こしの立ち上がりまでの距離が短いのでフィン効
率が高く、各切り起こしの長さの合計が長いので温度境
界層前縁効果の大きい部分をより多く確保でき、伝熱性
能を大きくすることができる。
According to the configuration in which the cut-and-raised rising portion near the heat transfer tube is formed substantially in the direction and position along the outer periphery of the heat transfer tube, the water stoppage area generated downstream of the heat transfer tube is reduced, and the effective heat transfer area is reduced. The fin efficiency is high because the distance from the heat transfer tube to the rise of the cut-out is short, and the sum of the lengths of each cut-out is long, so it is possible to secure a larger portion of the temperature boundary layer leading edge effect. , Heat transfer performance can be increased.

【0108】切り起こしの伝熱管近傍でない側の立ち上
がり部をフィン間を流れる空気の主流方向に概略沿う方
法に形成した構成によれば、気流の整流効果を有し、通
風抵抗をあまり増大させず、送風騒音の上昇を少なくす
ることができる。
According to the structure in which the rising portion of the cut and raised portion on the side other than the vicinity of the heat transfer tube is formed in a manner substantially along the main flow direction of the air flowing between the fins, it has a rectifying effect of the air flow and does not significantly increase the ventilation resistance. In addition, it is possible to reduce an increase in blowing noise.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1実施形態にかかるフィン付き熱
交換器の構成図である。
FIG. 1 is a configuration diagram of a finned heat exchanger according to a first embodiment of the present invention.

【図2】 本発明の第2実施形態にかかるフィン付き熱
交換器のフィンの平面図である。
FIG. 2 is a plan view of fins of a finned heat exchanger according to a second embodiment of the present invention.

【図3】 本発明の第3実施形態にかかるフィン付き熱
交換器のフィンの平面図である。
FIG. 3 is a plan view of fins of a finned heat exchanger according to a third embodiment of the present invention.

【図4】 本発明の第4及び第5実施形態にかかるフィ
ン付き熱交換器のフィンの平面図である。
FIG. 4 is a plan view of a fin of a finned heat exchanger according to fourth and fifth embodiments of the present invention.

【図5】 (A)は本発明の第4実施形態にかかるフィ
ン付き熱交換器のフィンの詳細平面図であり、(B)は
図5(A)のVB−VB線に沿う断面図である。
5A is a detailed plan view of a fin of a finned heat exchanger according to a fourth embodiment of the present invention, and FIG. 5B is a cross-sectional view taken along line VB-VB in FIG. 5A. is there.

【図6】 (A)は本発明の第5実施形態にかかるフィ
ン付き熱交換器のフィンの詳細平面図であり、(B)は
図6(A)のVIB−VIB線に沿う断面図である。
6A is a detailed plan view of a fin of a finned heat exchanger according to a fifth embodiment of the present invention, and FIG. 6B is a cross-sectional view taken along line VIB-VIB in FIG. 6A. is there.

【図7】 本発明の第6実施形態にかかるフィン付き熱
交換器のフィンの平面図である。
FIG. 7 is a plan view of fins of a finned heat exchanger according to a sixth embodiment of the present invention.

【図8】 (A)は本発明の第6実施形態にかかるフィ
ン付き熱交換器のフィンの詳細平面図であり、(B)は
図8(A)のVIIIB−VIIIB線に沿う断面図である。
8A is a detailed plan view of a fin of a finned heat exchanger according to a sixth embodiment of the present invention, and FIG. 8B is a cross-sectional view taken along line VIIIB-VIIIB in FIG. 8A. is there.

【図9】 (A)は本発明の第2乃至第6実施形態にか
かるフィン付き熱交換器に共通のフィンの構成を示す平
面図であり、(B)は図9(A)のIXB−IXB線に層断
面図である。
9A is a plan view showing a configuration of a fin common to the finned heat exchangers according to the second to sixth embodiments of the present invention, and FIG. 9B is a plan view showing IXB- in FIG. 9A. It is a layer sectional view in the IXB line.

【図10】 本発明の第2乃至第6実施形態にかかるフ
ィン付き熱交換器に共通の冷媒流路の構成を示す正面図
である。
FIG. 10 is a front view showing a configuration of a refrigerant passage common to the finned heat exchangers according to the second to sixth embodiments of the present invention.

【図11】 従来のフィン付き熱交換器の構成図であ
る。
FIG. 11 is a configuration diagram of a conventional finned heat exchanger.

【図12】 (A)は第1の従来例の特開昭63−18
3391号公報のフィン付き熱交換器のフィンの平面図
であり、(B)は図12(A)のXIIB−XIIB線に沿う
断面図である。
FIG. 12A is a first conventional example of Japanese Patent Application Laid-Open No. 63-18 / 1988.
It is a top view of the fin of the heat exchanger with a fin of 3391 publication, (B) is sectional drawing which follows the XIIB-XIIB line of FIG.12 (A).

【図13】 (A)は第2の従来例の特開平2−217
792号公報のフィン付き熱交換器のフィンの平面図で
あり、(B)は図13(A)のXIIIB−XIIIB線に沿う
断面図である。
FIG. 13A shows a second conventional example of Japanese Patent Laid-Open No. 2-217.
FIG. 13 is a plan view of the fins of the finned heat exchanger disclosed in Japanese Patent Publication No. 792, and FIG. 13B is a cross-sectional view taken along line XIIIB-XIIIB of FIG.

【符号の説明】[Explanation of symbols]

A 空気の主流方向 B フィンの段間分割個所 1 入り口管 2 入り口管 6 出口管 11 フィン 12 フィンカラー 13 伝熱管 17a、18a 冷媒の入口の伝熱管 19a、19b、19c 冷媒の出口寄りの伝熱管 19d 冷媒の最終出口の伝熱管 24a、24b、24c 主たる切り起こし 25a、25b、25c 切り起こしの伝熱管近傍側の
立ち上がり部 25d 切り起こしの伝熱管近傍側でない側の立ち上が
り部 31 切断部 32 非切断部 33 段方向の長さを長くした切断部 34 切断部の端部 35 列間分断箇所 36 切り起こし 37c 切り起こしの伝熱管近傍側の立ち上がり部 37d 切り起こしの伝熱管近傍側でない側の立ち上が
り部 38 切り起こし 39c 切り起こしの伝熱管近傍側の立ち上がり部 39d 切り起こしの伝熱管近傍側でない側の立ち上が
り部 44a、44b、44c 切り起こし 45a,45b,45c 切り起こしの伝熱管近傍側の
立ち上がり部 45d 切り起こしの伝熱管近傍側でない側の立ち上が
り部
Reference Signs List A A main flow direction of air B Inter-stage division of fins 1 Inlet pipe 2 Inlet pipe 6 Outlet pipe 11 Fin 12 Fin color 13 Heat transfer pipe 17a, 18a Heat transfer pipe at refrigerant inlet 19a, 19b, 19c Heat transfer pipe near refrigerant outlet 19d Heat transfer tube 24a, 24b, 24c at final outlet of refrigerant Main cut-and-raised 25a, 25b, 25c Stand-up portion near cut-and-raised heat transfer tube 25d Start-up portion not cut and raised near heat transfer tube 31 Cut portion 32 Not cut Part 33 Cutting part with increased length in stepwise direction 34 End of cutting part 35 Splitting part between rows 36 Cut-and-raised 37c Stand-up part near cut-and-raised heat transfer tube 37d Stand-up part near cut-and-raised side of heat transfer tube 38 Cut-and-raised 39c Stand-up portion near the cut-and-raised heat transfer tube 39d Cut-and-raised heat transfer tube Rising portions 44a, 44b, and 44c on non-near-side side 45a, 45b, 45c Rising portions near side of cut-and-raised heat transfer tube 45d Rising portions on side not near the heat-transfer tube when cut and raised

Claims (23)

【特許請求の範囲】[Claims] 【請求項1】 一定間隔で互いに平行に並べられ、その
間を空気が所定方向に流動する多数の細長いフィンと、
内部を冷媒が通過すると共に、フィンに複数列で直角に
挿入される複数の伝熱管とを備えるフィン付き熱交換器
において、凝縮運転時に、伝熱管のパスが冷媒入り口部
分が2パスで、出口近傍で全伝熱管の5〜30%を1パ
スとしたことを特徴とするフィン付き熱交換器。
A plurality of elongated fins arranged in parallel with each other at regular intervals, between which air flows in a predetermined direction;
In the finned heat exchanger, which has a plurality of heat transfer tubes that are inserted into the fins at right angles in a plurality of rows while the refrigerant passes through the inside, during the condensation operation, the heat transfer tubes have two passages at the refrigerant inlet and two outlets. A heat exchanger with fins, wherein 5 to 30% of all heat transfer tubes are in one pass in the vicinity.
【請求項2】 伝熱管の列が大略上記所定方向に互いに
離隔されていると共に、1パスの部分の伝熱管を上記所
定方向において伝熱管の列の上流側に設けたことを特徴
とする請求項1に記載のフィン付き熱交換器。
2. The heat transfer tube row is substantially separated from each other in the predetermined direction, and the heat transfer tube of one pass is provided upstream of the heat transfer tube row in the predetermined direction. Item 2. A finned heat exchanger according to Item 1.
【請求項3】 伝熱管の列が大略上記所定方向に互いに
離隔されていると共に、冷媒の熱交換器入り口となる2
本の伝熱管を上記所定方向において伝熱管の列の下流側
に設けたことを特徴とする請求項1に記載のフィン付き
熱交換器。
3. A row of heat transfer tubes which are generally separated from each other in the predetermined direction and serve as an inlet for a heat exchanger of the refrigerant.
The finned heat exchanger according to claim 1, wherein the heat transfer tubes are provided downstream of the row of heat transfer tubes in the predetermined direction.
【請求項4】 伝熱管の列が大略上記所定方向に互いに
離隔されていると共に、冷媒の熱交換器入り口となる2
本の伝熱管を上記所定方向において伝熱管の列の下流側
に設ける一方、出口近傍の1パスの部分の伝熱管を入り
口部分の伝熱管と隣接するように、上記所定方向におい
て伝熱管の列の上流側に設けたことを特徴とする請求項
1に記載のフィン付き熱交換器。
4. A row of heat transfer tubes which are substantially separated from each other in the predetermined direction and serve as an inlet for a heat exchanger of a refrigerant.
The heat transfer tubes are provided in the predetermined direction such that the heat transfer tubes of one path near the outlet are adjacent to the heat transfer tubes at the entrance while the heat transfer tubes are provided downstream of the row of heat transfer tubes in the predetermined direction. The finned heat exchanger according to claim 1, wherein the heat exchanger is provided upstream of the fin.
【請求項5】 フィンが分割個所において横方向に少な
くとも2個のフィン部分に分割され、更に、出口近傍の
1パスの部分の伝熱管の内の最終の伝熱管を、フィンの
分割個所の近傍に設けたことを特徴とする請求項1に記
載のフィン付き熱交換器。
5. The fin is divided into at least two fin portions in a transverse direction at a split point, and further, the last heat transfer tube of the heat transfer tube in one pass near the outlet is connected to the fin near the split point. The finned heat exchanger according to claim 1, wherein the heat exchanger is provided with a fin.
【請求項6】 少なくとも冷媒が過冷却液あるいは過熱
ガスの状態で内部を通過する伝熱管及びその伝熱管とフ
ィンの横方向に隣接する伝熱管の間の中央部近傍でフィ
ンの表面に断熱手段を設けた請求項2乃至4のいずれか
に記載のフィン付き熱交換器。
6. A heat-insulating means on a surface of a fin near at least a central portion between a heat-transfer tube and a heat-transfer tube laterally adjacent to the fin, wherein the heat-transfer tube passes through at least a refrigerant in a supercooled liquid or superheated gas state. The finned heat exchanger according to any one of claims 2 to 4, further comprising:
【請求項7】 フィンの長手方向に隣接する伝熱管の間
でフィンの表面の片側に複数の切り起こしを設け、更
に、フィンの横方向の切り起こしの幅を、フィンの横方
向の切り起こしの間隔の略1/3〜1/2に設定した請
求項6に記載のフィン付き熱交換器。
7. A plurality of cut-and-raised portions on one side of the surface of the fin between the heat transfer tubes adjacent in the longitudinal direction of the fin, and further, the width of the cut-and-raised portion of the fin is reduced by the lateral cut-and-raised portion of the fin. The finned heat exchanger according to claim 6, wherein the distance is set to approximately 1/3 to 1/2 of the interval.
【請求項8】 断熱手段を、フィンの長手方向に延在す
る切断部で形成した請求項6に記載のフィン付き熱交換
器。
8. The finned heat exchanger according to claim 6, wherein the heat insulating means is formed by a cut portion extending in a longitudinal direction of the fin.
【請求項9】 フィンの長手方向の切断部の長さを、伝
熱管の直径以上でフィンの長手方向の伝熱管の間隔の略
6倍以下とした請求項8に記載のフィン付き熱交換器。
9. The finned heat exchanger according to claim 8, wherein the length of the cut portion in the longitudinal direction of the fin is not less than the diameter of the heat transfer tube and not more than about six times the interval between the heat transfer tubes in the longitudinal direction of the fin. .
【請求項10】 フィンが分割個所において横方向に少
なくとも2個のフィン部分に分割され、更に、出口近傍
の1パスの部分の伝熱管の内の最終の伝熱管を、フィン
の分割個所の近傍に設けると共に、切断部の端部を、前
記最終の伝熱管を設けたフィン部分の分割個所の近傍に
設けた請求項8に記載のフィン付き熱交換器。
10. The fin is divided laterally at a split location into at least two fin sections, and further, the last one of the heat transfer pipes in the one-pass section near the outlet is connected to the vicinity of the fin split location. 9. The finned heat exchanger according to claim 8, wherein an end of the cut portion is provided near a division of a fin portion where the final heat transfer tube is provided.
【請求項11】 切断部を、非切断部を経て段方向に複
数連続させた請求項8に記載のフィン付き熱交換器。
11. The heat exchanger with fins according to claim 8, wherein a plurality of cut portions are continuously formed in a stepwise direction via a non-cut portion.
【請求項12】 切断部を、非切断部を経て段方向に全
段連続させた請求項8に記載のフィン付き熱交換器。
12. The finned heat exchanger according to claim 8, wherein the cutting section is continuous in all steps in the step direction via the non-cutting section.
【請求項13】 非切断部の長さを伝熱管の直径の略1
/2以下とした請求項11又は12に記載のフィン付き
熱交換器。
13. The length of the non-cut portion is set to about 1 of the diameter of the heat transfer tube.
The finned heat exchanger according to claim 11 or 12, wherein the heat exchanger is not more than / 2.
【請求項14】 切断部の段方向の長さ及び非切断部の
長さをそれぞれ主として一定にし、フィン付き熱交換器
の段方向の全長を切断部の段方向の長さ及び非切断部の
長さの和で除したとき、整数で割り切れず余数が生じる
場合には、その余数に相当する長さだけ一箇所の切断部
の段方向の長さを長くした請求項12に記載のフィン付
き熱交換器。
14. The stepwise length of the cutting portion and the length of the non-cutting portion are respectively mainly constant, and the total length of the finned heat exchanger in the stepwise direction is set to the stepwise length of the cutting portion and the non-cutting portion. The fin with the fin according to claim 12, wherein, when divided by the sum of the lengths, if the remainder is not divisible by an integer, the stepwise length of one cut portion is increased by a length corresponding to the remainder. Heat exchanger.
【請求項15】 段方向の長さを長くした切断部を、冷
媒流路数を1で構成した冷媒の最終出口を含む出口寄り
の伝熱管の近傍の空気の風下に設けた請求項14に記載
のフィン付き熱交換器。
15. The method according to claim 14, wherein the cut portion having a longer stepwise length is provided on the downwind side of the air near the heat transfer tube near the outlet including the final outlet of the refrigerant having one refrigerant flow path. Heat exchanger with fins as described.
【請求項16】 断熱手段として、フィンを段方向に全
長にわたって列間分断した請求項6に記載のフィン付き
熱交換器。
16. The heat exchanger with fins according to claim 6, wherein the fins are divided in rows in the stepwise direction over the entire length as the heat insulating means.
【請求項17】 断熱手段として、切り起こしが切り起
こされている面と同じ側に、切り起こしと同じ幅の別の
切り起こしを設けた請求項7に記載のフィン付き熱交換
器。
17. The finned heat exchanger according to claim 7, wherein another cut-and-raised portion having the same width as the cut-and-raised portion is provided on the same side as the cut-and-raised surface as the heat insulating means.
【請求項18】 断熱手段として、切り起こしが切り起
こされている面と反対側に、切り起こしと同じ幅の別の
切り起こしを設けた請求項7に記載のフィン付き熱交換
器。
18. The finned heat exchanger according to claim 7, wherein another cut-and-raised portion having the same width as the cut-and-raised portion is provided on the side opposite to the cut-and-raised portion as the heat insulating means.
【請求項19】 断熱手段として、切り起こしが切り起
こされている面と反対側に、切り起こしと同じ幅の複数
の別の切り起こしを設けると共に、列方向に隣接する切
り起こしの間の中央に、切り起こしが切り起こされてい
る面と反対側に、すなわち表裏交互に切り起こしと別の
切り起こしを設けた請求項7に記載のフィン付き熱交換
器。
19. As a heat insulating means, a plurality of other cut-and-raised portions having the same width as the cut-and-raised portion are provided on the side opposite to the surface on which the cut-and-raised portion is cut, and a center between the cut-and-raised portions in the row direction is provided. 8. The finned heat exchanger according to claim 7, wherein a cut-and-raised portion and a separate cut-and-raised portion are provided on the side opposite to the cut-and-raised surface.
【請求項20】 切り起こしの高さをフィンピッチの略
1/2〜略2/3とした請求項7及び17乃至19のい
ずれかに記載のフィン付き熱交換器。
20. The finned heat exchanger according to claim 7, wherein the height of the cut-and-raised portion is approximately 1/2 to approximately 2/3 of the fin pitch.
【請求項21】 各切り起こしの数を、段方向に隣接す
る伝熱管の中心を結ぶ直線からの距離の近いものから順
にn1、n2、n3、・・・としたとき、n1≦n2≦
n3≦・・・となるようにした請求項7及び17乃至1
9のいずれかに記載のフィン付き熱交換器。
21. Assuming that the number of cut-and-raised portions is n1, n2, n3,... In ascending order from a straight line connecting the centers of heat transfer tubes adjacent in the step direction, n1 ≦ n2 ≦
7. The method according to claim 7, wherein n3.ltoreq.
10. The finned heat exchanger according to any one of 9 above.
【請求項22】 切り起こしの伝熱管近傍側の立ち上が
り部を概略伝熱管の外周に沿う方向と位置に形成した請
求項7及び17乃至19のいずれかに記載のフィン付き
熱交換器。
22. The heat exchanger with fins according to claim 7, wherein the rising portion of the cut-and-raised portion near the heat transfer tube is formed substantially in the direction and position along the outer periphery of the heat transfer tube.
【請求項23】 切り起こしの伝熱管近傍でない側の立
ち上がり部を上記所定方向に概略沿う方法に形成した請
求項7及び17乃至19のいずれかに記載のフィン付き
熱交換器。
23. The finned heat exchanger according to claim 7, wherein the rising portion of the cut-and-raised portion on the side other than the vicinity of the heat transfer tube is formed by a method substantially along the predetermined direction.
JP9269674A 1996-10-02 1997-10-02 Finned heat exchanger Pending JPH10185359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9269674A JPH10185359A (en) 1996-10-02 1997-10-02 Finned heat exchanger

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP26151496 1996-10-02
JP28952596 1996-10-31
JP8-261514 1996-10-31
JP8-289525 1996-10-31
JP9269674A JPH10185359A (en) 1996-10-02 1997-10-02 Finned heat exchanger

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002137344A Division JP2002340445A (en) 1996-10-02 2002-05-13 Finned heat exchanger

Publications (1)

Publication Number Publication Date
JPH10185359A true JPH10185359A (en) 1998-07-14

Family

ID=27335041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9269674A Pending JPH10185359A (en) 1996-10-02 1997-10-02 Finned heat exchanger

Country Status (1)

Country Link
JP (1) JPH10185359A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243184A (en) * 2001-02-20 2002-08-28 Fujitsu General Ltd Air conditioner
WO2005010442A1 (en) * 2003-07-28 2005-02-03 Matsushita Electric Industrial Co., Ltd. Air conditioner
JP2007113846A (en) * 2005-10-20 2007-05-10 Toshiba Kyaria Kk Heat exchanger, and indoor unit for air conditioner
JP2008128553A (en) * 2006-11-21 2008-06-05 Matsushita Electric Ind Co Ltd Outdoor unit of air conditioner
JPWO2013094162A1 (en) * 2011-12-19 2015-04-27 パナソニックIpマネジメント株式会社 Finned heat exchanger
JP2017166757A (en) * 2016-03-16 2017-09-21 三星電子株式会社Samsung Electronics Co.,Ltd. Heat exchanger and air conditioner

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243184A (en) * 2001-02-20 2002-08-28 Fujitsu General Ltd Air conditioner
WO2005010442A1 (en) * 2003-07-28 2005-02-03 Matsushita Electric Industrial Co., Ltd. Air conditioner
JPWO2005010442A1 (en) * 2003-07-28 2006-09-14 松下電器産業株式会社 Air conditioner
JP4524253B2 (en) * 2003-07-28 2010-08-11 パナソニック株式会社 Air conditioner
JP2007113846A (en) * 2005-10-20 2007-05-10 Toshiba Kyaria Kk Heat exchanger, and indoor unit for air conditioner
JP2008128553A (en) * 2006-11-21 2008-06-05 Matsushita Electric Ind Co Ltd Outdoor unit of air conditioner
JPWO2013094162A1 (en) * 2011-12-19 2015-04-27 パナソニックIpマネジメント株式会社 Finned heat exchanger
JP2017166757A (en) * 2016-03-16 2017-09-21 三星電子株式会社Samsung Electronics Co.,Ltd. Heat exchanger and air conditioner
US11561014B2 (en) 2016-03-16 2023-01-24 Samsung Electronics Co., Ltd. Air conditioner including a heat exchanger

Similar Documents

Publication Publication Date Title
KR100266102B1 (en) Finned heat exchanger
JP6109303B2 (en) Heat exchanger and refrigeration cycle apparatus
JP3367467B2 (en) Finned heat exchanger
JP6239159B2 (en) Refrigeration cycle equipment
WO2015004720A1 (en) Heat exchanger, and air conditioner
JP2005265263A (en) Heat-exchanger and air-conditioner
WO2005024309A1 (en) Finned heat exchanger and method of manufacturing the same
JP5608478B2 (en) Heat exchanger and air conditioner using the same
JPH10185359A (en) Finned heat exchanger
JP6915714B1 (en) Heat exchanger
JP2010048473A (en) Heat exchanger unit and air conditioner equipped therewith
JP3344218B2 (en) Heat exchanger
JP2001317890A (en) Heat exchanger with fin
JP3185687B2 (en) Heat exchanger
JP3833351B2 (en) Indoor unit for air conditioner and its indoor heat exchanger
JP4624146B2 (en) Air conditioner indoor unit
JP2002340445A (en) Finned heat exchanger
WO2019130394A1 (en) Heat exchanger and refrigeration cycle device
JP5404571B2 (en) Heat exchanger and equipment
JP2004085139A (en) Indoor unit for air conditioner
JPH085198A (en) Air conditioning heat exchanger
JP2003222436A (en) Heat exchanger for heat pump type air conditioner
JP2010107055A (en) Heat exchanger
JPH08132857A (en) Refrigerating cycle of air conditioner for vehicle
JPS58214783A (en) Heat exchanger