JP3367467B2 - Finned heat exchanger - Google Patents

Finned heat exchanger

Info

Publication number
JP3367467B2
JP3367467B2 JP13529899A JP13529899A JP3367467B2 JP 3367467 B2 JP3367467 B2 JP 3367467B2 JP 13529899 A JP13529899 A JP 13529899A JP 13529899 A JP13529899 A JP 13529899A JP 3367467 B2 JP3367467 B2 JP 3367467B2
Authority
JP
Japan
Prior art keywords
heat transfer
heat exchanger
transfer tube
fins
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13529899A
Other languages
Japanese (ja)
Other versions
JP2000329486A (en
Inventor
治 青柳
智朗 安藤
昭一 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP13529899A priority Critical patent/JP3367467B2/en
Priority to KR1020000026099A priority patent/KR100612765B1/en
Publication of JP2000329486A publication Critical patent/JP2000329486A/en
Application granted granted Critical
Publication of JP3367467B2 publication Critical patent/JP3367467B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、主として空気調和
機等に使用されるフィン付き熱交換器に関するものであ
る。
TECHNICAL FIELD The present invention relates to a finned heat exchanger mainly used in an air conditioner or the like.

【0002】[0002]

【従来の技術】最近のフィン付き熱交換器として一般的
な第1従来例について図8と図9に従い説明する。図8
はフィン付き熱交換器の基本構成を示す斜視図、図9は
その側面図である。図8と図9に示すようにフィン付き
熱交換器は、補助熱交換器101aと主熱交換器101
bとから構成される。そして、補助熱交換器101aは
所定間隔で並設したフィン群102aと、このフィン群
を略直角に貫通して列を成す伝熱管群103aとからな
り、気体流入側(イ)に配置している。また、主熱交換
器101bは所定間隔で並設したフィン群102bと、
このフィン群を略直角に貫通して列を成す伝熱管群10
3bとからなり、気体流出側(ロ)に配置している。1
04は気流で、フィン群102a、フィン群102bを
矢印方向に流動し、伝熱管群103a、伝熱管群103
bの管内を流動する流体と熱交換する。なお、このフィ
ン付き熱交換器を、セパレ−ト型空気調和機の室内機に
搭載する際には、フィン群102bの数箇所に切断部を
設け、数箇所を折り曲げて搭載するのが一般的である。
2. Description of the Related Art A first conventional example of a recent finned heat exchanger will be described with reference to FIGS. Figure 8
Is a perspective view showing the basic configuration of a heat exchanger with fins, and FIG. 9 is a side view thereof. As shown in FIGS. 8 and 9, the heat exchanger with fins includes the auxiliary heat exchanger 101a and the main heat exchanger 101.
b. The auxiliary heat exchanger 101a is composed of a fin group 102a arranged in parallel at a predetermined interval and a heat transfer tube group 103a forming a row penetrating the fin group at a substantially right angle and arranged on the gas inflow side (a). There is. The main heat exchanger 101b includes a fin group 102b arranged in parallel at a predetermined interval,
A group of heat transfer tubes 10 forming a row penetrating the fin group at a substantially right angle.
3b and is arranged on the gas outflow side (b). 1
Reference numeral 04 denotes an air flow, which flows through the fin group 102a and the fin group 102b in the direction of the arrow, and the heat transfer tube group 103a and the heat transfer tube group 103.
Heat exchange with the fluid flowing in the tube of b. When this heat exchanger with fins is mounted on an indoor unit of a separate type air conditioner, it is common to provide cutting portions at several points of the fin group 102b and bend the several points for mounting. Is.

【0003】上記構成において、空気調和機の冷凍サイ
クルの凝縮器として使用した場合、伝熱管内を流動する
流体は気相状態で矢印A側から流入し、分岐部105に
より伝熱管群103bの上下に分流し、気流104との
熱交換により気液二相状態を経て液状態となり、分岐部
106で再び合流し、伝熱管群103aを経て矢印B側
に流出する。このようにフィン付き熱交換器は伝熱管群
103a内を流れる流体が殆ど液状態となる補助熱交換
器101aと伝熱管群103b内を流れる流体が気相状
態または気液二相状態となる主熱交換器101bとから
構成される。
In the above structure, when used as a condenser of a refrigeration cycle of an air conditioner, the fluid flowing in the heat transfer tubes flows in the vapor phase state from the arrow A side, and the branch portion 105 moves the heat transfer tube group 103b up and down. To a liquid state through a gas-liquid two-phase state by heat exchange with the air flow 104, merges again at the branching portion 106, and flows out to the arrow B side through the heat transfer tube group 103a. As described above, in the finned heat exchanger, the fluid flowing in the heat transfer tube group 103a is almost in a liquid state and the fluid flowing in the heat transfer tube group 103b is in a gas phase state or a gas-liquid two-phase state. It is composed of a heat exchanger 101b.

【0004】従って、冷媒配管としての伝熱管群103
aの流路数を冷媒出口に近づくにつれて少流量路化し、
かつ主流方向の気流104の風上側である気体流入側
(イ)に配置するとともに凝縮器出口側で低温部となる
補助熱交換器101aを、主熱交換器101bと分離す
ることで、風下側である気体流出側への熱伝導を遮断す
ることができ、過冷却を取り易くすることで凝縮性能の
向上を図れるというものである。
Therefore, the heat transfer tube group 103 as the refrigerant piping
The number of flow paths of a becomes smaller as it approaches the refrigerant outlet,
Further, the auxiliary heat exchanger 101a, which is arranged on the gas inflow side (a) which is the windward side of the air flow 104 in the main flow direction and which is the low temperature part on the condenser outlet side, is separated from the main heat exchanger 101b, thereby leeward side. It is possible to block the heat conduction to the gas outflow side, and to improve the condensing performance by facilitating supercooling.

【0005】また、第2従来例である特開昭57−12
7732号公報の代表図面を図10に示す。図10は熱
交換器の斜視図である。フィン付き熱交換器101c
は、伝熱管群103cと103dと、これに直交して多
数取り付けられたフィン102cとからなる。
A second conventional example is Japanese Patent Laid-Open No. 57-12.
A representative drawing of Japanese Patent No. 7732 is shown in FIG. FIG. 10 is a perspective view of the heat exchanger. Finned heat exchanger 101c
Is composed of heat transfer tube groups 103c and 103d, and a large number of fins 102c mounted orthogonally thereto.

【0006】空気調和機の冷凍サイクルの凝縮器として
使用した場合、フィン付き熱交換器101cは、高温高
圧のガス冷媒が伝熱管群103c内を通り、伝熱管群1
03d側へと流れる。その間、伝熱管群103c、10
3d内を流れる冷媒は、矢印104の気流と熱交換し凝
縮する。この場合、フィン付き熱交換器101cの気体
流入側(イ)に細管の伝熱管群103dを設けること
で、液相状態となった管内を流れる冷媒の流速を向上さ
せることができ、性能向上が図れるというものである。
When used as a condenser of a refrigerating cycle of an air conditioner, in the finned heat exchanger 101c, the high-temperature and high-pressure gas refrigerant passes through the heat transfer tube group 103c, and the heat transfer tube group 1
It flows to the 03d side. Meanwhile, the heat transfer tube groups 103c, 10
The refrigerant flowing in 3d exchanges heat with the air flow indicated by arrow 104 and condenses. In this case, by providing the heat transfer tube group 103d of thin tubes on the gas inflow side (a) of the heat exchanger 101c with fins, the flow velocity of the refrigerant flowing in the tubes in the liquid phase state can be improved and the performance can be improved. It can be achieved.

【0007】また、第3従来例である特開平6−174
389号公報の代表図面を図11に示す。図11はフィ
ン付き熱交換器の側面図であり、熱交換器101eの気
体流出側(ロ)の伝熱管群103fの列の段ピッチP3
を、気体流入側(イ)の伝熱管群103eの列の段ピッ
チP4より長くする。
A third conventional example is Japanese Patent Laid-Open No. 6-174.
A representative drawing of Japanese Patent No. 389 is shown in FIG. FIG. 11 is a side view of the heat exchanger with fins, and the stage pitch P3 of the row of the heat transfer tube group 103f on the gas outflow side (b) of the heat exchanger 101e.
Is longer than the stage pitch P4 of the row of the heat transfer tube group 103e on the gas inflow side (a).

【0008】このような構成により、気体104の流出
するフィン付き熱交換器101eの開口面積に対して伝
熱管群103fの止水域108の占める割合を少なくで
きるので、送風機107に吸込まれる時に発生する騒音
を低減させることができるというものである。
With such a structure, the proportion of the water blocking area 108 of the heat transfer tube group 103f to the opening area of the finned heat exchanger 101e through which the gas 104 flows out can be reduced, so that it is generated when being sucked into the blower 107. The noise generated can be reduced.

【0009】また、第4従来例である特開平10−21
3386号公報の代表図面を図12と図13に示す。図
12はフィン付き熱交換器の一部を詳細に表した独立フ
ィンチューブ熱交換器の斜視図、図13は第4従来例を
適用したパッケージエアコンの室外機を示す図である。
独立フィンチューブ熱交換器101gは、複数の独立フ
ィン102gを伝熱管103gが貫通することで形成さ
れている。それぞれの独立フィン102gは、その下端
部101iと上端部101hで接するように構成されて
おり、下端部101iと上端部101hのそれぞれの端
部は接触させた時に少なくとも1点で交差するように構
成する。これにより、水切り性能を向上させることがで
きるとしている。
A fourth conventional example is Japanese Patent Laid-Open No. 10-21.
Representative drawings of the 3386 publication are shown in FIG. 12 and FIG. FIG. 12 is a perspective view of an independent fin tube heat exchanger showing a part of a finned heat exchanger in detail, and FIG. 13 is a view showing an outdoor unit of a packaged air conditioner to which a fourth conventional example is applied.
The independent fin tube heat exchanger 101g is formed by a heat transfer tube 103g penetrating a plurality of independent fins 102g. Each of the independent fins 102g is configured to be in contact with the lower end portion 101i and the upper end portion 101h, and each of the lower end portion 101i and the upper end portion 101h is configured to intersect at at least one point when they are brought into contact with each other. To do. As a result, the drainage performance can be improved.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、第1従
来例の構成では、主熱交換器101b内の二相域内では
隣り合う伝熱管103b間の温度差が0.5度以内であ
るのに対し、液相域である補助熱交換器101a内の隣
り合う伝熱管103a間の温度差は0.5度以上あり、
補助熱交換器内の隣り合う伝熱管間の熱伝導による熱ロ
スは無視できない課題を有していた。
However, in the structure of the first conventional example, the temperature difference between the adjacent heat transfer tubes 103b is within 0.5 degrees in the two-phase region of the main heat exchanger 101b. , The temperature difference between adjacent heat transfer tubes 103a in the auxiliary heat exchanger 101a in the liquid phase region is 0.5 degrees or more,
The heat loss due to heat conduction between adjacent heat transfer tubes in the auxiliary heat exchanger has a problem that cannot be ignored.

【0011】また、第2従来例の構成では、伝熱管群1
03dの段ピッチを変えずに単に細管にすると管内の熱
伝達率の向上よりもフィン効率の低下の要因が大きく、
高性能化は図れないという課題を有していた。
Further, in the configuration of the second conventional example, the heat transfer tube group 1
If a thin tube is simply used without changing the step pitch of 03d, the factor of lowering the fin efficiency is larger than the improvement of the heat transfer coefficient in the tube.
There was a problem that high performance could not be achieved.

【0012】また、第3従来例の構成では、気体流出側
(ロ)の伝熱管群103fの列の段ピッチP3を、気体
流入側(イ)の伝熱管群103eの列の段ピッチP4よ
り長くすることで気体流出側の熱交換器の能力が大きく
低下し、この能力低下分を風量アップで補わなければな
らず、結果的に騒音の低減には寄与しない。また、気体
流出側(ロ)の段ピッチP3を維持しつつ、気体流入側
(イ)の段ピッチP4を短くした場合、第3従来例で記
述する騒音低減の効果は得られないが、凝縮器として作
用した場合、空気流入側の能力向上が図れる。しかし、
蒸発器として作用させると伝熱管の本数が増加し、圧力
損失の増大により能力は低下する。このような課題を第
3従来例は有していた。
Further, in the configuration of the third conventional example, the step pitch P3 of the row of the heat transfer tube group 103f on the gas outflow side (b) is set to be higher than the step pitch P4 of the row of the heat transfer tube group 103e on the gas inflow side (a). By increasing the length, the capacity of the heat exchanger on the gas outflow side is greatly reduced, and the reduced capacity must be compensated for by increasing the air volume, and as a result, it does not contribute to noise reduction. Further, when the step pitch P4 on the gas inflow side (b) is shortened while maintaining the step pitch P3 on the gas outflow side (b), the effect of noise reduction described in the third conventional example cannot be obtained, but When acting as a container, the capacity on the air inflow side can be improved. But,
When it acts as an evaporator, the number of heat transfer tubes increases, and the capacity decreases due to an increase in pressure loss. The third conventional example has such a problem.

【0013】また、第4従来例の構成では、図13に示
すように、全段で独立フィンを用いることで、下端部1
01iと上端部101h間の切断部が数多く存在し、こ
れにより熱交換器を通過する気流は乱され、熱交換器を
通過する気流の抵抗は切断部を有しない熱交換器より著
しく増大する。通風抵抗比としては良好であっても、フ
ィン表面が乾いている凝縮器として作用させた場合、下
端部101iや上端部101hが存在しない一体のフィ
ンよりも通過する抵抗は増大し、送風回路内に搭載した
際、騒音値の増大や風量の減少などの要因となる課題を
有していた。
Further, in the structure of the fourth conventional example, as shown in FIG. 13, by using the independent fins in all stages, the lower end portion 1
There are many cut portions between 01i and the upper end portion 101h, which disturbs the air flow passing through the heat exchanger, and the resistance of the air flow passing through the heat exchanger is significantly increased as compared with the heat exchanger having no cut portion. Even if the ventilation resistance ratio is good, when it is operated as a condenser having a dry fin surface, the resistance passing through is increased compared to an integral fin without the lower end portion 101i and the upper end portion 101h, and the inside of the blower circuit is increased. When it was installed in a car, it had problems such as an increase in noise level and a decrease in air flow.

【0014】本発明はこのような従来の課題を解決する
ものであり、気体流入側の伝熱管内の面積増大と管内圧
力損失の増大を押さえ、冷凍サイクルの凝縮器、蒸発器
のいずれに使用しても高性能を発揮できるフィン付き熱
交換器を提供することを目的とする。
The present invention is intended to solve such a conventional problem and suppresses an increase in the area inside the heat transfer tube on the gas inflow side and an increase in the pressure loss inside the tube, and is used for either a condenser or an evaporator of a refrigeration cycle. It is an object of the present invention to provide a heat exchanger with fins that can exhibit high performance even if it is used.

【0015】[0015]

【課題を解決するための手段】上記課題を解決するため
に本発明は、所定間隔で平行に並設し、その間を気体が
流動するフィン群と、このフィン群を略直角に貫通して
列を成し、内部を流体が流動する伝熱管群とを備え、気
体流入側の伝熱管群の伝熱管間の段ピッチを、気体流出
側の伝熱管群の伝熱管間の段ピッチより小さくせしめ、
かつ気体流入側の伝熱管群の1列内の伝熱管の本数を、
気体流出側の伝熱管群の1列内の本数以下に構成したも
ので、気体流出側の伝熱管群における管内の伝熱面積の
拡大が図れ、凝縮能力および蒸発能力とも高性能化が図
れるものである。
In order to solve the above-mentioned problems, the present invention provides a group of fins which are arranged in parallel at a predetermined interval and through which gas flows, and a row which penetrates the fins at a substantially right angle. And a heat transfer tube group through which a fluid flows, and the step pitch between the heat transfer tubes of the gas transfer side heat transfer tube group is smaller than the step pitch between the heat transfer tubes of the gas outflow side heat transfer tube group. ,
And the number of heat transfer tubes in one row of the heat transfer tube group on the gas inflow side,
Which was constructed in the following number in the first column of the tube bank of the gas outlet side, that the tubes in the tube bank of the gas outlet side that increased heat transfer area, condensation capacity and the evaporation capacity with high performance can be achieved Is.

【0016】[0016]

【発明の実施の形態】請求項1に記載の発明は、主熱交
換器とは別体で、過冷却域に配し、開口面積が主熱交換
器より小さい補助熱交換器の 伝熱管を楕円状または偏平
状の形状に構成したものである。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 is a main heat exchanger.
Separated from the converter, it is placed in the supercooling area and the opening area is the main heat exchange
The heat transfer tubes of the auxiliary heat exchanger, which is smaller than the reactor, are configured in an elliptical or flat shape.

【0017】上記構成によれば、伝熱管内の中央付近を
流れる流体と管壁との距離を小さくできる。
With the above arrangement, the distance between the fluid flowing near the center of the heat transfer tube and the tube wall can be reduced.

【0018】また、請求項2に記載の発明は、気体流入
側の伝熱管群の伝熱管と伝熱管の間におけるフィンの長
さを伝熱管と伝熱管間の段ピッチより長く、気体流出側
の伝熱管群では伝熱管と伝熱管の間におけるフィンの長
さと伝熱管間の段ピッチをほぼ等しい長さに構成したも
のである。
According to the second aspect of the present invention , the length of the fins between the heat transfer tubes of the heat transfer tube group on the gas inflow side is longer than the step pitch between the heat transfer tubes and the gas outflow side. In the heat transfer tube group, the length of the fins between the heat transfer tubes and the step pitch between the heat transfer tubes are configured to be substantially equal.

【0019】この構成によれば段ピッチを維持したまま
フィン部分の長さを長くでき、伝熱管の段間の熱伝導を
抑制することができ、伝熱管における段間の熱伝導ロス
が低減される。
According to this structure, the length of the fin portion can be increased while maintaining the stage pitch, heat conduction between the stages of the heat transfer tube can be suppressed, and heat conduction loss between the stages in the heat transfer tube can be reduced. It

【0020】また、請求項3に記載の発明は、気体流入
側の伝熱管の列のフィンにおける全段にわたって伝熱管
と伝熱管の間に、切断部または打ち抜き部を設け、前記
切断部または打ち抜き部を気流の主流方向に対して傾斜
させた構成にしたものである。
According to the third aspect of the present invention , a cutting part or a punching part is provided between the heat transfer pipes and the heat transfer pipes in all the stages of the fins of the row of the heat transfer pipes on the gas inflow side. The part is inclined with respect to the mainstream direction of the air flow.

【0021】この構成によれば、伝熱管の段間の熱伝導
によるロスを低減できる。
According to this structure, the loss due to the heat conduction between the stages of the heat transfer tube can be reduced.

【0022】また、請求項4に記載の発明は、気体流入
側の列の伝熱管において単位長さ当たりの管内面の伝熱
面積を、気体流出側の伝熱管内面の伝熱面積より大きく
構成したものである。
Further, in the invention as set forth in claim 4, the heat transfer area of the tube inner surface per unit length in the heat transfer tube on the gas inflow side is set larger than the heat transfer area of the inner surface of the heat transfer tube on the gas outflow side. It was done.

【0023】この構成によれば、気体流入側として凝縮
器出口および蒸発器入口部分で伝熱面積の拡大を図れ
る。また、伝熱面積の拡大は管内の圧力損失の増大をま
ねきやすいが、凝縮器出口および蒸発器入口部分で用い
ることで凝縮温度の低下や蒸発温度の上昇を抑えながら
管内の伝熱面積の拡大を図れる。
According to this structure, the heat transfer area can be enlarged at the condenser outlet and the evaporator inlet on the gas inflow side. In addition, the expansion of the heat transfer area tends to increase the pressure loss in the tube, but by using it at the condenser outlet and the evaporator inlet part, the expansion of the heat transfer area in the tube while suppressing the decrease of the condensation temperature and the increase of the evaporation temperature Can be achieved.

【0024】[0024]

【実施例】以下本発明の実施例について図面を参照しな
がら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0025】(実施例1) 図1は実施例1の発明であるフィン付き熱交換器を示す
側面図である。このフィン付き熱交換器は、矢印4で示
す気流の気体流入側(イ)に位置する補助熱交換器11
aと、気体流出側(ロ)に位置する主熱交換器11bか
らなる。補助熱交換器11aは所定間隔で並設した多数
のフィン群12aと、このフィン群を略直角に貫通して
蛇行状に配列した伝熱管群13aとからなる。また、主
熱交換器11bは所定間隔で並設した多数のフィン群1
2bと、このフィン群を略直角に貫通して蛇行状に配列
した伝熱管群13bとからなる。そして、補助熱交換器
11aは縦列を成した伝熱管群13aの伝熱管を6段と
し、主熱交換器11bの1列の12段とした伝熱管群1
3bの1列内の伝熱管の本数以下にしたものである。す
なわち、補助熱交換器11aは1列内の伝熱管群13a
の管段数を、主熱交換器11bの1列内の伝熱管群13
bの管段数より少ない段数にするとともに、伝熱管群1
3aと複数列の伝熱管群13bとは切り離されている。
また、補助熱交換器11aは伝熱管群13aの伝熱管中
心と次の伝熱管中心間の長さである段ピッチP1を、主
熱交換器11bの伝熱管群13bの伝熱管間の段ピッチ
P2より短くしている。15は主熱交換器11bの伝熱
管群13b入口側の分岐部で、16は同じく出口側の分
岐部である。
(First Embodiment) FIG. 1 is a side view showing a heat exchanger with fins according to the first embodiment of the present invention. This finned heat exchanger is an auxiliary heat exchanger 11 located on the gas inflow side (a) of the air flow indicated by arrow 4.
a and a main heat exchanger 11b located on the gas outflow side (b). The auxiliary heat exchanger 11a is composed of a large number of fin groups 12a arranged in parallel at a predetermined interval, and a heat transfer tube group 13a that penetrates the fin groups at a substantially right angle and is arranged in a meandering shape. Further, the main heat exchanger 11b has a large number of fin groups 1 arranged in parallel at a predetermined interval.
2b, and a heat transfer tube group 13b penetrating this fin group at a substantially right angle and arranged in a meandering shape. In the auxiliary heat exchanger 11a, the heat transfer tubes of the heat transfer tube group 13a that are arranged in series are arranged in 6 stages, and the main heat exchanger 11b is arranged in 12 rows in 1 line.
3b is the number of heat transfer tubes in one row or less. That is, the auxiliary heat exchanger 11a includes the heat transfer tube group 13a in one row.
The number of tube stages of the heat transfer tube group 13 in one row of the main heat exchanger 11b.
The number of tubes is smaller than the number of tubes in b, and the heat transfer tube group 1
3a and the plurality of rows of heat transfer tube groups 13b are separated.
In the auxiliary heat exchanger 11a, the step pitch P1 which is the length between the center of the heat transfer tube of the heat transfer tube group 13a and the center of the next heat transfer tube is defined as the step pitch between the heat transfer tubes of the heat transfer tube group 13b of the main heat exchanger 11b. It is shorter than P2. Reference numeral 15 is a branch portion on the inlet side of the heat transfer tube group 13b of the main heat exchanger 11b, and 16 is a branch portion on the outlet side.

【0026】なお、気流4はフィン群12a、フィン群
12bを矢印方向に流動し、伝熱管群13a、伝熱管群
13bの管内を流動する流体と熱交換する。セパレ−ト
型空気調和機の室内機に搭載する際には、補助または主
熱交換器に数箇所の切込み部または切断部を設け、折り
曲げて搭載するのが一般的である。
The air flow 4 flows through the fin group 12a and the fin group 12b in the direction of the arrow and exchanges heat with the fluid flowing inside the heat transfer tube group 13a and the heat transfer tube group 13b. When mounted on the indoor unit of a separate type air conditioner, it is common to provide several cuts or cuts in the auxiliary or main heat exchanger, and then bend and mount.

【0027】上記構成において、空気調和機の冷凍サイ
クルの凝縮器として使用した場合、伝熱管内を流れる流
体は気相状態で矢印Aのように主熱交換器11bの伝熱
管から流入して分岐部15により伝熱管群13bの上下
に分流し、気流4との熱交換により気液二相状態を経て
液状態となり、分岐部16で再び合流して補助熱交換器
11aの縦列を成した伝熱管群13aの伝熱管に流入し
て矢印Bのように流出する。
In the above structure, when used as a condenser of a refrigeration cycle of an air conditioner, the fluid flowing in the heat transfer tube flows in a gas phase state from the heat transfer tube of the main heat exchanger 11b and is branched as shown by arrow A. The heat transfer tube group 13b is divided into upper and lower parts by the part 15, and becomes a liquid state through a gas-liquid two-phase state by heat exchange with the air flow 4, and then merges again at the branch part 16 to form a cascade of auxiliary heat exchangers 11a. It flows into the heat transfer tubes of the heat tube group 13a and flows out as shown by arrow B.

【0028】また、空気調和機の冷凍サイクルの蒸発器
として作用する場合、伝熱管内を流れる流体は気液二相
状態で矢印Bのように補助熱交換器11aの縦列を成し
た伝熱管群13aの伝熱管に流入し、さらに主熱交換器
11bの分岐部16で伝熱管群13bの上下へ分流して
気流4との熱交換した後、再び分岐部15で合流して伝
熱管から矢印Aのように流出する。
When acting as an evaporator of a refrigerating cycle of an air conditioner, the fluid flowing in the heat transfer tubes is in a gas-liquid two-phase state, and the heat transfer tube group in which the auxiliary heat exchangers 11a are arranged in tandem as shown by arrow B. After flowing into the heat transfer tube 13a, the branch portion 16 of the main heat exchanger 11b splits the heat transfer tube group 13b up and down to exchange heat with the air flow 4, and then joins again at the branch portion 15 to make an arrow from the heat transfer tube. It flows out like A.

【0029】この構成によれば、補助熱交換器11aの
伝熱管群13aの段ピッチP1が、主熱交換器11bの
伝熱管群13bの段ピッチP2より短いため伝熱管内の
伝熱面積を拡大でき、これにより補助熱交換器の高性能
化を図ることができる。したがって、凝縮器として作用
させると、伝熱管内の伝熱性能としては非常に低い液相
状態の過冷却域を補助熱交換器11a内で多くとること
ができ、これにより管内伝熱性能として良好な二相状態
を主熱交換器11b内で多くとり、熱交換能力を増大で
き、フィン付き熱交換器の高性能化を図ることができ
る。また、蒸発器として作用させた場合、補助熱交換器
11aの1列内の伝熱管の段数は主熱交換器の伝熱管群
13bの1列内の段数より少ない段数とすることによ
り、管内圧力損失の増大を抑え、蒸発能力の向上を図る
ことができる。
According to this structure, since the step pitch P1 of the heat transfer tube group 13a of the auxiliary heat exchanger 11a is shorter than the step pitch P2 of the heat transfer tube group 13b of the main heat exchanger 11b, the heat transfer area in the heat transfer tube is reduced. It is possible to expand the size of the auxiliary heat exchanger, which can improve the performance of the auxiliary heat exchanger. Therefore, when it acts as a condenser, a large amount of supercooled region in a liquid phase state, which is extremely low in heat transfer performance in the heat transfer tube, can be taken in the auxiliary heat exchanger 11a, which results in good heat transfer performance in the tube. Many two-phase states can be taken in the main heat exchanger 11b, the heat exchange capacity can be increased, and the finned heat exchanger can be improved in performance. Further, when it is operated as an evaporator, the number of stages of the heat transfer tubes in one row of the auxiliary heat exchanger 11a is set to be smaller than the number of stages in one row of the heat transfer tube group 13b of the main heat exchanger, so that the pipe internal pressure is reduced. It is possible to suppress an increase in loss and improve the evaporation capacity.

【0030】(実施例2) 図2は実施例2の発明であるフィン付き熱交換器を示す
側面図である。このフィン付き熱交換器は、補助熱交換
器の伝熱管群における伝熱管の管径を、主熱交換器の伝
熱管群における管径より小さくした構成が上記実施例1
と異なるだけなので、それ以外の同一構成および作用効
果を奏する部分には符号を付して詳細な説明を省略し、
異なる部分を中心に説明する。
(Second Embodiment) FIG. 2 is a side view showing a heat exchanger with fins according to a second embodiment of the invention. In this finned heat exchanger, the tube diameter of the heat transfer tubes in the heat transfer tube group of the auxiliary heat exchanger is made smaller than the tube diameter of the heat transfer tube group of the main heat exchanger.
Since it is only different from the above, the other parts having the same configurations and effects are denoted by the reference numerals, and detailed description thereof will be omitted.
The different parts will be mainly described.

【0031】21aは補助熱交換器で、21bは主熱交
換器である。そして、補助熱交換器21aは、伝熱管群
23aにおける伝熱管の管外径dを、主熱交換器21b
の伝熱管群23bにおける伝熱管の管外径Dより小さく
構成してある。また、P1は補助熱交換器21aの伝熱
管群23aの伝熱管中心と次の伝熱管中心間の長さであ
る段ピッチで、主熱交換器21bの伝熱管群23bの段
ピッチP2より短く構成してある。また、補助熱交換器
21aは伝熱管群23aの伝熱管の本数を、主熱交換器
21bの伝熱管群23bの1列内の伝熱管の本数以下に
したものである。22aと22bは補助熱交換器21a
と主熱交換器21bのフィン群で、25、26は伝熱管
群23bの分岐部である。4は気流の主流方向を示す矢
印である。
Reference numeral 21a is an auxiliary heat exchanger, and 21b is a main heat exchanger. Then, the auxiliary heat exchanger 21a uses the outer diameter d of the heat transfer tubes in the heat transfer tube group 23a as the main heat exchanger 21b.
It is configured to be smaller than the outer diameter D of the heat transfer tubes in the heat transfer tube group 23b. P1 is a step pitch which is the length between the heat transfer tube center of the heat transfer tube group 23a of the auxiliary heat exchanger 21a and the next heat transfer tube center, and is shorter than the step pitch P2 of the heat transfer tube group 23b of the main heat exchanger 21b. Configured. Further, the auxiliary heat exchanger 21a is configured such that the number of heat transfer tubes of the heat transfer tube group 23a is equal to or less than the number of heat transfer tubes in one row of the heat transfer tube group 23b of the main heat exchanger 21b. 22a and 22b are auxiliary heat exchangers 21a
In the fin group of the main heat exchanger 21b, 25 and 26 are branch portions of the heat transfer tube group 23b. Reference numeral 4 is an arrow indicating the main flow direction of the air flow.

【0032】上記構成において、空気調和機の冷凍サイ
クルの凝縮器として使用した場合、実施例1同様に、伝
熱管内を流れる流体は気相状態で矢印Aのように主熱交
換器21bの伝熱管に流入して分岐部25より伝熱管群
23bの上下に分流し、気流4との熱交換により気液二
相状態を経て液状態となり、分岐部26で再び合流して
補助熱交換器21aの縦列を成した伝熱管群23aの伝
熱管に流入して矢印Bのように流出する。
When used as a condenser of the refrigerating cycle of the air conditioner with the above-mentioned structure, the fluid flowing in the heat transfer tube is in the vapor phase as shown in the arrow A in the main heat exchanger 21b, as in the first embodiment. It flows into the heat pipe and is branched from the branch portion 25 to the upper and lower sides of the heat transfer tube group 23b, and becomes a liquid state through a gas-liquid two-phase state by heat exchange with the air flow 4, and merges again at the branch portion 26 to form the auxiliary heat exchanger 21a. Flows into the heat transfer tubes of the heat transfer tube group 23a in a row and flows out as indicated by arrow B.

【0033】また、空気調和機の冷凍サイクルの蒸発器
として作用する場合、伝熱管内を流れる流体は気液二相
状態で矢印Bのように補助熱交換器21aの縦列を成し
た伝熱管群23aの伝熱管に流入し、さらに主熱交換器
21bの伝熱管の分岐部26で伝熱管群23bの上下へ
分流して気流4との熱交換をした後、再び分岐部25で
合流して伝熱管から矢印Aのように流出する。
Further, when acting as an evaporator of a refrigeration cycle of an air conditioner, the fluid flowing in the heat transfer tubes is in a gas-liquid two-phase state, and a group of heat transfer tubes in which auxiliary heat exchangers 21a are arranged in series as shown by arrow B. 23a, the heat transfer tubes of the main heat exchanger 21b are further branched to the upper and lower parts of the heat transfer tube group 23b at the branch portion 26 of the heat transfer tube to perform heat exchange with the air flow 4, and then joined again at the branch portion 25. It flows out from the heat transfer tube as shown by arrow A.

【0034】この構成によれば、補助熱交換器21aの
伝熱管群23aの段ピッチP1が、主熱交換器21bの
伝熱管群23bの段ピッチP2より短く、しかも補助熱
交換器21aの伝熱管群23aにおける伝熱管外径d
を、主熱交換器21bの伝熱管群23bにおける伝熱管
外径Dより小さい細管にしているので、細管化によるフ
ィン効率の低減を抑制し、伝熱管内の伝熱面積を拡大す
るとともに、伝熱管内を流れる流体の流速の増大による
伝熱性能の向上により補助熱交換器21aの高性能化を
図ることができる。したがって、凝縮器として作用させ
ると、管内伝熱性能としては非常に低い液相状態の過冷
却域を補助熱交換器21a内で多くとることができ、こ
れにより管内伝熱性能として良好な二相状態を主熱交換
器21b内で多くとることができて熱交換能力を増大で
き、フィン付き熱交換器の高性能化を図ることができ
る。また、蒸発器として作用させた場合、補助熱交換器
21aの1列内の伝熱管の段数は主熱交換器21bの1
列内の伝熱管の段数より少ない段数とすることにより、
管内圧力損失の増大を抑え、蒸発能力の向上を図ること
ができる。
According to this structure, the stage pitch P1 of the heat transfer tube group 23a of the auxiliary heat exchanger 21a is shorter than the stage pitch P2 of the heat transfer tube group 23b of the main heat exchanger 21b, and the heat transfer of the auxiliary heat exchanger 21a is performed. Heat transfer tube outer diameter d in the heat tube group 23a
Is a thin tube smaller than the outer diameter D of the heat transfer tube in the heat transfer tube group 23b of the main heat exchanger 21b, so that the fin efficiency is prevented from being reduced due to the thinning of the tube, and the heat transfer area in the heat transfer tube is expanded. The performance of the auxiliary heat exchanger 21a can be improved by improving the heat transfer performance by increasing the flow velocity of the fluid flowing in the heat pipe. Therefore, when acting as a condenser, a large amount of supercooled region in a liquid phase state, which is extremely low in heat transfer performance in the pipe, can be taken in the auxiliary heat exchanger 21a, whereby two-phase excellent heat transfer performance in the pipe is achieved. Many states can be taken in the main heat exchanger 21b, the heat exchange capacity can be increased, and the finned heat exchanger can be improved in performance. Further, when the auxiliary heat exchanger 21a is operated as an evaporator, the number of stages of heat transfer tubes in one row of the auxiliary heat exchanger 21a is 1 of that of the main heat exchanger 21b.
By setting the number of stages less than the number of heat transfer tubes in the row,
It is possible to suppress an increase in pressure loss in the pipe and improve the evaporation capacity.

【0035】(実施例3) 図3は実施例3の発明であるフィン付き熱交換器におけ
る補助熱交換器部分を示す断面図である。このフィン付
き熱交換器は、補助熱交換器の伝熱管群における伝熱管
を、扁平形状にした構成が上記実施例1と異なるだけな
ので、それ以外の同一構成および作用効果を奏する部分
には符号を付して詳細な説明を省略し、異なる部分を中
心に説明する。
(Embodiment 3) FIG. 3 is a sectional view showing an auxiliary heat exchanger portion of a heat exchanger with fins according to the invention of Embodiment 3. This finned heat exchanger is different from the first embodiment only in that the heat transfer tubes in the heat transfer tube group of the auxiliary heat exchanger have a flat shape. Therefore, the other parts having the same structure and effect are denoted by the reference numerals. The detailed description will be omitted, and different parts will be mainly described.

【0036】31aは補助熱交換器である。そして、補
助熱交換器31aは、伝熱管群33aにおける伝熱管を
扁平形状に構成してある。32aは補助熱交換器31a
のフィンである。4は気流主流方向である。
Reference numeral 31a is an auxiliary heat exchanger. In the auxiliary heat exchanger 31a, the heat transfer tubes in the heat transfer tube group 33a are formed in a flat shape. 32a is an auxiliary heat exchanger 31a
Is a fin. 4 is the mainstream air flow direction.

【0037】上記構成によれば空気調和機の冷凍サイク
ルの凝縮器、或いは蒸発器として使用した場合、実施例
1同様に伝熱管内を流体が流れ、気流4と熱交換する。
そして、伝熱管内を流れる中心付近の流体は、特に凝縮
器の液相域では流体内の熱伝導と対流により伝熱管内壁
と熱交換し、伝熱管外のフィンを通じて熱交換器内を通
過する気流と熱交換する。補助熱交換器31aの伝熱管
群33aの伝熱管を偏平形状にすることで、管内を流れ
る流体の中心付近の流体は管内壁との距離を短くでき、
熱伝導による熱交換量を増大できる。また、偏平形状に
することで、水力直径として小さくなり、レイノルズ数
が大きくなり、乱流促進により、さらに補助熱交換器の
高性能化を図ることができる。
According to the above construction, when used as a condenser or an evaporator of the refrigeration cycle of the air conditioner, the fluid flows in the heat transfer tube and exchanges heat with the air flow 4 as in the first embodiment.
The fluid near the center flowing in the heat transfer tube exchanges heat with the inner wall of the heat transfer tube due to heat conduction and convection in the fluid, especially in the liquid phase region of the condenser, and passes through the heat exchanger through the fins outside the heat transfer tube. Exchanges heat with the airflow. By making the heat transfer tubes of the heat transfer tube group 33a of the auxiliary heat exchanger 31a flat, the fluid near the center of the fluid flowing in the tube can shorten the distance from the inner wall of the tube,
The amount of heat exchange by heat conduction can be increased. In addition, the flat shape reduces the hydraulic diameter, increases the Reynolds number, and promotes turbulent flow, which can further improve the performance of the auxiliary heat exchanger.

【0038】また、蒸発器として作用させた場合、補助
熱交換器31aの1列内の伝熱管の段数は主熱交換器内
の1列内の段数より少ない段数とすることにより、管内
圧力損失の増大を抑え、蒸発能力の向上を図ることがで
きる。
When the auxiliary heat exchanger 31a is operated as an evaporator, the number of stages of the heat transfer tubes in one row of the auxiliary heat exchanger 31a is smaller than the number of stages in one row of the main heat exchanger, so that the pressure loss in the tubes is reduced. It is possible to suppress the increase in the evaporation rate and improve the evaporation capacity.

【0039】なお、上記実施例3の伝熱管群33aの伝
熱管の偏平形状の代わりに、楕円形状を用いても同様の
効果を得ることができる。
The same effect can be obtained by using an elliptical shape instead of the flat shape of the heat transfer tubes of the heat transfer tube group 33a of the third embodiment.

【0040】(実施例4) 図4(a)は実施例4の発明であるフィン付き熱交換器
を示す斜視図で、図4(b)は正面図である。このフィ
ン付き熱交換器は、気体流入側の伝熱管群の伝熱管と伝
熱管の間におけるフィンの長さを前記伝熱管間の段ピッ
チより長く、気体流出側の伝熱管群の伝熱管と伝熱管の
間におけるフィンの長さと前記伝熱管間の段ピッチを略
等しい長さに構成した点が上記実施例1と異なるだけな
ので、それ以外の同一構成および作用効果を奏する部分
には符号を付して詳細な説明を省略し、異なる部分を中
心に説明する。
(Embodiment 4) FIG. 4 (a) is a perspective view showing a heat exchanger with fins according to the invention of Embodiment 4, and FIG. 4 (b) is a front view. In this heat exchanger with fins, the fin length between the heat transfer tubes of the heat transfer tube group on the gas inflow side is longer than the step pitch between the heat transfer tubes, and the heat transfer tube of the heat transfer tube group on the gas outflow side is Only the fins between the heat transfer tubes and the step pitches between the heat transfer tubes are configured to have substantially the same length, which is the only difference from the first embodiment. Therefore, other parts having the same configuration and operational effect are denoted by reference numerals. The detailed description will be omitted and different parts will be mainly described.

【0041】41aは補助熱交換器で、41bは主熱交
換器である。42aと42bはそれぞれ補助熱交換器4
1aと主熱交換器41bのフィン群である。そして、補
助熱交換器41aのフィン群42aは波形形状に形成し
てある。43aと43bはそれぞれ補助熱交換器41a
と主熱交換器41bの伝熱管群である。また、P1とP
2はそれぞれ補助熱交換器41aの伝熱管群43aと主
熱交換器41bの伝熱管群43bの伝熱管中心と次の伝
熱管中心間の長さの段ピッチである。dは補助熱交換器
41aの伝熱管群42aの伝熱管外径で、Dは主熱交換
器41bの伝熱管群42bの伝熱管外径である。そし
て、気体流入側(イ)である補助熱交換器41aは、そ
の伝熱管群42aの伝熱管と伝熱管の間における波形の
フィンの長さL1+L2+L3+L4を、前記伝熱管間
の段ピッチP1より長く、かつ気体流出側(ロ)である
主熱交換器41bはその伝熱管群43bの伝熱管と伝熱
管の間におけるフィンの長さと前記伝熱管間の段ピッチ
P2を略等しい長さに構成したものである。
Reference numeral 41a is an auxiliary heat exchanger, and 41b is a main heat exchanger. 42a and 42b are auxiliary heat exchangers 4, respectively
1a and a fin group of the main heat exchanger 41b. The fin group 42a of the auxiliary heat exchanger 41a is formed in a wavy shape. 43a and 43b are auxiliary heat exchangers 41a, respectively.
And a heat transfer tube group of the main heat exchanger 41b. Also, P1 and P
2 is a step pitch of the length between the center of the heat transfer tubes of the heat transfer tube group 43a of the auxiliary heat exchanger 41a and the heat transfer tube group 43b of the main heat exchanger 41b and the center of the next heat transfer tube. d is the outer diameter of the heat transfer tubes of the heat transfer tube group 42a of the auxiliary heat exchanger 41a, and D is the outer diameter of the heat transfer tubes of the heat transfer tube group 42b of the main heat exchanger 41b. Then, in the auxiliary heat exchanger 41a on the gas inflow side (a), the length L1 + L2 + L3 + L4 of the corrugated fins between the heat transfer tubes of the heat transfer tube group 42a is made longer than the step pitch P1 between the heat transfer tubes. In the main heat exchanger 41b on the gas outflow side (b), the length of the fins between the heat transfer tubes of the heat transfer tube group 43b and the step pitch P2 between the heat transfer tubes are set to be substantially equal. It is a thing.

【0042】上記構成によれば空気調和機の冷凍サイク
ルの凝縮器として使用した場合、実施例1同様に、伝熱
管内を流れる流体は主熱交換器41b側から流入し、補
助熱交換器41a側へ流出する。また、蒸発器として使
用する場合も実施例1同様に補助熱交換器41a側から
流入し、主熱交換器41b側へ流出する。そして、凝縮
器として作用する場合、主熱交換器41bの伝熱管群4
3b内の流体は、飽和域の二相状態であり、伝熱管群4
3bの段間の温度差は0.2〜0.3度程度で殆ど温度
差がない。これに対し、補助熱交換器41aの伝熱管群
43a内の流体では液相状態であり、伝熱管群43aの
各段間である伝熱管間の温度差は大きい。
According to the above construction, when used as the condenser of the refrigeration cycle of the air conditioner, the fluid flowing in the heat transfer tube flows in from the main heat exchanger 41b side and the auxiliary heat exchanger 41a as in the first embodiment. Spill to the side. Also, when used as an evaporator, it flows in from the auxiliary heat exchanger 41a side and flows out to the main heat exchanger 41b side as in the first embodiment. When acting as a condenser, the heat transfer tube group 4 of the main heat exchanger 41b
The fluid in 3b is in the two-phase state in the saturation region, and the heat transfer tube group 4
The temperature difference between the stages of 3b is about 0.2 to 0.3 degrees, and there is almost no temperature difference. On the other hand, the fluid in the heat transfer tube group 43a of the auxiliary heat exchanger 41a is in a liquid phase state, and the temperature difference between the heat transfer tubes between the stages of the heat transfer tube group 43a is large.

【0043】然るに実施例4の発明では、補助熱交換器
41aの伝熱管群43aの伝熱管と伝熱管の段間の温度
差による熱伝導ロスを、伝熱管間のフィン長さL1+L
2+L3+L4を伝熱管間の段ピッチP1より長くして
いるので、補助熱交換器41a内の熱伝導ロスを低減
し、前記段間の温度差による熱伝導ロスの少ない主熱交
換器41bでは伝熱管群43bの伝熱管間のフィン長さ
と伝熱管の段ピッチP2がほぼ等しい長さを維持してフ
ィン効率を維持する構成により、フィン付き熱交換器の
高性能化を図れる。
However, in the invention of the fourth embodiment, the heat conduction loss due to the temperature difference between the heat transfer tubes of the heat transfer tube group 43a of the auxiliary heat exchanger 41a and the stages of the heat transfer tubes is reduced by the fin length L1 + L between the heat transfer tubes.
Since 2 + L3 + L4 is made longer than the stage pitch P1 between the heat transfer tubes, the heat transfer loss in the auxiliary heat exchanger 41a is reduced, and the main heat exchanger 41b in which the heat transfer loss due to the temperature difference between the stages is small is the heat transfer tube. The fin length between the heat transfer tubes of the group 43b and the step pitch P2 of the heat transfer tubes are substantially equal to each other to maintain the fin efficiency, so that the finned heat exchanger can have high performance.

【0044】また、蒸発器として作用させた場合、補助
熱交換器41aの1列内の伝熱管群の管段数は主熱交換
器41bの1列内の伝熱管群の管段数より少ない段数と
することにより、管内圧力損失の増大を抑え、蒸発能力
の向上を図ることができる。
When operated as an evaporator, the number of tube stages of the heat transfer tube group in one row of the auxiliary heat exchanger 41a is smaller than that of the heat transfer tube group in one row of the main heat exchanger 41b. By doing so, it is possible to suppress an increase in pressure loss in the pipe and improve the evaporation capacity.

【0045】なお、補助熱交換器41aの伝熱管群にお
ける伝熱管の細管化や偏平形状などの効果は、実施例1
〜3と同様の効果をさらに有する。
The effect of thinning the heat transfer tubes in the heat transfer tube group of the auxiliary heat exchanger 41a and the flat shape is the same as in the first embodiment.
Further, it has the same effect as the above.

【0046】(実施例5) 図5は実施例5の発明であるフィン付き熱交換器におけ
る補助熱交換器の断面図である。このフィン付き熱交換
器は、気体流入側の伝熱管群の伝熱管と伝熱管の間にお
けるフィンに、気流方向に対し傾斜させて切断部または
打ち抜き部を設けた点が上記実施例1と異なるだけなの
で、それ以外の同一構成および作用効果を奏する部分に
は符号を付して詳細な説明を省略し、異なる部分を中心
に説明する。
(Embodiment 5) FIG. 5 is a sectional view of an auxiliary heat exchanger in a heat exchanger with fins according to the invention of Embodiment 5. This heat exchanger with fins is different from the first embodiment in that the fins between the heat transfer tubes of the heat transfer tube group on the gas inflow side are provided with a cutting portion or a punching portion that is inclined with respect to the air flow direction. Therefore, other parts having the same configuration and operational effect are denoted by the same reference numerals, detailed description thereof will be omitted, and different parts will be mainly described.

【0047】51aは補助熱交換器で、間隔を有して並
設したフィン群52aとこのフィン群52aを直角に貫
通して蛇行状に配列した伝熱管群53aから成る。57
は伝熱管群53aの伝熱管と伝熱管の間のフィンに、矢
印4で示す気流方向に対し傾斜させて設けた直線状の切
り込み部(切断部ともいう)である。θは切り込み部5
7と気流4の主流方向との傾斜角である。
Reference numeral 51a is an auxiliary heat exchanger, which is composed of a fin group 52a arranged in parallel with a space therebetween and a heat transfer tube group 53a arranged in a meandering pattern penetrating the fin group 52a at a right angle. 57
Is a linear cut portion (also referred to as a cut portion) which is provided in the fin between the heat transfer tubes of the heat transfer tube group 53a so as to be inclined with respect to the air flow direction shown by the arrow 4. θ is notch 5
7 is the inclination angle between the airflow 4 and the mainstream direction of the airflow 4.

【0048】上記構成によれば空気調和機の冷凍サイク
ルの凝縮器として使用した場合、実施例1同様に、伝熱
管内を流れる流体は主熱交換器側から流入し、補助熱交
換器51a側へ流出する。また、蒸発器として使用する
場合も実施例1同様に補助熱交換器51a側から流入
し、主熱交換器側へ流出する。そして、凝縮器として作
用する場合、主熱交換器の伝熱管内の流体は飽和域の二
相状態であり、伝熱管と伝熱管の管段間の温度差は0.
2〜0.3度程度で殆ど温度差がない。これに対し、補
助熱交換器51aの伝熱管群53a内の流体では液相状
態であり、伝熱管と伝熱管の管段間の温度差は大きい。
According to the above construction, when used as the condenser of the refrigeration cycle of the air conditioner, the fluid flowing in the heat transfer tube flows in from the main heat exchanger side and the auxiliary heat exchanger 51a side, as in the first embodiment. Outflow to. Also, when used as an evaporator, as in the first embodiment, it flows in from the auxiliary heat exchanger 51a side and flows out to the main heat exchanger side. When acting as a condenser, the fluid in the heat transfer tube of the main heat exchanger is in a two-phase state in the saturation region, and the temperature difference between the heat transfer tube and the tube stages of the heat transfer tube is 0.
There is almost no temperature difference between 2 and 0.3 degrees. On the other hand, the fluid in the heat transfer tube group 53a of the auxiliary heat exchanger 51a is in a liquid phase state, and the temperature difference between the heat transfer tubes and the tube stages of the heat transfer tubes is large.

【0049】然るに実施例5の発明では、補助熱交換器
51a内の伝熱管と伝熱管の管段間の温度差による熱伝
導ロスを、伝熱管と伝熱管の間のフィンに設けた矢印4
で示す気流方向に対し傾斜させた直線状の切り込み部5
7により低減するので、フィン付き熱交換器の高性能化
を図れるものである。
However, in the invention of the fifth embodiment, the heat conduction loss due to the temperature difference between the heat transfer tubes in the auxiliary heat exchanger 51a and the tube stages of the heat transfer tubes is caused by the arrow 4 provided on the fins between the heat transfer tubes.
The linear cut portion 5 inclined with respect to the air flow direction shown by
7, the finned heat exchanger can be improved in performance.

【0050】また、蒸発器として作用させた場合、補助
熱交換器51aの1列内の伝熱管の段数は主熱交換器内
の1列内の管段数より少ない段数にすることにより、管
内圧力損失の増大を抑え、蒸発能力の向上を図るととも
に、切り込み部57が気流主流方向に対し傾斜角θを設
けることでフィン表面に付着した凝縮水が切り込み端面
58a、58bにて保持されることなく排出でき、湿り
時の通風抵抗の増加を抑えることができる。
When the auxiliary heat exchanger 51a is operated as an evaporator, the number of stages of heat transfer tubes in one row of the auxiliary heat exchanger 51a is set to be smaller than the number of tubes in one row of the main heat exchanger, so that the internal pressure of the tubes is reduced. The increase in loss is suppressed, the evaporation capacity is improved, and the cut portion 57 is provided with an inclination angle θ with respect to the mainstream direction of the air flow so that condensed water adhering to the fin surface is not retained by the cut end surfaces 58a and 58b. It can be discharged, and an increase in ventilation resistance when wet can be suppressed.

【0051】なお、実施例5では切り込み部57を直線
としたが、これが曲線や鋸状であっても同様の効果が得
られる。また、切り込み部でなく、細い切り落とし部
(打ち抜き部ともいう)であっても同様の効果が得られ
る。また、実施例5の切り込み部57は、その端面58
a、58bを伝熱管群53aの伝熱管の脇まで延設して
あるが、伝熱管群53aの伝熱管の手前で終わっても良
い。
Although the notch 57 is a straight line in the fifth embodiment, the same effect can be obtained even if the notch 57 is curved or serrated. Further, the same effect can be obtained by using a thin cutoff portion (also referred to as a punched portion) instead of the cut portion. Further, the notch 57 of the fifth embodiment has an end face 58.
Although a and 58b are extended to the side of the heat transfer tubes of the heat transfer tube group 53a, they may end before the heat transfer tubes of the heat transfer tube group 53a.

【0052】(実施例6) 図6は実施例6の発明であるフィン付き熱交換器におけ
る補助熱交換器の断面図である。このフィン付き熱交換
器は、補助熱交換器の伝熱管群の伝熱管と伝熱管の間に
おけるフインに、気流主流方向に対し略直角に複数の切
り起こしまたは凹凸を設けた点が上記実施例1と異なる
だけなので、それ以外の同一構成および作用効果を奏す
る部分には符号を付して詳細な説明を省略し、異なる部
分を中心に説明する。
(Sixth Embodiment) FIG. 6 is a sectional view of an auxiliary heat exchanger in a heat exchanger with fins according to the sixth embodiment of the present invention. In this finned heat exchanger, the fins between the heat transfer tubes of the heat transfer tube group of the auxiliary heat exchanger are provided with a plurality of cut-and-raised parts or irregularities substantially at right angles to the mainstream direction of the airflow in the above-mentioned embodiment. Since it is only different from 1, the other parts having the same configuration and action and effect are denoted by reference numerals, detailed description thereof will be omitted, and different parts will be mainly described.

【0053】61aは補助熱交換器で、間隔を有して並
設したフィン群62aとこのフィン群62aを直角に貫
通して蛇行状に配列した伝熱管群63aから成る。69
は補助熱交換器61aの伝熱管群63aの伝熱管と伝熱
管の間におけるフインに、矢印4で示す気流主流方向に
対し略直角に設けた複数の切り起こしである。
Reference numeral 61a denotes an auxiliary heat exchanger, which is composed of a fin group 62a arranged in parallel with a gap and a heat transfer tube group 63a penetrating the fin group 62a at a right angle and arranged in a meandering shape. 69
Is a plurality of cut-and-raised parts provided in the fins between the heat transfer tubes of the heat transfer tube group 63a of the auxiliary heat exchanger 61a substantially at right angles to the mainstream airflow direction shown by arrow 4.

【0054】上記構成によれば空気調和機の冷凍サイク
ルの凝縮器として使用した場合、実施例1同様に、伝熱
管内を流れる流体は主熱交換器側から流入し、補助熱交
換器61a側へ流出する。また、蒸発器として使用する
場合も実施例1同様に補助熱交換器61a側から流入
し、主熱交換器側へ流出する。そして、補助熱交換器6
1aの伝熱管群63aの伝熱管と伝熱管の間におけるフ
インの切り起こし69による境界層前縁効果により空気
側の熱伝達率を促進し、上記した実施例1〜5の発明の
構成と併用することにより、それぞれの効果をさらに促
進させるものである。
According to the above construction, when used as the condenser of the refrigeration cycle of the air conditioner, the fluid flowing in the heat transfer tubes flows in from the main heat exchanger side and the auxiliary heat exchanger 61a side as in the first embodiment. Outflow to. Also, when used as an evaporator, it flows in from the auxiliary heat exchanger 61a side and flows out to the main heat exchanger side as in the first embodiment. And the auxiliary heat exchanger 6
The heat transfer coefficient on the air side is promoted by the boundary layer leading edge effect due to the fin cut-and-raised 69 between the heat transfer tubes of the heat transfer tube group 63a of 1a, and it is used in combination with the configurations of the inventions of Examples 1 to 5 described above. By doing so, each effect is further promoted.

【0055】なお、上記実施例6では切り起こし69は
直線としたが、これが曲線や鋸状であっても同様の効果
が得られる。また、切り込みでなく、凹凸形状であれ
ば、切起こし形状より作用は劣るものの伝熱促進を図る
ことができる。
Although the cut-and-raised 69 is a straight line in the sixth embodiment, the same effect can be obtained even if the cut-and-raised part 69 is a curved line or a sawtooth shape. Further, if the shape is not a cut, but an uneven shape, it is possible to promote heat transfer, although the action is inferior to the cut and raised shape.

【0056】(実施例7) 図7(a)は実施例7の発明であるフィン付き熱交換器に
おける補助熱交換器の伝熱管の拡大断面図、図7(b)は
主熱交換器の伝熱管の拡大断面図である。このフィン付
き熱交換器は、補助熱交換器の伝熱管群の伝熱管の単位
長さ当たりの管内面の伝熱面積を、主熱交換器の伝熱管
群の伝熱管内面の伝熱面積より大きくした点が上記実施
例1と異なるだけなので、それ以外の同一構成および作
用効果を奏する部分には符号を付して詳細な説明を省略
し、異なる部分を中心に説明する。
(Embodiment 7) FIG. 7 (a) is an enlarged sectional view of a heat transfer tube of an auxiliary heat exchanger in a heat exchanger with fins according to the invention of Embodiment 7, and FIG. 7 (b) is a main heat exchanger. It is an expanded sectional view of a heat transfer tube. In this heat exchanger with fins, the heat transfer area of the inner surface of the heat transfer tubes of the heat transfer tube group of the auxiliary heat exchanger per unit length is calculated from the heat transfer area of the inner surface of the heat transfer tube of the main heat exchanger. Since the point of enlargement is the same as that of the first embodiment, other parts having the same configuration and operational effect are denoted by the same reference numerals, detailed description thereof will be omitted, and different parts will be mainly described.

【0057】70aは補助熱交換器の伝熱管群73aを
成す伝熱管の内面に形成した多数の溝内周面で、h1の
山高さを有する。そして、この溝内周面70aは、この
溝によって伝熱管の単位長さ当たりの管内面の伝熱面積
を、主熱交換器の伝熱管群73bを成す伝熱管の内面に
山高さh1より低い山高さh2を有する多数の溝内周面
70bを形成した伝熱管内面の伝熱面積より大きく設定
している。
Reference numeral 70a denotes an inner peripheral surface of a large number of grooves formed on the inner surface of the heat transfer tubes forming the heat transfer tube group 73a of the auxiliary heat exchanger, and has a mountain height of h1. The groove inner peripheral surface 70a has a heat transfer area of the tube inner surface per unit length of the heat transfer tube lower than the mountain height h1 on the inner surface of the heat transfer tube forming the heat transfer tube group 73b of the main heat exchanger. The heat transfer area is set to be larger than the heat transfer area of the inner surface of the heat transfer tube in which a large number of groove inner peripheral surfaces 70b having the mountain height h2 are formed.

【0058】上記構成によれば空気調和機の冷凍サイク
ルの凝縮器として使用した場合、実施例1同様に、伝熱
管内を流れる流体は伝熱管群73bを用いた主熱交換器
側から流入し、伝熱管群73aを用いた補助熱交換器側
へ流出する。また、蒸発器として使用する場合も実施例
1同様に伝熱管73aを用いた補助熱交換器側から流入
し、伝熱管73bを用いた主熱交換器側へ流出する。そ
して、伝熱管群73aはその溝内周面70aの山高さh
1を、伝熱管群73bの溝内周面70bの山高さh2よ
り高くしているので、伝熱管群73bの溝内周面70b
より長くして伝熱管内面の伝熱面積を大きくせしめ、補
助熱交換器の高性能化が図れるものである。一方、伝熱
管群73aの溝内周面70aの山高さを高くすることで
管内の圧力損失の増大が懸念されるが、補助熱交換器内
は液相状態であり、密度は大きく、流速としては遅くな
るため圧力損失の影響は殆ど無いといえる。
According to the above construction, when used as the condenser of the refrigeration cycle of the air conditioner, the fluid flowing in the heat transfer tubes flows in from the main heat exchanger side using the heat transfer tube group 73b, as in the first embodiment. , To the auxiliary heat exchanger side using the heat transfer tube group 73a. Also, when used as an evaporator, it flows in from the auxiliary heat exchanger side using the heat transfer tube 73a and flows out to the main heat exchanger side using the heat transfer tube 73b as in the first embodiment. Further, the heat transfer tube group 73a has a mountain height h of the groove inner peripheral surface 70a.
1 is set higher than the mountain height h2 of the groove inner peripheral surface 70b of the heat transfer tube group 73b, the groove inner peripheral surface 70b of the heat transfer tube group 73b is
By making it longer, the heat transfer area on the inner surface of the heat transfer tube can be increased to improve the performance of the auxiliary heat exchanger. On the other hand, increasing the peak height of the groove inner peripheral surface 70a of the heat transfer tube group 73a may increase the pressure loss in the tube, but the auxiliary heat exchanger is in a liquid phase state, has a large density, and has a high flow rate. Since it becomes slower, it can be said that there is almost no effect of pressure loss.

【0059】また、蒸発器として使用した場合、蒸発器
入口側に補助熱交換器の伝熱管群73aを用いることで
管内圧力損失の増大は入口側のほんの一部であり、蒸発
温度の上昇を抑制でき、山高さh1のアップによる伝熱
性能の向上を活かすことができ、蒸発能力の向上を図る
ことができる。
When used as an evaporator, by using the heat transfer tube group 73a of the auxiliary heat exchanger on the evaporator inlet side, the increase in the pipe pressure loss is only a part on the inlet side, and the increase of the evaporation temperature is caused. It is possible to suppress, and it is possible to make use of the improvement of the heat transfer performance due to the increase of the mountain height h1, and it is possible to improve the evaporation capacity.

【0060】また、この実例7の発明を実施例1〜2、
実施例4〜6の各発明に組合せることにより、さらにフ
ィン付き熱交換器の高性能化を図ることができる。
In addition, the invention of Example 7 is described in Examples 1-2.
By combining the inventions of Embodiments 4 to 6, it is possible to further improve the performance of the heat exchanger with fins .

【0061】[0061]

【発明の効果】上記実施例から明らかなように本発明の
請求項1に記載の発明は、主熱交換器とは別体で、過冷
却域に配し、開口面積が主熱交換器より小さい補助熱交
換器 伝熱管群の伝熱管を楕円状または偏平状の形状に構
成したもので、伝熱管内の中央付近を流れる流体と管壁
との距離を小さくして熱伝達率の向上により高性能化を
図ることができる。
As is apparent from the above embodiments, the present invention
The invention according to claim 1 is a separate body from the main heat exchanger and is supercooled.
Auxiliary heat exchanger located in the rejection area and having an opening area smaller than that of the main heat exchanger.
The heat transfer tubes of the heat exchanger tube group are formed into an elliptical or flat shape, and the distance between the fluid flowing near the center of the heat transfer tubes and the tube wall is reduced to improve heat transfer coefficient and improve performance. Can be achieved.

【0062】また、請求項2に記載の発明は、気体流入
側の伝熱管群の伝熱管と伝熱管の間におけるフィンの長
さを伝熱管間の段ピッチより長く、気体流出側の伝熱管
群の伝熱管と伝熱管の間におけるフィンの長さと伝熱管
間の段ピッチを略等しい長さに構成したもので、段ピッ
チを維持したままフィン部分の長さを長くでき、伝熱管
間の熱伝導を抑制することができ、伝熱管間の熱伝導ロ
スの低減による高性能化を図ることができる。
In the invention according to claim 2, the length of the fin between the heat transfer tubes of the heat transfer tube group on the gas inflow side is longer than the step pitch between the heat transfer tubes, and the heat transfer tube on the gas outflow side is provided. The length of the fins between the heat transfer tubes of the group and the step pitch between the heat transfer tubes are configured to be substantially equal, and the length of the fin portion can be increased while maintaining the step pitch. It is possible to suppress heat conduction and to improve performance by reducing heat conduction loss between heat transfer tubes.

【0063】また、請求項3に記載の発明は、気体流入
側の伝熱管群の伝熱管と伝熱管の間におけるフィンに、
所定長さの切断部または打ち抜き部を設け、前記切断部
または打ち抜き部を気流の主流方向に対して傾斜させた
もので、伝熱管と伝熱管の間の熱伝導によるロスを低減
でき、高性能化を図ることができる。
Further, in the invention according to claim 3, the fins between the heat transfer tubes of the heat transfer tube group on the gas inflow side,
A cutting part or punching part with a predetermined length is provided, and the cutting part or punching part is inclined with respect to the main flow direction of the airflow, and loss due to heat conduction between the heat transfer tubes can be reduced, and high performance Can be realized.

【0064】また、請求項4に記載の発明は、気体流入
側の伝熱管群の伝熱管の単位長さ当たりの管内面の伝熱
面積を、気体流出側の伝熱管群の伝熱管内面の伝熱面積
より大きくしたもので、例えば冷凍サイクルに使用し気
体流入側である凝縮器出口および蒸発器入口部分で伝熱
面積の拡大で、高性能化を図ることができる。一方、伝
熱管内面の伝熱面積の拡大は、管内の圧力損失の増大を
まねきやすいが、凝縮器出口および蒸発器入口部分で用
いることで凝縮温度の低下や蒸発温度の上昇を抑えなが
ら管内の伝熱面積拡大による高性能化を図ることができ
る。
Further, in the invention according to claim 4, the heat transfer area of the inner surface of the heat transfer tube of the heat transfer tube group of the gas inflow side per unit length of the heat transfer tube of the heat transfer tube group of the gas outflow side The heat transfer area is made larger than that of the heat transfer area. For example, the heat transfer area can be increased at the condenser outlet and the evaporator inlet portion, which are used in the refrigeration cycle and on the gas inflow side, so that high performance can be achieved. On the other hand, increasing the heat transfer area on the inner surface of the heat transfer tube tends to increase the pressure loss in the tube, but by using it at the condenser outlet and the evaporator inlet part, it is possible to prevent the condensation temperature from decreasing and the evaporation temperature from increasing. Higher performance can be achieved by expanding the heat transfer area.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1を示すフィン付き熱交換器の
側面図
FIG. 1 is a side view of a heat exchanger with fins according to a first embodiment of the present invention.

【図2】同実施例2を示すフィン付き熱交換器の側面図FIG. 2 is a side view of the heat exchanger with fins showing the second embodiment.

【図3】同実施例3を示すフィン付き熱交換器における
補助熱交換器の断面図
FIG. 3 is a sectional view of an auxiliary heat exchanger in the heat exchanger with fins according to the third embodiment.

【図4】(a)は同実施例4を示すフィン付き熱交換器
の要部斜視図 (b)は同実施例4を示す補助熱交換器の要部正面図
FIG. 4A is a perspective view of a main part of a heat exchanger with fins showing the fourth embodiment, and FIG. 4B is a front view of a main part of an auxiliary heat exchanger showing the fourth embodiment.

【図5】同実施例5を示すフィン付き熱交換器における
補助熱交換器の断面図
FIG. 5 is a sectional view of an auxiliary heat exchanger in the heat exchanger with fins according to the fifth embodiment.

【図6】同実施例6を示すフィン付き熱交換器における
補助熱交換器の断面図
FIG. 6 is a sectional view of an auxiliary heat exchanger in the heat exchanger with fins according to the sixth embodiment.

【図7】(a)は同実施例7を示すフィン付き熱交換器
における補助熱交換器の伝熱管の断面図 (b)は同実施例7を示すフィン付き熱交換器における
主熱交換器の伝熱管の断面図
7A is a sectional view of a heat transfer tube of an auxiliary heat exchanger in the finned heat exchanger according to the seventh embodiment, and FIG. 7B is a main heat exchanger in the finned heat exchanger according to the seventh embodiment. Cross section of heat transfer tube

【図8】第1従来例を示すフィン付き熱交換器の斜視図FIG. 8 is a perspective view of a heat exchanger with fins showing a first conventional example.

【図9】同フィン付き熱交換器の側面図FIG. 9 is a side view of the heat exchanger with fins.

【図10】第2従来例を示すフィン付き熱交換器の斜視
FIG. 10 is a perspective view of a heat exchanger with fins showing a second conventional example.

【図11】第3従来例を示すフィン付き熱交換器の側面
FIG. 11 is a side view of a finned heat exchanger showing a third conventional example.

【図12】第4従来例を示す独立フィン付き熱交換器の
斜視図
FIG. 12 is a perspective view of a heat exchanger with independent fins showing a fourth conventional example.

【図13】第4従来例を示す独立フィン付き熱交換器を
搭載した空気調和機の室外機の上面図
FIG. 13 is a top view of an outdoor unit of an air conditioner equipped with a heat exchanger with independent fins showing a fourth conventional example.

【符号の説明】[Explanation of symbols]

4 気流主流方向 (イ) 気体流入側 (ロ) 気体流出側 11a,21a,31a,41a,51a,61a 補
助熱交換器 11b,21b,41b 主熱交換器 13a,23a,33a,43a,53a,63a,7
3a 補助熱交換器の伝熱管群 13b,23b,43b,73b 主熱交換器の伝熱管
群 12a,22a,32a,42a,52a,62a 補
助熱交換器のフィン群 13b,23b,32b,42b 主熱交換器のフィン
群 57 切り込み部 69 伝熱管間のフィン表面の切り起こし 70a 補助熱交換器の伝熱管の溝内周面 70b 主熱交換器の伝熱管の溝内周面 d 補助熱交換器の伝熱管外径 D 主熱交換器の伝熱管外径 L1,L2,L3,L4 伝熱管間のフィン長さ P1 補助熱交換器の伝熱管の段ピッチ P2 主熱交換器の伝熱管の段ピッチ θ 気流主流方向と切り込み部の傾斜角
4 Main air flow direction (a) Gas inflow side (b) Gas outflow side 11a, 21a, 31a, 41a, 51a, 61a Auxiliary heat exchanger 11b, 21b, 41b Main heat exchanger 13a, 23a, 33a, 43a, 53a, 63a, 7
3a Heat transfer tube group 13b, 23b, 43b, 73b of auxiliary heat exchanger Heat transfer tube group 12a, 22a, 32a, 42a, 52a, 62a of main heat exchanger Fin group 13b, 23b, 32b, 42b of auxiliary heat exchanger Main Fin group 57 of heat exchanger Cut portion 69 Cut and raised fin surface between heat transfer tubes 70a Inner groove surface 70b of heat transfer tube of auxiliary heat exchanger d Inner groove surface of heat transfer tube of main heat exchanger d Auxiliary heat exchanger Outer diameter D of heat transfer tube of main heat exchanger L1, L2, L3, L4 Fin length between heat transfer tubes P1 Stage pitch of heat transfer tube of auxiliary heat exchanger P2 Stage of heat transfer tube of main heat exchanger Pitch θ Main flow direction and inclination angle of notch

フロントページの続き (56)参考文献 特開 平8−313049(JP,A) 特開 平5−79654(JP,A) 特開 平6−307738(JP,A) 特開 昭58−138994(JP,A) 特開 平10−339587(JP,A) 実公 昭50−37085(JP,Y1) (58)調査した分野(Int.Cl.7,DB名) F25B 39/00 - 39/04 F28F 1/00 - 1/44 Continuation of front page (56) References JP-A-8-313049 (JP, A) JP-A-5-79654 (JP, A) JP-A-6-307738 (JP, A) JP-A-58-138994 (JP , A) Japanese Patent Laid-Open No. 10-339587 (JP, A) Jitsukō Sho 50-37085 (JP, Y1) (58) Fields investigated (Int.Cl. 7 , DB name) F25B 39/00-39/04 F28F 1/00-1/44

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 所定間隔で平行に並設し、その間を気体
が流動するフィン群と、このフィン群を略直角に貫通し
て列を成し、内部を流体が流動する伝熱管群を備え、主
熱交換器とは別体で、過冷却域に配し、開口面積が主熱
交換器より小さい補助熱交換器の伝熱管を楕円状または
偏平状の形状に構成した事を特徴とするフィン付き熱交
換器。
1. A gas turbine is installed in parallel at a predetermined interval, with a gas between them.
And the fins that flow
Are arranged in a row and have a group of heat transfer tubes through which the fluid flows,
Separated from the heat exchanger, it is placed in the supercooled area and the opening area is the main heat.
A heat exchanger with fins , characterized in that the heat transfer tube of the auxiliary heat exchanger smaller than the exchanger is formed into an elliptical or flat shape.
【請求項2】 所定間隔で平行に並設し、その間を気体
が流動するフィン群と、このフィン群を略直角に貫通し
て列を成し、内部を流体が流動する伝熱管群を備え、凝
縮器として使用時、内部を過冷却液状態の流体が流動す
る気体流入側の伝熱管群の伝熱管と伝熱管の間における
フィンの長さを伝熱管間の段ピッチより長く、気体流出
側の伝熱管群の伝熱管と伝熱管の間におけるフィンの長
さと伝熱管間の段ピッチを略等しい長さに構成した事を
特徴とするフィン付き熱交換器。
2. A gas is provided in parallel at predetermined intervals, with a space between them.
And the fins that flow
Lined up and equipped with a group of heat transfer tubes through which the fluid flows,
When used as a compressor, the fluid in the supercooled liquid state flows inside.
The length of the fins between the heat transfer tubes of the heat transfer tube group on the gas inflow side is longer than the step pitch between the heat transfer tubes, and the length of the fin between the heat transfer tubes of the heat transfer tube group on the gas outflow side that is configured to substantially equal the length of step pitch between Sato heat transfer tube
Characteristic heat exchanger with fins.
【請求項3】 所定間隔で平行に並設し、その間を気体
が流動するフィン群と、このフィン群を略直角に貫通し
て列を成し、内部を流体が流動する伝熱管群とを備え、
蒸発器または凝縮器として機能し、凝縮器として使用
時、内部を過冷却液状態の流体が流動する気体流入側の
伝熱管群の伝熱管と伝熱管の間におけるフィンに所定
長さの切断部または打ち抜き部を設け、前記切断部また
は打ち抜き部を気流の気体流出側に下がる方向に傾斜さ
せた事を特徴とするフィン付き熱交換器。
3. Gas is provided in parallel with a predetermined interval in parallel.
And the fins that flow
And a heat transfer tube group in which the fluid flows inside,
Functions as an evaporator or condenser and is used as a condenser
At this time, the fins between the heat transfer tubes of the heat transfer tube group on the gas inflow side through which the fluid in the supercooled liquid state flows are provided with cutting portions or punching portions of a predetermined length, and the cutting is performed. A heat exchanger with fins , characterized in that the part or the punched part is inclined in a direction in which the part or the punched part is lowered toward the gas outflow side of the air flow.
【請求項4】 気体流入側の伝熱管群の伝熱管の単位長
さ当たりの管内面の伝熱面積を、気体流出側の伝熱管群
の伝熱管内面の伝熱面積より大きく構成した事を特徴と
する請求項1〜3のいずれか1項に記載のフィン付き熱
交換器。
Wherein the heat transfer area of the tube surface per unit length of the heat transfer tube of the tube bank of the gas inlet side, that was larger construction than the heat transfer area of the heat transfer tube surface of the tube bank of the gas outflow side Features and
The heat exchanger with fins according to any one of claims 1 to 3 .
JP13529899A 1999-05-17 1999-05-17 Finned heat exchanger Expired - Fee Related JP3367467B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP13529899A JP3367467B2 (en) 1999-05-17 1999-05-17 Finned heat exchanger
KR1020000026099A KR100612765B1 (en) 1999-05-17 2000-05-16 Heat exchanger having fins formed thereon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13529899A JP3367467B2 (en) 1999-05-17 1999-05-17 Finned heat exchanger

Publications (2)

Publication Number Publication Date
JP2000329486A JP2000329486A (en) 2000-11-30
JP3367467B2 true JP3367467B2 (en) 2003-01-14

Family

ID=15148443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13529899A Expired - Fee Related JP3367467B2 (en) 1999-05-17 1999-05-17 Finned heat exchanger

Country Status (2)

Country Link
JP (1) JP3367467B2 (en)
KR (1) KR100612765B1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100600781B1 (en) * 2005-06-01 2006-07-18 엘지전자 주식회사 Heat exchanger for air-conditioner
JP2007187355A (en) * 2006-01-12 2007-07-26 Sharp Corp Heat exchanger and air conditioner using it
JP2010078287A (en) * 2008-09-29 2010-04-08 Mitsubishi Electric Corp Air conditioner
JP4715971B2 (en) * 2009-11-04 2011-07-06 ダイキン工業株式会社 Heat exchanger and indoor unit equipped with the same
KR101936636B1 (en) * 2012-01-25 2019-01-09 엘지전자 주식회사 Heat pump
JP6236784B2 (en) 2013-01-10 2017-11-29 株式会社ノーリツ Heat exchanger and water heater
WO2014125603A1 (en) * 2013-02-14 2014-08-21 三菱電機株式会社 Heat exchange device and refrigeration cycle device equipped with same
JP6157593B2 (en) * 2013-03-27 2017-07-05 三菱電機株式会社 Heat exchanger and refrigeration cycle air conditioner using the same
CN105659039B (en) * 2013-10-25 2017-09-12 三菱电机株式会社 Heat exchanger and the refrigerating circulatory device using the heat exchanger
CN105588371B (en) * 2015-04-14 2018-11-09 海信(山东)空调有限公司 A kind of heat exchanger and air-conditioning
CN106871664A (en) * 2017-01-09 2017-06-20 青岛海尔空调电子有限公司 A kind of heat exchanger, air-conditioning and design of heat exchanger method
AU2018245192A1 (en) 2017-03-27 2019-11-14 Daikin Industries, Ltd. Heat exchanger and refrigeration apparatus
JP6880901B2 (en) 2017-03-27 2021-06-02 ダイキン工業株式会社 Heat exchanger unit
JP6766722B2 (en) 2017-03-27 2020-10-14 ダイキン工業株式会社 Heat exchanger or refrigeration equipment
JP6766723B2 (en) 2017-03-27 2020-10-14 ダイキン工業株式会社 Heat exchanger or refrigeration equipment
EP3604974A4 (en) 2017-03-27 2020-04-22 Daikin Industries, Ltd. Heat exchanger and refrigeration device
JP6974720B2 (en) * 2017-12-26 2021-12-01 ダイキン工業株式会社 Heat exchanger and refrigeration equipment
US11852386B2 (en) 2018-11-22 2023-12-26 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle apparatus
JPWO2020165973A1 (en) * 2019-02-13 2021-09-30 三菱電機株式会社 Indoor unit of air conditioner and air conditioner
WO2023188386A1 (en) * 2022-03-31 2023-10-05 三菱電機株式会社 Heat exchanger and air conditioner

Also Published As

Publication number Publication date
KR100612765B1 (en) 2006-08-18
JP2000329486A (en) 2000-11-30
KR20000077283A (en) 2000-12-26

Similar Documents

Publication Publication Date Title
JP3367467B2 (en) Finned heat exchanger
CN104285119B (en) Heat exchanger and air conditioner
US7182127B2 (en) Heat exchanger
EP2006629A2 (en) Fin-tube heat exchanger, fin for heat exchanger, and heat pump device
JP2016205744A (en) Heat exchanger and air conditioner
CN107407534A (en) Heat exchanger and air conditioner
JP6734002B1 (en) Heat exchanger and refrigeration cycle device
JP4178472B2 (en) Heat exchanger and air conditioner
JP6972158B2 (en) Dehumidifier
JP2005055108A (en) Heat exchanger
CN210512739U (en) Micro-channel heat exchanger and air conditioner
US20220065556A1 (en) Heat exchanger and air conditioner using the heat exchanger
JP2013245884A (en) Fin tube heat exchanger
JP2011112315A (en) Fin tube type heat exchanger and air conditioner using the same
JP2007147221A (en) Heat exchanger with fin
JP2001317890A (en) Heat exchanger with fin
JP2005201492A (en) Heat exchanger
JP2004271113A (en) Heat exchanger
JP5084304B2 (en) Finned tube heat exchanger and refrigeration cycle
JP3177302U (en) Air conditioning unit
JP5404571B2 (en) Heat exchanger and equipment
JP4624146B2 (en) Air conditioner indoor unit
JPH10185359A (en) Finned heat exchanger
JP2001141383A (en) Heat exchanger
WO2016031032A1 (en) Heat exchanger and air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071108

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081108

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091108

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091108

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101108

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111108

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121108

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131108

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees