WO2023188386A1 - Heat exchanger and air conditioner - Google Patents

Heat exchanger and air conditioner Download PDF

Info

Publication number
WO2023188386A1
WO2023188386A1 PCT/JP2022/016866 JP2022016866W WO2023188386A1 WO 2023188386 A1 WO2023188386 A1 WO 2023188386A1 JP 2022016866 W JP2022016866 W JP 2022016866W WO 2023188386 A1 WO2023188386 A1 WO 2023188386A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
paths
heat exchange
refrigerant
pipe
Prior art date
Application number
PCT/JP2022/016866
Other languages
French (fr)
Japanese (ja)
Inventor
拓也 松田
勇太 佐藤
敦 森田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/016866 priority Critical patent/WO2023188386A1/en
Publication of WO2023188386A1 publication Critical patent/WO2023188386A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • F25B41/42Arrangements for diverging or converging flows, e.g. branch lines or junctions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators

Definitions

  • the present disclosure relates to a heat exchanger and an air conditioner.
  • the performance of the heat exchanger is improved by optimizing the flow rate of refrigerant in the heat transfer tubes and optimizing the balance between pressure loss and heat transfer coefficient on the refrigerant side. .
  • the design takes into consideration the number of refrigerant flow paths.
  • Patent Document 1 describes an air conditioner equipped with a heat exchanger using a three-way tube that straddles a plurality of rows.
  • the low-pressure gas-liquid two-phase refrigerant flows through the three-way pipe in the evaporator, so the refrigerant is distributed vertically within the three-way pipe. This deteriorates evaporator performance because the low-pressure gas-liquid two-phase refrigerant is not evenly distributed.
  • the present disclosure has been made in view of the above problems, and its purpose is to provide a heat exchanger and an air conditioner that can improve evaporator performance.
  • the heat exchanger of the present disclosure includes a first heat exchange section having a plurality of first passes, a second heat exchange section having a plurality of second passes, and a connection between the first heat exchange section and the second heat exchange section. It is equipped with a three-way pipe.
  • the plurality of first paths are arranged in a line.
  • the plurality of second paths are arranged in a line along the direction in which the plurality of first paths are lined up.
  • the three-way tube includes a U-shaped tube that connects the plurality of second paths, and an inflow tube that connects any one of the plurality of first paths to the U-shaped tube.
  • the U-shaped tube has a straight portion connected to each of the plurality of second paths.
  • the inflow pipe is vertically connected to the straight section.
  • the inflow pipe is connected to the straight portion in the vertical direction. Therefore, the evaporator performance can be improved.
  • FIG. 2 is a refrigerant circuit diagram of the air conditioner according to the first embodiment.
  • 1 is a perspective view schematically showing the configuration of a heat exchanger according to Embodiment 1.
  • FIG. 1 is a side view schematically showing the configuration of a heat exchanger according to Embodiment 1.
  • FIG. 1 is a front view, a side view, and a plan view schematically showing the configuration of a three-way tube of a heat exchanger according to Embodiment 1.
  • FIG. FIG. 2 is a front view, a side view, and a plan view schematically showing a bulge-processed portion of a three-way tube of a heat exchanger according to Embodiment 1.
  • FIG. 7 is a front view, a side view, and a plan view schematically showing the configuration of another three-way tube of the heat exchanger according to the first embodiment. It is a graph which shows the relationship between evaporator performance and the height of an inflow pipe.
  • FIG. 3 is a side view schematically showing the configuration of Modification 1 of the heat exchanger according to Embodiment 1.
  • FIG. 3 is a side view schematically showing the configuration of a second modification of the heat exchanger according to the first embodiment.
  • FIG. 3 is a front view schematically showing the configuration of a U-shaped tube of a heat exchanger according to a second embodiment.
  • Embodiment 1 With reference to FIG. 1, the configuration of air conditioner 100 according to Embodiment 1 will be described. Solid arrows in FIG. 1 indicate the flow of refrigerant during cooling operation. Broken arrows in FIG. 1 indicate the flow of refrigerant during heating operation.
  • the air conditioner 100 includes a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, an expansion valve 4, an indoor heat exchanger 5, an outdoor blower 6, and an indoor blower. 7 and a control device 8.
  • the heat exchanger HE according to the first embodiment is applied to the indoor heat exchanger 5.
  • the air conditioner 100 includes an outdoor unit 101 and an indoor unit 102 connected to the outdoor unit 101.
  • the refrigerant circuit 10 includes a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, an expansion valve 4, and an indoor heat exchanger 5.
  • the compressor 1, four-way valve 2, outdoor heat exchanger 3, expansion valve 4, and indoor heat exchanger 5 are connected by piping 20.
  • the refrigerant circuit 10 is configured to circulate refrigerant.
  • the refrigerant is, for example, a non-azeotropic mixed refrigerant. Further, the refrigerant may be a mixed refrigerant containing HFO1123 refrigerant.
  • the compressor 1, four-way valve 2, outdoor heat exchanger 3, expansion valve 4, outdoor blower 6, and control device 8 are housed in the outdoor unit 101.
  • the indoor heat exchanger 5 and the indoor blower 7 are housed in the indoor unit 102.
  • the outdoor unit 101 and the indoor unit 102 are connected by a gas pipe 21 and a liquid pipe 22.
  • a portion of the pipe 20 constitutes a gas pipe 21 and a liquid pipe 22.
  • the refrigerant circuit 10 is configured such that during cooling operation, refrigerant circulates in the order of the compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the expansion valve 4, the indoor heat exchanger 5, and the four-way valve 2.
  • the refrigerant circuit 10 is configured such that during heating operation, the refrigerant circulates in the order of the compressor 1, the four-way valve 2, the indoor heat exchanger 5, the expansion valve 4, the outdoor heat exchanger 3, and the four-way valve 2. .
  • the compressor 1 is configured to compress refrigerant.
  • the compressor 1 is for compressing the refrigerant flowing into the heat exchanger HE.
  • the compressor 1 is configured to compress the sucked refrigerant and discharge it.
  • the compressor 1 may be configured to have a variable capacity.
  • the compressor 1 may be configured such that the capacity changes by adjusting the rotation speed of the compressor 1 based on instructions from the control device 8.
  • the four-way valve 2 is configured to switch the flow of the refrigerant so that the refrigerant compressed by the compressor 1 flows to the outdoor heat exchanger 3 or the indoor heat exchanger 5.
  • the four-way valve 2 has a first port P1 to a fourth port P4.
  • the first port P1 is connected to the discharge side of the compressor 1.
  • the second port P2 is connected to the suction side of the compressor 1.
  • the third port P3 is connected to the outdoor heat exchanger 3.
  • the fourth port P4 is connected to the indoor heat exchanger 5.
  • the four-way valve 2 is configured to allow the refrigerant discharged from the compressor 1 to flow into the outdoor heat exchanger 3 during cooling operation.
  • the first port P1 of the four-way valve 2 is connected to the third port P3, and the second port P2 is connected to the fourth port P4. Furthermore, the four-way valve 2 is configured to allow the refrigerant discharged from the compressor 1 to flow into the indoor heat exchanger 5 during heating operation. During heating operation, in the four-way valve 2, the first port P1 is connected to the fourth port P4, and the second port P2 is connected to the third port P3.
  • the outdoor heat exchanger 3 is configured to perform heat exchange between the refrigerant flowing inside the outdoor heat exchanger 3 and the air flowing outside the outdoor heat exchanger 3.
  • the outdoor heat exchanger 3 is configured to function as a condenser that condenses refrigerant during cooling operation, and to function as an evaporator that evaporates refrigerant during heating operation.
  • the expansion valve 4 is configured to reduce the pressure by expanding the refrigerant condensed in the condenser.
  • the expansion valve 4 is configured to reduce the pressure of the refrigerant condensed by the outdoor heat exchanger 3 during cooling operation, and to reduce the pressure of the refrigerant condensed by the indoor heat exchanger 5 during heating operation.
  • the expansion valve 4 is, for example, an electromagnetic expansion valve.
  • the indoor heat exchanger 5 is configured to perform heat exchange between the refrigerant flowing inside the indoor heat exchanger 5 and the air flowing outside the indoor heat exchanger 5.
  • the indoor heat exchanger 5 is configured to function as an evaporator to evaporate refrigerant during cooling operation, and to function as a condenser to condense refrigerant during heating operation.
  • the outdoor blower 6 is configured to blow outdoor air to the outdoor heat exchanger 3. That is, the outdoor blower 6 is configured to supply air to the outdoor heat exchanger 3.
  • the indoor blower 7 is configured to blow indoor air to the indoor heat exchanger 5. That is, the indoor blower 7 is configured to supply air to the indoor heat exchanger 5.
  • the control device 8 is configured to control each device of the air conditioner 100 by performing calculations, instructions, etc.
  • the control device 8 is electrically connected to the compressor 1, the four-way valve 2, the expansion valve 4, the outdoor blower 6, the indoor blower 7, etc., and is configured to control their operations.
  • the configuration of the heat exchanger HE according to the first embodiment will be described in detail with reference to FIGS. 2 to 6.
  • the heat exchanger HE according to the first embodiment is applied to the indoor heat exchanger 5.
  • Note that the heat exchanger HE according to the first embodiment may be applied to the outdoor heat exchanger 3.
  • the heat exchanger HE includes a first heat exchange section HP1, a second heat exchange section HP2, and a three-way tube TP.
  • the heat exchanger HE further includes a third heat exchange section HP3 and a plurality of connecting pipes CP.
  • the air flow direction D1, the width direction D2, and the step direction D3 are shown by solid arrows.
  • the air flow direction D1, the width direction D2, and the step direction D3 are orthogonal to each other.
  • the white arrows in FIGS. 2 and 3 indicate the air flow direction D1.
  • the air flow direction D1 corresponds to the row direction in which the first heat exchange part HP1, the second heat exchange part HP2, and the third heat exchange part HP3 are arranged.
  • the first heat exchange part HP1 is arranged on the windward side in the air flow direction D1.
  • the first heat exchange parts HP1 are arranged in a first row in the air flow direction D1.
  • the second heat exchange section HP2 is arranged adjacent to the first heat exchange section HP1 in the air flow direction D1.
  • the second heat exchange part HP2 is arranged on the leeward side of the first heat exchange part HP1 in the air flow direction D1.
  • the second heat exchange portion HP2 is arranged in the second row in the air flow direction D1.
  • the third heat exchange section HP3 is arranged adjacent to the second heat exchange section HP2 in the air flow direction D1.
  • the third heat exchange part HP3 is arranged on the leeward side of the second heat exchange part HP2 in the air flow direction D1.
  • the third heat exchange portion HP3 is arranged in the third row in the air flow direction D1.
  • the first heat exchange section HP1 has a plurality of first paths PT1. Each of the plurality of first paths PT1 extends in the width direction D2. Each of the plurality of first paths PT1 extends linearly. The plurality of first paths PT1 are arranged in a line. The plurality of first paths PT1 are arranged at intervals in the step direction D3. In this embodiment, the first heat exchange section HP1 has four first paths PT1, but the number of first paths PT1 is not limited.
  • the first heat exchange part HP1 includes a plurality of first fins F1 and a plurality of first connection parts C1.
  • Each of the plurality of first fins F1 is configured in a plate shape.
  • the plurality of first fins F1 are arranged so as to overlap each other.
  • Each of the plurality of first paths PT1 passes through the plurality of first fins F1 in the width direction D2.
  • the plurality of first connecting portions C1 connect the first paths PT1 to each other on the outside of the plurality of first fins F1.
  • Each of the plurality of first paths PT1 is connected by each of the plurality of first connection parts C1, so that the plurality of first paths PT1 and the plurality of first connection parts C1 are configured to meander as a whole.
  • the material of the plurality of first paths PT1, the plurality of first fins F1, and the plurality of first connection parts C1 is, for example, aluminum.
  • the second heat exchange section HP2 has a plurality of second paths PT2. Each of the plurality of second paths PT2 extends in the width direction D2. Each of the plurality of second paths PT2 extends linearly. The plurality of second paths PT2 are arranged in a line along the direction in which the plurality of first paths PT1 are lined up. The plurality of second paths PT2 are lined up at intervals in the step direction D3. In this embodiment, the second heat exchange section HP2 has four second paths PT2, but the number of second paths PT2 is not limited.
  • the second heat exchange part HP2 includes a plurality of second fins F2 and a plurality of second connection parts C2.
  • Each of the plurality of second fins F2 is configured in a plate shape.
  • the plurality of second fins F2 are arranged so as to overlap each other.
  • Each of the plurality of second paths PT2 passes through the plurality of second fins F2 in the width direction D2.
  • the plurality of second connecting portions C2 connect the second paths PT2 to each other on the outside of the plurality of second fins F2.
  • Each of the plurality of second paths PT2 is connected by each of the plurality of second connection parts C2, so that the plurality of second paths PT2 and the plurality of second connection parts C2 are configured to be folded back in the width direction D2.
  • the material of the plurality of second paths PT2, the plurality of second fins F2, and the plurality of second connection parts C2 is, for example, aluminum.
  • the third heat exchange section HP3 has a plurality of third paths PT3. Each of the plurality of third paths PT3 extends in the width direction D2. Each of the plurality of third paths PT3 extends linearly. The plurality of third paths PT3 are arranged in a line along the direction in which the first paths PT1 are lined up. The plurality of third paths PT3 are arranged at intervals in the step direction D3. In this embodiment, the third heat exchange section HP3 has four third paths PT3, but the number of third paths PT23 is not limited.
  • the third heat exchange part HP3 includes a plurality of third fins F3 and a plurality of third connection parts C3.
  • Each of the plurality of third fins F3 is configured in a plate shape.
  • the plurality of third fins F3 are arranged so as to overlap each other.
  • Each of the plurality of third paths PT3 passes through the plurality of third fins F3 in the width direction D2.
  • the plurality of third connecting portions C3 connect the third paths PT3 to each other on the outside of the plurality of third fins F3.
  • Each of the plurality of third paths PT3 is connected by each of the plurality of third connection parts C3, so that the plurality of third paths PT3 and the plurality of third connection parts C3 are configured to be folded back in the width direction D2.
  • the material of the plurality of third paths PT3, the plurality of third fins F3, and the plurality of third connection parts C3 is, for example, aluminum.
  • the three-way pipe TP connects the first heat exchange part HP1 and the second heat exchange part HP2.
  • the three-way pipe TP connects one of the plurality of first paths PT1 and two of the plurality of second paths PT2.
  • the first path PT1 of the first stage and the second path PT2 of the second and third stages are connected by a three-way pipe TP.
  • the plurality of connecting pipes CP connect the second heat exchange section HP2 and the third heat exchange section HP3.
  • the plurality of connecting pipes CP connect one of the plurality of second paths PT2 and one of the plurality of third paths PT3.
  • the second path PT2 of the first stage and the third path PT3 of the first stage are connected by one connecting pipe (first connecting pipe) CP
  • the second path PT2 of the first stage is connected by one connecting pipe (first connecting pipe) CP.
  • the second path PT2 and the fourth stage third path PT3 are connected by the other connecting pipe (second connecting pipe) CP.
  • the three-way pipe TP includes a U-shaped pipe T1 and an inflow pipe T2.
  • the U-shaped tube T1 connects the plurality of second paths PT2.
  • the U-shaped tube T1 connects adjacent second paths PT in the step direction D3 among the plurality of second paths PT.
  • the inflow pipe T2 connects any one of the plurality of first paths PT1 to the U-shaped pipe T1.
  • the U-shaped tube T1 has a straight portion T11 and a bent portion T12.
  • the straight portion T11 is connected to each of the plurality of second paths PT2. In this embodiment, the straight portion T11 extends in the horizontal direction.
  • the curved portion T12 connects the straight portion T11.
  • the inflow pipe T2 is vertically connected to the straight portion T11. In this embodiment, the inflow pipe T2 is connected to the straight portion T11 from above in the vertical direction.
  • the inflow pipe T2 has a first folded part T21, a first extended part T22, a second folded part T23, and a second extended part T24.
  • the first folded portion T21 is connected to the straight portion T11.
  • the first folded portion T21 is connected to the straight portion T11 at an angle of 90°.
  • the first folded portion T21 is folded back so as to rise in the vertical direction and then fall.
  • the first folded portion T21 straddles the first heat exchange portion HP1 and the second heat exchange portion HP2 in the column direction when viewed from the width direction D2.
  • the first extending portion T22 is connected to the first folded portion T21.
  • the first extending portion T22 extends in the vertical direction.
  • the first extending portion T22 extends linearly.
  • the length of the first extending portion T22 in the vertical direction is longer than the length of the second stage of the second path PT2.
  • the second folded portion T23 is connected to the first extended portion T22.
  • the second folded portion T23 is folded back so as to fall down in the vertical direction and then rise.
  • the second folded portion T23 straddles the first heat exchange portion HP1 and the second heat exchange portion HP2 in the column direction when viewed from the width direction.
  • the second extending portion T24 is connected to the second folded portion T23.
  • the second extending portion T24 extends in the width direction D2.
  • the second extending portion T24 extends linearly.
  • the second extending portion T24 is connected to the first path PT1.
  • the three-way pipe TP may be provided with a bulge-processed portion BP at the connection portion between the U-shaped pipe T1 and the inflow pipe T2.
  • the U-shaped tube T1 and the inflow tube T2 are connected via the bulge processed portion BP.
  • the inflow pipe T2 is not shown in FIG. 5 for convenience of explanation.
  • the inflow pipe T2 may be connected to the straight portion T11 from below in the vertical direction.
  • the inflow pipe T2 has a rising portion T25 and a lower extending portion T26.
  • the rising portion T25 is connected to the straight portion T11.
  • the rising portion T25 is connected to the straight portion T11 at an angle of 90°.
  • the lower extending portion T26 is connected to the rising portion T25.
  • the lower extending portion T26 extends in the width direction D2.
  • the lower extending portion T26 extends linearly.
  • the lower extending portion T26 is connected to the first path PT1.
  • the air conditioner 100 can selectively perform cooling operation and heating operation.
  • refrigerant circulates through the refrigerant circuit 10 in the order of the compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the expansion valve 4, the indoor heat exchanger 5, and the four-way valve 2.
  • the outdoor heat exchanger 3 functions as a condenser. Heat exchange is performed between the refrigerant flowing through the outdoor heat exchanger 3 and the air blown by the outdoor blower 6.
  • the indoor heat exchanger 5 functions as an evaporator. Heat exchange is performed between the refrigerant flowing through the indoor heat exchanger 5 and the air blown by the indoor blower 7.
  • refrigerant circulates through the refrigerant circuit 10 in the order of the compressor 1, four-way valve 2, indoor heat exchanger 5, expansion valve 4, outdoor heat exchanger 3, and four-way valve 2.
  • the indoor heat exchanger 5 functions as a condenser. Heat exchange is performed between the refrigerant flowing through the indoor heat exchanger 5 and the air blown by the indoor blower 7.
  • the outdoor heat exchanger 3 functions as an evaporator. Heat exchange is performed between the refrigerant flowing through the outdoor heat exchanger 3 and the air blown by the outdoor blower 6.
  • the indoor heat exchanger 5 functions as an evaporator.
  • the low-pressure gas-liquid two-phase refrigerant whose pressure has been reduced by the expansion valve 4 flows into the first path PT1 of the first heat exchange section HP1 in the first row.
  • the low-pressure gas-liquid two-phase refrigerant is evaporated in the first heat exchange part HP1 until the degree of dryness is, for example, 0.3 or more and 0.4 or less.
  • the low-pressure gas-liquid two-phase refrigerant flows into the three-way pipe TP from the first heat exchange section HP1.
  • the flow rate of the low-pressure gas-liquid two-phase refrigerant is evenly distributed in the three-way pipe TP, and flows into the second path PT2 of the second heat exchange section HP2 in the second row.
  • the low-pressure gas-liquid two-phase refrigerant is further evaporated in the second heat exchange section HP2.
  • the low-pressure gas-liquid two-phase refrigerant flows from the second heat exchange section HP2 through the connecting pipe CP and into the third path PT3 of the third heat exchange section HP3 in the third row.
  • the low-pressure gas-liquid two-phase refrigerant is further evaporated in the third heat exchange section HP3.
  • the coolant flow direction is parallel to the air flow direction D1.
  • the non-azeotropic mixed refrigerant flows inside the plurality of first paths PT1, the plurality of second paths PT2, and the three-way pipe TP.
  • the indoor heat exchanger 5 functions as a condenser.
  • the high-pressure gas refrigerant discharged from the compressor 1 passes through the four-way valve 2 and flows into the third path PT3 of the third heat exchange section HP3 in the third row.
  • the high pressure gas refrigerant is condensed in the third heat exchange section HP3.
  • the high-pressure gas refrigerant flows from the third heat exchange section HP3 through the connecting pipe CP and into the second path PT2 of the second heat exchange section HP2 in the second row.
  • the high-pressure gas refrigerant is condensed in the second heat exchange section HP2 until its dryness reaches zero.
  • the liquid or low-dryness high-pressure refrigerant is combined in the three-way pipe TP, the flow rate of which is doubled, and flows into the first path PT1 of the first heat exchange section HP1 in the first row.
  • the liquid or low dryness high pressure refrigerant is further condensed in the first heat exchange section HP1.
  • the refrigerant flow direction is opposite to the air flow direction D1.
  • FIG. 7 is a graph showing the relationship between the evaporator performance and the height H of the inflow pipe T2 (see FIG. 4).
  • the measurement conditions are as follows.
  • the air temperature is 7° C. dry bulb and 6° C. wet bulb.
  • the wind speed is 1.5 m/s.
  • the refrigerant is R32.
  • the refrigerant circulation amount is 10 kg/h.
  • the inlet enthalpy is 245.6 kJ/kg.
  • the degree of superheat at the heat exchanger outlet is 1K.
  • the object to be measured is a 3-row, 4-stage, stacked length of 300 mm, 2-pass heat exchanger.
  • the height of the inflow pipe T2 is used as a parameter.
  • the height H of the inflow pipe T2 is preferably at least 10 times the inner diameter D of the straight portion T11. If the height H of the inflow pipe T2 is at least 10 times the inner diameter D of the straight portion T11 (10D), the evaporator performance will be 95% or more. Evaporator performance is based on the case where there is no effect due to deterioration of refrigerant distribution. Further, it is more preferable that the height H of the inflow pipe T2 is at least 50 times the inner diameter D of the straight portion T11. If the height H of the inflow pipe T2 is at least 50 times the inner diameter D of the straight portion T11 (50D), the evaporator performance will be approximately 100%.
  • the inflow pipe T2 is connected to the straight portion T11 in the vertical direction. Therefore, when the heat exchanger HE functions as an evaporator, the gas-liquid two-phase refrigerant flowing from the inflow pipe T2 is distributed along the straight portion T11. Further, the length of the inflow pipe T2 in the vertical direction can be made longer than when the inflow pipe T2 is connected to the straight portion T11 in the horizontal direction. Thereby, drifting of the gas-liquid two-phase refrigerant can be suppressed. Therefore, the gas-liquid two-phase refrigerant can be evenly distributed. Therefore, evaporator performance can be improved.
  • the straight portion T11 extends in the horizontal direction. Therefore, the refrigerant flowing in from the inflow pipe T2 is distributed along the horizontal direction. Therefore, the gas-liquid two-phase refrigerant can be distributed more evenly.
  • the heat exchanger HE when the heat exchanger HE functions as a condenser, the number of channels in the liquid phase portion can be reduced. Therefore, the condenser performance can be improved.
  • the height of the inflow pipe T2 is at least 10 times the inner diameter of the straight portion T11. Therefore, the evaporator performance can be improved.
  • the non-azeotropic mixed refrigerant flows inside the plurality of first paths PT1, the plurality of second paths PT2, and the three-way pipe TP. Therefore, when the liquid side is arranged on the windward side where frost formation is likely to occur, the temperature gradient of the non-azeotropic mixed refrigerant on the liquid side becomes small. Therefore, a decrease in the evaporation temperature of the non-azeotropic refrigerant mixture can be suppressed.
  • the air conditioner 100 according to the first embodiment includes the heat exchanger HE described above. Therefore, it is possible to provide the air conditioner 100 including the heat exchanger HE that can improve the evaporator performance.
  • the inflow pipe T2 of the three-way pipe TP is longer in the vertical direction than in the present embodiment shown in FIG. There is. Specifically, the length in the vertical direction of the first extending portion T22 of the inflow pipe T2 is longer than the length of the four stages of the second path PT2.
  • the vertical length of the first extending portion T22 of the inflow pipe T2 is longer, so that the uneven flow of the gas-liquid two-phase refrigerant is further reduced. Can be suppressed.
  • the heat exchanger HE has a first heat exchange part HP1 and a second heat exchange part HP2; 3 does not have heat exchange section HP3. That is, the heat exchanger HE is composed of two rows of heat exchange sections.
  • the heat exchanger HE can be configured with two rows of heat exchange sections.
  • Embodiment 2 The heat exchanger HE according to the second embodiment has the same configuration, operation, and effect as the heat exchanger HE according to the first embodiment, unless otherwise specified.
  • the bent portion T12 has a fracture-inducing structure FP.
  • the fracture guiding structure FP is configured to have a lower withstand voltage than other parts of the bent portion T12.
  • the refrigerant is a mixed refrigerant containing HFO1123 refrigerant.
  • the fracture guiding structure FP has a notch structure having a notch. This notch is formed on the outer periphery of the bent portion T12, for example, over the entire periphery.
  • the bent portion T12 has the fracture-inducing structure FP. Therefore, when the pressure on the high-pressure side of the mixed refrigerant containing the HFO1123 refrigerant increases abnormally, the fracture induction structure FP ruptures, so that the HFO1123 refrigerant can be discharged to the outside of the pipe. Therefore, the pressure in the refrigerant circuit 10 can be released. Therefore, it is possible to prevent the disproportionation reaction of the HFO1123 refrigerant from diffusing as a chain reaction, thereby preventing an explosion due to the disproportionation reaction.
  • 1 Compressor 2 Four-way valve, 3 Outdoor heat exchanger, 4 Expansion valve, 5 Indoor heat exchanger, 100 Air conditioner, FP rupture induction structure, HE Heat exchanger, HP1 First heat exchange section, HP2 Second heat Exchange section, HP3 third heat exchange section, PT1 first pass, PT2 second pass, PT3 third pass, T1 U-shaped tube, T2 inflow tube, T11 straight section, T12 bent section, TP three-way tube.

Abstract

This heat exchanger (HE) comprises a first heat exchange part (HP1) that has a plurality of first paths (PT1), a second heat exchange part (HP2) that has a plurality of second paths (PT2), and a three-way pipe (TP) that connects the first heat exchange part (HP1) and the second heat exchange part (HP2). The plurality of first paths (PT1) are disposed side by side in a row. The plurality of second paths (PT2) are disposed side by side in a row in the direction that the plurality of first paths (PT1) are aligned. The three-way pipe (TP) has a U-shaped pipe (T1) that connects the plurality of second paths (PT2) to each other, and an inflow pipe (T2) that connects any of the plurality of first paths (PT1) and the U-shaped pipe (T1). The U-shaped pipe (T1) has straight sections (T11) that are respectively connected to the plurality of second paths (PT2). The inflow pipe (T2) is connected vertically to the straight sections (T11).

Description

熱交換器および空気調和機Heat exchangers and air conditioners
 本開示は熱交換器および空気調和機に関するものである。 The present disclosure relates to a heat exchanger and an air conditioner.
 空気調和機の熱交換器においては、伝熱管内の冷媒流速を最適化することで、冷媒側の圧力損失と熱伝達率のバランスを適正化させることにより、熱交換器の性能を高めている。このため、冷媒流路数を考慮した設計が行われている。 In the heat exchanger of an air conditioner, the performance of the heat exchanger is improved by optimizing the flow rate of refrigerant in the heat transfer tubes and optimizing the balance between pressure loss and heat transfer coefficient on the refrigerant side. . For this reason, the design takes into consideration the number of refrigerant flow paths.
 たとえば、特許第6180338号公報(特許文献1)には、複数列の列間をまたぐ3方管を用いた熱交換器を備えた空気調和機が記載されている。 For example, Japanese Patent No. 6180338 (Patent Document 1) describes an air conditioner equipped with a heat exchanger using a three-way tube that straddles a plurality of rows.
特許第6180338号公報Patent No. 6180338
 しかしながら、列間をまたぐ3方管では、蒸発器において低圧気液二相冷媒が3方管内を流れるため、3方管内で冷媒が上下方向に分配される。これにより、低圧気液二相冷媒が均等に分配されないため、蒸発器性能が悪化する。 However, in the three-way pipe that straddles the rows, the low-pressure gas-liquid two-phase refrigerant flows through the three-way pipe in the evaporator, so the refrigerant is distributed vertically within the three-way pipe. This deteriorates evaporator performance because the low-pressure gas-liquid two-phase refrigerant is not evenly distributed.
 本開示は上記課題に鑑みてなされたものであり、その目的は、蒸発器性能を向上させることができる熱交換器および空気調和機を提供することである。 The present disclosure has been made in view of the above problems, and its purpose is to provide a heat exchanger and an air conditioner that can improve evaporator performance.
 本開示の熱交換器は、複数の第1パスを有する第1熱交換部と、複数の第2パスを有する第2熱交換部と、第1熱交換部と第2熱交換部とを接続する3方管とを備えている。複数の第1パスは、一列に並んで配置されている。複数の第2パスは、複数の第1パスが並ぶ方向に沿って一列に並んで配置されている。3方管は、複数の第2パス同士を接続するU字管と、複数の第1パスのいずれかとU字管とを接続する流入管とを有している。U字管は、複数の第2パスの各々に接続された直線部を有している。流入管は、直線部に鉛直方向に接続されている。 The heat exchanger of the present disclosure includes a first heat exchange section having a plurality of first passes, a second heat exchange section having a plurality of second passes, and a connection between the first heat exchange section and the second heat exchange section. It is equipped with a three-way pipe. The plurality of first paths are arranged in a line. The plurality of second paths are arranged in a line along the direction in which the plurality of first paths are lined up. The three-way tube includes a U-shaped tube that connects the plurality of second paths, and an inflow tube that connects any one of the plurality of first paths to the U-shaped tube. The U-shaped tube has a straight portion connected to each of the plurality of second paths. The inflow pipe is vertically connected to the straight section.
 本開示の熱交換器よれば、流入管は、直線部に鉛直方向に接続されている。このため、蒸発器性能を向上させることができる。 According to the heat exchanger of the present disclosure, the inflow pipe is connected to the straight portion in the vertical direction. Therefore, the evaporator performance can be improved.
実施の形態1に係る空気調和機の冷媒回路図である。FIG. 2 is a refrigerant circuit diagram of the air conditioner according to the first embodiment. 実施の形態1に係る熱交換器の構成を概略的に示す斜視図である。1 is a perspective view schematically showing the configuration of a heat exchanger according to Embodiment 1. FIG. 実施の形態1に係る熱交換器の構成を概略的に示す側面図である。1 is a side view schematically showing the configuration of a heat exchanger according to Embodiment 1. FIG. 実施の形態1に係る熱交換器の3方管の構成を概略的に示す正面図、側面図、平面図である。1 is a front view, a side view, and a plan view schematically showing the configuration of a three-way tube of a heat exchanger according to Embodiment 1. FIG. 実施の形態1に係る熱交換器の3方管のバルジ加工部を概略的に示す正面図、側面図、平面図である。FIG. 2 is a front view, a side view, and a plan view schematically showing a bulge-processed portion of a three-way tube of a heat exchanger according to Embodiment 1. FIG. 実施の形態1に係る熱交換器の他の3方管の構成を概略的に示す正面図、側面図、平面図である。FIG. 7 is a front view, a side view, and a plan view schematically showing the configuration of another three-way tube of the heat exchanger according to the first embodiment. 蒸発器性能と流入管の高さとの関係を示すグラフである。It is a graph which shows the relationship between evaporator performance and the height of an inflow pipe. 実施の形態1に係る熱交換器の変形例1の構成を概略的に示す側面図である。FIG. 3 is a side view schematically showing the configuration of Modification 1 of the heat exchanger according to Embodiment 1. FIG. 実施の形態1に係る熱交換器の変形例2の構成を概略的に示す側面図である。FIG. 3 is a side view schematically showing the configuration of a second modification of the heat exchanger according to the first embodiment. 実施の形態2に係る熱交換器のU字管の構成を概略的に示す正面図である。FIG. 3 is a front view schematically showing the configuration of a U-shaped tube of a heat exchanger according to a second embodiment.
 以下、図面を参照して、実施の形態について説明する。なお、図中において、同一または相当する部分には同一の符号を付してその説明は繰り返さない。 Hereinafter, embodiments will be described with reference to the drawings. In addition, in the drawings, the same or corresponding parts are given the same reference numerals, and the description thereof will not be repeated.
 実施の形態1.
 図1を参照して、実施の形態1に係る空気調和機100の構成について説明する。図1中実線矢印は、冷房運転時における冷媒の流れを示している。図1中破線矢印は、暖房運転時における冷媒の流れを示している。
Embodiment 1.
With reference to FIG. 1, the configuration of air conditioner 100 according to Embodiment 1 will be described. Solid arrows in FIG. 1 indicate the flow of refrigerant during cooling operation. Broken arrows in FIG. 1 indicate the flow of refrigerant during heating operation.
 図1に示されるように、空気調和機100は、圧縮機1と、四方弁2と、室外熱交換器3と、膨張弁4と、室内熱交換器5と、室外送風機6と、室内送風機7と、制御装置8とを備えている。実施の形態1に係る熱交換器HEは、室内熱交換器5に適用されている。空気調和機100は、室外機101と、室外機101に接続された室内機102とを備えている。 As shown in FIG. 1, the air conditioner 100 includes a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, an expansion valve 4, an indoor heat exchanger 5, an outdoor blower 6, and an indoor blower. 7 and a control device 8. The heat exchanger HE according to the first embodiment is applied to the indoor heat exchanger 5. The air conditioner 100 includes an outdoor unit 101 and an indoor unit 102 connected to the outdoor unit 101.
 冷媒回路10は、圧縮機1、四方弁2、室外熱交換器3、膨張弁4および室内熱交換器5を含んでいる。圧縮機1、四方弁2、室外熱交換器3、膨張弁4および室内熱交換器5は、配管20によって接続されている。冷媒回路10は、冷媒を循環させるように構成されている。 The refrigerant circuit 10 includes a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, an expansion valve 4, and an indoor heat exchanger 5. The compressor 1, four-way valve 2, outdoor heat exchanger 3, expansion valve 4, and indoor heat exchanger 5 are connected by piping 20. The refrigerant circuit 10 is configured to circulate refrigerant.
 冷媒は、例えば、非共沸混合冷媒である。また、冷媒は、HFO1123冷媒を含む混合冷媒であってもよい。 The refrigerant is, for example, a non-azeotropic mixed refrigerant. Further, the refrigerant may be a mixed refrigerant containing HFO1123 refrigerant.
 圧縮機1、四方弁2、室外熱交換器3、膨張弁4、室外送風機6および制御装置8は、室外機101に収容されている。室内熱交換器5および室内送風機7は、室内機102に収容されている。室外機101と室内機102とは、ガス管21と液管22とにより接続されている。配管20の一部がガス管21および液管22を構成している。 The compressor 1, four-way valve 2, outdoor heat exchanger 3, expansion valve 4, outdoor blower 6, and control device 8 are housed in the outdoor unit 101. The indoor heat exchanger 5 and the indoor blower 7 are housed in the indoor unit 102. The outdoor unit 101 and the indoor unit 102 are connected by a gas pipe 21 and a liquid pipe 22. A portion of the pipe 20 constitutes a gas pipe 21 and a liquid pipe 22.
 冷媒回路10は、冷房運転時には、圧縮機1、四方弁2、室外熱交換器3、膨張弁4、室内熱交換器5、四方弁2の順に冷媒が循環するように構成されている。また、冷媒回路10は、暖房運転時には、圧縮機1、四方弁2、室内熱交換器5、膨張弁4、室外熱交換器3、四方弁2の順に冷媒が循環するように構成されている。 The refrigerant circuit 10 is configured such that during cooling operation, refrigerant circulates in the order of the compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the expansion valve 4, the indoor heat exchanger 5, and the four-way valve 2. The refrigerant circuit 10 is configured such that during heating operation, the refrigerant circulates in the order of the compressor 1, the four-way valve 2, the indoor heat exchanger 5, the expansion valve 4, the outdoor heat exchanger 3, and the four-way valve 2. .
 圧縮機1は、冷媒を圧縮するように構成されている。圧縮機1は、熱交換器HEに流入する冷媒を圧縮するためのものである。圧縮機1は、吸入した冷媒を圧縮して吐出するように構成されている。圧縮機1は、容量可変に構成されていてもよい。圧縮機1は、制御装置8からの指示に基づいて圧縮機1の回転数が調整されることにより容量が変化するように構成されていてもよい。 The compressor 1 is configured to compress refrigerant. The compressor 1 is for compressing the refrigerant flowing into the heat exchanger HE. The compressor 1 is configured to compress the sucked refrigerant and discharge it. The compressor 1 may be configured to have a variable capacity. The compressor 1 may be configured such that the capacity changes by adjusting the rotation speed of the compressor 1 based on instructions from the control device 8.
 四方弁2は、圧縮機1により圧縮された冷媒を室外熱交換器3または室内熱交換器5に流すように冷媒の流れを切替えるように構成されている。四方弁2は、第1ポートP1~第4ポートP4を有している。第1ポートP1は、圧縮機1の吐出側に接続されている。第2ポートP2は圧縮機1の吸入側に接続されている。第3ポートP3は、室外熱交換器3に接続されている。第4ポートP4は、室内熱交換器5に接続されている。四方弁2は、冷房運転時には圧縮機1から吐出された冷媒を室外熱交換器3に流すように構成されている。冷房運転時には、四方弁2において第1ポートP1に第3ポートP3が接続されているとともに第2ポートP2に第4ポートP4が接続されている。また、四方弁2は、暖房運転時には圧縮機1から吐出された冷媒を室内熱交換器5に流すように構成されている。暖房運転時には、四方弁2において第1ポートP1に第4ポートP4が接続されているとともに第2ポートP2に第3ポートP3が接続されている。 The four-way valve 2 is configured to switch the flow of the refrigerant so that the refrigerant compressed by the compressor 1 flows to the outdoor heat exchanger 3 or the indoor heat exchanger 5. The four-way valve 2 has a first port P1 to a fourth port P4. The first port P1 is connected to the discharge side of the compressor 1. The second port P2 is connected to the suction side of the compressor 1. The third port P3 is connected to the outdoor heat exchanger 3. The fourth port P4 is connected to the indoor heat exchanger 5. The four-way valve 2 is configured to allow the refrigerant discharged from the compressor 1 to flow into the outdoor heat exchanger 3 during cooling operation. During cooling operation, the first port P1 of the four-way valve 2 is connected to the third port P3, and the second port P2 is connected to the fourth port P4. Furthermore, the four-way valve 2 is configured to allow the refrigerant discharged from the compressor 1 to flow into the indoor heat exchanger 5 during heating operation. During heating operation, in the four-way valve 2, the first port P1 is connected to the fourth port P4, and the second port P2 is connected to the third port P3.
 室外熱交換器3は、室外熱交換器3の内部を流れる冷媒と室外熱交換器3の外部を流れる空気との間で熱交換を行うように構成されている。室外熱交換器3は、冷房運転時には冷媒を凝縮させる凝縮器として機能し、暖房運転時には冷媒を蒸発させる蒸発器として機能するように構成されている。 The outdoor heat exchanger 3 is configured to perform heat exchange between the refrigerant flowing inside the outdoor heat exchanger 3 and the air flowing outside the outdoor heat exchanger 3. The outdoor heat exchanger 3 is configured to function as a condenser that condenses refrigerant during cooling operation, and to function as an evaporator that evaporates refrigerant during heating operation.
 膨張弁4は、凝縮器で凝縮された冷媒を膨張させることにより減圧させるように構成されている。膨張弁4は、冷房運転時には室外熱交換器3により凝縮された冷媒を減圧させ、暖房運転時には室内熱交換器5により凝縮された冷媒を減圧させるように構成されている。膨張弁4は、たとえば、電磁膨張弁である。 The expansion valve 4 is configured to reduce the pressure by expanding the refrigerant condensed in the condenser. The expansion valve 4 is configured to reduce the pressure of the refrigerant condensed by the outdoor heat exchanger 3 during cooling operation, and to reduce the pressure of the refrigerant condensed by the indoor heat exchanger 5 during heating operation. The expansion valve 4 is, for example, an electromagnetic expansion valve.
 室内熱交換器5は、室内熱交換器5の内部を流れる冷媒と室内熱交換器5の外部を流れる空気との間で熱交換を行うように構成されている。室内熱交換器5は、冷房運転時には冷媒を蒸発させる蒸発器として機能し、暖房運転時には冷媒を凝縮させる凝縮器として機能するように構成されている。 The indoor heat exchanger 5 is configured to perform heat exchange between the refrigerant flowing inside the indoor heat exchanger 5 and the air flowing outside the indoor heat exchanger 5. The indoor heat exchanger 5 is configured to function as an evaporator to evaporate refrigerant during cooling operation, and to function as a condenser to condense refrigerant during heating operation.
 室外送風機6は、室外熱交換器3に室外の空気を送風するように構成されている。つまり、室外送風機6は、室外熱交換器3に対して空気を供給するように構成されている。 The outdoor blower 6 is configured to blow outdoor air to the outdoor heat exchanger 3. That is, the outdoor blower 6 is configured to supply air to the outdoor heat exchanger 3.
 室内送風機7は、室内熱交換器5に室内の空気を送風するように構成されている。つまり、室内送風機7は、室内熱交換器5に対して空気を供給するように構成されている。 The indoor blower 7 is configured to blow indoor air to the indoor heat exchanger 5. That is, the indoor blower 7 is configured to supply air to the indoor heat exchanger 5.
 制御装置8は、演算、指示等を行って空気調和機100の各機器等を制御するように構成されている。制御装置8は、圧縮機1、四方弁2、膨張弁4、室外送風機6、室内送風機7などに電気的に接続されており、これらの動作を制御するように構成されている。 The control device 8 is configured to control each device of the air conditioner 100 by performing calculations, instructions, etc. The control device 8 is electrically connected to the compressor 1, the four-way valve 2, the expansion valve 4, the outdoor blower 6, the indoor blower 7, etc., and is configured to control their operations.
 図2~図6を参照して、実施の形態1に係る熱交換器HEの構成について詳しく説明する。実施の形態1に係る熱交換器HEは、室内熱交換器5に適用される。なお、実施の形態1に係る熱交換器HEは、室外熱交換器3に適用されてもよい。 The configuration of the heat exchanger HE according to the first embodiment will be described in detail with reference to FIGS. 2 to 6. The heat exchanger HE according to the first embodiment is applied to the indoor heat exchanger 5. Note that the heat exchanger HE according to the first embodiment may be applied to the outdoor heat exchanger 3.
 図2および図3に示されるように、熱交換器HEは、第1熱交換部HP1と、第2熱交換部HP2と、3方管TPとを備えている。本実施の形態では、熱交換器HEは、第3熱交換部HP3と、複数の接続管CPとをさらに備えている。 As shown in FIGS. 2 and 3, the heat exchanger HE includes a first heat exchange section HP1, a second heat exchange section HP2, and a three-way tube TP. In this embodiment, the heat exchanger HE further includes a third heat exchange section HP3 and a plurality of connecting pipes CP.
 図2には空気流れ方向D1、幅方向D2および段方向D3が実線矢印で示されている。本実施の形態では、空気流れ方向D1、幅方向D2および段方向D3は互いに直交している。図2および図3中白抜き矢印は空気流れ方向D1を示している。空気流れ方向D1は、第1熱交換部HP1、第2熱交換部HP2および第3熱交換部HP3が配置された列方向に一致している。 In FIG. 2, the air flow direction D1, the width direction D2, and the step direction D3 are shown by solid arrows. In this embodiment, the air flow direction D1, the width direction D2, and the step direction D3 are orthogonal to each other. The white arrows in FIGS. 2 and 3 indicate the air flow direction D1. The air flow direction D1 corresponds to the row direction in which the first heat exchange part HP1, the second heat exchange part HP2, and the third heat exchange part HP3 are arranged.
 第1熱交換部HP1は、空気流れ方向D1において風上側に配置されている。第1熱交換部HP1は、空気流れ方向D1において第1列に配置されている。第2熱交換部HP2は、空気流れ方向D1において第1熱交換部HP1と隣り合うように配置されている。第2熱交換部HP2は、空気流れ方向D1において第1熱交換部HP1よりも風下側に配置されている。第2熱交換部HP2は、空気流れ方向D1において第2列に配置されている。第3熱交換部HP3は、空気流れ方向D1において第2熱交換部HP2と隣り合うように配置されている。第3熱交換部HP3は、空気流れ方向D1において第2熱交換部HP2よりも風下側に配置されている。第3熱交換部HP3は、空気流れ方向D1において第3列に配置されている。 The first heat exchange part HP1 is arranged on the windward side in the air flow direction D1. The first heat exchange parts HP1 are arranged in a first row in the air flow direction D1. The second heat exchange section HP2 is arranged adjacent to the first heat exchange section HP1 in the air flow direction D1. The second heat exchange part HP2 is arranged on the leeward side of the first heat exchange part HP1 in the air flow direction D1. The second heat exchange portion HP2 is arranged in the second row in the air flow direction D1. The third heat exchange section HP3 is arranged adjacent to the second heat exchange section HP2 in the air flow direction D1. The third heat exchange part HP3 is arranged on the leeward side of the second heat exchange part HP2 in the air flow direction D1. The third heat exchange portion HP3 is arranged in the third row in the air flow direction D1.
 第1熱交換部HP1は、複数の第1パスPT1を有している。複数の第1パスPT1の各々は、幅方向D2に延在している。複数の第1パスPT1の各々は、直線状に延在している。複数の第1パスPT1は、一列に並んで配置されている。複数の第1パスPT1は、段方向D3に互いに間隔をあけて並んでいる。本実施の形態では、第1熱交換部HP1は、4つの第1パスPT1を有しているが、第1パスPT1の個数は限定されない。 The first heat exchange section HP1 has a plurality of first paths PT1. Each of the plurality of first paths PT1 extends in the width direction D2. Each of the plurality of first paths PT1 extends linearly. The plurality of first paths PT1 are arranged in a line. The plurality of first paths PT1 are arranged at intervals in the step direction D3. In this embodiment, the first heat exchange section HP1 has four first paths PT1, but the number of first paths PT1 is not limited.
 本実施の形態では、第1熱交換部HP1は、複数の第1フィンF1と、複数の第1接続部C1とを有している。複数の第1フィンF1の各々は板状に構成されている。複数の第1フィンF1は互いに重なるように配置されている。複数の第1パスPT1の各々は、複数の第1フィンF1を幅方向D2に貫通している。複数の第1接続部C1は、複数の第1フィンF1の外側で第1パスPT1同士を接続している。複数の第1パスPT1の各々が複数の第1接続部C1の各々によって接続されることで、複数の第1パスPT1および複数の第1接続部C1は全体として蛇行するように構成されている。複数の第1パスPT1、複数の第1フィンF1および複数の第1接続部C1の材料は、例えばアルミニウムである。 In this embodiment, the first heat exchange part HP1 includes a plurality of first fins F1 and a plurality of first connection parts C1. Each of the plurality of first fins F1 is configured in a plate shape. The plurality of first fins F1 are arranged so as to overlap each other. Each of the plurality of first paths PT1 passes through the plurality of first fins F1 in the width direction D2. The plurality of first connecting portions C1 connect the first paths PT1 to each other on the outside of the plurality of first fins F1. Each of the plurality of first paths PT1 is connected by each of the plurality of first connection parts C1, so that the plurality of first paths PT1 and the plurality of first connection parts C1 are configured to meander as a whole. . The material of the plurality of first paths PT1, the plurality of first fins F1, and the plurality of first connection parts C1 is, for example, aluminum.
 第2熱交換部HP2は、複数の第2パスPT2を有している。複数の第2パスPT2の各々は、幅方向D2に延在している。複数の第2パスPT2の各々は、直線状に延在している。複数の第2パスPT2は、複数の第1パスPT1が並ぶ方向に沿って一列に並んで配置されている。複数の第2パスPT2は、段方向D3に互いに間隔をあけて並んでいる。本実施の形態では、第2熱交換部HP2は、4つの第2パスPT2を有しているが、第2パスPT2の個数は限定されない。 The second heat exchange section HP2 has a plurality of second paths PT2. Each of the plurality of second paths PT2 extends in the width direction D2. Each of the plurality of second paths PT2 extends linearly. The plurality of second paths PT2 are arranged in a line along the direction in which the plurality of first paths PT1 are lined up. The plurality of second paths PT2 are lined up at intervals in the step direction D3. In this embodiment, the second heat exchange section HP2 has four second paths PT2, but the number of second paths PT2 is not limited.
 本実施の形態では、第2熱交換部HP2は、複数の第2フィンF2と、複数の第2接続部C2とを有している。複数の第2フィンF2の各々は板状に構成されている。複数の第2フィンF2は互いに重なるように配置されている。複数の第2パスPT2の各々は、複数の第2フィンF2を幅方向D2に貫通している。複数の第2接続部C2は、複数の第2フィンF2の外側で第2パスPT2同士を接続している。複数の第2パスPT2の各々が複数の第2接続部C2の各々によって接続されることで、複数の第2パスPT2および複数の第2接続部C2は幅方向D2に折り返すように構成されている。複数の第2パスPT2、複数の第2フィンF2および複数の第2接続部C2の材料は、例えばアルミニウムである。 In this embodiment, the second heat exchange part HP2 includes a plurality of second fins F2 and a plurality of second connection parts C2. Each of the plurality of second fins F2 is configured in a plate shape. The plurality of second fins F2 are arranged so as to overlap each other. Each of the plurality of second paths PT2 passes through the plurality of second fins F2 in the width direction D2. The plurality of second connecting portions C2 connect the second paths PT2 to each other on the outside of the plurality of second fins F2. Each of the plurality of second paths PT2 is connected by each of the plurality of second connection parts C2, so that the plurality of second paths PT2 and the plurality of second connection parts C2 are configured to be folded back in the width direction D2. There is. The material of the plurality of second paths PT2, the plurality of second fins F2, and the plurality of second connection parts C2 is, for example, aluminum.
 第3熱交換部HP3は、複数の第3パスPT3を有している。複数の第3パスPT3の各々は、幅方向D2に延在している。複数の第3パスPT3の各々は、直線状に延在している。複数の第3パスPT3は、第1パスPT1が並ぶ方向に沿って一列に並んで配置されている。複数の第3パスPT3は、段方向D3に互いに間隔をあけて並んでいる。本実施の形態では、第3熱交換部HP3は、4つの第3パスPT3を有しているが、第3パスPT23個数は限定されない。 The third heat exchange section HP3 has a plurality of third paths PT3. Each of the plurality of third paths PT3 extends in the width direction D2. Each of the plurality of third paths PT3 extends linearly. The plurality of third paths PT3 are arranged in a line along the direction in which the first paths PT1 are lined up. The plurality of third paths PT3 are arranged at intervals in the step direction D3. In this embodiment, the third heat exchange section HP3 has four third paths PT3, but the number of third paths PT23 is not limited.
 本実施の形態では、第3熱交換部HP3は、複数の第3フィンF3と、複数の第3接続部C3とを有している。複数の第3フィンF3の各々は板状に構成されている。複数の第3フィンF3は互いに重なるように配置されている。複数の第3パスPT3の各々は、複数の第3フィンF3を幅方向D2に貫通している。複数の第3接続部C3は、複数の第3フィンF3の外側で第3パスPT3同士を接続している。複数の第3パスPT3の各々が複数の第3接続部C3の各々によって接続されることで、複数の第3パスPT3および複数の第3接続部C3は幅方向D2に折り返すように構成されている。複数の第3パスPT3、複数の第3フィンF3および複数の第3接続部C3の材料は、例えばアルミニウムである。 In the present embodiment, the third heat exchange part HP3 includes a plurality of third fins F3 and a plurality of third connection parts C3. Each of the plurality of third fins F3 is configured in a plate shape. The plurality of third fins F3 are arranged so as to overlap each other. Each of the plurality of third paths PT3 passes through the plurality of third fins F3 in the width direction D2. The plurality of third connecting portions C3 connect the third paths PT3 to each other on the outside of the plurality of third fins F3. Each of the plurality of third paths PT3 is connected by each of the plurality of third connection parts C3, so that the plurality of third paths PT3 and the plurality of third connection parts C3 are configured to be folded back in the width direction D2. There is. The material of the plurality of third paths PT3, the plurality of third fins F3, and the plurality of third connection parts C3 is, for example, aluminum.
 3方管TPは、第1熱交換部HP1と第2熱交換部HP2とを接続する。3方管TPは、複数の第1パスPT1のうちの1つと複数の第2パスPT2のうちの2つとを接続する。本実施の形態では、段方向D3において、1段目の第1パスPT1と、2段目および3段目の第2パスPT2とが3方管TPで接続されている。 The three-way pipe TP connects the first heat exchange part HP1 and the second heat exchange part HP2. The three-way pipe TP connects one of the plurality of first paths PT1 and two of the plurality of second paths PT2. In this embodiment, in the stage direction D3, the first path PT1 of the first stage and the second path PT2 of the second and third stages are connected by a three-way pipe TP.
 複数の接続管CPは、第2熱交換部HP2と第3熱交換部HP3とを接続する。複数の接続管CPは、複数の第2パスPT2のうちの1つと複数の第3パスPT3の1つとを接続する。本実施の形態では、段方向D3において、1段目の第2パスPT2と1段目の第3パスPT3とが一方の接続管(第1の接続管)CPで接続され、4段目の第2パスPT2と4段目の第3パスPT3とが他方の接続管(第2の接続管)CPで接続されている。 The plurality of connecting pipes CP connect the second heat exchange section HP2 and the third heat exchange section HP3. The plurality of connecting pipes CP connect one of the plurality of second paths PT2 and one of the plurality of third paths PT3. In this embodiment, in the stage direction D3, the second path PT2 of the first stage and the third path PT3 of the first stage are connected by one connecting pipe (first connecting pipe) CP, and the second path PT2 of the first stage is connected by one connecting pipe (first connecting pipe) CP. The second path PT2 and the fourth stage third path PT3 are connected by the other connecting pipe (second connecting pipe) CP.
 図2~図4に示されるように、3方管TPは、U字管T1と、流入管T2とを有している。U字管T1は、複数の第2パスPT2同士を接続する。本実施の形態では、U字管T1は、複数の第2パスPTのうち段方向D3に隣り合う第2パスPT同士を接続する。 As shown in FIGS. 2 to 4, the three-way pipe TP includes a U-shaped pipe T1 and an inflow pipe T2. The U-shaped tube T1 connects the plurality of second paths PT2. In the present embodiment, the U-shaped tube T1 connects adjacent second paths PT in the step direction D3 among the plurality of second paths PT.
 流入管T2は、複数の第1パスPT1のいずれかとU字管T1とを接続する。U字管T1は、直線部T11と、曲がり部T12とを有している。直線部T11は、複数の第2パスPT2の各々に接続されている。本実施の形態では、直線部T11は、水平方向に延在している。曲がり部T12は直線部T11をつないでいる。流入管T2は、直線部T11に鉛直方向に接続されている。本実施の形態では、流入管T2は、直線部T11に鉛直方向において上側から接続されている。 The inflow pipe T2 connects any one of the plurality of first paths PT1 to the U-shaped pipe T1. The U-shaped tube T1 has a straight portion T11 and a bent portion T12. The straight portion T11 is connected to each of the plurality of second paths PT2. In this embodiment, the straight portion T11 extends in the horizontal direction. The curved portion T12 connects the straight portion T11. The inflow pipe T2 is vertically connected to the straight portion T11. In this embodiment, the inflow pipe T2 is connected to the straight portion T11 from above in the vertical direction.
 本実施の形態では、流入管T2は、第1折り返し部T21と、第1延在部T22と、第2折り返し部T23と、第2延在部T24とを有している。第1折り返し部T21は直線部T11に接続されている。第1折り返し部T21は、直線部T11と90°の角度をなすように接続されている。第1折り返し部T21は、鉛直方向に立ち上がってから立ち下がるように折り返している。第1折り返し部T21は、幅方向D2から見て、列方向に第1熱交換部HP1と第2熱交換部HP2とにまたがっている。第1延在部T22は、第1折り返し部T21に接続されている。第1延在部T22は、鉛直方向に延在している。第1延在部T22は、直線状に延在している。第1延在部T22の鉛直方向の長さは、第2パスPT2の2段の長さよりも長くなっている。 In this embodiment, the inflow pipe T2 has a first folded part T21, a first extended part T22, a second folded part T23, and a second extended part T24. The first folded portion T21 is connected to the straight portion T11. The first folded portion T21 is connected to the straight portion T11 at an angle of 90°. The first folded portion T21 is folded back so as to rise in the vertical direction and then fall. The first folded portion T21 straddles the first heat exchange portion HP1 and the second heat exchange portion HP2 in the column direction when viewed from the width direction D2. The first extending portion T22 is connected to the first folded portion T21. The first extending portion T22 extends in the vertical direction. The first extending portion T22 extends linearly. The length of the first extending portion T22 in the vertical direction is longer than the length of the second stage of the second path PT2.
 第2折り返し部T23は第1延在部T22に接続されている。第2折り返し部T23は、鉛直方向に立ち下がってから立ち上がるように折り返している。第2折り返し部T23は、幅方向から見て、列方向に第1熱交換部HP1と第2熱交換部HP2とにまたがっている。第2延在部T24は、第2折り返し部T23に接続されている。第2延在部T24は、幅方向D2に延在している。第2延在部T24は、直線状に延在している。第2延在部T24は、第1パスPT1に接続されている。 The second folded portion T23 is connected to the first extended portion T22. The second folded portion T23 is folded back so as to fall down in the vertical direction and then rise. The second folded portion T23 straddles the first heat exchange portion HP1 and the second heat exchange portion HP2 in the column direction when viewed from the width direction. The second extending portion T24 is connected to the second folded portion T23. The second extending portion T24 extends in the width direction D2. The second extending portion T24 extends linearly. The second extending portion T24 is connected to the first path PT1.
 図5に示されるように、3方管TPにはU字管T1と流入管T2の接続部分にバルジ加工部BPが設けられていてもよい。バルジ加工部BPを介してU字管T1と流入管T2とが接続されている。なお、図5では説明の便宜のため流入管T2は図示されていない。 As shown in FIG. 5, the three-way pipe TP may be provided with a bulge-processed portion BP at the connection portion between the U-shaped pipe T1 and the inflow pipe T2. The U-shaped tube T1 and the inflow tube T2 are connected via the bulge processed portion BP. Note that the inflow pipe T2 is not shown in FIG. 5 for convenience of explanation.
 図6に示されるように、流入管T2は、直線部T11に鉛直方向において下側から接続されていてもよい。流入管T2は、立ち上がり部T25と、下側延在部T26とを有している。立ち上がり部T25は、直線部T11に接続されている。立ち上がり部T25は、直線部T11と90°の角度をなすように接続されている。下側延在部T26は、立ち上がり部T25に接続されている。下側延在部T26は、幅方向D2に延在している。下側延在部T26は、直線状に延在している。下側延在部T26は、第1パスPT1に接続されている。 As shown in FIG. 6, the inflow pipe T2 may be connected to the straight portion T11 from below in the vertical direction. The inflow pipe T2 has a rising portion T25 and a lower extending portion T26. The rising portion T25 is connected to the straight portion T11. The rising portion T25 is connected to the straight portion T11 at an angle of 90°. The lower extending portion T26 is connected to the rising portion T25. The lower extending portion T26 extends in the width direction D2. The lower extending portion T26 extends linearly. The lower extending portion T26 is connected to the first path PT1.
 次に、図1を参照して、実施の形態1に係る空気調和機100の動作について説明する。 Next, the operation of air conditioner 100 according to Embodiment 1 will be described with reference to FIG. 1.
 空気調和機100は、冷房運転と暖房運転とを選択的に行うことが可能である。冷房運転時には、圧縮機1、四方弁2、室外熱交換器3、膨張弁4、室内熱交換器5、四方弁2の順に冷媒が冷媒回路10を循環する。冷房運転時には室外熱交換器3は、凝縮器として機能する。室外熱交換器3を流れる冷媒と室外送風機6によって送風される空気との間で熱交換が行われる。冷房運転時には室内熱交換器5は、蒸発器として機能する。室内熱交換器5を流れる冷媒と室内送風機7によって送風される空気との間で熱交換が行われる。 The air conditioner 100 can selectively perform cooling operation and heating operation. During cooling operation, refrigerant circulates through the refrigerant circuit 10 in the order of the compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the expansion valve 4, the indoor heat exchanger 5, and the four-way valve 2. During cooling operation, the outdoor heat exchanger 3 functions as a condenser. Heat exchange is performed between the refrigerant flowing through the outdoor heat exchanger 3 and the air blown by the outdoor blower 6. During cooling operation, the indoor heat exchanger 5 functions as an evaporator. Heat exchange is performed between the refrigerant flowing through the indoor heat exchanger 5 and the air blown by the indoor blower 7.
 暖房運転時には、圧縮機1、四方弁2、室内熱交換器5、膨張弁4、室外熱交換器3、四方弁2の順に冷媒が冷媒回路10を循環する。暖房運転時には室内熱交換器5は、凝縮器として機能する。室内熱交換器5を流れる冷媒と室内送風機7によって送風される空気との間で熱交換が行われる。暖房運転時には室外熱交換器3は、蒸発器として機能する。室外熱交換器3を流れる冷媒と室外送風機6によって送風される空気との間で熱交換が行われる。 During heating operation, refrigerant circulates through the refrigerant circuit 10 in the order of the compressor 1, four-way valve 2, indoor heat exchanger 5, expansion valve 4, outdoor heat exchanger 3, and four-way valve 2. During heating operation, the indoor heat exchanger 5 functions as a condenser. Heat exchange is performed between the refrigerant flowing through the indoor heat exchanger 5 and the air blown by the indoor blower 7. During heating operation, the outdoor heat exchanger 3 functions as an evaporator. Heat exchange is performed between the refrigerant flowing through the outdoor heat exchanger 3 and the air blown by the outdoor blower 6.
 図1および図2を参照して、実施の形態1に係る熱交換器HEが適用された室内熱交換器5の動作について説明する。 The operation of the indoor heat exchanger 5 to which the heat exchanger HE according to the first embodiment is applied will be described with reference to FIGS. 1 and 2.
 冷房運転時には室内熱交換器5は蒸発器として機能する。膨張弁4で減圧された低圧気液二相冷媒は、第1列の第1熱交換部HP1の第1パスPT1に流入する。低圧気液二相冷媒は、第1熱交換部HP1において、乾き度が例えば0.3以上0.4以下となるまで蒸発する。低圧気液二相冷媒は、第1熱交換部HP1から3方管TPに流入する。低圧気液二相冷媒は、3方管TPで均等に流量が分配され、第2列の第2熱交換部HP2の第2パスPT2に流入する。低圧気液二相冷媒は、第2熱交換部HP2においてさらに蒸発する。低圧気液二相冷媒は、第2熱交換部HP2から接続管CPを通って、第3列の第3熱交換部HP3の第3パスPT3に流入する。低圧気液二相冷媒は、第3熱交換部HP3においてさらに蒸発する。冷媒流れ方向は、空気流れ方向D1に対して並行流とする。本実施の形態では、非共沸混合冷媒は、複数の第1パスPT1、複数の第2パスPT2および3方管TPの内部を流れる。 During cooling operation, the indoor heat exchanger 5 functions as an evaporator. The low-pressure gas-liquid two-phase refrigerant whose pressure has been reduced by the expansion valve 4 flows into the first path PT1 of the first heat exchange section HP1 in the first row. The low-pressure gas-liquid two-phase refrigerant is evaporated in the first heat exchange part HP1 until the degree of dryness is, for example, 0.3 or more and 0.4 or less. The low-pressure gas-liquid two-phase refrigerant flows into the three-way pipe TP from the first heat exchange section HP1. The flow rate of the low-pressure gas-liquid two-phase refrigerant is evenly distributed in the three-way pipe TP, and flows into the second path PT2 of the second heat exchange section HP2 in the second row. The low-pressure gas-liquid two-phase refrigerant is further evaporated in the second heat exchange section HP2. The low-pressure gas-liquid two-phase refrigerant flows from the second heat exchange section HP2 through the connecting pipe CP and into the third path PT3 of the third heat exchange section HP3 in the third row. The low-pressure gas-liquid two-phase refrigerant is further evaporated in the third heat exchange section HP3. The coolant flow direction is parallel to the air flow direction D1. In this embodiment, the non-azeotropic mixed refrigerant flows inside the plurality of first paths PT1, the plurality of second paths PT2, and the three-way pipe TP.
 暖房運転時には室内熱交換器5は凝縮器として機能する。圧縮機1から吐出された高圧ガス冷媒は、四方弁2を通って、第3列の第3熱交換部HP3の第3パスPT3に流入する。高圧ガス冷媒は、第3熱交換部HP3で凝縮される。高圧ガス冷媒は、第3熱交換部HP3から接続管CPを通って、第2列の第2熱交換部HP2の第2パスPT2に流入する。高圧ガス冷媒は、第2熱交換部HP2において、乾き度が0になるまで凝縮される。液または低乾き度の高圧冷媒は、3方管TPで合流され流量が2倍となり、第1列の第1熱交換部HP1の第1パスPT1に流入する。液または低乾き度の高圧冷媒は、第1熱交換部HP1でさらに凝縮される。冷媒流れ方向は、空気流れ方向D1に対して対向流となる。 During heating operation, the indoor heat exchanger 5 functions as a condenser. The high-pressure gas refrigerant discharged from the compressor 1 passes through the four-way valve 2 and flows into the third path PT3 of the third heat exchange section HP3 in the third row. The high pressure gas refrigerant is condensed in the third heat exchange section HP3. The high-pressure gas refrigerant flows from the third heat exchange section HP3 through the connecting pipe CP and into the second path PT2 of the second heat exchange section HP2 in the second row. The high-pressure gas refrigerant is condensed in the second heat exchange section HP2 until its dryness reaches zero. The liquid or low-dryness high-pressure refrigerant is combined in the three-way pipe TP, the flow rate of which is doubled, and flows into the first path PT1 of the first heat exchange section HP1 in the first row. The liquid or low dryness high pressure refrigerant is further condensed in the first heat exchange section HP1. The refrigerant flow direction is opposite to the air flow direction D1.
 次に、図7を参照して、実施の形態1に係る熱交換器HEの蒸発器性能について説明する。 Next, with reference to FIG. 7, the evaporator performance of the heat exchanger HE according to the first embodiment will be described.
 図7は、蒸発器性能と流入管T2の高さH(図4参照)との関係を示すグラフである。測定条件は、次の通りである。空気温度は乾球温度7℃、湿球温度6℃である風速は1.5m/sである。冷媒はR32である。冷媒循環量は10kg/hである。入口エンタルピーは245.6kJ/kgである。熱交換器出口過熱度は1Kである。測定対象物は、3列、4段、積長300mm、2パスの熱交換器である。流入管T2の高さをパラメータとしている。 FIG. 7 is a graph showing the relationship between the evaporator performance and the height H of the inflow pipe T2 (see FIG. 4). The measurement conditions are as follows. The air temperature is 7° C. dry bulb and 6° C. wet bulb. The wind speed is 1.5 m/s. The refrigerant is R32. The refrigerant circulation amount is 10 kg/h. The inlet enthalpy is 245.6 kJ/kg. The degree of superheat at the heat exchanger outlet is 1K. The object to be measured is a 3-row, 4-stage, stacked length of 300 mm, 2-pass heat exchanger. The height of the inflow pipe T2 is used as a parameter.
 図7に示されるように、流入管T2の高さHは、直線部T11の内径Dの10倍以上の長さを有することが好ましい。流入管T2の高さHが直線部T11の内径Dの10倍の長さ(10D)以上であれば、蒸発器性能は95%以上となる。蒸発器性能は、冷媒分配悪化による影響が無い場合を基準としている。また、流入管T2の高さHは、直線部T11の内径Dの50倍以上の長さを有することがさらに好ましい。流入管T2の高さHが直線部T11の内径Dの50倍の長さ(50D)以上であれば、蒸発器性能は略100%となる。 As shown in FIG. 7, the height H of the inflow pipe T2 is preferably at least 10 times the inner diameter D of the straight portion T11. If the height H of the inflow pipe T2 is at least 10 times the inner diameter D of the straight portion T11 (10D), the evaporator performance will be 95% or more. Evaporator performance is based on the case where there is no effect due to deterioration of refrigerant distribution. Further, it is more preferable that the height H of the inflow pipe T2 is at least 50 times the inner diameter D of the straight portion T11. If the height H of the inflow pipe T2 is at least 50 times the inner diameter D of the straight portion T11 (50D), the evaporator performance will be approximately 100%.
 次に、実施の形態1の作用効果について説明する。
 実施の形態1に係る熱交換器HEによれば、流入管T2は、直線部T11に鉛直方向に接続されている。このため、熱交換器HEが蒸発器として機能する場合、流入管T2から流入した気液二相冷媒は、直線部T11に沿って分配される。また、流入管T2が直線部T11に水平方向に接続される場合よりも流入管T2の鉛直方向の長さを長くすることができる。これにより、気液二相冷媒の偏流を抑制することができる。したがって、気液二相冷媒を均等に分配することができる。よって、蒸発器性能を向上させることができる。
Next, the effects of the first embodiment will be explained.
According to the heat exchanger HE according to the first embodiment, the inflow pipe T2 is connected to the straight portion T11 in the vertical direction. Therefore, when the heat exchanger HE functions as an evaporator, the gas-liquid two-phase refrigerant flowing from the inflow pipe T2 is distributed along the straight portion T11. Further, the length of the inflow pipe T2 in the vertical direction can be made longer than when the inflow pipe T2 is connected to the straight portion T11 in the horizontal direction. Thereby, drifting of the gas-liquid two-phase refrigerant can be suppressed. Therefore, the gas-liquid two-phase refrigerant can be evenly distributed. Therefore, evaporator performance can be improved.
 実施の形態1に係る熱交換器HEでは、直線部T11は水平方向に延在している。このため、流入管T2から流入した冷媒は、水平方向に沿って分配される。したがって、気液二相冷媒をさらに均等に分配することができる。 In the heat exchanger HE according to the first embodiment, the straight portion T11 extends in the horizontal direction. Therefore, the refrigerant flowing in from the inflow pipe T2 is distributed along the horizontal direction. Therefore, the gas-liquid two-phase refrigerant can be distributed more evenly.
 実施の形態1に係る熱交換器HEでは、熱交換器HEが凝縮器として機能する場合、液相部の流路数を少なくすることができる。このため、凝縮器性能を向上させることができる。 In the heat exchanger HE according to the first embodiment, when the heat exchanger HE functions as a condenser, the number of channels in the liquid phase portion can be reduced. Therefore, the condenser performance can be improved.
 実施の形態1に係る熱交換器HEによれば。流入管T2の高さは、直線部T11の内径の10倍以上の長さを有する。このため、蒸発器性能を向上させることができる。 According to the heat exchanger HE according to the first embodiment. The height of the inflow pipe T2 is at least 10 times the inner diameter of the straight portion T11. Therefore, the evaporator performance can be improved.
 実施の形態1に係る熱交換器HEでは、非共沸混合冷媒は、複数の第1パスPT1、複数の第2パスPT2および3方管TPの内部を流れる。このため、着霜が生じやすい風上側に液側が配置された場合、液側において非共沸混合冷媒の温度勾配が小さくなる。このため、非共沸混合冷媒の蒸発温度の低下を抑制することができる。 In the heat exchanger HE according to the first embodiment, the non-azeotropic mixed refrigerant flows inside the plurality of first paths PT1, the plurality of second paths PT2, and the three-way pipe TP. Therefore, when the liquid side is arranged on the windward side where frost formation is likely to occur, the temperature gradient of the non-azeotropic mixed refrigerant on the liquid side becomes small. Therefore, a decrease in the evaporation temperature of the non-azeotropic refrigerant mixture can be suppressed.
 実施の形態1に係る空気調和機100は、上記の熱交換器HEを備えている。このため、蒸発器性能を向上させることができる熱交換器HEを備えた空気調和機100を提供することができる。 The air conditioner 100 according to the first embodiment includes the heat exchanger HE described above. Therefore, it is possible to provide the air conditioner 100 including the heat exchanger HE that can improve the evaporator performance.
 続いて、実施の形態1に係る熱交換器HEの変形例について説明する。
 図8を参照して、実施の形態1に係る熱交換器HEの変形例1では、図3に示される本実施の形態よりも、3方管TPの流入管T2が鉛直方向に長くなっている。具体的には、流入管T2の第1延在部T22の鉛直方向の長さは、第2パスPT2の4段の長さよりも長くなっている。
Next, a modification of the heat exchanger HE according to the first embodiment will be described.
Referring to FIG. 8, in the first modification of the heat exchanger HE according to the first embodiment, the inflow pipe T2 of the three-way pipe TP is longer in the vertical direction than in the present embodiment shown in FIG. There is. Specifically, the length in the vertical direction of the first extending portion T22 of the inflow pipe T2 is longer than the length of the four stages of the second path PT2.
 実施の形態1に係る熱交換器HEの変形例1によれば、流入管T2の第1延在部T22の鉛直方向の長さが長くなっているため、気液二相冷媒の偏流をさらに抑制することができる。 According to the first modification of the heat exchanger HE according to the first embodiment, the vertical length of the first extending portion T22 of the inflow pipe T2 is longer, so that the uneven flow of the gas-liquid two-phase refrigerant is further reduced. Can be suppressed.
 図9を参照して、実施の形態1に係る熱交換器HEの変形例2では、熱交換器HEは、第1熱交換部HP1および第2熱交換部HP2を有しているが、第3熱交換部HP3を有していない。つまり、熱交換器HEは2列の熱交換部で構成されている。 Referring to FIG. 9, in the second modification of the heat exchanger HE according to the first embodiment, the heat exchanger HE has a first heat exchange part HP1 and a second heat exchange part HP2; 3 does not have heat exchange section HP3. That is, the heat exchanger HE is composed of two rows of heat exchange sections.
 実施の形態1に係る熱交換器HEの変形例2によれば、熱交換器HEを2列の熱交換部で構成することができる。 According to the second modification of the heat exchanger HE according to the first embodiment, the heat exchanger HE can be configured with two rows of heat exchange sections.
 実施の形態2.
 実施の形態2に係る熱交換器HEは、特に説明しない限り、実施の形態1に係る熱交換器HEと同一の構成、動作および作用効果を有している。
Embodiment 2.
The heat exchanger HE according to the second embodiment has the same configuration, operation, and effect as the heat exchanger HE according to the first embodiment, unless otherwise specified.
 図10を参照して、実施の形態2に係る熱交換器HEでは、曲がり部T12は、破断誘導構造FPを有している。破断誘導構造FPは、曲がり部T12の他の部分よりも耐圧が低くなるように構成されている。また、冷媒はHFO1123冷媒を含む混合冷媒である。本実施の形態では、破断誘導構造FPは、切り欠きを有する切り欠き構造となっている。この切り欠きは、曲がり部T12の外周に、例えば全周において形成されている。 Referring to FIG. 10, in the heat exchanger HE according to the second embodiment, the bent portion T12 has a fracture-inducing structure FP. The fracture guiding structure FP is configured to have a lower withstand voltage than other parts of the bent portion T12. Further, the refrigerant is a mixed refrigerant containing HFO1123 refrigerant. In this embodiment, the fracture guiding structure FP has a notch structure having a notch. This notch is formed on the outer periphery of the bent portion T12, for example, over the entire periphery.
 本実施の形態2に係る熱交換器HEによれば、曲がり部T12は、破断誘導構造FPを有している。このため、HFO1123冷媒を含む混合冷媒の高圧側の圧力が異常上昇した際、破断誘導構造FPが破断するため、HFO1123冷媒を配管外部に放出することができる。このため、冷媒回路10中の圧力を開放することができる。したがって、HFO1123冷媒の不均化反応が連鎖反応として拡散することを防止することができるため、不均化反応による爆発を防止することができる。 According to the heat exchanger HE according to the second embodiment, the bent portion T12 has the fracture-inducing structure FP. Therefore, when the pressure on the high-pressure side of the mixed refrigerant containing the HFO1123 refrigerant increases abnormally, the fracture induction structure FP ruptures, so that the HFO1123 refrigerant can be discharged to the outside of the pipe. Therefore, the pressure in the refrigerant circuit 10 can be released. Therefore, it is possible to prevent the disproportionation reaction of the HFO1123 refrigerant from diffusing as a chain reaction, thereby preventing an explosion due to the disproportionation reaction.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be illustrative in all respects and not restrictive. The scope of the present disclosure is indicated by the claims rather than the above description, and it is intended that equivalent meanings and all changes within the scope of the claims are included.
 1 圧縮機、2 四方弁、3 室外熱交換器、4 膨張弁、5 室内熱交換器、100 空気調和機、FP 破断誘導構造、HE 熱交換器、HP1 第1熱交換部、HP2 第2熱交換部、HP3 第3熱交換部、PT1 第1パス、PT2 第2パス、PT3 第3パス、T1 U字管、T2 流入管、T11 直線部、T12 曲がり部、TP 3方管。 1 Compressor, 2 Four-way valve, 3 Outdoor heat exchanger, 4 Expansion valve, 5 Indoor heat exchanger, 100 Air conditioner, FP rupture induction structure, HE Heat exchanger, HP1 First heat exchange section, HP2 Second heat Exchange section, HP3 third heat exchange section, PT1 first pass, PT2 second pass, PT3 third pass, T1 U-shaped tube, T2 inflow tube, T11 straight section, T12 bent section, TP three-way tube.

Claims (5)

  1.  複数の第1パスを有する第1熱交換部と、
     複数の第2パスを有する第2熱交換部と、
     前記第1熱交換部と前記第2熱交換部とを接続する3方管とを備え、
     前記複数の第1パスは、一列に並んで配置されており、
     前記複数の第2パスは、前記複数の第1パスが並ぶ方向に沿って一列に並んで配置されており、
     前記3方管は、前記複数の第2パス同士を接続するU字管と、前記複数の第1パスのいずれかと前記U字管とを接続する流入管とを有し、
     前記U字管は、前記複数の第2パスの各々に接続された直線部を有し、
     前記流入管は、前記直線部に鉛直方向に接続されている、熱交換器。
    a first heat exchange section having a plurality of first passes;
    a second heat exchange section having a plurality of second passes;
    a three-way pipe connecting the first heat exchange section and the second heat exchange section,
    The plurality of first paths are arranged in a line,
    The plurality of second paths are arranged in a line along the direction in which the plurality of first paths are lined up,
    The three-way pipe includes a U-shaped pipe that connects the plurality of second paths, and an inflow pipe that connects any of the plurality of first paths to the U-shaped pipe,
    The U-shaped tube has a straight portion connected to each of the plurality of second paths,
    The inflow pipe is a heat exchanger connected to the straight section in a vertical direction.
  2.  前記流入管の高さは、前記直線部の内径の10倍以上の長さを有する、請求項1に記載の熱交換器。 The heat exchanger according to claim 1, wherein the height of the inflow pipe is 10 times or more the inner diameter of the straight portion.
  3.  非共沸混合冷媒をさらに備え、
     前記非共沸混合冷媒は、前記複数の第1パス、前記複数の第2パスおよび前記3方管の内部を流れる、請求項1または2に記載の熱交換器。
    further comprising a non-azeotropic mixed refrigerant;
    The heat exchanger according to claim 1 or 2, wherein the non-azeotropic mixed refrigerant flows inside the plurality of first passes, the plurality of second passes, and the three-way pipe.
  4.  HFO1123冷媒を含む混合冷媒をさらに備え、
     前記U字管は、前記直線部をつなぐ曲がり部を有し、
     前記曲がり部は、破断誘導構造を有し、
     前記破断誘導構造は、前記曲がり部の他の部分よりも耐圧が低くなるように構成されている、請求項1または2に記載の熱交換器。
    Further comprising a mixed refrigerant including HFO1123 refrigerant,
    The U-shaped tube has a bent part that connects the straight part,
    The bent portion has a fracture inducing structure,
    The heat exchanger according to claim 1 or 2, wherein the fracture inducing structure is configured to have a lower pressure resistance than other parts of the bent portion.
  5.  前記請求項1~4のいずれか1項に記載の熱交換器を備えた、空気調和機。 An air conditioner comprising the heat exchanger according to any one of claims 1 to 4.
PCT/JP2022/016866 2022-03-31 2022-03-31 Heat exchanger and air conditioner WO2023188386A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/016866 WO2023188386A1 (en) 2022-03-31 2022-03-31 Heat exchanger and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/016866 WO2023188386A1 (en) 2022-03-31 2022-03-31 Heat exchanger and air conditioner

Publications (1)

Publication Number Publication Date
WO2023188386A1 true WO2023188386A1 (en) 2023-10-05

Family

ID=88200405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016866 WO2023188386A1 (en) 2022-03-31 2022-03-31 Heat exchanger and air conditioner

Country Status (1)

Country Link
WO (1) WO2023188386A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6146367U (en) * 1984-08-29 1986-03-27 株式会社東芝 air conditioner
JPH06159735A (en) * 1992-11-18 1994-06-07 Sanyo Electric Co Ltd Heat exchanger
JP2000329486A (en) * 1999-05-17 2000-11-30 Matsushita Electric Ind Co Ltd Finned heat exchanger
JP2001090893A (en) * 1999-09-24 2001-04-03 Daikin Ind Ltd Distributing device
JP2005083715A (en) * 2003-09-11 2005-03-31 Sharp Corp Heat exchanger
JP2006097987A (en) * 2004-09-29 2006-04-13 Daikin Ind Ltd Three-way branch pipe and fin tube type heat exchanger using the same
WO2014115240A1 (en) * 2013-01-22 2014-07-31 三菱電機株式会社 Refrigerant distributor and heat pump device using refrigerant distributor
WO2019058540A1 (en) * 2017-09-25 2019-03-28 三菱電機株式会社 Refrigerant distributor and air-conditioning device
WO2019234836A1 (en) * 2018-06-05 2019-12-12 三菱電機株式会社 Distributor and refrigeration cycle device
JP6639644B2 (en) * 2016-03-28 2020-02-05 三菱電機株式会社 Outdoor unit
WO2021205540A1 (en) * 2020-04-07 2021-10-14 三菱電機株式会社 Refrigeration cycle device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6146367U (en) * 1984-08-29 1986-03-27 株式会社東芝 air conditioner
JPH06159735A (en) * 1992-11-18 1994-06-07 Sanyo Electric Co Ltd Heat exchanger
JP2000329486A (en) * 1999-05-17 2000-11-30 Matsushita Electric Ind Co Ltd Finned heat exchanger
JP2001090893A (en) * 1999-09-24 2001-04-03 Daikin Ind Ltd Distributing device
JP2005083715A (en) * 2003-09-11 2005-03-31 Sharp Corp Heat exchanger
JP2006097987A (en) * 2004-09-29 2006-04-13 Daikin Ind Ltd Three-way branch pipe and fin tube type heat exchanger using the same
WO2014115240A1 (en) * 2013-01-22 2014-07-31 三菱電機株式会社 Refrigerant distributor and heat pump device using refrigerant distributor
JP6639644B2 (en) * 2016-03-28 2020-02-05 三菱電機株式会社 Outdoor unit
WO2019058540A1 (en) * 2017-09-25 2019-03-28 三菱電機株式会社 Refrigerant distributor and air-conditioning device
WO2019234836A1 (en) * 2018-06-05 2019-12-12 三菱電機株式会社 Distributor and refrigeration cycle device
WO2021205540A1 (en) * 2020-04-07 2021-10-14 三菱電機株式会社 Refrigeration cycle device

Similar Documents

Publication Publication Date Title
CN107429975B (en) Heat exchanger and air conditioner
WO2018047330A1 (en) Air conditioner
US10422566B2 (en) Air-Conditioning apparatus
US10907866B2 (en) Refrigerant cycle apparatus and air conditioning apparatus including the same
WO2016056064A1 (en) Heat exchanger and air conditioning device
JP6647406B2 (en) Refrigeration cycle device
WO2015133626A1 (en) Heat exchanger and air conditioner
WO2018138770A1 (en) Heat source-side unit and refrigeration cycle device
JP2020073854A (en) Refrigeration cycle device
WO2023188386A1 (en) Heat exchanger and air conditioner
WO2019198175A1 (en) Refrigeration cycle device
JP6678413B2 (en) Air conditioner
JP7386613B2 (en) Heat exchanger and air conditioner equipped with it
WO2021065914A1 (en) Freezing apparatus
US11879677B2 (en) Air-conditioning apparatus
WO2021131038A1 (en) Heat exchanger and refrigeration cycle device
WO2019155571A1 (en) Heat exchanger and refrigeration cycle device
TWI810896B (en) Dehumidifier
WO2023188421A1 (en) Outdoor unit and air conditioner equipped with same
WO2023281656A1 (en) Heat exchanger and refrigeration cycle device
JP6413692B2 (en) Air conditioner
WO2023281655A1 (en) Heat exchanger and refrigeration cycle device
JP7050538B2 (en) Heat exchanger and air conditioner
JP6698196B2 (en) Air conditioner
WO2021255780A1 (en) Outdoor unit for air conditioning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935524

Country of ref document: EP

Kind code of ref document: A1