JP2000329486A - Finned heat exchanger - Google Patents
Finned heat exchangerInfo
- Publication number
- JP2000329486A JP2000329486A JP11135298A JP13529899A JP2000329486A JP 2000329486 A JP2000329486 A JP 2000329486A JP 11135298 A JP11135298 A JP 11135298A JP 13529899 A JP13529899 A JP 13529899A JP 2000329486 A JP2000329486 A JP 2000329486A
- Authority
- JP
- Japan
- Prior art keywords
- heat transfer
- heat exchanger
- transfer tube
- tube group
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012530 fluid Substances 0.000 claims description 28
- 238000005057 refrigeration Methods 0.000 abstract description 14
- 230000001629 suppression Effects 0.000 abstract description 11
- 238000010438 heat treatment Methods 0.000 abstract 7
- 230000001747 exhibiting Effects 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 15
- 238000001704 evaporation Methods 0.000 description 12
- 239000012071 phase Substances 0.000 description 11
- 239000007788 liquid Substances 0.000 description 10
- 239000007791 liquid phase Substances 0.000 description 8
- 230000000149 penetrating Effects 0.000 description 8
- 230000002093 peripheral Effects 0.000 description 7
- 239000003507 refrigerant Substances 0.000 description 5
- 238000009423 ventilation Methods 0.000 description 5
- 238000004080 punching Methods 0.000 description 4
- 238000004781 supercooling Methods 0.000 description 4
- 230000005494 condensation Effects 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 101710036654 cut-5 Proteins 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 1
- 230000001737 promoting Effects 0.000 description 1
- 230000000717 retained Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/047—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
- F28D1/0477—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
- F28F1/126—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
- F28F1/24—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
- F28F1/32—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
- F28F1/24—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
- F28F1/32—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
- F28F1/325—Fins with openings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/40—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、主として空気調和
機等に使用されるフィン付き熱交換器に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a finned heat exchanger mainly used for air conditioners and the like.
【0002】[0002]
【従来の技術】最近のフィン付き熱交換器として一般的
な第1従来例について図8と図9に従い説明する。図8
はフィン付き熱交換器の基本構成を示す斜視図、図9は
その側面図である。図8と図9に示すようにフィン付き
熱交換器は、補助熱交換器101aと主熱交換器101
bとから構成される。そして、補助熱交換器101aは
所定間隔で並設したフィン群102aと、このフィン群
を略直角に貫通して列を成す伝熱管群103aとからな
り、気体流入側(イ)に配置している。また、主熱交換
器101bは所定間隔で並設したフィン群102bと、
このフィン群を略直角に貫通して列を成す伝熱管群10
3bとからなり、気体流出側(ロ)に配置している。1
04は気流で、フィン群102a、フィン群102bを
矢印方向に流動し、伝熱管群103a、伝熱管群103
bの管内を流動する流体と熱交換する。なお、このフィ
ン付き熱交換器を、セパレ−ト型空気調和機の室内機に
搭載する際には、フィン群102bの数箇所に切断部を
設け、数箇所を折り曲げて搭載するのが一般的である。2. Description of the Related Art A first conventional example of a recent finned heat exchanger will be described with reference to FIGS. FIG.
Is a perspective view showing a basic configuration of a finned heat exchanger, and FIG. 9 is a side view thereof. As shown in FIGS. 8 and 9, the finned heat exchanger includes an auxiliary heat exchanger 101 a and a main heat exchanger 101.
b. The auxiliary heat exchanger 101a is composed of a group of fins 102a arranged side by side at a predetermined interval and a group of heat transfer tubes 103a penetrating the group of fins at substantially right angles and forming a row, and is arranged on the gas inflow side (a). I have. The main heat exchanger 101b includes a fin group 102b arranged side by side at a predetermined interval,
A group of heat transfer tubes 10 penetrating through the fin group at a substantially right angle to form a row
3b and is disposed on the gas outflow side (b). 1
Reference numeral 04 denotes an airflow, which flows through the fin group 102a and the fin group 102b in the direction of the arrow, and
heat exchange with the fluid flowing in the tube b. When this finned heat exchanger is mounted on an indoor unit of a separate type air conditioner, it is common to provide cut portions at several places of the fin group 102b and bend several places to mount. It is.
【0003】上記構成において、空気調和機の冷凍サイ
クルの凝縮器として使用した場合、伝熱管内を流動する
流体は気相状態で矢印A側から流入し、分岐部105に
より伝熱管群103bの上下に分流し、気流104との
熱交換により気液二相状態を経て液状態となり、分岐部
106で再び合流し、伝熱管群103aを経て矢印B側
に流出する。このようにフィン付き熱交換器は伝熱管群
103a内を流れる流体が殆ど液状態となる補助熱交換
器101aと伝熱管群103b内を流れる流体が気相状
態または気液二相状態となる主熱交換器101bとから
構成される。In the above configuration, when used as a condenser in a refrigeration cycle of an air conditioner, the fluid flowing in the heat transfer tubes flows in a gaseous state from the arrow A side, and is branched by a branch portion 105 into the heat transfer tube group 103b. Through a gas-liquid two-phase state due to heat exchange with the air flow 104, merges again at the branch portion 106, and flows out to the arrow B side through the heat transfer tube group 103a. As described above, the finned heat exchanger mainly includes the auxiliary heat exchanger 101a in which the fluid flowing in the heat transfer tube group 103a is almost in a liquid state and the fluid flowing in the heat transfer tube group 103b in a gas phase state or a gas-liquid two-phase state. And a heat exchanger 101b.
【0004】従って、冷媒配管としての伝熱管群103
aの流路数を冷媒出口に近づくにつれて少流量路化し、
かつ主流方向の気流104の風上側である気体流入側
(イ)に配置するとともに凝縮器出口側で低温部となる
補助熱交換器101aを、主熱交換器101bと分離す
ることで、風下側である気体流出側への熱伝導を遮断す
ることができ、過冷却を取り易くすることで凝縮性能の
向上を図れるというものである。Accordingly, the heat transfer tube group 103 as a refrigerant pipe
a, the number of flow paths is reduced as the flow path approaches the refrigerant outlet,
Further, the auxiliary heat exchanger 101a, which is arranged on the gas inflow side (a) on the windward side of the mainstream airflow 104 and is a low-temperature portion on the condenser outlet side, is separated from the main heat exchanger 101b to be on the leeward side. The heat conduction to the gas outflow side can be cut off, and the condensing performance can be improved by facilitating supercooling.
【0005】また、第2従来例である特開昭57−12
7732号公報の代表図面を図10に示す。図10は熱
交換器の斜視図である。フィン付き熱交換器101c
は、伝熱管群103cと103dと、これに直交して多
数取り付けられたフィン102cとからなる。A second conventional example, Japanese Patent Laid-Open Publication No. Sho 57-12
FIG. 10 shows a representative drawing of JP-A-7732. FIG. 10 is a perspective view of the heat exchanger. Finned heat exchanger 101c
Is composed of heat transfer tube groups 103c and 103d, and a number of fins 102c mounted orthogonal to the heat transfer tube groups 103c and 103d.
【0006】空気調和機の冷凍サイクルの凝縮器として
使用した場合、フィン付き熱交換器101cは、高温高
圧のガス冷媒が伝熱管群103c内を通り、伝熱管群1
03d側へと流れる。その間、伝熱管群103c、10
3d内を流れる冷媒は、矢印104の気流と熱交換し凝
縮する。この場合、フィン付き熱交換器101cの気体
流入側(イ)に細管の伝熱管群103dを設けること
で、液相状態となった管内を流れる冷媒の流速を向上さ
せることができ、性能向上が図れるというものである。When used as a condenser in a refrigeration cycle of an air conditioner, the finned heat exchanger 101c allows the high-temperature and high-pressure gas refrigerant to pass through the heat transfer tube group 103c and pass through the heat transfer tube group 1c.
It flows to the 03d side. Meanwhile, the heat transfer tube groups 103c, 10
The refrigerant flowing in 3d exchanges heat with the airflow indicated by arrow 104 and condenses. In this case, by providing the heat transfer tube group 103d of thin tubes on the gas inflow side (A) of the finned heat exchanger 101c, the flow velocity of the refrigerant flowing through the tubes in the liquid phase can be improved, and the performance is improved. It can be planned.
【0007】また、第3従来例である特開平6−174
389号公報の代表図面を図11に示す。図11はフィ
ン付き熱交換器の側面図であり、熱交換器101eの気
体流出側(ロ)の伝熱管群103fの列の段ピッチP3
を、気体流入側(イ)の伝熱管群103eの列の段ピッ
チP4より長くする。A third prior art, Japanese Patent Laid-Open Publication No.
FIG. 11 shows a representative drawing of the '389 publication. FIG. 11 is a side view of the finned heat exchanger, in which the row pitch P3 of the row of the heat transfer tube group 103f on the gas outflow side (b) of the heat exchanger 101e is shown.
Is made longer than the step pitch P4 of the row of the heat transfer tube group 103e on the gas inflow side (a).
【0008】このような構成により、気体104の流出
するフィン付き熱交換器101eの開口面積に対して伝
熱管群103fの止水域108の占める割合を少なくで
きるので、送風機107に吸込まれる時に発生する騒音
を低減させることができるというものである。With such a configuration, the ratio of the water stop area 108 of the heat transfer tube group 103f to the opening area of the finned heat exchanger 101e from which the gas 104 flows out can be reduced. Noise can be reduced.
【0009】また、第4従来例である特開平10−21
3386号公報の代表図面を図12と図13に示す。図
12はフィン付き熱交換器の一部を詳細に表した独立フ
ィンチューブ熱交換器の斜視図、図13は第4従来例を
適用したパッケージエアコンの室外機を示す図である。
独立フィンチューブ熱交換器101gは、複数の独立フ
ィン102gを伝熱管103gが貫通することで形成さ
れている。それぞれの独立フィン102gは、その下端
部101iと上端部101hで接するように構成されて
おり、下端部101iと上端部101hのそれぞれの端
部は接触させた時に少なくとも1点で交差するように構
成する。これにより、水切り性能を向上させることがで
きるとしている。A fourth conventional example, Japanese Patent Laid-Open Publication No.
FIGS. 12 and 13 show representative drawings of Japanese Patent No. 3386. FIG. 12 is a perspective view of an independent fin tube heat exchanger showing a part of a finned heat exchanger in detail, and FIG. 13 is a diagram showing an outdoor unit of a packaged air conditioner to which a fourth conventional example is applied.
The independent fin tube heat exchanger 101g is formed by the heat transfer tube 103g penetrating a plurality of independent fins 102g. Each independent fin 102g is configured to contact at its lower end 101i and its upper end 101h, and each end of the lower end 101i and the upper end 101h intersects at least one point when contacted. I do. Thereby, the drainage performance can be improved.
【0010】[0010]
【発明が解決しようとする課題】しかしながら、第1従
来例の構成では、主熱交換器101b内の二相域内では
隣り合う伝熱管103b間の温度差が0.5度以内であ
るのに対し、液相域である補助熱交換器101a内の隣
り合う伝熱管103a間の温度差は0.5度以上あり、
補助熱交換器内の隣り合う伝熱管間の熱伝導による熱ロ
スは無視できない課題を有していた。However, in the configuration of the first conventional example, the temperature difference between the adjacent heat transfer tubes 103b in the two-phase region in the main heat exchanger 101b is within 0.5 degree. The temperature difference between adjacent heat transfer tubes 103a in the auxiliary heat exchanger 101a, which is a liquid phase region, is 0.5 degrees or more,
Heat loss due to heat conduction between adjacent heat transfer tubes in the auxiliary heat exchanger has a problem that cannot be ignored.
【0011】また、第2従来例の構成では、伝熱管群1
03dの段ピッチを変えずに単に細管にすると管内の熱
伝達率の向上よりもフィン効率の低下の要因が大きく、
高性能化は図れないという課題を有していた。In the configuration of the second conventional example, the heat transfer tube group 1
If the thin tube is simply formed without changing the step pitch of 03d, the cause of the decrease in the fin efficiency is larger than the improvement of the heat transfer coefficient in the tube,
There was a problem that high performance could not be achieved.
【0012】また、第3従来例の構成では、気体流出側
(ロ)の伝熱管群103fの列の段ピッチP3を、気体
流入側(イ)の伝熱管群103eの列の段ピッチP4よ
り長くすることで気体流出側の熱交換器の能力が大きく
低下し、この能力低下分を風量アップで補わなければな
らず、結果的に騒音の低減には寄与しない。また、気体
流出側(ロ)の段ピッチP3を維持しつつ、気体流入側
(イ)の段ピッチP4を短くした場合、第3従来例で記
述する騒音低減の効果は得られないが、凝縮器として作
用した場合、空気流入側の能力向上が図れる。しかし、
蒸発器として作用させると伝熱管の本数が増加し、圧力
損失の増大により能力は低下する。このような課題を第
3従来例は有していた。Further, in the configuration of the third conventional example, the step pitch P3 of the row of the heat transfer tube group 103f on the gas outflow side (b) is made larger than the step pitch P4 of the row of the heat transfer tube group 103e on the gas inflow side (a). By increasing the length, the capacity of the heat exchanger on the gas outflow side is greatly reduced, and this reduced capacity must be compensated for by increasing the air volume, and as a result, does not contribute to the reduction of noise. When the step pitch P4 on the gas inlet side (a) is shortened while maintaining the step pitch P3 on the gas outlet side (b), the effect of noise reduction described in the third conventional example cannot be obtained, When acting as a vessel, the capacity on the air inflow side can be improved. But,
When operated as an evaporator, the number of heat transfer tubes increases, and the capacity decreases due to an increase in pressure loss. The third conventional example has such a problem.
【0013】また、第4従来例の構成では、図13に示
すように、全段で独立フィンを用いることで、下端部1
01iと上端部101h間の切断部が数多く存在し、こ
れにより熱交換器を通過する気流は乱され、熱交換器を
通過する気流の抵抗は切断部を有しない熱交換器より著
しく増大する。通風抵抗比としては良好であっても、フ
ィン表面が乾いている凝縮器として作用させた場合、下
端部101iや上端部101hが存在しない一体のフィ
ンよりも通過する抵抗は増大し、送風回路内に搭載した
際、騒音値の増大や風量の減少などの要因となる課題を
有していた。In the structure of the fourth conventional example, as shown in FIG.
There are a number of cuts between 01i and the upper end 101h, which disrupt the airflow passing through the heat exchanger and the resistance of the airflow passing through the heat exchanger is significantly increased compared to a heat exchanger without cuts. Even if the ventilation resistance ratio is good, when the fin surface is operated as a condenser with a dry fin surface, the resistance that passes through the integrated fin without the lower end portion 101i or the upper end portion 101h increases, and the inside of the ventilation circuit When mounted on a vehicle, there is a problem that causes factors such as an increase in noise value and a decrease in air volume.
【0014】本発明はこのような従来の課題を解決する
ものであり、気体流入側の伝熱管内の面積増大と管内圧
力損失の増大を押さえ、冷凍サイクルの凝縮器、蒸発器
のいずれに使用しても高性能を発揮できるフィン付き熱
交換器を提供することを目的とする。The present invention solves such a conventional problem and suppresses an increase in the area of the heat transfer tube on the gas inflow side and an increase in pressure loss in the tube, and is used for either a condenser or an evaporator of a refrigeration cycle. It is an object of the present invention to provide a finned heat exchanger that can exhibit high performance even when it is used.
【0015】[0015]
【課題を解決するための手段】上記課題を解決するため
に本発明は、所定間隔で平行に並設し、その間を気体が
流動するフィン群と、このフィン群を略直角に貫通して
列を成し、内部を流体が流動する伝熱管群とを備え、気
体流入側の伝熱管群の伝熱管間の段ピッチを、気体流出
側の伝熱管群の伝熱管間の段ピッチより小さくせしめ、
かつ気体流入側の伝熱管群の1列内の伝熱管の本数を、
気体流出側の伝熱管群の1列内の本数以下に構成したも
ので、気体流出側の伝熱管群における管内の伝熱面積の
拡大が図れ、凝縮能力および蒸発能力とも高性能化が図
れるものである。SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a group of fins arranged in parallel at a predetermined interval, through which a gas flows, and a row of fins penetrating the fins at substantially right angles. And a step pitch between the heat transfer tubes in the heat transfer tube group on the gas inflow side is made smaller than a step pitch between the heat transfer tubes in the heat transfer tube group on the gas outflow side. ,
And the number of heat transfer tubes in one row of the heat transfer tube group on the gas inflow side is
The number of heat transfer tube groups on the gas outlet side is less than the number in one row, and the heat transfer area inside the tubes in the gas outlet side heat transfer tube group can be expanded, and the condensing capacity and evaporation ability can be improved. It is.
【0016】[0016]
【発明の実施の形態】本発明フイン付き熱交換器の請求
項1に記載の発明は、所定間隔で平行に並設し、その間
を気体が流動するフィン群と、このフィン群を略直角に
貫通して列を成し、内部を流体が流動する伝熱管群とを
備え、気体流入側の伝熱管群の伝熱管間の段ピッチを、
気体流出側の伝熱管群の伝熱管間の段ピッチより小さく
せしめ、かつ気体流入側の伝熱管群の1列内の伝熱管の
本数を、気体流出側の伝熱管群の1列内の本数以下に構
成したものである。DESCRIPTION OF THE PREFERRED EMBODIMENTS The heat exchanger with fins according to the first aspect of the present invention is arranged in parallel at predetermined intervals, and a fin group through which gas flows and a fin group formed at substantially right angles. A heat transfer tube group through which a fluid flows inside, and a step pitch between the heat transfer tubes of the heat transfer tube group on the gas inflow side,
The number of heat transfer tubes in one row of the heat transfer tube group on the gas inflow side should be made smaller than the step pitch between the heat transfer tubes of the heat transfer tube group on the gas outflow side. It is configured as follows.
【0017】上記構成によれば、気体流入側の伝熱管群
列の管内側の伝熱面積が広がり、凝縮器として使用した
際に、管内伝熱性能としては非常に低い液相状態の過冷
却域を多くとることができ、また管内側の圧力損失の増
大も抑えられる。According to the above configuration, the heat transfer area inside the tube of the heat transfer tube group on the gas inflow side is widened, and when used as a condenser, the supercooling in the liquid state is extremely low as the heat transfer performance in the tube is extremely low. The area can be increased, and an increase in pressure loss inside the pipe can be suppressed.
【0018】また、請求項2に記載の発明は、気体流入
側の伝熱管群の管径を、気体流出側の伝熱管群の管径よ
り小さく構成したものである。In the invention according to claim 2, the diameter of the heat transfer tube group on the gas inflow side is smaller than the diameter of the heat transfer tube group on the gas outflow side.
【0019】上記構成によれば、気体流入側の熱交換器
内を気流が通過する際の通風抵抗が小さくなり、さらに
管内を流動する流体の流速が増大される。According to the above configuration, the ventilation resistance when the airflow passes through the heat exchanger on the gas inflow side is reduced, and the flow velocity of the fluid flowing in the pipe is increased.
【0020】また、請求項3に記載の発明は、気体流入
側の伝熱管群の伝熱管を楕円状または偏平状の形状に構
成したものである。According to a third aspect of the present invention, the heat transfer tubes of the heat transfer tube group on the gas inflow side are formed in an elliptical or flat shape.
【0021】上記構成によれば、伝熱管内の中央付近を
流れる流体と管壁との距離を小さくできる。According to the above configuration, the distance between the fluid flowing near the center of the heat transfer tube and the tube wall can be reduced.
【0022】また、請求項4に記載の発明は、気体流入
側の伝熱管群の伝熱管と伝熱管の間におけるフィンの長
さを伝熱管と伝熱管間の段ピッチより長く、気体流出側
の伝熱管群では伝熱管と伝熱管の間におけるフィンの長
さと伝熱管間の段ピッチをほぼ等しい長さに構成したも
のである。According to a fourth aspect of the present invention, the length of the fin between the heat transfer tubes in the heat transfer tube group on the gas inflow side is longer than the step pitch between the heat transfer tubes, In the heat transfer tube group, the length of the fin between the heat transfer tubes and the step pitch between the heat transfer tubes are set to be substantially equal.
【0023】この構成によれば段ピッチを維持したまま
フィン部分の長さを長くでき、伝熱管の段間の熱伝導を
抑制することができ、伝熱管における段間の熱伝導ロス
が低減される。According to this configuration, the length of the fin portion can be increased while maintaining the step pitch, the heat conduction between the stages of the heat transfer tubes can be suppressed, and the heat conduction loss between the stages in the heat transfer tubes can be reduced. You.
【0024】また、請求項5に記載の発明は、気体流入
側の伝熱管の列のフィンにおける全段にわたって伝熱管
と伝熱管の間に、切断部または打ち抜き部を設け、前記
切断部または打ち抜き部を気流の主流方向に対して傾斜
させた構成にしたものである。According to a fifth aspect of the present invention, a cutting portion or a punching portion is provided between the heat transfer tubes in all the fins of the row of the heat transfer tubes on the gas inflow side, and the cutting portion or the punching portion is provided. The configuration is such that the portion is inclined with respect to the main flow direction of the air flow.
【0025】この構成によれば、伝熱管の段間の熱伝導
によるロスを低減できる。According to this configuration, the loss due to heat conduction between the stages of the heat transfer tubes can be reduced.
【0026】また、請求項6に記載の発明は、伝熱管と
伝熱管の間におけるフィンに、気流主流方向に対し略直
角に複数の切り起こしまたは凹凸を設けた構成にしたも
のである。According to a sixth aspect of the present invention, the fins between the heat transfer tubes are provided with a plurality of cuts and projections or projections and depressions substantially perpendicular to the main flow direction of the air flow.
【0027】この構成によれば、切り起こし前縁部での
境界層前縁効果による高性能化や凹凸形状による伝熱面
積のアップおよび乱流促進により高性能化を図ることが
できる。According to this configuration, high performance can be achieved by the boundary layer leading edge effect at the cut-and-raised front edge portion, the heat transfer area can be increased by the uneven shape, and the turbulence can be promoted.
【0028】また、請求項7に記載の発明は、気体流入
側の列の伝熱管において単位長さ当たりの管内面の伝熱
面積を、気体流出側の伝熱管内面の伝熱面積より大きく
構成したものである。The heat transfer area of the inner surface per unit length of the heat transfer tubes in the row on the gas inflow side is larger than the heat transfer area of the heat transfer tube inner surface on the gas outflow side. It was done.
【0029】この構成によれば、気体流入側として凝縮
器出口および蒸発器入口部分で伝熱面積の拡大を図れ
る。また、伝熱面積の拡大は管内の圧力損失の増大をま
ねきやすいが、凝縮器出口および蒸発器入口部分で用い
ることで凝縮温度の低下や蒸発温度の上昇を抑えながら
管内の伝熱面積の拡大を図れる。According to this structure, the heat transfer area can be increased at the condenser outlet and the evaporator inlet as the gas inflow side. The expansion of the heat transfer area can easily lead to an increase in the pressure loss in the pipe.However, by using it at the condenser outlet and evaporator inlet, the heat transfer area in the pipe can be increased while suppressing the decrease in condensation temperature and the increase in evaporation temperature. Can be achieved.
【0030】[0030]
【実施例】以下本発明の実施例について図面を参照しな
がら説明する。Embodiments of the present invention will be described below with reference to the drawings.
【0031】(実施例1)図1は実施例1の発明である
フィン付き熱交換器を示す側面図である。このフィン付
き熱交換器は、矢印4で示す気流の気体流入側(イ)に
位置する補助熱交換器11aと、気体流出側(ロ)に位
置する主熱交換器11bからなる。補助熱交換器11a
は所定間隔で並設した多数のフィン群12aと、このフ
ィン群を略直角に貫通して蛇行状に配列した伝熱管群1
3aとからなる。また、主熱交換器11bは所定間隔で
並設した多数のフィン群12bと、このフィン群を略直
角に貫通して蛇行状に配列した伝熱管群13bとからな
る。そして、補助熱交換器11aは縦列を成した伝熱管
群13aの伝熱管を6段とし、主熱交換器11bの1列
の12段とした伝熱管群13bの1列内の伝熱管の本数
以下にしたものである。すなわち、補助熱交換器11a
は1列内の伝熱管群13aの管段数を、主熱交換器11
bの1列内の伝熱管群13bの管段数より少ない段数に
するとともに、伝熱管群13aと複数列の伝熱管群13
bとは切り離されている。また、補助熱交換器11aは
伝熱管群13aの伝熱管中心と次の伝熱管中心間の長さ
である段ピッチP1を、主熱交換器11bの伝熱管群1
3bの伝熱管間の段ピッチP2より短くしている。15
は主熱交換器11bの伝熱管群13b入口側の分岐部
で、16は同じく出口側の分岐部である。(First Embodiment) FIG. 1 is a side view showing a finned heat exchanger according to the first embodiment of the present invention. The finned heat exchanger includes an auxiliary heat exchanger 11a located on the gas inflow side (a) of the airflow indicated by the arrow 4 and a main heat exchanger 11b located on the gas outflow side (b). Auxiliary heat exchanger 11a
Is a group of fins 12a arranged side by side at a predetermined interval, and a group of heat transfer tubes 1 penetrating the fins at substantially right angles and arranged in a meandering manner.
3a. The main heat exchanger 11b includes a large number of fin groups 12b arranged side by side at predetermined intervals, and a group of heat transfer tubes 13b penetrating the fin groups at substantially right angles and arranged in a meandering manner. The auxiliary heat exchanger 11a has six rows of heat transfer tubes of the group of heat transfer tubes 13a in a cascade, and the number of heat transfer tubes in one row of the group of heat transfer tubes 13b of 12 rows of one row of the main heat exchanger 11b. It is as follows. That is, the auxiliary heat exchanger 11a
Represents the number of tube stages of the heat transfer tube group 13a in one row,
b, the number of tubes is smaller than the number of tubes of the heat transfer tube group 13b in one row.
b. The auxiliary heat exchanger 11a sets the step pitch P1, which is the length between the heat transfer tube center of the heat transfer tube group 13a and the center of the next heat transfer tube, to the heat transfer tube group 1 of the main heat exchanger 11b.
3b, it is shorter than the step pitch P2 between the heat transfer tubes. Fifteen
Is a branch portion on the inlet side of the heat transfer tube group 13b of the main heat exchanger 11b, and 16 is a branch portion on the outlet side similarly.
【0032】なお、気流4はフィン群12a、フィン群
12bを矢印方向に流動し、伝熱管群13a、伝熱管群
13bの管内を流動する流体と熱交換する。セパレ−ト
型空気調和機の室内機に搭載する際には、補助または主
熱交換器に数箇所の切込み部または切断部を設け、折り
曲げて搭載するのが一般的である。The air flow 4 flows through the fin group 12a and the fin group 12b in the direction of the arrow, and exchanges heat with the fluid flowing in the tubes of the heat transfer tube group 13a and the heat transfer tube group 13b. When the air conditioner is installed in an indoor unit of a separate type air conditioner, it is general that an auxiliary or main heat exchanger is provided with several cuts or cuts, and is folded and mounted.
【0033】上記構成において、空気調和機の冷凍サイ
クルの凝縮器として使用した場合、伝熱管内を流れる流
体は気相状態で矢印Aのように主熱交換器11bの伝熱
管から流入して分岐部15により伝熱管群13bの上下
に分流し、気流4との熱交換により気液二相状態を経て
液状態となり、分岐部16で再び合流して補助熱交換器
11aの縦列を成した伝熱管群13aの伝熱管に流入し
て矢印Bのように流出する。In the above configuration, when used as a condenser in a refrigeration cycle of an air conditioner, the fluid flowing in the heat transfer tube flows in a gaseous state from the heat transfer tube of the main heat exchanger 11b as shown by arrow A and branches. The heat is separated from the heat transfer tube group 13b by the section 15 above and below the heat transfer pipe group 13b. The heat is exchanged with the gas flow 4 to form a liquid state through a gas-liquid two-phase state. It flows into the heat transfer tubes of the heat tube group 13a and flows out as indicated by the arrow B.
【0034】また、空気調和機の冷凍サイクルの蒸発器
として作用する場合、伝熱管内を流れる流体は気液二相
状態で矢印Bのように補助熱交換器11aの縦列を成し
た伝熱管群13aの伝熱管に流入し、さらに主熱交換器
11bの分岐部16で伝熱管群13bの上下へ分流して
気流4との熱交換した後、再び分岐部15で合流して伝
熱管から矢印Aのように流出する。When acting as an evaporator in a refrigeration cycle of an air conditioner, the fluid flowing in the heat transfer tubes is a gas-liquid two-phase state in which a group of heat transfer tubes arranged in tandem with the auxiliary heat exchanger 11a as shown by arrow B. After flowing into the heat transfer tube 13a and further diverging up and down the heat transfer tube group 13b at the branching portion 16 of the main heat exchanger 11b and exchanging heat with the airflow 4, they are joined again at the branching portion 15 and arrow from the heat transfer tube. Outflow like A.
【0035】この構成によれば、補助熱交換器11aの
伝熱管群13aの段ピッチP1が、主熱交換器11bの
伝熱管群13bの段ピッチP2より短いため伝熱管内の
伝熱面積を拡大でき、これにより補助熱交換器の高性能
化を図ることができる。したがって、凝縮器として作用
させると、伝熱管内の伝熱性能としては非常に低い液相
状態の過冷却域を補助熱交換器11a内で多くとること
ができ、これにより管内伝熱性能として良好な二相状態
を主熱交換器11b内で多くとり、熱交換能力を増大で
き、フィン付き熱交換器の高性能化を図ることができ
る。また、蒸発器として作用させた場合、補助熱交換器
11aの1列内の伝熱管の段数は主熱交換器の伝熱管群
13bの1列内の段数より少ない段数とすることによ
り、管内圧力損失の増大を抑え、蒸発能力の向上を図る
ことができる。According to this configuration, since the step pitch P1 of the heat transfer tube group 13a of the auxiliary heat exchanger 11a is shorter than the step pitch P2 of the heat transfer tube group 13b of the main heat exchanger 11b, the heat transfer area in the heat transfer tube is reduced. It is possible to increase the size of the auxiliary heat exchanger, thereby improving the performance of the auxiliary heat exchanger. Therefore, when acting as a condenser, the heat transfer performance inside the heat transfer tube can be increased in the auxiliary heat exchanger 11a in a very low liquid-phase supercooling region, thereby improving the heat transfer performance inside the tube. A large two-phase state is taken in the main heat exchanger 11b, so that the heat exchange capacity can be increased and the performance of the finned heat exchanger can be improved. In addition, when acting as an evaporator, by setting the number of stages of heat transfer tubes in one row of the auxiliary heat exchanger 11a to be smaller than the number of stages in one row of the heat transfer tube group 13b of the main heat exchanger, the pressure in the tube is reduced. It is possible to suppress an increase in loss and improve the evaporation ability.
【0036】(実施例2)図2は実施例2の発明である
フィン付き熱交換器を示す側面図である。このフィン付
き熱交換器は、補助熱交換器の伝熱管群における伝熱管
の管径を、主熱交換器の伝熱管群における管径より小さ
くした構成が上記実施例1と異なるだけなので、それ以
外の同一構成および作用効果を奏する部分には符号を付
して詳細な説明を省略し、異なる部分を中心に説明す
る。Embodiment 2 FIG. 2 is a side view showing a finned heat exchanger according to Embodiment 2 of the present invention. This finned heat exchanger is different from the first embodiment only in the configuration in which the tube diameter of the heat transfer tubes in the heat transfer tube group of the auxiliary heat exchanger is smaller than the tube diameter in the heat transfer tube group of the main heat exchanger. Parts having the same configuration and operation and effect other than those described above are denoted by reference numerals, detailed description thereof will be omitted, and different parts will be mainly described.
【0037】21aは補助熱交換器で、21bは主熱交
換器である。そして、補助熱交換器21aは、伝熱管群
23aにおける伝熱管の管外径dを、主熱交換器21b
の伝熱管群23bにおける伝熱管の管外径Dより小さく
構成してある。また、P1は補助熱交換器21aの伝熱
管群23aの伝熱管中心と次の伝熱管中心間の長さであ
る段ピッチで、主熱交換器21bの伝熱管群23bの段
ピッチP2より短く構成してある。また、補助熱交換器
21aは伝熱管群23aの伝熱管の本数を、主熱交換器
21bの伝熱管群23bの1列内の伝熱管の本数以下に
したものである。22aと22bは補助熱交換器21a
と主熱交換器21bのフィン群で、25、26は伝熱管
群23bの分岐部である。4は気流の主流方向を示す矢
印である。Reference numeral 21a is an auxiliary heat exchanger, and 21b is a main heat exchanger. The auxiliary heat exchanger 21a sets the outer diameter d of the heat transfer tubes in the heat transfer tube group 23a to the main heat exchanger 21b.
Is smaller than the outer diameter D of the heat transfer tubes in the heat transfer tube group 23b. P1 is a step pitch which is the length between the center of the heat transfer tube group of the heat transfer tube group 23a of the auxiliary heat exchanger 21a and the center of the next heat transfer tube group, and is shorter than the step pitch P2 of the heat transfer tube group 23b of the main heat exchanger 21b. It is composed. In the auxiliary heat exchanger 21a, the number of heat transfer tubes of the heat transfer tube group 23a is set to be equal to or less than the number of heat transfer tubes in one row of the heat transfer tube group 23b of the main heat exchanger 21b. 22a and 22b are auxiliary heat exchangers 21a
And the fin group of the main heat exchanger 21b, and 25 and 26 are branch portions of the heat transfer tube group 23b. An arrow 4 indicates the main flow direction of the air flow.
【0038】上記構成において、空気調和機の冷凍サイ
クルの凝縮器として使用した場合、実施例1同様に、伝
熱管内を流れる流体は気相状態で矢印Aのように主熱交
換器21bの伝熱管に流入して分岐部25より伝熱管群
23bの上下に分流し、気流4との熱交換により気液二
相状態を経て液状態となり、分岐部26で再び合流して
補助熱交換器21aの縦列を成した伝熱管群23aの伝
熱管に流入して矢印Bのように流出する。In the above configuration, when used as a condenser in a refrigeration cycle of an air conditioner, the fluid flowing through the heat transfer tube is in a gaseous state as shown by arrow A in the main heat exchanger 21b as in the first embodiment. The heat flows into the heat pipe and is divided into upper and lower portions of the heat transfer tube group 23b from the branch portion 25. The heat exchange with the gas flow 4 causes a liquid-phase state through a gas-liquid two-phase state. Flows into the heat transfer tubes of the heat transfer tube group 23a in a vertical line and flows out as indicated by the arrow B.
【0039】また、空気調和機の冷凍サイクルの蒸発器
として作用する場合、伝熱管内を流れる流体は気液二相
状態で矢印Bのように補助熱交換器21aの縦列を成し
た伝熱管群23aの伝熱管に流入し、さらに主熱交換器
21bの伝熱管の分岐部26で伝熱管群23bの上下へ
分流して気流4との熱交換をした後、再び分岐部25で
合流して伝熱管から矢印Aのように流出する。When acting as an evaporator in a refrigeration cycle of an air conditioner, the fluid flowing through the heat transfer tubes is in a gas-liquid two-phase state, and is a group of heat transfer tubes arranged in tandem with the auxiliary heat exchanger 21a as shown by arrow B. After flowing into the heat transfer tube 23a, the heat is further divided at the branching portion 26 of the heat transfer tube of the main heat exchanger 21b up and down the heat transfer tube group 23b to exchange heat with the airflow 4, and then merged again at the branching portion 25. It flows out as shown by arrow A from the heat transfer tube.
【0040】この構成によれば、補助熱交換器21aの
伝熱管群23aの段ピッチP1が、主熱交換器21bの
伝熱管群23bの段ピッチP2より短く、しかも補助熱
交換器21aの伝熱管群23aにおける伝熱管外径d
を、主熱交換器21bの伝熱管群23bにおける伝熱管
外径Dより小さい細管にしているので、細管化によるフ
ィン効率の低減を抑制し、伝熱管内の伝熱面積を拡大す
るとともに、伝熱管内を流れる流体の流速の増大による
伝熱性能の向上により補助熱交換器21aの高性能化を
図ることができる。したがって、凝縮器として作用させ
ると、管内伝熱性能としては非常に低い液相状態の過冷
却域を補助熱交換器21a内で多くとることができ、こ
れにより管内伝熱性能として良好な二相状態を主熱交換
器21b内で多くとることができて熱交換能力を増大で
き、フィン付き熱交換器の高性能化を図ることができ
る。また、蒸発器として作用させた場合、補助熱交換器
21aの1列内の伝熱管の段数は主熱交換器21bの1
列内の伝熱管の段数より少ない段数とすることにより、
管内圧力損失の増大を抑え、蒸発能力の向上を図ること
ができる。According to this configuration, the step pitch P1 of the heat transfer tube group 23a of the auxiliary heat exchanger 21a is shorter than the step pitch P2 of the heat transfer tube group 23b of the main heat exchanger 21b, and the transfer pitch of the auxiliary heat exchanger 21a is further reduced. Heat transfer tube outer diameter d in heat tube group 23a
Is smaller than the outer diameter D of the heat transfer tubes in the heat transfer tube group 23b of the main heat exchanger 21b, so that the reduction in the fin efficiency due to the narrowing of the tubes is suppressed, and the heat transfer area in the heat transfer tubes is increased. The performance of the auxiliary heat exchanger 21a can be improved by improving the heat transfer performance by increasing the flow velocity of the fluid flowing through the heat pipe. Therefore, when acting as a condenser, a large amount of supercooling region in a liquid state, which is very low in the pipe heat transfer performance, can be taken in the auxiliary heat exchanger 21a. Many states can be taken in the main heat exchanger 21b, the heat exchange capacity can be increased, and the performance of the finned heat exchanger can be improved. When acting as an evaporator, the number of stages of heat transfer tubes in one row of the auxiliary heat exchanger 21a is one of that of the main heat exchanger 21b.
By making the number of stages smaller than the number of heat transfer tubes in the row,
It is possible to suppress an increase in pressure loss in the pipe and to improve the evaporation capacity.
【0041】(実施例3)図3は実施例3の発明である
フィン付き熱交換器における補助熱交換器部分を示す断
面図である。このフィン付き熱交換器は、補助熱交換器
の伝熱管群における伝熱管を、扁平形状にした構成が上
記実施例1と異なるだけなので、それ以外の同一構成お
よび作用効果を奏する部分には符号を付して詳細な説明
を省略し、異なる部分を中心に説明する。(Embodiment 3) FIG. 3 is a sectional view showing an auxiliary heat exchanger part in a finned heat exchanger according to an embodiment 3 of the present invention. This finned heat exchanger is different from the first embodiment only in the configuration in which the heat transfer tubes in the heat transfer tube group of the auxiliary heat exchanger are formed in a flat shape. , Detailed description is omitted, and different portions will be mainly described.
【0042】31aは補助熱交換器である。そして、補
助熱交換器31aは、伝熱管群33aにおける伝熱管を
扁平形状に構成してある。32aは補助熱交換器31a
のフィンである。4は気流主流方向である。Reference numeral 31a is an auxiliary heat exchanger. In the auxiliary heat exchanger 31a, the heat transfer tubes in the heat transfer tube group 33a have a flat shape. 32a is an auxiliary heat exchanger 31a
The fins. Numeral 4 indicates the main flow direction.
【0043】上記構成によれば空気調和機の冷凍サイク
ルの凝縮器、或いは蒸発器として使用した場合、実施例
1同様に伝熱管内を流体が流れ、気流4と熱交換する。
そして、伝熱管内を流れる中心付近の流体は、特に凝縮
器の液相域では流体内の熱伝導と対流により伝熱管内壁
と熱交換し、伝熱管外のフィンを通じて熱交換器内を通
過する気流と熱交換する。補助熱交換器31aの伝熱管
群33aの伝熱管を偏平形状にすることで、管内を流れ
る流体の中心付近の流体は管内壁との距離を短くでき、
熱伝導による熱交換量を増大できる。また、偏平形状に
することで、水力直径として小さくなり、レイノルズ数
が大きくなり、乱流促進により、さらに補助熱交換器の
高性能化を図ることができる。According to the above configuration, when used as a condenser or an evaporator in a refrigeration cycle of an air conditioner, the fluid flows through the heat transfer tube and exchanges heat with the airflow 4 as in the first embodiment.
The fluid near the center flowing in the heat transfer tube exchanges heat with the inner wall of the heat transfer tube by heat conduction and convection in the fluid, particularly in the liquid phase region of the condenser, and passes through the heat exchanger through fins outside the heat transfer tube. Exchange heat with airflow. By making the heat transfer tubes of the heat transfer tube group 33a of the auxiliary heat exchanger 31a have a flat shape, the fluid near the center of the fluid flowing in the tube can shorten the distance from the tube inner wall,
The amount of heat exchange by heat conduction can be increased. Further, by adopting the flat shape, the hydraulic diameter becomes small, the Reynolds number becomes large, and the turbulence is promoted, so that the performance of the auxiliary heat exchanger can be further improved.
【0044】また、蒸発器として作用させた場合、補助
熱交換器31aの1列内の伝熱管の段数は主熱交換器内
の1列内の段数より少ない段数とすることにより、管内
圧力損失の増大を抑え、蒸発能力の向上を図ることがで
きる。When acting as an evaporator, the number of heat transfer tubes in one row of the auxiliary heat exchanger 31a is set to be smaller than the number of stages in one row of the main heat exchanger. Can be suppressed and the evaporation ability can be improved.
【0045】なお、上記実施例3の伝熱管群33aの伝
熱管の偏平形状の代わりに、楕円形状を用いても同様の
効果を得ることができる。The same effect can be obtained by using an elliptical shape instead of the flat shape of the heat transfer tubes of the heat transfer tube group 33a of the third embodiment.
【0046】(実施例4)図4(a)は実施例4の発明
であるフィン付き熱交換器を示す斜視図で、図4(b)
は正面図である。このフィン付き熱交換器は、気体流入
側の伝熱管群の伝熱管と伝熱管の間におけるフィンの長
さを前記伝熱管間の段ピッチより長く、気体流出側の伝
熱管群の伝熱管と伝熱管の間におけるフィンの長さと前
記伝熱管間の段ピッチを略等しい長さに構成した点が上
記実施例1と異なるだけなので、それ以外の同一構成お
よび作用効果を奏する部分には符号を付して詳細な説明
を省略し、異なる部分を中心に説明する。(Embodiment 4) FIG. 4 (a) is a perspective view showing a finned heat exchanger according to the invention of Embodiment 4, and FIG.
Is a front view. In the heat exchanger with fins, the length of the fin between the heat transfer tubes of the heat transfer tube group on the gas inflow side is longer than the step pitch between the heat transfer tubes, and the heat transfer tubes of the heat transfer tube group on the gas outflow side. The only difference from the first embodiment is that the length of the fins between the heat transfer tubes and the step pitch between the heat transfer tubes are substantially the same. The detailed description will be omitted, and different portions will be mainly described.
【0047】41aは補助熱交換器で、41bは主熱交
換器である。42aと42bはそれぞれ補助熱交換器4
1aと主熱交換器41bのフィン群である。そして、補
助熱交換器41aのフィン群42aは波形形状に形成し
てある。43aと43bはそれぞれ補助熱交換器41a
と主熱交換器41bの伝熱管群である。また、P1とP
2はそれぞれ補助熱交換器41aの伝熱管群43aと主
熱交換器41bの伝熱管群43bの伝熱管中心と次の伝
熱管中心間の長さの段ピッチである。dは補助熱交換器
41aの伝熱管群42aの伝熱管外径で、Dは主熱交換
器41bの伝熱管群42bの伝熱管外径である。そし
て、気体流入側(イ)である補助熱交換器41aは、そ
の伝熱管群42aの伝熱管と伝熱管の間における波形の
フィンの長さL1+L2+L3+L4を、前記伝熱管間
の段ピッチP1より長く、かつ気体流出側(ロ)である
主熱交換器41bはその伝熱管群43bの伝熱管と伝熱
管の間におけるフィンの長さと前記伝熱管間の段ピッチ
P2を略等しい長さに構成したものである。Reference numeral 41a is an auxiliary heat exchanger, and 41b is a main heat exchanger. 42a and 42b are auxiliary heat exchangers 4 respectively.
1a and a fin group of the main heat exchanger 41b. The fin group 42a of the auxiliary heat exchanger 41a is formed in a corrugated shape. 43a and 43b are auxiliary heat exchangers 41a, respectively.
And the heat transfer tube group of the main heat exchanger 41b. Also, P1 and P
2 is a step pitch of the length between the center of the heat transfer tube of the heat transfer tube group 43a of the auxiliary heat exchanger 41a and the center of the heat transfer tube of the heat transfer tube group 43b of the main heat exchanger 41b. d is the heat transfer tube outer diameter of the heat transfer tube group 42a of the auxiliary heat exchanger 41a, and D is the heat transfer tube outer diameter of the heat transfer tube group 42b of the main heat exchanger 41b. The auxiliary heat exchanger 41a on the gas inflow side (a) has the length L1 + L2 + L3 + L4 of the corrugated fin between the heat transfer tubes of the heat transfer tube group 42a longer than the step pitch P1 between the heat transfer tubes. The main heat exchanger 41b on the gas outflow side (b) is configured such that the length of the fin between the heat transfer tubes of the heat transfer tube group 43b and the step pitch P2 between the heat transfer tubes are substantially equal. Things.
【0048】上記構成によれば空気調和機の冷凍サイク
ルの凝縮器として使用した場合、実施例1同様に、伝熱
管内を流れる流体は主熱交換器41b側から流入し、補
助熱交換器41a側へ流出する。また、蒸発器として使
用する場合も実施例1同様に補助熱交換器41a側から
流入し、主熱交換器41b側へ流出する。そして、凝縮
器として作用する場合、主熱交換器41bの伝熱管群4
3b内の流体は、飽和域の二相状態であり、伝熱管群4
3bの段間の温度差は0.2〜0.3度程度で殆ど温度
差がない。これに対し、補助熱交換器41aの伝熱管群
43a内の流体では液相状態であり、伝熱管群43aの
各段間である伝熱管間の温度差は大きい。According to the above configuration, when used as a condenser in a refrigeration cycle of an air conditioner, the fluid flowing in the heat transfer tubes flows in from the main heat exchanger 41b side and becomes the auxiliary heat exchanger 41a as in the first embodiment. Spill to the side. Also, when used as an evaporator, as in the first embodiment, it flows in from the auxiliary heat exchanger 41a side and flows out to the main heat exchanger 41b side. And when acting as a condenser, the heat transfer tube group 4 of the main heat exchanger 41b
3b is in a two-phase state in a saturation region,
The temperature difference between the stages 3b is about 0.2 to 0.3 degrees, and there is almost no temperature difference. On the other hand, the fluid in the heat transfer tube group 43a of the auxiliary heat exchanger 41a is in a liquid phase state, and the temperature difference between the heat transfer tubes between the stages of the heat transfer tube group 43a is large.
【0049】然るに実施例4の発明では、補助熱交換器
41aの伝熱管群43aの伝熱管と伝熱管の段間の温度
差による熱伝導ロスを、伝熱管間のフィン長さL1+L
2+L3+L4を伝熱管間の段ピッチP1より長くして
いるので、補助熱交換器41a内の熱伝導ロスを低減
し、前記段間の温度差による熱伝導ロスの少ない主熱交
換器41bでは伝熱管群43bの伝熱管間のフィン長さ
と伝熱管の段ピッチP2がほぼ等しい長さを維持してフ
ィン効率を維持する構成により、フィン付き熱交換器の
高性能化を図れる。According to the invention of the fourth embodiment, however, the heat conduction loss due to the temperature difference between the heat transfer tubes of the heat transfer tube group 43a of the auxiliary heat exchanger 41a is reduced by the fin length L1 + L between the heat transfer tubes.
Since 2 + L3 + L4 is longer than the step pitch P1 between the heat transfer tubes, the heat transfer loss in the auxiliary heat exchanger 41a is reduced, and the heat transfer tubes in the main heat exchanger 41b having a small heat transfer loss due to the temperature difference between the stages. The configuration in which the fin length between the heat transfer tubes of the group 43b and the step pitch P2 of the heat transfer tubes are maintained substantially equal to maintain the fin efficiency can improve the performance of the finned heat exchanger.
【0050】また、蒸発器として作用させた場合、補助
熱交換器41aの1列内の伝熱管群の管段数は主熱交換
器41bの1列内の伝熱管群の管段数より少ない段数と
することにより、管内圧力損失の増大を抑え、蒸発能力
の向上を図ることができる。When acting as an evaporator, the number of heat transfer tube groups in one row of the auxiliary heat exchanger 41a is smaller than the number of heat transfer tube groups in one row of the main heat exchanger 41b. By doing so, it is possible to suppress an increase in pressure loss in the pipe and improve the evaporation capacity.
【0051】なお、補助熱交換器41aの伝熱管群にお
ける伝熱管の細管化や偏平形状などの効果は、実施例1
〜3と同様の効果をさらに有する。Note that the effects of the heat transfer tube group of the auxiliary heat exchanger 41a, such as thinning and flat shape of the heat transfer tube, are described in the first embodiment.
Further, the same effects as those of Nos. 1 to 3 are further obtained.
【0052】(実施例5)図5は実施例5の発明である
フィン付き熱交換器における補助熱交換器の断面図であ
る。このフィン付き熱交換器は、気体流入側の伝熱管群
の伝熱管と伝熱管の間におけるフィンに、気流方向に対
し傾斜させて切断部または打ち抜き部を設けた点が上記
実施例1と異なるだけなので、それ以外の同一構成およ
び作用効果を奏する部分には符号を付して詳細な説明を
省略し、異なる部分を中心に説明する。(Embodiment 5) FIG. 5 is a sectional view of an auxiliary heat exchanger in a finned heat exchanger according to a fifth embodiment of the present invention. This finned heat exchanger differs from the first embodiment in that the fins between the heat transfer tubes of the heat transfer tube group on the gas inflow side are provided with a cut portion or a punched portion that is inclined with respect to the gas flow direction. Therefore, other parts having the same configuration and operation and effect are denoted by reference numerals, detailed description thereof will be omitted, and different parts will be mainly described.
【0053】51aは補助熱交換器で、間隔を有して並
設したフィン群52aとこのフィン群52aを直角に貫
通して蛇行状に配列した伝熱管群53aから成る。57
は伝熱管群53aの伝熱管と伝熱管の間のフィンに、矢
印4で示す気流方向に対し傾斜させて設けた直線状の切
り込み部(切断部ともいう)である。θは切り込み部5
7と気流4の主流方向との傾斜角である。Reference numeral 51a denotes an auxiliary heat exchanger comprising a group of fins 52a arranged side by side at intervals and a group of heat transfer tubes 53a penetrating the fin group 52a at right angles and arranged in a meandering manner. 57
Is a straight cut portion (also referred to as a cut portion) provided on the fin between the heat transfer tubes of the heat transfer tube group 53a with respect to the airflow direction indicated by the arrow 4. θ is the cut 5
7 is an angle of inclination between the mainstream direction of the airflow 4 and the airflow 4.
【0054】上記構成によれば空気調和機の冷凍サイク
ルの凝縮器として使用した場合、実施例1同様に、伝熱
管内を流れる流体は主熱交換器側から流入し、補助熱交
換器51a側へ流出する。また、蒸発器として使用する
場合も実施例1同様に補助熱交換器51a側から流入
し、主熱交換器側へ流出する。そして、凝縮器として作
用する場合、主熱交換器の伝熱管内の流体は飽和域の二
相状態であり、伝熱管と伝熱管の管段間の温度差は0.
2〜0.3度程度で殆ど温度差がない。これに対し、補
助熱交換器51aの伝熱管群53a内の流体では液相状
態であり、伝熱管と伝熱管の管段間の温度差は大きい。According to the above configuration, when used as a condenser in a refrigeration cycle of an air conditioner, the fluid flowing in the heat transfer tube flows in from the main heat exchanger side and is turned on in the auxiliary heat exchanger 51a side as in the first embodiment. Leaks to Also, when used as an evaporator, as in the first embodiment, it flows in from the auxiliary heat exchanger 51a side and flows out to the main heat exchanger side. When operating as a condenser, the fluid in the heat transfer tubes of the main heat exchanger is in a two-phase state in a saturation region, and the temperature difference between the tube stages of the heat transfer tubes is 0.
There is almost no temperature difference at about 2 to 0.3 degrees. On the other hand, the fluid in the heat transfer tube group 53a of the auxiliary heat exchanger 51a is in a liquid phase, and the temperature difference between the heat transfer tubes and the tube stages of the heat transfer tubes is large.
【0055】然るに実施例5の発明では、補助熱交換器
51a内の伝熱管と伝熱管の管段間の温度差による熱伝
導ロスを、伝熱管と伝熱管の間のフィンに設けた矢印4
で示す気流方向に対し傾斜させた直線状の切り込み部5
7により低減するので、フィン付き熱交換器の高性能化
を図れるものである。However, in the invention of the fifth embodiment, the heat conduction loss caused by the temperature difference between the heat transfer tubes in the auxiliary heat exchanger 51a is reduced by the arrow 4 provided on the fin between the heat transfer tubes.
Linear cut 5 inclined with respect to the airflow direction indicated by.
7, the performance of the finned heat exchanger can be improved.
【0056】また、蒸発器として作用させた場合、補助
熱交換器51aの1列内の伝熱管の段数は主熱交換器内
の1列内の管段数より少ない段数にすることにより、管
内圧力損失の増大を抑え、蒸発能力の向上を図るととも
に、切り込み部57が気流主流方向に対し傾斜角θを設
けることでフィン表面に付着した凝縮水が切り込み端面
58a、58bにて保持されることなく排出でき、湿り
時の通風抵抗の増加を抑えることができる。When acting as an evaporator, the number of heat transfer tubes in one row of the auxiliary heat exchanger 51a is set to be smaller than the number of pipes in one row of the main heat exchanger. By suppressing the increase in loss and improving the evaporation ability, the cut portion 57 is provided with the inclination angle θ with respect to the main flow direction of the air flow, so that the condensed water attached to the fin surface is not retained by the cut end surfaces 58a and 58b. It can be discharged and the increase in ventilation resistance when wet can be suppressed.
【0057】なお、実施例5では切り込み部57を直線
としたが、これが曲線や鋸状であっても同様の効果が得
られる。また、切り込み部でなく、細い切り落とし部
(打ち抜き部ともいう)であっても同様の効果が得られ
る。また、実施例5の切り込み部57は、その端面58
a、58bを伝熱管群53aの伝熱管の脇まで延設して
あるが、伝熱管群53aの伝熱管の手前で終わっても良
い。In the fifth embodiment, the cut portion 57 is a straight line. However, the same effect can be obtained even if the cut portion 57 has a curved or saw-like shape. Further, the same effect can be obtained not only in the cutout portion but also in a thin cutout portion (also referred to as a punched portion). In addition, the cut portion 57 of the fifth embodiment has an end surface 58.
Although a and 58b extend to the side of the heat transfer tubes of the heat transfer tube group 53a, they may be terminated before the heat transfer tubes of the heat transfer tube group 53a.
【0058】(実施例6)図6は実施例6の発明である
フィン付き熱交換器における補助熱交換器の断面図であ
る。このフィン付き熱交換器は、補助熱交換器の伝熱管
群の伝熱管と伝熱管の間におけるフインに、気流主流方
向に対し略直角に複数の切り起こしまたは凹凸を設けた
点が上記実施例1と異なるだけなので、それ以外の同一
構成および作用効果を奏する部分には符号を付して詳細
な説明を省略し、異なる部分を中心に説明する。(Embodiment 6) FIG. 6 is a cross-sectional view of an auxiliary heat exchanger in a finned heat exchanger according to Embodiment 6 of the present invention. This finned heat exchanger is different from the above-described embodiment in that a plurality of cut-and-raised portions or irregularities are provided in a fin between the heat transfer tubes of the heat transfer tube group of the auxiliary heat exchanger in a direction substantially perpendicular to the main flow direction of the air flow. Since it is only different from 1, the other parts having the same configuration and operation and effect are denoted by reference numerals, detailed description thereof will be omitted, and different parts will be mainly described.
【0059】61aは補助熱交換器で、間隔を有して並
設したフィン群62aとこのフィン群62aを直角に貫
通して蛇行状に配列した伝熱管群63aから成る。69
は補助熱交換器61aの伝熱管群63aの伝熱管と伝熱
管の間におけるフインに、矢印4で示す気流主流方向に
対し略直角に設けた複数の切り起こしである。Reference numeral 61a denotes an auxiliary heat exchanger which is composed of a group of fins 62a arranged side by side at intervals and a group of heat transfer tubes 63a penetrating the fin group 62a at right angles and arranged in a meandering manner. 69
A plurality of cut-and-raised portions are provided on the fin between the heat transfer tubes of the heat transfer tube group 63a of the auxiliary heat exchanger 61a at a substantially right angle to the main flow direction of the air flow indicated by the arrow 4.
【0060】上記構成によれば空気調和機の冷凍サイク
ルの凝縮器として使用した場合、実施例1同様に、伝熱
管内を流れる流体は主熱交換器側から流入し、補助熱交
換器61a側へ流出する。また、蒸発器として使用する
場合も実施例1同様に補助熱交換器61a側から流入
し、主熱交換器側へ流出する。そして、補助熱交換器6
1aの伝熱管群63aの伝熱管と伝熱管の間におけるフ
インの切り起こし69による境界層前縁効果により空気
側の熱伝達率を促進し、上記した実施例1〜5の発明の
構成と併用することにより、それぞれの効果をさらに促
進させるものである。According to the above configuration, when used as a condenser of a refrigeration cycle of an air conditioner, the fluid flowing in the heat transfer tube flows in from the main heat exchanger side and is turned on in the auxiliary heat exchanger 61a side as in the first embodiment. Leaks to Also, when used as an evaporator, as in the first embodiment, it flows in from the auxiliary heat exchanger 61a side and flows out to the main heat exchanger side. And the auxiliary heat exchanger 6
The heat transfer coefficient on the air side is promoted by the boundary layer leading edge effect due to the cut-and-raised fins 69 between the heat transfer tubes of the heat transfer tube group 63a of 1a, and is used in combination with the above-described configurations of the first to fifth embodiments. By doing so, each effect is further promoted.
【0061】なお、上記実施例6では切り起こし69は
直線としたが、これが曲線や鋸状であっても同様の効果
が得られる。また、切り込みでなく、凹凸形状であれ
ば、切起こし形状より作用は劣るものの伝熱促進を図る
ことができる。In the sixth embodiment, the cut-and-raised portion 69 is a straight line. However, the same effect can be obtained even if the cut-and-raised portion 69 is curved or saw-toothed. In addition, if the shape is not concave but concave and convex, heat transfer can be promoted although the action is inferior to the cut and raised shape.
【0062】(実施例7)図7(a)は実施例7の発明で
あるフィン付き熱交換器における補助熱交換器の伝熱管
の拡大断面図、図7(b)は主熱交換器の伝熱管の拡大断
面図である。このフィン付き熱交換器は、補助熱交換器
の伝熱管群の伝熱管の単位長さ当たりの管内面の伝熱面
積を、主熱交換器の伝熱管群の伝熱管内面の伝熱面積よ
り大きくした点が上記実施例1と異なるだけなので、そ
れ以外の同一構成および作用効果を奏する部分には符号
を付して詳細な説明を省略し、異なる部分を中心に説明
する。(Embodiment 7) FIG. 7 (a) is an enlarged sectional view of a heat transfer tube of an auxiliary heat exchanger in a finned heat exchanger according to the invention of Embodiment 7, and FIG. 7 (b) is a main heat exchanger. It is an expanded sectional view of a heat transfer tube. This heat exchanger with fins calculates the heat transfer area on the inner surface of the heat transfer tubes of the auxiliary heat exchanger per unit length as the heat transfer area of the heat transfer tubes on the inner surface of the heat transfer tube group of the main heat exchanger. Since the difference is only in the point of enlargement from the first embodiment, other parts having the same configuration and operation and effect are denoted by reference numerals, detailed description thereof will be omitted, and different parts will be mainly described.
【0063】70aは補助熱交換器の伝熱管群73aを
成す伝熱管の内面に形成した多数の溝内周面で、h1の
山高さを有する。そして、この溝内周面70aは、この
溝によって伝熱管の単位長さ当たりの管内面の伝熱面積
を、主熱交換器の伝熱管群73bを成す伝熱管の内面に
山高さh1より低い山高さh2を有する多数の溝内周面
70bを形成した伝熱管内面の伝熱面積より大きく設定
している。Reference numeral 70a denotes an inner peripheral surface of a number of grooves formed on the inner surface of the heat transfer tubes constituting the heat transfer tube group 73a of the auxiliary heat exchanger, and has a peak height of h1. The groove inner peripheral surface 70a allows the heat transfer area of the tube inner surface per unit length of the heat transfer tube to be lower than the peak height h1 on the inner surface of the heat transfer tube forming the heat transfer tube group 73b of the main heat exchanger. The heat transfer area is set to be larger than the heat transfer area of the inner surface of the heat transfer tube in which the plurality of groove inner peripheral surfaces 70b having the peak height h2 are formed.
【0064】上記構成によれば空気調和機の冷凍サイク
ルの凝縮器として使用した場合、実施例1同様に、伝熱
管内を流れる流体は伝熱管群73bを用いた主熱交換器
側から流入し、伝熱管群73aを用いた補助熱交換器側
へ流出する。また、蒸発器として使用する場合も実施例
1同様に伝熱管73aを用いた補助熱交換器側から流入
し、伝熱管73bを用いた主熱交換器側へ流出する。そ
して、伝熱管群73aはその溝内周面70aの山高さh
1を、伝熱管群73bの溝内周面70bの山高さh2よ
り高くしているので、伝熱管群73bの溝内周面70b
より長くして伝熱管内面の伝熱面積を大きくせしめ、補
助熱交換器の高性能化が図れるものである。一方、伝熱
管群73aの溝内周面70aの山高さを高くすることで
管内の圧力損失の増大が懸念されるが、補助熱交換器内
は液相状態であり、密度は大きく、流速としては遅くな
るため圧力損失の影響は殆ど無いといえる。According to the above configuration, when used as a condenser in a refrigeration cycle of an air conditioner, the fluid flowing in the heat transfer tubes flows in from the main heat exchanger using the heat transfer tube group 73b as in the first embodiment. Flows out to the auxiliary heat exchanger side using the heat transfer tube group 73a. Also, when used as an evaporator, as in the first embodiment, it flows in from the auxiliary heat exchanger using the heat transfer tube 73a and flows out to the main heat exchanger using the heat transfer tube 73b. The heat transfer tube group 73a has a peak height h of the groove inner peripheral surface 70a.
1 is higher than the peak height h2 of the groove inner peripheral surface 70b of the heat transfer tube group 73b, so that the groove inner peripheral surface 70b of the heat transfer tube group 73b
By increasing the length, the heat transfer area on the inner surface of the heat transfer tube is increased, and the performance of the auxiliary heat exchanger can be improved. On the other hand, by increasing the peak height of the groove inner peripheral surface 70a of the heat transfer tube group 73a, there is a concern that the pressure loss in the tube may increase, but the inside of the auxiliary heat exchanger is in a liquid phase state, the density is large, and the flow rate is large. Can be said to be almost unaffected by the pressure loss.
【0065】また、蒸発器として使用した場合、蒸発器
入口側に補助熱交換器の伝熱管群73aを用いることで
管内圧力損失の増大は入口側のほんの一部であり、蒸発
温度の上昇を抑制でき、山高さh1のアップによる伝熱
性能の向上を活かすことができ、蒸発能力の向上を図る
ことができる。When the evaporator is used as an evaporator, the increase in pressure loss in the tube is only a part of the inlet side by using the heat transfer tube group 73a of the auxiliary heat exchanger at the evaporator inlet side, and the evaporating temperature rise is reduced. Thus, the improvement of the heat transfer performance due to the increase in the mountain height h1 can be utilized, and the improvement of the evaporation ability can be achieved.
【0066】また、この実施例7の発明を実施例1〜
2、実施例4〜6の各発明に組合せることにより、さら
にフィン付き熱交換器の高性能化を図ることができる。Further, the invention of the embodiment 7 is applied to the embodiments 1 to
2. By combining with the inventions of the fourth to sixth embodiments, it is possible to further improve the performance of the finned heat exchanger.
【0067】[0067]
【発明の効果】上記実施例から明らかなように本発明の
請求項1に記載の発明は、所定間隔で平行に並設し、そ
の間を気体が流動するフィン群と、このフィン群を略直
角に貫通して列を成し、内部を流体が流動する伝熱管群
とを備え、気体流入側の伝熱管群の伝熱管間の段ピッチ
を、気体流出側の伝熱管群の伝熱管間の段ピッチより小
さくせしめ、かつ気体流入側の伝熱管群の1列内の伝熱
管の本数を、気体流出側の伝熱管群の1列内の本数以下
に構成したもので、伝熱管内の伝熱面積を向上でき、伝
熱管本数に制限を設けることで凝縮能力および蒸発能力
とも高性能化を図ることができる。As is apparent from the above embodiment, the invention according to claim 1 of the present invention is arranged in parallel at a predetermined interval, and a fin group through which gas flows, and the fin group are formed at substantially right angles. And a heat transfer tube group through which a fluid flows, and a step pitch between the heat transfer tubes of the gas inlet side heat transfer tube group is provided between the heat transfer tubes of the gas outlet side heat transfer tube group. The number of heat transfer tubes in one row of the heat transfer tube group on the gas inflow side is made smaller than the number of heat transfer tubes in one row of the heat transfer tube group on the gas outflow side. The heat area can be improved, and by limiting the number of heat transfer tubes, the condensing capacity and the evaporating capacity can be improved.
【0068】また、請求項2に記載の発明は、気体流入
側の伝熱管群の管径を、気体流出側の伝熱管群の管径よ
り小さく構成したもので、熱交換器内を気流が通過する
際の通風抵抗を低減でき、さらに伝熱管内を流動する流
体の流速を向上でき、熱伝達率の向上を図ることができ
る。Further, according to the second aspect of the present invention, the diameter of the heat transfer tube group on the gas inflow side is made smaller than the diameter of the heat transfer tube group on the gas outflow side. The ventilation resistance at the time of passage can be reduced, the flow velocity of the fluid flowing in the heat transfer tube can be improved, and the heat transfer coefficient can be improved.
【0069】また、請求項3に記載の発明は、気体流入
側の伝熱管群の伝熱管を楕円状または偏平状の形状に構
成したもので、伝熱管内の中央付近を流れる流体と管壁
との距離を小さくして熱伝達率の向上により高性能化を
図ることができる。According to a third aspect of the present invention, the heat transfer tubes of the heat transfer tube group on the gas inflow side are formed in an elliptical or flat shape. , The distance between them can be reduced, and the heat transfer coefficient can be improved to achieve higher performance.
【0070】また、請求項4に記載の発明は、気体流入
側の伝熱管群の伝熱管と伝熱管の間におけるフィンの長
さを伝熱管間の段ピッチより長く、気体流出側の伝熱管
群の伝熱管と伝熱管の間におけるフィンの長さと伝熱管
間の段ピッチを略等しい長さに構成したもので、段ピッ
チを維持したままフィン部分の長さを長くでき、伝熱管
間の熱伝導を抑制することができ、伝熱管間の熱伝導ロ
スの低減による高性能化を図ることができる。Further, according to the invention, the length of the fin between the heat transfer tubes of the heat transfer tube group on the gas inflow side is longer than the step pitch between the heat transfer tubes, and the heat transfer tube on the gas outflow side is provided. The length of the fins between the heat transfer tubes in the group and the step pitch between the heat transfer tubes are configured to be approximately the same length.The length of the fin portion can be increased while maintaining the step pitch. Heat conduction can be suppressed, and high performance can be achieved by reducing heat conduction loss between the heat transfer tubes.
【0071】また、請求項5に記載の発明は、気体流入
側の伝熱管群の伝熱管と伝熱管の間におけるフィンに、
所定長さの切断部または打ち抜き部を設け、前記切断部
または打ち抜き部を気流の主流方向に対して傾斜させた
もので、伝熱管と伝熱管の間の熱伝導によるロスを低減
でき、高性能化を図ることができる。The invention according to claim 5 is characterized in that the fins between the heat transfer tubes of the heat transfer tube group on the gas inflow side include:
A cutting portion or a punching portion having a predetermined length is provided, and the cutting portion or the punching portion is inclined with respect to the main flow direction of the air flow, so that loss due to heat conduction between the heat transfer tubes and the heat transfer tubes can be reduced, and high performance can be achieved. Can be achieved.
【0072】また、請求項6に記載の発明は、伝熱管と
伝熱管の間におけるフインに、気流主流方向に対し略直
角に複数の切り起こしまたは凹凸を設けたもので、切り
起こしの前縁部での境界層前縁効果による高性能化や凹
凸形状による伝熱面積の拡大および乱流促進により高性
能化を図ることができる。According to a sixth aspect of the present invention, the fin between the heat transfer tubes is provided with a plurality of cuts or projections substantially perpendicular to the main flow direction of the air flow. High performance can be achieved by improving the performance by the boundary layer leading edge effect in the portion, expanding the heat transfer area by the uneven shape, and promoting turbulence.
【0073】また、請求項7に記載の発明は、気体流入
側の伝熱管群の伝熱管の単位長さ当たりの管内面の伝熱
面積を、気体流出側の伝熱管群の伝熱管内面の伝熱面積
より大きくしたもので、例えば冷凍サイクルに使用し気
体流入側である凝縮器出口および蒸発器入口部分で伝熱
面積の拡大で、高性能化を図ることができる。一方、伝
熱管内面の伝熱面積の拡大は、管内の圧力損失の増大を
まねきやすいが、凝縮器出口および蒸発器入口部分で用
いることで凝縮温度の低下や蒸発温度の上昇を抑えなが
ら管内の伝熱面積拡大による高性能化を図ることができ
る。Further, according to the present invention, the heat transfer area of the heat transfer tube group per unit length of the heat transfer tube group on the gas inflow side is reduced by the heat transfer tube inner surface of the heat transfer tube group on the gas outflow side. The heat transfer area is larger than the heat transfer area. For example, the heat transfer area is increased at the condenser outlet and the evaporator inlet, which are used in the refrigeration cycle and on the gas inflow side, so that higher performance can be achieved. On the other hand, the expansion of the heat transfer area on the inner surface of the heat transfer tube tends to increase the pressure loss in the tube, but by using it at the condenser outlet and evaporator inlet, it is possible to suppress the decrease in condensation temperature and the increase in evaporation temperature while suppressing the rise in evaporation temperature. Higher performance can be achieved by increasing the heat transfer area.
【図1】本発明の実施例1を示すフィン付き熱交換器の
側面図FIG. 1 is a side view of a finned heat exchanger according to a first embodiment of the present invention.
【図2】同実施例2を示すフィン付き熱交換器の側面図FIG. 2 is a side view of the finned heat exchanger according to the second embodiment.
【図3】同実施例3を示すフィン付き熱交換器における
補助熱交換器の断面図FIG. 3 is a sectional view of an auxiliary heat exchanger in the finned heat exchanger according to the third embodiment.
【図4】(a)は同実施例4を示すフィン付き熱交換器
の要部斜視図 (b)は同実施例4を示す補助熱交換器の要部正面図FIG. 4A is a perspective view of a main part of a heat exchanger with fins showing a fourth embodiment; FIG. 4B is a front view of a main part of an auxiliary heat exchanger showing the fourth embodiment;
【図5】同実施例5を示すフィン付き熱交換器における
補助熱交換器の断面図FIG. 5 is a sectional view of an auxiliary heat exchanger in the finned heat exchanger according to the fifth embodiment.
【図6】同実施例6を示すフィン付き熱交換器における
補助熱交換器の断面図FIG. 6 is a sectional view of an auxiliary heat exchanger in the finned heat exchanger according to the sixth embodiment.
【図7】(a)は同実施例7を示すフィン付き熱交換器
における補助熱交換器の伝熱管の断面図 (b)は同実施例7を示すフィン付き熱交換器における
主熱交換器の伝熱管の断面図7A is a cross-sectional view of a heat transfer tube of an auxiliary heat exchanger in a finned heat exchanger according to the seventh embodiment. FIG. 7B is a main heat exchanger in a finned heat exchanger according to the seventh embodiment. Cross section of heat transfer tube
【図8】第1従来例を示すフィン付き熱交換器の斜視図FIG. 8 is a perspective view of a finned heat exchanger showing a first conventional example.
【図9】同フィン付き熱交換器の側面図FIG. 9 is a side view of the finned heat exchanger.
【図10】第2従来例を示すフィン付き熱交換器の斜視
図FIG. 10 is a perspective view of a finned heat exchanger showing a second conventional example.
【図11】第3従来例を示すフィン付き熱交換器の側面
図FIG. 11 is a side view of a finned heat exchanger showing a third conventional example.
【図12】第4従来例を示す独立フィン付き熱交換器の
斜視図FIG. 12 is a perspective view of a heat exchanger with independent fins showing a fourth conventional example.
【図13】第4従来例を示す独立フィン付き熱交換器を
搭載した空気調和機の室外機の上面図FIG. 13 is a top view of an outdoor unit of an air conditioner equipped with a heat exchanger with independent fins showing a fourth conventional example.
4 気流主流方向 (イ) 気体流入側 (ロ) 気体流出側 11a,21a,31a,41a,51a,61a 補
助熱交換器 11b,21b,41b 主熱交換器 13a,23a,33a,43a,53a,63a,7
3a 補助熱交換器の伝熱管群 13b,23b,43b,73b 主熱交換器の伝熱管
群 12a,22a,32a,42a,52a,62a 補
助熱交換器のフィン群 13b,23b,32b,42b 主熱交換器のフィン
群 57 切り込み部 69 伝熱管間のフィン表面の切り起こし 70a 補助熱交換器の伝熱管の溝内周面 70b 主熱交換器の伝熱管の溝内周面 d 補助熱交換器の伝熱管外径 D 主熱交換器の伝熱管外径 L1,L2,L3,L4 伝熱管間のフィン長さ P1 補助熱交換器の伝熱管の段ピッチ P2 主熱交換器の伝熱管の段ピッチ θ 気流主流方向と切り込み部の傾斜角4 Main flow direction of air flow (a) Gas inflow side (b) Gas outflow side 11a, 21a, 31a, 41a, 51a, 61a Auxiliary heat exchangers 11b, 21b, 41b Main heat exchangers 13a, 23a, 33a, 43a, 53a, 63a, 7
3a Heat transfer tube group of auxiliary heat exchanger 13b, 23b, 43b, 73b Heat transfer tube group of main heat exchanger 12a, 22a, 32a, 42a, 52a, 62a Fin group of auxiliary heat exchanger 13b, 23b, 32b, 42b Main Fin group of heat exchanger 57 Notch 69 Cutting and raising of fin surface between heat transfer tubes 70a Inner surface of groove of heat transfer tube of auxiliary heat exchanger 70b Inner surface of groove of heat transfer tube of main heat exchanger d Auxiliary heat exchanger Heat transfer tube outer diameter D Heat transfer tube outer diameter of main heat exchanger L1, L2, L3, L4 Fin length between heat transfer tubes P1 Step pitch of heat transfer tubes of auxiliary heat exchanger P2 Step of heat transfer tubes of main heat exchanger Pitch θ Main stream direction of air flow and inclination angle of cut
Claims (7)
が流動するフィン群と、このフィン群を略直角に貫通し
て列を成し、内部を流体が流動する伝熱管群とを備え、
気体流入側の伝熱管群の伝熱管間の段ピッチを、気体流
出側の伝熱管群の伝熱管間の段ピッチより小さくせし
め、かつ気体流入側の伝熱管群の1列内の伝熱管の本数
を、気体流出側の伝熱管群の1列内の本数以下に構成し
たフィン付き熱交換器。1. A group of fins, which are arranged in parallel at a predetermined interval and through which gas flows, and a group of heat transfer tubes through which the fins penetrate at substantially right angles to form a row and through which a fluid flows. Prepared,
The step pitch between the heat transfer tubes in the heat transfer tube group on the gas inflow side is made smaller than the step pitch between the heat transfer tubes in the heat transfer tube group on the gas outflow side, and the heat transfer tubes in one row of the heat transfer tube group on the gas inflow side are reduced. A finned heat exchanger in which the number is less than or equal to the number in one row of the heat transfer tube group on the gas outflow side.
出側の伝熱管群の管径より小さく構成した請求項1記載
のフィン付き熱交換器。2. The finned heat exchanger according to claim 1, wherein the diameter of the heat transfer tube group on the gas inflow side is smaller than the diameter of the heat transfer tube group on the gas outflow side.
または偏平状の形状に構成した請求項1記載のフィン付
き熱交換器。3. The finned heat exchanger according to claim 1, wherein the heat transfer tubes of the heat transfer tube group on the gas inflow side are formed in an elliptical or flat shape.
の間におけるフィンの長さを伝熱管間の段ピッチより長
く、気体流出側の伝熱管群の伝熱管と伝熱管の間におけ
るフィンの長さと伝熱管間の段ピッチを略等しい長さに
構成した請求項1〜請求項3のいずれか1項に記載のフ
ィン付き熱交換器。4. The length of the fin between the heat transfer tubes of the heat transfer tube group on the gas inlet side is longer than the step pitch between the heat transfer tubes, and the length of the fin between the heat transfer tubes of the heat transfer tube group on the gas outlet side. The finned heat exchanger according to any one of claims 1 to 3, wherein the length of the fins and the step pitch between the heat transfer tubes are substantially equal.
の間におけるフィンに、所定長さの切断部または打ち抜
き部を設け、前記切断部または打ち抜き部を気流の主流
方向に対して傾斜させた請求項1〜請求項4のいずれか
1項に記載のフィン付き熱交換器。5. A fin between a heat transfer tube and a heat transfer tube of a heat transfer tube group on the gas inflow side is provided with a cut portion or a punched portion having a predetermined length, and the cut portion or the punched portion is provided with respect to a main flow direction of an air flow. The finned heat exchanger according to any one of claims 1 to 4, which is inclined.
気流主流方向に対し略直角に複数の切り起こしまたは凹
凸を設けた請求項1〜請求項5のいずれか1項に記載の
フィン付き熱交換器。6. A fin between a heat transfer tube and a heat transfer tube,
The finned heat exchanger according to any one of claims 1 to 5, wherein a plurality of cut-and-raised portions or irregularities are provided substantially at right angles to the main stream direction of the air flow.
さ当たりの管内面の伝熱面積を、気体流出側の伝熱管群
の伝熱管内面の伝熱面積より大きく構成した請求項1〜
請求項2または請求項5〜請求項6のいずれか1項に記
載のフィン付き熱交換器。7. The heat transfer area of the inner surface of the heat transfer tube group per unit length of the heat transfer tube group on the gas inflow side is larger than the heat transfer area of the heat transfer tube inner surface of the heat transfer tube group on the gas outflow side. 1 to
The finned heat exchanger according to claim 2 or any one of claims 5 to 6.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13529899A JP3367467B2 (en) | 1999-05-17 | 1999-05-17 | Finned heat exchanger |
KR1020000026099A KR100612765B1 (en) | 1999-05-17 | 2000-05-16 | Heat exchanger having fins formed thereon |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13529899A JP3367467B2 (en) | 1999-05-17 | 1999-05-17 | Finned heat exchanger |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000329486A true JP2000329486A (en) | 2000-11-30 |
JP3367467B2 JP3367467B2 (en) | 2003-01-14 |
Family
ID=15148443
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13529899A Expired - Fee Related JP3367467B2 (en) | 1999-05-17 | 1999-05-17 | Finned heat exchanger |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP3367467B2 (en) |
KR (1) | KR100612765B1 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007187355A (en) * | 2006-01-12 | 2007-07-26 | Sharp Corp | Heat exchanger and air conditioner using it |
JP2010078287A (en) * | 2008-09-29 | 2010-04-08 | Mitsubishi Electric Corp | Air conditioner |
WO2011055656A1 (en) * | 2009-11-04 | 2011-05-12 | ダイキン工業株式会社 | Heat exchanger and indoor unit including the same |
KR20130086454A (en) * | 2012-01-25 | 2013-08-02 | 엘지전자 주식회사 | Heat pump |
WO2014125603A1 (en) * | 2013-02-14 | 2014-08-21 | 三菱電機株式会社 | Heat exchange device and refrigeration cycle device equipped with same |
WO2014155560A1 (en) * | 2013-03-27 | 2014-10-02 | 三菱電機株式会社 | Heat exchanger and refrigeration cycle air conditioner using same |
CN105588371A (en) * | 2015-04-14 | 2016-05-18 | 海信(山东)空调有限公司 | Heat exchanger and air conditioner |
CN105659039A (en) * | 2013-10-25 | 2016-06-08 | 三菱电机株式会社 | Heat exchanger and refrigeration cycle device using said heat exchanger |
CN105823211A (en) * | 2013-01-10 | 2016-08-03 | 株式会社能率 | Heat exchanger and water heater |
CN106871664A (en) * | 2017-01-09 | 2017-06-20 | 青岛海尔空调电子有限公司 | A kind of heat exchanger, air-conditioning and design of heat exchanger method |
WO2018180934A1 (en) * | 2017-03-27 | 2018-10-04 | ダイキン工業株式会社 | Heat exchanger and refrigeration device |
JP2019113288A (en) * | 2017-12-26 | 2019-07-11 | ダイキン工業株式会社 | Heat exchanger and freezing unit |
WO2020105164A1 (en) * | 2018-11-22 | 2020-05-28 | 三菱電機株式会社 | Heat exchanger and refrigeration cycle device |
WO2020165973A1 (en) * | 2019-02-13 | 2020-08-20 | 三菱電機株式会社 | Indoor unit of air conditioning device, and air conditioning device |
US11168928B2 (en) | 2017-03-27 | 2021-11-09 | Daikin Industries, Ltd. | Heat exchanger or refrigeration apparatus |
US11181284B2 (en) | 2017-03-27 | 2021-11-23 | Daikin Industries, Ltd. | Heat exchanger or refrigeration apparatus |
US11262107B2 (en) | 2017-03-27 | 2022-03-01 | Daikin Industries, Ltd. | Heat exchanger having first and second heat exchange units with different refrigerant flow resistances and refrigeration apparatus |
US11428446B2 (en) | 2017-03-27 | 2022-08-30 | Daikin Industries, Ltd. | Heat exchanger unit |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100600781B1 (en) * | 2005-06-01 | 2006-07-18 | 엘지전자 주식회사 | Heat exchanger for air-conditioner |
-
1999
- 1999-05-17 JP JP13529899A patent/JP3367467B2/en not_active Expired - Fee Related
-
2000
- 2000-05-16 KR KR1020000026099A patent/KR100612765B1/en not_active IP Right Cessation
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007187355A (en) * | 2006-01-12 | 2007-07-26 | Sharp Corp | Heat exchanger and air conditioner using it |
JP2010078287A (en) * | 2008-09-29 | 2010-04-08 | Mitsubishi Electric Corp | Air conditioner |
US9360259B2 (en) | 2009-11-04 | 2016-06-07 | Daikin Industries, Ltd. | Heat exchanger and indoor unit provided with the same |
WO2011055656A1 (en) * | 2009-11-04 | 2011-05-12 | ダイキン工業株式会社 | Heat exchanger and indoor unit including the same |
JP2011122819A (en) * | 2009-11-04 | 2011-06-23 | Daikin Industries Ltd | Heat exchanger and indoor unit including the same |
CN102639954A (en) * | 2009-11-04 | 2012-08-15 | 大金工业株式会社 | Heat exchanger and indoor unit including the same |
AU2010316364B2 (en) * | 2009-11-04 | 2013-02-14 | Daikin Industries, Ltd. | Heat exchanger and indoor unit including the same |
KR101352273B1 (en) * | 2009-11-04 | 2014-01-16 | 다이킨 고교 가부시키가이샤 | Heat exchanger and indoor unit including the same |
KR20130086454A (en) * | 2012-01-25 | 2013-08-02 | 엘지전자 주식회사 | Heat pump |
US9829257B2 (en) | 2013-01-10 | 2017-11-28 | Noritz Corporation | Heat exchanger and water heater |
EP2754988B1 (en) * | 2013-01-10 | 2017-09-20 | Noritz Corporation | Heat exchanger and water heater |
CN105823211A (en) * | 2013-01-10 | 2016-08-03 | 株式会社能率 | Heat exchanger and water heater |
WO2014125997A1 (en) * | 2013-02-14 | 2014-08-21 | 三菱電機株式会社 | Heat exchange device and refrigeration cycle device equipped with same |
WO2014125603A1 (en) * | 2013-02-14 | 2014-08-21 | 三菱電機株式会社 | Heat exchange device and refrigeration cycle device equipped with same |
JPWO2014125997A1 (en) * | 2013-02-14 | 2017-02-02 | 三菱電機株式会社 | Heat exchange device and refrigeration cycle device provided with the same |
WO2014155560A1 (en) * | 2013-03-27 | 2014-10-02 | 三菱電機株式会社 | Heat exchanger and refrigeration cycle air conditioner using same |
EP2980516A4 (en) * | 2013-03-27 | 2016-12-07 | Mitsubishi Electric Corp | Heat exchanger and refrigeration cycle air conditioner using same |
US20160245589A1 (en) * | 2013-10-25 | 2016-08-25 | Mitsubishi Electric Corporation | Heat exchanger and refrigeration cycle apparatus using the same heat exchanger |
CN105659039A (en) * | 2013-10-25 | 2016-06-08 | 三菱电机株式会社 | Heat exchanger and refrigeration cycle device using said heat exchanger |
US10101091B2 (en) | 2013-10-25 | 2018-10-16 | Mitsubishi Electric Corporation | Heat exchanger and refrigeration cycle apparatus using the same heat exchanger |
CN105588371A (en) * | 2015-04-14 | 2016-05-18 | 海信(山东)空调有限公司 | Heat exchanger and air conditioner |
CN106871664A (en) * | 2017-01-09 | 2017-06-20 | 青岛海尔空调电子有限公司 | A kind of heat exchanger, air-conditioning and design of heat exchanger method |
US11181284B2 (en) | 2017-03-27 | 2021-11-23 | Daikin Industries, Ltd. | Heat exchanger or refrigeration apparatus |
CN110462324A (en) * | 2017-03-27 | 2019-11-15 | 大金工业株式会社 | Heat exchanger and refrigerating plant |
US11428446B2 (en) | 2017-03-27 | 2022-08-30 | Daikin Industries, Ltd. | Heat exchanger unit |
US11415371B2 (en) | 2017-03-27 | 2022-08-16 | Daikin Industries, Ltd. | Heat exchanger and refrigeration apparatus |
US11262107B2 (en) | 2017-03-27 | 2022-03-01 | Daikin Industries, Ltd. | Heat exchanger having first and second heat exchange units with different refrigerant flow resistances and refrigeration apparatus |
WO2018180934A1 (en) * | 2017-03-27 | 2018-10-04 | ダイキン工業株式会社 | Heat exchanger and refrigeration device |
US11168928B2 (en) | 2017-03-27 | 2021-11-09 | Daikin Industries, Ltd. | Heat exchanger or refrigeration apparatus |
JP2019113288A (en) * | 2017-12-26 | 2019-07-11 | ダイキン工業株式会社 | Heat exchanger and freezing unit |
JPWO2020105164A1 (en) * | 2018-11-22 | 2021-09-27 | 三菱電機株式会社 | Heat exchanger and refrigeration cycle equipment |
EP3885690A4 (en) * | 2018-11-22 | 2021-12-01 | Mitsubishi Electric Corporation | Heat exchanger and refrigeration cycle device |
CN113015880A (en) * | 2018-11-22 | 2021-06-22 | 三菱电机株式会社 | Heat exchanger and refrigeration cycle device |
WO2020105164A1 (en) * | 2018-11-22 | 2020-05-28 | 三菱電機株式会社 | Heat exchanger and refrigeration cycle device |
JP7134250B2 (en) | 2018-11-22 | 2022-09-09 | 三菱電機株式会社 | Heat exchanger and refrigeration cycle equipment |
WO2020165973A1 (en) * | 2019-02-13 | 2020-08-20 | 三菱電機株式会社 | Indoor unit of air conditioning device, and air conditioning device |
Also Published As
Publication number | Publication date |
---|---|
KR20000077283A (en) | 2000-12-26 |
KR100612765B1 (en) | 2006-08-18 |
JP3367467B2 (en) | 2003-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3367467B2 (en) | Finned heat exchanger | |
CN104285119B (en) | Heat exchanger and air conditioner | |
JP6165360B2 (en) | Heat exchanger and air conditioner | |
JP4122608B2 (en) | Refrigerant evaporator | |
US7182127B2 (en) | Heat exchanger | |
JP4178472B2 (en) | Heat exchanger and air conditioner | |
JP2005055108A (en) | Heat exchanger | |
JP5716499B2 (en) | Heat exchanger and air conditioner | |
JP2007024419A (en) | Air conditioner | |
JP2005201492A (en) | Heat exchanger | |
JP2013245884A (en) | Fin tube heat exchanger | |
JP4073850B2 (en) | Heat exchanger | |
US8627881B2 (en) | Heat exchanger fin including louvers | |
JP6520353B2 (en) | Heat exchanger and air conditioner | |
JP6734002B1 (en) | Heat exchanger and refrigeration cycle device | |
JP2008121950A (en) | Finned heat exchanger | |
JP2004019999A (en) | Heat exchanger with fin, and manufacturing method therefor | |
JP2007147221A (en) | Heat exchanger with fin | |
JP2011112315A (en) | Fin tube type heat exchanger and air conditioner using the same | |
JP2004271113A (en) | Heat exchanger | |
JP5404571B2 (en) | Heat exchanger and equipment | |
JP2015014397A (en) | Heat exchanger | |
WO2016031032A1 (en) | Heat exchanger and air conditioner | |
JP5664272B2 (en) | Heat exchanger and air conditioner | |
JP2020190383A (en) | Heat exchanger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071108 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081108 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091108 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091108 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101108 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111108 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121108 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131108 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |